Linux Sound
Programming

Jan Newmarch

Apress’

Linux Sound
Programming

Jan Newmarch

Apress-

Linux Sound Programming

Jan Newmarch
Oakleigh, Victoria, Australia

ISBN-13 (pbk): 978-1-4842-2495-3 ISBN-13 (electronic): 978-1-4842-2496-0
DOI110.1007/978-1-4842-2496-0

Library of Congress Control Number: 2017931692
Copyright © 2017 by Jan Newmarch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Jeff Tranter
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm. com, or visit waww.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/rights-
permission.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page athttp://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
via the book’s product page, located at www.apress.com/9781484224953. For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

orders-ny@springer-sbm.com
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permission
http://www.apress.com/rights-permission
http://www.apress.com/bulk-sales
www.apress.com/9781484224953
http://www.apress.com/source-code

Contents at a Glance

About the AUthOrccvvsmimmns e ——————=—— Xxi
About the Technical REVIEWETccssssemmssssssmssmsssmsssmsssssssssssassssssssssssssasssnssnsnns XXiii
Chapter 1: Basic Concepts of Sound...........ccussmmmmmisssnnmmmssssssnmssssssssmsssssssssssssssssssns 1
Chapter 2: User-Level TOOISccuuemmmmssnnnnmmsssssnsssssssssssssssssssssssssssssssssssnsssssssnnnsssss 7
Chapter 3: Sound Codecs and File Formats.........cccccunnnmmsssmssnnnmmmmmsssssssssnssssssssnns 11
Chapter 4: Overview of Linux Sound Architecture........oossememmmnnsrsssssssssssssnsssssssnns 15
Chapter 5: ALSA.........cccccuimmmmnnmmmmssssnmmmsssssnmmsssssssmmssssssnessssssssesssssnssssssssnnssssssnnnnss 21
Chapter 6: PUlSEAUIO0cccurrrisnmmnmmssssnnnmsssssssnnmssssssnssssssssssssssssnnnsssssnnnnsssssnnnnss 61
Chapter 7: JACK ..ccciiisssememnmmmsmsssssssssssnsssssssssssssssnnsssessssssssssnsnnssnssssssssnnnnnnnnsssssssns 143
Chapter 8: Session Management...........ccccvunnnemnnnnssnnnmmmssssnmmsssssssssssssnsssssnnns 179
Chapter 9: Java SoUNdccccriissmmnmmmsssssnmmssssssnmmssssssnssssssnsnssssssnnsessssannnsssssnnnnns 197
Chapter 10: GStreamercccuiissmmemnmmmmmmsssssssssssmmsessssssssssssnsssesssssssssnnnnnssssssssnns 211
[T 1) gl H 11 T 223
Chapter 12: FFMpeg/Libav.......cccuemmmmimsnsnmmmsssssnmmssssssnssssssssnssssssssssssssssssssssssnnnss 227
Chapter 13: OpenMAX IL.....cccccurrsssnnmmsssssssmssssssssssssssnssssssssnssssssssnnssssssnnnnsssssnnnnss 235
Chapter 14: LADSPA........ccotiiimmmmmssssssnsnssnnsnsssssnssnnns 277
Chapter 15: Displaying Video with Overlays Using Gtk and FFmpeg............cc... 293
Chapter 16: MIDL.........cccccunisemnmmmmssnsnmmmssssssmmssssssssessssssssessssssssessssnnssssssnnnnsssssnnnnss 317
Chapter 17: User-Level Tools for MIDIcccccmmmmmmnmmmmmmsssssnnsmssssssssssssssssssssssnns 321
Chapter 18: MIDI Java Soundccccussmmnmmssssnsnmsssssssnssssssssnssssssnnsssssssnnnsssssnnnnns 327

iii

iv

CONTENTS AT A GLANCE

Chapter 19:
Chapter 20:
Chapter 21:
Chapter 22:
Chapter 23:
Chapter 24:
Chapter 25:
Chapter 26:
Chapter 27:
Chapter 28:
Chapter 29:
Chapter 30:
Chapter 31:
Chapter 32:
Appendix A:

MIDI ALSAcoiiniiensssnssssnsssssssssssssssssssssssssssssssassssnsssnnsasassnsnsssansnsans 343
FIUIdSYNthccoinrisrinsssnsessssnsnessssssssssssssssssssssssssssssssssssssnsans 351
L1) 355
Overview of Karaoke Systemsccccummmmsmmmssnnnnnsssssssssssnssnssssssssnns 369
Karaoke User-Level TOOIS..........cousmmmmmimmimmsmmsmmsmismssmsssssssn 371
s 381
Karaoke Applications Using Java Sound........ccocccumrmsssnnnnnssssansnnnsns 407
Subtitles and Closed Captionsccuemmmmmssmnmmsssssssnssssssssssssssnnnns 443
Karaoke FluidSynth.........cccccnnmmminnnemnnmnnsssnnmmmsssssmnssssssssssssssnns 465
TiMidity and Karaokeccuuseeemmmsssssnnmnssssnssmssssssssnssssssssssssssnsnsssssnns 499
Jack and Karaokeccvmmmmmmmsmmsmsmssmssmsssss s 523
Streaming AUMIOceerrrnissmmnmmmssssnsnmssssssssesssssnsssssssansssssssnnnsesssnnnnnss 533
RasSPherry Picccmmmnissemmmmmssssmmmsssssnmmssssssmsssssssssssssssssssssssnssnssns 537
CoNCIUSION ...covverimmisnsssss s ———————— 547
Decoding the DKD Files on the Sonken Karaoke DVD.........cc.oeene. 549
.. 603

Contents

About the AUROFc.cccceiiiemmminsmisss s nn s nn s XXi
About the Technical REVIEWETcuseusssessssnssssssssassssssssassssasssssssssssssassssnsssansssannsns Xxiii
Chapter 1: Basic Concepts of Sound...........ccussmmmmmisssnnmmmssssssnmssssssssmsssssssssssssssssssns 1
RS 104 01 L= 1AV 1 T T 1
SAMPIE RALE.......ceceeeecerer et 1
SaAMPIE FOrMAL........oeeeeeeeete e r e r e sn e sn e r e n e nnennen 2
FIAMES ..o 2
Pulse-Code MOdUIALIONccorerenernencrnese s 2
Overrun and UNGEITUN..........ccoeeierne s sn s sss s ss s sss s snssnsssssssssnsssssssssssnsens 3

I 1T 1 1SS 3
SO e ————————————————————— 4
3T O TTRN 5
003 T 1o T 5
Chapter 2: User-Level TOOISccuucemmmmissnnmmmmsssssnnmsssssssnssssssnsnsssssssssssssssnsnsssssnnnnsssns 7
g T SRS 7
1o L N 7

VLG, eeeessseeesssssseeesssssesessssseseesss e ess s s8££ R 8RR RS R R EES 7
TOEBIM e 8

vi

CONTENTS

831011110 I 0TS 8
O 8
FEMPEG/AVCONV ...ttt se e s s s e b s s ne e s s e e e e s e e e e nsnnnnes 9
LY 1= 11T TSR 9
L1 T | TSRS 9

(003 T 1o T 9

Chapter 3: Sound Codecs and File Formats..........ccccunmnnsssssssnnnmmmmssssssssssssssssssssnes 11

OVEBIVIBW ...t sas e sa s s sas s e st e s ne e ne s e e 11

POIM .t a e AR A AR e R e 1

WAV ...ttt e e e AR 12

IVIP3 ..t se e se e e e R AR e e AR e E e e e 12

0gGVOrDIS ... e nn e n e nn 12

WIMA .. e e AR 13

MAEFOSKAcoviiieirirci e ——————————— 13

010 T 11 o o 14

Chapter 4: Overview of Linux Sound Architecture........cccusemrrmsssnnnsnsssssnnsssssssnnns 15

RESOUICES.....coveiiueirisiesrse st s s s a e s n s 15

(07001010 T S SSSSS 15
DEVICE DIIVEIS ... e s e s e e a e e e e s Re e e e s s e e e e nsnnnns 16
SOUNG SBIVEISeceerreecresrsesesesss e s se e e e s s e e s e e e s s ss e e s s se e e e s s e e e e s s e se e e s s s Re s e e nRa s e nensnnnaes 17
0] 10 (OSSPSR 18

00 3T 1T T 19

Chapter 5: ALSA......cciceemenmnnmmmsssssssssssnssmmssssssssssssssssssssssssssssnsnnssessssssssnnnnnnnnssssssnns 21

RESOUICES.....cvciieeiiriei s e s 21

USEI SPACE TOOIScceeeeeeererrerrerie e e e ssesaessessessessessessessesnesnssaesne s e sn e s rennesnesnennennennnnnannas 21
1T 1 1T PO 21
1T | 22
SPRAKEI-TEST ...t e AR E e R R Re e nnn 22
10 N U= T 0o O 23
1dentifying ALSA CArdSccoecieeerererernesesese e ses e sss s e e e ses e ssssessssessssessesssssssssessssessesessesesnsssssens 23

CONTENTS

DEVICE NAMES......cociiiiiniisisisiii s 24
ALSA CONFIGUIAtion FIlEScceererererererrereeseresesesessessssessssessssessesssssssssessssessesessssssssssssessssessssessenssssnssaes 27
AISA=INTO 1.vvirisirirs 27
APPlICALIONS USING ALSA.......ooeeeeertrertrereesersesesaesessesassessssessssessesssasssssessssessesssssssssssssssssssessssesseessensnaes 32
Programming ALSA ...t n e n s 33
Hardware Device INformation............coocvrnnnnnnnnn s 34
PCM Device INFOrmMation ..o 37
Configuration Space INfOrMaAtioN. ..o s 40
ALSA INIH@lIZALION......ocoececriririirii 46
Capture AUCIO 10 @ Fileccoueeieececre e e e 46
Playback Audio from @ Flccoceurueeceeeecrirs et 49
USING INTEITUPTS ...ttt e p e e n s 52
Managing LAtBNCY ..o s 52
Playback of Captured SOUNM ... 52
MIXING AUGIO.......ceeeerereenrserrese e ses e e sre e e s e e as s n s ne e s e n e e snennnsnns 58
MiXing USING AMIX ...cucoeirireeeeresisesesessssesesssssssesssssseses s s sesessssssssssssssssssssssssssssssssssnsssssssssssssssssssssssenes 58
MiXing USING PUISEBAUMIOcoueveeeererreeneresssesesssssesessssssssesessssssessasenes 59
Simple Mixer APL VOIUME CONTIOL.........coueeeererrnesesessesesess s ss e ss s e s e e s sessssssssssnns 59
Writing an ALSA DeVICE DFIVEN ..o ssssssnns 60
0] 3T 1] 60
Chapter 6: PUlSEAUIOc.cceerriisssnnnnmsssssnnssssssssssssssssnssesssssnsssssssnnnssssssnnnsssssnnnnnns 61
RESOUICES.cueiectrisee s 61
Starting, Stopping, and Pausing PUISEAUMIOcocverermmnnnmnismnsnsnssssesess s 61
USEr SPACE TOOISccucerereiricrire e s en s nn s n e 62
072 - SRR 62
0T L0 1]] OSSO SRSSSRS 64
0T L0 (10] 0] SRS 64
Gnome Control Center (SOUNM)cceeerereerererererererereressersesessesessesessesssessesesssssssessssessssessesessenssssnansens 66
PArEC/PaAPIAY/PACAL.......ccceeeerrerereerererereras e rre e rre e rae s s e e s s e e s e e e e e e R e e R e e R e e e Re e e e ae e ae e naenanaens 67
07 T 1 0 o o 68
DEVICE NAMES......coiiiiiriisisisisi s 69

CONTENTS

L0000 T G Lo 11 SRS 69
PUISEAUIO @NU ALSA......cooviiiiiiririsisssss s 70
Programming with PUISEAUCIO ... 70
RS 1101 <7 Y 70
PlAY @ FIlE ...voveeeeeeeeeceerisreesesesse s e s s s se s e s e e s e e a e e e Re e e R e e e e nnn s 4l
RECOIA 10 @ FilB....c.ceeeccccccce e e 73
Play from SOUICE 10 SiNK......cccocoeoeeeeeecrcrccre e 76
ASYNCRIONOUS APL.......coeereecer ettt se e s sn e s s sn e s n e s sen e s e e ene s e e nnenn 78
I 0 DT 79
Monitoring Ongoing Changes: New Sources and SinKS..........ccoevrrererreresrerseseresessesessessssessesesssssssssassens 84
RECOrT @ SIrBAM.....c.cuiiciiic s 89
L LT T 1L SRS 93
Play a File USING 1/0 CalIDACKScccevererererrersesersesersesessessssessssessesessesessessssessssessesessssssssssssessssesseneres 101
L0 0] T T (T T 112
Play MiCrophong t0 SPEAKEN.........cceerereerererenersesersesersesessesssessssessesessesesssssssessssessesesssssssssassesassessenenes 120
Setting the VOIUME 0N DEVICEScccvvrerrerereerererereresersssersssessesessessssessssesssssssesssssssssesssesssnssssssssesassens 126
I 3o 1T 128
Listing Client SOUICES ANt SiNKSccoeverrererrereererssserssesesessessssessesessesesssssssessssessesesssssssssassessssessssees 133
Controlling the Volume of @ SiNK ClIENTcccovvererrerrerere s sse e sassesassesassenes 138
0] 3T 1o N 141
Chapter 7: JACKucuureemmmmssssnnmmssssssnsmsssssssssssssssnssssssssnssssssnsnssssssnnnsssssnnnnssssnnnnnss 143
RESOUICES......ccereererieesier s ies s e s sae s sae s s s s sa e s s sae s e s ae s e e sae s e e eae s n e s ae s n e e aenneeaennenas 143
3 L (1410 R T SR 143
0T 00 SRR 146
Applications USING JACKcceeeererererrccicsre e sse e sns e sns s s snssn s sns s 146
11101 TSR 146
VLG eeteteereeseus e s s st s AR bR 146
THMIAILY .ot b s bbb 147
JacCK-SUPPlied Programs ... se st s se s st s sas e sas e snssesnssessesassens 147
Other JACK PrOGramS.........ccccoueuieicrireseecsissse s se s ses s se s ss e s s s e s ss s e sesssssssnnes 147

viii

CONTENTS

Using a Different SOUNd Card............coccevvmrennsennnnnesnsesesssse s sss s e s 147
How Can | Use Multiple Sound Cards with Jack?........c.ccecvvrvrnrvnnnsnsensesses s sessennenns 148
MiXiNG AUCIO........cecererererserser st se s sn s nr s sr s sn e sr s sn e n e nn s nnennennnnans 148
Writing Audio Applications With JaCK..........cccvvrvrieriensnsssrses e 149
00 101 SR 150
Port INFOrmMation ... 151
Copy INPUL 10 QULPUL.....cceeeeeeeeee s sr e sa e sa e sr e sn e sr e sa e sa e sn s sn e sn e nnenens 153
Delaying AUIO......ccccveeiieriirier e s ae s s s n e s n e s ne s 157
Audacity With JACK........ccceeeeeeecre e sn e sn e n s 163
Play @ SiNE WAVEccvcerieriirririrer st se e se st se s s s s s sn s sn s snssnssnssnsnnnns 165
Saving INPUL 10 DiSKcoveererrrierierinerese s sn s sne s sas s se s sne e 170
Interacting With ALSA DEVICESccceeeeerrererrerre e s e ssessssresnssnssnssns s snssnssnsssnnnnns 177
003 T 1T 177
Chapter 8: Session Management...........cccccunmmmnmnmsssnnmmmsssssnmsssssssmssssssnsssssnnns 179
RESOUICES.....ceiuiiiiiririet e 179
Session Management ISSUES.........ccvcreerierniese s ses s s s sas s e sne e snens 179
2 T G 10 13T e 181
7 TP 181
JACK SESSIONS ...covecrreecrere e e 181
LADISH.......coititieirccerere e s s st sa s e se st 184
JACK SESSION AP ...t 189
LADISH APIoeeeeecereresssssss e ss s s ss s ss s sasss s se e sssss s s sensssssnsnsssssnsnes 196
00] T (1 [0 o TS 196
Chapter 9: Java SOUNcccoummmssmmnmmmsssnsnmmssssssnmsssssssnssssssnsnssssssnnnsssssnnnnnssssnnnnss 197
RESOUICES......ceieierererese s e e e e e e e s e e e s nnenennnnnn 197
Key Java SOUNA ClASSES.......ccvurrerrerversersersersersessessessessessessessessesssssssssssesssssssssssssssssssnnnns 197
Information ADOUL DEVICESccereiiierrircrir s 198
Playing Audio from @ File........cccccvverineiennscssssiessse e sss s s ssssennes 199

ix

CONTENTS

Recording AUdio 10 @ Fileccoeeeveeeeerceirc e 202
Play Microphone t0 SPEAKETccccvverrerrerserrersirserses s s s e ses s e e s sassnssassnssens 206
Where Does JavaSound Get Its Devices From?.........ccocvnnninnnsnnssssssseennns 210
00] T [T [0 o TR SS 210
Chapter 10: GStreamerccouuissmmmmnmmmmmsssssssssssnmmsessssssssssssssssesssssssssnnnnnssesssssnns 211
RESOUICES.....cceieiererire s se s se s ne e s e s e e e e s e s e s e e e e e 211
OVEBIVIBW ... ne e s s sae e ne s esan e sae e nnnnis 211
Command-Line ProCeSSINGccceeeererereesessessessessessesssansans 213

[0 G 1] 0= TR 213

OSE-UISCOVEIEN ...ttt bbb bbb bbb 215

GSE-0RVICE-MONITONot e e e e sp e r e s 216

OSE-PlAY. ..ot b 216

GSE-AUNCH ... e e e e AR s 217
C Programmingccccoeeeeennmiessnsesensssesssssssessens 217
WHEING PIUG-INS..c. ettt sttt sn s sn st sn s 221
070 T (1 0 o 221
Chapter 11: liDA0cuuseemrrisssennmmssssnnnmmssssnssssssssnsnssssssnsnssssssnnsssssssnnnsssssnnnnsssssnnnnss 223
RESOUICES.....cuiiiueeririet s n s 223
1 (0 223
003 T 1] o] 225
Chapter 12: FFMpeg/Libav.......cccuceemmmmisnmnmmmsssssnmmssssssnssssssssssssssssssssssssnnsssssssnnnss 227
RESOUICES.....cuiiiiciririet st 227
The FFmpeg/Libav CONtrOVEISY.......cccocviercersessessessesses s se s sss s e e e s s s snnnes 227
FFmpeg Command-Ling TOOIS........cccucvreenseresmressssesessssesssssssssssessssssssssssesssssssssssssnnes 228
Programming........cccoceiirnnienne s sa e s ae s e s n e n e s 228
Decoding an MP3 File..........ccocvcriercersinires s se s se s e e sn s snssnssnssnnnns 229

0 [0 1= 0 T 234

CONTENTS

Chapter 13: OpenMAX IL......ccuummmmmmmmmmmmmmmmmmmnsssssssnmessssnsnsssssssessssnsnssssssssssssnns 235
RESOUICES..... vt 235
QUOTES ..ttt e 236
OPENMAX IL CONCEPLS ..cuvereererreerieereerseesaerssessesssessssssessessssssssessssssssssssssssssssssssessnsssesns 236
OpenMAX IL COMPONENTScoeeeereererrerrerressessesressessessessessesrsssssssssesnesrssnesnesassnsssessansans 237
IMPIEMENTALIONS ... e sa e sn e sn e snenen 237
RASPDBITY Pl a e s e e s s e s s ne e e e snnnnnnas 237
5] [To T TSRS 238
LIVLceoeeeeeseeessseesssseeessssesssssesssssssnsssssenss s s s s st 238
Hardware-Supported VErSIONS.........c.coverererenenenesssssesesese s 239
Implementations of COMPONENTSccevvrreriirrerierre e e e sse s sseseesaesnessenns 239
Getting Information About an IL COMPONENL..........cccveercerrcrrrcre e re e ra e e e s 244
Playing PCM AUdi0 FileS........cccoeeererrrrercrincresi e sss e s e snssesnes 260
3] - 1 O 260
L 72T T 260
Hungarian Notation in OPeNMAX L ... s sn e e 262
072110 T 63T 262
COMPONENT RESOUICES.....eeverrireereereersessessessessessessessessessessessesaessesasssssassssssssasssssssssessesssssesssssssssssssssssenes 262
Setting the QUIPUL DEVICE........ceceieerc et r e e nesr e nr e 265
1 11 8 0 To] oSSR 265
COMPIETE PrOgram.........coveeirciecreise et sa s s s e s b n e e nn e e s n e n e e 266
070 T (1 0 o TS 275
Chapter 14: LADSPA.........coorcmimmmssnnnnssnssssssssnnssssssnnnnss 277
RESOUICES. ... covirieetserresise s se s sr e r s r s e e n e s aenn s nnn e nnas 277
USEr-LEVEI TOOIScoeerierircincrss s 277
The Type LADSPA_DESCHPLOLccoecererericreressesse s e ssesss s sseses e s e ssesssssssssnsens 279
0T o T T T (10 S 280
A Mono AMPIIfier ClIENT......cccvierierie s s rree s e s sae s sn e saessnesaesnesnes 280
A Stereo Amplifer With GUI ..o s 286

xi

CONTENTS

The amP Program.........ccccoiirreresese s se s e 291
00] o (1[0 o SRS 292
Chapter 15: Displaying Video with Overlays Using Gtk and FFmpeg...........cccuu. 293
11 01T SR 293
BASIC GIK ...ccererercrersir s n e nnnnan 297
VErSIONS OF GEK ...ccveeveeeerecrcre e ss s sn e sa s sa e sa e sn e sa e sa e sn e sn e sn e sa s sn e sn e sn e n s 299
Displaying the Video USiNg GK...........ccvevrerserrersensensensessessessessessessessessessesssssssssssssssssnnns 300
(4= 1 300
PIXDUTSuceetisee et a st s s e e e Re e e e e AR R R e Re R R e Re e e R Re e e R Re e e nes 300
D 1 2T R T T N 300
GEK 3.0 1..vveuereeuseesseesssesssseessssessssenssssesssseessssesssseessssessseessssnsssseessssnssseessssess s ens s s s s st s sasenssnnees 301
GEK 2.0 1..vveueeeeuseesseeessseessssesssesssssessssesssseessssessssesssssesssseessssessssnessssnsssseessasessssesssssessssmessssnssssssssaessssnnses 301
THreads NG GIKcccceeerierererrresesesrse e e e e s e e s e a s e e p e et ne b e e nnnnans 302
TRE COUE......cuiueeerrrereereers s e e e b e e A e Re e e R e Re R R e Re e A e R e nE e e R e e e e e R e e e e Eans 302
Overlaying an Image on Top of an IMAgecceeeeererererere e sneens 306
AIPNA CRANNEL ... r e a e r s a e n e a e r e sn s sn e nn e snen s 308
Using Cairo to Draw 0N an IMAgE.........cecerereereereersrrsesssssssssssssssssssssssssssssssasssssssssssssssnns 309
Drawing Text USiNg Pango..........ccccvcrieriersessesssssessessss s s s sss e sessessnssnssnssnsssssnssnssssnsnns 312
CONCIUSION.....ccveeeereereerrerae e e e sae s s saesresr e s e s e sae s e saesaeeaena e e e saesnesaenaenassnennennnnnns 315
Chapter 16: MIDL.......ccccccmmirririssssssssnsnsssssssssssssssssssesssssssssssssnsssessssssssnnnnnnnnssssssnns 317
BESOUICES......ccueieecirire s s s s sa e ne s n e s a e e r e s ne s n e sn e e s n e e e s nnenas 317
Components of @ MIDI SYSTEMccccvererrrcrrrr e sa e saesaenens 317
L1215 2 R 317
LT 1 1 (o] £ PP YRTSPTRS S 318
OthEr COMPONENTS.......cccererererereerereerererereres e rsesersesesaesassesassesas e saesesae e saesasaesassesaesesassesassansesanserssneres 318
MIDI EVENLSooerirerisessesse s s s e s e s e e e e se s e n e e s s s e s e s snssnssnssnssnssnasnssnnnnnns 318
Program Change EVENLS ... e e a s e 318
NOTE EVENTS ...ttt e e s e e e e e s 318
MELA EVENTS ... e e e e R R R s 318
CONCIUSION.....cveeeeeeereerte e s e ae s e s s e s e sae s e saesa e saena e e e saesaenaesaenaesnennennnnnnns 319

xii

CONTENTS

Chapter 17: User-Level Tools for MIDIcccccemmmmmmmmmsssssssssnnsmsssssssssssssssssssssnns 321
RESOUICES..... vt 321
SOUNT FONES ...t 321
L T 322

B T4 E 3 T =T - O 322

Setting TiMidity OULPUL DEVICEceueeereereeereeere s s eree e ree e raeses e sesaeras e saesessesesaesassesasesaesesassssesanaens 323

B T4 R T 1o - T GO 323
(6 L= 101 O 323
L 11T £ 1L 324

FIUIASYNTN @S @ SEIVEN ... nn s 324
L0 LT T2 L0 [SRS 324
WIIAMIDLcovereeiesteseeeesesesesssss s sese e e s s ss e s ss e s s s s s s sessnsnsnsns 324
COMPANISON ... e e sresae s e sesresae s e s resresaesresnesresnesnesnennsnnennennnnnans 324
VLG .ottt a e ne e e e e e e AR e n e e 325
0] T (1 0 o 325
Chapter 18: MIDI Java SOUNGcccceerrmmmmmmssssssssssmmssssssssssssssssssssssssssnnnsssssssssssnns 327
RESOUICES..... vt s s sn s 327
Key Java Sound MIDI CIASSESccceeerererserrenmsesmssessesessessnes 327
Device INFOrmMatoNccccceeeerecere e 328
DUMPING @ MIDI Fil@eecerererere et se e sn e sn s nnssn s sn s snnnns 330
Playing @ MIDI File.......ccveeerieienenerrssesessssessssssse s ssesssse s s ssssss s ssssssssssssssssssssssssnssnes 334
Changing the SoundbanK ... sae e 340
Changing Pitch and SPEEQcceeeeereresccere e sne e 340
Using TiMidity Instead of the Default Gervill Synthesizer..........cccccvvvrvrrrvevrcerceninnns 342
(003 T 110 342
Chapter 19: MIDI ALSAcocuusmmssmssmmsamsssssssssssssssssassssssssssssssssssssssssssnssssssasssasss 343
RESOUICES.....ceiiiceririet st 343
ALSA SequeNCEr ClIENTS.........coeeeeerrerere e sse e sse e ss e s s s snesnssnesnssnssnssns s s 343
ACONMNECT. ...t ———————————— 344

CONTENTS

e[0T 1 3L SRR SRR 345
APIAYMIGi ... e ————————— 346
RAW MIDI POIES......cviviiiccimsnssss s 347
Raw MIDI PRYSICAl DEVICES.......cccecerrererrerirerinersssesse s sss e s e ssesessesesssssssesssssssssesssssssssssssssssesssneens 347
RaW MIDI VIFtUGI DBVICES.....cueeereereereerereriessessessesse e ssessessesaesasssessesasssssassnes 347
Mapping MIDI Clients into MIDI RAW SPACE..........cceerrerernerncrs e ses e s e ssssesns 348
TUrNING OFf All NOES......cecceeiirerirerestreses et se s e 349
CONCIUSION....cviccccss s ——————— 349
Chapter 20: FluidSynthcccciiemmmmnnssmmmmmssesmmmmsssmmmssssnmsssssssssssssnsssnn 351
RESOUICES......cociiririrt e 351
P2 £ SRS 351
Play MIDI Fil@S......ccveerereierrsersesesesssssssessssessssssse s e ssessnssns 352
PYENON ... e n e s 353
CONCIUSION.....vitccccrt 353
Chapter 21: TIMIdItYccurrinnemmmmmmsssnmmmssssnmmssssssnesssssssesssssssessssssssssssnnnssssssnnnnss 355
TIMidity DESIGN.....ccceeeererierserserresses s s s e sn s n e sn s sn s sn e sn s n e nn s nn e nn e nnnnn s 355
Turning TiMidity int0 @ LIDFary.......c.ccccveeenneirennsessssnessnsesssssssssssesssssssessssssssssssssssssssens 356
Managed EnVIronmMeEnts HOOK..........ccceerererrnnencsrsrnesesisisss s ses s ses s sessssssssesssssssssnens 356
BUIIAING the LIDFArYcovoveecceeeeecerise et nes e 356
Library ENTry POINEScccovcueciisccir s 357
A Minimal APPICAHION ... e e e n s 357
Playing a Background Video t0 @ MIDI Filec.oveeerirnccrerneescresie s sessseeens 358
Building @ NeW INTerface........cccvvervriensrinsirrirsesses s se e e e e sss e sasssssssnnns 360
LS 1 1= 0 0 =T PR 360
ENEY POINt oo 360
CONEOIMOGE ..ottt s 361
INCIUAR FilBS ..ottt 362
My Simple INTBITACE. ... ———————— 362

xiv

CONTENTS

Running My Simple INTEITACEccccvvererererererrereree e reseres s e ssesessesessesassesas e saesesassesassassesassesasnenes 367

Playing a Background Video t0 @ MIDI Fileccccovvereninnnnrin s sssssssss s sssssssssssssesssssessssssnses 367
0] T (1 0 o 368
Chapter 22: Overview of Karaoke Systemscccsssmssassssnsssassssassssnsssassssanssns 369
Chapter 23: Karaoke User-Level TOOIS.......cccuseemmmssssnnnmmssssnnnmsssssssnssssssnssssssssnnnss 31
L LT0 LT o O DI V] (-] S 371
CD4G DISCS ..vuerveeruesseessesessssssssssesssnsesns 372
IMP34+G FIlBS ...c.ceererereereeeseresesesessssse e e e s se e s s e sesanssssssssssssssenens 372
Buying CD+G or MP3+G Fil€S........ccoovcirerrcresirensc e sss s e snsesnes 373
Converting MP3+G 10 Video FileS........ccoeeeeeeererese e sse e s s s s snnnns 373
IMPEG-4 FIlEScvevrerereeeecceeseresesssseseseesesesesesss e ssseesesesessssssssssssssssssesssssssssssssssssssnens 373
Karaoke MaCRINES..........cccceiirenircr s 374
MIDI PIQYEISceuerirereressessessessessessessessessesssssessss e s e s sessessesssssssssssssssssssssssssssssssnsensansans 375
FINAING MIDI FIlES.....ccoeierereriersersesser s ssesses e s e s e s e s e e s et s e ss s e s sns e s e s snssassassnssasnnnns 375
KAR File FOrmMat.........cccooiiiircincns s 376
PYKAIAOKEcoerererisisese st s s et e e e e e e e sn st sn s e e e s sn s e s snssnesnssnesnesnnnnns 377
) 1T P 377
Microphone Inputs and Reverb Effectsccccovvrnrsnsnsssssssesssssss s 379
070 o (1 [0 o 379
Chapter 24: MP34Gcccuriiieemmmmmssssnmmmsssssnmmmssssnmsssssssssesssssssssssssnsssssssnnnssssssnnnnss 381
File Organizationc.cccvcvcrsensenses s sn s sn e sn s sn s sn e snesn e snenans 384
SONQG INFOrMALION.....ceeeeer e —————————— 384
SONG TADIE ... ————————— 386
0]] (TR 390
LI L] (= 393
SWING SONG TADIEc.coueeeeireer e ne s 395
Playing SONQS.....cccevciririrrirsirsirser sttt sr s e s snssn s sn s sr s sn s sn s sn s sn e sn e nnsnnennennnnnans 401

XV

CONTENTS

VL e a A e A e A e A e R e A e e e R e R e nnennenes 402
Playing Songs Across the NEIWOIKccocvvrvrreriennnses s ses e e e sesnens 402
070 T (1 [0 o 405
Chapter 25: Karaoke Applications Using Java Sound.........c.ccuuseemmnnssssnnnsnsssnnnns 407
RESOUICES.....cviiieceririei s 408
T 10 =] o 2 408
IMHAIPIAYETcceeeereresrsseeeeseseresssss s e s e e e s ss s sssesesss s s s sssssssessnsassssassnnsssenens 409
DiSPIAYRECEIVEceeeerercer ettt sn e n e sn s nn e nn e nnenan 413
MIIGUL ..ot e s e nn e e sr e e e sr e sn e snennesn e e en 415
AttributedLyriCPanelcooere e ——————— 420
PIANOPANEL ... s 423
MEIOAYPANEL.........cceeeceee e s 425
Sequencelnformation...........ccoeeeriernnne s 430
o0 1 SRS 434
Karaoke Player with SAMplingccccvvrverrrinrrrrrr s 435
Comments 0N DeVICe CROICEScueeeerecrrreerere s 441
T (0] 11 LT R 441
603 T 1] o] 441
Chapter 26: Subtitles and Closed Captionsccucccemmmmssennmnssssssnmsssssssnssssssnnns 443
RESOUICES.....cucuiiiciiirict st 443
Subtitle FOrMAaLS.........ccoieerereerre e 443

1o U] SRS 443

VLC...ooreeeessseeesssssseeesssssesessssssesessssssenssess s sess s RS R R R 444

GNOME SUDTIIES ... e e 444

SUDSTAtION AIPNEoeeeeeececeeree s r s rsr s rerennanrerennr s nnnnnanas 445
Karaoke Effects in ASS FilES ... 446
MURIIING KATAO0KEccveeereerererneniscssssessesessessesssse e sse s s s s sse s s ssssssssssssssssssssssssnsenes 449
172 T 451
Converting KAR Files to MKV Files with ASS Subtitles.........ccooevereeeresesecssescescennnnns 451

xvi

CONTENTS

HTMLS SUDTILIESvvvciccccreri s se s et 463
003 T 1] 0] 464
Chapter 27: Karaoke FluidSynth............cccccniemmmnnnsmmmmmnmsssmmnssssnmmssssnmssssssns 465
RESOUICES.....cuiiiicercriee s 465
PIAYEIS....cceiereresisses s e e e e e e e nn e n e nn e n e nn e nnennennenan 465
Play MIDI Fil@S......ccveerereierrsersesssesssssssessssesssssssesssessssssssnssns 465
Extending FluidSynth with CallDAcKSc.cceeerverrerrensensessersesses s ses e sessessessesenns 467
Displaying and Coloring Text With GEK..........cccvvrrriiiscr e 470
Playing a Background Video With GtK..........ccceovrernsmrnnnsesnssssessnsessssssessssessesessessssssnes 482
(003 T 11T 497
Chapter 28: TiMidity and Karaokeccccuusssemmmmsssssnnmmssssssnmsssssssssssssssssssssssnnnns 499
TIMidity @nd JACKccoceererererrrrsseeesesesesessssssssssssesesesesss s sss e sesssssssssssssssssssssssnsssens 500
TiMidity INTErfaCecccvcrcrcrcr e 502
Getting the LiSt Of LYFICS.....cccuverirere e sse s e s s sss s ssssnsssssassasssssasssssssnsnns 504
TiMidity OPLIONS.......ccoeeercercr e sr e 505
Playing Lyrics Using Pango + Cairo + XIiDcccccoervrirsscscisses s sns e 506
Playing a Background Video With GiK...........ccccvvrrervrrnsnnnsenserses s ses e sessenns 512
Background Video with TiMidity as LIDrarycccceverrssessessessessesssssessessessessssssssssnenns 519
Background Video with TiMidity as Front End..........c.ccocvvrircrcrcscrcrcerer s 521
Adding Microphone INPUL ..o e n s 521
(00 3T 1T O 521
Chapter 29: Jack and Karaokecccsseesssnns 523
Using Jack Rack for EffECtScoceeererenescsese e sss s s sssssssss s snssns s snssnnnnns 523
Playing MIDIooeeeeercrr ettt se e e sn e s sn e n e e sn e nn e nnnn 526
TiMidity PIus JACK RACKcceeerverrerrerrerserserses s s s s s e e e e e s sn s e s s sassneses 527
Customizing TiMidity BUild...........cccoeererrinerrcrescrerr e 528
Playing MP3+G with Jack Rack Pitch Shifting.........c.ccccucrrnriennscnessiersseseses e 528
003 T 1] 0] 532

CONTENTS

Chapter 30: Streaming AUdioccnsmmsemmsmmsssmsssmssmesms s 533
15 PR 533
HTTP SBIVEIS ...t 533
o I 01T 1 T 533
Streaming vS. DOWNIOAUING.......ccccceerreriiereriie e sre e sn e e re e sre e snesn s e snnnens 534
HTIMILS ...ttt e e e nn e nn e nn e n e e s n e nn e nnnn 534
3 535
ICBCAST. ...vucerrcirr et ————————————— 535
FIUMOUON <. 535
CONCIUSION.....ceieccccit e 535
Chapter 31: Raspherry Picccccuieemmmmissssnmmmssssnmmssssssssmssssssnssssssssssssssssssssssssnnnss 537
RESOUICES. ...ucutirisiirriset s e 537
THE BASICS...ceiuccrrriis it 537
HAPAWANE ... 537
Alternative Single-Board COMPULETScccverircierenesressess e srs s sn s s srssesnesesnes 538
DISIIOS ..o ————————————————— 539
1 oS0 11 Lo R 539
ALSA ...ttt A R e R Re R RenE e Rnnnnn 539
Sampled AUAIO PIAYEIS........ccvcrieereererrer s sessessesssssssssessssassasssssssssssssssssassassssssssnns 541
IMPIAYET ...ttt A e e R e e R e e e Re R e AR e e R e e Re R Re R e Re R e e R e e ns 541
L X O 541
AUSAPIAYET ...t e e R R e R R e R Re R e R e eRe e e R e R e Renreaeas 541
OIMIXPIAYET c..coveeereeeesesesesseesre s se e s e e s s e s re e e se e s ae e s se e R e e R e e e Re e e ReeEeRe e R e e e R e e e Re e sRe e s Renee e nRe e eRe e naenensnas 541
IS L X USING the CPU? ...t e s p s e 541
Sampled AUdIO CAPIUFE.......ceccevierrerer s rsee s s e sae s sa e s sa e s e s snesaessnesanesnesanesneens 541
ALSA ...ttt R e A AR R A e AR R R R e Re e R A e Re e R e e R e e e e e R e s nnEnEans 541
LN o 1T SRR 542
LI PP 542
PYKAFAOKEcveeeiecterieeie et re s s se s s ae s ae s e e e s e s e e e e e e e s e e e ea e ee e e R e e e e e ee e e b e e e e e s e e e e e s e s e sennenes 542
L LU0 3T 0T3O 542

xviii

CONTENTS

JAVA SOUNG.......ii s 543
1T T o 544
JAVA MIDL.....oe e —————————————— 945
OPENMAX......ceeeeeeereer e a e s e s s s e a e sa e e e e e e e e e na e e e naenaenaennenaennennenannens 545
CONCIUSION......veeccce e s 545
Chapter 32: CONCIUSIONcccerrissssnnnmmssssnnsmmssssssnssssssnsnsssssssnnssssssnnnesssssnnnsssssnnnnss 547
Where Did | STart? ... 547
Where Did | GEETO? ...t 547
HOW Did | GEE TREIE? ...t 547
Appendix A: Decoding the DKD Files on the Sonken Karaoke DVD...........cccuuus 549
INEFOTUCTION ... 549
Format Shifting........ccvevvririnirrerrrer s se e e sn s sn e sn s sn e sn e sn e 550
Files 0N the DVD ...t 550
BACKOT.IMPG ...t s a e s e s e s s ae e se e s ne e e e snn e e n s 551
DTSMUSO00.DKD t0 DTSMUSQ7.DKDcccouiuieerernnecseresssesesessessesesssssesesssssssssssssssssessssssssssssssnsassnss 551
DTSMUSTO.DKD ...t se s se s se s sa s e s s e s s s e e s s ae e e s s ne e e sesneannnas 551
DTSIMUSZ20.DKDcuceeerereecsesesseeesssseesesesssssesesssss e sesasss e e e se s sesas s s sessssa e sbsssse s sesssns e e sesnsnnasnnas 551
Decoding DTSMUS20.DKD..........cccueeerenmrenessersesssesesssssessssesssssssssssssssssssssssssssssssssssssssenes 551
SONG INTOIMALION ...t e r e e e n e nnnp e 551
Beginning/ENd Of DALA........cccovuieiererreererirese s sn s s s nas s s nnes 553
ChiINESE SONUScceeeiirieeresesese e e e 553
Other LANQUAGEScceeeereeeeereresseeessssessesessssssesessssssesesssssssessssssssesssnsssnns 554
PrOOIAMS ...ttt e e e b et e s e Re e e s e Re e e s nne e e nannnnnnnes 554
The Data Filesccccocvvrirmrnn s 568
61T | 568
T S0 (=0 (O 569
TRE SUPEIDIOCK.coveereeereererertrerseseraesersesassesassessesessessssessssessssessesesassassesassessssesssssssessssessssersenesssnsnaes 570
SONQ STAM TADIES......cierriicr i —————————— 571
Locating Song Entry from Song NUMDEFcovererre vt e e sse e sae e saesesaesassesaenenes 571

Xix

CONTENTS

LT 40 TP 571

LT 10 0 L O 572
Decoding MIDI FilS........ccccuciiernerserersirsesses s e se s e e sn s e snssnssnssns s snnnnns 572
T 5] o TSR 572
Playing MIDI FilES......cccoureerrierrenenerresssessssessessssessssessessssesssssssssssssssssssssssssssssssssssssnsenes 999
Playing WIMA FilEScucurerrrrrersersessessessessnsans 599
S 0 1 T 600
Playing SONgs With PYKAr........ccccvcerrrvniniersirsersesses s ss e s e s s s snssnssssnnns 600
L 1 0 600
Language ENCOUINGcveeererrrreeseresseesessssssesessssssssesesssssssessssssssessnsnes 600
SONYS With NO NOTES ..o nsnenas 601
(003 T 11T 601
INA@X...ciiiisnmnnnssssnnnnnssssnnnnnssssnnnssssssnnnsnssssnnnsnsssnnnssnsssnnnnsnsssnnnnsnsssnnnnsssssnnnnnnsssnnnnnnnss 603

XX

About the Author

Jan Newmarch is the head of ICT (Higher Education) at Box Hill Institute,
adjunct professor at Canberra University, and adjunct lecturer in the
School of Information Technology, Computing, and Mathematics at
Charles Sturt University. He is interested in more aspects of computing
than he has time to pursue, but the major thrust over the last few years
has developed from user interfaces under Unix into Java and the Web and
then into general distributed systems. Jan developed a number of publicly
available software systems in these areas. For the last few years he has
been looking at sound for Linux systems and programming the Raspberry
Pi’s GPU. He is now exploring aspects of the IoT. He lives in Melbourne,
Australia, and enjoys the food and culture there but is not so impressed by
the weather.

XXi

About the Technical Reviewer

Jeff Tranter has been using Linux since 1992 and has written and
contributed to a number of open source and commercial Linux
applications and tools. He has written about Linux and multimedia in
numerous magazine articles, Linux HOWTOs, and books, including Linux
Multimedia Guide way back in 1996. Jeff received his bachelor’s degree in
electrical engineering from the University of Western Ontario. He currently
works as an engineering manager for a software consulting company,
telecommuting from Ottawa in Ontario, Canada.

xxiii

CHAPTER 1

Basic Concepts of Sound

This chapter looks at some basic concepts of audio, both analog and digital. Here are some resources:

e The Scientist and Engineer’s Guide to Digital Signal Processing (www.dspguide.com/)
by Steven W. Smith

e Music and Computers: A Theoretical and Historical Approach (http://music.
columbia.edu/cmc/MusicAndComputers/) by Phil Burk, Larry Polansky, Douglas
Repetto, Mary Roberts, Dan Rockmore

Sampled Audio

Audio is an analog phenomenon. Sounds are produced in all sorts of ways, through voice, instruments,
and natural events such as trees falling in forests (whether or not there is anyone to hear). Sounds received
at a point can be plotted as amplitude against time and can assume almost any functional state, including
discontinuous.

The analysis of sound is frequently done by looking at its spectrum. Mathematically this is achieved by
taking the Fourier transform, but the ear performs almost a similar transform just by the structure of the ear.
“Pure” sounds heard by the ear correspond to simple sine waves, and harmonics correspond to sine waves,
which have a frequency that’s a multiple of the base sine wave.

Analog signals within a system such as an analog audio amplifier are designed to work with these
spectral signals. They try to produce an equal amplification across the audible spectrum.

Computers, and an increasingly large number of electronic devices, work on digital signals, comprised
of bits of 1s and 0s. Bits are combined into bytes with 256 possible values, into 16-bit words with 65,536
possible values, or even into larger combinations such as 32- or 64-bit words.

Sample Rate

Digitizing an analog signal means taking samples from that signal at regular intervals and representing those

samples on a discrete scale. The frequency of taking samples is the sample rate. For example, audio on a CD

is sampled at 44,100Hz, that is, 44,100 times each second. On a DVD, samples may be taken up to 192,000

times per second, with a sampling rate of 192kHz. Conversely, the standard telephone sampling rate is 8kHz.
Figure 1-1 illustrates sampling.

© Jan Newmarch 2017 1
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_1

http://www.dspguide.com/
http://music.columbia.edu/cmc/MusicAndComputers/
http://music.columbia.edu/cmc/MusicAndComputers/

CHAPTER 1 © BASIC CONCEPTS OF SOUND

41

=N
L

NS

O=NWARUIDN®©O©O

Figure 1-1. Analog and sampled signal (Wikipedia: http://en.wikipedia.org/wiki/Pulse-code
modulation)

The sampling rate affects two major factors. First, the higher the sampling rate, the larger the size of the
data. All other things being equal, doubling the sample rate will double the data requirements. On the other
hand, the Nyquist-Shannon theorem (http://en.wikipedia.org/wiki/Nyquist_theorem) places limits on
the accuracy of sampling continuous data: an analog signal can be reconstructed only from a digital signal (in
other words, be distortion-free) if the highest frequency in the signal is less than one-half the sampling rate.

This is often where the arguments about the “quality” of vinyl versus CDs end up, as in “Vinyl vs.

CD myths refuse to die” (www.eetimes.com/electronics-blogs/audio-designline-blog/4033509/
Vinyl-vs-CD-myths-refuse-to-die). With a sampling rate of 44.1kHz, frequencies in the original signal
above 22.05kHz may not be reproduced accurately when converted back to analog for a loudspeaker or
headphones. Since the typical hearing range for humans is only up to 20,000Hz (and mine is now down
to about 10,000Hz), then this should not be a significant problem. But some audiophiles claim to have
amazingly sensitive ears!

Sample Format

The sample format is the other major feature of digitizing audio: the number of bits used to discretize
the sample. For example, telephone signals use an 8kHz sampling rate and 8-bit resolution so that a
telephone signal can only convey 2/8 (in other words, 256) levels (see “How Telephones Work” at http://
electronics.howstuffworks.com/telephone3.htm).

Most CDs and computer systems use 16-bit formats, giving a very fine gradation of the signal and allowing
arange of 96dB (see “Audacity: Digital Sampling” at http://manual.audacityteam.org/man/Digital Audio).

Frames

A frame holds all the samples from one time instance. For a stereo device, each frame holds two samples,
while for a five-speaker device, each frame holds five samples.

Pulse-Code Modulation

Pulse-code modulation (PCM) is the standard form of representing a digitized analog signal. According

to Wikipedia (http://en.wikipedia.org/wiki/Pulse-code_modulation), “Pulse-code modulation is

a method used to digitally represent sampled analog signals. It is the standard form for digital audio in
computers and various Blu-ray, DVD, and CD formats, as well as other uses such as digital telephone
systems. A PCM stream is a digital representation of an analog signal, in which the magnitude of the analog
signal is sampled regularly at uniform intervals, with each sample being quantized to the nearest value
within a range of digital steps.”

2

http://en.wikipedia.org/wiki/Nyquist_theorem
http://www.eetimes.com/electronics-blogs/audio-designline-blog/4033509/Vinyl-vs-CD-myths-refuse-to-die
http://www.eetimes.com/electronics-blogs/audio-designline-blog/4033509/Vinyl-vs-CD-myths-refuse-to-die
http://electronics.howstuffworks.com/telephone3.htm
http://electronics.howstuffworks.com/telephone3.htm
http://manual.audacityteam.org/man/Digital_Audio
http://en.wikipedia.org/wiki/Pulse-code_modulation
http://en.wikipedia.org/wiki/Pulse-code_modulation
http://en.wikipedia.org/wiki/Pulse-code_modulation

CHAPTER 1 " BASIC CONCEPTS OF SOUND

PCM streams have two basic properties that determine their fidelity to the original analog signal: the
sampling rate, which is the number of times per second that samples are taken, and the bit depth, which
determines the number of possible digital values that each sample can take.

However, even though this is the standard, there are variations (http://wiki.multimedia.cx/index.
php?title=PCM). The principal one concerns the representation as bytes in a word-based system: little-
endian or big-endian (http://searchnetworking.techtarget.com/definition/big-endian-and-1little-
endian). The next variation is signed versus unsigned (http://en.wikipedia.org/wiki/Signedness).

There are a number of other variations that are less important, such as whether the digitization is
linear or logarithmic. See the MultimediaWiki at http://wiki.multimedia.cx/index.php?title=PCMfor a
discussion of these.

Overrun and Underrun

According to “Introduction to Sound Programming with ALSA” (www. 1inuxjournal.com/
article/6735?page=0,1), “When a sound device is active, data is transferred continuously between the
hardware and application buffers. In the case of data capture (recording), if the application does not read the
data in the buffer rapidly enough, the circular buffer is overwritten with new data. The resulting data loss is
known as overrun. During playback, if the application does not pass data into the buffer quickly enough, it
becomes starved for data, resulting in an error called underrun.

Latency

Latency is the amount of time that elapses from when a signal enters a system to when it (or its equivalent
such as an amplified version) leaves the system.

According to Ian Waugh's “Fixing Audio Latency Part 1” (www. practicalpc.co.uk/computing/sound/
latency1.htm), “Latency is a delay. It's most evident and problematic in computer-based music audio
systems where it manifests as the delay between triggering a signal and hearing it, for example, pressing a
key on your MIDI keyboard and hearing the sound play through your sound card.”

It’s like a delayed reaction, and if the delay is large, it becomes impossible to play anything in time
because the sound you hear is always a little bit behind what you're playing, which is distracting.

This delay does not have to be large before it causes problems. Many people can work with a latency of
about 40ms even though the delay is noticeable, although if you are playing pyrotechnic music lines, it may
be too long.

The ideal latency is 0, but many people would be hard-pressed to notice delays less than 8ms or 10ms,
and many people can work quite happily with a 20ms latency.

A Google search for measuring audio latency will turn up many sites. I use a crude but simple test. I
installed Audacity on a separate PC and used it to record simultaneously a sound I made and that same
sound when picked up and played back by the test PC. I banged a spoon against a bottle to get a sharp
percussive sound. When magnified, the recorded sound showed two peaks, and selecting the region
between the peaks showed me the latency in the selection start/end. In Figure 1-2, these are 17.383 and
17.413 seconds, with a latency of 30ms.

http://wiki.multimedia.cx/index.php?title=PCM
http://wiki.multimedia.cx/index.php?title=PCM
http://searchnetworking.techtarget.com/definition/big-endian-and-little-endian
http://searchnetworking.techtarget.com/definition/big-endian-and-little-endian
http://en.wikipedia.org/wiki/Signedness
http://wiki.multimedia.cx/index.php?title=PCM
http://www.linuxjournal.com/article/6735?page=0,1
http://www.linuxjournal.com/article/6735?page=0,1
http://www.practicalpc.co.uk/computing/sound/latency1.htm
http://www.practicalpc.co.uk/computing/sound/latency1.htm

CHAPTER 1 * BASIC CONCEPTS OF SOUND

Audacity =] |8l |23

File Edit View Transport Tracks Generate Effect Analyze Help

UJJJJ'J””
g PRlp

NRRRRRnRNn

T

¢‘0
1
v

"éié
D

Selection Start: @ End O Length Audio Posit
'snapTo [) 00h00m17.383 s+ [00h00m17.413 s+ [00h00n

IE)isk space remains for recording 3 hours and 4 minutes. ’Actual Rate: 44100

Figure 1-2. Measuring latency with Audacity

Jitter

Sampling an analog signal will be done at regular intervals. Ideally, playback should use exactly those same
intervals. But, particularly in networked systems, the periods may not be regular. Any irregularity is known as
jitter (http://en.wikipedia.org/wiki/Jitter).Idon’t have a simple way of testing for jitter; I'm still stuck
on latency as my major problem!

http://en.wikipedia.org/wiki/Jitter

Mixing

CHAPTER 1 " BASIC CONCEPTS OF SOUND

Mixing means taking inputs from one or more sources, possibly doing some processing on these input
signals and sending them to one or more outputs. The origin, of course, is in physical mixers, which would
act on analog signals. In the digital world, the same functions would be performed on digital signals.

A simple document describing analog mixers is “The Soundcraft Guide to Mixing”
(www. soundcraft.com/support/gtm_booklet.aspx). It covers the following functions:

Routing inputs to outputs

Setting gain and output levels for different input and output signals
Applying special effects such as reverb, delay, and pitch shifting
Mixing input signals to a common output

Splitting an input signal into multiple outputs

Conclusion

This short chapter has introduced some of the basic concepts that will occupy much of the rest of this book.
The Scientist and Engineer’s Guide to Digital Signal Processing (www.dspguide.com/) by Steven W. Smith has
a wealth of further detail,

http://www.soundcraft.com/support/gtm_booklet.aspx
http://www.dspguide.com/

CHAPTER 2

User-Level Tools

This chapter looks at the user-level tools that are typical under a Linux system, including players, various
sound manipulation tools, and editors.

Players

The following sections talk about players.

MPlayer

I think MPlayer is fantastic and probably use it more than any other player. I usually run it from the
command line, but there are GUI versions available. It will play almost any media type—video as well as
audio. I use it for both. It will also accept HTTP URLs, DVD URLs, and VCD URLs, among others.

The man page for MPlayer is at www.mplayerhq.hu/DOCS/man/en/mplayer.1.html, and the reference
page is at waw.mplayerhq.hu/DOCS/HTML/en/index. html.

There is a GUI version of MPlayer called MPlayerGUI, but it is broken under current versions of Ubuntu
(such as 16.04) and apparently won't be fixed. There is a Gnome version called GNOME MPlayer that looks
like Figure 2-1.

e audio.mp3 - GNOME MPlayer

File Edit View Help

audio.mp3
audio

K n - o)

Playing 0:45/13:32

Figure 2-1. GNOME MPlayer

VLC

VLC is my second favorite player. It too will play almost anything and accepts HTTP, DVD, and VCD URLs. It
has a default GUI but can be run without one with the command cvlc. The GUI looks like Figure 2-2.

© Jan Newmarch 2017 7
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_2

http://www.mplayerhq.hu/DOCS/man/en/mplayer.1.html
http://www.mplayerhq.hu/DOCS/HTML/en/index.html

CHAPTER 2 * USER-LEVEL TOOLS

e audio.mp3 - VLC media player

Media Playback Audio Video Subtitle Tools View Help
00:17 © 352
o« nm

I e mom E M (=62 O il

Figure 2-2. VLC

Its main page is VideoLAN(www.videolan.org/vlc/index.html), and you can find some
documentation at Welcome to VideoLAN’s Documentation (http://wiki.videolan.org/Documentation:D
ocumentation).

Totem

Totem is commonly used, but it is not one of my favorites.

Sound Tools

There are a number of sound tools capable of multiple tasks such as converting formats and applying effects.
Some of these are described in the following sections.

SOX

sox is the Swiss Army knife of sound-processing programs. The simplest usage is to change file formats as
follows:

sox audio.mp3 audio.ogg
This converts an MP3 file to an Ogg-Vorbis file (you may need to install the 1ibsox-fmt-all package to

be able to handle all file formats).
However, it can also perform many other functions such as the following:

e Convert to mono, as shown here:

sox audio.mp3 audio.ogg channels 1

e Double the volume, as shown here:

sox audio.mp3 audio.ogg vol 2
¢ Change the sampling rate, as shown here:

sox audio.mp3 audio.ogg rate 16k

http://www.videolan.org/vlc/index.html
http://wiki.videolan.org/Documentation:Documentation
http://wiki.videolan.org/Documentation:Documentation

CHAPTER 2 * USER-LEVEL TOOLS

It can also perform more complex effects such as merging files, splitting files when it detects silence,
and many others.
Its home page is at http://sox.sourceforge.net/.

FFmpeg/avconv

FFmpeg is generally used as a converter from one format to another. There is a nice series of tutorials at the
site A FFmpeg Tutorial For Beginners (http://linuxers.org/tutorial/ffmpeg-tutorial-beginners) by
shredder12.

It can also be used to record from ALSA devices such as hw: 0 or the default device. Recording from hw:0
can be done with the following:

ffmpeg -f alsa -i hw:0 test.mp3
It can be done from the default ALSA input with the following:
ffmpeg -f alsa -i default test.mp3

There was a fork some years ago of FFmpeg that produced avconv, which is the default on Ubuntu
systems. There are some differences between the two, but not enough to justify the nuisance factor to users.
FFmpeg and avconv are discussed extensively in Chapter 12.

GStreamer

GStreamer allows you to build “pipelines” that can be played using gst-1launch. For example, to play an MP3
file using ALSA, you would have the following pipeline:

gst-launch-1.0 filesrc location="concept.mp3" ! decodebin ! alsasink

The pipelines can do more complex tasks such as format conversion, mixing, and so on. Check out
the tutorial “Multipurpose Multimedia Processing with GStreamer” (www.ibm.com/developerworks/aix/
library/au-gstreamer.html?ca=dgr-1nxw07GStreamer) by Maciej Katafiasz.

GStreamer can also play MIDI files with the following:

gst-launch-1.0 filesrc location="rehab.mid" ! wildmidi ! alsasink

Audacity

According to its web site (http://audacity.sourceforge.net/), “Audacity is a free, easy-to-use, and
multilingual audio editor and recorder for Windows, Mac OS X, GNU/Linux, and other operating systems.”
This is a fantastic tool and well worth using. Examples will be demonstrated in later chapters.

Conclusion

This short chapter has looked at some of the user-level tools available under Linux. These are the ones I use
on a regular basis. While I have listed several of the major tools, a casual search will turn up far more. The
Wikipedia “List of Linux audio software” page (https://en.wikipedia.org/wiki/List of Linux_audio_
software) has an exhaustive list.

http://sox.sourceforge.net/
http://linuxers.org/tutorial/ffmpeg-tutorial-beginners
http://www.ibm.com/developerworks/aix/library/au-gstreamer.html?ca=dgr-lnxw07GStreamer
http://www.ibm.com/developerworks/aix/library/au-gstreamer.html?ca=dgr-lnxw07GStreamer
http://audacity.sourceforge.net/
https://en.wikipedia.org/wiki/List_of_Linux_audio_software
https://en.wikipedia.org/wiki/List_of_Linux_audio_software

CHAPTER 3

Sound Codecs and File Formats /

There are many different ways of representing sound data. Some of these involve compressing the data,
which may or may not lose information. Data can be stored in the file system or transmitted across the
network, which raises additional issues. This chapter considers the major sound codecs and container
formats.

Overview

Audio and video data needs to be represented in digital format to be used by a computer. Audio and video
data contains an enormous amount of information, so digital representations of this data can occupy huge
amounts of space. Consequently, computer scientists have developed many different ways of representing
this information, sometimes in ways that preserve all the information (lossless) and sometimes in ways that
lose information (lossy).

Each way of representing the information digitally is known as a codec. The simplest way, described in
the next section, is to represent it as “raw” pulse-code modulated (PCM) data. Hardware devices such as
sound cards can deal with PCM data directly, but PCM data can use a lot of space.

Most codecs will attempt to reduce the memory requirements of PCM data by encoding it to another
form, called encoded data. It can then be decoded back to PCM form when required. Depending on the
codec algorithms, the regenerated PCM may have the same information content as the original PCM data
(lossless) or may contain less information (lossy).

Encoded audio data may or may not contain information about the properties of the data. This
information may be about the original PCM data such as the number of channels (mono, stereo), the
sampling rate, the number of bits in the sample, and so on. Or it may be information about the encoding
process itself, such as the size of framed data. The encoded data along with this additional information
may be stored in a file, transmitted across the network, and so on. If this is done, the encoded data plus the
additional information is amalgamated into a container.

Itis important at times to know whether you are dealing with just the encoded data or with a container
that holds this data. For example, files on disk will normally be containers, holding additional information
along with the encoded data. But audio data manipulation libraries will typically deal with the encoded data
itself, after the additional data has been removed.

PCM

This definition comes from Wikipedia: “Pulse-code modulation is a method used to digitally represent
sampled analog signals. It is the standard form for digital audio in computers and various Blu-ray, DVD, and
CD formats, as well as other uses such as digital telephone systems. A PCM stream is a digital representation
of an analog signal, in which the magnitude of the analog signal is sampled regularly at uniform intervals,
with each sample being quantized to the nearest value within a range of digital steps.”

© Jan Newmarch 2017 11
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_3

CHAPTER 3 © SOUND CODECS AND FILE FORMATS

PCM streams have two basic properties that determine their fidelity to the original analog signal: the
sampling rate, which is the number of times per second that samples are taken, and the bit depth, which
determines the number of possible digital values that each sample can take.

PCM data can be stored in files as “raw” data. In this case, there is no header information to say what the
sampling rate and bit depth are. Many tools such as sox use the file extension to determine these properties.

According to http://sox.sourceforge.net/soxformat.html, “f32 and f64 indicate files encoded as 32-
and 64-bit (IEEE single and double precision) floating-point PCM, respectively; 8, s16, s24, and s32 indicate
8, 16, 24, and 32-bit signed integer PCM, respectively; u8, ul6, u24, and u32 indicate 8, 16, 24, and 32-bit
unsigned integer PCM, respectively.”

But it should be noted that the file extension is only an aid to understanding some of the PCM codec
parameters and how they are stored in the file.

WAV

WAV is a file format wrapper around audio data as a container. The audio data is often PCM. The file format
is based on the Resource Interchange File Format (RIFF). While it is a Microsoft/IBM format, it does not
seem to be encumbered by patents.

A good description of the format is given by Topherlee (www. topherlee.com/software/pcm-tut-
wavformat.html). The WAV file header contains information about the PCM codec and also about how it is
stored (for example, little- or big-endian).

Because WAV files usually contain uncompressed audio data, they are often huge, around 50Mb for a
three-minute song.

MP3

The MP3 and related formats are covered by a patent (actually, a whole lot of patents). For using an
encoder or decoder, users should pay a license fee to an organization such as the Fraunhofer Society. Most
casual users neither do this nor are aware that they should, but it is reported by Fraunhofer (www.itif.
org/files/2011-fraunhofer-boosting-comp.pdf) thatin 2011 the MP3 patent “generates annual tax
revenue of about $300 million.” The Fraunhofer Society has currently chosen not to pursue free open source
implementations of encoders and decoders for royalties.

The codec used by MP3 is the MPEG-1 Audio Layer III (http://en.wikipedia.org/wiki/MP3) audio
compression format. This includes a header component that gives all the additional information about the
data and the compression algorithm. There is no need for a separate container format.

Ogg Vorbis

Ogg Vorbis is one of the “good guys.” According to Vorbis.com, “Ogg Vorbis is a completely open, patent-free,
professional audio encoding and streaming technology with all the benefits of open source.”
The names break down as follows:

e Ogg: Oggis the name of Xiph.org’s container format for audio, video, and metadata.
This puts the stream data into frames that are easier to manage in files and other
things.

e Vorbis: Vorbis is the name of a specific audio compression scheme that’s designed to
be contained in Ogg. Note that other formats are capable of being embedded in Ogg
such as FLAC and Speex.

The extension .oga is preferred for Ogg audio files, although .ogg was previously used.

12

http://sox.sourceforge.net/soxformat.html
http://www.topherlee.com/software/pcm-tut-wavformat.html
http://www.topherlee.com/software/pcm-tut-wavformat.html
http://www.itif.org/files/2011-fraunhofer-boosting-comp.pdf
http://www.itif.org/files/2011-fraunhofer-boosting-comp.pdf
http://en.wikipedia.org/wiki/MP3

CHAPTER 3 © SOUND CODECS AND FILE FORMATS

At times it is necessary to be closely aware of the distinction between Ogg and Vorbis. For example,
OpenMAX IL has a number of standard audio components including one to decode various codecs. The LIM
component with the role “audio decoder ogg” can decode Vorbis streams. But even though the component
includes the name ogg, it cannot decode Ogg files, which are the containers of Vorbis streams. It can only
decode the Vorbis stream. Decoding an Ogg file requires using a different component, referred to as an
“audio decoder with framing.”

WMA

From the standpoint of open source, WMA files are evil. WMA files are based on two Microsoft proprietary
formats. The first is the Advanced Systems Format (ASF) file format, which describes the “container” for the
music data. The second is the Windows Media Audio 9 codec.

ASF is the primary problem. Microsoft has a published specification (www.microsoft.com/en-us/
download/details.aspx?id=14995) that is strongly antagonistic to anything open source. The license states
that if you build an implementation based on that specification, then you:

e Cannot distribute the source code
e Can only distribute the object code

e Cannot distribute the object code except as part of a “solution” (in other words,
libraries seem to be banned)

e Cannot distribute your object code for no charge
e Cannot set your license to allow derivative works

And what’s more, you are not allowed to begin any new implementation after January 1, 2012, and (at
the time of writing) it is already 2017!

Just to make it a little worse, Microsoft has patent 6041345, “Active stream format for holding multiple
media streams” (www.google.com/patents/US6041345), which was filed in the United States on March 7,
1997. The patent appears to cover the same ground as many other such formats that were in existence at the
time, so the standing of this patent (were it to be challenged) is not clear. However, it has been used to block
the GPL-licensed project VirtualDub (www.advogato.org/article/101.html) from supporting ASE The
status of patenting a file format is a little suspect but may become a little clearer now that Oracle has lost its
claim to patent the Java API.

The FFmpeg project (http://ffmpeg.org/) has nevertheless done a clean-room implementation
of ASF, reverse-engineering the file format and not using the ASF specification at all. It has also reverse-
engineered the WMA codec. This allows players such as MPlayer and VLC to play ASF/WMA files. FFmpeg
itself can also convert from ASF/WMA to better formats such as Ogg Vorbis.

There is no Java handler for WMA files, and given the license, there is unlikely to be one unless it is a
native-code one based on FFmpeg.

Matroska

According to the Matroska web site (http://matroska.org/), Matroska aims to become the standard

of multimedia container formats. It was derived from a project called MCF but differentiates from it
significantly because it is based on Extensible Binary Meta Language (EBML), a binary derivative of XML. It
incorporates features you would expect from a modern container format, such as the following:

e Fastseeking in the file

e Chapter entries

13

http://www.microsoft.com/en-us/download/details.aspx?id=14995
http://www.microsoft.com/en-us/download/details.aspx?id=14995
http://www.google.com/patents/US6041345
http://www.advogato.org/article/101.html
http://ffmpeg.org/
http://matroska.org/

CHAPTER 3 © SOUND CODECS AND FILE FORMATS

Full metadata (tags) support

e Selectable subtitle/audio/video streams

e Modularly expandable

e Error resilience (can recover playback even when the stream is damaged)

e Streamable over the Internet and local networks (HTTP, CIFS, FTP, and so on)
e Menus (like DVDs have)

I hadn’t come across Matroska until I started looking at subtitles,' which can be (optionally) added to
videos, where it seems to be one of the major formats.

A GUI tool to create and manage subtitles in Matroska file format (MKV) files is mkvmerge, in the
Ubuntu repositories. HYPERLINK "https: //mkvtoolnix.download/" MKVToolNix is a GUI tool to handle
MKV files.

Conclusion

There are many codecs for sound, and more are being devised all the time. They vary between being codecs,
containers, or both, and they come with a variety of features, some with encumbrances such as patents.

'Subtitles and closed captions are similar but distinct. According to https://www.accreditedlanguage.
com/2016/08/18/subtitles-and-captions-whats-the-difference/, “Subtitling is most frequently used as a way
of translating a medium into another language so that speakers of other languages can enjoy it. Captioning, on the other
hand, is more commonly used as a service to aid deaf and hearing-impaired audiences.”

14

https://mkvtoolnix.download/
https://www.accreditedlanguage.com/2016/08/18/subtitles-and-captions-whats-the-difference/
https://www.accreditedlanguage.com/2016/08/18/subtitles-and-captions-whats-the-difference/

CHAPTER 4

Overview of Linux Sound
Architecture

The Linux sound system, like most of Linux, has evolved from a simple system to a much more complex one.

This chapter gives a high-level overview of the components of the Linux sound system and which bits are
best used for which use cases.

Resources

Here are some resources:

e A Guide Through The Linux Sound API Jungle by Lennart Poettering
(http://0pointer.de/blog/projects/guide-to-sound-apis.html).

e “How it works: Linux audio explained” by TuxRadar (http://tuxradar.com/
content/how-it-works-linux-audio-explained).

e Insane Coder posted an article in favor of OSSv4 State of sound in Linux not so sorry
after all (http://insanecoding.blogspot.com.au/2009/06/state-of-sound-in-
linux-not-so-sorry.html), which drew a lot of comments.

Components

Figure 4-1 indicates the different layers of the Linux sound system.

© Jan Newmarch 2017
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_4

15

http://0pointer.de/blog/projects/guide-to-sound-apis.html
http://tuxradar.com/content/how-it-works-linux-audio-explained
http://tuxradar.com/content/how-it-works-linux-audio-explained
http://insanecoding.blogspot.com.au/2009/06/state-of-sound-in-linux-not-so-sorry.html
http://insanecoding.blogspot.com.au/2009/06/state-of-sound-in-linux-not-so-sorry.html

CHAPTER 4 © OVERVIEW OF LINUX SOUND ARCHITECTURE

mplayer VLC totem
Java
Sound
Alsa Alsa
card card

Audio device Audio device

Figure 4-1. Layers of audio tools and devices

Device Drivers

At the bottom layer is the hardware itself, the audio device. These devices are the audio cards made by a
variety of manufacturers, all with different capabilities, interfaces, and prices. Just like any piece of hardware,
in order for it to be visible and useful to the operating system, there must be a device driver. There are, of
course, thousands of device drivers written for Linux. Writing Linux device drivers is a specialty in itself, and
there are dedicated sources for this, such as Linux Device Drivers, Third Edition (http://1lwn.net/Kernel/
LDD3/) by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.

Device drivers must have standardized APIs “at the top” so that users of the device have a known
interface to code to. The OSS device driver API was used for audio devices until it was made closed source, at
which point developers switched to the ALSA API. While OSS v4 has become open again, the ALSA interface
is supported in the kernel, while OSS is not.

Ideally, a device driver API should expose all of the features of hardware while not adding additional
baggage. For audio, it is not always so easy to set boundaries for what an audio driver should do. For
example, some sound cards will support the mixing of analog signals from different sources, while others
will not, and some sound cards will have MIDI synthesizers, while others will not. If the API is to expose
these capabilities for sound cards that support them, then it might have to supply them in software for those
sound cards that do not.

16

http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/

CHAPTER 4 © OVERVIEW OF LINUX SOUND ARCHITECTURE

There is a limited amount of documentation on writing ALSA device drivers. The “ALSA Driver
Documentation” page at waw.alsa-project.org/main/index.php/ALSA Driver Documentation points
to some documents, including the 2005 document on writing ALSA device drivers (www.alsa-project.
org/~tiwai/writing-an-alsa-driver/) by TakashiIwai. There is also a 2010 blog by Ben Collins at http://
ben-collins.blogspot.com.au/2010/05/writing-alsa-driver-basics.html, “Writing an ALSA driver”
Otherwise, there seems to be little help.

Sound Servers

Linux is a multitasking, multithreaded operating system. It is possible that concurrent processes might want
to write sounds to the audio cards concurrently. For example, a mail reader might want to “ding” the user to
report new mail, even if they are in the middle of a noisy computer game. This is distinct from sound card
capabilities of being able to mix sounds from different ports, such as an HDMI input port and an analog
input port. It requires the ability to mix (or otherwise manage) sounds from different processes. As an
example of the subtlety of this, should the volume of each process be individually controllable, or should the
destination port (headphones or speaker) be individually controllable?

Such capabilities are beyond the scope of a device driver. Linux resolves this by having “sound servers,’
which run above the device drivers and manage these more complex tasks. Above these sound servers sit
applications that talk to the sound server, which in turn will pass the resultant digital signal to the device driver.

Here is where a significant difference occurs between sound servers. For professional audio systems, the
sound server must be able to process and route audio with a minimal amount of latency or other negative
effects. For consumer audio, control over volumes and destinations may be more important than latency;
you probably won't care if a new message “ding” takes an extra half-second. Between these may be other
cases such as games requiring synchronization of audio and visual effects and karaoke players requiring
synchronization of analog and digital sources.

The two major sound servers under Linux are Jack for professional audio and PulseAudio for consumer
systems. They are designed for different use cases and consequently offer different features.

Lennart Poettering in “A Guide Through the Linux Sound API Jungle” (http://0pointer.de/blog/
projects/guide-to-sound-apis.html) offers a good summary of these different use cases:

e “I'want to write a media-player-like application!”

Use GStreamer (unless your focus is only KDE, in which cases Phonon might be an
alternative).

e “I'want to add event sounds to my application!”

Use libcanberra, and install your sound files according to the XDG sound theming/
naming specifications (unless your focus is only KDE, in which case KNotify might
be an alternative, although it has a different focus).

e “I'want to do professional audio programming, hard-disk recording, music
synthesizing, MIDI interfacing!”

Use Jack and/or the full ALSA interface.

e ‘“I'wantto do basic PCM audio playback/capturing!”
Use the safe ALSA subset.

e ‘“I'wantto add sound to my game!”

e Use the audio API of SDL for full-screen games, and use libcanberra for simple
games with standard Uls such as Gtk+.

e “I'want to write a mixer application!”

17

http://www.alsa-project.org/main/index.php/ALSA_Driver_Documentation
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://ben-collins.blogspot.com.au/2010/05/writing-alsa-driver-basics.html
http://ben-collins.blogspot.com.au/2010/05/writing-alsa-driver-basics.html
http://0pointer.de/blog/projects/guide-to-sound-apis.html
http://0pointer.de/blog/projects/guide-to-sound-apis.html

CHAPTER 4 * OVERVIEW OF LINUX SOUND ARCHITECTURE

Use the layer you want to support directly: if you want to support enhanced desktop
software mixers, use the PulseAudio volume control APIs. If you want to support
hardware mixers, use the ALSA mixer APIs.

e “I'want to write audio software for the plumbing layer!”
Use the full ALSA stack.
e “I'want to write audio software for embedded applications!”

For technical appliances, usually the safe ALSA subset is a good choice. This,
however, depends highly on your use case.

Complexities

Figure 4-1 hides the real complexities of Linux sound. Mike Melanson (an Adobe engineer) in 2007
produced the diagram shown in Figure 4-2.

"

‘ GStreamer
=

The Linux Audio Mess
Origin: Mike Melanson, http://blogs.adobe.com/penguin.swf/
Updated October 10, 2008

Figure 4-2. Linux audio relationships

The figure is not up-to-date. For example, OSS is no longer a major part of Linux. Some special-case
complexities are, for example, that PulseAudio sits above ALSA, and it also sits below ALSA, as in Figure 4-3
(based on the one at http://insanecoding.blogspot.com.au/2009/06/state-of-sound-in-linux-not-
so-sorry.html).

18

http://insanecoding.blogspot.com.au/2009/06/state-of-sound-in-linux-not-so-sorry.html
http://insanecoding.blogspot.com.au/2009/06/state-of-sound-in-linux-not-so-sorry.html

CHAPTER 4 © OVERVIEW OF LINUX SOUND ARCHITECTURE

ALSA ALSA
Lower API Lower API

Mixing 0SS v3 API

ALSA API

Figure 4-3. ALSA and PulseAudio. This diagram is upside down compared to mine

The explanation is as follows:

PulseAudio is able to do things such as mixing application sounds that ALSA cannot
do.

PulseAudio installs itself as the default ALSA output device.
An application sends audio to the ALSA default device, which sends it to PulseAudio.

PulseAudio mixes it with any other audio and then sends it back to a particular
device in ALSA.

ALSA then plays the mixed sound.

Complex, yes, but it accomplishes tasks that would be difficult otherwise.

Conclusion

The architecture of the Linux sound system is complex, and new wrinkles are being added on a regular basis.
However, this is the same for any audio system. Successive chapters will flesh out the details of many of these
components.

19

CHAPTER 5

ALSA

ALSA is a low-level interface to the sound cards. If you are building your own sound server system or writing
device drivers, then you will be interested in ALSA. It sits at the bottom of most of the current Linux systems, so
to understand them, you may need to understand aspects of ALSA. If you are not interested, you can move on.

Resources

Here are some resources:

e ‘“Introduction to Sound Programming with ALSA” (www.linuxjournal.com/
article/6735?page=0,1) by Jeff Tranter

e Acloselook at ALSA (www.volkerschatz.com/noise/alsa.html) by Volker Schatz
e ALSAAPI (www.alsa-project.org/alsa-doc/alsa-1ib/)

e ALSA Programming HOWTO (www.suse.de/~mana/alsa090_howto.html) by
Matthias Nagorni

¢ Linuxsound HOWTO for ALSA users (http://techpatterns.com/forums/
about1813.html) from Tech Patterns

User Space Tools

ALSA is both a set of APIs to talk to sound cards and a set of user-level applications, built of course using the
ALSA API. It includes commands to query and control sound cards and to record from and play to the cards.
This section considers the command-line tools.

alsamixer

alsamixer runs within a terminal window and allows you to select sound cards and control interfaces on
those cards. It looks like Figure 5-1.

© Jan Newmarch 2017 21
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_5

http://www.linuxjournal.com/article/6735?page=0,1
http://www.linuxjournal.com/article/6735?page=0,1
http://www.volkerschatz.com/noise/alsa.html
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.suse.de/~mana/alsa090_howto.html
http://techpatterns.com/forums/about1813.html
http://techpatterns.com/forums/about1813.html

CHAPTER 5 © ALSA

I P
File Edit View Search Terminal Help
| AlsaMixer v1.0.25

HDA Intel PCH
IDT 92HD90BXX

[ALL]
Capture [dB gain: 30.00, 30.00]

Mic In

94 100<>100 2 100<>100 2 : 33 100<>
Master Headphon Front Mic Mic Jack Beep

Figure 5-1. alsamixer display
amixer is a command-line application with similar functions.
Compared to the general mixer functions described in Chapter 1, the mixer functions are quite limited:
e Setting the playback and capture volumes on output and input channels
e Muting or unmuting a card

The document “Sound configuration on Raspberry Pi with ALSA” (http://blog.scphillips.
com/2013/01/sound-configuration-on-raspberry-pi-with-alsa/) by Stephen C. Phillips is applicable to
all other ALSA systems and not just the Raspberry Pi.

alsactl

This is a simple control program for ALSA configurations.

speaker-test

This command allows you to test which outputs go where. For example, for five-channel sound, run the
following:

speaker-test -t wav -c 5

22

http://dx.doi.org/10.1007/978-1-4842-2496-0_1
http://blog.scphillips.com/2013/01/sound-configuration-on-raspberry-pi-with-alsa/
http://blog.scphillips.com/2013/01/sound-configuration-on-raspberry-pi-with-alsa/

CHAPTER 5

This will produce on my default sound card the following text and audio:

speaker-test 1.0.25

Playback device is default
Stream parameters are 48000Hz, S16_LE, 5 channels
WAV file(s)
Rate set to 48000Hz (requested 48000Hz)
Buffer size range from 39 to 419430
Period size range from 12 to 139810
Using max buffer size 419428
Periods = 4
was set period size
was set buffer size
0 - Front Left
1 - Front Right

104857
419428

2 - Rear Left
3 - Rear Right
4 - Center

Time per period = 12.948378

It will also play the phrases “Front Left,” and so on, to the relevant speaker.

aplay/arecord

This plays a file or records to a file. To play the microphone to the speaker, use this:
arecord -1 44100 --buffer-size=128 | aplay --buffer-size=128
To record it to a file, use this:

arecord -f dat -d 20 -D hw:0,0 test.wav

ALSA

This will record a 20-second WAV file at DAT quality on your first available sound card (hw:0,0). DAT

quality is defined as stereo digital audio recorded with a 48kHz sampling rate and 16-bit resolution.

Identifying ALSA Cards

The simplest ways are to run aplay and arecord with the -1 option, as shown here:

arecord -1
*k*k* | jst of CAPTURE Hardware Devices **¥*
card 0: PCH [HDA Intel PCH], device 0: STAC92xx Analog [STAC92xx Analog]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 2: Pro [SB X-Fi Surround 5.1 Pro], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0
aplay -1
*k*k* | ist of PLAYBACK Hardware Devices ****
card 0: PCH [HDA Intel PCH], device 0: STAC92xx Analog [STAC92xx Analog]
Subdevices: 1/1
Subdevice #0: subdevice #0

23

CHAPTER 5 © ALSA

card 1: Nvidia [HDA Nvidia], device 3: HDMI 0 [HDMI 0]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 1: NVidia [HDA NVidia], device 7: HDMI 1 [HDMI 1]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 1: NVidia [HDA Nvidia], device 8: HDMI 2 [HDMI 2]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 2: Pro [SB X-Fi Surround 5.1 Pro], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 2: Pro [SB X-Fi Surround 5.1 Pro], device 1: USB Audio [USB Audio #1]
Subdevices: 1/1
Subdevice #0: subdevice #0

Device Names

The cards are often given names such as hw:0 or hw:2.2 in programs such as qjackctl (see Chapter 7). The
term hw refers to hardware devices. The major number refers to the card number, and the minor number
refers to the device number. The name of the device is in brackets.

Devices may also be known by aliases. The command aplay -L lists device aliases. For example, the
hdmi alias is defined on my system in the configuration file /etc/asound. conf.

pcm.hdmio {
type hw
card 1
device 3 }

pcm.hdmi1 {
type hw
card 1
device 7 }

pcm.hdmi2 {
type hw
card 1
device 8 }

So, hdmi:0isreally hw:1,3: card 1, device 3.
Other aliases can be defined to cover a range of devices, parameterized by card and device. For
example, /usr/share/alsa/pcm/surround40.cont defines the following:

pcm. !'surround4o {
@args [CARD DEV]
@args.CARD {
type string
default {
@func getenv
vars [
ALSA_SURROUND40_CARD
ALSA_PCM_CARD

24

http://dx.doi.org/10.1007/978-1-4842-2496-0_7

CHAPTER 5 © ALSA

ALSA_CARD
]
default {
@func refer
name defaults.pcm.surround40.card

}
}
}
@args.DEV {
type integer
default {
@func igetenv
vars [
ALSA_SURROUND40_DEVICE
]
default {
@func refer
name defaults.pcm.surround40.device
}
}
}
}
This defines, for example, surround40:CARD=PCH, DEV=0 as an alias for hw:0,0 on my system (PCH is card 0).
I don’t know an easy programmatic way to go from card 1, device 3tohdmi:o.
You can show the set of aliases using aplay and arecoxd.
The output from aplay -L on my system is as follows:
default

Default
sysdefault:CARD=PCH

HDA Intel PCH, STAC92xx Analog

Default Audio Device
front:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

Front speakers
surround40: CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.0 Surround output to Front and Rear speakers
surround41:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.1 Surround output to Front, Rear and Subwoofer speakers
surround50: CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

5.0 Surround output to Front, Center and Rear speakers
surround51:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

5.1 Surround output to Front, Center, Rear and Subwoofer speakers
surround71:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

7.1 Surround output to Front, Center, Side, Rear and Woofer speakers

25

CHAPTER 5 © ALSA

hdmi:CARD=NVidia,DEV=0

HDA NVidia, HDMI o

HDMI Audio Output
hdmi:CARD=NVidia,DEV=1

HDA NVidia, HDMI 1

HDMI Audio Output
hdmi:CARD=NVidia,DEV=2

HDA NVidia, HDMI 2

HDMI Audio Output
sysdefault:CARD=Pro

SB X-Fi Surround 5.1 Pro, USB Audio

Default Audio Device
front:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

Front speakers
surround40:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

4.0 Surround output to Front and Rear speakers
surround41:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

4.1 Surround output to Front, Rear and Subwoofer speakers
surround50:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

5.0 Surround output to Front, Center and Rear speakers
surround51:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

5.1 Surround output to Front, Center, Rear and Subwoofer speakers
surround71:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

7.1 Surround output to Front, Center, Side, Rear and Woofer speakers
iec958:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

IEC958 (S/PDIF) Digital Audio Output

The output from arecord -L is as follows:

default

Default
sysdefault:CARD=PCH

HDA Intel PCH, STAC92xx Analog

Default Audio Device
front:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

Front speakers
surround40:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.0 Surround output to Front and Rear speakers
surround41:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.1 Surround output to Front, Rear and Subwoofer speakers
surround50:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

26

CHAPTER 5

5.0 Surround output to Front, Center and Rear speakers
surround51: CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

5.1 Surround output to Front, Center, Rear and Subwoofer speakers
surround71:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

7.1 Surround output to Front, Center, Side, Rear and Woofer speakers
sysdefault:CARD=Pro

SB X-Fi Surround 5.1 Pro, USB Audio

Default Audio Device
front:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

Front speakers
surround40: CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

4.0 Surround output to Front and Rear speakers
surround41:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

4.1 Surround output to Front, Rear and Subwoofer speakers
surround50: CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

5.0 Surround output to Front, Center and Rear speakers
surround51:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

5.1 Surround output to Front, Center, Rear and Subwoofer speakers
surround71:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

7.1 Surround output to Front, Center, Side, Rear and Woofer speakers
iec958:CARD=Pro,DEV=0

SB X-Fi Surround 5.1 Pro, USB Audio

IEC958 (S/PDIF) Digital Audio Output

ALSA Configuration Files

This tutorial by Volker Schatz explains what is going on in ALSA configuration files and is really good:
“A close look at ALSA” (www.volkerschatz.com/noise/alsa.html).

ALSA

Just note that the default ALSA device is hw:0. This is hard-coded into ALSA. But it can be overridden in

configuration files. This is done, for example, by PulseAudio (see the next chapter).

alsa-info

This will collect information about your system and save it in a file. It is a shell script that gives an enormous

amount of information. Here is a heavily elided subset of the information:

upload=truedscript=truedcardinfo=

VB HHAH A A
I1ALSA Information Script v 0.4.60
VU BHHHHHHE

I1Script ran on: Tue Jun 12 04:50:22 UTC 2012

27

http://www.volkerschatz.com/noise/alsa.html

CHAPTER 5 © ALSA

I'lLinux Distribution

Fedora release 16 (Verne) Fedora release 16 (Verne) Fedora release 16 (Verne) Fedora release
16 (Verne)

I'TALSA Version

Driver version: 1.0.24
Library version: 1.0.25
Utilities version: 1.0.25

I'lLoaded ALSA modules

snd_hda_intel
snd_hda_intel

I1Sound Servers on this system
P e s e

Pulseaudio:
Installed - Yes (/usr/bin/pulseaudio)
Running - Yes

Jack:
Installed - Yes (/usr/bin/jackd)
Running - No

I1Soundcards recognised by ALSA
I Re e L P LR R e

0 [PCH]: HDA-Intel - HDA Intel PCH
HDA Intel PCH at 0xe6e60000 irq 47
1 [Nvidia]: HDA-Intel - HDA Nvidia

HDA Nvidia at 0xe5080000 irq 17

IIPCI Soundcards installed in the system
I e

00:1b.0 Audio device: Intel Corporation 6 Series/C200 Series Chipset Family High Definition
Audio Controller (rev 04)
01:00.1 Audio device: nVidia Corporation HDMI Audio stub (rev a1)

I'lHDA-Intel Codec information

CHAPTER 5

Default PCM:
rates [0x5e0]: 44100 48000 88200 96000 192000
bits [oxe]: 16 20 24
formats [0x1]: PCM

Node 0x0a [Pin Complex] wcaps 0x400583: Stereo Amp-In
Control: name="Mic Jack Mode", index=0, device=0
ControlAmp: chs=0, dir=In, idx=0, ofs=0
Control: name="Mic Capture Volume", index=0, device=0
ControlAmp: chs=3, dir=In, idx=0, ofs=0
Control: name="Mic Jack", index=0, device=0
Amp-In caps: N/A
Amp-In vals: [0x01 0x01]
Pincap 0x0001173c: IN OUT HP EAPD Detect
Vref caps: HIZ 50 GRD 80
EAPD 0x2: EAPD
Pin Default 0x03a11020: [Jack] Mic at Ext Left
Conn = 1/8, Color = Black
DefAssociation = 0x2, Sequence = 0x0
Pin-ctls: o0x24: IN VREF_80
Unsolicited: tag=03, enabled=1
Power: setting=Do, actual=Do
Connection: 3
0x13* 0x14 Ox1c

ITALSA configuration files
L R L e PP

I1System wide config file (/etc/asound.conf)

#
Place your global alsa-lib configuration here...
#
@hooks [
{
func load
files [
"/etc/alsa/pulse-default.conf"
]
errors false
}
]
pcm.hdmio {
type hw
card 1
device 3 }

ALSA

29

CHAPTER 5 © ALSA

pcm.hdmi1 {
type hw
card 1
device 7 }

pcm.hdmi2 {
type hw
card 1
device 8 }

I'1Aplay/Arecord output

APLAY

*k** | ist of PLAYBACK Hardware Devices ****

card 0: PCH [HDA Intel PCH], device 0: STAC92xx Analog [STAC92xx Analog]
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: Nvidia [HDA NVidia], device 3: HDMI 0 [HDMI 0]
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: NVidia [HDA NVidia], device 7: HDMI 1 [HDMI 1]
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: Nvidia [HDA NVidia], device 8: HDMI 2 [HDMI 2]
Subdevices: 1/1
Subdevice #0: subdevice #0

ARECORD

*#*k*% | ist of CAPTURE Hardware Devices ****

card 0: PCH [HDA Intel PCH], device 0: STAC92xx Analog [STAC92xx Analog]
Subdevices: 1/1

Subdevice #0: subdevice #0

I'1Amixer output
L it

L Mixer controls for card 0 [PCH]

Card hw:0 'PCH'/'HDA Intel PCH at Oxe6e60000 irq 47'

Mixer name : "IDT 92HD9OBXX'
Components : 'HDA:111d76e7,10280494,00100102"
Controls : 19

Simple ctrls : 10
Simple mixer control 'Master',o0
Capabilities: pvolume pvolume-joined pswitch pswitch-joined penum
Playback channels: Mono
Limits: Playback 0 - 64
Mono: Playback 62 [97%] [-1.50dB] [on]
Simple mixer control 'Headphone',0

30

Capabilities: pvolume pswitch penum

Playback channels: Front Left - Front Right

Limits: Playback 0 - 64

Mono:

Front Left: Playback 64 [100%] [0.00dB] [on]

Front Right: Playback 64 [100%] [0.00dB] [on]
Simple mixer control 'PCM',0

Capabilities: pvolume penum

Playback channels: Front Left - Front Right

Limits: Playback 0 - 255

Mono:

Front Left: Playback 254 [100%] [0.20dB]

Front Right: Playback 254 [100%] [0.20dB]
Simple mixer control 'Front',0

Capabilities: pvolume pswitch penum

Playback channels: Front Left - Front Right

Limits: Playback 0 - 64

Mono:

Front Left: Playback 64 [100%] [0.00dB] [on]

Front Right: Playback 64 [100%] [0.00dB] [on]
Simple mixer control 'Mic',0

Capabilities: cvolume penum

Capture channels: Front Left - Front Right

Limits: Capture 0 - 3

Front Left: Capture 1 [33%] [10.00dB]

Front Right: Capture 1 [33%] [10.00dB]
Simple mixer control 'Mic Jack Mode',0

Capabilities: enum

Items: 'Mic In' 'Line In'

Itemo: 'Mic In'
Simple mixer control 'Beep',0

Capabilities: pvolume pvolume-joined pswitch pswitch-joined penum

Playback channels: Mono

Limits: Playback 0 - 3

Mono: Playback 1 [33%] [-12.00dB] [on]
Simple mixer control 'Capture',0

Capabilities: cvolume cswitch penum

Capture channels: Front Left - Front Right

Limits: Capture 0 - 46

Front Left: Capture 46 [100%] [30.00dB] [on]

Front Right: Capture 46 [100%] [30.00dB] [on]
Simple mixer control 'Dock Mic',0

Capabilities: cvolume penum

Capture channels: Front Left - Front Right

Limits: Capture 0 - 3

Front Left: Capture 0 [0%] [0.00dB]

Front Right: Capture 0 [0%] [0.00dB]
Simple mixer control 'Internal Mic',0

Capabilities: cvolume penum

Capture channels: Front Left - Front Right

Limits: Capture 0 - 3

Front Left: Capture 0 [0%] [0.00dB]

CHAPTER 5 © ALSA

31

CHAPTER 5 © ALSA

Front Right: Capture 0 [0%] [0.00dB]
[Mixer controls for card 1 [NVidia]

Card hw:1 'Nvidia'/'HDA NVidia at 0xe5080000 irq 17'

Mixer name : 'Nvidia GPU 1c HDMI/DP'
Components : 'HDA:10de001c,10281494,00100100"
Controls 118

Simple ctrls : 3

Simple mixer control 'IEC958',0
Capabilities: pswitch pswitch-joined penum
Playback channels: Mono
Mono: Playback [on]

Simple mixer control 'IEC958',1
Capabilities: pswitch pswitch-joined penum
Playback channels: Mono
Mono: Playback [off]

Simple mixer control 'IEC958',2
Capabilities: pswitch pswitch-joined penum
Playback channels: Mono
Mono: Playback [off]

I1Alsactl output
L R

--startcollapse--
state.PCH {
control.1 {
iface MIXER
name 'Front Playback Volume'
value.0 64
value.1 64
comment {
access 'read write
type INTEGER
count 2
range 'O - 64'
dbmin -4800
dbmax 0
dbvalue.0 0
dbvalue.1 0

Applications Using ALSA

Many applications can directly use ALSA by using the appropriate command-line arguments.

32

CHAPTER 5 © ALSA

MPlayer

To play a file to an ALSA device using MPlayer, use code such as the following:

mplayer -ao alsa:device=hw=1.0 -srate 48000 bryan.mp3

VLC

To play a file to an ALSA device using VLC, use code such as the following:

vlc --aout alsa ..

TiMidity
To play a file to an ALSA device using TiMidity, use code such as the following:

timidity -0s ...

Programming ALSA

There are several tutorials about programming ALSA, including “A Tutorial on Using the ALSA Audio API”
(http://equalarea.com/paul/alsa-audio.html) by Paul Davis (who is the lead on Jack).

You can find an overview of the API at www.alsa-project.org/alsa-doc/alsa-1ib/pcm.html. Jeff
Tranter has an “Introduction to Sound Programming with ALSA” The ALSA API is large and complex, and it
is not always clear how it all hangs together or what part to use where. From the ALSA library API (www.alsa-
project.org/main/index.php/ALSA_Library API).

The currently designed interfaces are as follows:

e Information interface (/proc/asound)

e Control interface (/dev/snd/controlCX)
e Mixer interface (/dev/snd/mixerCXDX)

e PCM interface (/dev/snd/pcmCXDX)

¢ Raw MIDI interface (/dev/snd/midiCXDX)
e Sequencer interface (/dev/snd/seq)

e Timer interface (/dev/snd/timer)

The Information interface is what ALSA uses for device information and for some control purposes.

The Control interface is used to adjust volumes and other control functions that the sound card offers.

The Mixer interface allows applications to share the use of audio devices in a transparent manner and is
one of the major features of ALSA.

The PCM interface allows the definition of virtual and hardware devices via a configuration mechanism.
It is the usual interface for digital audio applications.

The raw MIDI interface is used for low-level interaction with MIDI devices and deals directly with MIDI
events.

The Sequencer interface is used for MIDI applications at a higher level than the raw MIDI interface.

The Timer interface is designed to use internal timers in sound hardware and allows synchronization of
sound events.

33

http://equalarea.com/paul/alsa-audio.html
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
http://www.alsa-project.org/main/index.php/ALSA_Library_API
http://www.alsa-project.org/main/index.php/ALSA_Library_API

CHAPTER 5 © ALSA

Hardware Device Information

Finding information about hardware cards and devices is a multistep operation. The hardware cards first
have to be identified. This is done using the Control interface (waw.alsa-project.org/alsa-doc/alsa-1ib/
group _ control.html) functions. The ones used are as follows:

snd_card_next

snd_ctl_open
snd_ctl_pcm_next_device
snd_ctl card_info_get id
snd_ctl card info_get name

Cards are identified by an integer from 0 upward. The next card number is found using snd_card_next,
and the first card is found using a seed value of -1. The card is then opened using its ALSA name such as
hw:0, hw:1, and so on, by snd_ctl open, which fills in a handle value. In turn, this handle is used to fill in
card information using snd_ctl card info, and fields are extracted from that using functions such as snd_
ctl _card_info_get name. In the program that follows, this gives information such as the following:

card 0: PCH [HDA Intel PCH]

For further information, you need to switch to the PCM functions for the card. The function linking
the control and PCM interfaces is snd_ctl_pcm_info, which fills in a structure of type snd_pcm_info_t with
PCM-related information. Unfortunately, this function is documented neither in the Control interface nor
the PCM interface sections of the ALSA documentation but is instead in the Files section under control.c.
The structure snd_pcm_info_t is barely documented in the PCM interface (waw.alsa-project.org/alsa-
doc/alsa-1lib/group p c_m.html#g2226bdcc6e780543beaadc319332e37b) section and has only a few
fields of interest. (See this site for the structure: www. gnx.com/developers/docs/6.4.0/neutrino/audio/
libs/snd_pcm_info_t.html.) These fields are accessed using the PCM functions snd_pcm_info_get id and
snd_pcm_info_get name.

The main value of the snd_pcm_info_t structure is that it is the principal parameter into the functions of
the PCM stream (www.alsa-project.org/alsa-doc/alsa-1ib/group__ p_c_m___ info.html). In particular,
this allows you to get devices and subdevices and information about them.

The program to find and display card and hardware device information is aplay-1.c, as shown here:

/**

* aplay-l.c

*

* Code from aplay.c

*

* does the same as aplay -1

* http://alsa-utils.sourcearchive.com/documentation/1.0.15/aplay 8c-source.html
*/

/*

* Original notice:

*

* Copyright (c) by Jaroslav Kysela <perex@perex.cz>

* Based on vplay program by Michael Beck

*

*

* This program is free software; you can redistribute it and/or modify
*

it under the terms of the GNU General Public License as published by

http://www.alsa-project.org/alsa-doc/alsa-lib/group___control.html
http://www.alsa-project.org/alsa-doc/alsa-lib/group___control.html
http://www.alsa-project.org/alsa-doc/alsa-lib/group___p_c_m.html#g2226bdcc6e780543beaadc319332e37b
http://www.alsa-project.org/alsa-doc/alsa-lib/group___p_c_m.html#g2226bdcc6e780543beaadc319332e37b
http://www.qnx.com/developers/docs/6.4.0/neutrino/audio/libs/snd_pcm_info_t.html
http://www.qnx.com/developers/docs/6.4.0/neutrino/audio/libs/snd_pcm_info_t.html
http://www.alsa-project.org/alsa-doc/alsa-lib/group___p_c_m___info.html

¥ X X X X ¥ X X ¥ ¥ ¥ ¥

*
~

CHAPTER 5

the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>
#include <locale.h>

// used by gettext for i18n, not needed here
#define (STR) STR

static void device list(snd_pcm stream t stream)

{

snd_ctl_t *handle;

int card, err, dev, idx;
snd_ctl_card_info_t *info;
snd_pcm_info_t *pcminfo;

snd_ctl card info alloca(&info);
snd_pcm_info_alloca(&pcminfo);

card = -1;
if (snd_card next(&card) < 0 || card < 0) {
error(_("no soundcards found..."));
return;
}
printf(_("**** List of %s Hardware Devices ****\n"),
snd_pcm_stream_name(stream));
while (card >= 0) {
char name[32];
sprintf(name, "hw:%d", card);
if ((err = snd_ctl open(8handle, name, 0)) < 0) {
error("control open (%i): %s", card, snd_strerror(err));
goto next_card;

if ((err = snd _ctl card info(handle, info)) < 0) {
error("control hardware info (%i): %s", card, snd strerror(err));
snd_ctl close(handle);
goto next_card;

}
dev = -1;
while (1) {

ALSA

35

CHAPTER 5 © ALSA

unsigned int count;
if (snd_ctl_pcm_next_device(handle, &dev)<0)
error("snd_ctl pcm next device");
if (dev < 0)
break;
snd_pcm_info_set_device(pcminfo, dev);
snd_pcm_info_set subdevice(pcminfo, 0);
snd_pcm_info_set stream(pcminfo, stream);
if ((err = snd_ctl pcm info(handle, pcminfo)) < 0) {
if (err !'= -ENOENT)
error("control digital audio info (%i): %s", card, snd_
strerror(err));
continue;
}
printf(_("card %i: [%s,%i] %s [%s], device %i: %s [%s]\n"),
card, name, dev, snd _ctl card info get id(info), snd_ctl card info_
get_name(info),
dev,
snd_pcm_info get id(pcminfo),
snd_pcm_info_get name(pcminfo));
count = snd_pcm_info_get subdevices count(pcminfo);
printf((" Subdevices: %i/%i\n"),
snd_pcm_info_get subdevices avail(pcminfo), count);
for (idx = 0; idx < (int)count; idx++) {
snd_pcm_info_set subdevice(pcminfo, idx);
if ((err = snd_ctl pcm info(handle, pcminfo)) < 0) {
error("control digital audio playback info (%i): %s", card,
snd_strerror(err));
} else {
printf(_(" Subdevice #%i: %s\n"),
idx, snd_pcm info get subdevice name(pcminfo));

}

snd_ctl close(handle);
next card:
if (snd_card next(8card) < 0) {
error("snd_card next");
break;

}
main (int argc, char *argv[])

device 1ist(SND_PCM_STREAM_CAPTURE);
device list(SND _PCM STREAM PLAYBACK);

}

The following is the output from running aplay-1 on my system:

36

CHAPTER 5 © ALSA

k | ist of CAPTURE Hardware Devices **¥*
card 0: [hw:0,0] PCH [HDA Intel PCH], device 0: STAC92xx Analog [STAC92xx Analog]
Subdevices: 1/1
Subdevice #0: subdevice #0
k | ist of PLAYBACK Hardware Devices ****
card 0: [hw:0,0] PCH [HDA Intel PCH], device 0: STAC92xx Analog [STAC92xx Analog]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 1: [hw:1,3] Nvidia [HDA Nvidia], device 3: HDMI 0 [HDMI 0]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 1: [hw:1,7] Nvidia [HDA Nvidia], device 7: HDMI 1 [HDMI 1]
Subdevices: 1/1
Subdevice #0: subdevice #0
card 1: [hw:1,8] Nvidia [HDA Nvidia], device 8: HDMI 2 [HDMI 2]
Subdevices: 1/1
Subdevice #0: subdevice #0

PCM Device Information

You can get PCM alias information from the devices by using aplay -L. This uses the “hints” mechanism

from the device API. Note that the program is responsible for freeing memory allocated by the ALSA library.
This means that if a string or table is returned, then not only do you have to walk through the string/table but

you have to retain a pointer to the start of the string/table so that it can be freed.
The source for this is aplay-L.c, as shown here:

/**

aplay-L.c

Code from aplay.c
does aplay -L
http://alsa-utils.sourcearchive.com/documentation/1.0.15/aplay 8c-source.html

* X ¥ ¥ ¥

*/

Original notice:

Copyright (c) by Jaroslav Kysela <perex@perex.cz>
Based on vplay program by Michael Beck

*
*
ES
ES
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

*

*

ES

ES

ES

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

37

CHAPTER 5 © ALSA

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*

*/

#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>
#include <locale.h>

#tdefine (STR) STR

static void pem list(snd_pcm_stream t stream)

{
void **hints, **n;
char *name, *descr, *descri, *io;
const char *filter;
if (snd_device name_hint(-1, "pcm", &hints) < 0)
return;
n = hints;
filter = stream == SND_PCM_STREAM_CAPTURE ? "Input" : "Output";
while (*n != NULL) {
name = snd_device name _get hint(*n, "NAME");
descr = snd_device name get hint(*n, "DESC");
io = snd_device name_get hint(*n, "IOID");
if (io != NULL && strcmp(io, filter) == 0)
goto _ end;
printf("%s\n", name);
if ((descri = descr) != NULL) {
printf(" ");
while (*descr1) {
if (*descri == "\n')
printf("\n ");
else
putchar (*descr1);
descri++;
}
putchar('\n");
}
__end:
if (name != NULL)
free(name);
if (descr != NULL)
free(descr);
if (io != NULL)
free(io);
N++;
}
snd_device name_free hint(hints);
}

38

CHAPTER 5 © ALSA

main (int argc, char *argv[])

{
printf("*********** CAPTURE ***********\n");
pem_list(SND_PCM_STREAM_CAPTURE);

prin‘tf("\ \ ki PLAYBACK itk) o
pcm_1ist(SND_PCM STREAM PLAYBACK);

The following is the output from running aplay-L on my system:

Fkfokskokkokokskokk CAPTURE Fkskokskokskskokskok

default

Default
sysdefault:CARD=PCH

HDA Intel PCH, STAC92xx Analog

Default Audio Device
front:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

Front speakers
surround40: CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.0 Surround output to Front and Rear speakers
surround41:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.1 Surround output to Front, Rear and Subwoofer speakers
surround50: CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

5.0 Surround output to Front, Center and Rear speakers
surround51: CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

5.1 Surround output to Front, Center, Rear and Subwoofer speakers
surround71:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

7.1 Surround output to Front, Center, Side, Rear and Woofer speakers
hdmi:CARD=NVidia, DEV=0

HDA Nvidia, HDMI 0

HDMI Audio Output
hdmi:CARD=NVidia,DEV=1

HDA NVidia, HDMI 1

HDMI Audio Output
hdmi:CARD=NVidia,DEV=2

HDA NVidia, HDMI 2

HDMI Audio Output

sopkkkokkkkk PLAYBACK okkskrkokkokoksk

null

Discard all samples (playback) or generate zero samples (capture)
pulse

PulseAudio Sound Server
default

Default

39

CHAPTER 5 © ALSA

sysdefault:CARD=PCH

HDA Intel PCH, STAC92xx Analog

Default Audio Device
front:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

Front speakers
surround40:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.0 Surround output to Front and Rear speakers
surround41:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

4.1 Surround output to Front, Rear and Subwoofer speakers
surround50: CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

5.0 Surround output to Front, Center and Rear speakers
surround51:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

5.1 Surround output to Front, Center, Rear and Subwoofer speakers
surround71:CARD=PCH,DEV=0

HDA Intel PCH, STAC92xx Analog

7.1 Surround output to Front, Center, Side, Rear and Woofer speakers

Note that this does not include the “plug” devices such as plughw:0. The list of plug devices does not
seem to be accessible.

Configuration Space Information

In addition to general characteristics, each PCM device is able to support a range of parameters such as the
number of channels, sampling rates, and so on. The full set and range of parameters form the “configuration
space” of each device. For example, a device may support between two and six channels and a number

of different sampling rates. These two parameters form a two-dimensional space. The full set forms an n-
dimensional space.

ALSA has functions to query this space and to set values within this space. The space is initialized by
snd_pcm_hw_params_any. To find the possible values of parameters, there are functions called snd_pcm_hw_
params_get and so on.

The different parameters are as follows:

Channels

This is the number of channels supported (zero for mono, and so on).
Rate

This is the sampling rate in hertz, that is, samples per second. Typically CD audio
has a sampling rate of 44,100Hz per channel so that each channel has 44,100
samples per second.

Frames

Each frame contains one sample for each channel. Stereo audio will contain two
samples in each frame. The frame rate is the same as the sampling rate. That is,
suppose the sampling rate for stereo audio is 44,100Hz. Then each channel will
have 44,100 samples per second. But there will also be 44,100 frames per second
so that the overall density of the two channels will be 88,200 samples per second.

40

CHAPTER 5 © ALSA

Period time

This is the time in microseconds between hardware interrupts to refresh the
buffer.

Period size

This is the number of frames in between each hardware interrupt. These are
related in the following way:

Period time = period size x time per frame
period size x time per sample
period size / sampling rate

So, for example, if the sampling rate is 48000Hz stereo and the period size is 8,192 frames, then the time
between hardware interrupts is 8192 / 48000 seconds = 170.5 milliseconds.
Periods

This is the number of periods per buffer.
Buffer time

This is the time for one buffer.
Bulffer size

This is the size of the buffer in frames. Again, there is a relationship.

Time of one buffer = buffer size in frames x time for one frame
= buffer size x number of channels x time for one sample
= buffer size x number of channels / sample rate

The buffer size should be a multiple of the period size and is typically twice as big.

For further examples, see FramesPeriods (www.alsa-project.org/main/index.php/FramesPeriods).

The following is a program to find the range of values of various parameters from the initial state; it is
called device-info.c:

Jx*
* Jan Newmarch
*/

#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>

void info(char *dev name, snd pcm stream t stream) {
snd_pcm_hw_params_t *hw_params;
int err;
snd_pcm_t *handle;
unsigned int max;
unsigned int min;
unsigned int val;
unsigned int dir;
snd_pcm_uframes_t frames;

41

http://www.alsa-project.org/main/index.php/FramesPeriods

CHAPTER 5 © ALSA

if ((err = snd_pcm open (&handle, dev _name, stream, 0)) < 0) {
fprintf (stderr, "cannot open audio device %s (%s)\n",
dev_nanme,
snd_strerror (err));
return;

}

if ((err = snd_pcm_hw_params_malloc (&hw_params)) < 0) {
fprintf (stderr, "cannot allocate hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm_hw_params_any (handle, hw_params)) < 0) {
fprintf (stderr, "cannot initialize hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm _hw_params_get channels max(hw_params, &max)) < 0) {
fprintf (stderr, "cannot (%s)\n",
snd_strerror (err));
exit (1);
}

printf("max channels %d\n", max);

if ((err = snd_pcm _hw_params_get channels min(hw_params, &min)) < 0) {
fprintf (stderr, "cannot get channel info (%s)\n",
snd_strerror (err));
exit (1);
}

printf("min channels %d\n", min);

/*
if ((err = snd_pcm hw_params_get sbits(hw_params)) < 0) {
fprintf (stderr, "cannot get bits info (%s)\n",
snd_strerror (err));

exit (1);
}
printf("bits %d\n", err);
*/

if ((err = snd_pcm_hw_params_get rate min(hw_params, &val, &dir)) < o) {
fprintf (stderr, "cannot get min rate (%s)\n",
snd_strerror (err));
exit (1);
}
printf("min rate %d hz\n", val);

if ((err = snd_pcm hw_params_get rate max(hw_params, &val, &dir)) < 0) {
fprintf (stderr, "cannot get max rate (%s)\n",
snd_strerror (err));

42

CHAPTER 5

exit (1);
}
printf("max rate %d hz\n", val);

if ((err = snd_pcm_hw_params_get_period_time_min(hw_params, 8val, &dir)) < 0) {
fprintf (stderr, "cannot get min period time (%s)\n",
snd_strerror (err));
exit (1);
}

printf("min period time %d usecs\n", val);

if ((err = snd_pcm hw_params_get period time max(hw_params, &val, &dir)) < 0) {
fprintf (stderr, "cannot get max period time (%s)\n",
snd_strerror (err));
exit (1);

printf("max period time %d usecs\n", val);

if ((err = snd_pcm _hw_params_get period size min(hw_params, 8frames, &dir)) < 0) {
fprintf (stderr, "cannot get min period size (%s)\n",
snd_strerror (err));
exit (1);
}

printf("min period size in frames %d\n", frames);

if ((err = snd_pcm hw_params_get period size max(hw_params, &frames, &dir)) < 0) {
fprintf (stderr, "cannot get max period size (%s)\n",
snd_strerror (err));
exit (1);
}

printf("max period size in frames %d\n", frames);

if ((err = snd_pcm_hw_params_get periods_min(hw_params, &val, &dir)) < o) {
fprintf (stderr, "cannot get min periods (%s)\n",
snd_strerror (err));
exit (1);
}
printf("min periods per buffer %d\n", val);

if ((err = snd_pcm hw params get periods max(hw_params, &val, &dir)) < 0) {
fprintf (stderr, "cannot get min periods (%s)\n",
snd_strerror (err));
exit (1);
}
printf("max periods per buffer %d\n", val);

if ((err = snd_pcm _hw_params_get buffer time min(hw_params, &val, &dir)) < 0) {
fprintf (stderr, "cannot get min buffer time (%s)\n",
snd_strerror (err));
exit (1);
}

printf("min buffer time %d usecs\n", val);

ALSA

43

CHAPTER 5 © ALSA

if ((err = snd_pcm _hw_params_get buffer time max(hw_params, &val, &dir)) < 0) {
fprintf (stderr, "cannot get max buffer time (%s)\n",
snd_strerror (err));
exit (1);

printf("max buffer time %d usecs\n", val);

if ((err = snd_pcm_hw_params_get buffer size min(hw_params, 8frames)) < 0) {
fprintf (stderr, "cannot get min buffer size (%s)\n",
snd_strerror (err));
exit (1);

printf("min buffer size in frames %d\n", frames);

if ((err = snd_pcm hw_params_get buffer size max(hw_params, &frames)) < 0) {
fprintf (stderr, "cannot get max buffer size (%s)\n",
snd_strerror (err));
exit (1);
}

printf("max buffer size in frames %d\n", frames);

}

main (int argc, char *argv[])
{

int i;

int err;

int buf[128];

FILE *fin;

size t nread;

unsigned int rate = 44100;

if (arge !=2) {
fprintf(stderr, "Usage: %s card\n", argv[o0]);
exit(1);

}

printf("*********** CAPTURE ***********\n");
info(argv[1], SND_PCM STREAM_CAPTURE);

prj_nt{("*********** PLAYBACK ***********\nu);
info(argv[1], SND_PCM_STREAM_ PLAYBACK);

exit (0);

The following is the output from device-info hw:0 on my system:

skoskoskokosk sk kok sk sk >k CAPTURE sksk skokosk sk kok sk k k-
max channels 2

min channels 2

min rate 44100 hz

max rate 192000 hz

44

min
max
min
max
min
max
min
max
min
max

period time
period time
period size
period size
periods per
periods per
buffer time
buffer time
buffer size
buffer size

83 usecs

11888617 usecs

in frames 16

in frames 524288
buffer 2

buffer 32

166 usecs
23777234 usecs

in frames 32

in frames 1048576

skkkkkkkkkk Pl AYBACK Fkkkkkkkokokk

max
min
min
max
min
max
min
max
min
max
min
max
min
max

channels 2
channels 2

rate 44100 hz

rate 192000
period time
period time
period size
period size
periods per
periods per
buffer time
buffer time
buffer size
buffer size

hz

83 usecs
11888617 usecs
in frames 16

in frames 524288
buffer 2

buffer 32

166 usecs
23777234 usecs
in frames 32

in frames 1048576

CHAPTER 5 © ALSA

This program works with any ALSA device, including the “plug” devices. The following output from
device-info plughw:0 shows how the software wrapper can give a wider range of possible values:

channels 10000

max
min
min
max
min
max
min
max
min
max
min
max
min
max

channels 1

rate 4000 hz

rate -1 hz

period time
period time
period size
period size
periods per
periods per
buffer time
buffer time
buffer size
buffer size

83 usecs
11888617 usecs
in frames 0

in frames -1
buffer o
buffer -1

1 usecs

-1 usecs

in frames 1

in frames -2

RRkkRRRRRRK DLAYBACK *¥Fkxkkkkkk
channels 10000

max
min
min
max
min
max
min

channels 1

rate 4000 hz

rate -1 hz

period time
period time
period size

83 usecs
11888617 usecs
in frames 0

45

CHAPTER 5 © ALSA

max period size in frames -1
min periods per buffer 0
max periods per buffer -1
min buffer time 1 usecs

max buffer time -1 usecs

min buffer size in frames 1
max buffer size in frames -2

It can also be run with alias devices, such as device-info surround4o.

ALSA Initialization

Aline-by-line breakdown is at (http://soundprogramming.net/programming apis/alsa_tutorial 1 _
initialization). It explains much of the common code in the programs that follow.

Capture Audio to a File

The following program is from Paul Davis’s “A Tutorial on Using the ALSA Audio API” (http://equalarea.
com/paul/alsa-audio.html):

/**

* alsa_capture.c
*/

/* Copyright © 2002

* Paul Davis

* under the GPL license
*/

/¥
* Paul Davis

* http://equalarea.com/paul/alsa-audio.html#thowto
*/

/**

* Jan Newmarch

*/
#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>
#include <signal.h>

#define BUFSIZE 128
#define RATE 44100

FILE *fout = NULL;

/*
* quit on ctrl-c

46

http://soundprogramming.net/programming_apis/alsa_tutorial_1_initialization
http://soundprogramming.net/programming_apis/alsa_tutorial_1_initialization
http://equalarea.com/paul/alsa-audio.html
http://equalarea.com/paul/alsa-audio.html

CHAPTER 5 © ALSA

*/
void sigint(int sig) {
if (fout != NULL) {
fclose(fout);

exit(1);

}

main (int argc, char *argv[])

{
int i;
int err;
short buf[BUFSIZE];
snd_pcm_t *capture_handle;
snd_pcm_hw_params_t *hw_params;
snd_pcm_format_t rate = RATE;
int nread;

if (argc != 3) {
fprintf(stderr, "Usage: %s cardname file\n", argv[o0]);
exit(1);

}

if ((fout = fopen(argv[2], "w")) == NULL) {
fprintf(stderr, "Can't open %s for writing\n", argv[2]);
exit(1);

}
signal(SIGINT, sigint);

if ((err = snd_pcm open (8capture_handle, argv[1], SND_PCM_STREAM_CAPTURE, 0)) < 0) {
fprintf (stderr, "cannot open audio device %s (%s)\n",
argv[1],
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm hw_params _malloc (8hw_params)) < 0) {
fprintf (stderr, "cannot allocate hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm _hw_params_any (capture handle, hw_params)) < 0) {
fprintf (stderr, "cannot initialize hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm hw_params_set access (capture_handle, hw_params, SND PCM_ACCESS RW_
INTERLEAVED)) < 0) {
fprintf (stderr, "cannot set access type (%s)\n",

47

CHAPTER 5 © ALSA

snd_strerror (err));
exit (1);

}

if ((err = snd_pcm hw params_set format (capture handle, hw_params, SND PCM_FORMAT S16
LE)) < 0) {
fprintf (stderr, "cannot set sample format (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm hw_params_set rate near (capture_handle, hw params, &rate, 0)) < 0) {
fprintf (stderr, "cannot set sample rate (%s)\n",
snd_strerror (err));
exit (1);

fprintf(stderr, "rate set to %d\n", rate);

if ((err = snd_pcm_hw_params_set channels (capture_handle, hw_params, 2)) < 0) {
fprintf (stderr, "cannot set channel count (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm_hw_params (capture_handle, hw_params)) < 0) {
fprintf (stderr, "cannot set parameters (%s)\n",
snd_strerror (err));
exit (1);

}

snd_pcm_hw_params_free (hw_params);

/*
if ((err = snd_pcm prepare (capture handle)) < 0) {
fprintf (stderr, "cannot prepare audio interface for use (%s)\n",
snd_strerror (err));

exit (1);
}
*/
while (1) {

if ((nread = snd_pcm readi (capture handle, buf, BUFSIZE)) < 0) {

fprintf (stderr, "read from audio interface failed (%s)\n",
snd_strerror (err));

/* recover */
snd_pcm_prepare(capture_handle);

} else {
fwrite(buf, sizeof(short), nread, fout);

}

}

48

CHAPTER 5 © ALSA

snd_pcm close (capture handle);
exit(0);

}

Playback Audio from a File

To capture or play audio, a device must first be opened as in previous examples. A configuration space
is then created, and the space is narrowed by setting values on the various parameters. The access type
determines whether the samples are interleaved or not. The format determines the size of samples and
whether they are little- or big-endian. All of these will return an error if the requested value cannot be set.
Some parameters need care when setting them. For example, there is a range of possible values for the
sampling rate, but not all of these may be supported. A particular rate may be requested using snd_pcm_hw_
params_set_rate. Butif a requested rate is not possible, then an error will be returned. There are several
ways of avoiding this.

e Tryanumber of rates until you get one that is supported.
e Test whether arate is supported with snd_pcm_hw_params_test_rate.

e Request ALSA to give the nearest supported rate with snd_pcm_hw_params_set_
rate_near. The actual rate chosen is set in the rate parameter.

¢ Instead of a hardware device such as hw:0, use a plug device such as plughw:0,
which will support many more values by resampling.

Finally, once parameters are set for the configuration space, the restricted space is installed onto the
device by snd_pcm_hw_params.

The calls on PCM devices will cause state changes to take place in the device. After opening, the device
isin the state SND_PCM_STATE_OPEN. After setting the hardware configuration, the device is in the state SND_
PCM_STATE_PREPARE. Applications can use the snd_pcm_start call to write or read data. The state may drop
to SND_PCM_STATE_XRUN if an overrun or underrun occurs, and then a call to snd_pcm_prepare is needed to
restore it to SND_PCM_STATE_PREPARE.

The call to readi reads interlaced data.

The following program is from Paul Davis’s “A Tutorial on Using the ALSA Audio API”
(http://equalarea.com/paul/alsa-audio.html):

/**
* alsa_playback.c
*/

/*
* Copyright © 2002
* Paul Davis
* under the GPL license
*/
J**
* Paul Davis
* http://equalarea.com/paul/alsa-audio.htmlithowto
*/
/**
* Jan Newmarch
*/
49

http://equalarea.com/paul/alsa-audio.html

CHAPTER 5 © ALSA

#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>

main (int argc, char *argv[])
{
int i;
int err;
int buf[128];
snd_pcm_t *playback_handle;
snd_pcm_hw_params_t *hw_params;
FILE *fin;
size t nread;
unsigned int rate = 44100;

if (arge !=3) {
fprintf(stderr, "Usage: %s card file\n", argv[0]);
exit(1);

}

if ((err = snd_pcm open (&playback handle, argv[1], SND_PCM STREAM PLAYBACK, 0)) < 0) {
fprintf (stderr, "cannot open audio device %s (%s)\n",
argv[1],
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm_hw_params_malloc (&hw_params)) < 0) {
fprintf (stderr, "cannot allocate hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm_hw_params_any (playback_handle, hw_params)) < 0) {
fprintf (stderr, "cannot initialize hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm hw params_set access (playback handle, hw_params, SND PCM_ACCESS RW_
INTERLEAVED)) < 0) {
fprintf (stderr, "cannot set access type (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm hw params_set format (playback handle, hw params, SND PCM_FORMAT S16
LE)) < 0) {
fprintf (stderr, "cannot set sample format (%s)\n",
snd_strerror (err));
exit (1);

}
50

CHAPTER 5 © ALSA

if ((err = snd_pcm hw_params_set rate near (playback handle, hw_params, &rate, 0)) < 0) {
fprintf (stderr, "cannot set sample rate (%s)\n",
snd_strerror (err));
exit (1);

printf("Rate set to %d\n", rate);

if ((err = snd_pcm_hw_params_set channels (playback handle, hw_params, 2)) < 0) {
fprintf (stderr, "cannot set channel count (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm_hw_params (playback handle, hw_params)) < 0) {
fprintf (stderr, "cannot set parameters (%s)\n",
snd_strerror (err));
exit (1);

}

snd_pcm_hw_params_free (hw_params);

/*
if ((err = snd_pcm prepare (playback handle)) < 0) {
fprintf (stderr, "cannot prepare audio interface for use (%s)\n",
snd_strerror (err));
exit (1);
}
*/

if ((fin = fopen(argv[2], "r")) == NULL) {
fprintf(stderr, "Can't open %s for reading\n", argv[2]);
exit(1);

}

while ((nread = fread(buf, sizeof(int), 128, fin)) > 0) {
//printf("writing\n");
if ((err = snd_pcm writei w(playback handle, buf, nread)) != nread) {
fprintf (stderr, "write to audio interface failed (%s)\n",
snd_strerror (err));
snd_pcm_prepare(playback handle);

}alsa_capture.c
snd_pcm_drain(playback handle);
snd_pcm_close (playback handle);
exit (0);
Check that the microphone is enabled using alsamixer. Record by doing the following:

alsa_capture hw:0 tmp.s16

51

CHAPTER 5 © ALSA

Play back by doing the following:

SOX -C 2 -T 44100 tmp.s16 tmp.wav
mplayer tmp.wav

or by using the next program:

alsa_playback hw:0 tmp.s16

Using Interrupts

The previous programs relied on ALSA to manage the devices. The call snd_pcm_writei will block until all
frames are played or put into the playback ring buffer. This will be adequate for many uses. If you want to
get finer control, then it is possible to set thresholds for how many frames a device can handle and then wait
for that threshold to be reached. ALSA will cause a kernel interrupt to be generated when the threshold is
reached, at which point the wait will terminate and the program can continue.

A program illustrating this is given in “A Tutorial on Using the ALSA Audio API” (http://equalarea.
com/paul/alsa-audio.html).

Managing Latency

In the ALSA source distribution is a program /test/latency.c. This can be run with various parameters
to test the latency of your system. Warning: turn your volume way down low or the feedback might fry your
speakers! For example, on a low setting, the following gave a latency of only 0.93ms:

latency -m 128 -M 128
The “poor” latency test of the following gave a latency of 92.9ms.
latency -m 8192 -M 8192 -t 1 -p

Getting low latency is a combination of several things. For best results, a real-time Linux kernel tuned
for latency is one prerequisite. For this, see the “Low latency howto” (www.alsa-project.org/main/index.
php/Low_latency howto). In ALSA itself, programmatically you need to set the internal buffer and period
sizes using snd_pcm_hw_params_set buffer size near and snd_pcm _hw_params_set period size near,
as is done in the latency.c program where low latency is gained by setting the buffer to 128 bytes and higher
latency is gained by setting it to 8,192 bytes.

Playback of Captured Sound

Playback of captured sound involves two handles, possibly for different cards. The direct method of just
combining two of these in a loop doesn’t unfortunately work.

while (1) {
int nread;
if ((nread = snd_pcm readi (capture_ handle, buf, BUF_SIZE)) != BUF_SIZE) {
fprintf (stderr, "read from audio interface failed (%s)\n",
snd_strerror (nread));
snd_pcm_prepare(capture_handle);

52

http://equalarea.com/paul/alsa-audio.html
http://equalarea.com/paul/alsa-audio.html
http://www.alsa-project.org/main/index.php/Low_latency_howto
http://www.alsa-project.org/main/index.php/Low_latency_howto

CHAPTER 5 © ALSA

continue;

}
printf("copying %d\n", nread);

if ((err = snd_pcm writei (playback handle, buf, nread)) != nread) {
if (err < 0) {
fprintf (stderr, "write to audio interface failed (%s)\n",
snd_strerror (err));
} else {
fprintf (stderr, "write to audio interface failed after %d frames\n", err);

snd_pcm_prepare(playback handle);
}

On my computer it threw up a variety of errors, including broken pipe, device not ready, and device
nonexistent.

There are many issues that must be addressed to play back captured sound directly. The first issue
is that each sound card has its own timing clock. These clocks must be synchronized. This is difficult to
maintain for consumer-grade cards as their clocks apparently are low quality and will drift or be erratic.
Nevertheless, ALSA will attempt to synchronize clocks with the function snd_pcm_link, which takes two card
handles as parameters.

The next issue is that finer control must be exercised over the buffers and how often ALSA will fill these
buffers. This is controlled with two parameters: buffer size and period size (or buffer time and period time).
The period size/time controls how often interrupts occur to fill the buffer. Typically, the period size (time) is
set to half that of the buffer size (time). Relevant functions are snd_pcm_hw_params_set_buffer_size near
and snd_pcm_hw_params_set_period _size near. Corresponding get functions can used to discover what
values were actually set.

In addition to hardware parameters, ALSA can also set software parameters. The distinction between
the two is not clear to me, but anyway, a “start threshold” and a “available minimum” have to be set as
software parameters. I have managed to get working results by setting both of these to the period size, using
snd_pcm_sw_params_set_start threshold and snd_pcm_sw_params_set _avail min. Setting software
parameters is similar to setting hardware parameters: first a data structure is initialized with snd_pcm_sw_
params_current, then the software space is restricted with setter calls, and finally the data is set into the card
with snd_pcm_sw_params

ALSA needs to keep the output as full as possible. Otherwise, it will generate a “write error” I have no
idea why, but it seems to work only if two buffers are written to the playback device before attempts are
made to read and copy from the capture device. Sometimes one buffer will do, but no more than two. To
avoid extraneous unwanted noise at the beginning of playback, two buffers of silence work well.

The resultant program is playback-capture.c, as shown here

/**
* Jan Newmarch
*/

#define PERIOD SIZE 1024
#tdefine BUF_SIZE (PERIOD SIZE * 2)

#include <stdio.h>
#include <stdlib.h>
#include <alsa/asoundlib.h>

53

CHAPTER 5 © ALSA

void print pcm state(snd _pcm t *handle, char *name) {
switch (snd_pcm_state(handle)) {
case SND_PCM_STATE_OPEN:
printf("state open %s\n", name);
break;

case SND_PCM_STATE_SETUP:
printf("state setup %s\n", name);
break;

case SND_PCM_STATE_PREPARED:
printf("state prepare %s\n", name);
break;

case SND_PCM_STATE_RUNNING:
printf("state running %s\n", name);
break;

case SND_PCM_STATE_XRUN:
printf("state xrun %s\n", name);
break;

default:
printf("state other %s\n", name);
break;

}
}

int setparams(snd pcm t *handle, char *name) {
snd_pcm_hw_params_t *hw_params;
int err;

if ((err = snd_pcm_hw_params_malloc (&hw_params)) < 0) {
fprintf (stderr, "cannot allocate hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm _hw _params_any (handle, hw_params)) < 0) {
fprintf (stderr, "cannot initialize hardware parameter structure (%s)\n",
snd_strerror (err));
exit (1);

}

if ((err = snd_pcm hw_params_set access (handle, hw_params, SND_PCM_ACCESS RW_
INTERLEAVED)) < 0) {
fprintf (stderr, "cannot set access type (%s)\n",
snd_strerror (err));
exit (1);

}

54

CHAPTER 5 © ALSA

if ((err = snd_pcm hw_params_set format (handle, hw_params, SND_PCM_FORMAT S16 _LE)) < 0) {
fprintf (stderr, "cannot set sample format (%s)\n",
snd_strerror (err));
exit (1);

}

unsigned int rate = 48000;
if ((err = snd_pcm_hw_params_set rate near (handle, hw_params, &rate, 0)) < 0) {
fprintf (stderr, "cannot set sample rate (%s)\n",
snd_strerror (err));
exit (1);
}

printf("Rate for %s is %d\n", name, rate);

if ((err = snd_pcm hw_params_set channels (handle, hw_params, 2)) < 0) {
fprintf (stderr, "cannot set channel count (%s)\n",
snd_strerror (err));
exit (1);

}

snd_pcm_uframes_t buffersize = BUF_SIZE;

if ((err = snd_pcm hw_params_set buffer size near(handle, hw_params, 8buffersize)) < 0) {
printf("Unable to set buffer size %li: %s\n", BUF_SIZE, snd strerror(err));
exit (1);;

}

snd_pcm_uframes_t periodsize = PERIOD_SIZE;
fprintf(stderr, "period size now %d\n", periodsize);
if ((err = snd_pcm hw_params_set period size near(handle, hw_params, &3periodsize, 0)) < 0)

printf("Unable to set period size %1i: %s\n", periodsize, snd_strerror(err));
exit (1);

}

if ((err = snd_pcm hw_params (handle, hw_params)) < 0) {
fprintf (stderr, "cannot set parameters (%s)\n",
snd_strerror (err));
exit (1);

}

snd_pcm_uframes t p psize;
snd_pcm_hw_params_get period size(hw_params, &p psize, NULL);
fprintf(stderr, "period size %d\n", p_psize);

snd_pcm_hw_params_get buffer size(hw_params, &p psize);
fprintf(stderr, "buffer size %d\n", p _psize);

snd_pcm_hw_params_free (hw_params);

if ((err = snd_pcm prepare (handle)) < 0) {
fprintf (stderr, "cannot prepare audio interface for use (%s)\n",
snd_strerror (err));

55

CHAPTER 5 © ALSA

exit (1);

}

return 0;

}

int set sw params(snd_pcm t *handle, char *name) {
snd_pcm_sw_params_t *swparams;
int err;

snd_pcm_sw_params_alloca(&swparams);

err = snd_pcm_sw_params_current(handle, swparams);

if (err < 0) {
fprintf(stderr, "Broken configuration for this PCM: no configurations available\n");
exit(1);

}

err = snd_pcm_sw_params_set start threshold(handle, swparams, PERIOD SIZE);
if (err < 0) {
printf("Unable to set start threshold: %s\n", snd strerror(err));
return err;
}
err = snd_pcm_sw_params_set avail min(handle, swparams, PERIOD SIZE);
if (err < 0) {
printf("Unable to set avail min: %s\n", snd_strerror(err));
return err;

}

if (snd_pcm_sw_params(handle, swparams) < 0) {
fprintf(stderr, "unable to install sw params:\n");
exit(1);

}

return O;

}

JRERRERRoRRk some code From latency.c ¥kpkikrkkkisrtkk /
main (int argc, char *argv[])

int i;
int err;
int buf[BUF_SIZE];
snd_pcm_t *playback_handle;
snd_pcm_t *capture_handle;
snd_pcm_hw_params_t *hw_params;
FILE *fin;
size t nread;
snd_pcm_format_t format = SND_PCM_FORMAT_S16_LE;
if (arge !=3) {
fprintf(stderr, "Usage: %s in-card out-card\n", argv[0]);

56

CHAPTER 5 © ALSA

exit(1);

}

JxRRk Ut card FrrRkkk)
if ((err = snd_pcm_open (8playback_handle, argv[2], SND_PCM_STREAM_PLAYBACK, 0)) < 0) {
fprintf (stderr, "cannot open audio device %s (%s)\n",
argv[2],
snd_strerror (err));
exit (1);

}

setparams(playback handle, "playback");
set_sw_params(playback handle, "playback");

JRFRRRKKKKRk T cgrd Fkkkkkkkkk

if ((err = snd_pcm open (&capture_handle, argv[1], SND_PCM_STREAM_CAPTURE, 0)) < 0) {
fprintf (stderr, "cannot open audio device %s (%s)\n",
argv[1],
snd_strerror (err));
exit (1);

}

setparams(capture_handle, "capture");
set_sw_params(capture_handle, "capture");

if ((err = snd_pcm link(capture_handle, playback handle)) < 0) {
printf("Streams link error: %s\n", snd_strerror(err));
exit(0);

}

if ((err = snd_pcm prepare (playback handle)) < 0) {
fprintf (stderr, "cannot prepare playback audio interface for use (%s)\n",
snd_strerror (err));
exit (1);

}

[RrRlilklklik stuff something into the playback buffer *ikdskrdotiokiick/
if (snd_pcm_format set silence(format, buf, 2*BUF_SIZE) < 0) {
fprintf(stderr, "silence error\n");
exit(1);

}

int n = 0;
while (n++ < 2) {
if (snd_pcm writei (playback_handle, buf, BUF SIZE) < 0) {
fprintf(stderr, "write error\n");
exit(1);
}
}

57

CHAPTER 5 © ALSA

while (1) {
int nread;
if ((nread = snd_pcm readi (capture_handle, buf, BUF_SIZE)) != BUF_SIZE) {
if (nread < 0) {
fprintf (stderr, "read from audio interface failed (%s)\n",
snd_strerror (nread));

} else {
fprintf (stderr, "read from audio interface failed after %d frames\n", nread);
}
snd_pcm_prepare(capture_handle);
continue;

}

if ((err = snd_pcm writei (playback handle, buf, nread)) != nread) {
if (err < 0) {
fprintf (stderr, "write to audio interface failed (%s)\n",
snd_strerror (err));
} else {
fprintf (stderr, "write to audio interface failed after %d frames\n", err);

}
snd_pcm_prepare(playback handle);

}

snd_pcm_drain(playback handle);
snd_pcm_close (playback handle);
exit (0);

Mixing Audio

If more than one application wants to write to a sound card, only one is allowed to do so or the signals must
be mixed together. Some sound cards allow hardware mixing, but some do not. In this case, the mixing must
be done in software, and ALSA has mechanisms to do this.

Mixing Using dmix

ALSA contains a plug-in called dmix that is enabled by default. This performs mixing of multiple audio input
signals into an output signal in software. A description of this is given in “The Dmix Howto” (http://alsa.
opensrc.org/Dmix). Basically, each application that wants to write audio to ALSA should use the plug-in
plug:dmix instead of a hardware device such as hw: 0. For example, the alsa_playback program discussed
earlier can be called multiple times and have the ALSA inputs mixed together as follows:

alsa_playback plug:dmix tmpl.s16 &

alsa_playback plug:dmix tmp2.s16 &
alsa_playback plug:dmix tmp3.s16

58

http://alsa.opensrc.org/Dmix
http://alsa.opensrc.org/Dmix

CHAPTER 5 © ALSA

Mixing Using PulseAudio

PulseAudio isn’t covered until the next chapter, because it is generally considered to be a sound server,
acting in the layer above ALSA. However, there is also an ALSA plug-in module whereby PulseAudio can
appear as a plug-in device below ALSA! So, ALSA can write output to the PulseAudio plug-in, which can
process it using the full capabilities of PulseAudio, which then feeds it back down into ALSA for rendering on
a hardware device.

One of these capabilities is that PulseAudio contains a mixer. So, two (or more) applications can send
audio to the PulseAudio plug-in, which will then mix the signals and send them back to ALSA.

The PulseAudio plug-in can appear as the PCM device pulse or default. So, the following three outputs
will be mixed by PulseAudio and rendered by ALSA:

alsa_playback default tmp1.s16 &
alsa_playback pulse tmp2.s16 &
alsa_playback default tmp3.s16

Simple Mixer API: Volume Control

ALSA has a separate API for the mixer module. In fact, there are two: the asynchronous Mixer interface (Wwww.
alsa-project.org/alsa-doc/alsa-1ib/group__ mixer.html) and the simple Mixer interface (www.alsa-
project.org/alsa-doc/alsa-1ib/group simple mixer.html).Iwill cover just the simple interface.

The ALSA mixer does not have a great deal of functionality apart from mixing. Basically, it can get and
set volumes on channels or globally. Setting the volume is illustrated by the following program, based on a
function at http://stackoverflow.com/questions/6787318/set-alsa-master-volume-from-c-code:

#include <alsa/asoundlib.h>
#include <alsa/mixer.h>
#include <stdlib.h>

int main(int argc, char **argv) {

snd_mixer_t *mixer;
snd_mixer selem_id t *ident;
snd_mixer elem_t *elem;
long min, max;

long old volume, volume;

snd_mixer open(&mixer, 0);
snd_mixer_attach(mixer, "default");
snd_mixer_selem register(mixer, NULL, NULL);
snd_mixer load(mixer);

snd_mixer selem id alloca(&ident);
snd_mixer selem id set index(ident, 0);
snd_mixer selem id set name(ident, "Master");

elem = snd mixer find selem(mixer, ident);

snd_mixer selem_get playback volume_range(elem, &min, &max);
snd_mixer selem get playback volume(elem, 0, &o0ld volume);
printf("Min %1d max %1d current volume %1d\n", min, max, old volume);

59

http://www.alsa-project.org/alsa-doc/alsa-lib/group___mixer.html
http://www.alsa-project.org/alsa-doc/alsa-lib/group___mixer.html
http://www.alsa-project.org/alsa-doc/alsa-lib/group___simple_mixer.html
http://www.alsa-project.org/alsa-doc/alsa-lib/group___simple_mixer.html
http://stackoverflow.com/questions/6787318/set-alsa-master-volume-from-c-code

CHAPTER 5 © ALSA

if (argc < 2) {
fprintf(stderr, "Usage: %s volume (%1ld - %1d)\n", argv[o0], min, max);
exit(1);

}

volume = atol(argv[1]);

snd_mixer selem set playback volume all(elem, volume);

printf("Volume reset to %ld\n", volume);

exit(0);

Writing an ALSA Device Driver

If you need to write a device driver for a new sound card, see “Writing an ALSA Driver” (www.alsa-project.
org/~tiwai/writing-an-alsa-driver.pdf) by Takashi Iwai.

Conclusion

ALSA is currently the lowest level of the audio stacks for Linux that is included in the kernel. It supplies
device drivers with a standard API to access the different sound devices and cards. There are a variety of
user-level tools to access and manipulate the devices, built using this API.

This chapter looked at the user-level tools and at building your own tools using the API. There was a
pointer to building device drivers.

60

http://www.alsa-project.org/~tiwai/writing-an-alsa-driver.pdf
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver.pdf

CHAPTER 6

PulseAudio

PulseAudio is a sound server, sitting above device drivers such as ALSA or OSS. It offers more capabilities
than device drivers. PulseAudio is designed for consumer audio and makes it easy to use sound on desktops,
laptops, and mobile devices. Multiple sources of sound can all play to the PulseAudio server, which will mix
them together and play them. Low latency is not a design goal, so it is unsuitable for professional audio.

Resources

Here are some resources:
e PulseAudio home page (www.freedesktop.org/wiki/Software/PulseAudio)

e “PulseAudio and Jack” (http://0pointer.de/blog/projects/when-pa-and-when-
not.html) by Lennart Poettering

e “Pro Audio is Easy, Consumer Audio is Hard” (http://lac.linuxaudio.org/2010/
recordings/dayl 1400 Pro Audio_is Easy Consumer Audio_is Hard.ogv), a
60-minute talk by Lennart Poettering

e PulseAudio API documentation (http://freedesktop.org/software/pulseaudio/
doxygen/index.html)

Starting, Stopping, and Pausing PulseAudio

If you have a current Linux system, PulseAudio is probably running. Test this by running the following from
the command line:

ps agx | grep pulse

If you see a line like /usx/bin/pulseaudio --start --log-target=syslog, then itis running already.
If it isn’t running and you have it installed, then start it by using this:

pulseaudio --start

Stopping PulseAudio isn't so easy. Carla Schroder shows how at www.linuxplanet.com/linuxplanet/
tutorials/7130/2. The basic problem is that PulseAudio is set to respawn itself after it is killed. You have to
turn that off by editing /etc/pulse/client.conf, changing autospawn = yes to autospawn = no, and setting
daemon-binary to /bin/true. Then you can kill the process, remove it from the startup files, and so on.

© Jan Newmarch 2017 61
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_6

http://www.freedesktop.org/wiki/Software/PulseAudio
http://0pointer.de/blog/projects/when-pa-and-when-not.html
http://0pointer.de/blog/projects/when-pa-and-when-not.html
http://lac.linuxaudio.org/2010/recordings/day1_1400_Pro_Audio_is_Easy_Consumer_Audio_is_Hard.ogv
http://lac.linuxaudio.org/2010/recordings/day1_1400_Pro_Audio_is_Easy_Consumer_Audio_is_Hard.ogv
http://freedesktop.org/software/pulseaudio/doxygen/index.html
http://freedesktop.org/software/pulseaudio/doxygen/index.html
http://www.linuxplanet.com/linuxplanet/tutorials/7130/2
http://www.linuxplanet.com/linuxplanet/tutorials/7130/2

CHAPTER 6 © PULSEAUDIO

If you want to run another sound system (such as Jack) for a short while, you may just want to pause
PulseAudio. You do this by using pasuspender. This takes a command (after - -) and will pause access by the
PulseAudio server to the audio devices until the subcommand has finished. For example, the following will
run the Jack server, with PulseAudio getting out of the way until it has finished:

pasuspender -- jackd

User Space Tools

PulseAudio has a range of user-level tools in addition to a programming API. These tools give information
about the PulseAudio system and allow a variety of controls. The Gnome project also has a control center
that is PulseAudio-aware. This section considers these tools.

paman

This shows you information about the PulseAudio server, its devices, and its clients. Figures 6-1 to 6-3 show
the type of information it gives.

. PulseAudio Manager

View and control the internals of your sound server

—
Server Information | Devices | Clients Modules Sample Cache

Server Information

Server Name: pulseaudio

Server Version: 0.9.23

Default Sample Type: s16le 2¢ch 44100Hz

Host Name: laptop.home

User Name: newmarch

Default Sink: alsa_output.pci-0000_00_1b.0.analog-stereo

Default Source: alsa_input.usb-Creative _Technology-Ltd_SB_X-Fi_Surround.5.1_Pro_000003d0-00-Pro.analog-stereo

Client Information

Linked to Library Version: 0.9.23
Compiled with Library Version: 0.9.22

=& | Disconnect , Statistics

Ready

Figure 6-1. Pulse Audio Manager server information

62

CHAPTER 6 * PULSEAUDIO

PulseAudio Manager [unix:/home/newmarch/.pulse/f8cfS36f3b4117c93f6806310000000e-runtime/native]

PulseAudio Manager

View and control the internals of your sound server

Server Information Devices | Clients Modules Sample Cache

Name Description
= Sinks
alsa_output.pci-0000.01_00.1.hdmi-stereo HOMI Audio
alsa_output.pci-0000_00_1b.0.analog-stereo Internal Audi
alsa_output.usb-Creative _Technology_Ltd_SB_X-Fi_Surround_5.1_Pro_000003d0-00-Pro.analog-stereo SB X-Fi Surro
¥ Sources
alsa_output.pci-0000_.01_00.1.hdmi-stereo.monitor Monitor of H
alsa-output.pci-0000.00.1b.0.analog-stereo.monitor Monitor of In
alsa_input.pci-0000.00_1b.0.analog-stereo Internal Audi
alsa_output.usb-Creative _Technology-Ltd_SB_X-Fi_Surround_.5.1_Pro_000003d0-00-Pro.analog-stereo.monitor ~ Monitor of SB
7 alsa_input.usb-Creative_Technology_Ltd_SB_X-Fi_Surround_5.1_Pro_000003d0-00-Pro.analog-stereo 5B X-Fi Surro

e #®Q o Peakdetecr |
=3 = 2 =

| Properties

Ready

Figure 6-2. Pulse Audio Manager device information

PulseAudio Manager [unix://fhome/newmarch/.pulse/f8cfS36f3b4117c93f6806310000000e-runtime/native]

PulseAudio Manager

View and control the internals of your sound server

Name

ConsoleKit Session forg/freedesktop/ConsoleKit/Session2

GNOME Volume Control Media Keys

XSMP Session on gnome-session as 10952eba8f2c13bbeel33881212467091100000017130044
GNOME Volume Control Applet

Metacity

Firefox

gnome-sound-applet

GNOME Volume Control Dialog

System Settings

PulseAudio Manager

.‘ [gj Properties I

Ready

Figure 6-3. Pulse Audio Manager client information
63

CHAPTER 6 PULSEAUDIO

pavumeter

pavumeter is a simple meter for showing the input or output levels of the default devices. When run by
pavumeter, it shows the playback device, as shown in Figure 6-4.

e} PulseAudio Volume Meter ;| |E_| :Z'

{) PulseAudio Volume Meter
4

Showing signal levels of Internal Audio Analog Stereo

Front Left | .|
Front Right [|

Figure 6-4. Pulse Audio playback volume meter

If it is run by pavumeter --record, it shows the record device, as shown in Figure 6-5.

{} PulseAudio Volume Meter
s

- Showing signal levels of SB X-Fi Surround 5.1 Pro Analog Stereo

Front Left []
Front Right [1

Figure 6-5. Pulse Audio record volume meter

pavucontrol

pavucontrol allows you to control the input and output volumes of the different connected audio devices, as
shown in Figure 6-6.

64

CHAPTER 6 * PULSEAUDIO

Playback Recording l Output Devices | Input Devices Configuration

Bl HOMI Audio stub Digital Stereo (HDMI) =hl| [g‘ i (V) |

Front Left (] 153%
)

Front Right 153%
Silence Max

f)

m Internal Audio Analog Stereo s @ | 6
< |

Port: | Analog Output

Front Left m 93% |[v

Show: | All Output Devices ¢ l

Figure 6-6. Pulse Audio pavucontrol output devices

With these tabs, pavucontrol is a device-level mixer, able to control the overall volume to individual
devices.

One of the special advantages of PulseAudio is that it can perform application-level mixing. If two audio
sources write to the same PulseAudio device, the audio will be mixed to the output device. pavucontrol
can show the multiple applications using the Playback tab, showing all applications or all streams currently
being mixed. Each stream can have its channel volumes individually controlled.

For example, karaoke on the cheap can be done by setting the straight-through module for the
microphone to speaker with the following:

pactl load-module module-loopback latency msec=1
The karaoke file is played by a karaoke player such as kmid through timidity. Here’s an example:
kmid nightsin.kar

While these two are running, relative volumes can be controlled with the use of pavucontrol, as in
Figure 6-7.

65

CHAPTER 6 PULSEAUDIO

' Playback | Recording \ Output Devices Input Devices Configuration

(e System Sounds Eel
Mono . 67%

. Loopback of SB X-Fi Surround 5.1 Pro Analog Stereo on SB X-Fi Surround 5.1 Pro Analog Stereol m

Front Left it 99%
Front Right 1T 99%
¢)
' ALSA plug-in [timidity]: ALSA Playback on SB X-Fi Surround 5.1 Pro Analog Stereol e @
Front Left P, 71%
Front Right ()] 71%
!

Show: | All Streams e

Figure 6-7. Pulse Audio pavucontrol multiple devices

Gnome Control Center (Sound)

The command gnome-control-center sound allows full view and control of the attached sound devices,
including selection of the default input and output devices. It looks like Figure 6-8.

66

CHAPTER 6 * PULSEAUDIO

All Settings

Output volume: o) {}) 7 Mute

|
100%

| Sound Effects | Hardware | Input .'F Output 1|. Applications "~|

Choose a device for sound output:

¢ Internal Audio Analog Stereo

Stereo D
' SB X-Fi Surround 5.1 Pro Analog Stereo

Steren

Settings for the selected device:

Balance: { }

| | |
Left Right

Connector: Analog Output N

Figure 6-8. Gnome control center

parec/paplay/pacat

parec, paplay, and pacatare are command-line tools to record and play back sound files. They are all
symbolic links to the same code, just differently named links. The default format is PCM s16. There are many
options, but they don’t always do quite what you want them to do. For example, to play from the default
record device to the default playback device with minimum latency, use the following:

pacat -r --latency-msec=1 | pacat -p --latency-msec=1

This actually has a latency of about 50ms.

67

CHAPTER 6 © PULSEAUDIO

pactl/pacmd

These two commands do basically the same thing. pacmd is the interactive version with more options. For
example, pacmd with the command 1ist-sinks includes the following:

name: <alsa_output.pci-0000 00 1b.0.analog-stereo>

driver: <module-alsa-card.c>

flags: HARDWARE HW_MUTE_CTRL HW_VOLUME_CTRL DECIBEL_VOLUME LATENCY FLAT_VOLUME

DYNAMIC_LATENCY

state: SUSPENDED

suspend cause: IDLE

priority: 9959

volume: 0: 93% 1: 93%
0: -1.88 dB 1: -1.88 dB
balance 0.00

base volume: 100%

0.00 dB

volume steps: 65537

muted: no

current latency: 0.00 ms

max request: O KiB

max rewind: 0 KiB

monitor source: 1

sample spec: si6le 2ch 44100Hz

channel map: front-left,front-right

Stereo

used by: 0

linked by: 0

configured latency: 0.00 ms; range is 16.00 .. 2000.00 ms

card: 1 <alsa_card.pci-0000 00 1b.0>

module: 5

properties:
alsa.resolution_bits = "16"
device.api = "alsa"
device.class = "sound"
alsa.class = "generic"
alsa.subclass = "generic-mix"
alsa.name = "STAC92xx Analog"
alsa.id = "STAC92xx Analog"
alsa.subdevice = "0"
alsa.subdevice name = "subdevice #0
alsa.device = "0"
alsa.card = "0"
alsa.card_name = "HDA Intel PCH"
alsa.long card name = "HDA Intel PCH at 0xe6e60000 irq 47"
alsa.driver name = "snd_hda_intel"
device.bus_path = "pci-0000:00:1b.0"
sysfs.path = "/devices/pci0000:00/0000:00:1b.0/sound/cardo"
device.bus = "pci"
device.vendor.id = "8086"
device.vendor.name = "Intel Corporation”

68

CHAPTER 6 © PULSEAUDIO

device.product.id = "1c20"
device.product.name = "6 Series/C200 Series Chipset Family High Definition
Audio Controller"
device.form factor = "internal"
device.string = "front:0"
device.buffering.buffer_size = "352800"
device.buffering.fragment_size = "176400"
device.access_mode = "mmap+timer"
device.profile.name = "analog-stereo"
device.profile.description = "Analog Stereo"
device.description = "Internal Audio Analog Stereo"
alsa.mixer name = "IDT 92HD9OBXX"
alsa.components = "HDA:111d76e7,10280494,00100102"
module-udev-detect.discovered = "1"
device.icon_name = "audio-card-pci"”
ports:
analog-output: Analog Output (priority 9900)
analog-output-headphones: Analog Headphones (priority 9000)
active port: <analog-output>

Device Names
PulseAudio uses its own naming conventions. The names of source devices (such as microphones) can be
found using code from the PulseAudio FAQ (www. freedesktop.org/wiki/Software/PulseAudio/FAQ#How_
do_I record stuff.3F).
pactl list | grep -A2 'Source #' | grep 'Name: .*\.monitor$' | cut -d" " -f2
On my system, this produces the following:
alsa_output.pci-0000 01 00.1.hdmi-stereo.monitor
alsa_output.pci-0000 00_1b.0.analog-stereo.monitor
alsa_input.pci-0000 00 1b.0.analog-stereo
Similarly, the output devices are found with the following:
pactl list | grep -A2 'Sink #' | grep 'Name: .*\.monitor$' | cut -d" " -f2
This gives the following:
alsa_output.pci-0000 01 00.1.hdmi-stereo

alsa_output.pci-0000 00 1b.0.analog-stereo

Loopback Module

Using pactl, you can load the module module-loopback with this:

pactl load-module module-loopback latency msec=1

69

http://www.freedesktop.org/wiki/Software/PulseAudio/FAQ#How_do_I_record_stuff.3F
http://www.freedesktop.org/wiki/Software/PulseAudio/FAQ#How_do_I_record_stuff.3F

CHAPTER 6 © PULSEAUDIO

When the module is loaded, sound is internally routed from the input device to the output device. The
latency is effectively zero.

If you load this module into, say, your laptop, be careful about unplugging speakers, microphones, and
so on. The internal speaker and microphone are close enough to set up a feedback loop. Unload module
number N with this:

pactl unload-module N

(If you have forgotten the module number, just running pactl will list all modules so you can identify
the loopback module.)

PulseAudio and ALSA

Output from pacmd shows that PulseAudio uses ALSA. The relationship is deeper: the default ALSA device
is hw:0, but PulseAudio overrides that. In /etc/asound.conf is a hook to load /etc/alsa/pulse-default.
conf, which contains the following:

pcm. default {
type pulse
hint {
description "Default”
}

This replaces the default device with a PulseAudio module.
Opening the default ALSA device will actually call into PulseAudio, which will then call back into ALSA
with the devices it chooses.

Programming with PulseAudio

The source for PulseAudio and its documentation is PulseAudio 2.0 (http://freedesktop.org/software/
pulseaudio/doxygen/index.html). There are two ways of programming with PulseAudio: the simple API
and the asynchronous API. Both are described in the following sections.

Simple API

PulseAudio has a “simple” API and a far more complex asynchronous API. The simple API may be good
enough for your needs.
The simple API has a small set of functions, shown here:

pa_simple * pa_simple new (const char *server, const char *name, pa_stream direction t dir,
const char *dev, const char *stream name, const pa_sample_spec *ss, const pa_channel_map
*map, const pa_buffer attr *attr, int *error)

Create a new connection to the server.
void pa_simple free (pa_simple *s)

Close and free the connection to the server.

int pa_simple write (pa_simple *s, const void *data, size t bytes, int *error)
Write some data to the server.
int pa_simple drain (pa_simple *s, int *error)

70

http://freedesktop.org/software/pulseaudio/doxygen/index.html
http://freedesktop.org/software/pulseaudio/doxygen/index.html

CHAPTER 6 © PULSEAUDIO

Wait until all data already written is played by the daemon.
int pa_simple read (pa_simple *s, void *data, size t bytes, int *error)
Read some data from the server.
pa_usec_t pa_simple get latency (pa_simple *s, int *error)
Return the playback latency.
int pa_simple flush (pa_simple *s, int *error)
Flush the playback buffer.

Play a File

The program shown next to play from a file to the default output device is from the PulseAudio site. The
basic structure is as follows:

1. Create a new playback stream (pa_simple new).
2. Read blocks from the file (read)...

3. ...Write them to the stream (pa_simple write).
4. Finish by flushing the stream (pa_simple_drain).

The program is pacat-simple.c. Rather weirdly, it does a dup2 to map the open file descriptor onto
stdin and then reads from stdin. This isn’t necessary. Why not just read from the original file descriptor?

/***

* This file is part of PulseAudio.

*

* PulseAudio is free software; you can redistribute it and/or modify

* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License,

* or (at your option) any later version.

ES

* PulseAudio is distributed in the hope that it will be useful, but

* WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

* General Public License for more details.

*

* You should have received a copy of the GNU Lesser General Public License
* along with PulseAudio; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

* USA.

****/

#ifdef HAVE_CONFIG H
#include <config.h>
#endif

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>

71

CHAPTER 6 © PULSEAUDIO

#include <pulse/simple.h>
#include <pulse/error.h>

#define BUFSIZE 1024

int main(int argc, char*argv[]) {

// set to NULL for default output device
char *device = "alsa_output.pci-0000 00 1b.0.analog-stereo";

/* The Sample format to use */
static const pa_sample spec ss = {
.format = PA_SAMPLE_S16LE,
.rate = 44100,
.channels = 2

};

pa_simple *s = NULL;
int ret = 1;
int error;

/* replace STDIN with the specified file if needed */
if (arge > 1) {
int fd;

if ((fd = open(argv[1], O RDONLY)) < 0) {
fprintf(stderr, _FILE_": open() failed: %s\n", strerror(errno));
goto finish;

}

if (dup2(fd, STDIN FILENO) < 0) {
fprintf(stderr, _FILE_": dup2() failed: %s\n", strerror(errno));
goto finish;

}

close(fd);
}

/* Create a new playback stream */
if (!(s = pa_simple new(NULL, argv[0], PA STREAM PLAYBACK, device, "playback", 8ss,
NULL, NULL, &error))) {
fprintf(stderr, _ FILE_": pa_simple new() failed: %s\n", pa_strerror(error));
goto finish;

}
for (55) {
uint8 t buf[BUFSIZE];
ssize t r;
#if 1

72

pa_usec_t latency;

#endif

}

CHAPTER 6

if ((latency = pa_simple_get latency(s, &error)) == (pa_usec_t) -1) {

fprintf(stderr, FILE "

strerror(error));
goto finish;

}

fprintf(stderr, "%0.0f usec

/* Read some data ... */
if ((r = read(STDIN_FILENO,
if (r == 0) /* EOF */
break;

fprintf(stderr, _FILE ":

goto finish;

}

/* ... and play it */
if (pa_simple write(s, buf,

: pa_simple_get latency() failed: %s\n", pa_

\r", (float)latency);

buf, sizeof(buf))) <= 0) {

read() failed: %s\n", strerror(errno));

(size t) r, 8&error) < 0) {

PULSEAUDIO

fprintf(stderr, FILE ": pa_simple write() failed: %s\n", pa_strerror(error));

goto finish;

/* Make sure that every single sample was played */
if (pa_simple drain(s, &error) < 0) {
fprintf(stderr, _ FILE_ ": pa_simple_drain() failed: %s\n", pa_strerror(error));

}

ret

finish:

goto finish;

=0;

if (s)

pa_simple free(s);

return ret;

Record to a File

The program shown next to record to a file from the default input device is from the PulseAudio site. It’s
called parec-simple.c. The basic structure is as follows:

—y

Create a new recording stream (pa_simple new).

Read blocks from the stream (pa_simple_read)...

...Write them to the output (write).

Finish by releasing the stream (pa_simple free).

73

CHAPTER 6 © PULSEAUDIO

Note that you need to tell PulseAudio the format to write the data, using a pa_sample_spec. Here I chose
two-channel, 44100Hz, and PCM 16-bit little-endian format.

Ve
This file is part of PulseAudio.

PulseAudio is free software; you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,

or (at your option) any later version.

PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

USA.
*okok |

#ifdef HAVE_CONFIG H
#include <config.h>
#endif

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

#include <pulse/simple.h>
#include <pulse/error.h>

#define BUFSIZE 1024
/* A simple routine calling UNIX write() in a loop */
static ssize t loop write(int fd, const void*data, size t size) {

ssize t ret = 0;

while (size > 0) {
ssize t r;

if ((r = write(fd, data, size)) < 0)
return r;

if (r == 0)
break;

74

CHAPTER 6

PULSEAUDIO

ret += r;
data = (const uint8 t*) data + r;
size -= (size_t) 1;
}
return ret;
}
int main(int argc, char*argv[]) {
/* The sample type to use */
static const pa_sample spec ss = {
.format = PA _SAMPLE S16LE,
.rate = 44100,
.channels = 2
};
pa_simple *s = NULL;
int ret = 1;
int error;
/* Create the recording stream */
if (!(s = pa_simple new(NULL, argv[0], PA STREAM RECORD, NULL, "record", &ss, NULL,
NULL, &error))) {
fprintf(stderr, _ FILE_": pa_simple new() failed: %s\n", pa_strerror(error));
goto finish;
}
for (55) {
uint8 t buf[BUFSIZE];
/* Record some data ... */
if (pa_simple read(s, buf, sizeof(buf), &error) < 0) {
fprintf(stderr, FILE ": pa_simple read() failed: %s\n", pa_strerror(error));
goto finish;
}
/* And write it to STDOUT */
if (loop write(STDOUT FILENO, buf, sizeof(buf)) != sizeof(buf)) {
fprintf(stderr, FILE ": write() failed: %s\n", strerror(errno));
goto finish;
}
}
ret = 0;
finish:
if (s)
pa_simple free(s);
return ret;
}

75

CHAPTER 6 © PULSEAUDIO

The output from this is a PCM s16 file. You can convert it to another format using sox (for example,
SOX -C 2 -T 44100 tmp.s16 tmp.wav), or you can import it as raw data into Audacity and play it directly.
How good are these for real-time audio? The first program can show the latency (change #if 0to #if 1).
This code can also be copied into the second one. The results are not good.

e Recording has a latency of 11ms on my laptop.

e Playback has a latency of 130ms.

Play from Source to Sink

You can combine the two programs to copy from the microphone to the speaker using a record and a
playback stream. The program is pa-mic-2-speaker-simple.c, shown here:

#ifdef HAVE_CONFIG H
#include <config.h>
#endif

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>

#include <pulse/simple.h>
#include <pulse/error.h>

#define BUFSIZE 32
int main(int argc, char*argv[]) {

/* The Sample format to use */
static const pa_sample spec ss = {
.format = PA_SAMPLE_S16LE,
.rate = 44100,
.channels = 2

};

pa_simple *s in, *s out = NULL;
int ret = 1;
int error;

/* Create a new playback stream */
if (!(s_out = pa_simple new(NULL, argv[0], PA STREAM_PLAYBACK, NULL, "playback", &ss,
NULL, NULL, &error))) {
fprintf(stderr, FILE ": pa_simple new() failed: %s\n", pa_strerror(error));
goto finish;

76

CHAPTER 6 © PULSEAUDIO

fprintf(stderr, FILE ": pa_simple new() failed: %s\n", pa_strerror(error));
goto finish;

if (!(s_in = pa_simple new(NULL, argv[0], PA_STREAM RECORD, NULL, "record", &ss, NULL,
NULL, &error))) {

}
for (55) {
uint8 t buf[BUFSIZE];
ssize t r;
#if 1
pa_usec_t latency;
if ((latency = pa_simple get latency(s_in, 8&error)) == (pa_usec_t) -1) {
fprintf(stderr, _FILE ": pa_simple get latency() failed: %s\n", pa_
strerror(error));
goto finish;
}
fprintf(stderr, "In: %0.0f usec \r\n", (float)latency);
if ((latency = pa_simple get latency(s out, &error)) == (pa_usec_t) -1) {
fprintf(stderr, _FILE ": pa_simple get latency() failed: %s\n", pa_
strerror(error));
goto finish;
}
fprintf(stderr, "Out: %0.0f usec \r\n", (float)latency);
#endif
if (pa_simple read(s_in, buf, sizeof(buf), &error) < 0) {
fprintf(stderr, _ FILE_ ": read() failed: %s\n", strerror(errno));
goto finish;
}
/* ... and play it */
if (pa_simple write(s_out, buf, sizeof(buf), &error) < 0) {
fprintf(stderr, _ FILE_ ": pa_simple write() failed: %s\n", pa_strerror(error));
goto finish;
}
}

/* Make sure that every single sample was played */
if (pa_simple drain(s_out, &error) < 0) {

}

fprintf(stderr, _ FILE ": pa_simple drain() failed: %s\n", pa_strerror(error));

goto finish;

ret = 0;

7

CHAPTER 6 ' PULSEAUDIO
finish:

if (s_in)

pa_simple free(s in);
if (s_out)

pa_simple free(s out);

return ret;

Try running this and you will discover that the latency is noticeable and unsatisfactory.

Asynchronous API

The simple API is, well, simple. By contrast, the asynchronous API is large and complex. There are also few
examples of using this API

Nearly all interaction with this API is asynchronous. A call is made to the PulseAudio server, and when
the response is ready, a library invokes a callback function that you will have passed to it when making the
library call. This avoids the need for user code to either block or make polling calls.

The essential structure is as follows:

1. Create a PulseAudio main loop (synchronous: pa_mainloop_new).

2. Getthemainloop API object, which is a table of mainloop functions
(synchronous: pa_mainloop get api).

3. Geta context object to talk to the PulseAudio server (synchronous: pa_context_
new).

4, Establish a connection to the PulseAudio server. This is asynchronous: pa_
context_connect.

5. Register a callback for context state changes from the server: pa_context_set_
state_callback.

6. Commence the event-processing loop (pa_mainloop_run).

7. Within the context state callback, determine what state has changed. For
example, the connection has been established.

8. Within this callback, set up, record, or playback streams.
9. Establish further callbacks for these streams.

10. Within the stream callbacks, do more processing, such as saving a recording
stream to file.

Steps 1-7 will be common to most applications. The context state callback will be called in response to
changes in the server. These are state changes such as PA_CONTEXT_CONNECTIN, PA_CONTEXT_SETTING_NAME,
and so on. The change of relevance to most applications will be PA_CONTEXT_READY. This signifies that the
application can make requests of the server in its steady state.

In step 8, the application will set its own behavior. This is done by setting up further callback functions
for various operations, such as listing devices or playing audio.

78

CHAPTER 6 © PULSEAUDIO

List of Devices
The function pa_context_get_sink_info_list will set up a callback function to list source devices with the
following:

pa_context_get sink info list(c, sinklist_cb, NULL)

where c is the context, sinklist_cb is the application’s callback, and NULL is user data passed to the
callback.
The callback is called as follows:

void sinklist cb(pa_context *c, const pa_sink info *i, int eol, void *userdata)
The parameter eol can take three values: negative means a failure of some kind, zero means a valid

entry for pa_sink_info, and positive means that there are no more valid entries in the list.
The structure pa_sink_info is defined as follows:

struct {
const char * name;
uint32_t index;
const char * description;
pa_sample_spec sample spec;
pa_channel_map channel _map;
uint32_t owner_module;
pa_cvolume volume;
int mute;
uint32_t monitor_source;
const char * monitor_ source name;
pa_usec_t latency;
const char * driver;
pa_sink flags t flags;
pa_proplist * proplist;
pa_usec_t configured latency;
pa_volume t base volume;
pa_sink state t state;
uint32_t n_volume_steps;
uint32_t card;
uint32_t n_ports;

pa_sink port_info ** ports;
pa_sink port info * active port;
uint8_t n_formats;
pa_format_info ** formats;

} pa_sink_info

Further information about this structure is maintained in the Doxygen “pa_sink_info Struct Reference”
(http://freedesktop.org/software/pulseaudio/doxygen/structpa_ sink__info.html).

For information, the major fields are name and description. The index is an opaque index into some
data structure and is used in many PulseAudio functions. The proplist is a map of general information that
may contain interesting information. This can be retrieved by iterating through the map.

There are similar callback and data structures for input devices.

79

http://freedesktop.org/software/pulseaudio/doxygen/structpa__sink__info.html

CHAPTER 6 © PULSEAUDIO

A program to list input and output devices current when the application connects to the server is
palist_devices.c:

/**

* palist_devices.c
* Jan Newmarch
*/

#include <stdio.h>
#include <string.h>
#include <pulse/pulseaudio.h>

#define (x) x

// quit when this reaches 2
int no_more_sources or sinks = 0;

int ret;
pa_context *context;

void show_error(char *s) {
fprintf(stderr, "%s\n", s);

void print properties(pa proplist *props) {
void *state = NULL;

printf(" Properties are: \n");
while (1) {
char *key;
if ((key = pa_proplist iterate(props, &state)) == NULL) {
return;
}
char *value = pa_proplist gets(props, key);
printf(" key: %s, value: %s\n", key, value);

}

Vai
* print information about a sink
*/
void sinklist cb(pa_context *c, const pa_sink info *i, int eol, void *userdata) {

// If eol is set to a positive number, you're at the end of the list
if (eol > 0) {
printf("**No more sinks\n");
no_more_sources or_sinks++;
if (no_more sources or sinks == 2)
exit(0);
return;

80

CHAPTER 6 © PULSEAUDIO

printf("Sink: name %s, description %s\n", i->name, i->description);
print_properties(i->proplist);

}

/**
* print information about a source
*/
void sourcelist cb(pa_context *c, const pa_source info *i, int eol, void *userdata) {
if (eol > 0) {
printf("**No more sources\n");
no_more_sources_or_sinks++;
if (no_more sources or sinks == 2)
exit(0);
return;

}

printf("Source: name %s, description %s\n", i->name, i->description);
print_properties(i->proplist);

void context state cb(pa_context *c, void *userdata) {

switch (pa_context_get state(c)) {

case PA_CONTEXT_UNCONNECTED:

case PA_CONTEXT_CONNECTING:

case PA_CONTEXT_AUTHORIZING:

case PA_CONTEXT_SETTING_NAME:
break;

case PA_CONTEXT_READY: {
pa_operation *o;

// set up a callback to tell us about source devices
if (!(o = pa_context get source info list(c,
sourcelist cb,
NULL
) {

show_error(_("pa_context subscribe() failed"));
return;

}

pa_operation unref(o);

// set up a callback to tell us about sink devices
if (!(o = pa_context_get sink info list(c,
sinklist _cb,
NULL
M)A
show_error(_("pa_context subscribe() failed"));
return;

81

CHAPTER 6 © PULSEAUDIO

pa_operation unref(o);

break;

}

case PA CONTEXT FAILED:
case PA CONTEXT TERMINATED:
default:

return;
}

}
int main(int argc, char *argv[]) {

// Define our pulse audio loop and connection variables
pa_mainloop *pa_ml;
pa_mainloop_api *pa_mlapi;

// Create a mainloop API and connection to the default server
pa_ml = pa_mainloop new();

pa_mlapi = pa_mainloop get api(pa_ml);

context = pa_context _new(pa_mlapi, "Device list");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
pa_context_set state callback(context, context state cb, NULL);

if (pa_mainloop_run(pa_ml, 8ret) < 0) {
printf("pa_mainloop run() failed.");
exit(1);

On my laptop, this gives the following (elided):

Source: name alsa_output.pci-0000 01 00.1.hdmi-stereo.monitor, description Monitor of HDMI
Audio stub Digital Stereo (HDMI)
Properties are:
key: device.description, value: Monitor of HDMI Audio stub Digital Stereo (HDMI)
key: device.class, value: monitor
key: alsa.card, value: 1
key: alsa.card_name, value: HDA NVidia
key: alsa.long_card_name, value: HDA NVidia at 0xe5080000 irq 17
key: alsa.driver name, value: snd_hda_intel
key: device.bus path, value: pci-0000:01:00.1
key: sysfs.path, value: /devices/pci0000:00/0000:00:01.0/0000:01:00.1/sound/card1l
key: device.bus, value: pci

82

CHAPTER 6 © PULSEAUDIO

key: device.vendor.id, value: 10de

key: device.vendor.name, value: nVidia Corporation

key: device.product.id, value: 0e08

key: device.product.name, value: HDMI Audio stub

key: device.string, value: 1

key: module-udev-detect.discovered, value: 1

key: device.icon name, value: audio-card-pci
Source: name alsa_output.pci-0000 00 1b.0.analog-stereo.monitor, description Monitor of
Internal Audio Analog Stereo

Properties are:

Source: name alsa_input.pci-0000 00 1b.0.analog-stereo, description Internal Audio Analog
Stereo
Properties are:

Source: name alsa_output.usb-Creative Technology Ltd SB X-Fi_Surround 5.1 Pro_000003d0-00-
Pro.analog-stereo.monitor, description Monitor of SB X-Fi Surround 5.1 Pro Analog Stereo
Properties are:

Source: name alsa_input.usb-Creative_Technology Ltd SB X-Fi_ Surround 5.1 Pro_000003d0-00-
Pro.analog-stereo, description SB X-Fi Surround 5.1 Pro Analog Stereo
Properties are:

**No more sources
Sink: name alsa_output.pci-0000 01 00.1.hdmi-stereo, description HDMI Audio stub Digital
Stereo (HDMI)
Properties are:
key: alsa.resolution_bits, value: 16
key: device.api, value: alsa
key: device.class, value: sound
key: alsa.class, value: generic
key: alsa.subclass, value: generic-mix
key: alsa.name, value: HDMI O
key: alsa.id, value: HDMI O
key: alsa.subdevice, value: 0
key: alsa.subdevice name, value: subdevice #0
key: alsa.device, value: 3
key: alsa.card, value: 1
key: alsa.card_name, value: HDA NVidia
key: alsa.long card name, value: HDA NVidia at 0xe5080000 irq 17
key: alsa.driver name, value: snd_hda_intel
key: device.bus path, value: pci-0000:01:00.1
key: sysfs.path, value: /devices/pci0000:00/0000:00:01.0/0000:01:00.1/sound/cardl
key: device.bus, value: pci
key: device.vendor.id, value: 10de
key: device.vendor.name, value: nVidia Corporation
key: device.product.id, value: 0e08
key: device.product.name, value: HDMI Audio stub
key: device.string, value: hdmi:1

83

CHAPTER 6 © PULSEAUDIO

key: device.buffering.buffer size, value: 352768

key: device.buffering.fragment size, value: 176384

key: device.access_mode, value: mmap+timer

key: device.profile.name, value: hdmi-stereo

key: device.profile.description, value: Digital Stereo (HDMI)

key: device.description, value: HDMI Audio stub Digital Stereo (HDMI)

key: alsa.mixer name, value: Nvidia GPU 1c HDMI/DP

key: alsa.components, value: HDA:10de001c,10281494,00100100

key: module-udev-detect.discovered, value: 1

key: device.icon_name, value: audio-card-pci
Sink: name alsa_output.pci-0000 00 1b.0.analog-stereo, description Internal Audio Analog
Stereo

Properties are:

Sink: name alsa_output.usb-Creative_Technology Ltd SB X-Fi Surround 5.1 Pro_000003d0-00-Pro.
analog-stereo, description SB X-Fi Surround 5.1 Pro Analog Stereo
Properties are:

**No more sinks

An alternative program with the same effect is PulseAudio: An Async Example To Get Device Lists
(www.ypass.net/blog/2009/10/pulseaudio-an-async-example-to-get-device-1ists) by Igor Brezac and
Eric Connell. It doesn’t follow quite as complex a route as the previous, as it only queries the server for its
devices. However, it uses its own state machine to track where in the callback process it is!

Monitoring Ongoing Changes: New Sources and Sinks

The previous program listed the source and sink devices registered with PulseAudio at the time a
connection to the server was established. However, when a new device is connected or an existing device is
disconnected, PulseAudio registers a changes in the context, and this can also be monitored by callbacks.

The key to doing this is to subscribe to context changes with pa_context_subscribe. This takes a
context, a mask of subscription events, and user data. Possible values of the mask are described at http://
freedesktop.org/software/pulseaudio/doxygen/def 8h.htmli#ad4e7f11f879e8c77ae5289145ect6947
and include PA_SUBSCRIPTION_MASK_SINK for changes in sinks and PA_SUBSCRIPTION MASK_SINK_ INPUT for
sink input events.

Setting the callback function to monitor these changes is a bit odd. The function pa_context_subscribe
takes a callback function of type pa_context_success_cb, but this doesn’t contain information about what
caused the callback. Instead, it is better to first call pa_context_set_subscribe_ callback. This takes a
callback function of type pa_context_subscribe cb_t, which does get passed such information. Then use
NULL for the callback in pa_context_subscribe

Within a pa_context_subscribe_cb_t subscription callback, the cause of the callback can be examined
and appropriate code called. If a new subscription to a sink is found, then information about the sink can be
found with pa_context_get sink_info_by index, which takes another callback! After chasing through all
these callbacks, you can eventually get information about new devices.

Note that the callback function used by pa_context_get sink_info_list and the callback function
used by pa_context_get _sink_info_by index are the same. The callback is called once per sink device
regardless of whether it is a singleton or one of a list of devices.

84

http://www.ypass.net/blog/2009/10/pulseaudio-an-async-example-to-get-device-lists
http://freedesktop.org/software/pulseaudio/doxygen/def_8h.html#ad4e7f11f879e8c77ae5289145ecf6947
http://freedesktop.org/software/pulseaudio/doxygen/def_8h.html#ad4e7f11f879e8c77ae5289145ecf6947

CHAPTER 6 © PULSEAUDIO

A program to list devices on connection and also to list changes as devices are connected or
disconnected is palist_devices_ongoing.c:

Veis
* palist_clients.c
* Jan Newmarch

*/

Vioio
This file is based on pacat.c and pavuctl.c, part of PulseAudio.
pacat.c:
Copyright 2004-2006 Lennart Poettering
Copyright 2006 Pierre Ossman <ossman@cendio.se> for Cendio AB
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.

*kk /

#include <stdio.h>
#include <string.h>
#include <pulse/pulseaudio.h>

#tdefine (x) x
int ret;
pa_context *context;

void show_error(char *s) {
fprintf(stderr, "%s\n", s);

void print properties(pa_proplist *props) {
void *state = NULL;

printf(" Properties are: \n");
while (1) {
char *key;
if ((key = pa_proplist iterate(props, &state)) == NULL) {
return;
}

85

CHAPTER 6 © PULSEAUDIO

char *value = pa_proplist gets(props, key);
printf(" key: %s, value: %s\n", key, value);

}

J**
* print information about a sink
*/
void sink cb(pa_context *c, const pa_sink info *i, int eol, void *userdata) {

// If eol is set to a positive number, you're at the end of the list
if (eol > 0) {

return;
}

printf("Sink: name %s, description %s\n", i->name, i->description);
// print_properties(i->proplist);
}

/**
* print information about a source
*/
void source cb(pa_context *c, const pa_source info *i, int eol, void *userdata) {
if (eol > 0) {
return;
}

printf("Source: name %s, description %s\n", i->name, i->description);
// print_properties(i->proplist);
}

void subscribe cb(pa_context *c, pa_subscription event type t t, uint32 t index, void
*userdata) {

switch (t & PA _SUBSCRIPTION EVENT FACILITY MASK) {

case PA_SUBSCRIPTION_EVENT_SINK:
if ((t & PA_SUBSCRIPTION EVENT TYPE MASK) == PA_SUBSCRIPTION_ EVENT REMOVE)
printf("Removing sink index %d\n", index);
else {
pa_operation *o;
if (!(o = pa_context_get sink info by index(c, index, sink cb, NULL))) {
show_error(_("pa_context_get sink info by index() failed"));

return;
}
pa_operation_unref(o);
}
break;

86

CHAPTER 6 © PULSEAUDIO

case PA_SUBSCRIPTION EVENT SOURCE:
if ((t & PA_SUBSCRIPTION EVENT TYPE MASK) == PA SUBSCRIPTION EVENT REMOVE)
printf("Removing source index %d\n", index);
else {
pa_operation *o;
if (!(o = pa_context_get source info by index(c, index, source cb, NULL))) {
show_error(_("pa_context_get source info by index() failed"));
return;

}

pa_operation unref(o);
break;

}

void context state cb(pa_context *c, void *userdata) {

switch (pa_context_get state(c)) {

case PA_CONTEXT_UNCONNECTED:

case PA_CONTEXT_CONNECTING:

case PA_CONTEXT_AUTHORIZING:

case PA_CONTEXT_SETTING_NAME:
break;

case PA_CONTEXT_READY: {
pa_operation *o;

if (!(o = pa_context get source info list(c,
source_cb,
NULL
M)A
show_error(_("pa_context subscribe() failed"));
return;

}

pa_operation unref(o);

if (!(o = pa_context_get sink info list(c,
sink_cb,
NULL
M) A
show_error(("pa_context subscribe() failed"));
return;

87

CHAPTER 6 © PULSEAUDIO

pa_operation unref(o);
pa_context_set subscribe callback(c, subscribe cb, NULL);

if (!(o = pa_context_subscribe(c, (pa_subscription mask t)
(PA_SUBSCRIPTION MASK_SINK|
PA_SUBSCRIPTION MASK SOURCE), NULL, NULL))) {
show_error(_("pa_context subscribe() failed"));
return;

}

pa_operation unref(o);

break;

}

case PA_CONTEXT_FAILED:
case PA_CONTEXT_TERMINATED:
default:

return;
}

}
int main(int argc, char *argv[]) {

// Define our pulse audio loop and connection variables
pa_mainloop *pa_ml;

pa_mainloop_api *pa_mlapi;

pa_operation *pa_op;

pa_time_event *time_event;

// Create a mainloop API and connection to the default server
pa_ml = pa_mainloop new();

pa_mlapi = pa_mainloop_get_api(pa_ml);

context = pa_context _new(pa_mlapi, "Device list");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
pa_context set state callback(context, context state cb, NULL);

if (pa_mainloop_run(pa_ml, &ret) < 0) {

printf("pa_mainloop run() failed.");
exit(1);

88

CHAPTER 6 © PULSEAUDIO

Record a Stream

If you download the source for PulseAudio from FreeDesktop.org (www. freedesktop.org/wiki/Software/
PulseAudio/Download), you will find a program called pacat. c in the utils directory. This program uses
some of the private APIs and will not compile using the public libraries. It also has all the bells and whistles
that you would expect from a production program. I've taken this and stripped out the complexities so that
you can find your way into this API. The file is parec.c.

Jx*

* parec.c
* Jan Newmarch
*/

JRxK
This file is based on pacat.c, part of PulseAudio.

pacat.c:
Copyright 2004-2006 Lennart Poettering
Copyright 2006 Pierre Ossman <ossman@cendio.se> for Cendio AB

PulseAudio is free software; you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,

or (at your option) any later version.

PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

USA.
*okok /

#include <stdio.h>
#include <string.h>
#include <pulse/pulseaudio.h>

#define CLEAR_LINE "\n"
#define _(x) x

// From pulsecore/macro.h
#tdefine pa_memzero(x,1) (memset((x), 0, (1)))

#tdefine pa_zero(x) (pa_memzero(&(x), sizeof(x)))

int fdout;
char *fname = "tmp.s16";

89

http://www.freedesktop.org/wiki/Software/PulseAudio/Download
http://www.freedesktop.org/wiki/Software/PulseAudio/Download

CHAPTER 6 © PULSEAUDIO

int verbose = 1;
int ret;

pa_context *context;

static pa_sample_spec sample spec = {
.format = PA SAMPLE_S16LE,
.rate = 44100,
.channels = 2

};
static pa_stream *stream = NULL;

/* This is my builtin card. Use paman to find yours
or set it to NULL to get the default device
*/
static char *device = "alsa_input.pci-0000 00 1b.0.analog-stereo";

static pa_stream flags t flags = 0;

void stream state callback(pa_stream *s, void *userdata) {
assert(s);

switch (pa_stream get state(s)) {
case PA_STREAM CREATING:
// The stream has been created, so
// let's open a file to record to
printf("Creating stream\n");
fdout = creat(fname, 0711);
break;

case PA_STREAM TERMINATED:
close(fdout);
break;

case PA_STREAM READY:

// Just for info: no functionality in this branch
if (verbose) {
const pa_buffer attr *a;
char cmt[PA_CHANNEL MAP_SNPRINT MAX], sst[PA SAMPLE SPEC_SNPRINT MAX];

printf("Stream successfully created.");

if (!(a = pa_stream get buffer attr(s)))
printf("pa_stream get buffer attr() failed: %s", pa_strerror(pa_context errno
(pa_stream get context(s))));

else {
printf("Buffer metrics: maxlength=%u, fragsize=%u", a->maxlength, a->fragsize);

90

CHAPTER 6 © PULSEAUDIO

printf("Connected to device %s (%u, %ssuspended).",
pa_stream get device name(s),
pa_stream get device index(s),
pa_stream is suspended(s) ? "" : "not ");

}

break;

case PA_STREAM_ FAILED:
default:
printf("Stream error: %s", pa_strerror(pa_context errno(pa_stream get context(s))));
exit(1);
}
}

JRRkkkkkkkkk Gtyeam callbacks *rkkkkkkkkkkokk /

/* This is called whenever new data is available */
static void stream read callback(pa stream *s, size t length, void *userdata) {

assert(s);
assert(length > 0);

// Copy the data from the server out to a file
fprintf(stderr, "Can read %d\n", length);

while (pa_stream readable size(s) > 0) {
const void *data;
size_t length;

// peek actually creates and fills the data vbl
if (pa_stream peek(s, &data, &length) < 0) {
fprintf(stderr, "Read failed\n");
exit(1);
return;
}
fprintf(stderr, "Writing %d\n", length);
write(fdout, data, length);

// swallow the data peeked at before
pa_stream drop(s);
}
}

// This callback gets called when our context changes state. We really only
// care about when it's ready or if it has failed
void state cb(pa_context *c, void *userdata) {

pa_context_state_t state;

int *pa_ready = userdata;

91

CHAPTER 6 © PULSEAUDIO

printf("State changed\n");
state = pa_context get state(c);
switch (state) {

// There are just here for reference

case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
default:

break;

case PA_CONTEXT_FAILED:
case PA_CONTEXT_TERMINATED:

*pa_ready = 2;
break;

case PA_CONTEXT_READY: {

}
}

pa_buffer attr buffer attr;

if (verbose)
printf("Connection established.%s\n", CLEAR_LINE);

if (!(stream = pa_stream_new(c, "JanCapture", 8sample_spec, NULL))) {
printf("pa_stream new() failed: %s", pa_strerror(pa_context errno(c)));
exit(1);

}

// Watch for changes in the stream state to create the output file
pa_stream set state callback(stream, stream state callback, NULL);

// Watch for changes in the stream's read state to write to the output file
pa_stream set read callback(stream, stream read callback, NULL);

// Set properties of the record buffer

pa_zero(buffer attr);

buffer attr.maxlength = (uint32_t) -1;

buffer attr.prebuf = (uint32 t) -1;

buffer attr.fragsize = buffer attr.tlength = (uint32_t) -1;
buffer attr.minreq = (uint32_t) -1;

// and start recording

if (pa_stream connect record(stream, device, 8buffer attr, flags) < 0) {
printf("pa_stream connect record() failed: %s", pa_strerror(pa_context errno(c)));
exit(1);

}

break;

int main(int argc, char *argv[]) {

92

CHAPTER 6 © PULSEAUDIO

// Define our pulse audio loop and connection variables
pa_mainloop *pa_ml;

pa_mainloop_api *pa_mlapi;

pa_operation *pa_op;

pa_time_event *time_event;

// Create a mainloop API and connection to the default server
pa_ml = pa_mainloop new();

pa_mlapi = pa_mainloop get api(pa ml);

context = pa_context _new(pa_mlapi, "test");

// This function connects to the pulse server
pa_context connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
pa_context set state callback(context, state cb, NULL);

if (pa_mainloop_run(pa_ml, 8ret) < 0) {
printf("pa_mainloop run() failed.");
exit(1);
}
}

Play a File

Recording an input stream is done within a stream read callback with the call pa_stream_peek. Similarly,
playing an output stream is done with a stream write callback with the call pa_stream _write.

In the following program, the callback is set within the PA_CONTEXT_READY branch of the context state
change callback. The stream write callback is passed the number of bytes the consuming stream is prepared
to receive, so read that number of bytes from the file and write them to the stream.

Care has to be taken at the end of file. There may be unplayed material in PulseAudio’s output buffers.
This needs to be drained before the program can exit. This is done by the function pa_stream drain.On
end-of-file, first set the stream write callback to null so that the output stream doesn’t keep calling for more
input and then drain the stream. A stream drain complete callback will be called on completion of this, so
the program can then exit (or do something else).

In this program, I include many more callbacks than in earlier ones to show the range of features that
can be monitored.

The program is pacat2.c.

Ve
* pacat2.c
* Jan Newmarch
*/
/***
This file is based on pacat.c, part of PulseAudio.

pacat.c:

Copyright 2004-2006 Lennart Poettering
Copyright 2006 Pierre Ossman <ossman@cendio.se> for Cendio AB

93

CHAPTER 6 © PULSEAUDIO

PulseAudio is free software; you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,

or (at your option) any later version.

PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

USA.
*okok |

#include <stdio.h>

#include <string.h>

#include <pulse/pulseaudio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>

#include <errno.h>

#include <unistd.h>

/1 2?
#define CLEAR_LINE "\n"

// From pulsecore/macro.h IN
#tdefine pa_memzero(x,l) (memset((x), 0, (1)))
#tdefine pa_zero(x) (pa_memzero(&(x), sizeof(x)))

int verbose = 1;
int ret;

static pa_volume_t volume = PA_VOLUME_NORM;
static int volume_is set = 0;

static int fdin;

static pa_sample spec sample spec = {
.format = PA_SAMPLE_S16LE,
.rate = 44100,
.channels = 2

};
static pa_stream *stream = NULL;

static pa_channel map channel map;
static pa_proplist *proplist = NULL;

94

CHAPTER 6

// Define our pulse audio loop and connection variables
static pa_mainloop *mainloop;

static pa_mainloop api *mainloop api;

static pa_operation *pa_op;

static pa_context *context = NULL;

static void *buffer = NULL;
static size t buffer length = 0, buffer index = 0;

static pa_io_event* stdio _event = NULL;

// Get device name from e.g. paman

//static char *device = "alsa_output.pci-0000 00 1b.0.analog-stereo";
// Use default device

static char *device = NULL;

static pa_stream_flags t flags = 0;

static size t latency = 0, process time = 0;
static int32_t latency msec = 1, process_time msec = 0;

static int raw = 1;

/* Connection draining complete */
static void context drain_complete(pa_context*c, void *userdata) {
pa_context_disconnect(c);

}

static void stream drain_complete(pa_stream*s, int success, void *userdata) {
pa_operation *o = NULL;

if (!success) {
printf("Failed to drain stream: %s", pa_strerror(pa_context errno(context)));
exit(1);

}

if (verbose)
printf("Playback stream drained.");

pa_stream disconnect(stream);
pa_stream unref(stream);
stream = NULL;

if (!(o = pa_context_drain(context, context drain complete, NULL)))
pa_context_disconnect(context);
else {
pa_operation unref(o);
if (verbose)
printf("Draining connection to server.");

PULSEAUDIO

95

CHAPTER 6 © PULSEAUDIO

/* Start draining */
static void start drain(void) {
printf("Draining\n");
if (stream) {
pa_operation *o;

pa_stream set write callback(stream, NULL, NULL);

if (!(o = pa_stream_drain(stream, stream drain_complete, NULL))) {
//printf("pa_stream drain(): %s", pa_strerror(pa_context errno(context)));
exit(1);
return;

}

pa_operation_unref(o);
} else
exit(0);
}

/* Write some data to the stream */

static void do_stream write(size t length) {
size t 1;
assert(length);

printf("do stream write: Writing %d to stream\n", length);

if (!buffer || !buffer length) {
buffer = pa xmalloc(length);
buffer_length = length;
buffer_index = 0;
//printf(" return without writing\n");
//return;

}

while (buffer_length > 0) {
1 = read(fdin, buffer + buffer index, buffer length);
if (1 <=0) {
start_drain();
return;
}
if (pa_stream write(stream, (uint8 t*) buffer + buffer index, 1, NULL, 0, PA SEEK
RELATIVE) < 0) {
printf("pa_stream write() failed: %s", pa_strerror(pa_context errno(context)));
exit(1);
return;
}
buffer length -= 1;
buffer_index += 1;

96

CHAPTER 6 © PULSEAUDIO

if (!buffer_length) {
pa_xfree(buffer);
buffer = NULL;
buffer_index = buffer length = 0;
}
}
}

void stream state callback(pa_stream *s, void *userdata) {
assert(s);

switch (pa_stream get state(s)) {
case PA_STREAM CREATING:

break;
case PA_STREAM TERMINATED:

break;

case PA_STREAM READY:

if (verbose) {
const pa_buffer attr *a;
char cmt[PA_CHANNEL MAP_SNPRINT MAX], sst[PA SAMPLE_SPEC_SNPRINT MAX];

printf("Stream successfully created.\n");

if (!(a = pa_stream get buffer attr(s)))
printf("pa_stream get buffer attr() failed: %s\n", pa_strerror(pa_context errno(pa_
stream_get context(s))));

else {
printf("Buffer metrics: maxlength=%u, fragsize=%u\n", a->maxlength, a->fragsize);

}
/*
printf("Using sample spec '%s', channel map '%s'.",
pa_sample spec_snprint(sst, sizeof(sst), pa_stream get sample spec(s)),
pa_channel_map_snprint(cmt, sizeof(cmt), pa_stream_get channel_map(s)));
*/

printf("Connected to device %s (%u, %ssuspended).\n",
pa_stream get device name(s),
pa_stream get device_index(s),
pa_stream is suspended(s) ? "" : "not ");

}

break;

case PA_STREAM FAILED:
default:
printf("Stream error: %s", pa_strerror(pa_context errno(pa_stream get context(s))));
exit(1); //quit(1);
}
}

97

CHAPTER 6 © PULSEAUDIO
JrRxRRRRRkkkkx Stream callbacks ¥FFkkkkkxkksork /

static void stream success(pa_stream *s, int succes, void *userdata) {
printf("Succeded\n");

static void stream suspended callback(pa_stream *s, void *userdata) {
assert(s);

if (verbose) {
if (pa_stream is suspended(s))
fprintf(stderr, "Stream device suspended.%s \n", CLEAR_LINE);
else
fprintf(stderr, "Stream device resumed.%s \n", CLEAR_LINE);
}

}

static void stream underflow callback(pa stream *s, void *userdata) {
assert(s);

if (verbose)
fprintf(stderr, "Stream underrun.%s \n", CLEAR LINE);

static void stream overflow callback(pa stream *s, void *userdata) {
assert(s);

if (verbose)
fprintf(stderr, "Stream overrun.%s \n", CLEAR_LINE);
}

static void stream started callback(pa_stream *s, void *userdata) {
assert(s);

if (verbose)
fprintf(stderr, "Stream started.%s \n", CLEAR_LINE);
}

static void stream moved callback(pa_stream *s, void *userdata) {
assert(s);

if (verbose)
fprintf(stderr, "Stream moved to device %s (%u, %ssuspended).%s \n", pa_stream get
device_name(s), pa_stream get_device_index(s), pa_stream is_suspended(s) ? "" :
"not ", CLEAR_LINE);
}

static void stream buffer attr callback(pa_stream *s, void *userdata) {
assert(s);

98

CHAPTER 6 © PULSEAUDIO

if (verbose)
fprintf(stderr, "Stream buffer attributes changed.%s \n", CLEAR_LINE);
}

static void stream event_callback(pa_stream *s, const char *name, pa_proplist *pl, void
*userdata) {
char *t;

assert(s);
assert(name);
assert(pl);

t = pa_proplist to_string sep(pl, ", ");
fprintf(stderr, "Got event '%s', properties '%s'\n", name, t);
pa_xfree(t);

}

/* This is called whenever new data may be written to the stream */

static void stream write callback(pa_stream *s, size t length, void *userdata) {
//assert(s);
//assert(length > 0);

printf("Stream write callback: Ready to write %d bytes\n", length);

printf(" do stream write from stream write callback\n");
do_stream write(length);

}

// This callback gets called when our context changes state. We really only
// care about when it's ready or if it has failed
void state cb(pa_context *c, void *userdata) {

pa_context_state_t state;

int *pa_ready = userdata;

printf("State changed\n");
state = pa_context get state(c);
switch (state) {

// There are just here for reference
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
default:

break;
case PA CONTEXT_FAILED:
case PA_CONTEXT_TERMINATED:

*pa_ready = 2;

break;
case PA_CONTEXT READY: {

pa_buffer attr buffer attr;

99

CHAPTER 6 © PULSEAUDIO

if (verbose)
printf("Connection established.%s\n", CLEAR_LINE);

if (!(stream = pa_stream new(c, "JanPlayback", &sample spec, NULL))) {
printf("pa_stream new() failed: %s", pa_strerror(pa_context errno(c)));
exit(1); // goto fail;

}

pa_stream set state callback(stream, stream state callback, NULL);
pa_stream set write callback(stream, stream write callback, NULL);
//pa_stream_set_read callback(stream, stream_read callback, NULL);

pa_stream set suspended callback(stream, stream suspended callback, NULL);
pa_stream set moved callback(stream, stream moved callback, NULL);
pa_stream set underflow_callback(stream, stream underflow callback, NULL);
pa_stream set overflow callback(stream, stream overflow callback, NULL);

pa_stream set started callback(stream, stream started callback, NULL);

pa_stream set event callback(stream, stream event callback, NULL);
pa_stream set buffer attr callback(stream, stream buffer attr callback, NULL);

pa_zero(buffer attr);
buffer attr.maxlength = (uint32_t) -1;
buffer attr.prebuf = (uint32_t) -1;

pa_cvolume cv;

if (pa_stream _connect playback(stream, NULL, 8buffer attr, flags,
NULL,
NULL) < 0) {
printf("pa_stream_connect_playback() failed: %s", pa_strerror(pa_context_errno(c)));
exit(1); //goto fail;
} else {
printf("Set playback callback\n");
}

pa_stream trigger(stream, stream success, NULL);

break;

}
}

int main(int argc, char *argv[]) {
struct stat st;

off_t size;
ssize t nread;

100

CHAPTER 6

// We'll need these state variables to keep track of our requests
int state = 0;
int pa_ready = 0;

if (arge != 2) {
fprintf(stderr, "Usage: %s file\n", argv[o0]);

exit(1);

}

// slurp the whole file into buffer

if ((fdin = open(argv[1], O RDONLY)) == -1) {
perror(“open");
exit(1);

}

// Create a mainloop API and connection to the default server
mainloop = pa_mainloop_new();

mainloop api = pa_mainloop get api(mainloop);

context = pa_context new(mainloop api, "test");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);
printf("Connecting\n");

// This function defines a callback so the server will tell us it's state.
// Our callback will wait for the state to be ready. The callback will
// modify the variable to 1 so we know when we have a connection and it's
// ready.

// If there's an error, the callback will set pa_ready to 2
pa_context_set state callback(context, state_cb, &pa_ready);

if (pa_mainloop_run(mainloop, &ret) < 0) {
printf("pa_mainloop run() failed.");
exit(1); // goto quit

}

PULSEAUDIO

With the latency set to the default, the number of bytes that can be written on each callback is 65,470

Play a File Using I/O Callbacks

bytes. This gives a minimum latency of 65,470 / 44,100s, or about 1500ms. With the latency and process time
both set to 1ms, the buffer size is about 1440 bytes, for a latency of 32ms.

Writing a file to an output stream is simple: read from a file into a buffer and keep emptying the buffer

by writing to the stream. Reading from a file is straightforward: use the standard Unix read function. You

request a read of a number of bytes, and the read function returns the number of bytes actually read. This
was discussed in the previous section.

101

CHAPTER 6 © PULSEAUDIO

The program in the PulseAudio distribution uses a more complex system. It uses I/O-ready callbacks to
pass some handling to an I/0 callback. This makes use of two functions.

e pa_stream writable size tells how many bytes can be written to the stream.
e pa_stream write writes a number of bytes to a stream.

The logic becomes as follows: fill a buffer by reading from the file, and at the same time write as many
bytes as possible from the buffer to the stream, up to the limit of the buffer size or however many bytes the
stream can take, whichever is smaller.

In PulseAudio this is done asynchronously, using callback functions. The two relevant functions are as
follows:

e The function pa_stream_set write callback() registers a callback that will be
called whenever the stream is ready to be written to. Registering the callback looks
like this:

pa_stream set write callback(stream, stream write callback, NULL)

The callback is passed the stream to write to (s) and the number of bytes that can
be written (length).

void stream_write_callback(pa_stream *s, size t length, void *userdata)

e Acallback to read from files is registered by one of the functions kept in the
mainloop_api table. The registering function is io_new and is passed a Unix file
descriptor for the file and the callback function. Registering the callback looks like
this:

mainloop_api->io_new(mainloop api,
fdin,
PA_IO_EVENT_INPUT,
stdin_callback, NULL))

The callback is passed the file descriptor (fd) to read from.

void stdin_callback(pa_mainloop api *mainloop api, pa_io event *stdio event,
int fd, pa_io event flags t f, void *userdata)

Note The PulseAudio code does a dup2 from the source file’s descriptor to STDIN_FILENO, which matches
the name of the function. | can’t see the point of that, and their code uses fd anyway.

When should these callbacks be registered? The stream write callback can be registered at any time
after the stream has been created, which is done by pa_stream_new. For the stdin callback, I could only get
it to work properly by registering it once the stream was ready, that s, in the PA_STREAM_READY branch of the
stream state callback function.

102

CHAPTER 6 © PULSEAUDIO

So, after all that, what is the logic of the program?
¢ Inthe stdin callback:
e Ifthe buffer has stuff in it, then just return. There’s no point in adding any more.
e Ifthe buffer is empty, then query the stream to see how much can be written to it.
e Ifthe stream says no more, then just read something into the buffer and return.

e Ifthe stream can be written to, then read from the file into the buffer and write it
to the stream.

e Inthe stream write callback:
e Ifthe buffer is nonempty, write its contents to the stream.

The program to play from a file currently looks like pacat.c.

JRxk
This file is based on pacat.c, part of PulseAudio.

pacat.c:
Copyright 2004-2006 Lennart Poettering
Copyright 2006 Pierre Ossman <ossman@cendio.se> for Cendio AB

PulseAudio is free software; you can redistribute it and/or modify

it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,

or (at your option) any later version.

PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

USA.
Hokok /

#include <stdio.h>

#include <string.h>

#include <pulse/pulseaudio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>

#include <errno.h>

#include <unistd.h>

103

CHAPTER 6 © PULSEAUDIO

#define CLEAR_LINE "\n"

// From pulsecore/macro.h IN
#define pa_memzero(x,1l) (memset((x), 0, (1)))
#define pa_zero(x) (pa_memzero(&(x), sizeof(x)))

int verbose = 1;
int ret;

static pa_volume_t volume = PA_VOLUME_NORM;
static int volume_is set = 0;

static int fdin;.

static pa_sample_spec sample spec = {
.format = PA_SAMPLE_S16LE,
.rate = 44100,
.channels = 2

};

static pa_stream *stream = NULL;

static pa_channel_map channel_map;

static pa_proplist *proplist = NULL;

// Define our pulse audio loop and connection variables
static pa_mainloop *mainloop;

static pa_mainloop_api *mainloop_api;

static pa_operation *pa_op;

static pa_context *context = NULL;

static void *buffer = NULL;
static size_t buffer_length = 0, buffer_index = 0;

static pa_io_event* stdio_event = NULL;
static char *device = "alsa output.pci-0000 00 1b.0.analog-stereo";
static pa_stream_flags t flags = 0;

static size t latency = 0, process time = 0;
static int32_t latency msec = 0, process time msec = 0;

static int raw = 1;
/* Write some data to the stream */
static void do_stream write(size t length) {

size t 1;
assert(length);

104

CHAPTER 6 © PULSEAUDIO

printf("do stream write: Writing %d to stream\n", length);

if (!buffer || !buffer length) {
printf(" return without writing\n");
return;.

}

1 = length;
if (1 > buffer_length)
1 = buffer_length;
printf(" writing %d\n", 1);
if (pa_stream write(stream, (uint8 t*) buffer + buffer_index, 1, NULL, 0, PA SEEK_
RELATIVE) < 0) {
printf("pa_stream write() failed: %s", pa_strerror(pa_context errno(context)));
exit(1);
return;

}

buffer length -= 1;
buffer_index += 1;

if (!buffer_length) {
pa_xfree(buffer);
buffer = NULL;
buffer index = buffer length = 0;
}

}

/* Connection draining complete */
static void context drain complete(pa_context*c, void *userdata) {
pa_context_disconnect(c);

}

static void stream drain_complete(pa_stream*s, int success, void *userdata) {
pa_operation *o = NULL;

if (!success) {
printf("Failed to drain stream: %s", pa_strerror(pa_context errno(context)));
exit(1);

}

if (verbose)
printf("Playback stream drained.");

pa_stream disconnect(stream);

pa_stream_unref(stream);
stream = NULL;

105

CHAPTER 6 © PULSEAUDIO

if (!(o = pa_context drain(context, context drain complete, NULL)))
pa_context _disconnect(context);.
else {
pa_operation_unref(o);
if (verbose)
printf("Draining connection to server.");
}

}

/* Start draining */
static void start drain(void) {
printf("Draining\n");
if (stream) {
pa_operation *o;

pa_stream set write callback(stream, NULL, NULL);

if (!(o = pa_stream drain(stream, stream drain complete, NULL))) {
//printf("pa_stream drain(): %s", pa_strerror(pa_context_errno(context)));
exit(1);
return;

}

pa_operation unref(o);
} else
exit(0);
}

/* New data on STDIN **/
static void stdin_callback(pa _mainloop api *mainloop api, pa_io event *stdio event, int fd,
pa_io event flags t f, void *userdata) {

size t 1, w = 0;

ssize t 1;

printf("In stdin callback\n");
//pa_assert(a == mainloop_api);
// pa_assert(e);

// pa_assert(stdio_event == e);

if (buffer) {
mainloop_api->io_enable(stdio_event, PA IO EVENT NULL);
printf(" Buffer isn't null\n");.
return;

}

if (!stream || pa_stream get state(stream) != PA STREAM READY || !(1 = w = pa_stream_
writable size(stream)))
1 = 4096;

buffer = pa_xmalloc(l);

106

CHAPTER 6 © PULSEAUDIO

if ((r = read(fd, buffer, 1)) <= 0) {
if (r == 0) {
if (verbose)
printf("Got EOF.\n");

start_drain();

} else {
printf("read() failed: %s\n", strerror(errno));
exit(1);

}

mainloop_api->io_free(stdio_event);
stdio_event = NULL;
return;

}
printf(" Read %d\n", 1);

buffer length = (uint32_t) r;
buffer_index = 0;

if (w) {
printf(" do stream write from stdin callback\n");
do_stream write(w);
}
}

void stream state callback(pa_stream *s, void *userdata) {
assert(s);

switch (pa_stream get state(s)) {
case PA_STREAM CREATING:.

break;
case PA_STREAM TERMINATED:

break;

case PA_STREAM READY:

if (verbose) {
const pa_buffer attr *a;
char cmt[PA_CHANNEL MAP_SNPRINT MAX], sst[PA SAMPLE SPEC_SNPRINT MAX];

printf("Stream successfully created.\n");
if (!(a = pa_stream get buffer attr(s)))
printf("pa_stream get buffer attr() failed: %s\n", pa_strerror(pa_context_errno(pa_

stream_get context(s))));
else {

107

CHAPTER 6 © PULSEAUDIO

printf("Buffer metrics: maxlength=%u, fragsize=%u\n", a->maxlength, a->fragsize);

}
/*
printf("Using sample spec '%s', channel map '%s'.",
pa_sample spec_snprint(sst, sizeof(sst), pa_stream get sample spec(s)),
pa_channel_map_snprint(cmt, sizeof(cmt), pa_stream get channel map(s)));.
*/

printf("Connected to device %s (%u, %ssuspended).\n",
pa_stream get device name(s),
pa_stream get device index(s),
pa_stream is suspended(s) ? "" : "not ");

}

// TRY HERE???

if (!(stdio_event = mainloop_api->io_new(mainloop_api,
fdin, // STDIN_FILENO,
PA_IO EVENT INPUT,
stdin_callback, NULL))) {
printf("io _new() failed.");
exit(1);

}

break;

case PA_STREAM_FAILED:
default:
printf("Stream error: %s", pa_strerror(pa_context_errno(pa_stream get context(s))));
exit(1); //quit(1);
}
}

/*********** Stream callbacks **************/

static void stream read callback(pa stream *s, size t length, void *userdata) {
printf("Raedy to read\n");

}

static void stream success(pa_stream *s, int succes, void *userdata) {
printf("Succeded\n").;
}

static void stream suspended callback(pa_stream *s, void *userdata) {
assert(s);

if (verbose) {
if (pa_stream_is suspended(s))
fprintf(stderr, "Stream device suspended.%s \n", CLEAR_LINE);
else

108

CHAPTER 6 © PULSEAUDIO

fprintf(stderr, "Stream device resumed.%s \n", CLEAR _LINE);

}
}

static void stream underflow callback(pa_stream *s, void *userdata) {
assert(s);

if (verbose)
fprintf(stderr, "Stream underrun.%s \n", CLEAR LINE);

}
static void stream overflow callback(pa stream *s, void *userdata) {
assert(s);
if (verbose)
fprintf(stderr, "Stream overrun.%s \n", CLEAR_LINE);
}
static void stream started callback(pa_stream *s, void *userdata) {
assert(s);
if (verbose)
fprintf(stderr, "Stream started.%s \n", CLEAR_LINE);
}

static void stream moved callback(pa_stream *s, void *userdata) {
assert(s);.

if (verbose)
fprintf(stderr, "Stream moved to device %s (%u, %ssuspended).%s \n", pa_stream get
device _name(s), pa_stream get device index(s), pa_stream_is suspended(s) ? "" :
"not ", CLEAR_LINE);
}

static void stream buffer attr callback(pa stream *s, void *userdata) {
assert(s);

if (verbose)
fprintf(stderr, "Stream buffer attributes changed.%s \n", CLEAR LINE);
}

static void stream_event callback(pa_stream *s, const char *name, pa proplist *pl, void
*yserdata) {
char *t;

assert(s);

assert(name);
assert(pl);

109

CHAPTER 6 © PULSEAUDIO

t = pa_proplist to_string sep(pl, ", ");

fprintf(stderr, "Got event '%s', properties '%s'\n", name, t);
pa_xfree(t);

/* This is called whenever new data may be written to the stream */

static void stream write callback(pa_stream *s, size t length, void *userdata) {
//assert(s);.
//assert(length > 0);

printf("Stream write callback: Ready to write %d bytes\n", length);

if (raw) {
// assert(!sndfile);

if (stdio_event)
mainloop_api->io_enable(stdio_event, PA_IO EVENT_INPUT);

if (!buffer)

return;
printf(" do stream write from stream write callback\n");
do_stream write(length);

}
}

// This callback gets called when our context changes state. We really only
// care about when it's ready or if it has failed
void state cb(pa_context *c, void *userdata) {

pa_context_state t state;

int *pa_ready = userdata;

printf("State changed\n");
state = pa_context get state(c);
switch (state) {

// There are just here for reference
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING NAME:
default:

break;
case PA_CONTEXT_FAILED:
case PA_CONTEXT_TERMINATED:

*pa_ready = 2;

break;
case PA _CONTEXT READY: {

pa_buffer attr buffer attr;

if (verbose)
printf("Connection established.%s\n", CLEAR_LINE);

110

}

}

CHAPTER 6

if (!(stream = pa_stream new(c, "JanPlayback", &sample spec, NULL))) {
printf("pa_stream new() failed: %s", pa_strerror(pa_context errno(c)));
exit(1); // goto fail;.

}

pa_stream set state callback(stream, stream state callback, NULL);
pa_stream set write callback(stream, stream write callback, NULL);
pa_stream set read callback(stream, stream read callback, NULL);

pa_stream set suspended callback(stream, stream suspended callback, NULL);
pa_stream set moved callback(stream, stream moved callback, NULL);
pa_stream set underflow_callback(stream, stream underflow _callback, NULL);
pa_stream set overflow callback(stream, stream overflow callback, NULL);

pa_stream set started callback(stream, stream started callback, NULL);

pa_stream set event callback(stream, stream event callback, NULL);
pa_stream set buffer attr callback(stream, stream buffer attr callback, NULL);

pa_zero(buffer attr);
buffer attr.maxlength = (uint32_t) -1;
buffer attr.prebuf = (uint32 t) -1;

buffer attr.fragsize = buffer attr.tlength = (uint32_t) -1;
buffer attr.minreq = (uint32_t) -1;

pa_cvolume cv;
if (pa_stream connect playback(stream, NULL, 8buffer attr, flags,

NULL,
NULL) < 0) {

PULSEAUDIO

printf("pa_stream connect playback() failed: %s", pa_strerror(pa_context errno(c)));.

exit(1); //goto fail;

} else {
printf("Set playback callback\n");
}
pa_stream trigger(stream, stream success, NULL);
break;

int main(int argc, char *argv[]) {

struct stat st;

off_t size;

ssize t nread;

111

CHAPTER 6 © PULSEAUDIO

// We'll need these state variables to keep track of our requests
int state = 0;
int pa_ready = 0;

if (arge != 2) {
fprintf(stderr, "Usage: %s file\n", argv[o0]);

exit(1);

}

// slurp the whole file into buffer

if ((fdin = open(argv[1], O RDONLY)) == -1) {
perror(“open");
exit(1);

}

// Create a mainloop API and connection to the default server
mainloop = pa_mainloop_new();

mainloop api = pa_mainloop get api(mainloop);

context = pa_context new(mainloop api, "test");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);
printf("Connecting\n");

// This function defines a callback so the server will tell us it's state.
// Our callback will wait for the state to be ready. The callback will
// modify the variable to 1 so we know when we have a connection and it's
// ready.

// If there's an error, the callback will set pa_ready to 2

pa_context_set state_callback(context, state_cb, &pa_ready);.

if (pa_mainloop_run(mainloop, &ret) < 0) {
printf("pa_mainloop run() failed.");
exit(1); // goto quit
}
}

Controlling Latency

Managing latency is described at waw. freedesktop.org/wiki/Software/PulseAudio/Documentation/
Developer/Clients/LactencyControl.

In your code you then have to do the following when calling pa_stream_connect_playback() resp.
pa_stream connect_record():

e PassPA_STREAM_ADJUST_LATENCY in the flags parameter. Only if this flag is set will PA
reconfigure the low-level device’s buffer size and adjust it to the latency you specify.

e Passapa_buffer attr structinthe buffer attr parameter. In the fields of this
struct, make sure to initialize every single field to (uint32_t) -1, with the exception
of tlength (for playback) resp. fragsize (for recording). Initialize those to the
latency you want to achieve. Use pa_usec_to_bytes(&ss, ...) to convert the
latency from a time unit to bytes.

112

http://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/Clients/LactencyControl
http://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/Clients/LactencyControl

CHAPTER 6 © PULSEAUDIO

The extra code is as follows:

// Set properties of the record buffer
pa_zero(buffer attr);

buffer attr.maxlength = (uint32 t) -1;
buffer attr.prebuf = (uint32_t) -1;

if (latency msec > 0) {
buffer attr.fragsize = buffer attr.tlength = pa_usec_to_bytes(latency msec * PA USEC_
PER_MSEC, &sample spec);
flags |= PA_STREAM ADJUST LATENCY;

} else if (latency > 0) {
buffer attr.fragsize = buffer attr.tlength = (uint32_t) latency;
flags |= PA_STREAM_ADJUST_ LATENCY;

} else
buffer attr.fragsize = buffer attr.tlength

(uint32_t) -1;

if (process time msec > 0) {
buffer attr.minreq = pa_usec_to bytes(process time msec * PA USEC PER MSEC,
&sample spec);
} else if (process_time > 0)
buffer attr.minreq = (uint32_t) process_time;
else
buffer attr.minreq = (uint32_t) -1;

PulseAudio also has mechanisms to estimate the latency of the devices. It uses information from timing
events. A timer event callback has to be declared, as follows:

pa_context_rttime new(context, pa_rtclock now() + TIME_EVENT USEC, time event callback,
NULL))

The timer event callback is a “single shot” callback. It installs a stream update timer callback and sets up
another timer callback

void time_event callback(pa_mainloop api *m,
pa_time_event *e, const struct timeval *t,
void *userdata) {
if (stream &3 pa_stream get state(stream) == PA_STREAM READY) {
pa_operation *o;
if (!(o = pa_stream_update_timing_info(stream, stream update timing callback,
NULL)))
1; //pa_log(_("pa_stream update timing info() failed: %s"), pa_strerror
(pa_context_errno(context)));
else
pa_operation_unref(o);

}

pa_context rttime restart(context, e, pa_rtclock now() + TIME EVENT USEC);

113

CHAPTER 6 © PULSEAUDIO

The stream update timer callback can then estimate the latency.

void stream update timing callback(pa_stream *s, int success, void *userdata) {
pa_usec_t 1, usec;
int negative = 0;

// pa_assert(s);
fprintf(stderr, "Update timing\n");

if (!success ||
pa_stream get time(s, &usec) < 0 ||
pa_stream get latency(s, &1, 8negative) < 0) {
fprintf(stderr, "Failed to get latency\n");
return;

}

fprintf(stderr, _("Time: %0.3f sec; Latency: %0.0f usec."),
(float) usec / 1000000,
(float) 1 * (negative?-1.0f:1.0f));

fprintf(stderr, " \1r");
}

With latency left to PulseAudio by setting fragsize and tlength to -1, I got the following:
Time: 0.850 sec; Latency: 850365 usec.
Time: 0.900 sec; Latency: 900446 usec.
Time: 0.951 sec; Latency: 950548 usec.
Time: 1.001 sec; Latency: 1000940 usec.
Time: 1.051 sec; Latency: 50801 usec.
Time: 1.101 sec; Latency: 100934 usec.
Time: 1.151 sec; Latency: 151007 usec.
Time: 1.201 sec; Latency: 201019 usec.
Time: 1.251 sec; Latency: 251150 usec.
Time: 1.301 sec; Latency: 301160 usec.
Time: 1.351 sec; Latency: 351218 usec.
Time: 1.401 sec; Latency: 401329 usec.
Time: 1.451 sec; Latency: 451400 usec.
Time: 1.501 sec; Latency: 501465 usec.
Time: 1.551 sec; Latency: 551587 usec.
Time: 1.602 sec; Latency: 601594 usec.

With them set to 1ms, I got the following:
Time: 1.599 sec; Latency: 939 usec.
Time: 1.649 sec; Latency: 1105 usec.
Time: 1.699 sec; Latency: -158 usec.
Time: 1.750 sec; Latency: 1020 usec.
Time: 1.800 sec; Latency: 397 usec.
Time: 1.850 sec; Latency: -52 usec.
Time: 1.900 sec; Latency: 1827 usec.

114

Time: 1.950 sec; Latency: 529 usec.
Time: 2.000 sec; Latency: -90 usec.
Time: 2.050 sec; Latency: 997 usec.
Time: 2.100 sec; Latency: 436 usec.
Time: 2.150 sec; Latency: 866 usec.
Time: 2.200 sec; Latency: 406 usec.
Time: 2.251 sec; Latency: 1461 usec.
Time: 2.301 sec; Latency: 107 usec.
Time: 2.351 sec; Latency: 1257 usec.

The program to do all this is parec-latency.c.
/* parec-latency.c */
#include <stdio.h>
#include <string.h>

#include <pulse/pulseaudio.h>

#define CLEAR_LINE "\n"
#tdefine (x) x

#define TIME_EVENT_USEC 50000
// From pulsecore/macro.h
#tdefine pa_memzero(x,1) (memset((x), 0, (1)))

#tdefine pa_zero(x) (pa_memzero(&(x), sizeof(x)))

int fdout;
char *fname

"tmp.pcm";

int verbose = 1;
int ret;

pa_context *context;

static pa_sample spec sample spec = {
.format = PA_SAMPLE_S16LE,
.rate = 44100,
.channels = 2

b
static pa_stream *stream = NULL;
/* This is my builtin card. Use paman to find yours

or set it to NULL to get the default device
*/

static char *device = "alsa_input.pci-0000 00 1b.0.analog-stereo";

static pa_stream_flags t flags = 0;

CHAPTER 6

PULSEAUDIO

115

CHAPTER 6 © PULSEAUDIO

static size t latency = 0, process time = 0;
static int32_t latency msec = 0, process time msec = 0;

void stream state callback(pa_stream *s, void *userdata) {
assert(s);

switch (pa_stream get state(s)) {
case PA_STREAM CREATING:
// The stream has been created, so
// let's open a file to record to
printf("Creating stream\n");
fdout = creat(fname, 0711);
break;

case PA_STREAM TERMINATED:
close(fdout);
break;

case PA_STREAM READY:

// Just for info: no functionality in this branch
if (verbose) {
const pa_buffer attr *a;
char cmt[PA_CHANNEL MAP_SNPRINT MAX], sst[PA SAMPLE SPEC_SNPRINT MAX];

printf("Stream successfully created.");

if (!(a = pa_stream get buffer attr(s)))
printf("pa_stream get buffer attr() failed: %s", pa_strerror(pa_context errno(pa_
stream_get context(s))));
else {
printf("Buffer metrics: maxlength=%u, fragsize=%u", a->maxlength, a->fragsize);

}

printf("Connected to device %s (%u, %ssuspended).",
pa_stream get device name(s),
pa_stream get device index(s),
pa_stream is suspended(s) ? "" : "not ");

}

break;

case PA_STREAM_FAILED:
default:
printf("Stream error: %s", pa_strerror(pa_context_errno(pa_stream get context(s))));
exit(1);
}
}

116

CHAPTER 6 © PULSEAUDIO

/* Show the current latency */

static void stream update timing callback(pa_stream *s, int success, void *userdata) {
pa_usec_t 1, usec;
int negative = 0;

// pa_assert(s);
fprintf(stderr, "Update timing\n");

if (!success ||
pa_stream get time(s, &usec) < 0 ||
pa_stream get latency(s, &1, 8negative) < 0) {
// pa_log(_("Failed to get latency"));
//pa_log(_("Failed to get latency: %s"), pa_strerror(pa_context errno(context)));
// quit(1);
return;

}

fprintf(stderr, ("Time: %0.3f sec; Latency: %0.0f usec.\n"),
(float) usec / 1000000,
(float) 1 * (negative?-1.0f:1.0f));
//fprintf(stderr, " \r");
}

static void time_event callback(pa mainloop api *m,
pa_time_event *e, const struct timeval *t,
void *userdata) {
if (stream &3 pa_stream get state(stream) == PA_STREAM READY) {
pa_operation *o;
if (!(o = pa_stream_update_timing_info(stream, stream update timing_callback,
NULL)))
1; //pa_log(_("pa_stream update timing info() failed: %s"), pa_strerror(pa_
context_errno(context)));
else
pa_operation unref(o);

}

pa_context rttime restart(context, e, pa_rtclock now() + TIME_EVENT USEC);
}

void get latency(pa_stream *s) {
pa_usec_t latency;
int neg;
pa_timing_info *timing_info;

timing info = pa_stream get timing info(s);
if (pa_stream get latency(s, &latency, &neg) != 0) {

fprintf(stderr, FILE ": pa_stream get latency() failed\n");
return;

}

117

CHAPTER 6 © PULSEAUDIO

fprintf(stderr, "%0.0f usec \r", (float)latency);
}

JRkkkkokkkkokk Gtyeam callbacks *kkikkkkkokkkokokk /

/* This is called whenever new data is available */
static void stream read callback(pa_stream *s, size t length, void *userdata) {

assert(s);
assert(length > 0);

// Copy the data from the server out to a file
//fprintf(stderr, "Can read %d\n", length);

while (pa_stream readable size(s) > 0) {
const void *data;
size_t length;

//get_latency(s);

// peek actually creates and fills the data vbl
if (pa_stream peek(s, &data, &length) < 0) {
fprintf(stderr, "Read failed\n");
exit(1);
return;
}
fprintf(stderr, "Writing %d\n", length);
write(fdout, data, length);

// swallow the data peeked at before
pa_stream drop(s);
}
}

// This callback gets called when our context changes state. We really only
// care about when it's ready or if it has failed
void state cb(pa_context *c, void *userdata) {

pa_context_state_t state;

int *pa_ready = userdata;

printf("State changed\n");
state = pa_context get state(c);
switch (state) {

// There are just here for reference
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT_SETTING_NAME:
default:

break;
case PA_CONTEXT_FAILED:

118

CHAPTER 6 © PULSEAUDIO

case PA_CONTEXT_TERMINATED:
*pa_ready = 2;
break;

case PA_CONTEXT_READY: {
pa_buffer attr buffer attr;

if (verbose)
printf("Connection established.%s\n", CLEAR_LINE);

if (!(stream = pa_stream new(c, "JanCapture", 8sample_spec, NULL))) {
printf("pa_stream new() failed: %s", pa_strerror(pa_context errno(c)));
exit(1);

}

// Watch for changes in the stream state to create the output file
pa_stream set state callback(stream, stream state callback, NULL);

// Watch for changes in the stream's read state to write to the output file
pa_stream set read callback(stream, stream read callback, NULL);

// timing info
pa_stream update timing info(stream, stream update timing callback, NULL);

// Set properties of the record buffer
pa_zero(buffer attr);

buffer attr.maxlength = (uint32_t) -1;
buffer attr.prebuf = (uint32_t) -1;

if (latency msec > 0) {
buffer attr.fragsize = buffer attr.tlength = pa_usec_to_bytes(latency msec * PA USEC_
PER_MSEC, &sample spec);
flags |= PA_STREAM ADJUST LATENCY;

} else if (latency > 0) {
buffer attr.fragsize = buffer attr.tlength = (uint32_t) latency;
flags |= PA_STREAM_ADJUST LATENCY;

} else
buffer attr.fragsize = buffer attr.tlength

(uint32_t) -1;

if (process time msec > 0) {
buffer attr.minreq = pa_usec_to bytes(process time msec * PA USEC PER MSEC,
&sample spec);
} else if (process_time > 0)
buffer attr.minreq = (uint32_t) process_time;
else
buffer attr.minreq = (uint32_t) -1;

flags |= PA_STREAM INTERPOLATE_TIMING;
get latency(stream);

// and start recording

119

CHAPTER 6 © PULSEAUDIO

if (pa_stream connect record(stream, device, 8buffer attr, flags) < 0) {
printf("pa_stream connect record() failed: %s", pa_strerror(pa_context errno(c)));
exit(1);
}
}

break;

}
}

int main(int argc, char *argv[]) {

// Define our pulse audio loop and connection variables
pa_mainloop *pa_ml;

pa_mainloop_api *pa_mlapi;

pa_operation *pa_op;

pa_time_event *time_event;

// Create a mainloop API and connection to the default server
pa_ml = pa mainloop new();

pa_mlapi = pa_mainloop get api(pa ml);

context = pa_context_new(pa_mlapi, "test");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
pa_context set state callback(context, state cb, NULL);

if (!(time_event = pa_context rttime new(context, pa_rtclock now() + TIME_EVENT USEC,
time_event_callback, NULL))) {
//pa_log(_("pa_context_rttime_new() failed."));
//goto quit;

if (pa_mainloop_run(pa_ml, 8ret) < 0) {
printf("pa_mainloop run() failed.");
exit(1);
}
}

Play Microphone to Speaker
Combining what you have so far, you get pa-mic-2-speaker.c.
/*

* Copy from microphone to speaker

* pa-mic-2-speaker.c
*/

120

CHAPTER 6

#include <stdio.h>
#include <string.h>
#include <pulse/pulseaudio.h>

#define CLEAR_LINE "\n"
#define BUFF_LEN 4096

// From pulsecore/macro.h
#tdefine pa_memzero(x,1) (memset((x), 0, (1)))
#tdefine pa_zero(x) (pa_memzero(&(x), sizeof(x)))

static void *buffer = NULL;
static size t buffer length = 0, buffer_index = 0;

int verbose = 1;
int ret;

static pa_sample spec sample spec = {
.format = PA_SAMPLE_S16LE,
.rate = 44100,
.channels = 2

};

static pa_stream *istream = NULL,
*ostream = NULL;

// This is my builtin card. Use paman to find yours

//static char *device = "alsa_input.pci-0000 00 1b.0.analog-stereo";
static char *idevice = NULL;

static char *odevice = NULL;

static pa_stream_flags t flags = 0;

static size t latency = 0, process time = 0;
static int32_t latency msec = 1, process_time msec = 0;

void stream state callback(pa_stream *s, void *userdata) {
assert(s);

switch (pa_stream get state(s)) {
case PA_STREAM CREATING:
// The stream has been created, so
// let's open a file to record to
printf("Creating stream\n");
// fdout = creat(fname, 0711);
buffer = pa_xmalloc(BUFF_LEN);
buffer_length = BUFF_LEN;
buffer_index = 0;
break;

PULSEAUDIO

121

CHAPTER 6 © PULSEAUDIO

case PA_STREAM TERMINATED:
// close(fdout);
break;

case PA_STREAM READY:

// Just for info: no functionality in this branch
if (verbose) {
const pa_buffer attr *a;
char cmt[PA_CHANNEL MAP_SNPRINT MAX], sst[PA SAMPLE_SPEC_SNPRINT MAX];

printf("Stream successfully created.");

if (!(a = pa_stream get buffer attr(s)))
printf("pa_stream get buffer attr() failed: %s", pa_strerror(pa_context errno(pa_
stream_get context(s))));

else {
printf("Buffer metrics: maxlength=%u, fragsize=%u", a->maxlength, a->fragsize);

}

printf("Connected to device %s (%u, %ssuspended).",
pa_stream get device name(s),
pa_stream get device_index(s),
pa_stream is suspended(s) ? "" : "not ");

}

break;

case PA_STREAM FAILED:
default:
printf("Stream error: %s", pa_strerror(pa_context errno(pa_stream get context(s))));
exit(1);
}
}

JERFRRRRRRkkk Qtregm callbacks ¥kkkksksksdskkkokkk

/* This is called whenever new data is available */
static void stream read callback(pa stream *s, size t length, void *userdata) {

assert(s);
assert(length > 0);

// Copy the data from the server out to a file
fprintf(stderr, "Can read %d\n", length);

while (pa_stream_readable size(s) > 0) {

const void *data;
size_t length, lout;

122

CHAPTER 6 © PULSEAUDIO

// peek actually creates and fills the data vbl
if (pa_stream_peek(s, &data, &length) < 0) {
fprintf(stderr, "Read failed\n");
exit(1);
return;

}

fprintf(stderr, "read %d\n", length);
lout = pa_stream writable size(ostream);
fprintf(stderr, "Writable: %d\n", lout);
if (lout == 0) {
fprintf(stderr, "can't write, zero writable\n");
return;
}
if (lout < length) {
fprintf(stderr, "Truncating read\n");
length = lout;
}

if (pa_stream_write(ostream, (uint8 t*) data, length, NULL, 0, PA_SEEK RELATIVE) < 0) {
fprintf(stderr, "pa_stream write() failed\n");
exit(1);
return;

}

// STICK OUR CODE HERE TO WRITE OUT
//fprintf(stderr, "Writing %d\n", length);
//write(fdout, data, length);

// swallow the data peeked at before
pa_stream drop(s);
}
}

/* This is called whenever new data may be written to the stream */

// We don't actually write anything this time

static void stream write callback(pa_stream *s, size t length, void *userdata) {
//assert(s);
//assert(length > 0);

printf("Stream write callback: Ready to write %d bytes\n", length);
}

// This callback gets called when our context changes state. We really only
// care about when it's ready or if it has failed
void state cb(pa_context *c, void *userdata) {

pa_context_state t state;

int *pa_ready = userdata;

printf("State changed\n");
state = pa_context get state(c);

123

CHAPTER 6 © PULSEAUDIO

switch (state) {

// There are just here for reference
case PA_CONTEXT_UNCONNECTED:
case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:
case PA_CONTEXT SETTING NAME:
default:

break;
case PA_CONTEXT_FAILED:
case PA_CONTEXT_TERMINATED:

*pa_ready = 2;

break;
case PA_CONTEXT READY: {

pa_buffer attr buffer attr;

if (verbose)
printf("Connection established.%s\n", CLEAR_LINE);

if (!(istream = pa_stream new(c, "JanCapture", &sample spec, NULL))) {
printf("pa_stream new() failed: %s", pa_strerror(pa_context errno(c)));
exit(1);

}

if (!(ostream = pa_stream new(c, "JanPlayback", &sample spec, NULL))) {
printf("pa_stream new() failed: %s", pa_strerror(pa_context errno(c)));
exit(1);

}

// Watch for changes in the stream state to create the output file
pa_stream set state callback(istream, stream state callback, NULL);

// Watch for changes in the stream's read state to write to the output file
pa_stream set read callback(istream, stream read callback, NULL);

pa_stream set write callback(ostream, stream write callback, NULL);

// Set properties of the record buffer
pa_zero(buffer attr);

buffer attr.maxlength = (uint32_t) -1;
buffer attr.prebuf = (uint32 t) -1;

if (latency _msec > 0) {
buffer attr.fragsize = buffer attr.tlength = pa_usec_to bytes(latency msec * PA USEC_
PER_MSEC, &sample spec);
flags |= PA_STREAM_ADJUST LATENCY;

} else if (latency > 0) {
buffer attr.fragsize = buffer attr.tlength
flags |= PA_STREAM_ADJUST LATENCY;

} else
buffer_attr.fragsize = buffer_attr.tlength

(uint32_t) latency;

(uint32_t) -1;

124

CHAPTER 6 © PULSEAUDIO

if (process_time_msec > 0) {
buffer attr.minreq = pa_usec_to bytes(process time msec * PA USEC PER MSEC, &sample
spec);
} else if (process time > 0)
buffer_attr.minreq = (uint32_t) process_time;
else
buffer attr.minreq = (uint32_t) -1;

// and start recording
if (pa_stream connect record(istream, idevice, &buffer attr, flags) < 0) {
printf("pa_stream connect record() failed: %s", pa_strerror(pa_context errno(c)));

exit(1);
}
if (pa_stream connect playback(ostream, odevice, &buffer attr, flags,
NULL,
NULL) < 0) {

printf("pa_stream connect_playback() failed: %s", pa_strerror(pa_context_errno(c)));
exit(1); //goto fail;

} else {
printf("Set playback callback\n");

}

break;

}
}

int main(int argc, char *argv[]) {

// Define our pulse audio loop and connection variables
pa_mainloop *pa_ml;

pa_mainloop_api *pa_mlapi;

pa_operation *pa op;

pa_context *pa_ctx;

// Create a mainloop API and connection to the default server
pa_ml = pa_mainloop new();

pa_mlapi = pa_mainloop get api(pa ml);

pa_ctx = pa_context new(pa_mlapi, "test");

// This function connects to the pulse server
pa_context_connect(pa_ctx, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
pa_context set state callback(pa ctx, state cb, NULL);

if (pa_mainloop_run(pa_ml, 8ret) < 0) {
printf("pa_mainloop_run() failed.");
exit(1);

}

}
125

CHAPTER 6 © PULSEAUDIO

When the latency is set to 1ms for everything, the actual latency is about 16ms to 28ms. I couldn’t detect it.

Setting the Volume on Devices

Each device can have its input or output volume controlled by PulseAudio. The principal called-for sinks are
pa_context_set _sink volume_by name and pa_context_set sink volume_by index, with similar calls for
sources.

These calls make use of a structure called pa_cvolume. This structure can be manipulated using calls
such as the following:

e pa_cvolume init
e pa_cvolume set
e pa_cvolume_mute

In the following program, you set the volume on a particular device by reading integer values from
stdin and using these to set the value. Such a loop should probably best take place in a separate thread to
the PulseAudio framework. Rather than introducing application threading here, I make use of an alternative
set of PulseAudio calls that set up a separate thread for the PulseAudio main loop. These calls are as follows:

e pa_threaded mainloop instead of pa_mainloop
e pa_threaded mainloop _get apiinstead of pa_mainloop get api
e pa_threaded mainloop_startinstead of pa_mainloop start

The threaded calls allow you to start PulseAudio in its own thread and leave the current thread for
reading volume values. This gives the relatively simple program pavolume.c.

/**

* pavolume.c

* Jan Newmarch

*/

#include <stdio.h>

#include <string.h>

#include <pulse/pulseaudio.h>
#define (x) x

char *device = "alsa_output.pci-0000 00 1b.0.analog-stereo";
int ret;

pa_context *context;

void show_error(char *s) {

fprintf(stderr, "%s\n", s);
}

void volume cb(pa_context *c, int success, void *userdata) {
if (success)
printf("Volume set\n");

126

CHAPTER 6 © PULSEAUDIO

else
printf("Volume not set\n");
}

void context state cb(pa_context *c, void *userdata) {

switch (pa_context_get state(c)) {

case PA_CONTEXT_UNCONNECTED:

case PA_CONTEXT_CONNECTING:

case PA_CONTEXT_AUTHORIZING:

case PA_CONTEXT_SETTING_NAME:
break;

case PA_CONTEXT_READY: {
pa_operation *o;

break;

}

case PA_CONTEXT_FAILED:
case PA_CONTEXT_TERMINATED:
default:

return;
}

int main(int argc, char *argv[]) {
long volume = 0;
char buf[128];
struct pa_cvolume v;

// Define our pulse audio loop and connection variables
pa_threaded_mainloop *pa_ml;
pa_mainloop_api *pa_mlapi;

// Create a mainloop API and connection to the default server
//pa_ml = pa_mainloop_new();

pa_ml = pa_threaded mainloop new();

pa_mlapi = pa_threaded mainloop get api(pa_ml);

context = pa_context new(pa_mlapi, "Voulme control");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
pa_context_set state callback(context, context state cb, NULL);

pa_threaded mainloop start(pa_ml);
printf("Enter volume for device %s\n");

127

CHAPTER 6 © PULSEAUDIO

pa_cvolume init(&v);
while (1) {
puts("Enter an integer 0-65536\n");
fgets(buf, 128, stdin);
volume = atoi(buf);
pa_cvolume set(&v, 2, volume);
pa_context set sink volume by name(context,

device,
&v,
volume_cb,
NULL
);
}
}
Listing Clients

PulseAudio is a server that talks to devices at the bottom layer and to clients at the top layer. The clients are
producers and consumers of audio. One of the roles of PulseAudio is to mix signals from different source
clients to shared output devices. To do this, PulseAudio keeps track of registrations by clients and can make
these available to other clients with suitable callbacks.

The program palist_clients.c is similar to the program palist_devices.c. The principal
difference is that when the context changes state to PA_CONTEXT_READY, the application subscribes to
PA_SUBSCRIPTION _MASK CLIENT instead of (PA_ SUBSCRIPTION MASK SINK|PA SUBSCRIPTION MASK SOURCE),
and the subscription callback asks for pa_context_get client_infoinstead of pa_context _get source_
info.

The program palist_clients.cis as follows:

%k

* palist_clients.c
* Jan Newmarch

*/

#include <stdio.h>
#include <string.h>

#include <pulse/pulseaudio.h>

#define CLEAR_LINE "\n"
#tdefine (x) x

// From pulsecore/macro.h

//#define pa_memzero(x,l) (memset((x), 0, (1)))
//#define pa_zero(x) (pa_memzero(&(x), sizeof(x)))
int ret;

pa_context *context;

void show_error(char *s) {

/* stub */
}

128

CHAPTER 6 © PULSEAUDIO

void print properties(pa proplist *props) {
void *state = NULL;

printf(" Properties are: \n");
while (1) {
char *key;
if ((key = pa_proplist iterate(props, &state)) == NULL) {
return;

char *value = pa_proplist gets(props, key);
printf(" key %s, value %s\n", key, value);

}
void add client cb(pa_context *context, const pa_client info *i, int eol, void *userdata) {
if (eol < 0) {
if (pa_context _errno(context) == PA _ERR_NOENTITY)

return;

show_error(_("Client callback failure"));

return;

}

if (eol > 0) {
return;

}

printf("Found a new client index %d name %s eol %d\n", i->index, i->name, eol);
print_properties(i->proplist);

}

void remove_client_cb(pa_context *context, const pa_client_info *i, int eol, void *userdata)

{
if (eol < 0) {
if (pa_context_errno(context) == PA_ERR_NOENTITY)
return;

show_error(("Client callback failure"));

return;

}

if (eol > 0) {
return;

}

printf("Removing a client index %d name %s\n", i->index, i->name);
print_properties(i->proplist);

129

CHAPTER 6 © PULSEAUDIO

void subscribe cb(pa_context *c, pa_subscription event type t t, uint32_t index, void
*yserdata) {

switch (t & PA_SUBSCRIPTION EVENT FACILITY MASK) {

case PA SUBSCRIPTION EVENT CLIENT:
if ((t & PA_SUBSCRIPTION EVENT TYPE MASK) == PA SUBSCRIPTION EVENT REMOVE) {
printf("Remove event at index %d\n", index);
pa_operation *o;
if (!(o = pa_context get client info(c, index, remove client cb, NULL))) {
show_error(_("pa_context_get client info() failed"));
return;

}

pa_operation_unref(o);

} else {
pa_operation *o;
if (!(o = pa_context_get client info(c, index, add_client_cb, NULL))) {
show_error(_("pa_context get client info() failed"));
return;

}

pa_operation unref(o);
break;

}

void context state cb(pa_context *c, void *userdata) {

switch (pa_context_get state(c)) {

case PA_CONTEXT_UNCONNECTED:

case PA_CONTEXT_CONNECTING:

case PA_CONTEXT_AUTHORIZING:

case PA_CONTEXT_SETTING_NAME:
break;

case PA_CONTEXT_READY: {
pa_operation *o;

pa_context set subscribe callback(c, subscribe cb, NULL);

if (!(o = pa_context_subscribe(c, (pa_subscription mask t)
(PA_SUBSCRIPTION MASK CLIENT), NULL, NULL))) {
show_error(_("pa_context subscribe() failed"));
return;

}

pa_operation unref(o);

130

CHAPTER 6 © PULSEAUDIO

if (!(o = pa_context_get client info_ list(context,
add_client cb,
NULL

)N A

show_error(_("pa_context subscribe() failed"));
return;

}

pa_operation_unref(o);

break;

}

case PA_CONTEXT_FAILED:
return;

case PA_CONTEXT_TERMINATED:
default:

return;
}

}

void stream state callback(pa_stream *s, void *userdata) {
assert(s);

switch (pa_stream get state(s)) {
case PA_STREAM_CREATING:
break;

case PA STREAM TERMINATED:
break;

case PA_STREAM_READY:
break;

case PA_STREAM FAILED:

default:
printf("Stream error: %s", pa_strerror(pa_context errno(pa_stream get context(s))));
exit(1);

}

int main(int argc, char *argv[]) {

// Define our pulse audio loop and connection variables
pa_mainloop *pa ml;

pa_mainloop api *pa_mlapi;

pa_operation *pa_op;

pa_time_event *time_event;

131

CHAPTER 6 © PULSEAUDIO

// Create a mainloop API and connection to the default server
pa_ml = pa_mainloop new();

pa_mlapi = pa_mainloop get api(pa_ml);

context = pa_context _new(pa_mlapi, "test");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
//pa_context_set state callback(context, state cb, NULL);
pa_context_set state callback(context, context state cb, NULL);

if (pa_mainloop_run(pa_ml, &ret) < 0) {
printf("pa_mainloop run() failed.");
exit(1);

The output on my system is as follows (elided):

Found a new client index 0 name ConsoleKit Session /org/freedesktop/ConsoleKit/Session2 eol 0
Properties are:
key application.name, value ConsoleKit Session /org/freedesktop/ConsoleKit/Session2
key console-kit.session, value /org/freedesktop/ConsoleKit/Session2
Found a new client index 4 name XSMP Session on gnome-session as
1057eba7239balec3d136359809598590100000018790044 eol 0O
Properties are:
key application.name, value XSMP Session on gnome-session as
1057eba7239balec3d136359809598590100000018790044
key xsmp.vendor, value gnome-session
key xsmp.client.id, value 1057eba7239balec3d136359809598590100000018790044
Found a new client index 5 name GNOME Volume Control Media Keys eol 0
Properties are:

Found a new client index 7 name GNOME Volume Control Applet eol 0
Properties are:

Found a new client index 53 name Metacity eol 0
Properties are:

Found a new client index 54 name Firefox eol 0
Properties are:

Found a new client index 248 name PulseAudio Volume Control eol 0
Properties are:

Found a new client index 341 name test eol 0
Properties are:

132

CHAPTER 6 © PULSEAUDIO

Listing Client Sources and Sinks

Clients can act as sources; programs such as MPlayer and VLC do just that, sending streams to PulseAudio.
Other clients can act as sinks. The clients themselves are monitored by the previous program. To monitor
their activity, you set the mask on pa_subscribe callbackto (PA_ SUBSCRIPTION MASK CLIENT | PA_
SUBSCRIPTION MASK_SINK INPUT | PA_SUBSCRIPTION_MASK_ SOURCE_OUTPUT). Within the subscription
callback you make calls to pa_context_get sink_input_info within the PA_SUBSCRIPTION_EVENT_SINK
INPUT branch and do the same for the source output.

The sink input callback is passed the structure pa_sink_input_info. This contains the familiar name
and index fields but also has an integer field called client. This links the sink input back to the index of the
client responsible for the sink. In the following program, you list all the clients as well so that these links can
followed visually. Programmatically, PulseAudio makes you keep much information (such as what clients
have what indices) yourself; this is ignored here.

The program to list clients and monitor changes in their input and output streams is pamonitor_
clients.c.

/**

* pamonitor clients.c
* Jan Newmarch
*/
#include <stdio.h>
#include <string.h>

#include <pulse/pulseaudio.h>

#define CLEAR_LINE "\n"
#define (x) x

// From pulsecore/macro.h
#tdefine pa_memzero(x,1l) (memset((x), 0, (1)))
#define pa_zero(x) (pa_memzero(&(x), sizeof(x)))
int ret;
pa_context *context;
void show_error(char *s) {
/* stub */
}
void add client cb(pa_context *context, const pa_client info *i, int eol, void *userdata) {
if (eol < 0) {
if (pa_context_errno(context) == PA_ERR_NOENTITY)

return;

show_error(_("Client callback failure"));
return;

133

CHAPTER 6 © PULSEAUDIO

if (eol > 0) {
return;
}

printf("Found a new client index %d name %s eol %d\n", i->index, i->name, eol);

}

void remove client cb(pa_context *context, const pa_client info *i, int eol, void *userdata)

{
if (eol < 0) {
if (pa_context errno(context) == PA _ERR_NOENTITY)
return;

show_error(_("Client callback failure"));

return;

}

if (eol > 0) {
return;

}

printf("Removing a client index %d name %s\n", i->index, i->name);

}

void sink_input_cb(pa_context *c, const pa_sink input info *i, int eol, void *userdata) {
if (eol < 0) {
if (pa_context_errno(context) == PA_ERR_NOENTITY)
return;

show_error(_("Sink input callback failure"));

return;

}

if (eol > 0) {
return;

}

printf("Sink input found index %d name %s for client %d\n", i->index, i->name,
i->client);

}

void source output cb(pa_context *c, const pa_source output info *i, int eol, void
*yserdata) {
if (eol < 0) {
if (pa_context_errno(context) == PA_ERR_NOENTITY)
return;

show_error(_("Source output callback failure"));
return;

134

CHAPTER 6 © PULSEAUDIO

if (eol > 0) {
return;
}

printf("Source output found index %d name %s for client %d\n", i->index, i->name,
i->client);

}

void subscribe cb(pa_context *c, pa_subscription event type t t, uint32_t index, void
*yserdata) {

switch (t & PA_SUBSCRIPTION EVENT FACILITY MASK) {

case PA SUBSCRIPTION EVENT CLIENT:
if ((t & PA_SUBSCRIPTION EVENT TYPE MASK) == PA SUBSCRIPTION EVENT REMOVE) {
printf("Remove event at index %d\n", index);
pa_operation *o;
if (!(o = pa_context get client info(c, index, remove client cb, NULL))) {
show_error(_("pa_context_get client_info() failed"));
return;

}

pa_operation_unref(o);

} else {
pa_operation *o;
if (!(o = pa_context get client info(c, index, add _client cb, NULL))) {
show_error(_("pa_context_get client info() failed"));
return;

}

pa_operation_unref(o);
break;

case PA_SUBSCRIPTION_EVENT_SINK INPUT:
if ((t & PA_SUBSCRIPTION EVENT TYPE MASK) == PA_SUBSCRIPTION_ EVENT REMOVE)
printf("Removing sink input %d\n", index);
else {
pa_operation *o;
if (!(o = pa_context_get sink input_info(context, index, sink input cb, NULL))) {
show_error(_("pa_context_get sink input_info() failed"));

return;
}
pa_operation unref(o);
}
break;

case PA_SUBSCRIPTION EVENT SOURCE_OUTPUT:
if ((t & PA_SUBSCRIPTION EVENT TYPE MASK) == PA SUBSCRIPTION EVENT REMOVE)
printf("Removing source output %d\n", index);
else {
pa_operation *o;

135

CHAPTER 6 © PULSEAUDIO

if (!(o = pa_context_get source output_info(context, index, source output_cb,

NULL))) {
show_error(_("pa_context_get sink input_info() failed"));
return;
}
pa_operation_unref(o);
}
break;

}

void context state cb(pa context *c, void *userdata) {

switch (pa_context get state(c)) {

case PA_CONTEXT_UNCONNECTED:

case PA_CONTEXT_CONNECTING:

case PA_CONTEXT_AUTHORIZING:

case PA_CONTEXT SETTING NAME:
break;

case PA_CONTEXT_READY: {
pa_operation *o;

pa_context set subscribe callback(c, subscribe cb, NULL);

if (!(o = pa_context_subscribe(c, (pa_subscription mask t)
(PA_SUBSCRIPTION MASK CLIENT |
PA_SUBSCRIPTION MASK SINK INPUT |
PA_SUBSCRIPTION MASK_SOURCE OUTPUT), NULL, NULL))) {
show_error(("pa_context subscribe() failed"));
return;

}

pa_operation_unref(o);

if (!(o = pa_context_get client info list(context,
add_client cb,
NULL

)N A

show_error(_("pa_context subscribe() failed"));
return;

}

pa_operation_unref(o);

break;

}

case PA CONTEXT_FAILED:
return;

136

}

case PA_CONTEXT_TERMINATED:

default:
// Gtk::Main::quit();
return;

}

void stream state_callback(pa_stream *s, void *userdata) {

int

assert(s);

switch (pa_stream get state(s)) {
case PA STREAM CREATING:
break;

case PA_STREAM_TERMINATED:
break;

case PA_STREAM READY:
break;

case PA_STREAM_FAILED:
default:

CHAPTER 6

PULSEAUDIO

printf("Stream error: %s", pa_strerror(pa_context_errno(pa_stream get context(s))));

exit(1);

main(int argc, char *argv[]) {

// Define our pulse audio loop and connection variables
pa_mainloop *pa_ml;

pa_mainloop_api *pa_mlapi;

pa_operation *pa_op;

pa_time_event *time_event;

// Create a mainloop API and connection to the default server
pa_ml = pa_mainloop new();

pa_mlapi = pa_mainloop get api(pa_ml);

context = pa_context _new(pa_mlapi, "test");

// This function connects to the pulse server
pa_context_connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.

//pa_context_set state callback(context, state cb, NULL);
pa_context_set state callback(context, context state cb, NULL);

if (pa_mainloop_run(pa_ml, &ret) < 0) {
printf("pa_mainloop run() failed.");
exit(1);

137

CHAPTER 6 © PULSEAUDIO

The output on my system is as follows:

Found a new client index 0 name ConsoleKit Session /org/freedesktop/ConsoleKit/Session2 eol 0
Found a new client index 4 name XSMP Session on gnome-session as
1057eba7239balec3d136359809598590100000018790044 eol 0

Found a new client index 5 name GNOME Volume Control Media Keys eol 0

Found a new client index 7 name GNOME Volume Control Applet eol 0
Found a new client index 53 name Metacity eol 0

Found a new client index 54 name Firefox eol 0

Found a new client index 248 name PulseAudio Volume Control eol 0
Found a new client index 342 name test eol 0

Controlling the Volume of a Sink Client

One of the significant features of PulseAudio is that not only can it mix streams to a device, but it can also
control the volume of each stream. This is in addition to the volume control of each device. In pavucontrol
you can see this on the Playback tab, where the volume of playback clients can be adjusted.

Programmatically this is done by calling pa_context_set_sink_input_volume with parameters that are
the index of the sink input and the volume. In the following program, I follow what I did in the pavolume_
client.c program where I set PulseAudio to run in a separate thread and input values for the volume in the
main thread. A slight difference is that you have to wait for a client to start up a sink input, which you do by
sleeping until the sink input callback assigns a nonzero value to the sink_index variable. Crude, yes. In a
program such as pavucontrol, the GUI runs in separate threads anyway, and you do not need to resort to
such simple tricks.

The program is pavolume_sink.c. If you play a file using, for example, MPlayer, then its volume can be
adjusted by this program.

/**

* pavolume_sink.c
* Jan Newmarch
*/
#include <stdio.h>
#include <string.h>

#include <pulse/pulseaudio.h>

#define CLEAR_LINE "\n"
#define (x) x

int ret;

// sink we will control volume on when it is non-zero
int sink_index = 0;

int sink_num_channels;

pa_context *context;

void show_error(char *s) {
/* stub */
}

138

CHAPTER 6 © PULSEAUDIO

void sink input cb(pa_context *c, const pa_sink input info *i, int eol, void *userdata) {
if (eol < 0) {
if (pa_context_errno(context) == PA_ERR_NOENTITY)
return;

show_error(("Sink input callback failure"));

return;

}

if (eol > 0) {
return;

printf("Sink input found index %d name %s for client %d\n", i->index, i->name,
i->client);

sink_num_channels = i->channel_map.channels;

sink_index = i->index;

}

void volume cb(pa_context *c, int success, void *userdata) {
if (success)
printf("Volume set\n");
else
printf("Volume not set\n");

}

void subscribe cb(pa_context *c, pa_subscription event type t t, uint32 t index, void
*yserdata) {

switch (t & PA_SUBSCRIPTION EVENT FACILITY MASK) {

case PA_SUBSCRIPTION_EVENT_SINK INPUT:
if ((t & PA_SUBSCRIPTION EVENT TYPE MASK) == PA SUBSCRIPTION_ EVENT REMOVE)
printf("Removing sink input %d\n", index);
else {
pa_operation *o;
if (!(o = pa_context_get sink input_info(context, index, sink_ input_cb, NULL))) {
show_error(_("pa_context get sink input_info() failed"));
return;

}

pa_operation unref(o);
break;
}
void context state_cb(pa_context *c, void *userdata) {
switch (pa_context get state(c)) {
case PA_CONTEXT_UNCONNECTED:

case PA_CONTEXT_CONNECTING:
case PA_CONTEXT_AUTHORIZING:

139

CHAPTER 6 © PULSEAUDIO

case PA CONTEXT_SETTING NAME:
break;

case PA_CONTEXT_READY: {
pa_operation *o;

pa_context set subscribe callback(c, subscribe cb, NULL);
if (!(o = pa_context_subscribe(c, (pa_subscription mask t)

(PA_SUBSCRIPTION MASK SINK INPUT), NULL, NULL))) {
show_error(_("pa_context subscribe() failed"));

return;
}
break;
}
case PA_CONTEXT_FAILED:
return;

case PA_CONTEXT_TERMINATED:

default:
// Gtk::Main::quit();
return;

}

}

void stream state callback(pa_stream *s, void *userdata) {
assert(s);

switch (pa_stream get state(s)) {
case PA_STREAM_CREATING:
break;

case PA_STREAM_TERMINATED:
break;

case PA_STREAM READY:
break;

case PA STREAM FAILED:

default:
printf("Stream error: %s", pa_strerror(pa_context errno(pa_stream get context(s))));
exit(1);

}

int main(int argc, char *argv[]) {

// Define our pulse audio loop and connection variables
pa_threaded_mainloop *pa_ml;

pa_mainloop_api *pa_mlapi;

pa_operation *pa op;

140

CHAPTER 6

pa_time event *time_event;
long volume = 0;

char buf[128];

struct pa_cvolume v;

// Create a mainloop API and connection to the default server
pa_ml = pa_threaded mainloop new();

pa_mlapi = pa_threaded mainloop get api(pa_ml);

context = pa_context _new(pa_mlapi, "test");

// This function connects to the pulse server
pa_context connect(context, NULL, 0, NULL);

// This function defines a callback so the server will tell us its state.
//pa_context_set_state_callback(context, state_cb, NULL);
pa_context_set state callback(context, context state cb, NULL);

pa_threaded mainloop start(pa ml);

/* wait till there is a sink */

while (sink _index == 0) {
sleep(1);

}

printf("Enter volume for sink %d\n", sink_index);
pa_cvolume init(&v);
while (1) {
puts("Enter an integer 0-65536");
fgets(buf, 128, stdin);
volume = atoi(buf);
pa_cvolume_set(&v, sink num channels, volume);
pa_context _set sink input volume(context,
sink_index,
&v,
volume cb,
NULL

)5

Conclusion

This chapter looked at PulseAudio. This is currently the standard sound system for consumer Linux. There
are a number of utilities for exploring PulseAudio. There are two APIs: the simple API and the asynchronous
API. The chapter looked at playing and recording using these APIs. Some other aspects of PulseAudio were
also examined.

PULSEAUDIO

Latency is not a goal, and it is not designed for real-time audio. However, you can request that the latency be

made small, and if PulseAudio can do it, it will give you reasonable performance. However, PulseAudio makes no
guarantees about latency, so if a maximum latency is critical, then PulseAudio may not be suitable.

PulseAudio is currently built on top of ALSA and usually interacts by making itself the default ALSA

plug-in.

141

CHAPTER 7

Jack

The role of a sound server in Linux is to take inputs from a number of sources and route them to a number
of sinks. Several audio servers are available in Linux, with the primary ones being PulseAudio and Jack.
They are designed for different roles: PulseAudio is intended for consumer audio systems, while Jack is
designed for professional audio. Lennart Poettering at http://0pointer.de/blog/projects/when-pa-
and-when-not.html draws up a table of differences. The main one is that Jack is intended for environments
in which low latency is critical, with Jack introducing less than 5ms latency into an audio chain, while
PulseAudio can introduce up to 2-second delays. Other differences are that PulseAudio can run on
low-quality systems including mobile phones, while Jack is usually run on high-quality audio equipment.
The article “Knowing Jack” gives a gentle introduction to Jack. This chapter looks at tools built specifically
for Jack, how applications use Jack, and finally programming with Jack.

Resources

Here are some resources:
e TheJack API (http://jackaudio.org/files/docs/html/index.html)
e “KnowingJack” (http://1inux-sound.org/knowing-jack.html)
e ArchLinux Pro Audio (https://wiki.archlinux.org/index.php/Pro_Audio)
e Gentoo Jack (http://gentoo-en.vfose.ru/wiki/JACK)

e Paul Davis talk on Jack architecture (http://lac.1linuxaudio.org/2003/zkm/
recordings/paul_davis-jack.ogg)

e “Knowing Jack” (www.linux-magazine.com/content/download/63041/486886/
version/1/file/JACK Audio_Server.pdf) by Dave Phillips in Linux Magazine

e Writing Audio Applications with JACK (http://dis-dot-dat.net/index.
cgi?item=/jacktuts/starting/)

Starting Jack

Jack is available in the repositories of most distros. You want to install Jack2 rather than Jackl. For
programming, you will also need the libjack2 dev package, which may get installed along with the Jack2
package.

© Jan Newmarch 2017 143
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_7

http://0pointer.de/blog/projects/when-pa-and-when-not.html
http://0pointer.de/blog/projects/when-pa-and-when-not.html
http://linux-sound.org/knowing-jack.html
http://jackaudio.org/files/docs/html/index.html
http://linux-sound.org/knowing-jack.html
https://wiki.archlinux.org/index.php/Pro_Audio
http://gentoo-en.vfose.ru/wiki/JACK
http://lac.linuxaudio.org/2003/zkm/recordings/paul_davis-jack.ogg
http://lac.linuxaudio.org/2003/zkm/recordings/paul_davis-jack.ogg
http://www.linux-magazine.com/content/download/63041/486886/version/1/file/JACK_Audio_Server.pdf
http://www.linux-magazine.com/content/download/63041/486886/version/1/file/JACK_Audio_Server.pdf
http://dis-dot-dat.net/index.cgi?item=/jacktuts/starting/
http://dis-dot-dat.net/index.cgi?item=/jacktuts/starting/

CHAPTER 7 = JACK

The Jack server is jackd. It has one required parameter, which is a sound back end such as ALSA. The
minimal command is as follows:

jackd -dalsa

Following the option -dalsa ALSA options can appear. On one of my computers aplay -1shows card 0
has devices 3, 7, and 8, and I needed to specify one of these:

jackd -dalsa -d hw:0,3

If you are using a normal Linux distro such as Fedora or Ubuntu, this will quite likely fail if the
PulseAudio system is running. This may need to be stopped, or at least paused, while you run Jack. See the
previous chapter for stopping PulseAudio. To pause it, I usually run this in a terminal window:

pasuspender cat

This will pause PulseAudio until cat terminates, which it will do when you enter Ctrl-D.
jackd will try to start using the Linux real-time scheduler. If you want to run without it, use the following
option:

jackd --no-realtime -dalsa

If you want to run with the real-time scheduler, there are several ways.

e Run the server from the root user.
sudo jackd -dalsa
e Addauser to the audio and jackuser groups, as follows:

useradd -G audio newmarch
useradd -G jackuser newmarch

(You will need to log out and back in before this takes effect.)

Note that if you run the server as the root user, then you will not be able to connect to it from clients that
are not in the jackuser group.

No apparent systemd or upstart scripts exist for Jack, but there are instructions for starting Jack at boot
time at http://gentoo-en.vfose.ru/wiki/JACK#Starting JACK at_boot time. The following instructions
are excerpted from that, which is under a GPL license (last modified in 2012):

#!/sbin/runscript
This programm will be used by init in order to launch jackd with the privileges
and id of the user defined into /etc/conf.d/jackd

depend() {
need alsasound
}

start() {
if | test -f "${JACKDHOME}/.jackdrc"; then
eerror "You must start and configure jackd before launch it. Sorry."

144

http://gentoo-en.vfose.ru/wiki/JACK#Starting_JACK_at_boot_time

CHAPTER 7

eerror "You can use qjackctl for that."

return 1
else JACKDOPTS=$(cat "${JACKDHOME}/.jackdrc"|sed -e 's\/usr/bin/jackd \\")
fi

if [-e /var/run/jackd.pid]; then
rm /var/run/jackd.pid
fi

ebegin "Starting JACK Daemon"

env HOME="${JACKDHOME}" start-stop-daemon --start \
--quiet --background \
--make-pidfile --pidfile /var/run/jackd.pid \
-c ${JACKDUSER} \
-x /usr/bin/jackd -- ${JACKDOPTS} >${LOG}

sleep 2
if | pgrep -u ${JACKDUSER} jackd > /dev/null; then
eerror "JACK daemon can't be started! Check logfile: ${LOG}"

fi
eend $?
}
stop() {
ebegin "Stopping JACK daemon -- please wait"
start-stop-daemon --stop --pidfile /var/run/jackd.pid &>/dev/null
eend $?
}
restart() {
svc_stop
while “pgrep -u ${JACKDUSER} jackd >/dev/null”; do
sleep 1
done
svc_start
}

File: /etc/conf.d/jackd:

owner of jackd process (Must be an existing user.)
JACKDUSER="dom"

.jackdrc location for that user (Must be existing, JACKDUSER can use
qjackctl in order to create it.)
JACKDHOME="/home/${JACKDUSER}"

logfile (/dev/null for nowhere)
L0G=/var/log/jackd.log

JACK

Create and save those 2 files. Don’t forget to adjust JACKDUSER to the wanted user name (the same as
yours I guess; [Author: Yes, that is what the Gentoo instructions say!]). We need to make /etc/init.d/jackd

executable:

145

CHAPTER 7 = JACK

chmod +x /etc/init.d/jackd
Adding the script into the default run-level:
rc-update add jackd default

Before restarting your system or starting this script, you must be sure that jackd is configured for
$JACKUSER or jackd will fail. This is because the script will read /home/${USER}/.jackdxrc. If this file doesn’t
exist, the easiest way to create it is to run QJackCtl as explained above.

Note on Realtime: Due to a limitation in the implementation of start-stop-daemon, it is not possible to
start jackd in realtime mode as a non-root user by this method if using pam_limits. start-stop-daemon does
not implement support for pam_sessions, meaning that changes to 1imits.conf have no effect in this context.

User Tools

There is really only one tool that you need to use with Jack: qjackctl. This gives a graphical view of which
Jack applications are playing and allows you to link inputs and outputs.

A simple tutorial on using qjackct] is HowToQjackCtlConnections (https://help.ubuntu.com/
community/HowToQjackCt1lConnections). It is actually amazingly simple to use: click a source and linkitto a
destination by clicking the destination. A line will be shown linking them. That’s all you have to do. Many Jack
applications will do this for you, so you just observe the results. Illustrations of this are given later in the chapter.

Applications Using Jack

There are many pieces of software using Jack, described in “Applications using JACK” (http://jackaudio.
org/applications).

mplayer
To run mplayer using Jack, add the option -ao jack.

mplayer -ao jack 54154.mp3

mplayer used in this way will connect to the Jack system output device. To output to another Jack
application such as jack-rack, append the output application to the audio output command.

mplayer -ao jack:port=jack rack 54154.mp3

VLC

VLC will play to Jack output if the Jack module (https://wiki.videolan.org/Documentation:Modules/

jack/) is included. This is available as a downloadable Debian package called vlc-plugin-jack. You can

check whether you have it by seeing if jack is listed as a module in vlc --1list shows ALSA but not Jack.
Play a file using Jack by doing the following:

vlc --aout jack 54154.mp3

You should be able to connect to a particular Jack application using the option --jack-connect-regex
<string>.

146

https://help.ubuntu.com/community/HowToQjackCtlConnections
https://help.ubuntu.com/community/HowToQjackCtlConnections
http://jackaudio.org/applications
http://jackaudio.org/applications
https://wiki.videolan.org/Documentation:Modules/jack/
https://wiki.videolan.org/Documentation:Modules/jack/

CHAPTER 7 © JACK

TiMidity
TiMidity is a MIDI player discussed in Chapter 21. It can play to Jack output devices with this:

timidity -0j 54154.mid

Jack-Supplied Programs

Jack comes with a large number of clients.

jack_alias jack_midisine

jack bufsize jack_monitor_client
jack_connect jack_multiple metro
jack_control jack_net_master
jack_cpu jack_net_slave
jack_cpu_load jack_netsource
jackd Jjack_rec

jackdbus jack_samplerate
jack_disconnect jack_server control
jack_evmon jack_session_notify
jack_freewheel jack_showtime
jack_iodelay jack_simple_client
jack_latent_client jack_simple_session_client
jack_load jack_test

jack_1sp jack _thru
jack_metro jack_transport
jack_midi_dump jack_unload
jack_midi_latency_test jack wait
jack_midiseq jack_zombie

For many of these, the source code is available in the Jack source code distribution, and there is a man
page for each one.

Running, say, jack_thru connects the system capture ports to the jack_thruinput ports and the
jack_thru output ports to the system playback ports. You can then do things such as disconnect ports using
client:port for the port name as follows:

jack_disconnect jack_thru:output 1 system:playback 1

These command-line tools allow you to do the same kind of actions as qjackctl.

Other Jack Programs

The page Applications using JACK (http://jackaudio.org/applications) lists many applications using Jack.
The page Jack MIDI Apps (http://apps.linuxaudio.org/apps/categories/jack midi) at
linuxaudio.org lists many MIDI applications using Jack.

Using a Different Sound Card

The default ALSA device for Jack will be hw: 0. If you want to use a different sound card, then you can specify
this when starting Jack, as follows:

147

http://dx.doi.org/10.1007/978-1-4842-2496-0_12
http://jackaudio.org/applications
http://apps.linuxaudio.org/apps/categories/jack_midi

CHAPTER 7 = JACK

jackd -dalsa -dhw:0
I have a USB Sound Blaster card, which requires some extra parameters.
jackd -dalsa -dhw:2 -r 48000 -S

This doesn’t work great; I get a regular “ticking” sound.
Without the -S (16-bit) flag, I just get this cryptic line:

ALSA: cannot set hardware parameters for playback
Alternatively, I can run this:
jackd -dalsa -dplughw:2 -r 48000

When I start it this way, Jack advises against using ALSA plug devices, but it works best so far.

How Can | Use Multiple Sound Cards with Jack?

Jack is intended for professional audio use. In such a system there will generally be only a single digital
sample “clock” In this “ideal” Jack world, there would not be multiple independent sound cards each
with their own clock. I'm just going to talk about this ideal world. If you need to run Jack in a situation
where there is more than one sound card, then see “How can I use multiple soundcards with JACK?”
(http://jackaudio.org/multiple devices).

Mixing Audio

If two output ports from two different sources are connected to the same input port, then Jack will mix them
for you. This allows you to sing along to your favorite MP3 file with no effort.

1. Connect the microphone capture ports to the playback ports. Avoid setting up a
feedback loop between your laptop’s microphone and speakers by, for example,
plugging in headphones.

2. Starta player such as mplayer,which will also connect to the playback ports with
something like the following:

mplayer -ao jack <MP3 file >

3. Startsinging.

Of course, there is no volume control on each source. You can insert a mixer such as jack_mixer
(http://home.gna.org/jackmixer/), maybe in your distro too, and then use that to control the volume of
each source, as shown in the qjackct] screen in Figure 7-1.

148

http://jackaudio.org/multiple_devices
http://home.gna.org/jackmixer/

CHAPTER 7

Connections - JACK Audio Connection Kit
Audio | MIDI | ALSA
Readable Clients / Output Ports v Writable Clients / Input Ports
v [l jack_mixer v @l jack_mixer
MAIN L R, mixer2 L
MAINR ~ ®, mixer2 R
mixer2 Out L /- R, Mixer L
& mixer2 Out R / R, Mixer R
& Mixer Out L \x\" v Wl system
Mixer Out R 228 ¢ playback_1
Monitor L b @ playback_2
Monitor R
& out O
out 1
v [l system
A capture_1
A capture_2
o’ X Disconnect || 8¢ Disconnect All <€ Expand All G Refresh

JACK

Figure 7-1. qjackctl showing a mixer of mplayer and system

Writing Audio Applications with Jack

The design of Jack is discussed at the JACK Audio Connection Kit (http://lac.linuxaudio.org/2003/zkm/

slides/paul_davis-jack/title.html) by its primary author Paul Davis. The goals are as follows:

e Jackshould allow streaming of low-latency, high-bandwidth data between
independent applications.

e Although not a requirement, Jack should support any streaming data type, not just
audio.

e Inan active Jack setup, there will be one server and one or more Jack plug-ins. It will
be possible to run multiple Jack servers, but each server will form an independent
Jack setup. Jack will not define any interfaces between Jack servers.

e Applications connected using Jack may have their own graphical interfaces. Jack will
not make any specifications as to different GUI toolkits or libraries. As a consequence
of this requirement, different parts of a running Jack setup may be spread across
multiple processes.

e Jack should provide full, sample-accurate synchronization (in other words, totally
synchronous execution of all client plug-ins).

e Torepresent audio data, Jack should use 32-bit IEEE floats, normalized to value
range [-1,1].

¢ Only noninterleaved audio streams will be supported.
e One Jack client may consume or produce multiple data streams.

e TheJack APIshould be specified in ANSI C. There are no restrictions on how servers
and clients are to be implemented.

149

http://lac.linuxaudio.org/2003/zkm/slides/paul_davis-jack/title.html
http://lac.linuxaudio.org/2003/zkm/slides/paul_davis-jack/title.html

CHAPTER 7 = JACK

e Itshould be possible to connect already running applications.
e Itshould be possible to add or remove Jack clients while the server is running.
To pick the eyes out of this, the principal goals are as follows:

e Jack should allow streaming of low-latency, high-bandwidth data between
independent applications.

e Jack should provide full, sample-accurate synchronization (in other words, totally
synchronous execution of all client plug-ins).

The second is guaranteed by the Jack framework. The first is supplied by the Jack framework, as long as
the applications are coded correctly.

Under the hood Jack uses fast Linux (Unix) pipelines to stream data from one application to another. Within
each Jack application is a real-time loop that takes data off the input pipe and sends data to the output pipe. To
avoid latency delays, there should essentially be no (or as little as possible) processing between reading and
writing data; the ideal would be to pass pointer data from input to output, or at most to just do a memcpy.

So, how can processing be done? Copy the data read to another data structure and pass processing off
to another thread, or copy data processed in another thread to the output pipe. Anything else will cause
latency, which may become noticeable. In particular, certain system calls are essentially banned: malloc can
cause swapping; sleep is an obvious no-no; read/write, and so on, can cause disk I/O; and pthread_cond_
wait will...wait.

Jack applications are inherently multithreaded. In a Linux world this means Posix threads, and
fortunately there is the book PThreads Primer (http://www8.cs.umu.se/kurser/TDBC64/VT03/pthreads/
pthread-primer.pdf) by Bil Lewis and Daniel J. Berg to tell you all about Posix threads!

These are the mechanisms to set up a Jack application:

1. Openaconnection to a Jack server: jack_client_open.
Examine the status of the connection and bailout if needed.
Install a process callback handler to manage I/0: jack_set_process_callback.

Install a shutdown callback: jack_on_shutdown .

a o~ e n

Register input and output ports with the Jack server: jack_port_register. Note
that each port carries only a mono channel, so for stereo you will get two input
ports. This does not as yet link them to the pipelines.

6. Activate the ports. In other words, tell Jack to start its processing thread: jack_
activate.

7. Connect the ports to the pipelines: jack_connect.

8. Sitthere in some way. For a text client, just sleep in a loop. A GUI client might
have a GUI processing loop.

Compiling

The following examples need to be linked to various libraries. These are the jack, sndfile, pthread, and math
libraries. The appropriate flags are as follows:

INCLUDES = $(shell pkg-config --cflags jack sndfile)
LDLIBS = $(shell pkg-config --1libs jack sndfile) -lpthread -1m

150

http://www8.cs.umu.se/kurser/TDBC64/VT03/pthreads/pthread-primer.pdf
http://www8.cs.umu.se/kurser/TDBC64/VT03/pthreads/pthread-primer.pdf

CHAPTER 7 © JACK

Port Information

Jack uses ports that carry mono 32-bit data. Each port has a name as a string and properties such as input
and output. Once a connection to a Jack server has been made, queries for ports known to the server can be
made using jack_get_ports. If the arguments are NULL or zero, then all ports are returned, or patterns can
be used to restrict the port names returned. Once a port name is found, it can be turned into a jack_port_t,
and its properties can be queried.

A program to do this is 1istports.c, shown here:

/** @file listports.c

*

* @brief This client delays one channel by 4096 framse.
*/

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#ifndef WIN32

#include <unistd.h>
#endif

#include <jack/jack.h>

jack _client t *client;

void print _port info(char *name) {
printf("Port name is %s\n", name);
jack_port_t *port = jack port by name (client, name);
if (port == NULL) {
printf("No port by name %s\n", name);
return;

}
printf(" Type is %s\n", jack port type(port));

int flags = jack port flags(port);
if (flags & JackPortIsInput)
printf(" Is an input port\n");
else
printf(" Is an output port\n");
char **connections = jack_port_get connections(port);
char **c = connections;
printf(" Connected to:\n");
while ((c != NULL) &% (*c != NULL)) {
printf(" %s\n", *c++);

if (connections != NULL)
jack_free(connections);

151

CHAPTER 7 = JACK

int
main (int argc, char *argv[])
{

int i;

const char **ports;

const char *client_name;

const char *server name = NULL;

jack _options_t options = JackNullOption;
jack_status_t status;

if (argc »>=2) /* client name specified? */

client_name = argv[1];
if (argc »=3) /* server name specified? */

server_name = argv[2];
options |= JackServerName;

}
}
else /* use basename of argv[0] */
{
client _name = strrchr (argv[o], '/');
if (client_name == 0)
{
client _name = argv[o0];
}
else
{
client_name++;
}
}

/* open a client connection to the JACK server */

client = jack client open (client name, options, &status, server name);
if (client == NULL)
{
fprintf (stderr, "jack client open() failed, "
"status = 0x%2.0x\n", status);
if (status & JackServerFailed)

{

fprintf (stderr, "Unable to connect to JACK server\n");
}
exit (1);

if (status & JackServerStarted)

{
fprintf (stderr, "JACK server started\n");

if (status & JackNameNotUnique)
{

client_name = jack get client name (client);

152

CHAPTER 7 © JACK

fprintf (stderr, "unique name “%s' assigned\n", client_name);

}
if (jack activate (client))

fprintf (stderr, "cannot activate client");
exit (1);

ports = jack get ports (client, NULL, NULL, 0);
if (ports == NULL)

fprintf (stderr, "no ports\n");
exit (1);

}

char **p = ports;

while (*p != NULL)
print_port info(*p++);

jack free(ports);

jack_client _close (client);
exit (0);

Copy Input to Output

The Jack source code distribution has an example clients subdirectory. Included in this subdirectory is the
client thru_client.c, which just copies input to output. The processing heart of this example is the function
process. This function takes a number of frames available on both input and output as parameters and the
function loops through the (stereo) channels, gets corresponding input and output buffers (for input and
output pipelines), and copies data from input to corresponding output.

The code is as follows:

/** @file thru_client.c

*

* @brief This simple through client demonstrates the basic features of JACK
* as they would be used by many applications.

*/

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#ifndef WIN32

#include <unistd.h>
#endif

#include <jack/jack.h>

jack_port_t **input_ports;
153

CHAPTER 7 = JACK

jack_port_t **output_ports;
jack client t *client;

static void signal handler (int sig)

{
jack_client _close (client);
fprintf (stderr, "signal received, exiting ...\n");
exit (0);
}
/**
* The process callback for this JACK application is called in a
* special realtime thread once for each audio cycle.
*
* This client follows a simple rule: when the JACK transport is
* running, copy the input port to the output. When it stops, exit.
*/
int
process (jack nframes_t nframes, void *arg)
{
int i,
jack_default_audio_sample_t *in, *out;
for (i=0; 1< 2; it++)
{
in = jack port get buffer (input_ports[i], nframes);
out = jack port get buffer (output ports[i], nframes);
memcpy (out, in, nframes * sizeof (jack default audio sample t));
return 0;
}
/**

* JACK calls this shutdown_callback if the server ever shuts down or
* decides to disconnect the client.
*/
void
jack_shutdown (void *arg)
{
free (input_ports);
free (output ports);
exit (1);

}

int
main (int argc, char *argv[])
{
int i;
const char **ports;
const char *client_name;
const char *server_name = NULL;
jack_options_t options = JackNullOption;

154

CHAPTER 7

jack_status_t status;
if (argc »>=2) /* client name specified? */

client_name = argv[1];
if (argc »>=3) /* server name specified? */

server_name = argv([2];
options |= JackServerName;

}
}
else /* use basename of argv[0] */
{
client_name = strrchr (argv[o], '/');
if (client name == 0)
{
client_name = argv[o0];
}
else
{
client_name++;
}
}

/* open a client connection to the JACK server */

client = jack client open (client name, options, &status, server name);
if (client == NULL)

{
fprintf (stderr, "jack client open() failed, "
"status = 0x%2.0x\n", status);
if (status & JackServerFailed)
{
fprintf (stderr, "Unable to connect to JACK server\n");
}
exit (1);
}
if (status & JackServerStarted)
{

fprintf (stderr, "JACK server started\n");

if (status & JackNameNotUnique)
{

client_name = jack get client name (client);
fprintf (stderr, "unique name “%s' assigned\n", client name);

}
/* tell the JACK server to call “process()' whenever
there is work to be done.

*/

jack_set process_callback (client, process, 0);

JACK

155

CHAPTER 7 = JACK

156

/* tell the JACK server to call “jack shutdown()' if
it ever shuts down, either entirely, or if it

just decides to stop calling us.
*/

jack_on_shutdown (client, jack_shutdown, 0);

/* create two ports pairs*/

input_ports = (jack port t**) calloc (2, sizeof (jack port t*));
output_ports = (jack port t**) calloc (2, sizeof (jack port t*));

char port name[16];
for (i=0; 1< 2; i++)

{
sprintf (port_name, "input %d", i + 1);
input_ports[i] = jack port register (client, port name, JACK DEFAULT AUDIO TYPE,
JackPortIsInput, 0);
sprintf (port_name, "output %d", i + 1);
output_ports[i] = jack port register (client, port name, JACK DEFAULT AUDIO TYPE,
JackPortIsOutput, 0);
if ((input_ports[i] == NULL) || (output ports[i] == NULL))
{
fprintf (stderr, "no more JACK ports available\n");
exit (1);
}
}

/* Tell the JACK server that we are ready to roll. Our
* process() callback will start running now. */

if (jack activate (client))

fprintf (stderr, "cannot activate client");
exit (1);

/* Connect the ports. You can't do this before the client is
activated, because we can't make connections to clients
that aren't running. Note the confusing (but necessary)
orientation of the driver backend ports: playback ports are
"input" to the backend, and capture ports are "output" from
it.

* X ¥ ¥ ¥

*/

ports = jack get ports (client, NULL, NULL, JackPortIsPhysical|JackPortIsOutput);
if (ports == NULL)
{

fprintf (stderr, "no physical capture ports\n");

exit (1);

}

for (i=0; 1< 2; it++)

CHAPTER 7

if (jack_connect (client, ports[i], jack port_name (input_ports[i])))
fprintf (stderr, "cannot connect input ports\n");

free (ports);

ports = jack _get_ports (client, NULL, NULL, JackPortIsPhysical|JackPortIsInput);
if (ports == NULL)

fprintf (stderr, "no physical playback ports\n");
exit (1);
}
for (i=0; 1< 2; i++)
if (jack connect (client, jack port name (output ports[i]), ports[i]))
fprintf (stderr, "cannot connect input ports\n");

free (ports);

/* install a signal handler to properly quits jack client */

#ifdef WIN32

signal (SIGINT, signal handler);
signal (SIGABRT, signal handler);
signal (SIGTERM, signal handler);

#else

signal (SIGQUIT, signal handler);
signal (SIGTERM, signal handler);
signal (SIGHUP, signal handler);
signal (SIGINT, signal_handler);

#endif

/* keep running until the transport stops */

while (1)

#ifdef WIN32

Sleep (1000);

#else

sleep (1);

#endif

}

jack client close (client);
exit (0);

Delaying Audio

While this book is not about audio effects, you can easily introduce one effect—latency—by just delaying
sounds. Now this—and any time-consuming actions—are against the spirit (and implementation!) of Jack,
so it can be done only in cooperation with the Jack model.

JACK

157

CHAPTER 7 = JACK

The simplest idea is just to throw in sleep commands at the right places. This would assume that calls
to the process callback happen asynchronously, but they don't—they happen synchronously within the Jack
processing thread. Activities that cost time aren’t allowed. If you try it, you will end up with lots of xruns at
best and seizures of Jack at worst.

In this case, the solution is straightforward: keep a buffer in which previous inputs are kept, and read
older entries out of this buffer when output is requested. A “big enough” wrap-around array will do this,
where old entries are read out and new entries read in.

The following program, delay. c, will copy the left channel in real time but delay the left channel by
4,096 samples:

/*¥* @file delay.c
*
* @brief This client delays one channel by 4096 framse.
*/

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#ifndef WIN32

#include <unistd.h>
#endif

#include <jack/jack.h>

jack _port t **input ports;
jack_port_t **output_ports;
jack_client_t *client;

#define SIZE 8192

#define DELAY 4096

jack default audio_sample t buffer[SIZE];
int idx, delay idx;

static void signal handler (int sig)

{
jack_client _close (client);
fprintf (stderr, "signal received, exiting ...\n");
exit (0);

}

static void copy2out(jack default audio sample t *out,
jack_nframes t nframes) {
if (delay idx + nframes < SIZE) {
memcpy(out, buffer + delay idx,
nframes * sizeof (jack default audio sample t));
} else {
int frames to end = SIZE - delay idx;
int overflow = delay idx + nframes - SIZE;
memcpy(out, buffer + delay idx,
frames _to end * sizeof (jack default audio sample t));

158

}

CHAPTER 7

memcpy(out, buffer, overflow * sizeof(jack default_audio_sample t));

}
delay idx = (delay idx + nframes) % SIZE;

static void copy2buffer(jack default audio sample t *in,

jack_nframes_t nframes) {
if (didx + nframes < SIZE) {
memcpy (buffer + idx, in,
nframes * sizeof (jack default audio sample t));
} else {
int frames to end = SIZE - idx;
int overflow = idx + nframes - SIZE;
memcpy (buffer + idx, in,
frames_to end * sizeof (jack default audio sample t));
memcpy (buffer, in, overflow * sizeof(jack default audio sample t));

}

idx = (idx + nframes) % SIZE;

}
/X¥*
* The process callback for this JACK application is called in a
* special realtime thread once for each audio cycle.
*
* This client follows a simple rule: when the JACK transport is
* running, copy the input port to the output. When it stops, exit.
*/
int
process (jack nframes_t nframes, void *arg)
{
int i;
jack_default_audio_sample t *in, *out;
in = jack port get buffer (input_ports[o0], nframes);
out = jack port_get buffer (output_ports[o0], nframes);
memcpy (out, in, nframes * sizeof (jack default audio sample t));
in = jack port get buffer (input_ports[1], nframes);
out = jack port get buffer (output ports[1], nframes);
copy2out(out, nframes);
copy2buffer(in, nframes);
return 0;
}
/**

* JACK calls this shutdown_callback if the server ever shuts down or
* decides to disconnect the client.
*/

void

jack_shutdown (void *arg)

JACK

159

CHAPTER 7 = JACK

free (input_ports);
free (output ports);
exit (1);

}

int

main (int argc, char *argv[])

{
int i;
const char **ports;
const char *client name;
const char *server name = NULL;
jack_options_t options = JackNullOption;
jack_status_t status;

if (argc »>=2) /* client name specified? */

client _name = argv[1];
if (argc »=3) /* server name specified? */

server_name = argv[2];
options |= JackServerName;

}
}
else /* use basename of argv[0] */
{
client_name = strrchr (argv[o], '/');
if (client _name == 0)
{
client _name = argv[o0];
}
else
{
client_name++;
}
}

/* open a client connection to the JACK server */

client = jack client_open (client_name, options, &status, server name);
if (client == NULL)

{
fprintf (stderr, "jack client open() failed, "
"status = 0x%2.0x\n", status);
if (status & JackServerFailed)
{
fprintf (stderr, "Unable to connect to JACK server\n");
}
exit (1);
}

if (status & JackServerStarted)

160

CHAPTER 7 © JACK

{
fprintf (stderr, "JACK server started\n");
}
if (status & JackNameNotUnique)
{
client_name = jack get client name (client);
fprintf (stderr, "unique name “%s' assigned\n", client_name);
}

/* tell the JACK server to call “process()' whenever
there is work to be done.
*/

jack_set process callback (client, process, 0);

/* tell the JACK server to call "jack_shutdown()' if
it ever shuts down, either entirely, or if it
just decides to stop calling us.

*/

jack_on_shutdown (client, jack_shutdown, 0);

/* create two ports pairs*/

input_ports = (jack_port_t**) calloc (2, sizeof (jack port_t*));
output_ports = (jack port t**) calloc (2, sizeof (jack port t*));

char port name[16];
for (i=0; 1< 2; i++)

{
sprintf (port name, "input %d", i + 1);
input_ports[i] = jack port register (client, port name, JACK DEFAULT AUDIO TYPE,
JackPortIsInput, 0);
sprintf (port_name, "output %d", i + 1);
output_ports[i] = jack port register (client, port name, JACK DEFAULT AUDIO TYPE,
JackPortIsOutput, 0);
if ((input_ports[i] == NULL) || (output ports[i] == NULL))
fprintf (stderr, "no more JACK ports available\n");
exit (1);
}
}

bzero(buffer, SIZE * sizeof (jack default audio sample t));
delay idx = 0;
idx = DELAY;

/* Tell the JACK server that we are ready to roll. Our
* process() callback will start running now. */

if (jack_activate (client))

161

CHAPTER 7 = JACK

fprintf (stderr, "cannot activate client");
exit (1);

/* Connect the ports. You can't do this before the client is
activated, because we can't make connections to clients
that aren't running. Note the confusing (but necessary)
orientation of the driver backend ports: playback ports are
"input" to the backend, and capture ports are "output" from
it.

* ¥ X ¥ *x

*/

ports = jack get ports (client, NULL, NULL, JackPortIsPhysical|JackPortIsOutput);
if (ports == NULL)

fprintf (stderr, "no physical capture ports\n");
exit (1);

}

for (i=0;1<2; it+)
if (jack connect (client, ports[i], jack port name (input ports[i])))
fprintf (stderr, "cannot connect input ports\n");

free (ports);

ports = jack get ports (client, NULL, NULL, JackPortIsPhysical|JackPortIsInput);
if (ports == NULL)

fprintf (stderr, "no physical playback ports\n");
exit (1);

}

for (i=0;1<2; it+)
if (jack connect (client, jack port name (output ports[i]), ports[i]))
fprintf (stderr, "cannot connect input ports\n");

free (ports);

/* install a signal handler to properly quits jack client */
#ifdef WIN32

signal (SIGINT, signal handler);

signal (SIGABRT, signal handler);

signal (SIGTERM, signal handler);

#else
signal (SIGQUIT, signal handler);
signal (SIGTERM, signal handler);
signal (SIGHUP, signal handler);
signal (SIGINT, signal handler);
#endif

/* keep running until the transport stops */

162

CHAPTER 7 © JACK
while (1)

{
#ifdef WIN32
Sleep (1000);
#else
sleep (1);
#endif
}

jack _client close (client);
exit (0);

Audacity with Jack

Audacity is Jack-aware. You can use it to capture and display Jack streams. But that doesn’t mean that for
the user it plays in a nice way! With a running Jack system, starting Audacity registers it with Jack, but there
are no input or output ports. These show up only when you start a record session with Audacity. It then
establishes its own links within Jack.

For example, with thru_client as the only client within Jack, qjackctl shows the connections, as
shown in Figure 7-2.

3 Connections - JACK Audio Connection Kit -0Ox
Audio | MIDI ALSA
Readable Clients / Output Ports ~ Writable Clients / Input +
v i system
A capture_1 - playback_1
A capture 2 ¢ playback 2
v @ thru_client v @ thru_client
& output_1 R input_1
& output_2 R input_2
X Connect | X Disconnect | € Disconnect All € Expand All O Refresh

Figure 7-2. Qjackctl showing thru_client

In this figure, the capture devices are connected to the thru_client inputs, and the thru_client
outputs are connected to the playback outputs.

Just starting Audacity but not recording anything makes no changes to this connection graph.

But when Audacity starts recording with thru_client already running, qjackctl shows the links
established, as in Figure 7-3.

163

CHAPTER 7 = JACK

] Connections - JACK Audio ConnectionKit — [I.FA
Audio | MIDI | ALSA
Readable Clients / Output Por v |~ Writable Clients / Input +
v @ PortAudio » @ PortAudio
out O v [system
& out 1 _ - playback_1
v [system : ¢ playback 2
v I thru_client
A capture 2 R input_1
v [thru_client R input_2
output_1 ‘J
output 2 x
| X Connect || X Disconnect | | 3€ Disconnect All | € ExpandAll | | ORefresh

Figure 7-3. Qjackctl with thru_client and Audacity

This is a lot messier: Audacity shows as PortAudio devices, the capture devices are linked to the
PortAudio inputs, and the PortAudio outputs are linked to the playback devices. The existing thru_client
links are basically discarded. To set up your desired situation, these have to be relinked as needed.

To demonstrate the effects of delaying one channel, start Jack, start delay, and then start Audacity.
Relink the ports according to Figure 7-4.

- Connections - JACK Audio Connection kit |BE3
Audio | MIDI | ALSA
Readable Clients / Output Ports ¥ Writable Clients /Inp v |~
v [delay v @ delay
output_1 R input_1
¢ output_2 R, input_2
v [system v @ PortAudio
A capture_1 R in_3
% capture 2
v @ system
) playback 1 1

¢ playback 2 -
A Connect || X Disconnect J | f Disconnect All € Expand All il O Refresh J

Figure 7-4. Qjackctl wih delay

164

CHAPTER 7 © JACK

That is, capture ports are linked to delay input ports, delay output ports are linked to PortAudio
(Audacity) input ports, and PortAudio output ports are linked to playback ports.
The waveforms captured by Audacity clearly show the delay on the left channel compared to the right

(Figure 7-5).

3 2 | I _Z’ 4 R R| []
n i “l I R P g
= : ® Pler|k| 4w -36-24-120 S| -36-24-120

o |Ba(@ (] oo & 2 LA|LIHP I e &

9L 5, 9)
JACK Audio Connect = | #) | system = ,9 system < || 2 (Stereo) Input Channels <
1:05.40 1:05.50 1:05.60 1:05.70 1:05.80 1:05.90 1:0@.11;_] 1:06.10 1:06.20 1:06.30 1:06.40 1:06.50

X Audio Track | 1.0
Stereo, 44100Hz
32-bit float 0.5-
Mute | Sole
= + | 0.0
Q
L R [-0.5-
Q
-1.0
1.0
0.5-
0.0-%
-0.5-
a -1.0
| .
Project Rate (Hz): Selection Start: @ End () Length Audio Position:
44100 | = Snap To 00hO0OlmO6sv 00hOlmO6sv OO0OhOOmMOOSs~

Disk space remains for recording 19 hours and 42 minutes Actual Rate: 48000

Figure 7-5. Audacity showing delay

Play a Sine Wave

The copy example does not show the detail of what is in the buffers: the contents are from jack_default_
audio_sample_t. What these are is described in the macro JACK_DEFAULT_AUDIO_TYPE with the default value
“32 bit float mono audio.”

To do anything more than simply pass audio through, you need to handle the data in this format. The
example program simple client.c fills an array with 32-bit floating point sine curve values. On each call to
process, it copies data from the sine curve array into the output buffers. The increment into the sine curve
array is different for the left and right channels to give a different note on each channel.

Note that the calculation of the sine curve array is not done within the process function. That would be
too slow and would cause latency.

The program is as follows:

165

CHAPTER 7 = JACK

/*¥* @file simple client.c

*

* @brief This simple client demonstrates the basic features of JACK
* as they would be used by many applications.

*/

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#ifndef WIN32

#include <unistd.h>
#endif

#include <jack/jack.h>

jack_port_t *output_porti, *output_port2;
jack_client_t *client;

#ifndef M_PI
#define M_PI (3.14159265)
#endif

#define TABLE SIZE (200)
typedef struct

float sine[TABLE SIZE];
int left_phase;
int right_phase;

}
paTestData;
static void signal handler(int sig)
{
jack_client close(client);
fprintf(stderr, "signal received, exiting ...\n");
exit(0);
}
/**
* The process callback for this JACK application is called in a
* special realtime thread once for each audio cycle.
*
* This client follows a simple rule: when the JACK transport is
* running, copy the input port to the output. When it stops, exit.
*/
int
process (jack nframes t nframes, void *arg)
{

jack_default audio_sample t *out1, *out2;
paTestData *data = (paTestData*)arg;

166

int i;

out1
out2

for(i=0; i<nframes; i++)

{
out1[i] = data->sine[data->left phase]; /* left */
out2[i] = data->sine[data->right phase]; /* right */
data->left_phase += 1;
if(data->left phase >= TABLE SIZE) data->left phase -
data->right_phase += 3; /* higher pitch so we can distinguish left and right. */
if(data->right_phase >= TABLE_SIZE) data->right_phase -
}
return 0;
}
/**

* JACK calls this shutdown_callback if the server ever shuts down or

* decides to disconnect the client.
*/

void

jack_shutdown (void *arg)

{
}

exit (1);

int
main (int argc, char *argv[])
{
const char **ports;
const char *client_name;
const char *server_name = NULL;
jack_options_t options = JackNullOption;
jack_status_t status;
paTestData data;
int i;

if (arge >= 2) { /* client name specified? */

client_name = argv[1];

if (argc >= 3) { /* server name specified? */

server_name = argv[2];
int my option = JackNullOption | JackServerName;
options = (jack options t)my option;
}

} else { /* use basename of argv[o] */

client_name = strrchr(argv[o], '/");
if (client_name == 0) {

client_name = argv[o0];
} else {

client_name++;

CHAPTER 7

JACK

(jack_default audio_sample t*)jack port get buffer (output porti, nframes);
(jack_default audio_sample t*)jack port get buffer (output port2, nframes);

167

CHAPTER 7 = JACK

}
}
for(i=0; i<TABLE SIZE; i++)
{
data.sine[i] = 0.2 * (float) sin(((double)i/(double)TABLE SIZE) * M PI * 2.);
}

data.left_phase = data.right phase = 0;
/* open a client connection to the JACK server */

client = jack client open (client_name, options, &status, server name);
if (client == NULL) {
fprintf (stderr, "jack client open() failed,
"status = 0x%2.0x\n", status);
if (status & JackServerFailed) {
fprintf (stderr, "Unable to connect to JACK server\n");
}

exit (1);

if (status & JackServerStarted) {
fprintf (stderr, "JACK server started\n");

if (status & JackNameNotUnique) {
client_name = jack get client name(client);
fprintf (stderr, "unique name “%s' assigned\n", client_name);

}

/* tell the JACK server to call ~“process()' whenever
there is work to be done.
*/

jack_set process callback (client, process, 8&data);

/* tell the JACK server to call “jack shutdown()' if
it ever shuts down, either entirely, or if it
just decides to stop calling us.

*/

jack_on_shutdown (client, jack shutdown, 0);

/* create two ports */

output_portil = jack port register (client, "output1",
JACK_DEFAULT_AUDIO_TYPE,
JackPortIsOutput, 0);

output_port2 = jack port register (client, "output2",
JACK_DEFAULT_AUDIO_TYPE,
JackPortIsOutput, 0);

if ((output porti == NULL) || (output_port2 == NULL)) {

168

CHAPTER 7

fprintf(stderr, "no more JACK ports available\n");
exit (1);

/* Tell the JACK server that we are ready to roll. Our
* process() callback will start running now. */

if (jack_activate (client)) {
fprintf (stderr, "cannot activate client");
exit (1);

/* Connect the ports. You can't do this before the client is
activated, because we can't make connections to clients
that aren't running. Note the confusing (but necessary)
orientation of the driver backend ports: playback ports are
"input" to the backend, and capture ports are "output" from
it.

* ¥ ¥ ¥ %

*/

ports = jack get ports (client, NULL, NULL,
JackPortIsPhysical|JackPortIsInput);
if (ports == NULL) {
fprintf(stderr, "no physical playback ports\n");
exit (1);

}

if (jack connect (client, jack port name (output porti), ports[o])) {
fprintf (stderr, "cannot connect output ports\n");
}

if (jack connect (client, jack port name (output port2), ports[1])) {
fprintf (stderr, "cannot connect output ports\n");

free (ports);

/* install a signal handler to properly quits jack client */
#ifdef WIN32

signal (SIGINT, signal handler);

signal (SIGABRT, signal handler);

#else

#endif

signal(SIGTERM, signal handler);
signal(SIGQUIT, signal handler);
signal (SIGTERM, signal handler);
signal (SICHUP, signal handler);
signal (SIGINT, signal handler);
/* keep running until the Ctrl+C */

while (1) {

JACK

169

CHAPTER 7 = JACK

#ifdef WIN32

Sleep(1000);
#else

sleep (1);
#endif
}

jack _client close (client);
exit (0);

Saving Input to Disk

Disk I/0 cannot be performed within the Jack processing loop; it is just too slow. Saving input to a file
requires use of a separate thread to manage disk I/O and pass control between the Jack and disk threads.

/*

*/

The program capture_client.c from the examples does this.

Copyright (C) 2001 Paul Davis
Copyright (C) 2003 Jack 0'Quin

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

* 2002/08/23 - modify for libsndfile 1.0.0 <andy@alsaplayer.org>
* 2003/05/26 - use ringbuffers - joq

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <sndfile.h>
#include <pthread.h>
#include <signal.h>
#include <getopt.h>
#include <jack/jack.h>
#include <jack/ringbuffer.h>

170

CHAPTER 7 © JACK

typedef struct thread info {
pthread t thread id;
SNDFILE *sf;
jack_nframes_t duration;
jack_nframes_t rb_size;
jack_client t *client;
unsigned int channels;
int bitdepth;
char *path;
volatile int can_capture;
volatile int can_process;
volatile int status;

} jack thread info_t;

/* JACK data */

unsigned int nports;

jack_port_t **ports;

jack_default_audio_sample_t **in;

jack_nframes_t nframes;

const size t sample size = sizeof(jack default audio sample t);

/* Synchronization between process thread and disk thread. */

#define DEFAULT_RB_SIZE 16384 /* ringbuffer size in frames */
jack_ringbuffer t *rb;

pthread mutex t disk thread lock = PTHREAD MUTEX INITIALIZER;

pthread cond_t data_ready = PTHREAD_COND_INITIALIZER;

long overruns = 0;

jack_client_t *client;

static void signal handler(int sig)

{
jack_client close(client);
fprintf(stderr, "signal received, exiting ...\n");
exit(0);

}

static void *

disk_thread (void *arg)

{
jack thread info t *info = (jack thread info t *) arg;
static jack_nframes t total captured = 0;
jack_nframes_t samples_per frame = info->channels;
size t bytes per frame = samples per frame * sample size;
void *framebuf = malloc (bytes per frame);

pthread setcanceltype (PTHREAD CANCEL_ ASYNCHRONOUS, NULL);
pthread mutex lock (8disk thread lock);

info->status = 0;

while (1) {

171

CHAPTER 7

JACK

/* Write the data one frame at a time. This is
* inefficient, but makes things simpler. */
while (info->can_capture &&
(jack_ringbuffer read space (rb) >= bytes per frame)) {

jack_ringbuffer read (rb, framebuf, bytes per frame);

if (sf_writef float (info->sf, framebuf, 1) != 1) {
char errstr[256];
st error str (0, errstr, sizeof (errstr) - 1);
fprintf (stderr,
"cannot write sndfile (%s)\n",

errstr);
info->status = EIO; /* write failed */
goto done;

}

if (++total_captured >= info->duration) {
printf ("disk thread finished\n");
goto done;

}

/* wait until process() signals more data */
pthread cond wait (8data_ready, &disk thread lock);

}

done:
pthread mutex_unlock (&disk thread lock);
free (framebuf);
return O;

}

static int

process (jack nframes t nframes, void *arg)

{

172

int chn;
size t i;
jack_thread _info t *info = (jack thread info t *) arg;

/* Do nothing until we're ready to begin. */
if ((!info->can_process) || (!info->can_capture))
return O;

for (chn = 0; chn < nports; chn++)
in[chn] = jack port get buffer (ports[chn], nframes);

/* Sndfile requires interleaved data. It is simpler here to
* just queue interleaved samples to a single ringbuffer. */
for (i = 0; i < nframes; i++) {

for (chn = 0; chn < nports; chn++) {

}

CHAPTER 7

if (jack ringbuffer write (rb, (void *) (in[chn]+i),
sample size)
< sample_size)
OVerruns++;

/* Tell the disk thread there is work to do. If it is already

* running, the lock will not be available. We can't wait

* here in the process() thread, but we don't need to signal

* in that case, because the disk thread will read all the

* data queued before waiting again. */

if (pthread mutex trylock (8disk thread lock) == 0) {
pthread cond signal (&data_ready);
pthread mutex unlock (&disk thread lock);

}

return 0;

static void
jack_shutdown (void *arg)

{

}

fprintf(stderr, "JACK shut down, exiting ...\n");
exit(1);

static void
setup_disk thread (jack thread info_t *info)

{

SF_INFO sf_info;
int short_mask;

st _info.samplerate = jack get sample rate (info->client);
st_info.channels = info->channels;

switch (info->bitdepth) {

case 8: short_mask = SF_FORMAT_PCM U8;
break;

case 16: short_mask = SF_FORMAT_PCM 16;
break;

case 24: short_mask
break;

case 32: short_mask
break;

default: short mask
break;

SF_FORMAT_PCM 24;

SF_FORMAT_PCM 32;

SF_FORMAT PCM_16;

}
sft_info.format = SF_FORMAT WAV|short mask;

if ((info->sf = sf open (info->path, SFM WRITE, &sf info)) == NULL) {
char errstr[256];
sf_error str (0, errstr, sizeof (errstr) - 1);

JACK

173

CHAPTER 7 = JACK

fprintf (stderr, "cannot open sndfile \"%s\" for output (%s)\n", info->path,
errstr);

jack_client_close (info->client);

exit (1);

}

info->duration *= sf_info.samplerate;
info->can_capture = 0;

pthread create (&info->thread id, NULL, disk thread, info);
}

static void
run_disk thread (jack thread info t *info)

{
info->can_capture = 1;
pthread join (info->thread id, NULL);
st _close (info->sf);
if (overruns > 0) {
fprintf (stderr,
"jackrec failed with %1d overruns.\n", overruns);
fprintf (stderr, " try a bigger buffer than -B %"
PRIu32 ".\n", info->rb size);
info->status = EPIPE;
}
}

static void
setup_ports (int sources, char *source names[], jack thread info_t *info)

unsigned int i;
size t in_size;

/* Allocate data structures that depend on the number of ports. */
nports = sources;

ports = (jack port t **) malloc (sizeof (jack port t *) * nports);
in size = nports * sizeof (jack default audio sample t *);

in = (jack_default audio_sample t **) malloc (in_size);

rb = jack ringbuffer create (nports * sample size * info->rb _size);

/* When JACK is running realtime, jack activate() will have
* called mlockall() to lock our pages into memory. But, we
* still need to touch any newly allocated pages before
* process() starts using them. Otherwise, a page fault could
* create a delay that would force JACK to shut us down. */
memset(in, 0, in size);
memset (rb->buf, 0, rb->size);

for (i = 0; i < nports; i++) {
char name[64];

sprintf (name, "input%d", i+1);

174

CHAPTER 7 © JACK

if ((ports[i] = jack_port_register (info->client, name, JACK DEFAULT_AUDIO_
TYPE, JackPortIsInput, 0)) == 0) {
fprintf (stderr, "cannot register input port \"%s\"I\n", name);
jack_client _close (info->client);
exit (1);

}

for (i = 0; i < nports; i++) {
if (jack_connect (info->client, source names[i], jack_port_name (ports[i])))

{
fprintf (stderr, "cannot connect input port %s to %s\n", jack port
name (ports[i]), source names[i]);
jack_client close (info->client);
exit (1);
}
}
info->can_process = 1; /* process() can start, now */
}
int

main (int argc, char *argv[])

jack_thread info_t thread_info;
int c;
int longopt_index = 0;
extern int optind, opterr;
int show_usage = 0;
char *optstring = "d:f:b:B:h";
struct option long options[] = {

{ "help", 0, 0, 'h' }:

{ "duration", 1, 0, 'd' },
{ "file", 1, 0, 'f' },

{ "bitdepth", 1, 0, 'b' },
{ "bufsize", 1, 0, 'B' },
{0,000}

};

memset (&thread info, 0, sizeof (thread info));
thread_info.rb_size = DEFAULT RB_SIZE;
opterr = 0;

while ((c = getopt_long (argc, argv, optstring, long options, &longopt index))

= -1) {
switch (c) {
case 1:
/* getopt signals end of '-' options */
break;
case 'h':

show_usage++;
break;

175

CHAPTER 7 = JACK

case 'd'":
thread_info.duration = atoi (optarg);
break;

case 'f':
thread_info.path = optarg;
break;

case 'b':
thread_info.bitdepth = atoi (optarg);
break;

case 'B':
thread_info.rb_size = atoi (optarg);
break;

default:
fprintf (stderr, "error\n");
show_usage++;
break;

}

}

if (show_usage || thread info.path == NULL || optind == argc) {
fprintf (stderr, "usage: jackrec -f filename [-d second] [-b bitdepth]
[-B bufsize] porti [port2 ... J\n");
exit (1);

}

if ((client = jack client open ("jackrec", JackNullOption, NULL)) == 0) {
fprintf (stderr, "JACK server not running?\n");
exit (1);

}

thread_info.client = client;
thread_info.channels = argc - optind;
thread_info.can_process = 0;

setup disk thread (&thread info);

jack_set process callback (client, process, &thread info);
jack_on_shutdown (client, jack shutdown, &thread info);

if (jack activate (client)) {
fprintf (stderr, "cannot activate client");
}

setup_ports (argc - optind, &argv[optind], &thread info);

/* install a signal handler to properly quits jack client */
signal(SIGQUIT, signal handler);

signal(SIGTERM, signal handler);

signal(SICHUP, signal handler);

signal (SIGINT, signal handler);

176

CHAPTER 7 © JACK

run_disk thread (&thread info);
jack _client close (client);
jack_ringbuffer free (rb);

exit (0);

Interacting with ALSA Devices

Jack will eventually get its input from, and send its output to, devices. Currently, they are most likely to be
ALSA devices. Consequently, there must be a bridge between Jack processing and ALSA input and output.
This will involve all the complexity of ALSA programming.

Fortunately, there are Jack clients that do this. The Jack framework will talk to these, as specified when
starting the Jack server.

jackd -dalsa
So, you don’t need to worry about that interface. For the brave and curious, the Jack source has a
directory of examples, which includes the files alsa_in.c and alsa_out.c. They contains comments from

the author such as"// Alsa stuff.. i dont want to touch this bullshit in the next years....
please..", giving you fair warning that it’s not easy and not necessary for general Jack programming.

Conclusion

This chapter covered using Jack from a user viewpoint and also looked at programming Jack clients.

177

CHAPTER 8

Session Management

A complex sound system may consist of multiple sound sources, multiple filters, and multiple outputs.
If they have to be set up fresh each time they are used, then there can be errors, wasted time, and so on.
Session management attempts to solve these problems.

Resources

Here are some resources:

e “Abrief survey of Linux audio session managers” by Dave Phillips (http://lwn.net/
Articles/533594/)

e “Session Management Overview” (http://wiki.linuxaudio.org/wiki/session_
management) contains links to many resources

e JACK-AUDIO-CONNECTION-KIT, Session API for clients (http://jackaudio.org/
files/docs/html/group_SessionClientFunctions.html)

e LADI Session Handler (http://ladish.org/)
e Non Session Management API (http://non.tuxfamily.org/nsm/API.html)

Session Management Issues

Whenever there are multiple modules linked in some way, there can be a need to manage the modules
and their linkages. These needs arise quite quickly in the Jack environment, which is designed for multiple
linkages. It doesn'’t take a complex arrangement of Jack modules for management to become tedious. For
example, consider the mixer session of the previous chapter in Figure 8-1.

© Jan Newmarch 2017 179
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_8

http://lwn.net/Articles/533594/
http://lwn.net/Articles/533594/
http://wiki.linuxaudio.org/wiki/session_management
http://wiki.linuxaudio.org/wiki/session_management
http://jackaudio.org/files/docs/html/group__SessionClientFunctions.html
http://jackaudio.org/files/docs/html/group__SessionClientFunctions.html
http://ladish.org/
http://non.tuxfamily.org/nsm/API.html

CHAPTER 8 © SESSION MANAGEMENT

EE Connections - JACK Audio Connection Kit Ll
Audio | MIDI | ALSA
Readable Clients / Output Ports v Writable Clients / Input Ports v
v [l jack_mixer v @l jack_mixer
MAIN L R, mixer2 L
MAINR ®, mixer2 R
mixer2 Out L R, Mixer L
& mixer2 Out R R, Mixer R
& Mixer Out L v Wl system
& Mixer Out R ¢ playback_1
Monitor L ¢ playback_2
Monitor R
& out O
out 1
v [l system
A capture_1
A capture_2
o’ € X Disconnect | | #€ Disconnect All <€ Expand All O Refresh

Figure 8-1. Jack connecting multiple applications

Setting this up from the beginning requires the following:
1. Start jackd and qjackctl.
Start jack_mixer.
Open two new sets of input ports on the mixer.
Connect the MAIN mixer output ports to the playback ports.
Connect the microphone ports to one set of mixer input ports.

Start mplayer, which automatically connects to the playback ports.

N e a &~ DN

Disconnect the mplayer output ports from the playback ports and reconnect
them to the other set of mixer input ports.

You don’t want to do this every time you play a song!

The LADISH session manager identifies different levels of control of applications by session managers
(http://ladish.org/wiki/levels). Removing the explicit references to particular managers and
frameworks, the levels are as follows:

e Level 0: An application is not linked to a session-handling library. The user has to
save application projects manually or rely on autosave support from the application.

e Level I: An application is not linked to a session-handling library. The application
saves when particular messages or signals are received.

e Level 2: An application is linked to a session management library. It has limited
interaction with the session handler because of limitations in the session manager.

e Level 3: An application is linked to a sophisticated session manager. It has full
interaction with the session handler.

180

http://ladish.org/wiki/levels

CHAPTER 8 ' SESSION MANAGEMENT

As Dave Phillips points out, “The use of these levels is an attempt to sort and regulate the various possible
conditions for any Linux audio application. Those conditions include the degree of JACK compliance, any
WINE or DOS requirements, network operation, the multiplicity of existing APIs, and so forth.”

The current batch of session management frameworks used for Linux audio includes

e LASH

e Jacksession management
e LADISH

e Non-session manager

e Chino

The existence of multiple managers means that most applications will support the protocols of only one
or at most a few. If you choose a particular manager, then you will be restricted to the applications you can
run under its control.

jack_connect

The programs jack_connect and jack_disconnect can be used to reconfigure connections between clients.
For example, the MIDI player TiMidity will connect its output ports to the first available Jack input ports,
which are generally the system ports connected to the sound card. If you want to connect TiMidity to, say,
jack-rack, then its output ports have to be first disconnected and then connected to the correct ones. On
the other hand, jack-rack does not connect to anything by default so may need to be connected to the
system ports. This is done with the following:

jack_disconnect TiMidity:port 1 system:playback 1
jack_disconnect TiMidity:port 2 system:playback 2

jack_connect TiMidity:port_1 jack_rack:in_1
jack_connect TiMidity:port 2 jack_rack:in_2

jack_connect jack rack:out 1 system:playback 1
jack_connect jack_rack:out_2 system:playback_ 2

LASH

This was the earliest successful session manager for Linux audio but has since fallen out of use. It does not
seem to be in the Ubuntu repositories anymore.

One of the applications requiring LASH is jack_mixer. Even worse, it uses the Python LASH module
from the python-lash.2.7.4-0ubuntu package. The only copy I can find requires a version of Python less
than 2.7, and the installed version of Python is 2.7.4. This is an application that currently will not benefit
from current session management tools. While it might run as Level 1 with LASH, it can run only at Level 0
with other session managers.

So, there are Jack applications that require LASH for session management, but no such support seems
to exist anymore.

Jack Sessions

You can find a list of Jack session-aware applications as of 2016 at http://wiki.linuxaudio.org/apps/
categories/jack_session.

181

http://wiki.linuxaudio.org/apps/categories/jack_session
http://wiki.linuxaudio.org/apps/categories/jack_session

CHAPTER 8 © SESSION MANAGEMENT

qjackctl has a session manager that will allow you to save and restore sessions. You save a session by
clicking the Session button and then choosing a session name and directory. qjackctl stores the session
information as an XML file in whatever directory you save it in. For the previous session, this looks like the
following:

<!DOCTYPE qjackctlSession>
<session name="session2">
<client name="jack mixer">
<port type="out" name="MAIN L">
<connect port="playback 1" client="system"/>
</port>
<port type="out" name="MAIN R">
<connect port="playback 2" client="system"/>
</port>
<port type="in" name="midi in"/>
<port type="out" name="Monitor L"/>
<port type="out" name="Monitor R"/>
<port type="in" name="Mixer L">
<connect port="capture 1" client="system"/>
</port>
<port type="in" name="Mixer R">
<connect port="capture 2" client="system"/>
</port>
<port type="out" name="Mixer Out L"/>
<port type="out" name="Mixer Out R"/>
<port type="in" name="mixer2 L">
<connect port="out 0" client="MPlayer [8955]"/>
</port>
<port type="in" name="mixer2 R">
<connect port="out 1" client="MPlayer [8955]"/>
</port>
<port type="out" name="mixer2 Out L"/>
<port type="out" name="mixer2 Out R"/>
</client>
<client name="system">
<port type="out" name="capture 1">
<connect port="Mixer L" client="jack mixer"/>
</port>
<port type="out" name="capture 2">
<connect port="Mixer R" client="jack mixer"/>
</port>
<port type="in" name="playback 1">
<connect port="MAIN L" client="jack_mixer"/>
</port>
<port type="in" name="playback 2">
<connect port="MAIN R" client="jack_mixer"/>
</port>
</client>
<client name="MPlayer [8955]">
<port type="out" name="out_0">
<connect port="mixer2 L" client="jack_mixer"/>
</port>

182

CHAPTER 8 ' SESSION MANAGEMENT

<port type="out" name="out_1">
<connect port="mixer2 R" client="jack mixer"/>
</port>

</client>

</session>

On loading the session, it looks like Figure 8-2.

(o] Session - JACK Audio'Connection Kit —0Ox

@Lload.. | | Recent v | @ Save v | & Versioning O Refresh |

Client / Ports UuIC Command
B jack_mixer
v & MAINL
X system:playback_1
v & MAINR
X system:playback_2
e midiin
e MonitorL
o MonitorR
% MixerL
X6 system:capture_1
® MixerR
X system:capture_2
e Mixer Out L
e Mixer OutR
v & mixer2L
% MPlayer [8955]):0...
v & mixer2R
X MPlayer [8955].0...
e mixer2 OutL
® mixer2 OutR
B system
v ® capture_1
2 jack_mixer:Mixer L
v & capture_2
26 jack_mixer:Mixer R
% playback_1
26 jack_mixer:MAIN L
® playback_2
26 jack_mixer:MAIN R
B8 MPlayer [8955]
v g out 0
A jack_mixer:mixer...
v & out_1
X jack_mixer:mixer...

4

4

4

4

Figure 8-2. gjackctl showing Jack session

183

CHAPTER 8 © SESSION MANAGEMENT

As you can see, there are many red Xs. Restoring a session doesn’t start these particular applications.
If you restart jack_mixer by hand, then it establishes the links between its MAIN output ports and system
playback ports, and several of the red Xs disappear. But it doesn’t create the extra ports that were created
earlier. You need to repeat the work of creating new input ports with the right names; then gjackctl does
reestablish the connections, and more red Xs disappear.

If you run mplayer again, it just establishes its own default connections to the playback ports and has
to be remapped by hand. It doesn’t even seem to meet Level 0, as qjackctl doesn’t remap its connections
automatically.

The issue here is that mplayer and jack_mixer do not talk the Jack session management protocol. The
session manager does reset any connections made by some applications, but not all of them. An example
is given later of adding Jack session management to an application, and then it will be restarted and
reconnected properly.

LADISH

LADISH is designed as the successor to LASH and is available in the repositories.

LADISH can start, stop and configure sessions. In particular, it can set up different Jack configurations.
This means you do not start Jack and then start LADISH; it’s the other way around: start the GUI tool
gladish, configure Jack, and then start a session. The process is described in the LADI Session Handler Wiki
(http://ladish.org/wiki/tutorial). Follow it, in particular connecting Jack to, say, ALSA. Otherwise, you
will get no sound! See also the LADI Session Handler (www. penguinproducer.com/Blog/2011/12/the-1adi-
session-handler/) by the Penguin Producer.

Once you have LADISH set up, start a new Studio and then start applications from its Applications
menu. To run mplayer, you need to give the full command as follows:

mplayer -ao jack 54154.mp3

You can start jack_mixer from the Applications menu and then add two new sets of input ports, as in
Chapter 7. After reconnecting them, you end with a connection graph as shown in Figure 8-3.

184

http://ladish.org/wiki/tutorial
http://www.penguinproducer.com/Blog/2011/12/the-ladi-session-handler/
http://www.penguinproducer.com/Blog/2011/12/the-ladi-session-handler/
http://dx.doi.org/10.1007/978-1-4842-2496-0_7

CHAPTER 8 ' SESSION MANAGEMENT

Studio Room

Hardware Capture

capture_1
capture_2

mplayer

out_0
out_1

mixer

jack_mixer-3
midi in
MAIN L
MAINR
Monitor L
Monitor R

Mixer OutR
mixer2 L
mixer2 R

mixer2 OutL

mixer2 Out R

Hardware Playback

playback_1
playback_2

Figure 8-3. LADISH session

185

CHAPTER 8 © SESSION MANAGEMENT

Connection graphs are stored as XML files in $HOME/ . 1adish. For example, the graph in Figure 8-3 is
stored as follows:

<?xml version="1.0"?>

<l--
ladish Studio configuration.
-->
<!-- Sun Sep 29 10:49:54 2013 -->
<studio>
<jack>
<conf>
<parameter path="/engine/driver">alsa</parameter>
<parameter path="/engine/client-timeout">500</parameter>
<parameter path="/engine/port-max">64</parameter>
</conf>
<clients>
<client name="system" uuid="5ef937c6-4617-45cd-8441-8ff6e2aeeseb">
<ports>
<port name="capture 1" uuid="9432f206-44c3-45cb-8024-3ba7160962bc" />
<port name="capture 2" uuid="3c9acf5c-c91d-4692-add2-e3defb7c508a" />
<port name="playback_1" uuid="95c68011-dab9-401c-8904-b3d149e20570" />
<port name="playback 2" uuid="5b8e9215-3ff4-4973-8cOb-1eb5ab7cccob” />
</ports>
</client>
<client name="jack mixer-3" uuid="4538833e-d7e7-47d0-8a43-67ee25d17898">
<ports>
<port name="midi in" uuid="17d04191-f59d-4d16-970c-55030162aae7" />
<port name="MAIN L" uuid="9d986401-c303-4135-89b7-a32e10120ce4" />
<port name="MAIN R" uuid="fae94d01-00ef-449d-8e05-f95df84c5357" />
<port name="Monitor L" uuid="1758d824-75cd-46b3-8e53-82c6belca200" />
<port name="Monitor R" uuid="d14815e9-d3bc-457b-8e4f-29ad29ea36f7" />
<port name="Mixer L" uuid="07d388ed-d00a-4ee0-92aa-3ae79200elle" />
<port name="Mixer R" uuid="d1eb3400-75ce-422d-b9b8-b7e670f95428" />
<port name="Mixer Out L" uuid="fad2a77e-6146-4919-856f-b6f7befdb84d" />
<port name="Mixer Out R" uuid="920c5d12-9f62-46aa-b191-52bfbb94065d" />
<port name="mixer2 L" uuid="c2b96996-9cd1-41dd-a750-192bb5717438" />
<port name="mixer2 R" uuid="3de52738-d7e8-4733-bf08-3ea2b6372a4c" />
<port name="mixer2 Out L" uuid="4e08eba4-a0c1-4e76-9dff-c14f76d5328e" />
<port name="mixer2 Out R" uuid="9d2f79a5-e2d0-484b-b094-98ef7a4f61a7" />
</ports>
</client>
<client name="mplayer" uuid="66e0d45f-2e21-4fbf-ac34-5d3658ee018a">
<ports>
<port name="out_0" uuid="83152a6e-e616-4357-93ce-020ba58b7d0o0" />
<port name="out_1" uuid="55a05594-174d-48a5-805b-96d2c9e77cf1" />
</ports>
</client>
</clients>
</jack>
<clients>

<client name="Hardware Capture" uuid="47c1cd18-7b21-4389-bec4-6e0658e1d6b1"
naming="app">

186

CHAPTER 8 ' SESSION MANAGEMENT

<ports>
<port name="capture 1" uuid="94321206-44c3-45cb-8024-3ba7160962bc" type="audio"
direction="output" />
<port name="capture 2" uuid="3c9acf5c-c91d-4692-add2-e3defb7c508a" type="audio"
direction="output" />
</ports>
<dict>
<key name="http://ladish.org/ns/canvas/x">1364.000000</key>
<key name="http://ladish.org/ns/canvas/y">1083.000000</key>
</dict>
</client>
<client name="Hardware Playback" uuid="b2aobb06-28d8-4bfe-956e-eb2437819629"
naming="app">
<ports>
<port name="playback_1" uuid="95c68011-dab9-401c-8904-b3d149e20570" type="audio"
direction="input" />
<port name="playback_2" uuid="5b8e9215-3ff4-4973-8c0b-1eb5ab7cccob” type="audio"
direction="input" />
</ports>
<dict>
<key name="http://ladish.org/ns/canvas/x">1745.000000</key>
<key name="http://ladish.org/ns/canvas/y">1112.000000</key>
</dict>
</client>
<client name="jack mixer-3" uuid="4b198f0f-5a77-4486-9f54-f7ec044d9bf2" naming="app"
app="98729282-8b18-4bcf-b929-41bc53f2bged">
<ports>
<port name="midi in" uuid="17d04191-f59d-4d16-970c-55030162aae7" type="midi"
direction="input" />
<port name="MAIN L" uuid="9d986401-c303-4f35-89b7-a32e10120ce4" type="audio"
direction="output" />
<port name="MAIN R" uuid="fae94d01-00ef-449d-8e05-195df84c5357" type="audio"
direction="output" />
<port name="Monitor L" uuid="1758d824-75cd-46b3-8e53-82c6belca200" type="audio"
direction="output" />
<port name="Monitor R" uuid="d14815e9-d3bc-457b-8e4f-29ad29ea36f7" type="audio"
direction="output" />
<port name="Mixer L" uuid="07d388ed-d00Oa-4ee0-92aa-3ae79200e1le" type="audio"
direction="input" />
<port name="Mixer R" uuid="d1eb3400-75ce-422d-b9b8-b7e670f95428" type="audio"
direction="input" />
<port name="Mixer Out L" uuid="fad2a77e-6146-4919-856f-b6f7befdb84d" type="audio"
direction="output" />
<port name="Mixer Out R" uuid="920c5d12-9f62-46aa-b191-52bfbb94065d" type="audio"
direction="output" />
<port name="mixer2 L" uuid="c2b96996-9cd1-41dd-a750-192bb5717438" type="audio"
direction="input" />
<port name="mixer2 R" uuid="3de52738-d7e8-4733-bf08-3ea2b6372a4c" type="audio"
direction="input" />
<port name="mixer2 Out L" uuid="4e08eba4-a0c1-4e76-9dff-c14f76d5328e" type="audio"
direction="output" />

187

CHAPTER 8 © SESSION MANAGEMENT

<port name="mixer2 Out R" uuid="9d2f79a5-e2d0-484b-b094-98ef7a4f61a7" type="audio"
direction="output" />
</ports>
<dict>
<key name="http://ladish.org/ns/canvas/x">1560.000000</key>
<key name="http://ladish.org/ns/canvas/y">1104.000000</key>
</dict>
</client>
<client name="mplayer" uuid="2f15cfec-7f6d-41b4-80e8-elae80c3bege” naming="app"
app="7a9be17b-eb40-4be3-agdc-82f36bbceeeb">
<ports>
<port name="out_0" uuid="83152a6e-e6f6-4357-93ce-020ba58b7d00" type="audio"
direction="output" />
<port name="out_1" uuid="55a05594-174d-48a5-805b-96d2c9e77cf1" type="audio"
direction="output" />
</ports>
<dict>
<key name="http://ladish.org/ns/canvas/x">1350.000000</key>
<key name="http://ladish.org/ns/canvas/y">1229.000000</key>
</dict>
</client>
</clients>
<connections>
<connection porti1="9432206-44c3-45cb-8024-3ba7160962bc" port2="07d388ed-dooa-4ee0-92aa-
3ae79200el11e" />
<connection porti="3c9acf5c-c91d-4692-add2-e3defb7c508a" port2="d1eb3400-75ce-422d-b9b8-
b7e670f95428" />
<connection porti="fad2a77e-6146-4919-856f-b6f7befdb84d" port2="95c68011-dab9-401c-8904-
b3d149e20570" />
<connection port1="920c5d12-9f62-46aa-h191-52bfbb94065d" port2="5b8e9215-3ff4-4973-8c0Ob-
leb5ab7cccob” />
<connection port1="83152a6e-e616-4357-93ce-020ba58b7d00" port2="c2b96996-9cd1-41dd-a750-
192bb5717438" />
<connection porti="55a05594-174d-48a5-805b-96d2c9e77cf1" port2="3de52738-d7e8-4733-bf08-
3ea2b6372a4c" />
</connections>
<applications>
<application name="jack_mixer-3" uuid="98729282-8b18-4bcf-b929-41bc53f2bsed"
terminal="false" level="0" autorun="true">jack_mixer</application>
<application name="mplayer" uuid="7a9be17b-eb40-4be3-agdc-82f36bbceeeb” terminal="true"
level="0" autorun="true">mplayer -ao jack %2Fhome%2Fhttpd%2Fhtml%2FLinuxSound%2FKaraoke%
2FSubtitles%2Fsongs%2F54154.mp3</application>
</applications>
</studio>

The full command to restart mplayer is stored in this file, as are all the connections made.

On stopping and restarting a session, mplayer is started with the same MP3 file but has the default
connections. It ignores the connections of the LADISH session. Similarly, jack_mixer is restarted, but the
additional ports have to be re-created by hand. This is not a LADISH-aware application, so it runs at Level 0.
However, once created, the LADISH reconnections are made.

You can find a list of LADISH-aware applications at http://wiki.linuxaudio.org/apps/all/ladish.

188

http://wiki.linuxaudio.org/apps/all/ladish

CHAPTER 8 ' SESSION MANAGEMENT

From the user’s viewpoint, the differences between these session managers are as follows:

e Jackapplications can be started in any manner and will be picked up by the Jack
session manager. However, any specific command-line parameters will be lost.

e Applications need to be started by the LADISH session manager in order to be
managed by it. However, it can record command-line parameters and restart the
application using them.

From a developer’s viewpoint, the difference between these session managers is as follows:

e Jacksession-aware applications can be started in any manner and will encode the
command line required to restart them in the program.

Jack Session API

Applications that can be managed by Jack sessions (JS) may be Jack session-aware at Level 1 or Jack session-
unaware. For the unaware ones, the best that can be done is for the session manager to maybe start and stop
them. For the Jack session-aware applications, they must be set up to do the following:

e Register with a Jack session manager
e Respond to messages from the Jack session manager
e Be startable with session information
The response to a Jack session message will generally do the following:

e Save the application’s state into a file, where the directory is given by the session
manager.

e Reply to the session manager with a command that can be used to restart the
application, with enough information that it can restore its state (typically the name
of the file in which it stored its state information).

Jack session-aware clients identify themselves to the session manager by a unique universal identifier
(UUID). It doesn’t seem to matter what this is or how it is generated. The client application just makes it
up as long as it is an integer represented as a string. This is passed to the session manager when registering
but should also be passed back to the client when it is restarted by the session manager. This is done by a
command-line argument to the application, and the format of the command line is also up to the client.

A simple case might be two options (-u for UUID and - for saved state file). This would be parsed using
getopt as follows:

int main(int argc, char **argv) {

int c;
char *file = NULL;
char *uuid = "13";

while ((c = getopt (argc, argv, "f:u:")) != -1)
switch (c) {

case 'u':
uuid = optarg;
break;

case 'f':
file = optarg;
break;

189

CHAPTER 8 © SESSION MANAGEMENT

The application could then restore its state using the information it has previously stored in the state file
and then register again with a session manager with the following:

jack_client *client;
client = jack client open("myapp", JackSessionID, NULL, uuid);
jack_set session_callback(client, session callback, NULL);

The callback function session_callback is invoked whenever the session manager needs to
communicate with the application. It takes a jack_session_event and whatever was passed as the last
argument to jack_set_session_callback

The job of the callback is then to save state information, pass information back to the session manager,
and perhaps exit.

int session_callback(jack session event t *ev) {
char filename[256];
char command[256];

snprintf(filename, sizeof(filename), "%smyfile.state", ev->session_dir);
snprintf(command, sizeof(command),
"my_app -u %s -f ${SESSION DIR}myfile.state", ev->client uuid);
your_save function(filename);
ev->command_line = strdup(command);
jack _session reply(jack client, ev);
if(ev->type == JackSessionSaveAndQuit)
quit();
jack _session_event free(ev);
return 0;

trac suggests (http://trac.jackaudio.org/wiki/WalkThrough/Dev/JackSession) that if this is run in
a multithreaded environment such as GTK, it should be run when other threads are idle, for example, with
g idel add.

I can illustrate this with the delay program from Chapter 7. Adding the extra code gives a revised
delay.c.Ihave enclosed the extra code with #ifdef JACK_SESSION for ease in seeing the changes.

/** @file delay.c
*

* @brief This client delays one channel by 4096 framse.
*/

#define JACK_SESSION

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

190

http://trac.jackaudio.org/wiki/WalkThrough/Dev/JackSession
http://dx.doi.org/10.1007/978-1-4842-2496-0_7

#include <signal.h>
#ifndef WIN32

#include <unistd.h>
#endif

#include <jack/jack.h>

#ifdef JACK_SESSION
#include <jack/session.h>
#endif

jack_port_t **input_ports;
jack_port_t **output_ports;
jack _client t *client;

#define SIZE 8192

#define DELAY 4096

jack default audio_sample t buffer[SIZE];
int idx, delay idx;

static void signal handler (int sig)

{

jack_client _close (client);

fprintf (stderr, "signal received, exiting ...\n");

exit (0);

}

static void copy2out(jack default audio sample t *out,

jack_nframes t nframes) {
if (delay idx + nframes < SIZE) {
memcpy (out, buffer + delay idx,

nframes * sizeof (jack default audio sample t));

} else {
int frames_to_end = SIZE - delay idx;

int overflow = delay_idx + nframes - SIZE;

memcpy(out, buffer + delay idx,

CHAPTER 8

frames to end * sizeof (jack default audio sample t));

memcpy (out, buffer, overflow * sizeof(jack default audio sample t));

}
delay idx = (delay idx + nframes) % SIZE;

}

static void copy2buffer(jack default audio sample t *in,
jack_nframes_t nframes) {

if (idx + nframes < SIZE) {
memcpy (buffer + idx, in,

nframes * sizeof (jack default audio sample t));

} else {
int frames_to_end = SIZE - idx;
int overflow = idx + nframes - SIZE;
memcpy (buffer + idx, in,

frames to end * sizeof (jack default audio sample t));

memcpy(buffer, in, overflow * sizeof(jack default audio sample t));

SESSION MANAGEMENT

191

CHAPTER 8 © SESSION MANAGEMENT

}

idx = (idx + nframes) % SIZE;
}
/X%
* The process callback for this JACK application is called in a
* special realtime thread once for each audio cycle.
ES
* This client follows a simple rule: when the JACK transport is
* running, copy the input port to the output. When it stops, exit.
*/
int

process (jack nframes t nframes, void *arg)

int i;
jack_default_audio_sample t *in, *out;

in = jack port get buffer (input ports[o0], nframes);
out = jack port get buffer (output ports[o0], nframes);
memcpy (out, in, nframes * sizeof (jack default audio_sample t));

in = jack port get buffer (input_ports[1], nframes);
out = jack port get buffer (output_ports[1], nframes);
copy2out (out, nframes);

copy2buffer(in, nframes);

return 0;

}

/**
* JACK calls this shutdown_callback if the server ever shuts down or
* decides to disconnect the client.
*/
void
jack_shutdown (void *arg) {
free (input_ports);
free (output ports);
exit (1);

}

#ifdef JACK_SESSION
I*
* Callback function for JS
*/
void session_callback(jack_session_event_t *ev, void *args) {
char command[256] ;

snprintf(command, sizeof(command),
"/home/httpd/html/LinuxSound/Sampled/SessionManagement/delay -u %s",
ev->client_uuid);

ev->flags = JackSessionNeedTerminal;

192

CHAPTER 8 ' SESSION MANAGEMENT

ev->command_line = strdup(command);
jack_session_reply(client, ev);

if(ev->type == JackSessionSaveAndQuit)
jack_shutdown(NULL);

jack_session_event_free(ev);

}
#endif

int main (int argc, char *argv[]) {
int i,
const char **ports;
const char *client_name;
const char *server name = NULL;
jack_status_t status;

#ifdef JACK_SESSION
I *
* Extra code for JS
*/
int c;
char *uuid = "13";
while ((c = getopt (argc, argv, "u:")) != -1)
switch (c) {

case 'u':
uuid = optarg;
break;
}
printf("UUID is %s\n", uuid);

#endif

client _name = strrchr (argv[o], '/');
if (client name == 0) {
client_name = argv[0];

}

else {
client_name++;

}

/* open a client connection to the JACK server */
/* Changed args for JS */

#ifdef JACK_SESSION
client = jack_client_open (client_name, JackSessionID, &status, uuid);
#else
client = jack_client_open (client_name, JackNullOption, &status);
#endif
if (client == NULL)
{

fprintf (stderr, "jack client open() failed,
"status = 0x%2.0x\n", status);

193

CHAPTER 8 © SESSION MANAGEMENT

if (status & JackServerFailed)

{
fprintf (stderr, "Unable to connect to JACK server\n");
}
exit (1);
}
if (status & JackServerStarted)
{
fprintf (stderr, "JACK server started\n");
}
if (status & JackNameNotUnique)
{
client_name = jack get client_name (client);
fprintf (stderr, "unique name “%s' assigned\n", client_name);
}

#ifdef IJACK_SESSION

/* Set callback function for JS

*/

jack_set_session_callback(client, session_callback, NULL);
#endif

/* tell the JACK server to call ~“process()' whenever
there is work to be done.

*/

jack_set process callback (client, process, 0);

/* tell the JACK server to call “jack_shutdown()' if
it ever shuts down, either entirely, or if it
just decides to stop calling us.

*/

jack_on_shutdown (client, jack_shutdown, 0);

/* create two ports pairs*/
input_ports = (jack port t**) calloc (2, sizeof (jack port t*));
output_ports = (jack port t**) calloc (2, sizeof (jack port t*));

char port name[16];
for (i=0;1<2; it+)
{
sprintf (port_name, "input %d", i + 1);
input_ports[i] = jack port register (client, port name, JACK DEFAULT AUDIO
TYPE, JackPortIsInput, 0);
sprintf (port_name, "output %d", i + 1);
output_ports[i] = jack port register (client, port name, JACK DEFAULT AUDIO
TYPE, JackPortIsOutput, 0);
if ((input_ports[i] == NULL) || (output ports[i] == NULL))
{

fprintf (stderr, "no more JACK ports available\n");
exit (1);

194

CHAPTER 8 ' SESSION MANAGEMENT

}

bzero(buffer, SIZE * sizeof (jack default audio sample t));
delay idx = 0;
idx = DELAY;

/* Tell the JACK server that we are ready to roll. Our
* process() callback will start running now. */

if (jack activate (client))

fprintf (stderr, "cannot activate client");
exit (1);

}

/* Connect the ports. You can't do this before the client is
* activated, because we can't make connections to clients

* that aren't running. Note the confusing (but necessary)

* orientation of the driver backend ports: playback ports are
* "input" to the backend, and capture ports are "output" from
* it.

ports = jack get ports (client, NULL, NULL, JackPortIsPhysicall|JackPortIsOutput);
if (ports == NULL)

{
fprintf (stderr, "no physical capture ports\n");

exit (1);

}

for (i=0; i< 2; i++)
if (jack connect (client, ports[i], jack port name (input ports[i])))
fprintf (stderr, "cannot connect input ports\n");

free (ports);

ports = jack get ports (client, NULL, NULL, JackPortIsPhysical|JackPortIsInput);
if (ports == NULL)

fprintf (stderr, "no physical playback ports\n");
exit (1);

}

for (i=0; 1< 2; i++)
if (jack connect (client, jack port name (output ports[i]), ports[i]))
fprintf (stderr, "cannot connect input ports\n");

free (ports);

/* install a signal handler to properly quits jack client */

195

CHAPTER 8 © SESSION MANAGEMENT

#ifdef WIN32
signal (SIGINT, signal handler);
signal (SIGABRT, signal handler);
signal (SIGTERM, signal handler);

#else
signal (SIGQUIT, signal handler);
signal (SIGTERM, signal handler);
signal (SIGHUP, signal handler);
signal (SIGINT, signal handler);
#endif

/* keep running until the transport stops */

while (1)
{
#ifdef WIN32
Sleep (1000);
#else
sleep (1);
#endif

}

jack_client _close (client);
exit (0);

LADISH API

If an application is Jack session-aware, then the LADISH GUI tool gladish can manage the application
as a Level 1 application. In other words, gladish can manage Jack session and LADISH clients equally. In
that sense, there is no need to additionally add LADISH awareness to an application unless you prefer the
LADISH way of managing sessions.

For how to build LADISH-aware apps at Level 1, see http://ladish.org/wiki/code_examples. For
LADI Session Handler, see http://ladish.org/.

Conclusion

This chapter looked at some of the session management systems. The set of session managers covered is
not exhaustive. Visit http://lwn.net/Articles/533594/ for alist of several more, such as the Non Session
Manager and Chino. However, the situation is not particularly satisfactory, and there is substantial room for
improvement.

196

http://ladish.org/wiki/code_examples
http://ladish.org/
http://lwn.net/Articles/533594/

CHAPTER 9

Java Sound

This chapter covers the essentials of programming sampled data using the Java Sound API. The chapter

assumes a good working knowledge of Java. Java Sound has been around since the early days of Java. It deals

with both sampled and MIDI data, and it is a comprehensive system.

Resources

Many resources are available for Java Sound.

e The Java Platform Standard Edition 7 API Specification (http://docs.oracle.com/
javase/7/docs/api/) is the reference point for all the standard Java APIs, including
javax.sound.sampled.

e The “Trail: Sound” tutorial at Java Tutorials (http://docs.oracle.com/javase/
tutorial/sound/index.html) gives a good overview of both the sampled and MIDI
packages.

e The FAQ about audio programming at Java Sound Resources (www. jsresources.
org/faq_audio.html) answers many questions about Java Sound.

e The Sound Group (http://openjdk.java.net/groups/sound/) consists of
developers designing, implementing, and maintaining various OpenJDK sound
components. It’s your hook into finding out more about the ongoing development of
Java Sound in the open source community.

Key Java Sound Classes

These are the key classes:

e The AudioSystem class is the entry point for all sampled audio classes.

The AudioFormat class specifies information about the format, such as sampling rate.
e The AudioInputStream class supplies an input stream from the target line of a mixer.
e TheMixer class represents an audio device.

e The SourceDataline class represents an input line to a device.

e The TargetDataline class represents an output line from a device.

© Jan Newmarch 2017
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_9

197

http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/tutorial/sound/index.html
http://docs.oracle.com/javase/tutorial/sound/index.html
http://www.jsresources.org/faq_audio.html
http://www.jsresources.org/faq_audio.html
http://openjdk.java.net/groups/sound/

CHAPTER 9 © JAVA SOUND

Information About Devices

Each device is represented by a Mixer object. Ask the AudioSystem for a list of these. Each mixer has a set
of target (output) lines and source (input lines). Query each mixer about these separately. The following
program is called DeviceInfo. java:

import javax.sound.sampled.*;
public class DeviceInfo {
public static void main(String[] args) throws Exception {

Mixer.Info[] minfoSet = AudioSystem.getMixerInfo();

System.out.println("Mixers:");

for (Mixer.Info minfo: minfoSet) {
System.out.println(" " + minfo.toString());

Mixer m = AudioSystem.getMixer(minfo);
System.out.println(" Mixer: " + m.toString());
System.out.println("” Source lines");
Line.Info[] slines = m.getSourcelineInfo();

for (Line.Info s: slines) {

System.out.println(" "+ s.toString());
}
Line.Info[] tlines = m.getTargetLineInfo();
System.out.println(" Target lines");
for (Line.Info t: tlines) {
System.out.println(" "+ t.toString());
}
}
}
}
The following is part of the output on my system:
Mixers:

PulseAudio Mixer, version 0.02
Source lines
interface SourceDataline supporting 42 audio formats, and buffers of
0 to 1000000 bytes
interface Clip supporting 42 audio formats, and buffers of 0 to 1000000 bytes
Target lines
interface TargetDataline supporting 42 audio formats, and buffers of
0 to 1000000 bytes
default [default], version 1.0.24
Source lines
interface SourceDataline supporting 512 audio formats, and buffers of at
least 32 bytes
interface Clip supporting 512 audio formats, and buffers of at least 32 bytes
Target lines

198

CHAPTER 9 © JAVA SOUND

interface TargetDataline supporting 512 audio formats, and buffers of at
least 32 bytes

PCH [plughw:0,0], version 1.0.24
Source lines

interface SourceDataline supporting 24 audio formats, and buffers of at
least 32 bytes
interface Clip supporting 24 audio formats, and buffers of at least 32 bytes

Target lines

interface TargetDataline supporting 24 audio formats, and buffers of at
least 32 bytes

Nvidia [plughw:1,3], version 1.0.24
Source lines

interface SourceDataline supporting 96 audio formats, and buffers of at
least 32 bytes
interface Clip supporting 96 audio formats, and buffers of at least 32 bytes

Target lines
Nvidia [plughw:1,7], version 1.0.24
Source lines

interface SourceDataline supporting 96 audio formats, and buffers of at
least 32 bytes
interface Clip supporting 96 audio formats, and buffers of at least 32 bytes

Target lines
Nvidia [plughw:1,8], version 1.0.24
Source lines

interface SourceDataline supporting 96 audio formats, and buffers of at
least 32 bytes
interface Clip supporting 96 audio formats, and buffers of at least 32 bytes

Target lines

This shows both PulseAudio and ALSA mixers. Further queries could show what the supported formats
are, for example.

Playing Audio from a File

To play from a file, appropriate objects must be created for reading from the file and for writing to the output
device. These are as follows:

An AudioInputStreamis requested from the AudioSystem. It is created with the
filename as a parameter.

A source data line is created for the output. The nomenclature may be confusing: the
program produces output, but this is input to the data line. So, the data line must be
a source for the output device. The creation of a data line is a multistep process.

e First create an AudioFormat object to specify parameters for the data line.

e Create aDataline.Info for a source data line with the audion format.

e Request a source data line from the AudioSystem that will handle the DatalLine.
Info.

Following these steps, data can then be read from the input stream and written to the data line.
Figure 9-1 shows the UML class diagram for the relevant classes.

199

CHAPTER 9 © JAVA SOUND

Play Audio
AUdlo |nput

File Stream

read) [———

File

Source

I Data
Line

write()

Figure 9-1. Class diagram for playing audio from a file

import
import

import
import
import
import
import
import
import

public

java.io.File;
java.io.IOException;

javax.sound.sampled.AudioFormat;
javax.sound.sampled.AudioInputStream;
javax.sound.sampled.AudioSystem;
javax.sound.sampled.Dataline;
javax.sound.sampled.FloatControl;
javax.sound.sampled.LineUnavailableException;
javax.sound.sampled.SourceDataline;

class PlayAudioFile {

/** Plays audio from given file names. */
public static void main(String [] args) {

200

// Check for given sound file names.

if (args.length < 1) {
System.out.println("Usage: java Play <sound file names>*");
System.exit(0);

}

// Process arguments.
for (int i = 0; i < args.length; it++)
playAudioFile(args[i]);

CHAPTER 9 © JAVA SOUND

// Must exit explicitly since audio creates non-daemon threads.
System.exit(0);
} // main

public static void playAudioFile(String fileName) {
File soundFile = new File(fileName);

try {
// Create a stream from the given file.
// Throws IOException or UnsupportedAudioFileException
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(soundFile);
// AudioSystem.getAudioInputStream(inputStream); // alternate audio stream from
inputstream
playAudioStream(audioInputStream);

} catch (Exception e) {
System.out.println("Problem with file
e.printStackTrace();

+ fileName + ":");

}
} // playAudioFile

/** Plays audio from the given audio input stream. */

public static void playAudioStream(AudioInputStream audioInputStream) {
// Audio format provides information like sample rate, size, channels.
AudioFormat audioFormat = audioInputStream.getFormat();
System.out.println("Play input audio format=" + audioFormat);

// Open a data line to play our type of sampled audio.

// Use SourceDataline for play and TargetDataline for record.

Dataline.Info info = new Dataline.Info(SourceDataline.class, audioFormat);

if (!AudioSystem.isLineSupported(info)) {
System.out.println("Play.playAudioStream does not handle this type of audio on
this system.");
return;

try {
// Create a SourceDataline for play back (throws LineUnavailableException).
SourceDataline dataline = (SourceDataline) AudioSystem.getlLine(info);
// System.out.println("SourceDataline class=" + datalLine.getClass());

// The line acquires system resources (throws LineAvailableException).
dataline.open(audioFormat);

// Adjust the volume on the output line.
if(dataLine.isControlSupported(FloatControl.Type .MASTER_GAIN)) {
FloatControl volume = (FloatControl) dataline.getControl(FloatControl.Type.
MASTER_GAIN);
volume.setValue(6.0F);

}

// Allows the line to move data in and out to a port.
dataline.start();

201

CHAPTER 9

JAVA SOUND

// Create a buffer for moving data from the audio stream to the line.
int bufferSize = (int) audioFormat.getSampleRate() * audioFormat.getFrameSize();
byte [] buffer = new byte[bufferSize];

// Move the data until done or there is an error.
try {
int bytesRead = 0;
while (bytesRead >= 0) {
bytesRead = audioInputStream.read(buffer, 0, buffer.length);
if (bytesRead >= 0) {
// System.out.println("Play.playAudioStream bytes read=" + bytesRead +
// ", frame size=" + audioFormat.getFrameSize() + ", frames read=" +
bytesRead / audioFormat.getFrameSize());
// 0dd sized sounds throw an exception if we don't write the same
amount.
int framesWritten = dataline.write(buffer, 0, bytesRead);

}
} // while

} catch (IOException e) {
e.printStackTrace();
}

System.out.println("Play.playAudioStream draining line.");
// Continues data line I/0 until its buffer is drained.
datalLine.drain();

System.out.println("Play.playAudioStream closing line.");
// Closes the data line, freeing any resources such as the audio device.
dataline.close();

} catch (LineUnavailableException e) {

e.printStackTrace();

} // playAudioStream
} // PlayAudioFile

Recording Audio to a File

Most of the work to do this is in preparation of an audio input stream. Once that is done, the method write
of AudioSystem will copy input from the audio input stream to the output file.
To prepare the audio input stream, follow these steps:

1.
2.

3.
4,

Create an AudioFormat object describing the parameters of the input.

The microphone produces audio. So, it needs a TargetDataline. So, create a
Dataline.Info for a target data line.

Ask the AudioSystem for a line satisfying the information.

Wrap the line in an AudioInputStream.

The output is just a Java File.
Then use the AudioSystem function write() to copy the stream to the file. Figure 9-2 shows the UML

class diagram.

202

Recorder Audio
Input

—>| Stream

Target
\ 4 Data

Audio Line
System

write()

»| File

Figure 9-2. UML diagram for recording audio to a file

The program is as follows:

import javax.sound.sampled.*;
import java.io.File;

Jx*

* Sample audio recorder

public class Recorder extends Thread

{

%k

* The TargetDataline that we’ll use to read data from
*/
private TargetDataline line;

%k

* The audio format type that we’ll encode the audio data with

*/

CHAPTER 9

JAVA SOUND

203

CHAPTER 9 © JAVA SOUND

private AudioFileFormat.Type targetType = AudioFileFormat.Type.WAVE;

/**

* The AudioInputStream that we’ll read the audio data from
*/

private AudioInputStream inputStream;

/X%

* The file that we’re going to write data out to

*/

private File file;

/**
* Creates a new Audio Recorder
*/
public Recorder(String outputFilename)
{
try {
// Create an AudioFormat that specifies how the recording will be performed
// In this example we’ll 44.1Khz, 16-bit, stereo
AudioFormat audioFormat = new AudioFormat(
AudioFormat.Encoding.PCM_SIGNED, // Encoding technique
44100.0F, // Sample Rate
16, // Number of bits in each channel
2, // Number of channels (2=stereo)
4, // Number of bytes in each frame
44100.0F, // Number of frames per second
false); // Big-endian (true) or little-
// endian (false)
// Create our TargetDataline that will be used to read audio data by first
// creating a Dataline instance for our audio format type
DatalLine.Info info = new DatalLine.Info(TargetDatalLine.class, audioFormat);
// Next we ask the AudioSystem to retrieve a line that matches the
// Dataline Info
this.line = (TargetDataline)AudioSystem.getLine(info);
// Open the TargetDataline with the specified format
this.line.open(audioFormat);
// Create an AudioInputStream that we can use to read from the line
this.inputStream = new AudioInputStream(this.line);
// Create the output file
this.file = new File(outputFilename);
}
catch(Exception e) {
e.printStackTrace();
}
}

204

CHAPTER 9 * JAVA SOUND

public void startRecording() {
// Start the TargetDataline
this.line.start();

// Start our thread
start();

}

public void stopRecording() {
// Stop and close the TargetDataline
this.line.stop();
this.line.close();

}
public void run() {
try {
// Ask the AudioSystem class to write audio data from the audio input stream
// to our file in the specified data type (PCM 44.1Khz, 16-bit, stereo)
AudioSystem.write(this.inputStream, this.targetType, this.file);
}
catch(Exception e) {
e.printStackTrace();
}
}

public static void main(String[] args) {
if (args.length == 0) {
System.out.println("Usage: Recorder <filename>");
System.exit(0);
}

try {
// Create a recorder that writes WAVE data to the specified filename
Recorder r = new Recorder(args[0]);
System.out.println("Press ENTER to start recording");
System.in.read();

// Start the recorder
r.startRecording();

System.out.println("Press ENTER to stop recording");
System.in.read();

// Stop the recorder
r.stopRecording();

System.out.println("Recording complete");

}
catch(Exception e) {

e.printStackTrace();
}

205

CHAPTER 9 © JAVA SOUND

Play Microphone to Speaker

This is a combination of the previous two programs. An AudioInputStreamis prepared for reading from the
microphone. A SourceDataline is prepared for writing to the speaker. The data is copied from the first to
the second by reading from the audio input stream and writing to the source data line. Figure 9-3 shows the
UML class diagram.

Play

Microphone Audio

Input
—>| Stream

read()

Target
Data
Line

| Source
Data
Line

write()

Figure 9-3. UML diagram for sending microphone input to a speaker

The program is as follows:

import java.io.File;
import java.io.IOException;

import javax.sound.sampled.AudioFormat;

import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;

206

CHAPTER 9

import javax.sound.sampled.Dataline;

import javax.sound.sampled.Line;

import javax.sound.sampled.Line.Info;

import javax.sound.sampled.TargetDataline;

import javax.sound.sampled.FloatControl;

import javax.sound.sampled.lineUnavailableException;
import javax.sound.sampled.SourceDataline;

public class PlayMicrophone {
private static final int FRAMES PER BUFFER = 1024;

public static void main(String[] args) throws Exception {
new PlayMicrophone().playAudio();

}
private void out(String strMessage)
{

System.out.println(strMessage);
}

//This method creates and returns an
// AudioFormat object for a given set of format
// parameters. If these parameters don't work
// well for you, try some of the other
// allowable parameter values, which are shown
// in comments following the declarations.
private AudioFormat getAudioFormat(){
float sampleRate = 44100.0F; //8000,11025,16000,22050,44100

int sampleSizeInBits = 16; //8,16
int channels = 1; /71,2
boolean signed = true; //true,false
boolean bigEndian = false; //true,false
return new AudioFormat(sampleRate,
sampleSizeInBits,
channels,
signed,
bigEndian);

}//end getAudioFormat

public void playAudio() throws Exception {
AudioFormat audioFormat;
TargetDataline targetDataline;

audioFormat = getAudioFormat();
DatalLine.Info datalLineInfo =
new Dataline.Info(
TargetDataline.class,
audioFormat);
targetDataline = (TargetDataline)
AudioSystem.getLine(datalLineInfo);

JAVA SOUND

207

CHAPTER 9 © JAVA SOUND

/*

Line.Info lines[] = AudioSystem.getTargetLineInfo(datalLineInfo);

for (int n = 0; n < lines.length; n++) {
System.out.println("Target " + lines[n].toString() +
getlineClass());

+ lines[n].

}

targetDataline = (TargetDataline)
AudioSystem.getlLine(lines[0]);
*/

targetDataline.open(audioFormat,
audioFormat.getFrameSize() * FRAMES_PER_BUFFER);
targetDataline.start();

playAudioStream(new AudioInputStream(targetDataline));

/*
File soundFile = new File(fileName);

try {
// Create a stream from the given file.
// Throws IOException or UnsupportedAudioFileException
AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(soundFile);
// AudioSystem.getAudioInputStream(inputStream); // alternate audio stream
from inputstream
playAudioStream(audioInputStream);

} catch (Exception e) {
System.out.println("Problem with file
e.printStackTrace();

+ fileName + ":");

}
*/
} // playAudioFile

/** Plays audio from the given audio input stream. */

public void playAudioStream(AudioInputStream audioInputStream) {
// Audio format provides information like sample rate, size, channels.
AudioFormat audioFormat = audioInputStream.getFormat();
System.out.println("Play input audio format=" + audioFormat);

// Open a data line to play our type of sampled audio.
// Use SourceDataline for play and TargetDataline for record.
DatalLine.Info info = new DatalLine.Info(SourceDatalLine.class, audioFormat);

Line.Info lines[] = AudioSystem.getSourcelLineInfo(info);

for (int n = 0; n < lines.length; n++) {
System.out.println("Source " + lines[n].toString() +
getlineClass());

+ lines[n].

}

if (!AudioSystem.isLineSupported(info)) {
System.out.println("Play.playAudioStream does not handle this type of audio on
this system.");

208

try

CHAPTER 9 © JAVA SOUND

return;

{

// Create a SourceDataline for play back (throws LineUnavailableException).
SourceDataline dataline = (SourceDataline) AudioSystem.getLine(info);
// System.out.println("SourceDataline class=" + dataline.getClass());

// The line acquires system resources (throws LineAvailableException).
datalLine.open(audioFormat,
audioFormat.getFrameSize() * FRAMES PER_BUFFER);

// Adjust the volume on the output line.

if(dataline.isControlSupported(FloatControl.Type.MASTER GAIN)) {
FloatControl volume = (FloatControl) datalLine.getControl(FloatControl.Type.
MASTER_GAIN);
volume.setValue(6.0F);

}

// Allows the line to move data in and out to a port.
dataline.start();

// Create a buffer for moving data from the audio stream to the line.

int bufferSize = (int) audioFormat.getSampleRate() * audioFormat.getFrameSize();
bufferSize = audioFormat.getFrameSize() * FRAMES PER_BUFFER;
System.out.println("Buffer size: " + bufferSize);

byte [] buffer = new byte[bufferSize];

// Move the data until done or there is an error.
try {
int bytesRead = 0;
while (bytesRead >= 0) {
bytesRead = audioInputStream.read(buffer, o, buffer.length);
if (bytesRead >= 0) {
System.out.println("Play.playAudioStream bytes read=" + bytesRead +
", frame size=" + audioFormat.getFrameSize() + ", frames read=" +
bytesRead / audioFormat.getFrameSize());
// 0dd sized sounds throw an exception if we don't write the same
amount.
int framesWritten = dataline.write(buffer, 0, bytesRead);
}
} // while
} catch (IOException e) {
e.printStackTrace();
}

System.out.println("Play.playAudioStream draining line.");
// Continues data line I/0 until its buffer is drained.
dataline.drain();

209

CHAPTER 9 © JAVA SOUND

System.out.println("Play.playAudioStream closing line.");
// Closes the data line, freeing any resources such as the audio device.
dataline.close();
} catch (LineUnavailableException e) {
e.printStackTrace();
}

} // playAudioStream

Where Does JavaSound Get Its Devices From?

The first program in this chapter showed a list of mixer devices and their attributes. How does Java get this
information? This section covers JDK 1.8, and OpenJDK will probably be similar. You will need the Java
source from Oracle to track through this. Alternatively, move on.

The file jre/1ib/resources.jar contains a list of resources used by the JRE runtime. This is a zip file
and contains the file META-INF/services/javax.sound.sampled.spi.MixerProvider. On my system, the
contents of this file are as follows:

last mixer is default mixer
com.sun.media.sound.PortMixerProvider
com.sun.media.sound.DirectAudioDeviceProvider

The class com. sun.media.sound.PortMixerProvider is in the file java/media/src/share/native/
com/sun/media/sound/PortMixerProvider. java on my system. It extends MixerProvider and implements
methods such as Mixer.Info[] getMixerInfo. This class stores the device information.

The bulk of the work done by this class is actually performed by native methods in the C file
java/media/src/share/native/com/sun/media/sound/PortMixerProvider.c, which implements
the two methods nGetNumDevices and nNewPortMixerInfo used by the PortMixerProvider class.
Unfortunately, there’s not much joy to be found in this C file, as it just makes calls to the C functions PORT _
GetPortMixerCount and PORT_GetPortMixerDescription.

There are three files containing these functions.

java/media/src/windows/native/com/sun/media/sound/PLATFORM_API_Win0S_Ports.c
java/media/src/solaris/native/com/sun/media/sound/PLATFORM_API_SolarisOS_Ports.c
java/media/src/solaris/native/com/sun/media/sound/PLATFORM_API_LinuxOS_ALSA Ports.c

In the file PLATFORM_API_LinuxOS_ALSA_Ports.c, you will see the function calls to ALSA as described in
Chapter 5. These calls fill in information about the ALSA devices for use by JavaSound.

Conclusion

The Java Sound API is well-documented. I have shown four simple programs here, but more complex ones
are possible. The link to the underlying sound system was briefly discussed.

210

http://dx.doi.org/10.1007/978-1-4842-2496-0_5

CHAPTER 10

GStreamer

GStreamer is a library of components that can be hooked together in complex pipelines. It can be used for
filtering, converting formats, and mixing. It can handle both audio and video formats, but this chapter covers
only audio. It looks at the user-level mechanisms for using GStreamer and also the programming model for
linking GStreamer components. A reference is given for writing new components.

Resources

Here are some resources:

e Multipurpose multimedia processing with GStreamer (www. ibm.com/
developerworks/aix/library/au-gstreamer.html?ca=dgr-1nxw07GStreamer) by
Maciej Katafiasz

e GStreamer plug-in reference (http://gstreamer.freedesktop.org/
documentation/)

e “GStreamer Writer’s Guide” for plug-ins (1.9.90) (https://gstreamer.freedesktop.
org/data/doc/gstreamer/head/pwg/html/index.html)

Overview

GStreamer uses a pipeline model to connect elements, which are sources, filters, and sinks. Figure 10-1
shows the model.

pipeline
source filter sink
—>
Figure 10-1. GStreamer pipeline model
© Jan Newmarch 2017 211

J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_10

http://www.ibm.com/developerworks/aix/library/au-gstreamer.html?ca=dgr-lnxw07GStreamer
http://www.ibm.com/developerworks/aix/library/au-gstreamer.html?ca=dgr-lnxw07GStreamer
http://gstreamer.freedesktop.org/documentation/
http://gstreamer.freedesktop.org/documentation/
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html

CHAPTER 10 © GSTREAMER

Each element has zero or more pads, which can be source pads producing data or sink pads consuming
data, as shown in Figure 10-2.

[source element | (filter [sink element

Figure 10-2. GStreamer source and sink pads

Pads can be static or may be dynamically created or destroyed in response to events. For example, to
process a container file such as MP4, the element has to read enough of the file before it can work out the
format of the contained object, such as an H.264 video. Once that is done, it can create a source pad for the
next stage to consume the data.

GStreamer is not restricted to linear pipelines like command languages such as bash. A demuxer, for
example, may need to separate audio from video and process each separately, as in Figure 10-3.

pipeline
[—| nﬂ [\/ vorbis-decoder audio-sink
2 ©
file-source 0gg-demuxer

= 2

theora-decoder video-sink

-

[

Gstreamer pipeline for a basic ogg player

Figure 10-3. Complex GStreamer pipeline

Elements follow a state model, like the following:
e GST_STATE NULL
e GST_STATE_READY
e GST_STATE_PAUSED
e GST_STATE_PLAYING

Generally elements will be created and moved from NULL to PLAYING. Finer control is available with the
other states.

Elements can also generate events that contain information on the state of the data stream. Events are
generally handled internally but may be watched, such as events signaling the end of a data stream or the
format of a data stream.

212

CHAPTER 10 = GSTREAMER

A plug-in is aloadable block of code. Generally a plug-in contains the implementation of a single
element, but it may contain more.

Each pad has an associated list of capabilities. Each capability is a statement about what the pad can
handle. This includes information about data types (for example, audio/raw), format (S32LE, U32LE, S16LE,
U16LE, and so on), data rate (for example, 1-2147483647 bits per second), and so on. When a source pad is
linked to a sink pad, these capabilities are used to determine how the elements will communicate.

Command-Line Processing

There are three levels of dealing with GStreamer: by using the command line, by writing C programs (or
Python, Perl, C++, and so on) to link elements, or by writing new elements. This section covers command-
line tools.

gst-inspect

The command gst-inspect (on my Ubuntu system, gst-inspect-1.0) with no arguments shows the list of
plug-ins, their elements, and a brief description. A brief extract is as follows:

audiomixer: liveadder: AudioMixer

audioparsers: aacparse: AAC audio stream parser

audioparsers: ac3parse: AC3 audio stream parser

audioparsers: amrparse: AMR audio stream parser

audioparsers: dcaparse: DTS Coherent Acoustics audio stream parser
audioparsers: flacparse: FLAC audio parser

audioparsers: mpegaudioparse: MPEG1 Audio Parser

audioparsers: sbcparse: SBC audio parser

audioparsers: wavpackparse: Wavpack audio stream parser

audiorate: audiorate: Audio rate adjuster

This shows that the plug-in audioparsers contains a number of elements such as aacparse, which is an
“AAC audio stream parser.”
When run with a plug-in as an argument, gst-inspect shows a little more detail about the plug-in.

$gst-inspect-1.0 audioparsers
Plugin Details:

Name audioparsers

Description Parsers for various audio formats

Filename /usr/1ib/x86_64-1linux-gnu/gstreamer-1.0/libgstaudioparsers.so
Version 1.8.1

License LGPL

Source module gst-plugins-good

Source release date 2016-04-20

Binary package GStreamer Good Plugins (Ubuntu)

Origin URL https://launchpad.net/distros/ubuntu/+source/gst-plugins-good1.0

aacparse: AAC audio stream parser
amrparse: AMR audio stream parser
ac3parse: AC3 audio stream parser

213

CHAPTER 10 © GSTREAMER

dcaparse: DTS Coherent Acoustics audio stream parser
flacparse: FLAC audio parser

mpegaudioparse: MPEG1 Audio Parser

sbcparse: SBC audio parser

wavpackparse: Wavpack audio stream parser

8

features:

+-- 8 elements

$gst-inspect-1.0 aacparse

In particular, note that it is from the module gst-plugins-good. Plug-ins are categorized as to stability,
licenses, and so on.
When run with the element as an argument, gst-inspect shows a lot of information about the element.

Factory Details:
Rank
Long-name
Klass
Description
Author

Plugin Details:
Name
Description
Filename
Version
License
Source module
Source release date
Binary package
Origin URL

GObject
+----GInitiallyUnowned

Pad

+----GstObject

primary + 1 (257)

AAC audio stream parser
Codec/Parser/Audio

Advanced Audio Coding parser

Stefan Kost <stefan.kost@nokia.com>

audioparsers

Parsers for various audio formats
/usr/1ib/x86_64-1linux-gnu/gstreamer-1.0/libgstaudioparsers.so
1.8.1

LGPL

gst-plugins-good

2016-04-20

GStreamer Good Plugins (Ubuntu)
https://launchpad.net/distros/ubuntu/+source/gst-plugins-good1.0

+----GstElement
+----GstBaseParse

Templates:

SINK template: 'sink'

Availability: Always
Capabilities:
audio/mpeg

+----GstAacParse

mpegversion: { 2, 4 }

SRC template: 'src'

214

Availability: Always
Capabilities:
audio/mpeg

framed: true

CHAPTER 10

mpegversion: { 2, 4 }
stream-format: { raw, adts, adif, loas }

Element Flags:
no flags set

Element Implementation:
Has change state() function: gst base parse change state

Element has no clocking capabilities.
Element has no URI handling capabilities.

Pads:
SINK: 'sink'
Pad Template: 'sink'
SRC: 'src'

Pad Template: 'src’

Element Properties:
name : The name of the object
flags: readable, writable
String. Default: "aacparse0”
parent : The parent of the object
flags: readable, writable
Object of type "GstObject"
disable-passthrough : Force processing (disables passthrough)
flags: readable, writable
Boolean. Default: false

GSTREAMER

This shows that it can take audio/mpeg version 2 or 4 and convert the data into audio/mpeg version 2

or 4 in a variety of formats.

gst-discoverer

The command gst-discoverer (on my system gst-discoverer-1.0) can be used to give information about
resources such as files or URIs. On an audio file called audio_01.o0gg, it gives the following information:

$gst-discoverer-1.0 enigma/audio_01.o0gg
Analyzing file:enigma/audio 01.ogg
Done discovering file:enigma/audio_01.ogg

Topology:
container: Ogg
audio: Vorbis

Properties:
Duration: 0:02:03.586666666
Seekable: yes
Tags:
encoder: Xiph.Org libVorbis I 20020717
encoder version: 0

215

CHAPTER 10 © GSTREAMER

audio codec: Vorbis
nominal bitrate: 112001
bitrate: 112001
container format: Ogg

gst-device-monitor

This command can give a lot of information about the devices on your system:

$gst-device-monitor-1.0
Probing devices...

Device found:

name : Monitor of Built-in Audio Digital Stereo (HDMI)
class : Audio/Source
caps : audio/x-raw, format=(string){ S16LE, S16BE, F32LE, F32BE, S32LE, S32BE,
S24LE, S24BE, S24 32LE, S24 32BE, U8 }, layout=(string)interleaved,
rate=(int)[1, 2147483647], channels=(int)[1, 32 1;
audio/x-alaw, rate=(int)[1, 2147483647], channels=(int)[1, 32];
audio/x-mulaw, rate=(int)[1, 2147483647], channels=(int)[1, 32];
properties:
device.description = "Monitor\ of\ Built-in\ Audio\ Digital\ Stereo\
\ (HDMI\)"
device.class = monitor
alsa.card = 0
alsa.card _name = "HDA\ Intel\ HDMI"
alsa.long_card _name = "HDA\ Intel\ HDMI\ at\ 0xf7214000\ irq\ 52"
alsa.driver_name = snd_hda_intel
device.bus_path = pci-0000:00:03.0
sysfs.path = /devices/pci0000:00/0000:00:03.0/sound/cardo
device.bus = pci
device.vendor.id = 8086
device.vendor.name = "Intel\ Corporation"
device.product.id = 160c
device.product.name = "Broadwell-U\ Audio\ Controller"
device.form factor = internal
device.string = 0
module-udev-detect.discovered = 1
device.icon_name = audio-card-pci

That is plenty of information about the audio capabilities of my HDMI monitor, and it is followed by
other information about the audio and video capabilities of my other devices.

gst-play

This program is a one-stop shop to play all sorts of media files and URISs, as follows:

$gst-play-1.0 enigma/audio_01.ogg

216

CHAPTER 10 = GSTREAMER

gst-launch

The gst-launch program allows you to build a pipeline of commands to process media data. The format is
as follows:

gst-launch <elmt> [<args>] ! <elmt> [<args>] ! ...
For example, to play a WAV file through ALSA, use the following:
$gst-launch-1.0 filesrc location=enigma/audio Ol.wav ! wavparse ! alsasink
The hardest part of using GStreamer pipelines appears to be in choosing the appropriate plug-ins.
This looks like a bit of a fine art; see the GStreamer cheat sheet at http://wiki.oz9aec.net/index.php/
Gstreamer_ cheat_sheet for help.
For example, Ogg files are a container format, usually containing Vorbis audio streams and Theora
video streams (although they can contain other data formats). They play either the audio or the video or
both, and the streams have to be extracted from the container using a demultiplexer, decoded, and then

played. There are a variety of ways of just playing the audio, including these three:

$gst-launch-1.0 filesrc location=enigma/audio 01.ogg ! oggdemux ! vorbisdec !
audioconvert ! alsasink

$gst-launch-1.0 filesrc location=enigma/audio_01.ogg ! oggdemux ! vorbisdec !
autoaudiosink

$gst-launch-1.0 uridecodebin uri=file:enigma/audio 01.ogg ! audioconvert ! autoaudiosink

The syntax of GStreamer pipelines allows a pipeline to be split into multiple pipes, for example to
manage both the audio and video streams. This is covered in the online documentation of GStreamer.

C Programming

The same pipeline principles hold as for gst-launch, but of course at the C programming level there is
far more plumbing to look after. The following program from the GStreamer SDK Basic tutorials at
http://docs.gstreamer.com/display/GstSDK/Basic+tutorials does the same as the last of the
gst-launch examples ($gst-launch-1.0 uridecodebin uri=... ! audioconvert ! autoaudiosink).
The GStreamer elements are created by calls such as this:
data.source = gst element factory make ("uridecodebin", "source");
The pipeline is built with this:

data.pipeline = gst pipeline new ("test-pipeline")
gst bin_add many (GST BIN (data.pipeline), data.source, data.convert , data.sink, NULL);

Eventually all the elements have to be linked. Right now, convert and sink can be linked with the
following:

gst_element link (data.convert, data.sink)

217

http://wiki.oz9aec.net/index.php/Gstreamer_cheat_sheet
http://wiki.oz9aec.net/index.php/Gstreamer_cheat_sheet
http://docs.gstreamer.com/display/GstSDK/Basic+tutorials

CHAPTER 10 © GSTREAMER

The URI to play is set with the following:

g object_set (data.source, "uri", "http://docs.gstreamer.com/media/sintel trailer-480p.
webm", NULL);

The data source is a container; in my previous example it was an Ogg container, and here it's a web
media URL. This will not create a source pad on the data source element until enough of the data has
been read to determine the data format and parameters. Consequently, the C program has to add an event
handler for pad-added, which it does with this:

g signal connect (data.source, "pad-added", G_CALLBACK (pad_added handler), &data);

When a pad is added to the source, the pad_added_handler will be called. This does much type
checking and getting the new pad but finally does the key step of linking the source and convert elements.

gst _pad link (new_pad, sink pad)

Then the application starts playing by changing the state to PLAYING and waits for normal termination
(GST_MESSAGE_EOS) or other messages.

gst_element_set_state (data.pipeline, GST_STATE_PLAYING);

bus = gst_element get bus (data.pipeline);

msg = gst bus timed pop filtered (bus, GST_CLOCK TIME_NONE,
GST_MESSAGE_STATE_CHANGED | GST_MESSAGE_ERROR | GST_MESSAGE EOS);

The last section of code does cleanup. The complete program is as follows:
#include <gst/gst.h>

/* Structure to contain all our information, so we can pass it to callbacks */
typedef struct CustomData {

GstElement *pipeline;

GstElement *source;

GstElement *convert;

GstElement *sink;
} CustomData;

/* Handler for the pad-added signal */
static void pad_added handler (GstElement *src, GstPad *pad, CustomData *data);

int main(int argc, char *argv[]) {
CustomData data;
GstBus *bus;
GstMessage *msg;
GstStateChangeReturn ret;
gboolean terminate = FALSE;

/* Initialize GStreamer */
gst_init (8argc, &argv);

/* Create the elements */
data.source = gst_element factory make ("uridecodebin", "source");

218

CHAPTER 10 = GSTREAMER

data.convert = gst_element_factory make ("audioconvert", "convert");
data.sink = gst _element factory make ("autoaudiosink", "sink");

/* Create the empty pipeline */
data.pipeline = gst pipeline new ("test-pipeline");

if (!data.pipeline || !data.source || !data.convert || !data.sink) {
g printerr ("Not all elements could be created.\n");
return -1;

}

/* Build the pipeline. Note that we are NOT linking the source at this
* point. We will do it later. */
gst_bin_add many (GST BIN (data.pipeline), data.source, data.convert , data.sink, NULL);
if (!gst_element link (data.convert, data.sink)) {
g printerr ("Elements could not be linked.\n");
gst object unref (data.pipeline);
return -1;

}

/* Set the URI to play */
g object_set (data.source, "uri", "http://docs.gstreamer.com/media/sintel trailer-480p.
webm", NULL);

/* Connect to the pad-added signal */
g signal connect (data.source, "pad-added", G CALLBACK (pad_added handler), 8data);

/* Start playing */

ret = gst element_set state (data.pipeline, GST_STATE_PLAYING);

if (ret == GST STATE_CHANGE FAILURE) {
g printerr ("Unable to set the pipeline to the playing state.\n");
gst _object unref (data.pipeline);
return -1;

}

/* Listen to the bus */
bus = gst _element get bus (data.pipeline);
do {
msg = gst bus timed pop filtered (bus, GST_CLOCK TIME_NONE,
GST_MESSAGE_STATE_CHANGED | GST_MESSAGE_ERROR | GST_MESSAGE EOS);

/* Parse message */
if (msg != NULL) {
GError *err;
gchar *debug_info;

switch (GST_MESSAGE_TYPE (msg)) {
case GST_MESSAGE_ERROR:
gst_message parse error (msg, &err, &debug info);
g printerr ("Error received from element %s: %s\n", GST_OBJECT NAME (msg->src),
err->message);

219

CHAPTER 10 © GSTREAMER

g_printerr ("Debugging information: %s\n", debug info ? debug_info : "none");
g clear error (8err);
g _free (debug_info);
terminate = TRUE;
break;
case GST_MESSAGE_EOS:
g print ("End-Of-Stream reached.\n");
terminate = TRUE;
break;
case GST_MESSAGE_STATE_CHANGED:
/* We are only interested in state-changed messages from the pipeline */
if (GST_MESSAGE_SRC (msg) == GST OBJECT (data.pipeline)) {
GstState old_state, new_state, pending state;
gst _message parse state changed (msg, &o0ld state, &new state, &pending state);
g print ("Pipeline state changed from %s to %s:\n",
gst_element state get name (old state), gst element state get name (new_
state));
}
break;
default:
/* We should not reach here */
g printerr ("Unexpected message received.\n");
break;
}

gst_message unref (msg);
} while (!terminate);

/* Free resources */

gst_object _unref (bus);

gst_element set state (data.pipeline, GST_STATE NULL);
gst_object unref (data.pipeline);

return 0;

}

/* This function will be called by the pad-added signal */

static void pad added handler (GstElement *src, GstPad *new pad, CustomData *data) {
GstPad *sink pad = gst_element get static_pad (data->convert, "sink");
GstPadlLinkReturn ret;
GstCaps *new_pad_caps = NULL;
GstStructure *new_pad struct = NULL;
const gchar *new_pad type = NULL;

g print ("Received new pad '%s' from '%s':\n", GST_PAD NAME (new_pad), GST_ELEMENT NAME
(src));

/* If our converter is already linked, we have nothing to do here */
if (gst_pad is linked (sink pad)) {

g print (" We are already linked. Ignoring.\n");

goto exit;

}

220

CHAPTER 10 = GSTREAMER

/* Check the new pad's type */

new _pad caps = gst pad get caps (new_pad);

new_pad struct = gst caps get structure (new pad caps, 0);

new_pad type = gst structure get name (new_pad struct);

if (!g_str has prefix (new_pad type, "audio/x-raw")) {
g print (" It has type '%s' which is not raw audio. Ignoring.\n", new_pad type);
goto exit;

}

/* Attempt the link */
ret = gst pad link (new pad, sink pad);
if (GST_PAD_LINK FAILED (ret)) {
g print (" Type is '%s' but link failed.\n", new_pad_type);
} else {
g print (" Link succeeded (type '%s').\n", new_pad type);

exit:
/* Unreference the new pad's caps, if we got them */
if (new_pad caps != NULL)
gst_caps_unref (new_pad caps);

/* Unreference the sink pad */
gst_object _unref (sink_pad);

Writing Plug-ins

Writing new GStreamer plug-ins is a nontrivial task. The document “GStreamer Writer’s Guide” at https://
gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html gives extensive advice on this.

Conclusion

This chapter looked at using GStreamer both from the command line and from an example C program.
There is a huge list of available plug-ins that will meet the many needs of audio/visual developers. I have only
touched the surface of GStreamer, and it has many other features, including integration with the GTK toolkit.

221

https://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/pwg/html/index.html

CHAPTER 11

libao

According to the libao documentation (www.xiph.org/ao/doc/overview.html), “libao is designed to make
it easy to do simple audio output using various audio devices and libraries. For this reason, complex audio

control features are missing and will probably never be added. However, if you just want to be able to open
whatever audio device is available and play sound, libao should be just fine”

Resources

Check out the following:

e libao documentation (www.xiph.org/ao/doc/)

libao

libao is an extremely minimal library; it basically just plays audio data. It does not decode any of the standard

file formats: no WAV, MP3, Vorbis, and so on, support. You have to configure the format parameters of bits,

channels, rates, and byte formats and then send the appropriate data to the device. Its primary use is to

output PCM data and can be used once a codec has been decoded or to play simple sounds like sine waves.
The following is a simple example from the libao site to play a sine tone for one second:

/*
*
* ao_example.c
ES
* Written by Stan Seibert - July 2001
*
* Legal Terms:
*
* This source file is released into the public domain. It is
* distributed without any warranty; without even the implied
* warranty * of merchantability or fitness for a particular
* purpose.
*
* Function:
*
* This program opens the default driver and plays a 440 Hz tone for
* one second.
*
© Jan Newmarch 2017 223

J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_11

http://www.xiph.org/ao/doc/overview.html
http://www.xiph.org/ao/doc/

CHAPTER 11 © LIBAO

* Compilation command line (for Linux systems):
*

* gcc -lao -1dl -Im -o ao_example ao_example.c
*

*/

#include <stdio.h>
#include <ao/ao.h>
#include <math.h>

#define BUF_SIZE 4096

int main(int argc, char **argv)
{
ao_device *device;
ao_sample_format format;
int default_driver;
char *buffer;
int buf_size;
int sample;
float freq = 440.0;
int i,

/* -- Initialize -- */

fprintf(stderr, "libao example program\n");
ao_initialize();

/* -- Setup for default driver -- */
default_driver = ao_default driver id();

memset (&format, 0, sizeof(format));
format.bits = 16;

format.channels = 2;

format.rate = 44100;

format.byte format = AO_FMT_LITTLE;

/* -- Open driver -- */
device = ao_open_live(default driver, &format, NULL /* no options */);
if (device == NULL) {

fprintf(stderr, "Error opening device.\n");

return 1;

}

/* -- Play some stuff -- */
buf_size = format.bits/8 * format.channels * format.rate;
buffer = calloc(buf size,

sizeof(char));

224

CHAPTER 11 = LIBAO

for (i = 0; 1 < format.rate; i++) {
sample = (int)(0.75 * 32768.0 *
sin(2 * M_PI * freq * ((float) i/format.rate)));

/* Put the same stuff in left and right channel */

buffer[4*i] = buffer[4*i+2] = sample & Ooxff;

buffer[4*i+1] = buffer[4*i+3] = (sample >> 8) & oxff;
}

ao_play(device, buffer, buf size);

/* -- Close and shutdown -- */
ao_close(device);

ao_shutdown();

return (0);

}

Conclusion

libao is not complex; it is a basic library to play sounds to whatever device is available. It will suit cases where
you have the sound in a known PCM format.

225

CHAPTER 12

FFmpeg/Libav

According to “A FFmpeg Tutorial for Beginners” (http://keycorner.org/pub/text/doc/ffmpegtutorial.htm),
FFmpeg is a complete, cross-platform command-line tool capable of recording, converting, and streaming
digital audio and video in various formats. It can be used to do most multimedia tasks quickly and easily, such as
audio compression, audio/video format conversion, extracting images from a video, and more.

FFmpeg consists of a set of command-line tools and a set of libraries that can be used for transforming
audio (and video) files from one format to another. It can work both on containers and on codecs. It is not
designed for playing or recording audio; it's more a general-purpose conversion tool.

Resources

e FFmpeghome page (http://ffmpeg.org/)
e FFmpegdocumentation (http://ffmpeg.org/ffmpeg.html)
e Libavhome page (https://libav.org/)

e AnFFmpeg and SDL tutorial (http://dranger.com/ffmpeg/) with updated code at
https://github.com/chelyaev/ffmpeg-tutorial

The FFmpeg/Libav Controversy

FFmpeg was started in 2000 to provide libraries and programs for handling multimedia data. However, over
the years there were a number of disputes between the developers, leading to a fork in 2011 to the Libav
project. The two projects have continued since then, pretty much in parallel and often borrowing from each
other. However, the situation has remained acrimonious, and there appears little possibility of resolution.
This is unfortunate for developers. While programs are generally portable between the two systems,
there are sometimes differences in the APIs and in behavior. There is also the issue of distro support.
For many years Debian and derivatives supported only Libav and omitted FFmpeg. This has changed, and
both are supported now. See “Why Debian returned to FFmpeg” (https://lwn.net/Articles/650816/) for
a discussion of some of the issues.

© Jan Newmarch 2017 227
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_12

http://keycorner.org/pub/text/doc/ffmpegtutorial.
htm
http://ffmpeg.org/
http://ffmpeg.org/ffmpeg.html
https://libav.org/
http://dranger.com/ffmpeg/
https://github.com/chelyaev/ffmpeg-tutorial
https://lwn.net/Articles/650816/

CHAPTER 12 FFMPEG/LIBAV

FFmpeg Command-Line Tools

The principal FFmpeg tool is ffmpeg itself. The simplest use is as a converter from one format to another, as
follows:

ffmpeg -i file.ogg file.mp3

This will convert an Ogg container of Vorbis codec data to an MPEG container of MP2 codec data.
The Libav equivalent is avconv, which runs similarly.

avconv -i file.ogg file.mp3

Internally, ffmpeg uses a pipeline of modules, as in Figure 12-1.

input	demuxer	encoded data	decoder	decoded	encoder	encoded data	muxer	output
file	-=-=-==-=---- >	packets	=———————— >	frames	--------- >	packets	======= >	file

Figure 12-1. FFmpeg/Libav pipeline (Source: http://ffmpeg.org/ffmpeg.html)

The muxer/demuxer and decoder/encoder can all be set using options if the defaults are not
appropriate.
The following are other commands:

e ffprobe gives information about a file.
e ffplayisasimple media player.

e ffserver is amedia server.

Programming

There are a number of libraries that can be used for FFmpeg/Libav programming. Libav builds the following
libraries:

e libavcodec
e libavdevice
e libavfilter
e libavformat
e libavresample
e libavutil
FFmepg builds the following:
e libavcodec
e libavdevice
e libavfilter

e libavformat

228

http://ffmpeg.org/ffmpeg.html

CHAPTER 12 FFMPEG/LIBAV

e libavresample
e libavutil

e libpostproc

e libswresample
e libswscale

The extra libraries in FFmpeg are for video postprocessing and scaling.

Using either of these systems is not a straightforward process. The Libav site states, “Libav has always
been a very experimental and developer-driven project. It is a key component in many multimedia projects
and has new features added constantly. To provide a stable foundation, major releases are cut every four to
six months and maintained across at least two years.”

The FFmpeg site states, “FFmpeg has always been a very experimental and developer-driven project.

It is a key component in many multimedia projects and has new features added constantly. Development
branch snapshots work really well 99 percent of the time, so people are not afraid to use them.”

My experience has been that this “experimental” nature of both projects has led to an unstable core
AP], regularly obsoleting and replacing key functions. For example, the function avcodec_decode_audio
in libavcodec version 56 is now up to version 4: avcodec_decode_audio4. And even that version is now
deprecated in the upstream versions of FFmpeg and Libav (version 57) in favor of functions such as avcodec_
send_packet that do not exist in version 56. This is in addition to having two projects with the same goals and
generally identical APIs but not always. For example, FFmpeg has swr_alloc_set_opts, while Libav uses
av_opt_set_int.In addition, the audiovisual codecs and containers themselves are continually evolving.

The result of this is that many example programs on the Internet no longer compile, use deprecated
APIs, or belong to the “other” system. This is not to detract from two systems with superb achievements, but
I just wish it wasn’t so messy.

Decoding an MP3 File

The following program decodes an MP3 file into a raw PCM file. This is about as simple a task as one can do
with FFmpeg/Libav, but it is unfortunately not straightforward. First, you have to note that you want to deal
with a codec, not a file containing a codec. This is not an FFmpeg/Libav issue but a general one.

Files with the extension .mpg or .mp3 may contain a number of different formats. If I run the command
file on a number of files that I have, I get different results.

BST.mp3: MPEG ADTS, layer III, vi, 128 kbps, 44.1 kHz, Stereo
Beethoven Fr Elise.mp3: MPEG ADTS, layer III, vi, 128 kbps, 44.1 kHz, Stereo
Angel-no-vocal.mp3: Audio file with ID3 version 2.3.0
01DooWackaDoo.mp3: Audio file with ID3 version 2.3.0, \

contains: MPEG ADTS, layer III, vi, 224 kbps, 44.1 kHz, IntStereo

The first two files just contain a single codec and can be managed by the following program. The
third and fourth files are container files, containing MPEG+ID3 data. These need to be managed using the
avformat functions such as av_read_frame'.

The program is basically a standard example in the FFmpeg/Libav source distributions. It is based on
ffmpeg-3.2/doc/examples/decoding_encoding.c in the FFmpeg source and is based on libav-12/doc/
examples/avcodec.c in the Libav source. One may note in passing that both programs use avcodec_decode
audio4, which is deprecated in both these upstream versions, and neither has examples of the replacement
function avcodec_send_packet.

"Examples of av_read frame are given in Chapter 15 and 21.

229

CHAPTER 12 FFMPEG/LIBAV

A more serious issue is that, increasingly, MP3 files use a planar format. In this, different channels are

in different planes. The FFmpeg/Libav function avcodec_decode_audio4 handles this correctly by placing
each plane in a separate data array, but when it is output as PCM data, the planes have to be interleaved.
This is not done in the examples and may result in incorrect PCM data (lots of clicking noises, followed by
half-speed audio).

The relevant FFmpeg functions are as follows:
e av_register_all:Register all the possible muxers, demuxers, and protocols.
e avformat_open_input: Open the input stream.
e av_find_stream info: Extract stream information.
e av_init_packet: Set default values in a packet.
e avcodec_find_decoder: Find a suitable decoder.
e avcodec_alloc_context3: Set default values for the primary data structure.
e avcodec_open2: Open the decoder.
e fread: The FFmpeg processing loop reads a buffer at a time from the data stream.
e avcodec_decode_audio4: This decodes audio frames into raw audio data.

The rest of the code interleaves the data streams to output to a PCM file. The resultant file can be played

with the following:

~
¥ X X X X K X X K X X X X X ¥ X ¥ ¥

*
~

//
//

aplay -c 2 -r 44100 /tmp/test.sw -f S16_LE

The program is as follows:

copyright (c) 2001 Fabrice Bellard
This file is part of Libav.

Libav is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

Libav is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with Libav; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

From http://code.haskell.org/~thielema/audiovideo-example/cbits/
Adapted to version version 2.8.6-1ubuntu2 by Jan Newmarch

230

CHAPTER 12 FFMPEG/LIBAV

/**

* @file

* libavcodec API use example.

*

* @example libavcodec/api-example.c

* Note that this library only handles codecs (mpeg, mpeg4, etc...),

* not file formats (avi, vob, etc...). See library 'libavformat' for the
* format handling

*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#ifdef HAVE_AV_CONFIG_H
#undef HAVE_AV_CONFIG_H
#endif

#include "libavcodec/avcodec.h"
#include <libavformat/avformat.h>

#define INBUF_SIZE 4096
#define AUDIO INBUF SIZE 20480
#define AUDIO REFILL THRESH 4096

void die(char *s) {
fputs(s, stderr);

exit(1);
}
/*
* Audio decoding.
*/

static void audio decode_example(AVFormatContext* container,
const char *outfilename, const char *filename)
{

AVCodec *codec;

AVCodecContext *context = NULL;

int len;

FILE *f, *outfile;

uint8 t inbuf[AUDIO INBUF SIZE + FF_INPUT BUFFER_PADDING SIZE];
AVPacket avpkt;

AVFrame *decoded frame = NULL;

int num_streams = 0;

int sample_size = 0;

av_init packet(&avpkt);

printf("Audio decoding\n");

231

CHAPTER 12 FFMPEG/LIBAV

int stream_id = -1;

// To find the first audio stream. This process may not be necessary
// if you can gurarantee that the container contains only the desired
// audio stream
int i;
for (i = 0; i < container->nb_streams; i++) {
if (container->streams[i]->codec->codec_type == AVMEDIA_TYPE_AUDIO) {
stream_id = i;
break;

}

/* find the appropriate audio decoder */
AVCodecContext* codec_context = container->streams[stream id]->codec;
codec = avcodec_find_decoder(codec_context->codec_id);
if (!codec) {
fprintf(stderr, "codec not found\n");
exit(1);

}

context = avcodec_alloc_context3(codec);;

/* open it */
if (avcodec_open2(context, codec, NULL) < 0) {
fprintf(stderr, "could not open codec\n");

exit(1);

}

f = fopen(filename, "rb");

if (1) |
fprintf(stderr, "could not open %s\n", filename);
exit(1);

outfile = fopen(outfilename, "wb");
if (loutfile) {

av_free(context);

exit(1);

}

/* decode until eof */
avpkt.data = inbuf;
avpkt.size = fread(inbuf, 1, AUDIO INBUF_SIZE, f);

while (avpkt.size > 0) {
int got_frame = 0;

if (!decoded frame) {
if (!(decoded frame = av_frame alloc())) {
fprintf(stderr, "out of memory\n");
exit(1);

232

CHAPTER 12

} else {
av_frame_unref(decoded frame);
}

printf("Stream idx %d\n", avpkt.stream_index);

len = avcodec_decode_audio4(context, decoded frame, 8got frame, &avpkt);
if (len < 0) {

fprintf(stderr, "Error while decoding\n");

exit(1);

}
if (got_frame) {
printf("Decoded frame nb_samples %d, format %d\n",
decoded_frame->nb_samples,
decoded_frame->format);
if (decoded frame->data[1] != NULL)
printf("Data[1] not null\n");
else
printf("Data[1] is null\n");
/* if a frame has been decoded, output it */
int data_size = av_samples_get buffer size(NULL, context->channels,
decoded_frame->nb_samples,
context->sample_fmt, 1);
// first time: count the number of planar streams
if (num_streams == 0) {
while (num_streams < AV_NUM_DATA_POINTERS &&
decoded_frame->data[num_streams] != NULL)
num_streams++;
printf("Number of streams %d\n", num streams);

}

// first time: set sample_size from 0 to e.g 2 for 16-bit data
if (sample size == 0) {
sample size =
data_size / (num_streams * decoded frame->nb_samples);

}

int m, n;
for (n = 0; n < decoded frame->nb_samples; n++) {
// interleave the samples from the planar streams
for (m = 0; m < num_streams; m++) {
fwrite(&decoded frame->data[m][n*sample size],
1, sample size, outfile);

}
}
avpkt.size -= len;
avpkt.data += len;
if (avpkt.size < AUDIO_REFILL_THRESH) {
/* Refill the input buffer, to avoid trying to decode
* incomplete frames. Instead of this, one could also use
* a parser, or use a proper container format through

FFMPEG/LIBAV

233

CHAPTER 12 FFMPEG/LIBAV

* libavformat. */
memmove (inbuf, avpkt.data, avpkt.size);
avpkt.data = inbuf;
len = fread(avpkt.data + avpkt.size, 1,
AUDIO_INBUF SIZE - avpkt.size, f);
if (len > 0)
avpkt.size += len;

}

fclose(outfile);
fclose(f);

avcodec_close(context);
av_free(context);
av_free(decoded frame);

}
int main(int argc, char **argv)
{
const char *filename = "Beethoven Fr Elise.mp3";
AVFormatContext *pFormatCtx = NULL;
if (argc == 2) {
filename = argv[1];
}
// Register all formats and codecs
av_register all();
if(avformat_open_input(&pFormatCtx, filename, NULL, NULL)!=0) {
fprintf(stderr, "Can't get format of file %s\n", filename);
return -1; // Couldn't open file
}
// Retrieve stream information
if(avformat_find stream info(pFormatCtx, NULL)<O)
return -1; // Couldn't find stream information
av_dump_format(pFormatCtx, 0, filename, 0);
printf("Num streams %d\n", pFormatCtx->nb_streams);
printf("Bit rate %d\n", pFormatCtx->bit rate);
audio_decode_example(pFormatCtx, "/tmp/test.sw", filename);
return 0;
}

Conclusion

This chapter briefly considered FFmpeg/Libav, looking at the libavcodec library. There is considerably more
complexity to FFmpeg and Libav, and they can do far more complex transformations. In addition, they can
do video processing and this is illustrated in Chapter 15.

234

CHAPTER 13

OpenMAX IL

OpenMAX is an open standard for audio and video from the Khronos Group that is designed for
low-capability devices. Vendors of cards are expected to produce implementations. There is little by way of
general Linux implementations, but Broadcom has implemented one of the specifications (OpenMAX IL),
and its chip is used in the Raspberry Pi. Other Khronos specifications (OpenMAX AL and OpenSL ES) have
been implemented in Android devices, accessible by the Native Development Kit (NDK), but these are not
intended for direct use; they’re intended for use only through Java APIs. They are not discussed in this book.
This chapter discusses only OpenMAX IL.

Resources

Here are some resources:

e The OpenMAX Integration Layer (IL) standard (http://elinux.org/images/e/e0/
The_OpenMAX Integration_Layer standard.pdf), from eLinux.

e The Khronos home page (www.khronos.org/) gives the specifications for free
download; they are quite well done and readable.

e LIM OpenMAX Implementation (http://1imoa.sourceforge.net/)is a Linux
implementation. The download of 1.0 is OK from lim-omx-1.0.tar.gz (http://
sourceforge.net/projects/limoa/files/1.0/1im-omx-1.0.tar.gz/download).

e The OpenMAXIL Bellagio package (http://omxil.sourceforge.net/) source, DEB
package, and RPM are available.

¢ Texas Instruments OpenMax Development Guide (http://processors.wiki.
ti.com/index.php/OpenMax_Development_Guide).

e OpenMAX (Open Media Acceleration) (www.cnx-software.com/2011/11/11/
openmax-open-media-acceleration/).

© Jan Newmarch 2017 235
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_13

http://elinux.org/images/e/e0/The_OpenMAX_Integration_Layer_standard.pdf
http://elinux.org/images/e/e0/The_OpenMAX_Integration_Layer_standard.pdf
http://www.khronos.org/
http://limoa.sourceforge.net/
http://sourceforge.net/projects/limoa/files/1.0/lim-omx-1.0.tar.gz/download
http://sourceforge.net/projects/limoa/files/1.0/lim-omx-1.0.tar.gz/download
http://omxil.sourceforge.net/
http://processors.wiki.ti.com/index.php/OpenMax_Development_Guide
http://processors.wiki.ti.com/index.php/OpenMax_Development_Guide
http://www.cnx-software.com/2011/11/11/openmax-open-media-acceleration/
http://www.cnx-software.com/2011/11/11/openmax-open-media-acceleration/

CHAPTER 13 = OPENMAX IL

Quotes

Here are some quotes:

e According to jamesh, “OpenMAX is a complete and utter nightmare to use...”
(www.raspberrypi.org/forums/viewtopic.php?t=5621).

e According to dom (www.raspberrypi.org/forums/memberlist.php?mode=viewpr
ofile&u=754), “I have written a fair bit of [OpenMAX | client code and find it very
hard. You have to get an awful lot right before you get anything useful out. Just lots
of OMX_ErrorInvalidState and OMX_ErrorBadParameter messages if you are lucky.
Nothing happening at all if you are not...”

e According to Twinkletoes (www.raspberrypi.org/forums/viewtopic.php?t=6577),
“I'm from a DirectShow background, and I thought that was badly documented...
then I met [OpenMAX |. Lots of ppts saying lovely things about it, but no
documentation or code examples I can find”

OpenMAX IL Concepts

The OpenMAX IL API is quite distinct from that of OpenMAX AL. The basic concept is of a component,
which is an audio/video (or other) processing unit of some type, such as a volume control, a mixer, or an
output device. Each component has zero or more input and output ports, and each port can have one or
more buffers that carry data.

OpenMAX IL is typically meant for use by an A/V framework of some kind, such as OpenMAX AL.

In addition to OpenMAX AL, there is currently a GStreamer plug-in that uses OpenMAX IL underneath.
But one can also build stand-alone applications where direct calls are made into the OpenMAX IL API.
Collectively, these are all known as IL clients.

The OpenMAX IL API is difficult to work with directly. Error messages are frequently quite useless,
threads will block without explanation until everything is exactly right, and silently blocking doesn’t give you
any clues about what isn’t right. In addition, the examples I have to work with don’t follow the specification
exactly correctly, which can lead to much wasted time.

OpenMAX IL components use buffers to carry data. A component will usually process data from an
input buffer and place it on an output buffer. This processing is not visible to the AP]J, so it allows vendors
to implement components in hardware or software, built on top of other A/V components, and so on.
OpenMAX IL gives mechanisms for setting and getting parameters of components, for calling standard
functions on the components, or for getting data in and out of components.

While some of the OpenMAX IL calls are synchronous, those that require possibly substantial amounts
of processing are asynchronous, communicating the results through callback functions. This leads naturally
to a multithreaded processing model, although OpenMAX IL does not visibly use any thread libraries
and should be agnostic to how an IL client uses threads. The Bellagio examples use pthreads, while the
Broadcom examples for the Raspberry Pi use Broadcom’s VideoCore OS (vcos) threads (https://github.
com/raspberrypi/userland/blob/master/interface/vcos/vcos_semaphore.h).

There are two mechanisms for getting data into and out of components. The first is where the IL client
makes calls on the component. All components are required to support this mechanism. The second is
where a tunnel is set up between two components for data to flow along a shared buffer. A component is not
required to support this mechanism.

236

http://www.raspberrypi.org/forums/viewtopic.php?t=5621
http://www.raspberrypi.org/forums/memberlist.php?mode=viewprofile&u=754
http://www.raspberrypi.org/forums/memberlist.php?mode=viewprofile&u=754
http://www.raspberrypi.org/forums/viewtopic.php?t=6577
https://github.com/raspberrypi/userland/blob/master/interface/vcos/vcos_semaphore.h
https://github.com/raspberrypi/userland/blob/master/interface/vcos/vcos_semaphore.h

CHAPTER 13 © OPENMAX IL

OpenMAX IL Components

OpenMAX IL in 1.1.2 lists a number of standard components, including (for audio) a decoder, an encoder, a
mixer, a reader, a renderer, a writer, a capturer, and a processor. An IL client gets such a component by calling
OMX_GetHandle(), passing in the name of the component. This is a problem: the components do not have a
standard name.

The 1.1.2 specification says, “Since components are requested by name, a naming convention
is defined. OpenMAX IL component names are zero-terminated strings with the following format:
OMX.<vendor_name>.<vendor_specified_convention>, for example, OMX.CompanyABC.MP3Decoder.
productXYZ. No standardization among component names is dictated across different vendors.”

At this point, you have to look at the currently available implementations as this lack of standardization
causes differences even on the most basic programs.

Implementations

The following are the implementations.

Raspberry Pi

The Raspberry Pi has a Broadcom graphics processing unit (GPU), and Broadcom supports OpenMAX IL.
The include files needed to build applications are in /opt/vc/include/IL, /opt/vc/include, and /opt/vc/
include/interface/vcos/pthreads. The libraries that need to be linked are in the /opt/vc/1ib directory
and are openmaxil and bcm_host.

The Broadcom libraries need additional code to be called as well as standard OpenMAX IL functions.
In addition, there are a number of (legal) extensions to OpenMAX IL that are not found in the specification
or in other implementations. These are described in /opt/vc/include/IL/OMX_Broadcom.h. For these
reasons I define RASPBERRY_PI to allow these to be dealt with.

The compile line for 1istcomponents.c, for example, is as follows:

cc -g -DRASPBERRY_PI -I /opt/vc/include/IL -I /opt/vc/include \
-I /opt/vc/include/interface/vcos/pthreads \
-0 listcomponents listcomponents.c \
-L /opt/vc/1ib -1 openmaxil -1 bcm_host

The Broadcom implementation is closed source. It appears to be a thin wrapper around its GPU AP],
and Broadcom will not release any details of that API. This means you cannot extend the set of components,
or the codecs supported, since there are no details of how to build new components. While the set of
components is reasonable, currently there is no support for codecs other than PCM, and there is no support
of non-GPU hardware such as USB sound cards.

OtherCrashOverride (www.raspberrypi.org/phpBB3/viewtopic.php?f=708t=331018p=287590
#p287590) says he has managed to get the Broadcom components running under the LIM implementation,
but I haven'’t confirmed that yet.

The implementation on the Raspberry Pi is very weak as far as audio is concerned because all audio
decoding is expected to be done in software, and it can only play PCM data. Video is more impressive and is
discussed in my book Raspberry Pi GPU Audio Video Programming.

237

http://www.raspberrypi.org/phpBB3/viewtopic.php?f=70&t=33101&p=287590#p287590
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=70&t=33101&p=287590#p287590

CHAPTER 13 = OPENMAX IL

Bellagio

The Bellagio library does not require additional code or have any extensions. There are a few minor bugs, so
I define BELLAGIO to handle them. I built from source but didn’t install, so the includes and libraries are in a
funny place. My compile line is as follows:

cc -g -DBELLAGIO -I ../libomxil-bellagio-0.9.3/include/ \
-0 listcomponents listcomponents.c \
-L ../1libomxil-bellagio-0.9.3/src/.1ibs -1 omxil-bellagio

This is the line at run time:

export LD_LIBRARY_PATH=../libomxil-bellagio-0.9.3/src/.libs/
./listcomponents

The Bellagio code is open source.

LIM

Downloading the 1.1 version was a hassle because the 1.1 download uses a Git repo that has disappeared (as
of November 2016). Instead, you have to run the following:

git clone git://limoa.git.sourceforge.net/gitroot/limoa/limoi-components
git clone git://1limoa.git.sourceforge.net/gitroot/limoa/limoi-core

git clone git://limoa.git.sourceforge.net/gitroot/1limoa/limoi-plugins
git clone git://limoa.git.sourceforge.net/gitroot/limoa/limutil

git clone git://limoa.git.sourceforge.net/gitroot/limoa/manifest

You have to copy the root.mk file in the build to a top-level folder containing all the code and rename it
Makefile. The root.readme file has build instructions. Thanks to OtherCrashOverride (www.raspberrypi.
org/phpBB3/viewtopic.php?f=70&t=331018p=286516#p286516) for these instructions.

Building the library had some minor hiccups. I had to comment out a couple of lines from one video file
as it referred to nonexistent structure fields and had to remove -Werrors from one Makefile.am as otherwise
a warning about an unused variable would abort the compile.

The library build puts files in a new directory in my HOME. I have found some minor bugs in the
implementation so far. My compile line is as follows:

cc -g -DLIM -I ../../1lim-omx-1.1/LIM/1limoi-core/include/ \
-0 listcomponents listcomponents.c \
-L /home/newmarch/osm-build/1ib/ -1 limoa -1 limoi-core

Here is the line at runtime:

export LD_LIBRARY_PATH=/home/newmarch/osm-build/1ib/
./listcomponents

The LIM code is open source.

238

http://www.raspberrypi.org/phpBB3/viewtopic.php?f=70&t=33101&p=286516#p286516
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=70&t=33101&p=286516#p286516

CHAPTER 13 © OPENMAX IL

Hardware-Supported Versions

You can find a list of hardware-supported versions at OpenMAX IL Conformant Products (www. khronos.
org/conformance/adopters/conformant-products#openmaxil).

Implementations of Components

The Bellagio library (you need the source package to see these files) lists in its README only two audio
components.

e OMX audio volume control
e OMX audio mixer component

Their names (from the example test files) are OMX.st.volume.component and OMX.st.audio.mixer,
respectively. The company behind Bellagio is STMicroelectronics (www.st.com/internet/com/home/home.
jsp), which explains the st.

The Broadcom OpenMAX IL implementation used on the Raspberry Pi is much better documented.
If you download the firmware-master file for the Raspberry Pj, it lists the IL components in the
documentation/ilcomponents directory. This lists the components audio_capture, audio_decode, audio_
encode, audio_lowpower, audio_mixer, audio_processor, audio_render, and audio_splitter.

Many of the OpenMAX IL function calls in the Broadcom examples are buried in Broadcom
convenience functions as follows:

ilclient_create_component(st->client, &st->audio_render,
"audio_render",
ILCLIENT_ENABLE_INPUT BUFFERS | ILCLIENT DISABLE_ALL_PORTS);

This wraps around OMX_GetHandle(). But atleast ilclient.h states, “Component names as provided
are automatically prefixed with OMX.broadcom. before passing to the IL core.” So, you can conclude that the
real names are, for example, OMX.broadcom.audio_render, and so on.

There is a simple way of programmatically getting the supported components. First initialize the
OpenMAX system with OMX_init() and then make calls to OMX_ComponentNameEnum(). For successive index
values, it returns a unique name each time, until it finally returns an error value of OMX_ErrorNoMore.

Each component may support a number of roles. These are given by OMX_GetRolesOfComponent. The
1.1 specification lists classes of audio components and associated roles in Section 8.6, “Standard Audio
Components.” The LIM library matches these, while Bellagio and Broadcom do not.

The following program is 1istcomponents.c:

#include <stdio.h>
#include <stdlib.h>

#include <OMX_Core.h>
#ifdef RASPBERRY_PI
#include <bcm_host.h>
#endif

OMX_ERRORTYPE err;

//extern OMX_COMPONENTREGISTERTYPE OMX_ComponentRegistered[];

239

http://www.khronos.org/conformance/adopters/conformant-products#openmaxil
http://www.khronos.org/conformance/adopters/conformant-products#openmaxil
http://www.st.com/internet/com/home/home.jsp
http://www.st.com/internet/com/home/home.jsp

CHAPTER 13 = OPENMAX IL

void listroles(char *name) {
int n;
OMX_U32 numRoles;
OMX_U8 *roles[32];

/* get the number of roles by passing in a NULL roles param */
err = OMX_GetRolesOfComponent(name, 8numRoles, NULL);
if (err !'= OMX_ErrorNone) {
fprintf(stderr, "Getting roles failed\n", 0);
exit(1);
}
printf(" Num roles is %d\n", numRoles);
if (numRoles > 32) {
printf("Too many roles to list\n");
return;

}

/* now get the roles */
for (n = 0; n < numRoles; n++) {

roles[n] = malloc(OMX_MAX_STRINGNAME SIZE);
}

err = OMX_GetRolesOfComponent(name, &numRoles, roles);
if (err !'= OMX_ErrorNone) {
fprintf(stderr, "Getting roles failed\n", 0);
exit(1);
}
for (n = 0; n < numRoles; n++) {
printf(" role: %s\n", roles[n]);
free(roles[n]);

}

/* This is in version 1.2
for (i = 0; OMX_ErrorNoMore != err; i++) {
err = OMX_RoleOfComponentEnum(role, name, i);
if (OMX_ErrorNone == err) {
printf(" Role of omponent is %s\n", role);
}

}
*/
int main(int argc, char** argv) {

int i;

unsigned char name[OMX_MAX_STRINGNAME_SIZE];
ifdef RASPBERRY PI

bem_host_init();
endif

err = OMX_Init();

240

CHAPTER 13

if (err !'= OMX_ErrorNone) {
fprintf(stderr, "OMX Init() failed\n", 0);
exit(1);

}

err = OMX_ErrorNone;
for (i = 0; OMX_ErrorNoMore != err; i++) {
err = OMX_ComponentNameEnum(name, OMX MAX_STRINGNAME SIZE, i);
if (OMX_ErrorNone == err) {
printf("Component is %s\n", name);
listroles(name);
}
}
printf("No more components\n");

/*
i= 0 ;
while (1) {
printf("Component %s\n", OMX_ComponentRegistered[i++]);
}

*/
exit(0);

The output from the Bellagio library is as follows:

Component is OMX.st.clocksrc
Num roles is 1
role: clocksrc
Component is OMX.st.clocksrc
Num roles is 1
role: clocksxc
Component is OMX.st.video.scheduler
Num roles is 1
role: video.scheduler
Component is OMX.st.video.scheduler
Num roles is 1
role: video.scheduler
Component is OMX.st.volume.component
Num roles is 1
role: volume.component
Component is OMX.st.volume.component
Num roles is 1
role: volume.component
Component is OMX.st.audio.mixer
Num roles is 1
role: audio.mixer
Component is OMX.st.audio.mixer
Num roles is 1
role: audio.mixer

OPENMAX IL

241

CHAPTER 13 = OPENMAX IL

Component is OMX.st.clocksrc
Num roles is 1
role: clocksrc
Component is OMX.st.clocksrc
Num roles is 1
role: clocksrc
Component is OMX.st.video.scheduler
Num roles is 1
role: video.scheduler
Component is OMX.st.video.scheduler
Num roles is 1
role: video.scheduler
Component is OMX.st.volume.component
Num roles is 1
role: volume.component
Component is OMX.st.volume.component
Num roles is 1
role: volume.component
Component is OMX.st.audio.mixer
Num roles is 1
role: audio.mixer
Component is OMX.st.audio.mixer
Num roles is 1
role: audio.mixer
No more components

This is not quite correct. The OpenMAX IL specification says that each component must appear once
only, and not be repeated.
The Raspberry Pireports a large number of components but does not define a role for any of them.

Component is OMX.broadcom.audio capture
Num roles is O

Component is OMX.broadcom.audio_decode
Num roles is O

Component is OMX.broadcom.audio encode
Num roles is O

Component is OMX.broadcom.audio_render
Num roles is O

Component is OMX.broadcom.audio_mixer
Num roles is O

Component is OMX.broadcom.audio splitter
Num roles is O

Component is OMX.broadcom.audio processor
Num roles is O

Component is OMX.broadcom.camera
Num roles is O

Component is OMX.broadcom.clock
Num roles is O

Component is OMX.broadcom.coverage
Num roles is O

Component is OMX.broadcom.egl render
Num roles is O

242

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

Component is OMX.

Num roles is 0

broadcom.

broadcom

broadcom.

broadcom

broadcom.

broadcom.

broadcom.

broadcom.

broadcom.

broadcom.

broadcom

broadcom.

broadcom

broadcom.

broadcom

broadcom.

broadcom.

broadcom.

No more components

image_fx

.image_decode

image_encode

.image read

image_write
read_media
resize

source
text_scheduler

transition

.video_decode

video_encode

.video_render

video_scheduler

.video_splitter

visualisation
write_media

write still

The output from LIM is as follows:

Component is OMX.limoi.alsa_ sink

Num roles is 1

role: audio_renderer.pcm
Component is OMX.limoi.clock

Num roles is 1

role: clock.binary
Component is OMX.limoi.ffmpeg.decode.audio

Num roles is 8

role: audio_decoder.aac
role: audio_decoder.adpcm
role: audio_decoder.amr

CHAPTER 13 © OPENMAX IL

243

CHAPTER 13 = OPENMAX IL

role: audio_decoder.mp3
role: audio_decoder.ogg
role: audio_decoder.pcm
role: audio_decoder.ra
role: audio_decoder.wma
Component is OMX.limoi.ffmpeg.decode.video
Num roles is 7
role: video_decoder.avc
role: video_decoder.h263
role: video_decoder.mjpeg
role: video_decoder.mpeg2
role: video_decoder.mpeg4
role: video decoder.rv
role: video_decoder.wmv
Component is OMX.limoi.ffmpeg.demux
Num roles is 1
role: container_demuxer.all
Component is OMX.limoi.ffmpeg.encode.audio
Num roles is 2
role: audio_encoder.aac
role: audio_encoder.mp3
Component is OMX.limoi.ffmpeg.encode.video
Num roles is 2
role: video_encoder.h263
role: video_encoder.mpeg4
Component is OMX.limoi.ffmpeg.mux
Num roles is 1
role: container_muxer.all
Component is OMX.limoi.ogg dec
Num roles is 1
role: audio_decoder with_framing.ogg
Component is OMX.limoi.sdl.renderer.video
Num roles is 1
role: iv_renderer.yuv.overlay
Component is OMX.limoi.video scheduler
Num roles is 1
role: video_scheduler.binary
No more components

Getting Information About an IL. Component

You will next look at how to get information about the OpenMAX IL system and any component that you use.
AllIL clients must initialize OpenMAX IL by calling OMX_Init(). Nearly all functions return error values, and
the style used by Bellagio is as follows:

err = OMX_Init();

if(err != OMX_ErrorNone) {
fprintf(stderr, "OMX Init() failed\n", 0);
exit(1);

244

CHAPTER 13 © OPENMAX IL

This looks like a reasonable style to me, so I follow it in the sequel.

The next requirement is to get a handle to a component. This requires the vendor’s name for the
component, which can be found using the listcomponents.c program shown earlier. The function
OMX_GetHandle takes some parameters, including a set of callback functions. These are needed to track the
behavior of the application but are not needed for the example in this section. This code shows how to get a
handle to the Bellagio Volume component:

OMX_HANDLETYPE handle;
OMX_CALLBACKTYPE callbacks;
OMX_ERRORTYPE err;

err = OMX_GetHandle(8handle, "OMX.st.volume.component", NULL /*appPriv */, &callbacks);
if(err != OMX_ErrorNone) {

fprintf(stderr, "OMX GetHandle failed\n", 0);

exit(1);

The component has ports, and the ports have channels. Getting and setting information about these is
done by the functions OMX_GetParameter(), OMX_SetParameter(), OMX_GetConfig(), and OMX_GetConfig().
The ..Parameter calls are made before the component is “loaded,” and the ..Config calls are made after it is
loaded.

Cis not an OO language, and this is an ordinary function call (well, actually it’s a macro). In an
00 language it would be a method of an object taking another object as a parameter, as in component.
method(object). In OpenMAX IL the Get/Set function takes the calling “object” as the first parameter (the
component, an indicator of what type of “object” the method’s parameter is), an index into possible “object
types, and a structure for the parameter object. The index values are related to structures in Table 4-2 of the
1.1 specification.

The calls take a (pointer to a) structure for filling in or extracting values. The structures are all
normalized so that they share common fields such as the size of the structure. In Bellagio examples, this
is done with a macro setHeader (). The structure passed in to get port information is usually a generic
structure of type OMX_PORT_PARAM_TYPE. Some fields can be accessed directly, some need a typecast to a
more specialized type, and some are buried down in unions and have to be extracted.

Ports are labeled by integer indices. There are different ports for different functions, such as audio,
image, video, and other. To get information about the starting value for audio ports, use the following:

”

setHeader(¶m, sizeof(OMX_PORT_PARAM_TYPE));
err = OMX GetParameter(handle, OMX IndexParamAudioInit, ¶m);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT_PARAM TYPE parameter\n", 0);
exit(1);

}
printf("Audio ports start on %d\n",

((OMX_PORT _PARAM_TYPE)param) .nStartPortNumber);
printf("There are %d open ports\n",

((OMX_PORT_PARAM_TYPE)param).nPorts);

The macro setHeader just fills in header information such as version numbers and the size of the data
structure.

Particular ports may now be queried about their capabilities. You can query for the type of the port
(audio or otherwise), the direction (input or output), and information about the MIME type supported.

245

CHAPTER 13 = OPENMAX IL

OMX_PARAM_PORTDEFINITIONTYPE sPortDef;

setHeader (&sPortDef, sizeof(OMX PARAM_PORTDEFINITIONTYPE));
sPortDef.nPortIndex = 0;
err = OMX GetParameter(handle, OMX IndexParamPortDefinition, &sPortDef);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX PORT PARAM TYPE parameter\n", 0);
exit(1);

if (sPortDef.eDomain == OMX_PortDomainAudio) {
printf("Is an audio port\n");

} else {
printf("Is other device port\n");

}

if (sPortDef.eDir == OMX DirInput) {
printf("Port is an input port\n");
} else {
printf("Port is an output port\n");
}

/* the Audio Port info is buried in a union format.audio within the struct */
printf("Port min buffers %d, mimetype %s, encoding %d\n",
sPortDef.nBufferCountMin,
sPortDef.format.audio.cMIMEType,
sPortDef.format.audio.eEncoding);

The Bellagio library returns “raw/audio” for the MIME type supported by its volume control
component. This is not a valid MIME type as listed by IANA MIME Media Types (www.iana.org/
assignments/media-types), though. The value returned from the encoding is zero, corresponding to
OMX_AUDIO_CodingUnused, which also does not seem to be correct.

If you try the same program on the Raspberry Pi component audio_render and on the LIM component
OMX.1limoi.alsa_sink, you get NULL for the MIME type but an encoding value of 2, which is OMX_AUDIO_
CodingPCM. PCM has a MIME type of audio/L16, so NULL seems inappropriate.

An OpenMAX IL library allows a port to be queried for the data types it supports. This
is done by querying for an OMX_AUDIO_PARAM_PORTFORMATTYPE object using the index OMX_
IndexParamAudioPortFormat. According to the specification, for each index from zero upward, a call to
GetParameter () should return an encoding such as OMX_AUDIO CodingPCM or OMX_AUDIO_ CodingMp3 until
there are no more supported formats, on which it returns OMX_ErrorNoMore.

The Bellagio code returns a value of OMX_AUDIO CodingUnused, which is not correct. The LIM code
does not set a value at all, so you just get garbage. The Broadcom implementation works OK, but as will be
discussed returns values that are not actually supported. So, there is limited value in this call.

The following code tests this:

void getSupportedAudioFormats(int indentlLevel, int portNumber) {
OMX_AUDIO_PARAM PORTFORMATTYPE sAudioPortFormat;

setHeader (&sAudioPortFormat, sizeof(OMX_AUDIO PARAM PORTFORMATTYPE));

sAudioPortFormat.nIndex = 0;
sAudioPortFormat.nPortIndex = portNumber;

246

http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/media-types

printf("Supported audio formats are:\n");
for(;;) {
err = OMX_GetParameter(handle, OMX_IndexParamAudioPortFormat, &sAudioPortFormat);

if (err == OMX_ErrorNoMore) {

printf("No more formats supported\n");

return;

}

/* This shouldn't occur, but does with Broadcom library */
if (sAudioPortFormat.eEncoding == OMX_AUDIO CodingUnused) {
printf("No coding format returned\n");

return;

}

switch (sAudioPortFormat.eEncoding) {

case OMX_AUDIO_CodingPCM:

printf("Supported encoding is PCM\n");

break;

case OMX_AUDIO CodingVORBIS:
printf("Supported encoding
break;

case OMX_AUDIO_CodingMP3:
printf("Supported encoding
break;

#ifdef RASPBERRY_PI

#endif

case OMX_AUDIO CodingFLAC:
printf("Supported encoding
break;

case OMX_AUDIO CodingDDP:
printf("Supported encoding
break;

case OMX_AUDIO CodingDTS:
printf("Supported encoding
break;

case OMX_AUDIO CodingWMAPRO:
printf("Supported encoding
break;

case OMX_AUDIO_CodingAAC:
printf("Supported encoding
break;

case OMX_AUDIO CodingWMA:
printf("Supported encoding
break;

case OMX_AUDIO_CodingRA:
printf("Supported encoding
break;

case OMX_AUDIO CodingAMR:
printf("Supported encoding
break;

is

is

is

is

is

is

is

is

is

is

Ogg Vorbis\n");

MP3\n");

FLAC\n");

DDP\n");

DTS\n");

WMAPRO\N") ;

AAC\N");

WMA\N");

RA\Nn");

AMR\N");

CHAPTER 13 © OPENMAX IL

247

CHAPTER 13 = OPENMAX IL

case OMX_AUDIO CodingEVRC:
printf("Supported encoding is EVRC\n");
break;

case OMX_AUDIO CodingG726:
printf("Supported encoding is G726\n");
break;

case OMX_AUDIO CodingMIDI:
printf("Supported encoding is MIDI\n");
break;

case OMX_AUDIO CodingATRAC3:
printf("Supported encoding is ATRAC3\n");
break;

case OMX_AUDIO CodingATRACX:
printf("Supported encoding is ATRACX\n");
break;

case OMX_AUDIO CodingATRACAAL:
printf("Supported encoding is ATRACAAL\n");
break;

default:
printf("Supported encoding is %d\n",

sAudioPortFormat.eEncoding);

}

sAudioPortFormat.nIndex++;

Note that the code contains enum values such as OMX_AUDIO_CodingATRAC3, which are specific to the
Broadcom library. These are legal values according to an OpenMAX IL extension mechanism but of course
are not portable values.

The Bellagio library incorrectly returns OMX_AUDIO CodingUnused for every index value.

The Broadcom library can return lots of values. For example, for the audio_decode component,
it returns the following:

Supported audio formats are:
Supported encoding is MP3
Supported encoding is PCM
Supported encoding is AAC
Supported encoding is WMA
Supported encoding is Ogg Vorbis
Supported encoding is RA
Supported encoding is AMR
Supported encoding is EVRC
Supported encoding is G726
Supported encoding is FLAC
Supported encoding is DDP
Supported encoding is DTS
Supported encoding is WMAPRO
Supported encoding is ATRAC3
Supported encoding is ATRACX
Supported encoding is ATRACAAL
Supported encoding is MIDI

No more formats supported

248

CHAPTER 13 © OPENMAX IL

Regrettably, none of these is actually supported except for PCM. The following is according to jamesh in

“OMX_AllocateBuffer fails for audio decoder component”:

The way it works is that the component passes back success for all the codecs it can
potentially support (i.e., all the codecs we’ve ever had going). That is then constrained
by what codecs are actually installed. It would be better to run time detect which codecs
are present, but that code has never been written since it's never been required. It's also
unlikely ever to be done as Broadcom no longer support audio codecs in this way—they
have moved off the Videocore to the host CPU since they are now powerful enough to
handle any audio decoding task.

That’s kind of sad, really.
Putting all the bits together gives the program info.c, shown here:

/**
Based on code
Copyright (C) 2007-2009 STMicroelectronics
Copyright (C) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
under the LGPL
*/

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/stat.h>

#include <OMX_Core.h>
#include <OMX_Component.h>
#include <OMX_Types.h>
#include <OMX_Audio.h>

#ifdef RASPBERRY_PI
#include <bcm_host.h>
#endif

OMX_ERRORTYPE err;
OMX_HANDLETYPE handle;
OMX_VERSIONTYPE specVersion, compVersion;

OMX_CALLBACKTYPE callbacks;
#define indent {int n = 0; while (n++ < indentLevel*2) putchar(' ');}
static void setHeader(OMX_PTR header, OMX U32 size) {

/* header->nVersion */

OMX_VERSIONTYPE* ver = (OMX_VERSIONTYPE*)(header + sizeof(OMX_U32));
/* header->nSize */

249

CHAPTER 13 = OPENMAX IL

((OMX_U32)header) = size;

/* for 1.2
ver->s.nVersionMajor = OMX_VERSION_MAJOR;
ver->s.nVersionMinor = OMX_VERSION_MINOR;
ver->s.nRevision = OMX_VERSION_REVISION;
ver->s.nStep = OMX_VERSION_STEP;
*/
ver->s.nVersionMajor = specVersion.s.nVersionMajor;
ver->s.nVersionMinor = specVersion.s.nVersionMinor;
ver->s.nRevision = specVersion.s.nRevision;
ver->s.nStep = specVersion.s.nStep;

}

void printState() {
OMX_STATETYPE state;
err = OMX GetState(handle, &state);
if (err !'= OMX_ErrorNone) {
fprintf(stderr, "Error on getting state\n");
exit(1);

switch (state) {
case OMX Stateloaded: fprintf(stderr, "StatelLoaded\n"); break;
case OMX StateIdle: fprintf(stderr, "StateIdle\n"); break;
case OMX_StateExecuting: fprintf(stderr, "StateExecuting\n"); break;
case OMX_StatePause: fprintf(stderr, "StatePause\n"); break;
case OMX_StateWaitForResources: fprintf(stderr, "StateWiat\n"); break;
default: fprintf(stderr, "State unknown\n"); break;
}
}

OMX_ERRORTYPE setEncoding(int portNumber, OMX_AUDIO CODINGTYPE encoding) {
OMX_PARAM_PORTDEFINITIONTYPE sPortDef;

setHeader (&sPortDef, sizeof(OMX _PARAM_PORTDEFINITIONTYPE));
sPortDef.nPortIndex = portNumber;
sPortDef.nPortIndex = portNumber;
err = OMX_GetParameter(handle, OMX_IndexParamPortDefinition, &sPortDef);
if(err != OMX_ErrorNone){

fprintf(stderr, "Error in getting OMX PORT DEFINITION TYPE parameter\n",

0);
exit(1);

}

sPortDef.format.audio.eEncoding = encoding;
sPortDef.nBufferCountActual = sPortDef.nBufferCountMin;

err = OMX_SetParameter(handle, OMX_ IndexParamPortDefinition, &sPortDef);
return err;

250

CHAPTER 13 © OPENMAX IL

void getPCMInformation(int indentlLevel, int portNumber) {
/* assert: PCM is a supported mode */
OMX_AUDIO_PARAM PCMMODETYPE sPCMMode;

/* set it into PCM format before asking for PCM info */

if (setEncoding(portNumber, OMX AUDIO CodingPCM) != OMX_ErrorNone) {
fprintf(stderr, "Error in setting coding to PCM\n");
return;

}

setHeader (&sPCMMode, sizeof(OMX_AUDIO_PARAM_PCMMODETYPE));

sPCMMode.nPortIndex = portNumber;

err = OMX_GetParameter(handle, OMX IndexParamAudioPcm, &sPCMMode);

if(err != OMX_ErrorNone){
indent printf("PCM mode unsupported\n");

} else {
indent printf(" PCM default sampling rate %d\n", sPCMMode.nSamplingRate);
indent printf(" PCM default bits per sample %d\n", sPCMMode.nBitPerSample);
indent printf(" PCM default number of channels %d\n", sPCMMode.nChannels);

}

/*

setHeader (&sAudioPortFormat, sizeof(OMX_AUDIO PARAM PORTFORMATTYPE));
sAudioPortFormat.nIndex = 0;

sAudioPortFormat.nPortIndex = portNumber;

*/

}

void getMP3Information(int indentlLevel, int portNumber) {
/* assert: MP3 is a supported mode */
OMX_AUDIO_PARAM_MP3TYPE sMP3Mode;

/* set it into MP3 format before asking for MP3 info */

if (setEncoding(portNumber, OMX_AUDIO CodingMP3) != OMX_ErrorNone) {
fprintf(stderr, "Error in setting coding to MP3\n");
return;

}

setHeader (&sMP3Mode, sizeof(OMX_AUDIO_PARAM MP3TYPE));

sMP3Mode.nPortIndex = portNumber;

err = OMX_GetParameter(handle, OMX IndexParamAudioMp3, &sMP3Mode);

if(err != OMX_ErrorNone){
indent printf("MP3 mode unsupported\n");

} else {
indent printf(" MP3 default sampling rate %d\n", sMP3Mode.nSampleRate);
indent printf(" MP3 default bits per sample %d\n", sMP3Mode.nBitRate);
indent printf(" MP3 default number of channels %d\n", sMP3Mode.nChannels);

251

CHAPTER 13 = OPENMAX IL

void getSupportedAudioFormats(int indentlLevel, int portNumber) {
OMX_AUDIO_PARAM PORTFORMATTYPE sAudioPortFormat;

setHeader (&sAudioPortFormat, sizeof(OMX_AUDIO PARAM PORTFORMATTYPE));
sAudioPortFormat.nIndex = 0;
sAudioPortFormat.nPortIndex = portNumber;

#ifdef LIM
printf("LIM doesn't set audio formats properly\n");
return;

#endif

indent printf("Supported audio formats are:\n");
for(;;) {
err = OMX_GetParameter(handle, OMX_IndexParamAudioPortFormat, &sAudioPortFormat);
if (err == OMX_ErrorNoMore) {
indent printf("No more formats supported\n");
return;

}

/* This shouldn't occur, but does with Broadcom library */
if (sAudioPortFormat.eEncoding == OMX_AUDIO CodingUnused) {
indent printf("No coding format returned\n");
return;

}

switch (sAudioPortFormat.eEncoding) {

case OMX_AUDIO_CodingPCM:
indent printf("Supported encoding is PCM\n");
getPCMInformation(indentlLevel+1, portNumber);
break;

case OMX_AUDIO CodingVORBIS:
indent printf("Supported encoding is Ogg Vorbis\n");
break;

case OMX_AUDIO CodingMP3:
indent printf("Supported encoding is MP3\n");
getMP3Information(indentlLevel+1, portNumber);
break;

#ifdef RASPBERRY_PI

case OMX_AUDIO_CodingFLAC:
indent printf("Supported encoding is FLAC\n");
break;

case OMX_AUDIO CodingDDP:
indent printf("Supported encoding is DDP\n");
break;

case OMX_AUDIO CodingDTS:
indent printf("Supported encoding is DTS\n");
break;

case OMX_AUDIO_ CodingWMAPRO:
indent printf("Supported encoding is WMAPRO\n");
break;

case OMX_AUDIO CodingATRAC3:

252

CHAPTER 13 © OPENMAX IL

indent printf("Supported encoding is ATRAC3\n");
break;

case OMX_AUDIO CodingATRACX:
indent printf("Supported encoding is ATRACX\n");
break;

case OMX_AUDIO CodingATRACAAL:
indent printf("Supported encoding is ATRACAAL\n");
break;

#endif

case OMX_AUDIO_CodingAAC:
indent printf("Supported encoding is AAC\n");
break;

case OMX_AUDIO CodingWMA:
indent printf("Supported encoding is WMA\n");
break;

case OMX_AUDIO_CodingRA:
indent printf("Supported encoding is RA\n");
break;

case OMX_AUDIO CodingAMR:
indent printf("Supported encoding is AMR\n");
break;

case OMX_AUDIO_CodingEVRC:
indent printf("Supported encoding is EVRC\n");
break;

case OMX_AUDIO CodingG726:
indent printf("Supported encoding is G726\n");
break;

case OMX_AUDIO_CodingMIDI:
indent printf("Supported encoding is MIDI\n");
break;

/*
case OMX_AUDIO_Coding:
indent printf("Supported encoding is \n");
break;
*/
default:
indent printf("Supported encoding is not PCM or MP3 or Vorbis, is 0x%X\n",
sAudioPortFormat.eEncoding);

}

sAudioPortFormat.nIndex++;

}

void getAudioPortInformation(int indentLevel, int nPort, OMX_PARAM PORTDEFINITIONTYPE
sPortDef) {
indent printf("Port %d requires %d buffers\n", nPort, sPortDef.nBufferCountMin);
indent printf("Port %d has min buffer size %d bytes\n", nPort, sPortDef.nBufferSize);

if (sPortDef.eDir == OMX_DirInput) {
indent printf("Port %d is an input port\n", nPort);
} else {

253

CHAPTER 13 = OPENMAX IL

indent printf("Port %d is an output port\n", nPort);
}
switch (sPortDef.eDomain) {
case OMX_PortDomainAudio:
indent printf("Port %d is an audio port\n", nPort);
indent printf("Port mimetype %s\n",
sPortDef.format.audio.cMIMEType);

switch (sPortDef.format.audio.eEncoding) {
case OMX_AUDIO_CodingPCM:
indent printf("Port encoding is PCM\n");
break;
case OMX_AUDIO CodingVORBIS:
indent printf("Port encoding is Ogg Vorbis\n");
break;
case OMX_AUDIO_CodingMP3:
indent printf("Port encoding is MP3\n");
break;
default:
indent printf("Port encoding is not PCM or MP3 or Vorbis, is %d\n",
sPortDef.format.audio.eEncoding);

}

getSupportedAudioFormats(indentLevel+1, nPort);

break;

/* could put other port types here */
default:

indent printf("Port %d is not an audio port\n", nPort);
}

}

void getAllAudioPortsInformation(int indentLevel) {
OMX_PORT_PARAM_TYPE param;
OMX_PARAM_PORTDEFINITIONTYPE sPortDef;

int startPortNumber;
int nPorts;
int n;

setHeader (¶m, sizeof(OMX_PORT PARAM TYPE));

err = OMX GetParameter(handle, OMX IndexParamAudioInit, ¶m);

if(err !'= OMX_ErrorNone){
fprintf(stderr, "Error in getting audio OMX_PORT PARAM TYPE parameter\n", 0);
return;

}

indent printf("Audio ports:\n");

indentlLevel++;

startPortNumber = param.nStartPortNumber;
nPorts = param.nPorts;

254

CHAPTER 13 © OPENMAX IL

if (nPorts == 0) {
indent printf("No ports of this type\n");
return;

}

indent printf("Ports start on %d\n", startPortNumber);
indent printf("There are %d open ports\n", nPorts);

for (n = 0; n < nPorts; n++) {
setHeader (&sPortDef, sizeof(OMX PARAM_PORTDEFINITIONTYPE));
sPortDef.nPortIndex = startPortNumber + n;
err = OMX_GetParameter(handle, OMX IndexParamPortDefinition, &sPortDef);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT_DEFINITION_TYPE parameter\n", 0);
exit(1);

getAudioPortInformation(indentLevel+1, startPortNumber + n, sPortDef);

}

void getAllVideoPortsInformation(int indentLevel) {
OMX_PORT_PARAM_TYPE param;
int startPortNumber;
int nPorts;
int n;

setHeader(¶m, sizeof(OMX_PORT_PARAM TYPE));

err = OMX_GetParameter(handle, OMX_IndexParamVideoInit, ¶m);

if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting video OMX_PORT_PARAM_TYPE parameter\n", 0);
return;

}

printf("Video ports:\n");

indentlLevel++;

startPortNumber = param.nStartPortNumber;
nPorts = param.nPorts;
if (nPorts == 0) {
indent printf("No ports of this type\n");
return;

}

indent printf("Ports start on %d\n", startPortNumber);
indent printf("There are %d open ports\n", nPorts);

}

void getAllImagePortsInformation(int indentLevel) {
OMX_PORT_PARAM_TYPE param;
int startPortNumber;
int nPorts;
int n;

255

CHAPTER 13 = OPENMAX IL

setHeader (¶m, sizeof(OMX_PORT PARAM TYPE));

err = OMX_GetParameter(handle, OMX_IndexParamVideoInit, ¶m);

if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting image OMX_PORT_PARAM_TYPE parameter\n", 0);
return;

}

printf("Image ports:\n");

indentlLevel++;

startPortNumber = param.nStartPortNumber;
nPorts = param.nPorts;
if (nPorts == 0) {
indent printf("No ports of this type\n");
return;

}

indent printf("Ports start on %d\n", startPortNumber);
indent printf("There are %d open ports\n", nPorts);

}

void getAllOtherPortsInformation(int indentLevel) {
OMX_PORT_PARAM_TYPE param;
int startPortNumber;
int nPorts;
int n;

setHeader(¶m, sizeof(OMX_PORT_PARAM TYPE));

err = OMX GetParameter(handle, OMX IndexParamVideoInit, ¶m);

if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting other OMX PORT PARAM TYPE parameter\n", 0);
exit(1);

printf("Other ports:\n");
indentLevel++;

startPortNumber = param.nStartPortNumber;
nPorts = param.nPorts;
if (nPorts == 0) {
indent printf("No ports of this type\n");
return;

}

indent printf("Ports start on %d\n", startPortNumber);
indent printf("There are %d open ports\n", nPorts);

int main(int argc, char** argv) {

OMX_PORT_PARAM_TYPE param;

256

CHAPTER 13 © OPENMAX IL

OMX_PARAM PORTDEFINITIONTYPE sPortDef;
OMX_AUDIO_PORTDEFINITIONTYPE sAudioPortDef;
OMX_AUDIO_PARAM PORTFORMATTYPE sAudioPortFormat;
OMX_AUDIO_PARAM_PCMMODETYPE sPCMMode;

#ifdef RASPBERRY PI

char *componentName
#endif
#ifdef LIM

char *componentName
#else

char *componentName
#tendif

unsigned char name[128]; /* spec says 128 is max name length */

OMX_UUIDTYPE uid;

int startPortNumber;

int nPorts;

int n;

"OMX.broadcom.audio_mixer";

"OMX.1limoi.alsa_sink";

"OMX.st.volume.component";

/* ovveride component name by command line argument */
if (argc == 2) {

componentName = argv([1];
}

ifdef RASPBERRY_PI
bem_host_init();
endif

err = OMX_Init();
if(err != OMX_ErrorNone) {
fprintf(stderr, "OMX Init() failed\n", 0);
exit(1);
}
/** Ask the core for a handle to the volume control component
*/
err = OMX_GetHandle(&handle, componentName, NULL /*app private data */, &callbacks);
if (err != OMX_ErrorNone) {
fprintf(stderr, "OMX CetHandle failed\n", 0);
exit(1);
}
err = OMX_GetComponentVersion(handle, name, &compVersion, &specVersion, &uid);
if (err !'= OMX_ErrorNone) {
fprintf(stderr, "OMX GetComponentVersion failed\n", 0);
exit(1);

printf("Component name: %s version %d.%d, Spec version %d.%d\n",
name, compVersion.s.nVersionMajor,
compVersion.s.nVersionMinor,
specVersion.s.nVersionMajor,
specVersion.s.nVersionMinor);

257

CHAPTER 13 = OPENMAX IL

/** Get ports information */

getAllAudioPortsInformation(0);
getAllvVideoPortsInformation(0);
getAllImagePortsInformation(0);
getAll0therPortsInformation(0);

exit(0);

The Makefile for the Bellagio version is as follows:

INCLUDES=-TI ../libomxil-bellagio-0.9.3/include/
LIBS=-L ../libomxil-bellagio-0.9.3/src/.libs -1 omxil-bellagio
CFLAGS = -g

info: info.c
cc $(FLAGS) $(INCLUDES) -o info info.c $(LIBS)

The output using the Bellagio implementation is as follows:

Component name: OMX.st.volume.component version 1.1, Spec version 1.1
Audio ports:
Ports start on 0
There are 2 open ports
Port 0 requires 2 buffers
Port 0 is an input port
Port 0 is an audio port
Port mimetype raw/audio
Port encoding is not PCM or MP3 or Vorbis, is 0
Supported audio formats are:
No coding format returned
Port 1 requires 2 buffers
Port 1 is an output port
Port 1 is an audio port
Port mimetype raw/audio
Port encoding is not PCM or MP3 or Vorbis, is 0
Supported audio formats are:
No coding format returned
Video ports:
No ports of this type
Image ports:
No ports of this type
Other ports:
No ports of this type

The Makefile for the Raspberry Pi is as follows:
INCLUDES=-I /opt/vc/include/IL -I /opt/vc/include -I /opt/vc/include/interface/vcos/pthreads

CFLAGS=-g -DRASPBERRY_PI
LIBS=-L /opt/vc/1lib -1 openmaxil -1 bcm_host

258

CHAPTER 13

info: info.c
cc $(CFLAGS) $(INCLUDES) -o info info.c $(LIBS)

The output on the Raspberry Pi for the audio_render component is as follows:

Audio ports:
Ports start on 100
There are 1 open ports
Port 100 requires 1 buffers
Port 100 is an input port
Port 100 is an audio port
Port mimetype (null)
Port encoding is PCM
Supported audio formats are:
Supported encoding is PCM
PCM default sampling rate 44100
PCM default bits per sample 16
PCM default number of channels 2
Supported encoding is DDP
No more formats supported
Video ports:
No ports of this type
Image ports:
No ports of this type
Other ports:
No ports of this type

The Makefile for LIM is as follows:

INCLUDES=-I ../../lim-omx-1.1/LIM/1limoi-core/include/

#LIBS=-L ../../lim-omx-1.1/LIM/1limoi-base/src/.1libs -1 limoi-base
LIBS = -L /home/newmarch/osm-build/1ib/ -1 limoa -1 limoi-core
CFLAGS = -g -DLIM

info: info.c
cc $(CFLAGS) $(INCLUDES) -o info info.c $(LIBS)

The output on LIM for the alsa_sink component is as follows:

Component name: OMX.limoi.alsa_sink version 0.0, Spec version 1.1
Audio ports:
Ports start on 0
There are 1 open ports
Port 0 requires 2 buffers
Port 0 is an input port
Port 0 is an audio port
Port mimetype (null)
Port encoding is PCM
LIM doesn't set audio formats properly
Error in getting video OMX_PORT_PARAM_TYPE parameter
Error in getting image OMX_PORT_PARAM_TYPE parameter
Error in getting other OMX_PORT_PARAM_TYPE parameter

OPENMAX IL

259

CHAPTER 13 = OPENMAX IL

The LIM implementation throws errors when the component does not support a mode (here an audio
component does not support video, image, or other). This is against the 1.1 specification, which says the
following:

"All standard components shall support the following parameters:
0 OMX_IndexParamPortDefinition

OMX_IndexParamCompBufferSupplier

OMX_IndexParamAudioInit

OMX_IndexParamImageInit

OMX_IndexParamVideoInit

OMX_IndexParamOtherInit"

O O O o o

I suppose you could argue that an alsa_sink component isn’t a standard one, so it is allowed. Well, OK...

Playing PCM Audio Files

Playing audio to an output device requires the use of an audio_render device. This is one of the standard
devices in the 1.1 specification and is included in the Broadcom Raspberry Pi library but not in the Bellagio
library. LIM has a component alsa_sink, which plays the same role.

The structure of a program to play audio is as follows:

1. Initialize the library and audio render component.
2. Continually fill input buffers and ask the component to empty the buffers.

3. Capture events from the component saying that a buffer has been emptied in
order to schedule refilling the buffer and requesting it to be emptied.

4. Clean up on completion.

Note that the Raspberry Pi audio render component will only play PCM data and that the LIM alsa_
sink component only plays back at 44,100Hz.

State

Initializing the component is a multistep process that depends on the state of the component. Components
are created in the Loaded state. They transition from one state to another through OMX_SendCommand(handle,
OMX_CommandStateSet, <next state>, <param>).The next state from Loaded should be Idle and from
there to Executing. There are other states that you need not be concerned about.

Requests to change state are asynchronous. The send command returns immediately (well, within 5
milliseconds). When the actual change of state occurs, an event handler callback function is called.

Threads

Some commands require a component to be in a particular state. Requests to put a component into a state
are asynchronous. So, a request can be made by a client, but then the client might have to wait until the state
change has occurred. This is best done by the client suspending operation of its thread until woken up by the
state change occurring in the event handler.

260

CHAPTER 13 © OPENMAX IL

Linux/Unix has standardized on the Posix pthreads library for managing multiple threads. For our
purposes, you use two parts from this library: the ability to place a mutex around critical sections and the
ability to suspend/wake up threads based on conditions. Pthreads are covered in many places, with a short
and good tutorial by Blaise Barney called “POSIX Threads Programming” (https://computing.11lnl.gov/
tutorials/pthreads/#Misc).

The functions and data you use are as follows:

pthread mutex_t mutex;
OMX_STATETYPE currentState = OMX Stateloaded;
pthread cond_t stateCond;

void waitFor(OMX STATETYPE state) {
pthread mutex lock(8mutex);
while (currentState != state)
pthread cond wait(&stateCond, &mutex);
fprintf(stderr, "Wait successfully completed\n");
pthread mutex_unlock(&mutex);

}

void wakeUp(OMX_STATETYPE newState) {
pthread mutex_lock(8mutex);
currentState = newState;
pthread cond signal(&stateCond);
pthread mutex_unlock(&mutex);

}

pthread mutex t empty mutex;

int emptyState = 0;

OMX_BUFFERHEADERTYPE* pEmptyBuffer;

pthread_cond_t emptyStateCond;

void waitForEmpty() {
pthread mutex lock(&empty mutex);
while (emptyState == 1)
pthread cond wait(8emptyStateCond, &empty mutex);
emptyState = 1;
pthread mutex_unlock(&empty mutex);
}

void wakeUpEmpty(OMX BUFFERHEADERTYPE* pBuffer) {
pthread mutex lock(8empty mutex);
emptyState = 0;
pEmptyBuffer = pBuffer;
pthread cond signal(&emptyStateCond);
pthread mutex_unlock(&empty mutex);

}

void mutex_init() {
int n = pthread mutex_ init(8mutex, NULL);
if (n!=0) {
fprintf(stderr, "Can't init state mutex\n");
}

261

https://computing.llnl.gov/tutorials/pthreads/#Misc
https://computing.llnl.gov/tutorials/pthreads/#Misc

CHAPTER 13 = OPENMAX IL

n = pthread mutex init(&empty mutex, NULL);
if (n!=0){

fprintf(stderr, "Can't init empty mutex\n");
}

Hungarian Notation in OpenMAX IL

Hungarian notation was invented by Charles Simonyi to add type or functional information to variable,
structure, and field names. A form was heavily used in the Microsoft Windows SDK. A simplified form is used
in OpenMAX IL by prefixing variables, fields, and so on, as follows:

¢ nprefixes a number of some kind.
e p prefixes a pointer.

e s prefixes a structure or a string.

e prefixes a callback function.

The value of such conventions is highly debatable.

Callbacks

Two types of callback functions are relevant to this example: event callbacks that occur on changes of state
and some other events, and empty buffer callbacks that occur when a component has emptied an input
buffer. These are registered with the following:

OMX_CALLBACKTYPE callbacks = { .EventHandler = cEventHandler,
.EmptyBufferDone = cEmptyBufferDone,
b
err = OMX GetHandle(8handle, componentName, NULL /*app private data */, &callbacks);

Component Resources

Each component has a number of ports that have to be configured. The ports are some of the component’s
resources. Each port starts off as enabled but may be set to disabled with OMX_SendCommand (handle,
OMX_CommandPortDisable, <port number>, NULL).

Enabled ports can have buffers allocated for the transfer of data into and out of the component. This can
be done in two ways: OMX_AllocateBuffer asks the component to perform the allocation for the client, while
with OMX_UseBuffer the client hands a buffer to the component. As there may be buffer memory alignment
issues, I prefer to let the component do the allocation.

Here is a tricky part. To allocate or use buffers on a component, a request must be made to transition
from Loaded state to Idle. So, a call to OMX_SendCommand (handle, OMX CommandStateSet, OMX_StateIdle,
<param>) must be made before buffers are allocated. But the transition to Idle will not take place until each
port is either disabled or all buffers for it are allocated.

This last step cost me nearly a week of head scratching. The audio_render component has two ports: an
input audio port and a time update port. While I had configured the audio port correctly, I had not disabled
the time port because I didn’t realize it had one. Consequently, the transition to Idle never took place. The
following is the code to handle this:

262

CHAPTER 13 © OPENMAX IL

setHeader (¶m, sizeof(OMX_PORT PARAM TYPE));
err = OMX GetParameter(handle, OMX IndexParamOtherInit, ¶m);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT_PARAM TYPE parameter\n", 0);
exit(1);
}
startPortNumber = ((OMX_PORT PARAM TYPE)param).nStartPortNumber;
nPorts = ((OMX_PORT_PARAM_TYPE)param).nPorts;
printf("Other has %d ports\n", nPorts);
/* and disable it */
err = OMX_SendCommand(handle, OMX CommandPortDisable, startPortNumber, NULL);
if (err !'= OMX_ErrorNone) {
fprintf(stderr, "Error on setting port to disabled\n");
exit(1);

}

Here is how to set parameters for the audio port:

/** Get audio port information */
setHeader(¶m, sizeof(OMX_PORT_PARAM TYPE));
err = OMX_GetParameter(handle, OMX_IndexParamAudioInit, ¶m);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT_PARAM TYPE parameter\n", 0);
exit(1);
}
startPortNumber = ((OMX_PORT_PARAM_TYPE)param).nStartPortNumber;
nPorts = ((OMX_PORT_PARAM_TYPE)param).nPorts;
if (nPorts > 1) {
fprintf(stderr, "Render device has more than one port\n");
exit(1);

}

setHeader (&sPortDef, sizeof(OMX PARAM_PORTDEFINITIONTYPE));
sPortDef.nPortIndex = startPortNumber;
err = OMX_GetParameter(handle, OMX IndexParamPortDefinition, &sPortDef);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT_DEFINITION_TYPE parameter\n", 0);
exit(1);
}
if (sPortDef.eDomain != OMX_PortDomainAudio) {
fprintf(stderr, "Port %d is not an audio port\n", startPortNumber);
exit(1);

}

if (sPortDef.eDir != OMX DirInput) {
fprintf(stderr, "Port is not an input port\n");
exit(1);

}

if (sPortDef.format.audio.eEncoding == OMX_AUDIO CodingPCM) {
printf("Port encoding is PCM\n");

} else {

263

CHAPTER 13 = OPENMAX IL

264

printf("Port has unknown encoding\n");

}

/* create minimum number of buffers for the port */
nBuffers = sPortDef.nBufferCountActual = sPortDef.nBufferCountMin;
printf("Number of bufers is %d\n", nBuffers);
err = OMX_SetParameter(handle, OMX IndexParamPortDefinition, &sPortDef);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in setting OMX_PORT_PARAM TYPE parameter\n", 0);
exit(1);

}

/* call to put state into idle before allocating buffers */
err = OMX_SendCommand(handle, OMX CommandStateSet, OMX StateIdle, NULL);
if (err != OMX_ErrorNone) {

fprintf(stderr, "Error on setting state to idle\n");

exit(1);

}

err = OMX_SendCommand(handle, OMX CommandPortEnable, startPortNumber, NULL);
if (err != OMX_ErrorNone) {

fprintf(stderr, "Error on setting port to enabled\n");

exit(1);

}

nBufferSize = sPortDef.nBufferSize;
printf("%d buffers of size is %d\n", nBuffers, nBufferSize);

inBuffers = malloc(nBuffers * sizeof(OMX BUFFERHEADERTYPE *));
if (inBuffers == NULL) {
fprintf(stderr, "Can't allocate buffers\n");
exit(1);
}
for (n = 0; n < nBuffers; n++) {
err = OMX AllocateBuffer(handle, inBuffers+n, startPortNumber, NULL,
nBufferSize);
if (err != OMX_ErrorNone) {
fprintf(stderr, "Error on AllocateBuffer in 1%i\n", err);
exit(1);

}

waitFor(OMX Stateldle);
/* try setting the encoding to PCM mode */
setHeader (&sPCMMode, sizeof(OMX _AUDIO PARAM PCMMODETYPE));
sPCMMode.nPortIndex = startPortNumber;
err = OMX_GetParameter(handle, OMX_IndexParamAudioPcm, &sPCMMode);
if(err != OMX_ErrorNone){

printf("PCM mode unsupported\n");

exit(1);

CHAPTER 13 © OPENMAX IL

} else {
printf("PCM mode supported\n");
printf("PCM sampling rate %d\n", sPCMMode.nSamplingRate);
printf("PCM nChannels %d\n", sPCMMode.nChannels);

Setting the Output Device

OpenMAX has a standard audio render component. But what device does it render to? The built-in sound
card? A USB sound card? That is not a part of OpenMAX IL; there isn’t even a way to list the audio devices,
only the audio components.

OpenMAX has an extension mechanism that can be used by an OpenMAX implementor to
answer questions like this. The Broadcom core implementation has extension types OMX_CONFIG_
BRCMAUDIODESTINATIONTYPE (and OMX CONFIG BRCMAUDIOSOURCETYPE) that can be used to set the audio
destination (source) device. Here is code to do this:

void setOutputDevice(const char *name) {
int32_t success = -1;
OMX_CONFIG BRCMAUDIODESTINATIONTYPE arDest;

if (name 88& strlen(name) < sizeof(arDest.sName)) {
setHeader(&arDest, sizeof(OMX_CONFIG _BRCMAUDIODESTINATIONTYPE));
strcpy((char *)arDest.sName, name);

err = OMX_SetParameter(handle, OMX_IndexConfigBrcmAudioDestination, &arDest);
if (err != OMX_ErrorNone) {

fprintf(stderr, "Error on setting audio destination\n");

exit(1);

Here is where it descends into murkiness again. The header file <IL/OMX_Broadcom.h> states that the
default value of sName is “local” but doesn’t give any other values. The Raspberry Pi forums say that this
refers to the 3.5mm analog audio out and that HDMI is chosen by using the value “hdmi.” No other values
are documented, and it seems that the Broadcom OpenMAX IL does not support any other audio devices.
In particular, USB audio devices are not supported by the current Broadcom OpenMAX IL components for
either input or output. So, you can’t use OpenMAX IL for, say, audio capture on the Raspberry Pi since it has
no Broadcom-supported audio input.

Main Loop

Playing the audio file once all the ports are set up consists of filling buffers, waiting for them to empty, and
then refilling them until the data is finished. There are two possible styles.

¢ Fill the buffers once in the main loop and then continue to fill and empty them in the
empty buffer callbacks.

e Inthe main loop, fill and empty the buffers continually, waiting between each fill for
the buffer to empty.

265

CHAPTER 13 = OPENMAX IL

The Bellagio example uses the first technique. However, the 1.2 specification says that “..the IL client
shall not call IL core or component functions from within an IL callback context,” so this is not a good
technique. The Raspberry Pi examples use the second technique but use a nonstandard call to find the
latency and delay for that time. It is better to just set up more pthreads conditions and block on those.

This leads to a main loop that looks like this:

emptyState = 1;
for (5;) {
int data_read = read(fd, inBuffers[0]->pBuffer, nBufferSize);
inBuffers[0]->nFilledLen = data_read;
inBuffers[0]->n0ffset = 0;
filesize -= data_read;
if (data_read <= 0) {
fprintf(stderr, "In the %s no more input data available\n", _ func_);
inBuffers[o]->nFilledLen=0;
inBuffers[0]->nFlags = OMX_BUFFERFLAG_EOS;
bEOS=OMX_TRUE;
err = OMX_EmptyThisBuffer(handle, inBuffers[o0]);
break;

}
if(!bEOS) {
fprintf(stderr, "Emptying again buffer %p %d bytes, %d to go\n", inBuffers[o],
data_read, filesize);
err = OMX_EmptyThisBuffer(handle, inBuffers[o0]);
telse {
fprintf(stderr, "In %s Dropping Empty This buffer to Audio Dec\n", _ func_);

waitForEmpty();
printf("Waited for empty\n");

}

printf("Buffers emptied\n");

Complete Program

The complete program is as follows:

/**
Based on code
Copyright (C) 2007-2009 STMicroelectronics
Copyright (C) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
under the LGPL
*/

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <pthread.h>
#include <unistd.h>

266

#include <sys/stat.h>
#include <pthread.h>

#include <OMX_Core.h>
#include <OMX_Component.h>
#include <OMX_Types.h>
#include <OMX_Audio.h>

#ifdef RASPBERRY_PI

#include <bcm_host.h>
#include <IL/OMX_Broadcom.h>
#endif

OMX_ERRORTYPE err;
OMX_HANDLETYPE handle;
OMX_VERSIONTYPE specVersion, compVersion;

int fd = 0;
unsigned int filesize;
static OMX_BOOL bEOS=OMX_FALSE;

OMX_U32 nBufferSize;
int nBuffers;

pthread mutex_t mutex;
OMX_STATETYPE currentState = OMX_Stateloaded;
pthread_cond_t stateCond;

void waitFor(OMX_STATETYPE state) {
pthread mutex lock(8mutex);
while (currentState != state)
pthread cond wait(&stateCond, &mutex);
pthread mutex_unlock(&mutex);

}

void wakeUp(OMX_STATETYPE newState) {
pthread mutex_lock(8mutex);
currentState = newState;
pthread cond signal(&stateCond);
pthread mutex_unlock(&mutex);

}

pthread mutex_t empty mutex;

int emptyState = 0;
OMX_BUFFERHEADERTYPE* pEmptyBuffer;
pthread_cond_t emptyStateCond;

void waitForEmpty() {
pthread mutex lock(8empty mutex);
while (emptyState == 1)

pthread cond wait(&emptyStateCond, &empty mutex);

CHAPTER 13 © OPENMAX IL

267

CHAPTER 13 = OPENMAX IL

emptyState = 1;
pthread mutex_unlock(&empty mutex);
}

void wakeUpEmpty(OMX BUFFERHEADERTYPE* pBuffer) {
pthread mutex_ lock(&empty mutex);
emptyState = 0;
pEmptyBuffer = pBuffer;
pthread cond_signal(&emptyStateCond);
pthread mutex_unlock(&empty mutex);
}

void mutex_init() {
int n = pthread mutex_init(8mutex, NULL);
if (n!=0){
fprintf(stderr, "Can't init state mutex\n");
}

n = pthread mutex init(&empty mutex, NULL);
if (n!=0) {

fprintf(stderr, "Can't init empty mutex\n");
}

}

static void display help() {
fprintf(stderr, "Usage: render input file");
}

/** Gets the file descriptor's size

* @return the size of the file. If size cannot be computed
* (i.e. stdin, zero is returned)

*/

static int getFileSize(int fd) {

struct stat input_file_ stat;
int err;

/* Obtain input file length */
err = fstat(fd, &input file stat);

if(err){
fprintf(stderr, "fstat failed",0);
exit(-1);

}

return input_file stat.st size;

}

OMX_ERRORTYPE cEventHandler(
OMX_HANDLETYPE hComponent,
OMX_PTR pAppData,
OMX_EVENTTYPE eEvent,
OMX_U32 Data1,
OMX_U32 Data2,
OMX_PTR pEventData) {

268

CHAPTER 13

fprintf(stderr, "Hi there, I am in the %s callback\n", func_);
if(eEvent == OMX_EventCmdComplete) {
if (Datal == OMX_CommandStateSet) {

fprintf(stderr, "Component State changed in ", 0);

switch ((int)Data2) {

case OMX_StateInvalid:
fprintf(stderr, "OMX StateInvalid\n", 0);
break;

case OMX_Stateloaded:
fprintf(stderr, "OMX StatelLoaded\n", 0);
break;

case OMX StateIdle:
fprintf(stderr, "OMX StateIdle\n",0);
break;

case OMX_StateExecuting:
fprintf(stderr, "OMX StateExecuting\n",0);
break;

case OMX_StatePause:
fprintf(stderr, "OMX StatePause\n",0);
break;

case OMX_StateWaitForResources:
fprintf(stderr, "OMX StateWaitForResources\n",0);
break;

wakeUp((int) Data2);
} else if (Datal == OMX_CommandPortEnable){

} else if (Datal == OMX_CommandPortDisable){

}
} else if(eEvent == OMX_EventBufferFlag) {

if((int)Data2 == OMX_BUFFERFLAG_EOS) {

} else {
fprintf(stderr, "Parami is %i\n", (int)Data1);
fprintf(stderr, "Param2 is %i\n", (int)Data2);

}

return OMX_ErrorNone;

}

OMX_ERRORTYPE cEmptyBufferDone(
OMX_HANDLETYPE hComponent,
OMX_PTR pAppData,
OMX_BUFFERHEADERTYPE* pBuffer) {

fprintf(stderr, "Hi there, I am in the %s callback.\n", _ func_);
if (bEOS) {

fprintf(stderr, "Buffers emptied, exiting\n");
}

OPENMAX IL

269

CHAPTER 13 = OPENMAX IL

wakeUpEmpty (pBuffer);
fprintf(stderr, "Exiting callback\n");

return OMX_ErrorNone;

}

OMX_CALLBACKTYPE callbacks = { .EventHandler = cEventHandler,
.EmptyBufferDone = cEmptyBufferDone,

};

void printState() {
OMX_STATETYPE state;
err = OMX GetState(handle, 8state);
if (err != OMX_ErrorNone) {
fprintf(stderr, "Error on getting state\n");
exit(1);
}
switch (state) {
case OMX Stateloaded: fprintf(stderr, "StateLoaded\n"); break;
case OMX StatelIdle: fprintf(stderr, "StateIdle\n"); break;

case OMX_StateExecuting: fprintf(stderr, "StateExecuting\n"); break;

case OMX_StatePause: fprintf(stderr, "StatePause\n"); break;

case OMX StateWaitForResources: fprintf(stderr, "StateWiat\n"); break;

default: fprintf(stderr, "State unknown\n"); break;

}
}

static void setHeader(OMX_PTR header, OMX U32 size) {
/* header->nVersion */

OMX_VERSIONTYPE* ver = (OMX_VERSIONTYPE*)(header + sizeof(OMX_U32));

/* header-»>nSize */
((OMX_U32)header) = size;

/* for 1.2
ver->s.nVersionMajor = OMX_VERSION_MAJOR;
ver->s.nVersionMinor = OMX_VERSION_MINOR;
ver->s.nRevision = OMX_VERSION_REVISION;
ver->s.nStep = OMX_VERSION_STEP;
*/
ver->s.nVersionMajor = specVersion.s.nVersionMajor;
ver->s.nVersionMinor = specVersion.s.nVersionMinor;
ver->s.nRevision = specVersion.s.nRevision;
ver->s.nStep = specVersion.s.nStep;

}

/¥*
* Disable unwanted ports, or we can't transition to Idle state
*/
void disablePort(OMX INDEXTYPE paramType) {
OMX_PORT_PARAM_TYPE param;
int nPorts;

270

CHAPTER 13 © OPENMAX IL

int startPortNumber;
int n;

setHeader(¶m, sizeof(OMX_PORT_PARAM TYPE));
err = OMX_GetParameter(handle, paramType, ¶m);
if(err !'= OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT_PARAM TYPE parameter\n", 0);
exit(1);
}
startPortNumber = ((OMX_PORT_PARAM_TYPE)param).nStartPortNumber;
nPorts = ((OMX_PORT_PARAM TYPE)param).nPorts;
if (nPorts > 0) {
fprintf(stderr, "Other has %d ports\n", nPorts);
/* and disable it */
for (n = 0; n < nPorts; n++) {
err = OMX_SendCommand(handle, OMX CommandPortDisable, n + startPortNumber, NULL);
if (err != OMX_ErrorNone) {
fprintf(stderr, "Error on setting port to disabled\n");
exit(1);

}

#ifdef RASPBERRY_PI
/* For the RPi name can be "hdmi" or "local" */
void setOutputDevice(const char *name) {
int32_t success = -1;
OMX_CONFIG BRCMAUDIODESTINATIONTYPE arDest;

if (name 8& strlen(name) < sizeof(arDest.sName)) {
setHeader(&arDest, sizeof(OMX_CONFIG _BRCMAUDIODESTINATIONTYPE));
strcpy((char *)arDest.sName, name);

err = OMX SetParameter(handle, OMX_ IndexConfigBrcmAudioDestination, &arDest);
if (err != OMX_ErrorNone) {

fprintf(stderr, "Error on setting audio destination\n");

exit(1);

}

}
#endif

void setPCMMode(int startPortNumber) {
OMX_AUDIO_PARAM PCMMODETYPE sPCMMode;

setHeader (&sPCMMode, sizeof(OMX AUDIO PARAM PCMMODETYPE));
sPCMMode.nPortIndex = startPortNumber;

sPCMMode .nSamplingRate = 48000;

sPCMMode.nChannels;

271

CHAPTER 13 = OPENMAX IL

int

err = OMX_SetParameter(handle, OMX IndexParamAudioPcm, &sPCMMode);
if(err != OMX_ErrorNone){
fprintf(stderr, "PCM mode unsupported\n");
return;
} else {
fprintf(stderr, "PCM mode supported\n");
fprintf(stderr, "PCM sampling rate %d\n", sPCMMode.nSamplingRate);
fprintf(stderr, "PCM nChannels %d\n", sPCMMode.nChannels);

main(int argc, char** argv) {

OMX_PORT_PARAM_TYPE param;
OMX_PARAM_PORTDEFINITIONTYPE sPortDef;
OMX_AUDIO_PORTDEFINITIONTYPE sAudioPortDef;
OMX_AUDIO_PARAM_PORTFORMATTYPE sAudioPortFormat;
OMX_AUDIO_PARAM_PCMMODETYPE sPCMMode;
OMX_BUFFERHEADERTYPE **inBuffers;

#ifdef RASPBERRY_PI

char *componentName = "OMX.broadcom.audio_render";

#endif
#ifdef LIM

char *componentName = "OMX.limoi.alsa_sink";

#endif

unsigned char name[OMX MAX_ STRINGNAME SIZE];
OMX_UUIDTYPE uid;

int startPortNumber;

int nPorts;

int n;

ifdef RASPBERRY_PI

bem_host_init();

endif

272

fprintf(stderr, "Thread id is %p\n", pthread_self());
if(arge < 2){

display_help();

exit(1);

}

fd = open(argv[1], O RDONLY);

if(fd < 0){
perror("Error opening input file\n");
exit(1);

}

filesize = getFileSize(fd);

err = OMX_Init();
if(err != OMX_ErrorNone) {
fprintf(stderr, "OMX Init() failed\n", 0);

CHAPTER 13 © OPENMAX IL

exit(1);

/** Ask the core for a handle to the audio render component
*/
err = OMX_GetHandle(&handle, componentName, NULL /*app private data */, &callbacks);
if(err != OMX_ErrorNone) {
fprintf(stderr, "OMX GetHandle failed\n", 0);
exit(1);
}
err = OMX_GetComponentVersion(handle, name, &compVersion, &specVersion, &uid);
if(err != OMX_ErrorNone) {
fprintf(stderr, "OMX GetComponentVersion failed\n", 0);
exit(1);

}

/** disable other ports */
disablePort(OMX_IndexParamOtherInit);

/** Get audio port information */
setHeader(¶m, sizeof(OMX_PORT_PARAM TYPE));
err = OMX_GetParameter(handle, OMX_IndexParamAudioInit, ¶m);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT_PARAM TYPE parameter\n", 0);
exit(1);
}
startPortNumber = ((OMX_PORT_PARAM_TYPE)param).nStartPortNumber;
nPorts = ((OMX_PORT_PARAM_TYPE)param).nPorts;
if (nPorts > 1) {
fprintf(stderr, "Render device has more than one port\n");
exit(1);

}

/* Get and check port information */
setHeader (8sPortDef, sizeof(OMX_PARAM PORTDEFINITIONTYPE));
sPortDef.nPortIndex = startPortNumber;
err = OMX_GetParameter(handle, OMX IndexParamPortDefinition, &sPortDef);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in getting OMX_PORT DEFINITION TYPE parameter\n", 0);
exit(1);
}
if (sPortDef.eDomain != OMX_PortDomainAudio) {
fprintf(stderr, "Port %d is not an audio port\n", startPortNumber);
exit(1);
}
if (sPortDef.eDir != OMX DirInput) {
fprintf(stderr, "Port is not an input port\n");
exit(1);
if (sPortDef.format.audio.eEncoding == OMX_AUDIO CodingPCM) {
fprintf(stderr, "Port encoding is PCM\n");

273

CHAPTER 13 = OPENMAX IL

274

} else {
fprintf(stderr, "Port has unknown encoding\n");
}

/* Create minimum number of buffers for the port */
nBuffers = sPortDef.nBufferCountActual = sPortDef.nBufferCountMin;
fprintf(stderr, "Number of bufers is %d\n", nBuffers);
err = OMX_SetParameter(handle, OMX_ IndexParamPortDefinition, &sPortDef);
if(err != OMX_ErrorNone){
fprintf(stderr, "Error in setting OMX_PORT_PARAM TYPE parameter\n", 0);
exit(1);

if (sPortDef.bEnabled) {

fprintf(stderr, "Port is enabled\n");
} else {

fprintf(stderr, "Port is not enabled\n");
}

/* call to put state into idle before allocating buffers */
err = OMX_SendCommand(handle, OMX CommandStateSet, OMX StateIdle, NULL);
if (err != OMX_ErrorNone) {

fprintf(stderr, "Error on setting state to idle\n");

exit(1);

}

err = OMX_SendCommand(handle, OMX CommandPortEnable, startPortNumber, NULL);
if (err != OMX_ErrorNone) {

fprintf(stderr, "Error on setting port to enabled\n");

exit(1);

}

/* Configure buffers for the port */
nBufferSize = sPortDef.nBufferSize;
fprintf(stderr, "%d buffers of size is %d\n", nBuffers, nBufferSize);

inBuffers = malloc(nBuffers * sizeof(OMX BUFFERHEADERTYPE *));
if (inBuffers == NULL) {

fprintf(stderr, "Can't allocate buffers\n");

exit(1);

}

for (n = 0; n < nBuffers; n++) {
err = OMX_AllocateBuffer(handle, inBuffers+n, startPortNumber, NULL,
nBufferSize);
if (err != OMX_ErrorNone) {
fprintf(stderr, "Error on AllocateBuffer in 1%i\n", err);
exit(1);
}
}

/* Make sure we've reached Idle state */
waitFor(OMX Stateldle);

CHAPTER 13 © OPENMAX IL

/* Now try to switch to Executing state */
err = OMX_SendCommand(handle, OMX_CommandStateSet, OMX StateExecuting, NULL);
if(err != OMX_ErrorNone){
exit(1);
}

/* One buffer is the minimum for Broadcom component, so use that */
pEmptyBuffer = inBuffers[0];
emptyState = 1;
/* Fill and empty buffer */
for (5;) {
int data_read = read(fd, pEmptyBuffer->pBuffer, nBufferSize);
pEmptyBuffer->nFilledlLen = data_read;
pEmptyBuffer->nOffset = 0;
filesize -= data_read;
if (data_read <= 0) {
fprintf(stderr, "In the %s no more input data available\n", _ func_);
pEmptyBuffer->nFilledlLen=0;
pEmptyBuffer->nFlags = OMX_BUFFERFLAG_EOS;
bEOS=OMX_TRUE;
}
fprintf(stderr, "Emptying again buffer %p %d bytes, %d to go\n", pEmptyBuffer, data_
read, filesize);
err = OMX_EmptyThisBuffer(handle, pEmptyBuffer);

waitForEmpty();
fprintf(stderr, "Waited for empty\n");
if (beoS) {
fprintf(stderr, "Exiting loop\n");
break;
}
}
fprintf(stderr, "Buffers emptied\n");
exit(0);

Conclusion

The Khronos Group has produced specifications for audio and video in low-capability systems. These

are currently used by Android and by the Raspberry Pi. This chapter has given an introductory overview
of these specifications and some example programs. The LIM package has not been updated since 2012,
while Bellagio hasn’t been updated since 2011, so they do not appear to be actively maintained. The RPi,
on the other hand, is thriving, and OpenMAX programming using the GPU is covered in detail in my book
Raspberry Pi GPU Audio Video Programming.

275

CHAPTER 14

LADSPA

Linux Audio Plug-Ins (LADSPA) is a set of plug-ins that can be used by applications to add effects such as
delays and filters. It was designed with simplicity in mind so is capable of only a limited number of effects.
Nevertheless, these can be quite wide-ranging and are sufficient for a large variety of applications.

Resources

Here are some resources:

e “Linux Audio Plug-Ins: A Look Into LADSPA” (www. linuxdevcenter.com/pub/a/
1inux/2001/02/02/1adspa.html) by Dave Phillips

e Linux Audio Developer’s Simple Plug-in API (www.ladspa.org/)

User-Level Tools

LADSPA plug-ins live in a directory defaulting to /usr/1ib/ladspa. This can be controlled by the
environment variable LADSPA_PATH. This directory will contain a set of . so files as LADSPA plug-ins.

Each plug-in contains information about itself, and you can inspect the set of plug-ins by running the
command-line tool 1istplugins. By installing just LADPSA, the default plug-ins are as follows:

/usr/lib/ladspa/amp.so:

Mono Amplifier (1048/amp_mono)

Stereo Amplifier (1049/amp_stereo)
/usr/lib/ladspa/delay.so:

Simple Delay Line (1043/delay 5s)
/usr/lib/ladspa/filter.so:

Simple Low Pass Filter (1041/1pf)

Simple High Pass Filter (1042/hpf)
/usr/lib/ladspa/sine.so:

Sine Oscillator (Freq:audio, Amp:audio) (1044/sine faaa)

Sine Oscillator (Freq:audio, Amp:control) (1045/sine_faac)

Sine Oscillator (Freq:control, Amp:audio) (1046/sine_fcaa)

Sine Oscillator (Freq:control, Amp:control) (1047/sine_fcac)
/usr/lib/ladspa/noise.so:

White Noise Source (1050/noise white)

© Jan Newmarch 2017 277
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_14

http://www.linuxdevcenter.com/pub/a/linux/2001/02/02/ladspa.html
http://www.linuxdevcenter.com/pub/a/linux/2001/02/02/ladspa.html
http://www.ladspa.org/

CHAPTER 14 LADSPA

You can find more detailed information about each plug-in from the tool analyseplugin. For example,
here’s the information for the amp plug-in:

$analyseplugin amp

Plugin Name: "Mono Amplifier"

Plugin Label: "amp_mono"

Plugin Unique ID: 1048

Maker: "Richard Furse (LADSPA example plugins)"

Copyright: "None"

Must Run Real-Time: No

Has activate() Function: No

Has deactivate() Function: No

Has run_adding() Function: No

Environment: Normal or Hard Real-Time

Ports: "Gain" input, control, 0 to ..., default 1, logarithmic
"Input" input, audio
"Output" output, audio

Plugin Name: "Stereo Amplifier"
Plugin Label: "amp_stereo"
Plugin Unique ID: 1049
Maker: "Richard Furse (LADSPA example plugins)"
Copyright: "None"
Must Run Real-Time: No
Has activate() Function: No
Has deactivate() Function: No
Has run_adding() Function: No
Environment: Normal or Hard Real-Time
Ports: "Gain" input, control, 0 to ..., default 1, logarithmic
"Input (Left)" input, audio
"Output (Left)" output, audio
"Input (Right)" input, audio
"Output (Right)" output, audio

A simple test of each plug-in can be performed using applyplugin. When run with no arguments, it
gives a usage message.

$applyplugin
Usage: applyplugin [flags] <input Wave file> <output Wave file>
<LADSPA plugin file name> <plugin label> <Controli> <Control2>...
[<LADSPA plugin file name> <plugin label> <Controli> <Control2>...]...
Flags: -s<seconds> Add seconds of silence after end of input file.

This takes an input and an output WAV file as first and second parameters. The next ones are the names
of the . so file and the plug-in label chosen. This is followed by values of the controls. For the amp plug-in,
the file name is amp. so, the stereo plug-in is amp_stereo, and there is only one control for gain as a value

between 0 and 1. To halve the volume of a file containing stereo WAV data, use this:

applyplugin 54154.wav tmp.wav amp.so amp_stereo 0.5

278

CHAPTER 14 © LADSPA

The Type LADSPA_Descriptor

Communication between an application and a LADSPA plug-in takes place through a data structure of
type LADSPA Descriptor. This has fields that contain all the information that is shown by listplugins and
analyseplugins. In addition, it contains fields that control memory layout, whether or not it supports hard
real time, and so on.

unsigned long UniqueID
Each plug-in must have a unique ID within the LADSPA system.

const char * Label

This is the label used to refer to the plug-in within the LADSPA system.

const char * Name

This is the “user-friendly” name of the plug-in. For example, the amp file (shown
later) contains two plug-ins. The mono amplifier has ID 1048, label amp_mono,
and name Mono Amplifier, while the stereo amplifier has ID 1049, label amp_
stereo, and name Stereo Amplifier.

const char * Maker, * Copyright
This should be obvious.
unsigned long PortCount

This indicates the number of ports (input and output) present on the plug-in.
const LADSPA PortDescriptor * PortDescriptors

This member indicates an array of port descriptors. Valid indices vary from 0 to
PortCount-1.

const char * const * PortNames

This member indicates an array of null-terminated strings describing ports. For
example, the mono amplifier has two input ports and one output port labeled
Gain, Input, and Output. The Input port has port descriptor (LADSPA_PORT INPUT
| LADSPA_PORT_AUDIO), while the Output port has port descriptor (LADSPA

PORT _OUTPUT | LADSPA PORT_AUDIO)

LADSPA_PortRangeHint * PortRangeHints

This is an array of type LADSPA_PortRangeHint, one element for each port. This
allows the plug-in to pass information such as whether it has a value that is
bounded above or below, and, if so, what that bound is, whether it should be
treated as a Boolean value, and so on. These hints could be used by, say, a GUI to
give a visual control display for the plug-in.

Additionally, it contains fields that are function pointers, which are called by the LADSPA runtime to
initialize the plug-in, handle data, and clean up. These fields are as follows:

instantiate

This takes the sample rate as a parameter. It is responsible for general instantiation
of the plug-in, setting local parameters, allocating memory, and so on. It returns a
pointer to a plug-in-specific data structure containing all the information relating
to that plug-in. This pointer will be passed as the first parameter to the other
functions so that they can retrieve information for this plug-in.

279

CHAPTER 14 LADSPA

connect_port

This takes three parameters, the second and third being the port number and

the address on which data will be readable/writable, respectively. The plug-in is
expected to read/write data from the LADSPA runtime using this address only for
each port. It will be called before run or run_adding.

activate/deactivate

These may be called to reinitialize the plug-in state. They may be NULL.

run
This function is where all the plug-in’s real work is done. Its second parameter is
the number of samples that are ready to read/write.

cleanup

This is obvious.

Other function fields are normally set to NULL.

Loading a Plug-in

An application can load a plug-in by calling 1oadLADSPAPluginlLibrary with one parameter, which is
the name of the plug-in file. Note that there is no LADSPA library. LADPSA supplies a header file called
ladspa.h, and the distribution may include a file 1load.c, which implements loadLADSPAPluginLibrary (it
searches the directories in the LADSPA_PATH).

When a plug-in is loaded by dlopen, the function _init is called with no parameters. This may be used
to set up the plug-in and build, for example, the LADSPA Descriptor.

A DLL must have an entry point that you can hook into. For LADSPA, each plug-in must define a
function LADSPA Descriptor * ladspa_descriptor(unsigned long Index).The values forindicesO, 1, ...
are the LADSPA Descriptor values for each of the plug-ins included in the file.

A Mono Amplifier Client

The analyseplugin amp command showed that the amp plug-in contains two plug-in modules: a mono and
a stereo plug-in. The mono plug-in has a plug-in label of amp_mono, which will correspond to the field Label
of a LADSPA Descriptor.
Using this plug-in means you have to load the plug-in file, get a handle to the ladspa_descriptor
structure, and then look through the descriptors, checking the labels until it finds the amp_mono plug-in.
Loading a plug-in file is done through functions in the load. c program included in the LADSPA
package. The relevant code is as follows:

char *pcPluginFilename = "amp.so";
void *pvPluginHandle = loadLADSPAPluginLibrary(pcPluginFilename);
dlerror();

pfDescriptorFunction

= (LADSPA Descriptor Function)dlsym(pvPluginHandle, "ladspa_ descriptor");
if (!pfDescriptorFunction) {

const char * pcError = dlerror();

280

CHAPTER 14

if (pcError)
fprintf(stderr,

"Unable to find ladspa_descriptor() function in plugin file
"\"%s\": %s.\n"
"Are you sure this is a LADSPA plugin file?\n",
pcPluginFilename,
pcError);

return 1;

}

Once it’s loaded, search for the amp_mono plug-in:

char *pcPluginLabel = "amp_mono";
for (1PluginIndex = 0;; 1PluginIndex++) {
psDescriptor = pfDescriptorFunction(1PluginIndex);
if (!psDescriptor)
break;
if (pcPluginLabel != NULL) {
if (strcmp(pcPluginLabel, psDescriptor->Label) != 0)
continue;

}

// got mono_amp

LADSPA

You know there are three ports—control, input, and output—so you look through the list of ports to

assign indices and connect the relevant arrays to the plug-in descriptor.

Hidden in here is a critical part: not only do you set up the inputs and outputs of the plug-in, but also
the control mechanism. The analyseplugin report shows that there is a Gain port with a control. This needs
to be fed in. The control port only needs the address of a float value, which is the amount of amplification

that will occur. This is done with the following code:

handle = psDescriptor->instantiate(psDescriptor, SAMPLE RATE);

if (handle == NULL) {
fprintf(stderr, "Can't instantiate plugin %s\n", pcPluginLabel);
exit(1);

}

// get ports
int 1PortIndex;
printf("Num ports %lu\n", psDescriptor->PortCount);
for (1PortIndex = 0;
1PortIndex < psDescriptor->PortCount;
1PortIndex++) {
if (LADSPA_IS_PORT INPUT
(psDescriptor->PortDescriptors[1PortIndex])
&& LADSPA IS PORT AUDIO
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("input %d\n", 1PortIndex);
1InputPortIndex = 1PortIndex;

psDescriptor->connect_port(handle,
1InputPortIndex, pInBuffer);

281

CHAPTER 14 LADSPA

} else if (LADSPA IS PORT OUTPUT
(psDescriptor->PortDescriptors[1PortIndex])
&& LADSPA_IS PORT AUDIO
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("output %d\n", 1lPortIndex);
1OutputPortIndex = lPortIndex;

psDescriptor->connect_port(handle,
10utputPortIndex, pOutBuffer);
}

if (LADSPA IS PORT CONTROL
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("control %d\n", 1PortIndex);
LADSPA Data control = 0.5f; // here is where we say to halve the volume
psDescriptor->connect_port(handle,

1PortIndex, 8&control);
}
}

// we've got what we wanted

The run_plugin function then just loops, reading samples from the input file, applying the plug-in's run
function, and writing to the output file.

void run_plugin() {
st _count_t numread;

open_files();

// it's NULL for the amp plugin
if (psDescriptor->activate != NULL)
psDescriptor->activate(handle);

while ((numread = fill input buffer()) > 0) {
printf("Num read %d\n", numread);
psDescriptor->run(handle, numread);
empty output_buffer(numread);

I've used the libsndfile library to simplify reading and writing files in whatever format they are in, using
fill input_buffer and empty output buffer
The complete program is called mono_amp.c, shown here:

#include <stdlib.h>
#include <stdio.h>
#include <ladspa.h>
#include <dlfcn.h>
#include <sndfile.h>

282

CHAPTER 14 © LADSPA

#include "utils.h"

const LADSPA Descriptor * psDescriptor;
LADSPA Descriptor_Function pfDescriptorFunction;
LADSPA Handle handle;

// choose the mono plugin from the amp file
char *pcPluginFilename = "amp.so";
char *pcPluginLabel = "amp_mono";

long lInputPortIndex = -1;
long 1OutputPortIndex = -1;

SNDFILE* pInFile;
SNDFILE* pOutFile;

// for the amplifier, the sample rate doesn't really matter
#define SAMPLE_RATE 44100

// the buffer size isn't really important either
#define BUF_SIZE 2048

LADSPA Data pInBuffer[BUF SIZE];

LADSPA Data pOutBuffer[BUF SIZE];

// How much we are amplifying the sound by
LADSPA Data control = 0.5f;

char *pInFilePath = "/home/local/antialize-wkhtmltopdf-7cb5810/scripts/static-build/1linux-
local/qts/demos/mobile/quickhit/plugins/LevelTemplate/sound/enableship.wav";
char *pOutFilePath = "tmp.wav";

void open files() {
// using libsndfile functions for easy read/write
SF_INFO sfinfo;

sfinfo.format = 0;
pInFile = sf open(pInFilePath, SFM_READ, &sfinfo);
if (pInFile == NULL) {

perror("can't open input file");

exit(1);

}
pOutFile = sf open(pOutFilePath, SFM WRITE, &sfinfo);
if (pOutFile == NULL) {
perror(“can't open output file");
exit(1);
}
st count_t fill input buffer() {
return sf read float(pInFile, pInBuffer, BUF SIZE);
}

283

CHAPTER 14 LADSPA

void empty output buffer(sf count t numread) {

}

st write float(pOutFile, pOutBuffer, numread);

void run_plugin() {

int

284

st_count_t numread;
open_files();

// it's NULL for the amp plugin
if (psDescriptor->activate != NULL)
psDescriptor->activate(handle);

while ((numread = fill input buffer()) > 0) {
printf("Num read %d\n", numread);
psDescriptor->run(handle, numread);
empty output_buffer(numread);

main(int argc, char *argv[]) {
int 1PluginIndex;

void *pvPluginHandle = loadLADSPAPluginLibrary(pcPluginFilename);
dlerror();

pfDescriptorFunction
= (LADSPA Descriptor_Function)dlsym(pvPluginHandle, "ladspa_descriptor");
if (!pfDescriptorFunction) {
const char * pcError = dlerror();
if (pcError)
fprintf(stderr,
"Unable to find ladspa_descriptor() function in plugin file
"\"%s\": %s.\n"
"Are you sure this is a LADSPA plugin file?\n",
pcPluginFilename,
pcError);

return 1;

}

for (1PluginIndex = 0;; 1PluginIndex++) {
psDescriptor = pfDescriptorFunction(1PluginIndex);
if (!psDescriptor)
break;
if (pcPluginLabel != NULL) {
if (strcmp(pcPluginLabel, psDescriptor->Label) != 0)
continue;

}

// got mono_amp

handle = psDescriptor->instantiate(psDescriptor, SAMPLE_RATE);

CHAPTER 14

if (handle == NULL) {
fprintf(stderr, "Can't instantiate plugin %s\n", pcPluginLabel);
exit(1);

}

// get ports
int 1PortIndex;
printf("Num ports %lu\n", psDescriptor->PortCount);
for (1PortIndex = 0;
1PortIndex < psDescriptor->PortCount;
1PortIndex++) {
if (LADSPA_IS PORT INPUT
(psDescriptor->PortDescriptors[1PortIndex])
& LADSPA IS PORT AUDIO
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("input %d\n", 1PortIndex);
1InputPortIndex = 1PortIndex;

psDescriptor->connect_port(handle,
1InputPortIndex, pInBuffer);
} else if (LADSPA IS PORT OUTPUT
(psDescriptor->PortDescriptors[1PortIndex])
& LADSPA IS PORT AUDIO
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("output %d\n", 1PortIndex);
10utputPortIndex = 1lPortIndex;

psDescriptor->connect_port(handle,
10utputPortIndex, pOutBuffer);

}

if (LADSPA_IS PORT CONTROL
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("control %d\n", 1PortIndex);
psDescriptor->connect_port(handle,
1PortIndex, 8&control);
}
}
// we've got what we wanted, get out of this loop
break;

}

if ((psDescriptor == NULL) ||
(1InputPortIndex == -1) ||
(1OutputPortIndex == -1)) {
fprintf(stderr, "Can't find plugin information\n");
exit(1);

}
run_plugin();

exit(0);

LADSPA

285

CHAPTER 14 LADSPA

It is run just by calling mono_amp, with no arguments because the input and output files are hard-coded
into the program.

A Stereo Amplifer with GUI

The amp file contains a stereo amplifier as well as a mono amplifier. This causes several differences for
managing the plug-in. There are now two input ports and two output ports but still only one control port for
the amplification factor. You need an array of input ports and an array of output ports. This just adds a little
complexity.

The major difference is in handling the streams: 1ibsndfile returns frames of sound, with the two
channels of a stereo signal interleaved. These have to be split out into separate channels for each input port,
and then the two output ports have to interleaved back together.

Adding a GUI such as GTK is fairly straightforward. The following code just shows a slider to control the
volume. The GUI code and the LADSPA code must obviously run in different (POSIX) threads. There is really
only one tricky point: the control value is not supposed to change during execution of the run function.

This could be protected by locks, but in this case that is too heavyweight: just keep a copy of the control as
modified by the slider and bring that across before each call to run.

The code is written to use GTK v3 and is as follows:

#include <gtk/gtk.h>

#include <stdlib.h>
#include <stdio.h>
#include <ladspa.h>
#include <dlfcn.h>
#include <sndfile.h>

#include "utils.h"

gint count = 0;
char buf[5];

pthread_t ladspa_thread;

const LADSPA Descriptor * psDescriptor;
LADSPA Descriptor Function pfDescriptorFunction;
LADSPA Handle handle;

// choose the mono plugin from the amp file
char *pcPluginFilename = "amp.so";
char *pcPluginLabel = "amp_stereo";

long 1lInputPortIndex = -1;
long 1lOutputPortIndex = -1;

int inBufferIndex = 0;
int outBufferIndex = 0;

SNDFILE* pInFile;
SNDFILE* pOutFile;

286

CHAPTER 14

// for the amplifier, the sample rate doesn't really matter
#define SAMPLE_RATE 44100

// the buffer size isn't really important either
#define BUF_SIZE 2048

LADSPA Data pInStereoBuffer[2*BUF_SIZE];

LADSPA Data pOutStereoBuffer[2*BUF SIZE];

LADSPA Data pInBuffer[2][BUF_SIZE];

LADSPA Data pOutBuffer[2][BUF_SIZE];

// How much we are amplifying the sound by

// We aren't allowed to change the control values
// during execution of run(). We could put a lock
// around run() or simpler, change the value of
// control only outside of run()

LADSPA Data control;

LADSPA Data pre_control = 0.2f;

char *pInFilePath = "/home/newmarch/Music/karaoke/nights/nightsinwhite-0.wav";
char *pOutFilePath = "tmp.wav";

void open files() {
// using libsndfile functions for easy read/write
SF_INFO sfinfo;

sfinfo.format = 0;
pInFile = sf_open(pInFilePath, SFM_READ, &sfinfo);
if (pInFile == NULL) {

perror(“can't open input file");

exit(1);

}

pOutFile = sf open(pOutFilePath, SFM WRITE, &sfinfo);
if (pOutFile == NULL) {

perror("can't open output file");

exit(1);

}

st count_t fill input buffer() {
int numread = sf read float(pInFile, pInStereoBuffer, 2*BUF SIZE);

// split frames into samples for each channel

int n;

for (n = 0; n < numread; n += 2) {
pInBuffer[0][n/2] = pInStereoBuffer[n];
pInBuffer[1][n/2] = pInStereoBuffer[n+1];

}

return numread/2;

LADSPA

287

CHAPTER 14 LADSPA

void empty output buffer(sf count t numread) {
// combine output samples back into frames
int n;
for (n = 0; n < 2*numread; n += 2) {
pOutStereoBuffer[n] = pOutBuffer[o][n/2];
pOutStereoBuffer[n+1] = pOutBuffer[1][n/2];
}

st write float(pOutFile, pOutStereoBuffer, 2*numread);
}

gpointer run_plugin(gpointer args) {
sf_count_t numread;

// it's NULL for the amp plugin
if (psDescriptor->activate != NULL)
psDescriptor->activate(handle);

while ((numread = fill input buffer()) > 0) {
// reset control outside of run()
control = pre_control;

psDescriptor->run(handle, numread);
empty output buffer(numread);
usleep(1000);
}
printf("Plugin finished!\n");
}

void setup ladspa() {
int 1PluginIndex;

void *pvPluginHandle = loadLADSPAPluginLibrary(pcPluginFilename);
dlerror();

pfDescriptorFunction
= (LADSPA Descriptor Function)dlsym(pvPluginHandle, "ladspa_descriptor");
if (!pfDescriptorFunction) {
const char * pcError = dlerror();
if (pcError)
fprintf(stderr,
"Unable to find ladspa_descriptor() function in plugin file
"\"%s\": %s.\n"
"Are you sure this is a LADSPA plugin file?\n",
pcPluginFilename,
pcError);

exit(1);

}

for (1PluginIndex = 0;; 1PluginIndex++) {
psDescriptor = pfDescriptorFunction(1PluginIndex);

288

CHAPTER 14 © LADSPA

if (!psDescriptor)
break;
if (pcPluginLabel != NULL) {
if (strcmp(pcPluginlabel, psDescriptor->Label) != 0)
continue;

}
// got stero_amp

handle = psDescriptor->instantiate(psDescriptor, SAMPLE RATE);

if (handle == NULL) {
fprintf(stderr, "Can't instantiate plugin %s\n", pcPluginLabel);
exit(1);

}

// get ports
int 1PortIndex;
printf("Num ports %lu\n", psDescriptor->PortCount);
for (1PortIndex = 0;
1PortIndex < psDescriptor->PortCount;
1PortIndex++) {
if (LADSPA_IS_PORT AUDIO
(psDescriptor->PortDescriptors[1PortIndex])) {
if (LADSPA_IS PORT INPUT
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("input %d\n", 1PortIndex);
1InputPortIndex = 1PortIndex;

psDescriptor->connect_port(handle,
1InputPortIndex, pInBuffer[inBufferIndex++]);
} else if (LADSPA_IS PORT OUTPUT
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("output %d\n", 1lPortIndex);
1OutputPortIndex = lPortIndex;

psDescriptor->connect_port(handle,
10utputPortIndex, pOutBuffer[outBufferIndex++]);

}

if (LADSPA_IS PORT_CONTROL
(psDescriptor->PortDescriptors[1PortIndex])) {
printf("control %d\n", 1PortIndex);
psDescriptor->connect_port(handle,
1PortIndex, &control);

}
}
// we've got what we wanted, get out of this loop
break;

289

CHAPTER 14 LADSPA

if ((psDescriptor == NULL) ||
(1InputPortIndex == -1) ||
(10utputPortIndex == -1)) {
fprintf(stderr, "Can't find plugin information\n");
exit(1);

}
open_files();

pthread create(&ladspa_thread, NULL, run plugin, NULL);
}

void slider change(GtkAdjustment *adj, gpointer data)
{

count++;

pre_control = gtk adjustment get value(adj);
//gtk_label set text(GTK_LABEL(label), buf);

int main(int argc, char** argv) {

//GtkWidget *label;
GtkWidget *window;
GtkWidget *frame;
GtkWidget *slider;
GtkAdjustment *adjustment;

setup_ladspa();
gtk_init(8argc, 8argv);

window = gtk window_new(GTK_WINDOW TOPLEVEL);
gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk window_set default size(GTK_WINDOW(window), 250, 80);

gtk _window_set title(GTK_WINDOW(window), "Volume");

frame = gtk fixed new();
gtk_container_add(GTK_CONTAINER(window), frame);

adjustment = gtk_adjustment_new(1.0,
0.0,
2.0,
0.1,
1.0,
0.0);
slider = gtk scale new(GTK_ORIENTATION HORIZONTAL,
adjustment);
gtk widget set size request(slider, 240, 5);
gtk_fixed_put(GTK_FIXED(frame), slider, 5, 20);

290

CHAPTER 14

//label = gtk label new("0");
//gtk_fixed_put(GTK_FIXED(frame), label, 190, 58);

gtk widget show_all(window);

g_signal_connect(window, "destroy",
G _CALLBACK (gtk main_quit), NULL);

g signal connect(adjustment, "value-changed",
G_CALLBACK(slider change), NULL);

gtk _main();

return O;

Itis run just by calling stereo_amp, no arguments.

The amp Program

LADSPA

The program you have been calling in the last two sections is the amp program, which is in the file ladspa_
sdk/src/plugins/amp.c in the LADSPA source code. This is worth examining if you want to write a LADSPA

plug-in yourself or want to see what is involved. There are several critical functions.

e The function init() is called by the DLL loader. Its role is primarily to set up a
LADSPA Descriptor for each plug-in component. This is long-winded. It includes all
the information printable by analyseplugin such as the following:

g psMonoDescriptor->Name = strdup("Mono Amplifier");

e Italso contains internal function pointers such as the function to run when the mono
amplifier needs to do some work.

g_psMonoDescriptor->run = runMonoAmplifier;

e The function fini() is called to clean up all data when the plug-in is unloaded.

The meat of the plug-in is what to do to samples as they are processed. The input samples are contained
in one bulffer, the output samples are contained in another, and for the mono amplifier each input sample

needs to be multiplied by the gain factor to give an output sample. The code is as follows:

void

runMonoAmplifier (LADSPA Handle Instance,
unsigned long SampleCount) {

LADSPA Data * pfInput;
LADSPA Data * pfOutput;
LADSPA Data fGain;
Amplifier * psAmplifier;
unsigned long 1SampleIndex;

201

CHAPTER 14 LADSPA

psAmplifier = (Amplifier *)Instance;
pfInput = psAmplifier->m pfInputBufferi;
pfOutput = psAmplifier->m_pfOutputBufferi;
fGain = *(psAmplifier->m_pfControlValue);

for (1SampleIndex = 0; 1SampleIndex *1t; SampleCount; lSampleIndex++)
*(pfOutput++) = *(pfInput++) * fGain;

Conclusion

LADSPA is a commonly used framework for audio effects plug-ins. This chapter covered some command-
line tools and also the programming model.

292

CHAPTER 15

Displaying Video with Overlays
Using Gtk and FFmpeg

This chapter has nothing to do with sound. Videos often accompany audio. Karaoke oftens overlays the
video with lyrics. Building an application to include video as well as audio takes you into the realm of
graphical user interfaces (GUIs). This is a complex area in its own right and deserves (and has!) many books,
including my own from many years back on the X Window System and Motif. This diversion chapter is about
programming the video side of this, using FFmpeg, Gtk, Cairo, and Pango. I assume that you are familiar
with the concepts of widgets, events, event handlers, and so on, that underlie all current GUI frameworks.

Motif lost its status as a major GUI for Linux/Unix systems a long time ago. There are many alternatives
now, including Gtk (the Gimp toolkit), tcl/Tk, Java Swing, KDE, XFCE, and so on. Each has its own
adherents, domains of use, quirks, idiosyncrasies, and so on. No single GUI will satisfy everyone.

In this chapter, I deal with Gtk. The reasons are threefold.

e Ithasa Clibrary. It also has a Python library, which is nice, and I might use it one
day. Most important, it is not C++ based. C++ is one of my least favorite languages.
I once came across a quote (source lost) that “C++ is a laboratory experiment that
escaped,” and I completely agree with that assessment.

e Ithas good support for i18n (internationalization). I want to be able to play Chinese
karaoke files, so this is important to me.

e ItisnotJava-based. Don’t get me wrong, I really like Java and have been
programming in it for years. The MIDI API is pretty good, and of course everything
else such as i18n is great. But for MIDI it is a CPU hog and is unusable on low-
powered devices such as the Raspberry Pi, and generally the audio/video API has not
progressed in years.

Nevertheless, as I struggled to get my head around Gtk version 2.0 versus 3.0, Cairo, Pango, Glib, and so
on, I thought it might have been easier just to fix the Java MIDI engine! This was not a pleasant experience,
as the sequel will show.

FFmpeg

To play MPEG files, OGV files, or similar, you need a decoder. The main contenders seem to be GStreamer
and FFmpeg. For no particular reason, I chose FFmpeg.

© Jan Newmarch 2017 293
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_15

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

The following program reads from a video file and stores the first five frames to disk. It is taken directly
from “An FFmpeg and SDL Tutorial” (http://dranger.com/ffmpeg/) by Stephen Dranger. The program is
play video.c, shown here:

// tutorialoi.c

// Code based on a tutorial by Martin Bohme (boehme@inb.uni-luebeckREMOVETHIS.de)
// Tested on Gentoo, CVS version 5/01/07 compiled with GCC 4.1.1

// With updates from https://github.com/chelyaev/ffmpeg-tutorial

// Updates tested on:

// LAVC 54.59.100, LAVF 54.29.104, LSWS 2.1.101

// on GCC 4.7.2 in Debian February 2015

#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswscale/swscale.h>

/* Requires
libavcodec-dev
libavformat-dev
libswscale

*/

void SaveFrame(AVFrame *pFrame, int width, int height, int iFrame) {
FILE *pFile;
char szFilename[32];
int y;

// Open file
sprintf(szFilename, "frame%d.ppm", iFrame);
pFile=fopen(szFilename, "wb");
if(pFile==NULL)

return;

// Write header
fprintf(pFile, "P6\n%d %d\n255\n", width, height);

// Write pixel data
for(y=0; y<height; y++)
fwrite(pFrame->data[0]+y*pFrame->linesize[0], 1, width*3, pFile);

// Close file
fclose(pFile);
}

main(int argc, char **argv) {
AVFormatContext *pFormatCtx = NULL;
int i, videoStreanm;
AVCodecContext *pCodecCtx = NULL;
AVCodec *pCodec = NULL;
AVFrame *pFrame = NULL;
AVFrame *pFrameRGB = NULL;
AVPacket packet;

294

http://dranger.com/ffmpeg/

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

int frameFinished;
int numBytes;
uint8_t *buffer = NULL;

AVDictionary *optionsDict = NULL;
struct SwsContext *sws_ctx = NULL;

if(arge < 2) {
printf("Please provide a movie file\n");
return -1;
}
// Register all formats and codecs
av_register all();

// Open video file
if(avformat_open_input(&pFormatCtx, argv[1], NULL, NULL)!=0)
return -1; // Couldn't open file

// Retrieve stream information
if(avformat_find stream_ info(pFormatCtx, NULL)<O)
return -1; // Couldn't find stream information

// Dump information about file onto standard error
av_dump_format(pFormatCtx, 0, argv[1], 0);

// Find the first video stream
videoStream=-1;
for(i=0; i<pFormatCtx->nb_streams; i++)
if(pFormatCtx->streams[i]->codec->codec_type==AVMEDIA TYPE VIDEO) {
videoStream=i;
break;
}
if(videoStream==-1)
return -1; // Didn't find a video stream

// Get a pointer to the codec context for the video stream
pCodecCtx=pFormatCtx->streams[videoStream]->codec;

// Find the decoder for the video stream
pCodec=avcodec_find decoder(pCodecCtx->codec_id);
if(pCodec==NULL) {
fprintf(stderr, "Unsupported codec!\n");
return -1; // Codec not found
}
// Open codec
if(avcodec_open2(pCodecCtx, pCodec, doptionsDict)<0)
return -1; // Could not open codec

// Allocate video frame
pFrame=avcodec_alloc_frame();

// Allocate an AVFrame structure

295

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

pFrameRGB=avcodec_alloc_frame();
if(pFrameRGB==NULL)
return -1;

// Determine required buffer size and allocate buffer

numBytes=avpicture get size(PIX FMT RGB24, pCodecCtx->width,
pCodecCtx->height);

buffer=(uint8 t *)av_malloc(numBytes*sizeof(uint8 t));

sws_ctx =
sws_getContext
(
pCodecCtx->width,
pCodecCtx->height,
pCodecCtx->pix_fmt,
pCodecCtx->width,
pCodecCtx->height,
PIX_FMT_RGB24,
SWS_BILINEAR,
NULL,
NULL,
NULL

);

// Assign appropriate parts of buffer to image planes in pFrameRGB

// Note that pFrameRGB is an AVFrame, but AVFrame is a superset

// of AVPicture

avpicture fill((AVPicture *)pFrameRGB, buffer, PIX_FMT_RGB24,
pCodecCtx->width, pCodecCtx->height);

// Read frames and save first five frames to disk
i=0;
while(av_read frame(pFormatCtx, &packet)>=0) {
// Is this a packet from the video stream?
if(packet.stream index==videoStream) {
// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished,
8packet);

// Did we get a video frame?
if(frameFinished) {
// Convert the image from its native format to RGB
sws_scale
(

sws_ctx,

(uint8 t const * const *)pFrame->data,

pFrame->linesize,

0,
pCodecCtx->height,
pFrameRGB->data,
pFrameRGB->linesize

);
296

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

printf("Read frame\n");
// Save the frame to disk

if(++i<=5)
SaveFrame(pFrameRGB, pCodecCtx->width, pCodecCtx->height,
i);
else
break;

}

// Free the packet that was allocated by av_read_frame
av_free packet(&packet);

}

// Free the RGB image
av_free(buffer);
av_free(pFrameRGB);

// Free the YUV frame
av_free(pFrame);

// Close the codec
avcodec_close(pCodecCtx);

// Close the video file
avformat_close_input(&pFormatCtx);

return 0;

Basic Gtk

Gtk is a fairly standard GUI toolkit. Simple programs are described in many tutorials such as “First programs
in GTK+” (http://zetcode.com/tutorials/gtktutorial/firstprograms/). Refer to such tutorials for the
basics of Gtk programming.

Iinclude the following example without explanation; it uses three child widgets, two buttons, and one
label. The label will hold an integer number. The buttons will increase or decrease this number.

#include <gtk/gtk.h>

gint count = 0;
char buf[5];

void increase(GtkWwidget *widget, gpointer label)

{

count++;

sprintf(buf, "%d", count);

gtk label set text(GTK_LABEL(label), buf);
}

297

http://zetcode.com/tutorials/gtktutorial/firstprograms/

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

void decrease(GtkWidget *widget, gpointer label)

{

count--;

sprintf(buf, "%d", count);

gtk label set text(GTK_LABEL(label), buf);
}

int main(int argc, char** argv) {

GtkWidget *label;
GtkWidget *window;
GtkWidget *frame;
GtkWidget *plus;

GtkWidget *minus;

gtk_init(8argc, 8argv);

window = gtk window new(GTK_WINDOW_ TOPLEVEL);

gtk _window_set position(GTK_WINDOW(window), GTK _WIN POS CENTER);
gtk _window_set default size(GTK_WINDOW(window), 250, 180);
gtk_window_set_title(GTK_WINDOW(window), "+-");

frame = gtk _fixed new();
gtk _container add(GTK_CONTAINER(window), frame);

plus = gtk button new with label("+");

gtk widget set size request(plus, 80, 35);
gtk _fixed put(GTK_FIXED(frame), plus, 50, 20);

minus = gtk button new with label("-");
gtk widget set size request(minus, 80, 35);
gtk_fixed_put(GTK_FIXED(frame), minus, 50, 80);

label = gtk label new("0");
gtk_fixed put(GTK_FIXED(frame), label, 190, 58);

gtk widget show_all(window);

g signal connect(window, "destroy",
G _CALLBACK (gtk main_quit), NULL);

g signal connect(plus, "clicked",
G_CALLBACK(increase), label);

g_signal_connect(minus, "clicked",
G_CALLBACK(decrease), label);

gtk _main();

return 0;

298

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

Gtk, like every other GUI toolkit, has a large number of widgets. These are listed in the GTK+ 3
Reference Manual (https://developer.gnome.org/gtk3/3.0/). This includes the widget GtkImage
(https://developer.gnome.org/gtk3/3.0/GtkImage.html). As would be expected from the name, it can
take a set of pixels from somewhere and build them into an image that can be displayed.

The following example shows an image loaded from a file:

#include <gtk/gtk.h>

int main(int argc, char *argv[])
{

GtkWidget *window, *image;
gtk_init(8argc, 8argv);
window = gtk window_new(GTK_WINDOW TOPLEVEL);

image = gtk_image new from file("jan-small.png");
gtk_container_add(GTK_CONTAINER(window), image);

g signal connect(G_OBJECT(window), "destroy", G CALLBACK(gtk main_quit), NULL);
gtk_widget_ show(image);

gtk widget show(window);

gtk _main();

return 0;

Versions of Gtk

Gtk currently (as of November 2016) has major versions 2 and 3. The macro GTK_MAJOR_VERSION can be used
to detect version 2 or 3. However, Gtk also depends on a number of other libraries, and it can get confusing
working out which documentation pages you should be looking at. Here is a list of the principal libraries and
their primary API pages:

Gtk 3 (https://developer.gnome.org/gtk3/3.0/)
e Gdk3 (https://developer.gnome.org/gdk3/stable/)
e Cairo1 (http://cairographics.org/manual/)
e Pango 1 (https://developer.gnome.org/pango/stable/)
e GdkPixbuf2 (https://developer.gnome.org/gdk-pixbuf/unstable/)
e Glib2 (https://developer.gnome.org/glib/)
e Freetype 2 (www.freetype.org/freetype2/docs/reference/ft2-toc.html)

e Gdk2 (https://developer.gnome.org/gdk2/2.24/)
e Cairo1 (http://cairographics.org/manual/)
e Pango 1 (https://developer.gnome.org/pango/stable/)

299

https://developer.gnome.org/gtk3/3.0/
https://developer.gnome.org/gtk3/3.0/GtkImage.html
https://developer.gnome.org/gtk3/3.0/
https://developer.gnome.org/gdk3/stable/
http://cairographics.org/manual/
https://developer.gnome.org/pango/stable/
https://developer.gnome.org/gdk-pixbuf/unstable/
https://developer.gnome.org/glib/
http://www.freetype.org/freetype2/docs/reference/ft2-toc.html
https://developer.gnome.org/gdk2/2.24/
http://cairographics.org/manual/
https://developer.gnome.org/pango/stable/

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

e Glib2 (https://developer.gnome.org/glib/)
e Freetype 2 (www.freetype.org/freetype2/docs/reference/ft2-toc.html)

Displaying the Video Using Gtk

Say you want to take the images produced by FFmpeg as AVFrames and display them in a GtkImage. You
don’t want to use code that reads from a file because reading and writing files at 30 frames per second would
be ludicrous. Instead, you want some in-memory representation of the frames to load into the GtkImage.

Here is where you hit the first snag: the suitable in-memory representation changed in an incompatable
way between Gtk 2.0 and Gtk 3.0. I'm only going to talk in the language of the X Window System since I don’t
know about other underlying systems such as Microsoft Windows.

See “Migrating from GTK+ 2.x to GTK+ 3” (https://developer.gnome.org/gtk3/3.5/gtk-migrating-
2-to-3.html) for a description of some of the changes between these versions.

Pixmaps

The X Window System architecture model is a client-server model that has clients (applications) talking
to servers (devices with graphic displays and input devices). At the lowest level (Xlib), a client will send
basic requests such as “draw a line from here to there” to the server. The server will draw the line using
information on the server side such as current line thickness, color, and so on.

If you want to keep an array of pixels to represent an image, then this array is usually kept on the X
Window server in a pixmap. Pixmaps can be created and modified by applications by sending messages
across the wire from the client to the server. Even a simple modification such as changing the value of a
single pixel involves a network round-trip, and this can obviously become expensive if done often.

Pixbufs

Pixbufs are client-side equivalents of pixmaps. They can be manipulated by the client without round-trips to
the X Window server. This reduces time and network overheads in manipulating them. However, it means
that information that would have been kept on the server now has to be built and maintained on the client
application side.

X, Wayland, and Mir

The X Window System is nearly 30 years old. During that time it has evolved to meet changes in hardware
and in software requirements, while still maintaining backward compatibility.

Significant changes have occurred in hardware during this 30 years: multicore systems are now
prevalent, and GPUs have brought changes in processing video. And generally the amount of memory
(cache and RAM) means that memory is no longer such an issue.

At the same time, the software side has evolved. It is now common to make use of a “compositing
window manager” such as Compiz so that you can have effects such as wobbly windows. This is not good for
the X Window model: requests from the application go to the X server, but then a requested image has to be
passed to the compositing window manager, which will perform its effects and then send images back to the
X server. This is big increase in network traffic, in which the X server is now just playing the role of display
rather than compositor.

Application libraries have now evolved so that much of the work that was formerly done by the X server
can now be done on the application side by libraries such as Cairo, Pixman, Freetype, Fontconfig, and Pango.

300

https://developer.gnome.org/glib/
http://www.freetype.org/freetype2/docs/reference/ft2-toc.html
https://developer.gnome.org/gtk3/3.5/gtk-migrating-2-to-3.html
https://developer.gnome.org/gtk3/3.5/gtk-migrating-2-to-3.html

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

All of these changes have led to proposals for new back-end servers, which live cooperatively in this
evolved world. This has been sparked by the development of Wayland (http://wayland.freedesktop.org/)
but is a bit messed up by Ubuntu forking this to develop Mir (https://wiki.ubuntu.com/Mir/). Don’t buy
into the arguments. Just Google for mir and wayland.

In a simplistic sense, what it means here is that in the future pixmaps are out while pixbufs are in.

Gtk 3.0

With Gtk 3.0, pixmaps no longer exist. You only have pixbufs in the data structure GdkPixbuf. To display the
FFmpeg-decoded video, you pick up after the image has been transcoded to the picture RGB, translate it
into a GdkPixbuf, and create the GtkImage.

pixbuf = gdk pixbuf new from data(picture RGB->data[0], GDK_COLORSPACE_RGB,
0, 8, width, height,
picture RGB->linesize[0],
pixmap_destroy notify,
NULL);
gtk_image set from pixbuf((GtkImage*) image, pixbuf);

Gtk 2.0

Gtk 2.0 still has pixmaps in the structure GdkPixmap. In theory, it should be possible to have code similar to
the Gtk 3.0 code using the function GdkPixmap *gdk pixmap create from data(GdkDrawable *drawable,
const gchar *data, gint width, gint height, gint depth, const GdkColor *fg, const GdkColor
*bg), which is documented in the GDK 2 Reference Manual in “Bitmaps and Pixmaps” (https://
developer.gnome.org/gdk/unstable/gdk-Bitmaps-and-Pixmaps.html#gdk-pixmap-create-from-data),
and then call void gtk image set from pixmap(GtkImage *image, GdkPixmap *pixmap, GdkBitmap
*mask), documented in the Gtk 2.6 reference manual at GtkImage (www.gtk.org/api/2.6/gtk/GtkImage.
html#gtk-image-set-from-pixmap).

The only problem is that I couldn’t get the function gdk_pixmap_create from data to work. No matter
what argument I tried for the drawable, the call always barfed on either its type or its value. For example, a
documented value is NULL, but this always caused an assertion error (“should not be NULL").

So, what does work? Well, all I could find was a bit of a mess of both pixmaps and pixbufs: create a
pixbuf filled with video data, create a pixmap, write the pixbuf data into the pixmap, and then fill the image
with the pixmap data.

pixbuf = gdk pixbuf new from data(picture RGB->data[0], GDK_COLORSPACE_RGB,
0, 8, width, height,
picture RGB->linesize[0],
pixmap_destroy notify,
NULL);
pixmap = gdk_pixmap_new(window->window, width, height, -1);
gdk_draw_pixbuf((GdkDrawable *) pixmap, NULL,
pixbuf,
0, 0, 0, 0, wifth, height,
GDK_RGB_DITHER NORMAL, 0, 0);

gtk_image set from pixmap((GtkImage*) image, pixmap, NULL);

301

http://wayland.freedesktop.org/
https://wiki.ubuntu.com/Mir/
https://developer.gnome.org/gdk/unstable/gdk-Bitmaps-and-Pixmaps.html#gdk-pixmap-create-from-data
https://developer.gnome.org/gdk/unstable/gdk-Bitmaps-and-Pixmaps.html#gdk-pixmap-create-from-data
http://www.gtk.org/api/2.6/gtk/GtkImage.html#gtk-image-set-from-pixmap
http://www.gtk.org/api/2.6/gtk/GtkImage.html#gtk-image-set-from-pixmap

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

Threads and Gtk

The video will need to play in its own thread. Gtk will set up a GUI processing loop in its thread. Since this is
Linux, you will use Posix pthreads. The video thread will need to be started explicitly with the following:

pthread_t tid;
pthread create(&tid, NULL, play background, NULL);

Here the function play_background calls the FFmpeg code to decode the video file. Note that the thread
should not be started until the application has been realized, or it will attempt to draw into nonexistent
windows.

The Gtk thread will be started by the call to the following:

gtk _main();

That's straightforward enough. But now you have to handle the video thread making calls into the GUI
thread in order to draw the image. The best document I have found on this is “Is GTK+ thread safe? How do
I write multi-threaded GTK+ applications?” (https://developer.gnome.org/gtk-faq/stable/x481.html).
Basically it states that code that can affect the Gtk thread should be enclosed with a gdk_threads_enter() ..
gdk_threads leave() pair.

That’s OK for Gtk 2.0. What about Gtk 3.0? Ooops! Those calls are now deprecated. So, what are
you supposed to do? So far (as of July 2013), all that seems to exist are developer dialogues such as
athttps://mail.gnome.org/archives/gtk-devel-1list/2012-August/msg00020.html, which states:

“We have never done a great job of explaining when gdk_threads_enter/leave are
required, it seems. As a consequence, a good number of the critical sections I've seen
marked throughout my jhbuild checkout are unnecessary. If your application doesn’t call
gdk_threads_init or gdk_threads_set_lock_functions, there's no need to use enter/leave.
Libraries are a different story, of course.”

The actual solution is in a different direction, and the solution is shown in https://developer.gnome.
org/gdk3/stable/gdk3-Threads.html: Gtk is not thread-safe. Calls within the Gtk thread are safe, but most
Gtk calls made from different threads are not. If you need to make a Gtk call from another thread, make a call
to gdk_threads_add_idle() to a function that will run in the Gtk thread. Data relevant to that delayed call
may be passed as another argument to gdk_threads_add_idle().

For the rest of this chapter, you will only consider Gtk 3 and not Gtk 2.

The Code

Finally, it’s time to see the code to play a video in a Gtk application that works with Gtk 3.0. It is gtk _play
video.c. I will break it into pieces.

The function that plays the video runs as a background thread. It reads frames and creates a pixbuf,
using Gtk 3. It is as follows:

static gboolean draw_image(gpointer user_ data) {
GdkPixbuf *pixbuf = (GdkPixbuf *) user data;

gtk_image set from pixbuf((GtkImage *) image, pixbuf);
gtk widget queue draw(image);
g_object_unref(pixbuf);

302

https://developer.gnome.org/gtk-faq/stable/x481.html
https://mail.gnome.org/archives/gtk-devel-list/2012-August/msg00020.html
https://developer.gnome.org/gdk3/stable/gdk3-Threads.html
https://developer.gnome.org/gdk3/stable/gdk3-Threads.html

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

return G_SOURCE_REMOVE;

}
static gpointer play background(gpointer args) {

int i,

AVPacket packet;

int frameFinished;
AVFrame *pFrame = NULL;

/* initialize packet, set data to NULL, let the demuxer fill it */

/* http://ffmpeg.org/doxygen/trunk/doc_2examples_2demuxing_8c-example.html#a80 */
av_init packet(&packet);

packet.data = NULL;

packet.size = 0;

int bytesDecoded;
GdkPixbuf *pixbuf;
AVFrame *picture RGB;
char *buffer;

pFrame=avcodec_alloc_frame();

i=0;

picture RGB = avcodec_alloc_frame();

buffer = malloc (avpicture get size(PIX_FMT_RGB24, WIDTH, HEICHT));

avpicture fill((AVPicture *)picture RGB, buffer, PIX FMT RGB24, WIDTH, HEIGHT);

while(av_read frame(pFormatCtx, &packet)>=0) {
if(packet.stream_index==videoStream) {
usleep(33670); // 29.7 frames per second
// Decode video frame
avcodec_decode video2(pCodecCtx, pFrame, &frameFinished,
&packet);

int width = pCodecCtx->width;
int height = pCodecCtx->height;

sws_ctx = sws_getContext(width, height, pCodecCtx->pix_fmt, width, height,
PIX_FMT RGB24, SWS BICUBIC, NULL, NULL, NULL);

if (frameFinished) {

sws_scale(sws_ctx, (uint8 t const * const *) pFrame->data, pFrame-
>linesize, 0, height,
picture RGB->data, picture RGB->linesize);

printf("old width %d new width %d\n", pCodecCtx->width, picture RGB-
swidth);
pixbuf = gdk pixbuf new from data(picture RGB->data[0], GDK_COLORSPACE_RGB,
0, 8, width, height,
picture RGB->linesize[0], pixmap_destroy
notify,
NULL);

303

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

gdk_threads_add_idle(draw_image, pixbuf);
gtk_image set from pixbuf((GtkImage*) image, pixbuf);

}

sws_freeContext(sws_ctx);

}
av_free packet(&packet);

g thread yield();
}

printf("Video over!\n");
exit(0);

This function is set to run when in its own thread and when there is a window for it to be drawn in.

/* Called when the windows are realized
*/
static void realize cb (GtkWidget *widget, gpointer data) {
/* start the video playing in its own thread */
GThread *tid;
tid = g_thread new("video",
play_background,
NULL);

The main function is responsible for initializing the FFmpeg environment for reading the video and
then setting up a Gtk window for it to draw. It is as follows:

int main(int argc, char** argv)

{
int i,
/* FFMpeg stuff */

AVFrame *pFrame = NULL;
AVPacket packet;

AVDictionary *optionsDict = NULL;
av_register all();
if(avformat_open_input(8pFormatCtx, "/home/httpd/html/ComputersComputing/simpson.mpg",
NULL, NULL)!=0)
return -1; // Couldn't open file
// Retrieve stream information

if(avformat_find stream_info(pFormatCtx, NULL)<O)
return -1; // Couldn't find stream information

304

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

// Dump information about file onto standard error
av_dump_format(pFormatCtx, 0, argv[1], 0);

// Find the first video stream
videoStream=-1;
for(i=0; i<pFormatCtx->nb_streams; i++)
if(pFormatCtx->streams[i]->codec->codec_type==AVMEDIA TYPE_VIDEO) {
videoStream=i;
break;
}
if(videoStream==-1)
return -1; // Didn't find a video stream

for(i=0; i<pFormatCtx->nb_streams; i++)
if(pFormatCtx->streams[i]->codec->codec_type==AVMEDIA TYPE AUDIO) {
printf("Found an audio stream too\n");
break;

}

// Get a pointer to the codec context for the video stream
pCodecCtx=pFormatCtx->streams[videoStream]->codec;

// Find the decoder for the video stream
pCodec=avcodec_find_decoder(pCodecCtx->codec_id);
if(pCodec==NULL) {
fprintf(stderr, "Unsupported codec!\n");
return -1; // Codec not found

}

// Open codec
if(avcodec_open2(pCodecCtx, pCodec, &optionsDict)<0)
return -1; // Could not open codec

width = pCodecCtx->width;
height = pCodecCtx->height;

sws_ctx =
sws_getContext
(
pCodecCtx->width,
pCodecCtx->height,
pCodecCtx->pix_fmt,
pCodecCtx->width,
pCodecCtx->height,
PIX_FMT_YUV420P,
SWS_BILINEAR,
NULL,
NULL,
NULL

)5
/* GTK stuff now */

305

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

gtk_init (8argc, &argv);
window = gtk window new (GTK_WINDOW TOPLEVEL);

/* When the window is given the "delete-event" signal (this is given
* by the window manager, usually by the "close" option, or on the
* titlebar), we ask it to call the delete event () function
* as defined above. The data passed to the callback
* function is NULL and is ignored in the callback function. */
g signal_connect (window, "delete-event",
G _CALLBACK (delete event), NULL);

/* Here we connect the "destroy" event to a signal handler.
* This event occurs when we call gtk widget destroy() on the window,
* or if we return FALSE in the "delete-event" callback. */
g signal_connect (window, "destroy",
G_CALLBACK (destroy), NULL);

g signal connect (window, "realize", G CALLBACK (realize cb), NULL);

/* Sets the border width of the window. */
gtk_container_set_border width (GTK_CONTAINER (window), 10);

image = gtk_image new();
gtk widget show (image);

/* This packs the button into the window (a gtk container). */
gtk_container_add (GTK_CONTAINER (window), image);

/* and the window */
gtk widget show (window);

/* A1l GTK applications must have a gtk_main(). Control ends here
* and waits for an event to occur (like a key press or

* mouse event). */

gtk_main ();

return 0;

Overlaying an Image on Top of an Image

It is common in a movie on TV to see a fixed image layered on top of the video. Subtitles can be an example
of dynamic images but may be text overlaid instead. This section just considers one image on top of another.

In Gtk 2.0 it is surprisingly easy: draw one pixbuf into a pixmap and then draw the overlay pixbuf into
the same pixmap.

pixmap = gdk_pixmap_new(window->window, 720, 480, -1);

gdk_draw_pixbuf((GdkDrawable *) pixmap, NULL,
pixbuf,

306

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

0, 0, 0, 0, 720, 480,
GDK_RGB_DITHER NORMAL, 0, 0);

// overlay another pixbuf

gdk_draw_pixbuf((GdkDrawable *) pixmap, NULL,
overlay pixbuf,
0, 0, 0, 0, overlay width, overlay height,
GDK_RGB_DITHER_NORMAL, 0, 0);

gtk_image_set_ from_pixmap((GtkImage*) image, pixmap, NULL);
gtk _widget queue draw(image);

Gtk 3.0 does not seem so straightforward as pixmaps have disappeared. Various pages suggest using
Cairo surfaces instead, and later sections will look at that. But “The GdkPixbuf Structure” (https://
developer.gnome.org/gdk-pixbuf/unstable/gdk-pixbuf-The-GdkPixbuf-Structure.html) suggests
that as long as you get the data types aligned, you can just write the pixels of the second image into the
pixbuf data of the first. The page (although old) called “Gdk-pixbuf” (http://openbooks.sourceforge.
net/books/wga/graphics-gdk-pixbuf.html)is a useful tutorial on Gdk pixbufs. One of the details you have
to get right is the rowstride of each image: the two-dimensional image is stored as a linear array of bytes,
and the rowstride tells how many bytes make up a row. Typically there are 3 or 4 bytes per pixel (for RGB or
RGB+alpha), and these also need to be matched between the images.

The Gtk 3 overlay function is as follows:

static void overlay(GdkPixbuf *pixbuf, GdkPixbuf *overlay pixbuf,
int height offset, int width offset) {
int overlay width, overlay height, overlay rowstride, overlay n_channels;
guchar *overlay pixels, *overlay p;
guchar red, green, blue, alpha;
int m, n;
int rowstride, n_channels, width, height;
guchar *pixels, *p;

if (overlay pixbuf == NULL) {
return;
}

/* get stuff out of overlay pixbuf */

overlay n_channels = gdk_pixbuf_get_n_channels (overlay pixbuf);

n_channels = gdk pixbuf get n channels(pixbuf);

printf("Overlay has %d channels, destination has %d channels\n",
overlay n _channels, n_channels);

overlay width = gdk pixbuf get width (overlay pixbuf);

overlay height = gdk_pixbuf get height (overlay pixbuf);

overlay rowstride = gdk pixbuf get rowstride (overlay pixbuf);
overlay pixels = gdk_pixbuf get pixels (overlay pixbuf);

rowstride = gdk pixbuf get rowstride (pixbuf);

width = gdk_pixbuf_get width (pixbuf);
pixels = gdk_pixbuf_get_pixels (pixbuf);

307

https://developer.gnome.org/gdk-pixbuf/unstable/gdk-pixbuf-The-GdkPixbuf-Structure.html
https://developer.gnome.org/gdk-pixbuf/unstable/gdk-pixbuf-The-GdkPixbuf-Structure.html
http://openbooks.sourceforge.net/books/wga/graphics-gdk-pixbuf.html
http://openbooks.sourceforge.net/books/wga/graphics-gdk-pixbuf.html

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

printf("Overlay: width %d str8ide %d\n", overlay width, overlay rowstride);
printf("Dest: width str8ide %d\n", rowstride);

for (m = 0; m < overlay width; m++) {
for (n = 0; n < overlay height; n++) {
overlay p = overlay pixels + n * overlay rowstride + m * overlay n_channels;
red = overlay p[o0];
green = overlay p[1];
blue = overlay p[2];
if (overlay_n_channels == 4)
alpha = overlay p[3];
else
alpha = 0;

= pixels + (nt+height offset) * rowstride + (m+width_offset) * n_channels;

p
p[o] = red;
pl1]
p[2]

green;
= blue;
if (n_channels == 4)
p[3] = alpha;

Alpha Channel

An overlay image may have some “transparent” parts in it. You don’t want such parts to be overlaid onto the
underlying image. But such parts will need to have a value in the array of pixels. Even zero is a value: black! Some
images will have another byte per pixel allocated as the alpha channel. This has a value to show how transparent
the pixel is. A value of 255 means not transparent at all, and a value of zero means totally transparent.

The simplest way of combining a transparent pixel with the underlying pixel is simply to not do so:
leave the underlying pixel untouched. More complex algorithms are pointed to by the Wikipedia “Alpha
compositing” (http://en.wikipedia.org/wiki/Alpha_compositing) page.

Converting an image that doesn’t have an alpha channel to one that does can be done using the function
gdk_pixbuf_add_alpha. This can also be used to set the value of the alpha channel by matching against a
color. For example, the following should set the alpha value to 0 for any white pixels and to 255 for all others:

pixbuf = gdk pixbuf add_alpha(pixbuf, TRUE, 255, 255, 255);

Unfortunately, it seems to want to leave an “edge” of pixels, which should be marked as transparent.
With alpha marking in place, a simple test can be used in the overlay function as to whether or not to
perform the overlay.

if (alpha < 128) {
continue;

}

It's not worth giving a complete program just for a couple of changed lines. Itis gtk play video_
overlay alpha.c.

308

http://en.wikipedia.org/wiki/Alpha_compositing

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

Using Cairo to Draw on an Image

With the disappearance of pixmaps from Gtk 3.0, Cairo is now the only real way of assembling multiple
components into an image. You can find general Cairo information http://cairographics.org/
documentation/, atutorial at http://zetcode.com/gfx/cairo/, and information about overlaying onto
images at http://zetcode.com/gfx/cairo/cairoimages/.

Cairo takes sources and a destination. The sources can be changed and frequently are from an image
source to a color source, and so on. The destination is where the drawn stuff ends up.

Destinations can be in memory or at a variety of back ends. You want an in-memory destination so that
you can extract a pixbuf from it, with all operations done on the client side. You create a destination as a
surface of type cairo_surface_t and set it into a Cairo context of type cairo_t with the following:

cairo_surface t *surface = cairo_image surface create (CAIRO_FORMAT ARGB32,
width, height);
cairo t *cr = cairo create(surface);

The Cairo context cr is then used to set sources, perform drawing, and so on. At the end of this, you will
extract a pixmap from the surface.

The first step is to set the source to the pixbuf for each frame of the video and to paint this to the
destination with the following:

gdk_cairo_set source pixbuf(cr, pixbuf, 0, 0);
cairo paint (cr);

You can overlay another image on top of this by changing the source to the overlay image and painting that:

gdk_cairo_set source pixbuf(cr, overlay pixbuf, 300, 200);
cairo paint (cr);

Note that Cairo will do any alpha blending that is required if the overlay has “transparent” pixels.
To draw the text, you need to reset the source to an RGB surface, set all the parameters for the text, and
draw the text into the destination. This is done with the following:

// white text

cairo set source rgb(cr, 1.0, 1.0, 1.0);

// this is a standard font for Cairo

cairo_select font face (cr, "cairo:serif",
CATRO_FONT_SLANT_NORMAL,
CAIRO_FONT WEIGHT BOLD);

cairo set font size (cr, 20);

cairo _move to(cr, 10.0, 50.0);

cairo_show_text (cr, "hello");

Finally, you want to extract the final image from the destination and set it into the GdkImage for display.
Here there is another difference between Gtk 2.0 and Gtk 3.0: Gtk 3.0 has a function gdk_pixbuf_get from_
surface that will return a GdKPixbuf; Gtk 2.0 has no such function. You will look at the Gtk 3.0 version here.

pixbuf = gdk pixbuf get from surface(surface,
0,
0,
width,
height);

309

http://cairographics.org/documentation/
http://cairographics.org/documentation/
http://zetcode.com/gfx/cairo/
http://zetcode.com/gfx/cairo/cairoimages/

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

gdk_threads_add_idle(draw_image, pixbuf);
The revised function to play the video using Cairo is as follows:

static gboolean draw_image(gpointer user data) {
GdkPixbuf *pixbuf = (GdkPixbuf *) user data;

gtk_image set from pixbuf((GtkImage *) image, pixbuf);
gtk widget queue draw(image);
g object_unref(pixbuf);

return G_SOURCE_REMOVE;
}

static void *play background(void *args) {

int i,

AVPacket packet;

int frameFinished;
AVFrame *pFrame = NULL;

int bytesDecoded;
GdkPixbuf *pixbuf;
GdkPixbuf *overlay pixbuf;
AVFrame *picture RGB;

char *buffer;

GError *error = NULL;
overlay pixbuf = gdk_pixbuf new from file(OVERLAY IMAGE, 8error);
if (loverlay pixbuf) {

fprintf(stderr, "%s\n", error->message);

g error free(error);

exit(1);

}

// add an alpha layer for a white background
overlay pixbuf = gdk pixbuf add alpha(overlay pixbuf, TRUE, 255, 255, 255);

int overlay width = gdk_pixbuf_get width(overlay pixbuf);
int overlay height = gdk pixbuf get height(overlay pixbuf);

pFrame=avcodec_alloc_frame();

i=0;

picture RGB = avcodec_alloc frame();

buffer = malloc (avpicture get size(PIX_ FMT RGB24, 720, 576));

avpicture fill((AVPicture *)picture RGB, buffer, PIX FMT RGB24, 720, 576);

while(av_read_frame(pFormatCtx, &packet)>=0) {

if(packet.stream_index==videoStream) {
usleep(33670); // 29.7 frames per second

310

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished,
8packet);

int width = pCodecCtx->width;
int height = pCodecCtx->height;

sws_ctx = sws_getContext(width, height, pCodecCtx->pix_fmt, width, height,
PIX_FMT RGB24, SWS BICUBIC, NULL, NULL, NULL);

if (frameFinished) {
printf("Frame %d\n", i++);

sws_scale(sws_ctx, (uint8 t const * const *) pFrame->data, pFrame-
>linesize, 0, height, picture RGB->data, picture RGB->linesize);

printf("old width %d new width %d\n", pCodecCtx->width, picture RGB-

swidth);

pixbuf = gdk pixbuf new from data(picture RGB->data[0], GDK_COLORSPACE_RGB,
0, 8, width, height,
picture_RGB->linesize[0], pixmap_destroy
notify,
NULL);

// Create the destination surface

cairo surface t *surface = cairo image surface create (CAIRO FORMAT ARGB32,
width, height);

cairo t *cr = cairo create(surface);

// draw the background image
gdk_cairo_set source pixbuf(cr, pixbuf, 0, 0);
cairo paint (cr);

// overlay an image on top

// alpha blending will be done by Cairo

gdk _cairo_set source pixbuf(cr, overlay pixbuf, 300, 200);
cairo_paint (cr);

// draw some white text on top

cairo set source rgb(cr, 1.0, 1.0, 1.0);

// this is a standard font for Cairo

cairo_select font face (cr, "cairo:serif",
CATRO_FONT_SLANT_NORMAL,
CAIRO_FONT WEIGHT BOLD);

cairo _set font size (cr, 20);

cairo move to(cr, 10.0, 50.0);

cairo_show_text (cr, "hello");

pixbuf = gdk_pixbuf get from surface(surface,
o,
o,
width,
height);

311

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

gdk_threads_add_idle(draw_image, pixbuf);

sws_freeContext(sws_ctx);
cairo_surface destroy(surface);
cairo destroy(cr);

}
}
av_free packet(8packet);

}

printf("Video over!\n");
exit(0);

Drawing Text Using Pango

While Cairo can draw any form of text, the functions such as cairo_show_text do not have much flexibility.
Drawing in, say, multiple colors will involve much work. Pango is a library for handling all aspects of text.
There is a Pango Reference Manual at https://developer.gnome.org/pango/stable/. A good tutorial is at
www . ibm.com/developerworks/library/1-u-pango2/.

The simplest way of coloring text (and some other effects) is to create the text marked up with HTML
such as this:

gchar *markup_text = "hello world";

This has “hello” in red and “world” in black. This is then parsed into the text “red black” and a set of
attribute markups.

gchar *markup_text = "hello world";

PangoAttrlList *attrs;

gchar *text;

pango _parse markup (markup text, -1,0, &attrs, &text, NULL, NULL);

This can be rendered into a Cairo context by creating a PangoLayout from the Cairo context, laying out
the text with its attributes in the Pango layout and then showing this layout in the Cairo context.

PangolLayout *layout;
PangoFontDescription *desc;

cairo_move_to(cr, 300.0, 50.0);

layout = pango cairo create layout (cr);
pango_layout set text (layout, text, -1);
pango_layout_set attributes(layout, attrs);
pango_cairo update layout (cr, layout);
pango_cairo_show layout (cr, layout);

312

https://developer.gnome.org/pango/stable/
http://www.ibm.com/developerworks/library/l-u-pango2/

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

(Yes, there is a lot of jumping around between libraries in all of this!)
As before, once all content has been drawn into the Cairo context, it can be extracted as a pixbuf from

the Cairo surface destination, set into the GtkImage, and added to the Gtk event queue.

The revised function to draw the video using Pango is as follows:

static gboolean draw_image(gpointer user data) {

}

GdkPixbuf *pixbuf = (GdkPixbuf *) user data;
gtk_image_set_from pixbuf((GtkImage *) image, pixbuf);
gtk widget queue draw(image);

g object_unref(pixbuf);

return G_SOURCE_REMOVE;

static void *play background(void *args) {

int i;

AVPacket packet;

int frameFinished;
AVFrame *pFrame = NULL;

/* initialize packet, set data to NULL, let the demuxer fill it */

/* http://ffmpeg.org/doxygen/trunk/doc_2examples_2demuxing_8c-example.html#a80 */
av_init_packet(&packet);

packet.data = NULL;

packet.size = 0;

int bytesDecoded;
GdkPixbuf *pixbuf;
GdkPixbuf *overlay pixbuf;
AVFrame *picture RGB;

char *buffer;

// Pango marked up text, half red, half black
gchar *markup_text = "hello<span

foreground=\"black\">world";

PangoAttrlList *attrs;
gchar *text;

pango_parse_markup (markup text, -1,0, &attrs, &text, NULL, NULL);

GError *error = NULL;
overlay pixbuf = gdk pixbuf new from file(OVERLAY IMAGE, 8&error);
if (loverlay pixbuf) {

fprintf(stderr, "%s\n", error->message);

g_error_free(error);

exit(1);

313

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

314

// add an alpha layer for a white background
overlay pixbuf = gdk pixbuf add alpha(overlay pixbuf, TRUE, 255, 255, 255);

int overlay width = gdk pixbuf get width(overlay pixbuf);
int overlay height = gdk_pixbuf_get_height(overlay pixbuf);

pFrame=avcodec_alloc_frame();
picture RGB = avcodec_alloc_frame();
buffer = malloc (avpicture get size(PIX FMT RGB24, 720, 576));

avpicture fill((AVPicture *)picture RGB, buffer, PIX FMT RGB24, 720, 576);

while(av_read_frame(pFormatCtx, &packet)>=0) {

if(packet.stream_index==videoStream) {
usleep(33670); // 29.7 frames per second
// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished,
&packet);

int width = pCodecCtx->width;
int height = pCodecCtx->height;

sws_ctx = sws_getContext(width, height, pCodecCtx->pix_fmt, width, height,
PIX_FMT_RGB24, SWS BICUBIC, NULL, NULL, NULL);

if (frameFinished) {
printf("Frame %d\n", i++);

sws_scale(sws_ctx, (uint8 t const * const *) pFrame->data, pFrame-
>linesize, 0, height,
picture RGB->data, picture RGB->linesize);

printf("old width %d new width %d\n", pCodecCtx->width, picture RGB-
>width);
pixbuf = gdk_pixbuf new from data(picture RGB->data[0], GDK_COLORSPACE_RGB,
0, 8, width, height,
picture RGB->linesize[0], pixmap_destroy
notify,
NULL);

// Create the destination surface

cairo surface t *surface = cairo_image surface create (CAIRO FORMAT ARGB32,
width, height);

cairo t *cr = cairo create(surface);

// draw the background image
gdk _cairo_set source pixbuf(cr, pixbuf, 0, 0);

cairo paint (cr);

// overlay an image on top

CHAPTER 15 © DISPLAYING VIDEO WITH OVERLAYS USING GTK AND FFMPEG

// alpha blending will be done by Cairo
gdk _cairo_set source pixbuf(cr, overlay pixbuf, 300, 200);
cairo paint (cr);

// draw some white text on top

cairo _set source rgb(cr, 1.0, 1.0, 1.0);

// this is a standard font for Cairo

cairo_select font face (cr, "cairo:serif",
CATRO_FONT_SLANT_NORMAL,
CAIRO_FONT WEIGHT BOLD);

cairo set font size (cr, 20);

cairo _move to(cr, 10.0, 50.0);

cairo_show_text (cr, "hello");

// draw Pango text
PangolLayout *layout;
PangoFontDescription *desc;

cairo_move to(cr, 300.0, 50.0);

layout = pango cairo create layout (cr);
pango_layout set text (layout, text, -1);
pango layout set attributes(layout, attrs);
pango_cairo update layout (cr, layout);
pango_cairo_show layout (cr, layout);

pixbuf = gdk pixbuf get from surface(surface,
0,
0,
width,
height);

gdk_threads_add_idle(draw_image, pixbuf);

sws_freeContext(sws_ctx);

g object_unref(layout);
cairo_surface_destroy(surface);
cairo destroy(cr);

}

}
av_free packet(&packet);

}

printf("Video over!\n");
exit(0);

Conclusion

Getting to grips with some aspects of the Gtk toolkit is not trivial. You will use some of this material in
later chapters, which is why it has been pulled out of the sound sections of this book and placed in its own
chapter. Those not interested in Linux sound may nevertheless find it useful.

315

CHAPTER 16

MIDI

MIDI is the electronic equivalent of sheet music. It is basically a set of instructions to tell MIDI players which
notes to play, how loud, which instruments to use, what effects to employ, and when to stop playing notes.

MIDI comes in two forms: a “wire” format, in which MIDI commands are sent across a stream and
expected to be handled when received, and a file format, in which the MIDI commands are stored in a file
and are read and played from the file.

MIDI was invented so that musical instruments could communicate and so that one instrument could
control another. It has been heavily used in electronic music but is generally applicable to any electronic
instruments. Computers can of course be considered as MIDI instruments with the right software.

Resources

Here are some resources:

e Introduction to Computer Music: Volume One; Chapter 3, “MIDI” (www.indiana.
edu/~emusic/etext/MIDI/chapter3_MIDI.shtml)

e MIDI Manufacturers Association: Tutorials (www.midi.org/aboutmidi/tutorials.
php)
e Ted’s Linux MIDI Guide (http://tedfelix.com/linux/linux-midi.html)

e Standard MIDI-File Format Spec. 1.1 (www.cs.cmu.edu/~music/cmsip/readings/
Standard-MIDI-file-format-updated.pdf)

Components of a MIDI System

A MIDI system can be a single instrument, both generating and consuming MIDI events. What are
commonly called synthesizers typically have a keyboard and multiple controls to generate the MIDI events
and also have the hardware to produce sounds from these controls.

Synthesizer

A synthesizer in the abstract is a consumer of MIDI events and a producer of sound, through loudspeakers
or headphones. A synthesizer may do this in hardware but may also do it in software using tables known as
sound fonts. There are many sound fonts, and they are discussed in the next chapter.

© Jan Newmarch 2017 317
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_16

http://dx.doi.org/10.1007/978-1-4842-2496-0_3
http://www.indiana.edu/~emusic/etext/MIDI/chapter3_MIDI.shtml
http://www.indiana.edu/~emusic/etext/MIDI/chapter3_MIDI.shtml
http://www.midi.org/aboutmidi/tutorials.php
http://www.midi.org/aboutmidi/tutorials.php
http://tedfelix.com/linux/linux-midi.html
http://www.cs.cmu.edu/~music/cmsip/readings/Standard-MIDI-file-format-updated.pdf
http://www.cs.cmu.edu/~music/cmsip/readings/Standard-MIDI-file-format-updated.pdf

CHAPTER 16 - MIDI

Sequencers

Synthesizers react in real time to MIDI events. The most important of these are events to play notes. Now
sheet music uses notes of different kinds (crochets, quavers, and so on) to signal duration. MIDI instead uses
NOTE ONand NOTE OFF events.

These note events can’t be sent to the synthesizer all at once, or it would attempt to play them all at
once. If the MIDI events are generated by a person at a keyboard, say, then they control how they are sent.

In this book, you will be looking at the case where the MIDI events are stored in a file. Consequently, the
file reader must control the timing at which events are sent to a synthesizer. It is the role of the sequencer to
send events to a synthesizer at appropriate times.

Other Components

A minimal system will consist of a sequencer (either a human or a component) sending MIDI at the correct
times to a synthesizer. There may be other components, though, including drum machines, devices to
produce sound effects such as reverb or delay, or samplers that have previously recorded or digitized audio
and can play them back.

MIDI Events

There are several categories of MIDI event. The main ones for our purposes are the program change events,
note events, and meta events.

Program Change Events

Instruments or “voices” are associated with channels. The establishment between voices and channels is
typically done at the beginning of play but can be changed by program change events.

Note Events

Note events are either NOTE ON or NOTE OFF. They include a channel to select the instrument to play. They
have a number that represents the note. There are 128 of these, from 0 to 127, and they correspond to the
notes CO (8.175Hz) to G10 (12543.854Hz). These values can be changed, for example, for microtonal music,
but that is out of the scope of this book. A note event also contains a velocity, which gives the volume of the
note.

Meta Events

There are a set of meta events that give information about the MIDI system playing. These include copyright
notices and the sequence or track name but most importantly for karaoke are Lyric and Text events.

These meta events are not sent on the wire. A synthesizer won’t know what to do with a copyright notice,
say. Meta events are contained in MIDI files and may be interpreted by whatever is reading from the file.

This leads to a difference in behavior in sequencers, which you will come across when you look at
karaoke systems: some sequencers make meta information available such as the Java sequencer. Others do
not, such as fluidsynth.

318

CHAPTER 16 - MIDI

Conclusion

MIDI systems have been around since the early 1980s. In that sense, they are “old” technology, and
replacement proposals are often made. Nevertheless, MIDI has remained a persistent electronic format. This
chapter looked at the components of a MIDI system and gave an abstract view of the MIDI messages.

319

CHAPTER 17

User-Level Tools for MIDI

This chapter gives an overview of the principal tools used for playing MIDI files. It does not include MIDI
editors, MIDI producers, and so on.

Resources

Check out this resource:

e Ted’s Linux MIDI Guide (http://tedfelix.com/linux/linux-midi.html)

Sound Fonts

The tools described in this chapter each include a software synthesizer, which produces audio as PCM data
from the MIDI data fed to it. The MIDI data contains information about the instrument playing each note,
and of course, every instrument sounds different. So, the synthesizer must make use of mapping information
from MIDI notes + instrument into PCM data.

The mapping is usually done using sound font files. There are various formats for this. The primary one is
the .sf2 format (http://connect.creativelabs.com/developer/SoundFont/Forms/Al1Items.aspx/). Some
synthesizers (such as TiMidity) can also use Gravis UltraSound patches, which are recorded real instruments.

Many sound font files have been created. See, for example, “Links to SoundFonts and other similar files”
(www.synthfont.com/links_to_soundfonts.html) (although many of the links are broken).

e A common sound font is from FluidSynth, named /usr/share/sounds/sf2/
FluidR3_GM.sf2. This file is nearly 150Mb. Sound fonts are not small!

e Java Sound has a sound font called soundbank-emg. sf2. This is considerably smaller
at 1.9Mb!

e Another popular sound font is at GeneralUser_GS_1.44-MuseScore (www.
schristiancollins.com/soundfonts/GeneralUser GS_1.44-MuseScore.zip)byS.
Christian Collins. This is not so large, at 31Mb.

¢ You can find a small sound font by Tim Brechbill; it’s 6Mb (linked from http://
musescore.org/en/handbook/soundfont)

¢ You can find a list of sound fonts at the “TiMidity++ Configuration File Package
v2004/8/3” page (http://timidity.s11.xrea.com/files/readme_cfgp.htm)

© Jan Newmarch 2017 321
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_17

http://tedfelix.com/linux/linux-midi.html
http://connect.creativelabs.com/developer/SoundFont/Forms/AllItems.aspx/
http://www.synthfont.com/links_to_soundfonts.html
http://www.schristiancollins.com/soundfonts/GeneralUser_GS_1.44-MuseScore.zip
http://www.schristiancollins.com/soundfonts/GeneralUser_GS_1.44-MuseScore.zip
http://musescore.org/en/handbook/soundfont
http://musescore.org/en/handbook/soundfont
http://timidity.s11.xrea.com/files/readme_cfgp.htm

CHAPTER 17 = USER-LEVEL TOOLS FOR MIDI

Possibly surprisingly, using different sound fonts doesn’t seem to make much difference to CPU usage.
For FluidSynth, they all use about 60 percent to 70 percent CPU on one song. They do, of course, sound
different.

TiMidity
TiMidity is a “software sound renderer (MIDI sequencer and MOD player)”. Its home page is Maemo.org

(http://maemo.org/packages/view/timidity/).
Timidity can be used to play MIDI files by giving them on the command line, like so:

timidity rehab.mid

The default sound fonts used by TiMidity are Gravis UltraSound patches, from the /usr/share/midi/
freepats/ directory. These sound fonts are missing many instruments so should be replaced by another
such as the FluidSynth fonts. The settings are made in the configurations file /etc/timidity/timidity.cfg.

TiMidity as a Server

TiMidity can also be run as an ALSA server listening on a port (see “Using MIDI with UNIX” at http://wiki.
winehq.org/MIDI).

timidity -iAD -B2,8 -0s1l -s 44100

The -1AD option runs it as a daemon process in the background as an ALSA sequencer client. The -B2,8
option selects the number of buffer fragments. The -0s11 option selects ALSA output as PCM. The -s option
is the sample size. (For the Raspberry Pi, I found that -B0, 12 worked better than -B2,8.)

In this mode, ALSA can send messages to it. The command

aconnect -0
will show output such as the following:

client 14: 'Midi Through' [type=kernel]

0 'Midi Through Port-o'
laptop:/home/httpd/html/LinuxSound/MIDI/Python/pyPortMidi-0.0.3$%aconnect -o
client 14: 'Midi Through' [type=kernel]

0 'Midi Through Port-o0'

client 128: 'TiMidity' [type=user]

0 'TiMidity port o '

1 'TiMidity port 1
2 'TiMidity port 2
3 'TiMidity port 3 '

The Midi Through port is not useful, but the TiMidity ports are. MIDI files can then be played by an
ALSA sequencer, as follows:

aplaymidi -p128:0 rehab.mid

322

http://maemo.org/packages/view/timidity/
http://wiki.winehq.org/MIDI
http://wiki.winehq.org/MIDI

CHAPTER 17 © USER-LEVEL TOOLS FOR MIDI

Setting TiMidity Output Device

You can change the default output for TiMidity using the -0 option. The TiMidity help (timidity -h) shows,
for example, the following:

Available output modes (-0, --output-mode option):

-0s ALSA pcm device

-0w RIFF WAVE file

-0r Raw waveform data

-Ou Sun audio file

-0a AIFF file

-01 List MIDI event

-0m Write MIDI file

-0M MOD -> MIDI file conversion

For some of these modes, the device name can also be set, using the -0 option. For example, to play a
file using the hw:2 ALSA device, use this:

timidity -0s -o hw:2 ...

TiMidity and Jack
TiMidity can be run with Jack output using the -0j option. In a user-based environment such as Ubuntu,
you may need to stop or pause PulseAudio, start the Jack server, and then run TiMidity. PulseAudio may be
paused with the following, for example, in one terminal:
pasuspender cat
In another, start the Jack daemon using ALSA input and output.
jackd -dalsa
In a third terminal, run TiMidity.
timidity -0j 54154.mid

The links may be shown graphically by also running gjackctl.

GStreamer

GStreamer allows you to build “pipelines” that can be played using gst-1launch. It can play MIDI files with
this, for example:

gst-launch filesrc location="rehab.mid" ! decodebin ! alsasink

323

CHAPTER 17 = USER-LEVEL TOOLS FOR MIDI

fluidsynth

fluidsynth is a command-line MIDI player. It runs under ALSA with a command line, as shown here:
fluidsynth -a alsa -1 <sound font> <files...>

The sound font is set explicitly on the command line, so it can be set to another sound font.
gsynth is a GUI interface to fluidsynth.
You can use fluidsynth to convert MIDI files to WAV files with this:

fluidsynth -F out.wav /usr/share/sounds/sf2/FluidR3_GM.sf2 myfile.mid

fluidsynth as a Server

fluidsynth can be run as a server in the same way as TiMidity. Use this:
fluidsynth --server --audio-driver=alsa /usr/share/sounds/sf2/FluidR3_GM.sf2
Then a connect -o will show the ports, and it can be played to with the following:

amidi -p 128:0 <midi-file>

Rosegarden

Rosegarden is a well-rounded audio and MIDI sequencer, score editor, and general-purpose music
composition and editing environment. Its home page is at www.rosegardenmusic.com/. It is not a stand-
alone synthsesizer; it uses fluidsynth, for example.

WildMIDI

The aim of this sequencer/synthesizer is to be small. It succeeds at this.

Comparison

On playing the same song with the different systems, I observed the following CPU patterns:
TiMidity + PulseAudio (with GUS or SF2 sound fonts)

12 to 20 percent CPU
fluidsynth + PulseAudio

65 to 72 percent CPU
WildMIDI

6 percent CPU
Java Sound

52 to 60 percent
GStreamer

15 to 20 percent CPU
324

http://www.rosegardenmusic.com/

CHAPTER 17 © USER-LEVEL TOOLS FOR MIDI

VLC

VLC is a general-purpose media player. There is a VLC module (https://wiki.videolan.org/Midi) to
handle MIDI files using fluidsynth. To get this working on a Debian system, you first need to install the
vlc-plugin-fluidsynth package. Then in Advanced Options of VLC, choose Codecs-Audio Codecs-
FluidSynth. You will need to set the sound font, for example, to /usr/share/sounds/sf2/FluidR3_GM.sf2.

Conclusion

This chapter looked at a variety of user-level tools for manipulating MIDI. It has primarily included players,
but there are also a large number of MIDI editors, producers, and so on.

325

https://wiki.videolan.org/Midi

CHAPTER 18

MIDI Java Sound

Java Sound has a well-developed MIDI system, with cleanly separated components such as sequencers and
synthesizers, and it allows hooks for meta events as well as ordinary MIDI events. This chapter considers
programming using the MIDI API.

Resources

Many resources are available for Java Sound.

e The Java Platform Standard Edition 7 API Specification (http://docs.oracle.com/
javase/7/docs/api/) is the reference point for all the standard Java APIs, including
javax.sound.sampled.

e The “Trail: Sound” tutorial at Java Tutorials (http://docs.oracle.com/javase/
tutorial/sound/index.html) gives a good overview of both the sampled and MIDI
packages.

e The Audio Programming FAQ at Java Sound Resources (www. jsresources.org/
faq_audio.html) answers many questions about Java Sound.

e TheJava Sound Programmer Guide (http://docs.oracle.com/javase/7/docs/
technotes/guides/sound/programmer_guide/contents.html)is a full book from
Oracle (formerly Sun MicroSystems) about Java Sound.

e The Sound Group (http://openjdk.java.net/groups/sound/) consists of
developers designing, implementing, and maintaining the various OpenJDK sound
components. It’s your hook into finding out more about the ongoing development of
Java Sound in the open source community.

e Check out the Gervill software sound synthesizer source (https://java.net/
projects/gervill/sources/Mercurial/show).

Key Java Sound MIDI Classes

Java Sound relies on a set of classes for its MIDI support. These are standard in Java. The following are the
principal classes:

e TheMidiSystem class is the entry point for all MIDI classes.

e AMidiDevice includes synthesizers, sequencers, MIDI input ports, and MIDI output
ports.

© Jan Newmarch 2017 327
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_18

http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/7/docs/api/
http://docs.oracle.com/javase/tutorial/sound/index.html
http://docs.oracle.com/javase/tutorial/sound/index.html
http://www.jsresources.org/faq_audio.html
http://www.jsresources.org/faq_audio.html
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/contents.html
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/contents.html
http://openjdk.java.net/groups/sound/
https://java.net/projects/gervill/sources/Mercurial/show
https://java.net/projects/gervill/sources/Mercurial/show

CHAPTER 18 MIDI JAVA SOUND

e ATransmitter sendsMidiEvent objects to a Receiver. A Transmitter is the source
of MIDI events, and a Receiver is a consumer of events.

e ASequencer is a device for capturing and playing back sequences of MIDI events.
It has transmitters, because it typically sends the MIDI messages stored in the
sequence to another device, such as a synthesizer or MIDI output port. It also has
receivers because it can capture MIDI messages and store them in a sequence.
(http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_
guide/chapter8.html#118852).

e ASynthesizer is a device for generating sound. It’s the only object in the javax.
sound.midi package that produces audio data (http://docs.oracle.com/javase/7/
docs/technotes/guides/sound/programmer_guide/chapter8.html#118852).

Device Information

Device information is found by querying MidiSystem for its list of DeviceInfo objects. Each information
object contains fields such as Name and Vendozr. You can find the actual device using this information object
with MidiSystem.getMidiDevice(info). The device can then be queried for its receivers and transmitters
and its type as sequencer or synthesizer.

One annoying part is that you cannot get a list of all the device’s transmitters and receivers, only those
that are open. You can ask for the default transmitter and receiver, which will implicitly open them. So, you
can see that the list may be empty before asking for the default, but it will be nonempty afterward if there is a
default! If there are no defaults, a MidiUnavailableException exception will be thrown.

The program is as follows:

import javax.sound.midi.*;
import java.util.*;

public class DeviceInfo {

public static void main(String[] args) throws Exception {
MidiDevice.Info[] devices;

/*

MidiDevice.Info[] info = p.getDeviceInfo();

for (int m = 0; m < info.length; m++) {
System.out.println(info[m].toString());

}

*/

System.out.println("MIDI devices:");
devices = MidiSystem.getMidiDeviceInfo();
for (MidiDevice.Info info: devices) {
System.out.println(" Name: " + info.toString() +
", Decription: " +
info.getDescription() +
", Vendor: " +
info.getVendor());
MidiDevice device = MidiSystem.getMidiDevice(info);
if (! device.isOpen()) {
device.open();

328

http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter8.html#118852
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter8.html#118852
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter8.html#118852
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter8.html#118852

CHAPTER 18
}
if (device instanceof Sequencer) {
System.out.println(" Device is a sequencer");
}
if (device instanceof Synthesizer) {
System.out.println(" Device is a synthesizer");
}
System.out.println(" Open receivers:");
List<Receiver> receivers = device.getReceivers();
for (Receiver r: receivers) {
System.out.println(" "+ r.toString());
}
try {
System.out.println("\n Default receiver: " +
device.getReceiver().toString());
System.out.println("\n Open receivers now:");
receivers = device.getReceivers();
for (Receiver r: receivers) {
System.out.println(" "+ r.toString());
}
} catch(MidiUnavailableException e) {
System.out.println(" No default receiver");
}
System.out.println("\n Open transmitters:");

List<Transmitter> transmitters = device.getTransmitters();
for (Transmitter t: transmitters) {

System.out.println(" "+ t.toString());
}
try {
System.out.println("\n Default transmitter: " +
device.getTransmitter().toString());
System.out.println("\n Open transmitters now:");
transmitters = device.getTransmitters();
for (Transmitter t: transmitters) {
System.out.println(" "+ t.toString());
}
} catch(MidiUnavailableException e) {
System.out.println(" No default transmitter");
}

device.close();

}

Sequencer sequencer = MidiSystem.getSequencer();
System.out.println("Default system sequencer is " +
sequencer.getDeviceInfo().toString() +

" (" + sequencer.getClass() + ")");

Synthesizer synthesizer = MidiSystem.getSynthesizer();

System.out.println("Default system synthesizer is " +

MIDI JAVA SOUND

329

CHAPTER 18 MIDI JAVA SOUND

synthesizer.getDeviceInfo().toString() +
" (" + synthesizer.getClass() + ")");

The output on my system is as follows:

MIDI devices:
Name: Gervill, Decription: Software MIDI Synthesizer, Vendor: Open]DK
Device is a synthesizer
Open receivers:

Default receiver: com.sun.media.sound.SoftReceiver@72f2a824

Open receivers now:
com.sun.media.sound.SoftReceiver@72f2a824

Open transmitters:
No default transmitter
Name: Real Time Sequencer, Decription: Software sequencer, Vendor: Oracle Corporation
Device is a sequencer
Open receivers:

Default receiver: com.sun.media.sound.RealTimeSequencer$SequencerReceiver@c23c5ff

Open receivers now:
com.sun.media.sound.RealTimeSequencer$SequencerReceiver@c23c5ff

Open transmitters:
Default transmitter: com.sun.media.sound.RealTimeSequencer$SequencerTransmitter@4el
3aage

Open transmitters now:
com.sun.media.sound.RealTimeSequencer$SequencerTransmitter@4e13aade
Default system sequencer is Real Time Sequencer
Default system synthesizer is Gervill

Dumping a MIDI File

These two programs from jsresources.org dump a MIDI file to the console. The MidiSystem creates a
Sequence from a file. Each track of the sequence is looped through, and each event within each track is
examined. While it would be possible to print in situ, each event is passed to a Receiver object, which in this
case is DumpReceiver. That object could do anything but in this case just prints the event to stdout.

The DumpSequence. java program reads a MIDI file given as a command-line argument and dumps a
listing of its contents in readable form to standard output. It first gets a Sequence and prints out information
about the sequence and then gets each track in turn, printing out the contents of the track.

/*
* DumpSequence. java
*

330

*

*/

~
*

All

are

"AS

FOR

¥ X X K X X K X K X X K X X K X X X X X X X ¥ ¥ ¥

*
~

import
import

import
import
import
import
import
import
import
import
import
import

public
{

"GH"

private static String[]
IlAlI’ IIA#Il’ IIBII};

private static Receiver

CHAPTER 18

This file is part of jsresources.org

Copyright (c) 1999, 2000 by Matthias Pfisterer

rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

met:

- Redistributions of source code must retain the above copyright notice,
this 1list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRICHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

java.io.File;
java.io.IOException;

javax.sound.midi.MidiSystem;
javax.sound.midi.InvalidMidiDataException;
javax.sound.midi.Sequence;
javax.sound.midi.Track;
javax.sound.midi.MidiEvent;
javax.sound.midi.MidiMessage;
javax.sound.midi.ShortMessage;
javax.sound.midi.MetaMessage;
javax.sound.midi.SysexMessage;
javax.sound.midi.Receiver;

class DumpSequence

sm_receiver = new DumpReceiver(System.out, true);

MIDI JAVA SOUND

Sm_aStrKeyNameS - {"C“, "C#", "D", "D#", “E", "F", "F#", an’

331

CHAPTER 18 MIDI JAVA SOUND

332

public static void main(String[] args) {

/*
*
*
*
*/
if (

We check that there is exactely one command-line
argument. If not, we display the usage message and
exit.

args.length I= 1) {

out("DumpSequence: usage:");
out("\tjava DumpSequence <midifile>");
System.exit(1);

Now, that we're shure there is an argument, we take it as
the filename of the soundfile we want to play.

String strFilename = args[0];

Sequ
try

} ca

} ca

}

/*
*
*/

if (

}el

midiFile = new File(strFilename);
We try to get a Sequence object, which the content
of the MIDI file.

ence sequence = null;

{

sequence = MidiSystem.getSequence(midiFile);
tch (InvalidMidiDataException e) {
e.printStackTrace();

System.exit(1);

tch (IOException e) {

e.printStackTrace();

System.exit(1);

And now, we output the data.

sequence == null) {
out("Cannot retrieve Sequence.");
se {

out("File: " + strFilename);
T (G
out("Length: " + sequence.getTickLength() + " ticks");

out("Duration: " + sequence.getMicrosecondLength() +

microseconds");

OUt (M= mmm o e e
float fDivisionType = sequence.getDivisionType();
String strDivisionType = null;

if (fDivisionType == Sequence.PPQ) {
strDivisionType = "PPQ";
} else if (fDivisionType == Sequence.SMPTE 24) {
strDivisionType = "SMPTE, 24 frames per second";
} else if (fDivisionType == Sequence.SMPTE_ 25) {

");
");

CHAPTER 18 © MIDI JAVA SOUND

strDivisionType = "SMPTE, 25 frames per second";

} else if (fDivisionType == Sequence.SMPTE 30DROP) {
strDivisionType = "SMPTE, 29.97 frames per second";

} else if (fDivisionType == Sequence.SMPTE 30) {
strDivisionType = "SMPTE, 30 frames per second";

}

out("DivisionType: " + strDivisionType);

String strResolutionType = null;

if (sequence.getDivisionType() == Sequence.PPQ) {
strResolutionType = " ticks per beat";

} else {
strResolutionType = " ticks per frame";

}

out("Resolution: " + sequence.getResolution() + strResolutionType);
OUt (M= m o m e e e ");
Track([] tracks = sequence.getTracks();
for (int nTrack = 0; nTrack < tracks.length; nTrack++) {

out("Track " + nTrack + ":");

out(M--mmmm e ");

Track track = tracks[nTrack];

for (int nEvent = 0; nEvent < track.size(); nEvent++) {

MidiEvent event = track.get(nEvent);

output(event);
OUt (== o m o o e e ");
}

}
}
public static void output(MidiEvent event) {

MidiMessage message = event.getMessage();

long 1Ticks = event.getTick();

sm_receiver.send(message, 1Ticks);
}

private static void out(String strMessage) {
System.out.println(strMessage);
}
}

/*** DumpSequence.java ***/

There are several sites with legal, free MIDI files. The file http://files.mididb.com/amy-winehouse/
rehab.mid gives the result.

Length: 251475 ticks
Duration: 216788738 microseconds

333

http://files.mididb.com/amy-winehouse/rehab.mid
http://files.mididb.com/amy-winehouse/rehab.mid

CHAPTER 18 MIDI JAVA SOUND

DivisionType: PPQ
Resolution: 480 ticks per beat

tick 0: Time Signature: 4/4, MIDI clocks per metronome tick: 24, 1/32 per 24 MIDI clocks: 8
tick 0: Key Signature: C major

tick 0: SMTPE Offset: 32:0:0.0.0

tick 0: Set Tempo: 145.0 bpm

tick 0: End of Track

tick 0: Sequence/Track Name: amy winehouse - rehab
tick 0: Instrument Name: GM Device

tick 40: Sysex message: FO 7E 7F 09 01 F7

tick 40: End of Track

tick 0: MIDI Channel Prefix: 1

tick 0: Sequence/Track Name: amy winehouse - rehab

tick 0: Instrument Name: GM Device 2

tick 480: [B1 79 00] channel 2: control change 121 value: 0
tick 485: [B1 0A 40] channel 2: control change 10 value: 64
tick 490: [B1 5D 14] channel control change 93 value: 20
tick 495: [B1 5B 00] channel control change 91 value: 0
tick 500: [B1 OB 7F] channel control change 11 value: 127
tick 505: [B1 07 69] channel control change 7 value: 105
tick 510: [E1 00 40] channel pitch wheel change 8192
tick 515: [B1 00 00] channel 2: control change 0 value: 0
tick 520: [C1 22] channel 2: program change 34

N NDNDNN

Playing a MIDI File

To play a MIDI file, you create a Sequence from a File, using the MidiSystem. You also create a Sequencer
from the MidiSystem and pass it the sequence. The sequencer will output MIDI messages through its
Transmitter. This completes the setup of the MIDI event generation side of the system.

The play side is constructed by getting a Synthesizer from the MidiSystem. The Receiver is found
from the synthesizer and is given to the transmitter of MIDI events. Play commences by calling start() on
the sequencer, which reads from the file and passes MIDI events to its transmitter. These are passed to the
synthesizer’s receiver and played. Figure 18-1 shows the UML class diagram for the relevant classes.

334

CHAPTER 18 © MIDI JAVA SOUND

Simple
Midi
Player [——>| Sequencer

Start()

Y

Sequence [—| File

Transmitter

5 | Synthesizer

»| Receiver |

Figure 18-1. Class diagram for the SimpleMidiPlayer

This code is from playing an audio file (easy). The original is heavily commented, but I have removed
much of it for print book. The logic is that you load a sequence from a file, get the default sequencer, and
set the sequence into the sequencer. Sequencers are not necessarily synthesizers, but the default sequencer
usually is. If not, you get the default synthesizer and then hook up the sequencer’s transmitter to the
synthesizer’s receiver. Then the MIDI file is played by calling start() on the sequencer.

/*
SimpleMidiPlayer. java

* This file is part of jsresources.org

Copyright (c) 1999 - 2001 by Matthias Pfisterer
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions
are met:

335

CHAPTER 18 MIDI JAVA SOUND

- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

¥ X K X X K X X K X X X X X ¥ X ¥ ¥ *

*
~

import java.io.File;
import java.io.IOException;

import javax.sound.midi.InvalidMidiDataException;
import javax.sound.midi.MidiSystem;

import javax.sound.midi.MidiUnavailableException;
import javax.sound.midi.MetaEventlistener;

import javax.sound.midi.MetaMessage;

import javax.sound.midi.Sequence;

import javax.sound.midi.Sequencer;

import javax.sound.midi.Synthesizer;

import javax.sound.midi.Receiver;

import javax.sound.midi.Transmitter;

import javax.sound.midi.MidiChannel;

import javax.sound.midi.ShortMessage;

public class SimpleMidiPlayer {

private static Sequencer sm_sequencer = null;
private static Synthesizer sm_synthesizer = null;

public static void main(String[]largs) {
if (args.length == 0 || args[o0].equals("-h")) {

printUsageAndExit();
}

String strFilename = args[0];
File midiFile = new File(strFilename);

336

CHAPTER 18

/*

* We read in the MIDI file to a Sequence object.
*/

Sequence sequence = null;

try {
sequence = MidiSystem.getSequence(midiFile);
}

catch(InvalidMidiDataException e) {
e.printStackTrace();
System.exit(1);

catch(IOException e) {
e.printStackTrace();
System.exit(1);

}

/*
* Now, we need a Sequencer to play the sequence.
* Here, we simply request the default sequencer.
* With an argument of false, it does not create
* a default syntesizer.
*/

try {

sm_sequencer = MidiSystem.getSequencer(false);
}

catch(MidiUnavailableException e) {
e.printStackTrace();
System.exit(1);

if (sm_sequencer == null) {
out("SimpleMidiPlayer.main(): can't get a Sequencer");
System.exit(1);

}

try {
sm_sequencer.open();

}

catch(MidiUnavailableException e) {
e.printStackTrace();

System.exit(1);
}
/*
* Next step is to tell the Sequencer which
* Sequence it has to play.
*/
try {

sm_sequencer.setSequence(sequence);

catch(InvalidMidiDataException e) {
e.printStackTrace();

MIDI JAVA SOUND

337

CHAPTER 18 MIDI JAVA SOUND

System.exit(1);

}

Receiver synthReceiver = null;
if (!(sm_sequencer instanceof Synthesizer)) {

/*
* We try to get the default synthesizer, open()
* it and chain it to the sequencer with a
* Transmitter-Receiver pair.
*/
try {
sm_synthesizer = MidiSystem.getSynthesizer();
sm_synthesizer.open();
synthReceiver = sm_synthesizer.getReceiver();
Transmitter seqTransmitter = sm_sequencer.getTransmitter();
seqTransmitter.setReceiver(synthReceiver);
}
catch(MidiUnavailableException e) {
e.printStackTrace();
}
}
/*
* Now, we can start playing
*/

sm_sequencer.start();

try {

Thread.sleep(5000);

}

catch(InterruptedException e) {
e.printStackTrace();

}
}

private static void printUsageAndExit() {
out("SimpleMidiPlayer: usage:");
out("\tjava SimpleMidiPlayer <midifile>");
System.exit(1);

}

private static void out(String strMessage) {
System.out.println(strMessage);

}
}

Playing a file to an external MIDI synthesizer

I have an Edirol Studio Canvas SD-20 synthesizer that I bought for a few hundred Australian dollars.

This plugs into a PC through a USB port. ALSA recognizes this with the following:

338

CHAPTER 18 © MIDI JAVA SOUND

$ amidi -1

Dir Device Name
I0 hw:2,0,0 SD-20 Part A
I0 hw:2,0,1 SD-20 Part B

I

hw:2,0,2 SD-20 MIDI

The MidiDevice. Info device information lists hw:2,0,0 twice, once for input and once for output, and is

similar for the other values. The device information can be identified by the toString method, which returns
values such as "SD20 [hw:2,0,0]". From the device information, the device can be found like before using
MidiSystem.getMidiDevice(info). The input and output devices can be distinguished by the number of
maxOutputReceivers it supports: zero means none, while any other value (including -1!) means it has a MIDI
receiver. Selecting an external receiver is done with code to replace the previous setting of the synthesizer with this:

Receiver synthReceiver = null;
MidiDevice.Info[] devices;
devices = MidiSystem.getMidiDeviceInfo();

for (MidiDevice.Info info: devices) {
System.out.println(" Name: " + info.toString() +

, Decription: " +
info.getDescription() +

, Vendor: " +
info.getVendor());
if (info.toString().equals("SD20 [hw:2,0,0]")) {
MidiDevice device = MidiSystem.getMidiDevice(info);

if (device.getMaxReceivers() != 0) {
try {
device.open();
System.out.println(" max receivers: " + device.
getMaxReceivers());

receiver = device.getReceiver();
System.out.println("Found a receiver");
break;

} catch(Exception e) {}

}

if (receiver == null) {
System.out.println("Receiver is null");
System.exit(1);

try {
Transmitter seqTransmitter = sm_sequencer.getTransmitter();
seqTransmitter.setReceiver(receiver);

catch(MidiUnavailableException e) {
e.printStackTrace();

}
/*
* Now, we can start playing as before
*/
339

CHAPTER 18 MIDI JAVA SOUND

Changing the Soundbank

The soundbank is a set of “sounds” encoded in some way that are used to generate the music played. The default
sound synthesizer for Java is the Gervill synthesizer, and it looks for its default soundbank in $HOME/ . gervill/
soundbank-emg. sf2. This default soundbank is tiny; it’s only 1.9MB in size. And it sounds, well, poor quality.

DaWicked]1 in “Better Java-midi instrument sounds for Linux” (www.minecraftforum.net/forums/
mapping-and-modding/mapping-and-modding-tutorials/1571330-better-java-midi-instrument-
sounds-for-1inux) offers two methods to improve this: the simpler way is to replace the sound font with a
better one such as the FluidSynth font, using the default name.

The second method is programmatic and probably better as it allows more flexibility and choice at runtime.

Changing Pitch and Speed

Changing the speed of playback of a MIDI file means changing the rate that MIDI messages are sent from the
sequencer. The Java sequencers have methods to control this such as setTempoFactor. The sequencer will
respond to this method by sending the messages at a different rate.

Changing the pitch of the notes can be done by altering the pitch of the NOTE_ON and NOTE_OFF
messages. This has to be done not just for future notes but also for notes currently playing. Fortunately, there
is a MIDI command called Pitch Bend, which can be sent to a synthesizer to change the pitch of all currently
playing and future notes. A Pitch Bend value of 0x2000 corresponds to no pitch change; values up to 0x4000
are increases in pitch, and below are decreases in pitch. There are many sites giving complex formulae
for this, but the simplest seems to be MIDI Pitch Bend Range (www.ultimatemetal.com/forum/threads/
midi-pitch-bend-range.680677/), which states that a change of pitch by 683 is roughly a semitone. So, you
change the pitch value and send a new Pitch Bend event to the receiver.

You look for input from the user of «—, T4 (Esc-[A, and so on). These then call the appropriate
method. The program illustrating this is an adaptation of the SimpleMidiPlayer given earlier in the chapter
and is called AdjustableMidiPlayer. java. In the main body, you replace the call to sleep with the following:

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
String str = null;
System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
try {
str = br.readlLine();
if (str.length() >= 2) {
byte[] bytes = str.getBytes();
if (bytes[0] == 27 8&& bytes[1] == 91) {
if (bytes[2] == 65) {
// up
increasePitch();
} else if (bytes[2] == 66) {
// down
decreasePitch();
} else if (bytes[2] == 67) {
//right
faster();
} else if (bytes[2] == 68) {
//1eft

340

http://www.minecraftforum.net/forums/mapping-and-modding/mapping-and-modding-tutorials/1571330-better-java-midi-instrument-sounds-for-linux
http://www.minecraftforum.net/forums/mapping-and-modding/mapping-and-modding-tutorials/1571330-better-java-midi-instrument-sounds-for-linux
http://www.minecraftforum.net/forums/mapping-and-modding/mapping-and-modding-tutorials/1571330-better-java-midi-instrument-sounds-for-linux
http://www.ultimatemetal.com/forum/threads/midi-pitch-bend-range.680677/
http://www.ultimatemetal.com/forum/threads/midi-pitch-bend-range.680677/

CHAPTER 18 © MIDI JAVA SOUND

slower();

}
}
} catch(java.io.IOException e) {
}
} while(!str.equals("stop"));
}
where the new functions are given by
private void increasePitch() {
// 683 from www.ultimatemetal.com/forum/threads/midi-pitch-bend-range.680677/
pitch += 683;
for (int n = 0; n < 16; n++) {
try {
MidiMessage msg =
new ShortMessage(ShortMessage.PITCH BEND,
n,
pitch & Ox7F, pitch >> 7);
synthReceiver.send(msg, 0);
} catch (Exception e) {

}
}

private void decreasePitch() {
// 683 from www.ultimatemetal.com/forum/threads/midi-pitch-bend-range.680677/
pitch -= 683;
for (int n = 0; n < 16; n++) {
try {
MidiMessage msg =
new ShortMessage(ShortMessage.PITCH BEND,
n,
pitch & ox7F, pitch >> 7);
synthReceiver.send(msg, 0);
} catch (Exception e) {
}

}

float speed = 1.0f;

private void faster() {
speed *= 1.2f;
sm_sequencer.setTempoFactor(speed);

}

private void slower() {
speed /= 1.2f;
sm_sequencer.setTempoFactor(speed);

341

CHAPTER 18 MIDI JAVA SOUND

Using TiMidity Instead of the Default Gervill Synthesizer

The soft synth TiMidity can be run as a back-end synthesizer using the ALSA sequencer with the following:
$timidity -iA -B2,8 -Os -EFreverb=0
Opening sequencer port: 128:0 128:1 128:2 128:3

(It’s similar for FluidSynth.) This is opened on ports 128:0, and so on.

Unfortunately, this is not directly visible to Java Sound, which expects either the default Gervill
synthesizer or a raw MIDI synthesizer such as a hardware synthesizer. As discussed in Chapter 19, you can
fix this by using ALSA raw MIDI ports.

You add raw MIDI ports with the following:

modprobe snd-seq snd-virmidi
This will bring virtual devices both into the ALSA raw MIDI and into the ALSA sequencer spaces:

$amidi -1

Dir Device Name

10 hw:3,0 Virtual Raw MIDI (16 subdevices)
10 hw:3,1 Virtual Raw MIDI (16 subdevices)
10 hw:3,2 Virtual Raw MIDI (16 subdevices)
10 hw:3,3 Virtual Raw MIDI (16 subdevices)

$aplaymidi -1

Port Client name Port name

14:0 Midi Through Midi Through Port-o
28:0 Virtual Raw MIDI 3-0 VirMIDI 3-0

29:0 Virtual Raw MIDI 3-1 VirMIDI 3-1

30:0 Virtual Raw MIDI 3-2 VirMIDI 3-2

31:0 Virtual Raw MIDI 3-3 VirMIDI 3-3

Virtual raw MIDI port 3-0 can then be connected to TiMidity port 0 with the following:
aconnect 28:0 128:0

The final step in playing to TiMidity is to change one line of AdaptableMidiPlayer. java from this:
if (info.toString().equals("SD20 [hw:2,0,0]")) {
to this:

if (info.toString().equals("VirMIDI [hw:3,0,0]")) {

Conclusion

This chapter built a number of programs using the MIDI API and discussed how to use external hardware
synthesizers and soft synthesizers such as TiMidity.

342

http://dx.doi.org/10.1007/978-1-4842-2496-0_19

CHAPTER 19

MIDI ALSA

ALSA offers some support for MIDI devices via a sequencer API. Clients can send MIDI events to the
sequencer, and it will play them according to the timing of the events. Other clients can then receive these
sequenced events and, for example, synthesize them.

Resources

Here are some resources:

e ‘ALSA Sequencer” (www.alsa-project.org/~frank/alsa-sequencer/index.html),
a design document.

e “ALSA Programming HOWTO” (www.suse.de/~mana/alsa090_howto.html) includes
writing a sequencer client, a MIDI router, combining PCM and MIDI (miniFMsynth),
and scheduling MIDI events (miniArp).

e MIDI Sequencer API (http://alsa-project.org/alsa-doc/alsa-1ib/group
sequencer.html).

e Sequencer interface (http://alsa-project.org/alsa-doc/alsa-1ib/seq.html).

e ALSA Sequencer System (www.alsa-project.org/~tiwai/lk2k/1k2k.html)is an
in-depth view of the sequencer system by Takashi Iwai.

ALSA Sequencer Clients

ALSA supplies a sequencer that can receive MIDI events from one set of clients and play them according to
the timing information in the events to other clients. The clients that can send such events are file readers
such as aplaymidi or other sequencers. Clients can also read events as they should be played. Possible
consuming clients include splitters, routers, or soft synthesizers such as TiMidity.

TiMidity can be run as an ALSA sequencer client, which will consume MIDI events and synthesize
them, according to http://linux-audio.com/TiMidity-howto.html.

timidity -iA -B2,8 -0Os -EFreverb=0

© Jan Newmarch 2017 343
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_19

http://www.alsa-project.org/~frank/alsa-sequencer/index.html
http://www.suse.de/~mana/alsa090_howto.html
http://alsa-project.org/alsa-doc/alsa-lib/group___sequencer.html
http://alsa-project.org/alsa-doc/alsa-lib/group___sequencer.html
http://alsa-project.org/alsa-doc/alsa-lib/seq.html
http://www.alsa-project.org/~tiwai/lk2k/lk2k.html
http://linux-audio.com/TiMidity-howto.html

CHAPTER 19 = MIDI ALSA

On my computer, this produced the following:

Requested buffer size 2048, fragment size 1024

ALSA pcm 'default' set buffer size 2048, period size 680 bytes
TiMidity starting in ALSA server mode

Opening sequencer port: 129:0 129:1 129:2 129:3

Then it sat there waiting for a connection to be made.
FluidSynth can also be used as a server (see Ted’s Linux MIDI Guide at http://tedfelix.com/1inux/
linux-midi.html).

fluidsynth --server --audio-driver=alsa -CO -R1 -1 /usr/share/soundfonts/FluidR3_GM.sf2

The ALSA sequencer sends MIDI “wire” events. This does not include MIDI file events such as text or
lyric meta events. This makes it pretty useless for a karaoke player. It is possible to modify the file reader
aplaymid to send meta events to, say, a listener (like the Java MetaEventListener), but as these come from
the file reader rather than the sequencer, they generally arrive well before the time they will get sequenced to
be played. Pity.

Programs such as pykaraoke make use of the ALSA sequencer. However, to get the timing of the lyrics
right, it includes a MIDI file parser and basically acts as a second sequencer just to extract and display the
text/lyric events.

aconnect

The program aconnect can be used to list sequencer servers and clients such as sequencers. I have set two
clients running: TiMidity and seqdemo (discussed later). This command

aconnect -o
shows the following:

client 14: 'Midi Through' [type=kernel]
0 'Midi Through Port-o'

client 128: 'TiMidity' [type=user]
0 'TiMidity port o '
1 'TiMidity port 1
2 'TiMidity port 2 '
3 'TiMidity port 3 '

client 129: "ALSA Sequencer Demo' [type=user]
0 'ALSA Sequencer Demo'

When run with the -1 option, it produces the following:

$aconnect -i

client 0: 'System' [type=kernel]
0 'Timer !
1 'Announce

client 14: 'Midi Through' [type=kernel]
0 'Midi Through Port-o0'

The program aconnect can establish a connection between input and output clients with the following:

aconnect in out

344

http://tedfelix.com/linux/linux-midi.html
http://tedfelix.com/linux/linux-midi.html

CHAPTER 19 MIDI ALSA

seqdemo

The program seqdemo. c from Matthias Nagorni’s “ALSA Programming HOWTOQ” is a basic sequencer client.
It opens a MIDI sound sequencer client and then sits in a polling loop, printing information about the MIDI
event received. It gives a simple introduction to the ALSA MIDI API.

The code for seqdemo. c is as follows:

/* seqdemo.c by Matthias Nagorni */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <alsa/asoundlib.h>

snd_seq_t *open_seq();
void midi_action(snd_seq_t *seq handle);

snd_seq_t *open_seq() {

snd_seq_t *seq_handle;
int portid;

if (snd_seq open(&seq_handle, "default", SND_SEQ OPEN_INPUT, 0) < 0) {
fprintf(stderr, "Error opening ALSA sequencer.\n");
exit(1);
}
snd_seq_set_client_name(seq_handle, "ALSA Sequencer Demo");
if ((portid = snd_seq create simple port(seq handle, "ALSA Sequencer Demo",
SND_SEQ PORT CAP_WRITE|SND_SEQ PORT CAP_SUBS WRITE,
SND_SEQ_PORT TYPE_APPLICATION)) < 0) {
fprintf(stderr, "Error creating sequencer port.\n");
exit(1);
}

return(seq_handle);

}

void midi_action(snd_seq_t *seq handle) {
snd_seq_event_t *ev;

do {
snd_seq_event_input(seq_handle, &ev);
switch (ev->type) {
case SND_SEQ EVENT_CONTROLLER:
fprintf(stderr, "Control event on Channel %2d: %5d \r",
ev->data.control.channel, ev->data.control.value);
break;
case SND_SEQ EVENT PITCHBEND:
fprintf(stderr, "Pitchbender event on Channel %2d: %5d \r",
ev->data.control.channel, ev->data.control.value);
break;

345

CHAPTER 19 = MIDI ALSA

case SND_SEQ EVENT NOTEON:

fprintf(stderr, "Note On event on Channel %2d: %5d \1",
ev->data.control.channel, ev->data.note.note);
break;
case SND_SEQ EVENT NOTEOFF:
fprintf(stderr, "Note Off event on Channel %2d: %5d \1r",
ev->data.control.channel, ev->data.note.note);
break; ALSA Programming HOWTO

}

snd_seq_free event(ev);
} while (snd_seq_event input pending(seq_handle, 0) > 0);

}
int main(int argc, char *argv[]) {

snd_seq_t *seq_handle;c
int npfd;
struct pollfd *pfd;

seq_handle = open_seq();
npfd = snd_seq_poll descriptors count(seq_handle, POLLIN);
pfd = (struct pollfd *)alloca(npfd * sizeof(struct pollfd));
snd_seq_poll descriptors(seq _handle, pfd, npfd, POLLIN);
while (1) {

if (poll(pfd, npfd, 100000) > 0) {

midi action(seq_handle);
}

}
}

aplaymidi

The program aplaymidi will play to a back-end MIDI synthesizer such as TiMidity. It requires a port name,
which can be found with the following:

aplaymidi -1

The output will look like this:

Port Client name Port name

14:0 Midi Through Midi Through Port-o
128:0 TiMidity TiMidity port o
128:1 TiMidity TiMidity port 1
128:2 TiMidity TiMidity port 2
128:3 TiMidity TiMidity port 3
131:0 aseqdump aseqdump

The port numbers are the same as those used by aconnect. These are not the ALSA device names (hw:0,
and so on) but are special to the ALSA sequencer API.

346

CHAPTER 19 MIDI ALSA

It can then play a MIDI file to one of these ports as follows:
aplaymidi -p 128:0 54154.mid

The code can be found at SourceArchive.com (http://alsa-utils.sourcearchive.com/
documentation/1.0.8/aplaymidi_8c-source.html).

Raw MIDI Ports

According to the RawMidi interface (www.alsa-project.org/alsa-doc/alsa-1ib/rawmidi.html), the
RawMidi interface “is designed to write or read raw (unchanged) MIDI data over the MIDI line without any
timestamps defined in interface.

Raw MIDI Physical Devices

The raw MIDI interface is typically used to manage hardware MIDI devices. For example, if I plug in an
Edirol SD-20 synthesizer to a USB port, it shows under amidi as follows:

$amidi -1

Dir Device Name

I0 hw:2,0,0 SD-20 Part A
I0 hw:2,0,1 SD-20 Part B
I hw:2,0,2 SD-20 MIDI

Raw MIDI Virtual Devices

The Linux kernel module snd_virmidi can create virtual raw MIDI devices. First add the modules (see
https://wiki.allegro.cc/index.php?title=Using TiMidity%2B%2B with_ALSA raw_MIDI and
AlsaMidiOverview [http://alsa.opensrc.org/AlsaMidiOverview).

modprobe snd-seq snd-virmidi

This will bring virtual devices both into the ALSA raw MIDI and into the ALSA sequencer spaces:

$amidi -1

Dir Device Name

10 hw:3,0 Virtual Raw MIDI (16 subdevices)
10 hw:3,1 Virtual Raw MIDI (16 subdevices)
I0 hw:3,2 Virtual Raw MIDI (16 subdevices)
10 hw:3,3 Virtual Raw MIDI (16 subdevices)

$aplaymidi -1

Port Client name Port name

14:0 Midi Through Midi Through Port-o
28:0 Virtual Raw MIDI 3-0 VirMIDI 3-0

29:0 Virtual Raw MIDI 3-1 VirMIDI 3-1

30:0 Virtual Raw MIDI 3-2 VirMIDI 3-2

31:0 Virtual Raw MIDI 3-3 VirMIDI 3-3

347

http://alsa-utils.sourcearchive.com/documentation/1.0.8/aplaymidi_8c-source.html
http://alsa-utils.sourcearchive.com/documentation/1.0.8/aplaymidi_8c-source.html
http://www.alsa-project.org/alsa-doc/alsa-lib/rawmidi.html
https://wiki.allegro.cc/index.php?title=Using_TiMidity++_with_ALSA_raw_MIDI
http://alsa.opensrc.org/AlsaMidiOverview

CHAPTER 19 = MIDI ALSA

Mapping MIDI Clients into MIDI Raw Space

Some programs/APIs use the ALSA sequencer space; others use the ALSA raw MIDI space. Virtual ports
allow a client using one space to use a client from a different space.
For example, TiMidity can be run as a sequencer client with the following:

timidity -iA -B2,8 -Os -EFreverb=0
This only shows in the sequencer space, not in the raw MIDI space, and shows to aconnect -o as follows:

$aconnect -o

client 14: 'Midi Through' [type=kernel]
0 'Midi Through Port-o0'

client 28: 'Virtual Raw MIDI 3-0' [type=kernel]
0 'VirMIDI 3-0 '

client 29: 'Virtual Raw MIDI 3-1' [type=kernel]
0 'VirMIDI 3-1 !

client 30: 'Virtual Raw MIDI 3-2' [type=kernel]
0 'VirMIDI 3-2 '

client 31: 'Virtual Raw MIDI 3-3' [type=kernel]
0 'VirMIDI 3-3 '

client 128: 'TiMidity' [type=user]
0 'TiMidity port o '
1 'TiMidity port 1 '
2 'TiMidity port 2 '
3 'TiMidity port 3 '

aconnect -1ishows the virtual ports as follows:

$aconnect -i

client 0: 'System' [type=kernel]
0 'Timer '
1 'Announce

client 14: 'Midi Through' [type=kernel]
0 'Midi Through Port-o'

client 28: 'Virtual Raw MIDI 3-0" [type=kernel]
0 'VirMIDI 3-0 '

client 29: 'Virtual Raw MIDI 3-1' [type=kernel]
0 'VirMIDI 3-1 !

client 30: 'Virtual Raw MIDI 3-2' [type=kernel]
0 'VirMIDI 3-2 '

client 31: 'Virtual Raw MIDI 3-3" [type=kernel]
0 'VirMIDI 3-3 '

Virtual Raw MIDI 3-0 can then be connected to TiMidity port 0 with the following:
aconnect 28:0 128:0

Clients can then send MIDI messages to the raw MIDI device hw: 3,0 and TiMidity will synthesize them.
I'used this in the previous chapter by showing how to replace the default Java synthesizer with TiMidity.

348

CHAPTER 19 © MIDI ALSA

Turning Off All Notes

If you have something playing out to a device or soft synth, then if that something gets interrupted, it may
not finish playing cleanly. For example, it may have started a NOTE ON on some channel but because of the
interrupt will not have sent a note off. The synthesizer will continue to play the note.

To stop it playing, use amidi to send “raw” MIDI commands. The hexadecimal sequence 00 BO 7B 00
will send “all notes off on channel 0.” Similarly, the command 00 B1 7B 00 will send “all notes off on channel
1, and there are only 16 possible channels.

The relevant commands for a raw device on port hw:1,0 are as follows:

amidi -p hw:1,0 -S "00 BO 7B 00"

Conclusion

This chapter briefly discussed the MIDI models available under ALSA. While there is a substantial
programming API behind this, you have mainly used the commands amidi, aplaymidi, and aconnect, and
see the API using the seqdemo. c program.

349

CHAPTER 20

FluidSynth

FluidSynth is an application for playing MIDI files and a library for MIDI applications.

Resources

Here are some resources:
e FluidSynth home page (http://sourceforge.net/apps/trac/fluidsynth/)

e FluidSynth download page (http://sourceforge.net/projects/fluidsynth/)
e FluidSynth 1.1 developer documentation (http://fluidsynth.sourceforge.net/api/)

e Sourcearchive.com fluidsynth documentation
(http://fluidsynth.sourcearchive.com/documentation/1.1.5-1/main.html)

Players

fluidsynth is a command-line MIDI player. It runs under ALSA with a command line, like so:

fluidsynth -a alsa -1 <soundfont> <files...>

A commonly used sound fontis /usr/share/sounds/sft2/FluidR3_GM.sf2.
Qsynth is a GUI interface to fluidsynth. It looks like Figure 20-1.

Qsynth - A Fluidsynth @t GUI Interface [Qsynth1]

Master Reverb Chorus
Re X Quit
Gain @ restart Room Damp width Level N Level Speed Depth Qui
B . - y
& . 4 . £ . i 3 ™ 4 F ® options...
L} QO Panic W [~ H -
o N ¢ . \‘3-__/J o _) [- [Messages
8 il O Reset 0 . 0 1 & THE R 5 30 80 @ About...
® setup B channels | B Active & Active ype: | Sine >
+ @ Quynth1 o
Figure 20-1. Qsynth

© Jan Newmarch 2017
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_20

http://sourceforge.net/apps/trac/fluidsynth/
http://sourceforge.net/projects/fluidsynth/
http://fluidsynth.sourceforge.net/api/
http://fluidsynth.sourcearchive.com/documentation/1.1.5-1/main.html

CHAPTER 20 FLUIDSYNTH

Play MIDI Files

The FluidSynth API consists of the following:

e Asequencer created using new_fluid_player
e Asynthesizer created using new_fluid_synth

e Anaudio player created using new_fluid_audio_driver,
which runs in a separate thread

e A ‘“settings” object that can be used to control many features of the other
components, created by new_fluid_settings and modified by calls such as
fluid_settings_setstr

A typical program to play a sequence of MIDI files using ALSA follows. It creates the various objects,

sets the audio player to use ALSA, and then adds each sound font and MIDI file to the player. The call to
fluid_player play then plays each MIDI file in turn.

#include <fluidsynth.h>
#include <fluid midi.h>

int

{

352

main(int argc, char** argv)

int i;

fluid_settings t* settings;
fluid_synth_t* synth;
fluid_player_ t* player;
fluid_audio_driver t* adriver;

settings = new_fluid settings();

fluid settings setstr(settings, "audio.driver", "alsa");
synth = new_fluid synth(settings);

player = new_fluid_player(synth);

adriver = new_fluid audio driver(settings, synth);
/* process command line arguments */
for (i = 1; i < argc; i++) {
if (fluid_is_soundfont(argv[i])) {
fluid_synth_sfload(synth, argv[1], 1);
} else {
fluid player add(player, argv[i]);
}

}

/* play the midi files, if any */
fluid _player play(player);

/* wait for playback termination */
fluid _player join(player);

CHAPTER 20 © FLUIDSYNTH

/* cleanup */

delete fluid audio driver(adriver);
delete fluid player(player);

delete fluid synth(synth);

delete fluid settings(settings);
return 0;

Python

pyFluidSynth is a Python binding to FluidSynth that allows you to send MIDI commands to FluidSynth.

Conclusion

This chapter has briefly discussed the programming model and API for FluidSynth.

353

http://code.google.com/p/pyfluidsynth/

CHAPTER 21

TiMidity

TiMidity is designed as a stand-alone application. To add to this, you should build a new “interface.” It can
also be subverted to act as though it is a library that can be called. This chapter explains both ways.

TiMidity Design

TiMidity is designed as a stand-alone application. When it’s built, you get a single executable but do not get a
library of functions that can be called, unlike FluidSynth, for example.

What you can do with TiMidity is to add different interfaces. For example, there are ncurses, Xaw, and
dumb interfaces that can be invoked at runtime with the following, for example:

timidity -in ...

timidity -ia ...

timidity -id ...
There are also others with more specialized uses such as WRD, emacs, ALSA, and remote interfaces.
For example, the Xaw interface looks like Figure 21-1.

. 54154.mid

Yolune

Figure 21-1. TiMidity with Xaw interface

© Jan Newmarch 2017 355
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_21

CHAPTER 21 © TIMIDITY

The idea seems to be that if you want something extra, perhaps you should build a custom interface and
drive it from TiMidity.

That doesn’t always suit me, as I would prefer to be able to embed TiMidity into my own applications in
a simple way. The rest of this chapter looks at both ways.

e Turning TiMidity into a library and including it in your own code

e Building your own interface

Turning TiMidity into a Library

TiMidity is not designed as a library, so you have to convince it otherwise. That isn’t hard; you just have to
mess around with the build system.

Managed Environments Hook

A system whereby the application is in control doesn’t work so well in a managed environment such as
Windows (or probably the many more recent ones such as Android). In such environments you can'’t call
TiMidity’s main but rather the main function belonging to the framework. This in turn will call an appropriate
function in the application.

To make use of such hooks, you need to download the source code of TiMidity, either from a package
manager or from the TiMidity++ site (http://timidity.sourceforge.net/).

For TiMidity, the variations on the main function are in the file timidity/timidity.c. Controlled by
various defines, you can have main orwin_main. One of the more interesting defines is ANOTHER_MAIN. If
this is defined, none of the versions of the main function is compiled, and you end with main-free object
modules.

If you build TiMidity from the top-level source directory in the following way, it will produce an error
that the main function is not defined:

CFLAGS="-DANOTHER_MAIN" ./configure
make

That’s the hook you need to take TiMidity from being a stand-alone application to being able to be
called as a library from another application. Note that you cannot just remove timidity/timidity.c from
the build. That file contains too many other critical functions!

Building the Library

To build TiMidity as a static library, remove the main function as shown earlier and attempt to build TiMidity.
I found I needed to also specify which output system I wanted to use, such as ALSA.

CFLAGS="-DANOTHER_MAIN" ./configure --enable-audio=alsa
nake clean
make

This builds several . ar files and lots of object .0 modules but fails to build the final timidity executable
as (of course) there is no main function. It also leaves a bunch of unlinked files in the timidity subdirectory.

356

http://timidity.sourceforge.net/

CHAPTER 21 © TIMIDITY

You can collect all the object modules into an archive file by running this from the top of the TiMidity
source directory:

ar cru libtimidity.a */*.0
ranlib libtimidity.a

Since you will have to build TiMidity from the source, check that it is working in normal mode before
you try to build this alternative library version. That way, you can find out that you need, say, the 1ibasound-
dev library in order to use ALSA, before you get mixed up in this other stuff!

Library Entry Points
TiMidity built with ANOTHER_MAIN exposes these public entry points:

void timidity start_initialize(void);

int timidity pre load configuration(void);

int timidity post load configuration(void);

void timidity init player(void);

int timidity play main(int nfiles, char **files);
int got_a_configuration;

They do not seem to be defined in any convenient header file.

A Minimal Application

The real TiMidity application is coded to work on many different operating systems with many different
versions of libraries. Most of those dependencies are taken care of in building the object files and library, as
shown earlier.

A minimal application just wraps your own main around the library entry points in my_main.c.

#include <stdio.h>

extern void timidity start initialize(void);

extern int timidity pre load configuration(void);

extern int timidity post load configuration(void);
extern void timidity init player(void);

extern int timidity play main(int nfiles, char **files);
extern int got_a_configuration;

int main(int argc, char **argv)
int err, main_ret;

timidity start_initialize();

if ((err = timidity pre load configuration()) != 0)
return err;

357

CHAPTER 21 © TIMIDITY

err += timidity post load_configuration();

if (err) {
printf("couldn't load configuration file\n");
exit(1);

}

timidity init player();
main_ret = timidity play main(argc, argv);

return main_ret;

The compile command needs to bring in the TiMidity library and any other required library and is for
an ALSA application.

my_timidity: my main.o
gcc -g -o my_timidity my main.o libtimidity.a -lasound -1m

Playing a Background Video to a MIDI File

As a more complex example, let’s look at playing a video file while also playing a MIDI file. Assume that the
video file has no audio component and there is no attempt to perform any synchronization between the two
streams—that is an extra order of complexity!

To play a video file, you can use the FFmpeg library to decode a video stream into video frames. You
then need to display the frames in some kind of GUI object, and there are many toolkits for doing this. I've
chosen the Gtk toolkit as it underlies Gnome, is in C, supports many other things such as i18n, and so on.
I've based my code on “An ffmpeg and SDL Tutorial” (http://dranger.com/ffmpeg/) by Stephen Dranger,
which uses the SDL toolkit for display.

This runs the video and the MIDI in separate threads using the pthreads package. I've cheated a bit by
hard-coding the names of the files and fixing the size of the video frames. It was a real bummer getting it to
work under Gtk 3.0 as that has removed pixmaps and it took too, too long to find out what was going on.

I've split the code into two files, one to play the video using Gtk and the other to play the TiMidity library
and invoke the video. The video-playing file is video_code.c. The code is omitted here as it is essentially the
code described in Chapter 15.

The file video_player.c sets up the TiMidity environment, calls the video to play in the background,
and then calls play_midi. It is as follows:

#include <string.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

void timidity start initialize(void);

int timidity pre load configuration(void);
int timidity post load configuration(void);
void timidity init player(void);

358

http://dranger.com/ffmpeg/
http://dx.doi.org/10.1007/978-1-4842-2496-0_15

CHAPTER 21 © TIMIDITY
void *init_gtk(void *args);
void init ffmpeg();
#define MIDI_FILE "54154.mid"

static void *play midi(void *args) {
char *argv[1];
argv[0] = MIDI_FILE;
int argc = 1;

timidity play main(argc, argv);
printf("Audio finished\n");
exit(0);

int main(int argc, char** argv)

int i;

/* Timidity stuff */
int err;

timidity start initialize();
if ((err = timidity pre load configuration()) == 0) {
err = timidity post load configuration();

}

if (err) {
printf("couldn't load configuration file\n");
exit(1);

}

timidity init_player();

init_ffmpeg();

pthread_t tid gtk;

pthread create(&tid gtk, NULL, init gtk, NULL);

play midi(NULL);
return 0;

359

CHAPTER 21 © TIMIDITY

Building a New Interface

The previous section played the MIDI and also a background video essentially as separate applications, as
separate noninteracting threads. TiMidity allows a greater integration of a user interface that can be added
dynamically to TiMidity.

Shared Obijects

You can build your own interfaces and add them to TiMidity without changing or recompiling TiMidity. Such
interfaces are built as dynamically loadable shared libraries and are loaded when TiMidity starts.

You have to be a little careful with compile and link flags to build these libraries (see “Building shared
objects in Linux” at http://stackoverflow.com/questions/7252550/1oadable-bash-builtin). To build
the shared object if_my_interface.sofrommy_interface.c, I use the following:

gcc -fPIC $(CFLAGS) -c -o my interface.o my interface.c
gcc -shared -o if_my interface.so my_interface.o

TiMidity will only load files that begin with if . They can reside in any directory, with the default
being something like /usr/1ib/timidity or /usr/local/lib/timidity (see the “supported dynamic load
interfaces” directory from timidity -h).

The default directory to load dynamic modules can be overridden with the option -d, as follows:

timidity -d. -im --trace 54154.mid

Entry Point

Each interface must have a unique function that can be called by the dynamic loader. Recall that interfaces
are selected with the command-line option -1, such as timidity -iT ..., to choose the VT100 interface.
Your interface must have a single ASCII letter identifier that isn’t used by any other interface, say m for “my
interface.” The loader will then look for a function, as shown next, where the m in the function name is the
identifier:

ControlMode *interface m loader(void)

This function is simple: it just returns the address of a structure of type ControlMode that is defined
elsewhere in the interface’s code.

ControlMode *interface m_loader(void)

{
}

return &ctl;

360

http://stackoverflow.com/questions/7252550/loadable-bash-builtin

CHAPTER 21 © TIMIDITY

ControlMode

The ControlMode structure is as follows:

typedef struct {
char *id _name, id character;
char *id_short_name;
int verbosity, trace playing, opened;

int32 flags;

int (*open)(int using stdin, int using_stdout);
void (*close)(void);
int (*pass_playing list)(int number of files, char *1ist of files[]);
int (*read)(int32 *valp);
int (*write)(char *buf, int32 size);
int (*cmsg)(int type, int verbosity level, char *fmt, ...);
void (*event)(CtlEvent *ev); /* Control events */
} ControlMode;

This defines information about the interface and a set of functions that are called by TiMidity in
response to events and actions within TiMidity. For example, for “my interface” this structure is as follows:

ControlMode ctl=

{
"my interface", 'm',
"my iface",
1, /* verbosity */
0, /* trace playing */
0, /* opened */
0, /* flags */
ctl_open,
ctl close,
pass_playing list,
ctl read,
NULL, /* write */
cmsg,
ctl _event

};

Some of these fields are obvious, but some are less so.
open

This is called to set which files are used for I/0.
close

This is called to close them.

pass_playing list

361

CHAPTER 21 © TIMIDITY

This function is passed a list of files to play. The most likely action is to walk
through this list, calling play midi_file on each.

read
I'm not sure what this is for yet.
write
I'm not sure what this is for yet.
cmsg
This is called with information messages.
event

This is the major function for handling MIDI control events. Typically it will be a
big switch for each type of control event.

Include Files

This is messy. A typical interface will need to know some of the constants and functions used by TiMidity.
While these are organized logically for TiMidity, they are not organized conveniently for a new interface. So,
you have to keep pulling in extra includes, which point to other externals, which require more includes, and
so on. These may be in different directories such timidity and utils, so you have to point to many different
include directories.

Note that you will need the TiMidity source code to get these include files; you can download them from
SourceForge TiMidity++ (http://sourceforge.net/projects/timidity/?source=dlp).

My Simple Interface

This basically does the same as the “dumb” interface built into TiMidity. It is loaded from the current
directory and invoked with the following:

timidity -im -d. 54154.mid

The code is in one file, my_interface.c.

There are two major functions in the following code, and the rest has been elided. The important
functions are ctl_event and ctl_lyric. The function ctl_event handles events generated by TiMidity. For
this interface, you just want to print lyrics as they play, so when a CTLE_LYRIC event occurs, call ctl_lyric.
The ctl_lyric function looks up the lyric using the TiMidity function event2string and prints it to the
output, printing newlines if needed according to the lyric text. The interface file is as follows:

/*
my_interface.c
*/

#ifdef HAVE_CONFIG H
#include "config.h"
#endif /* HAVE_CONFIG H */
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

362

http://sourceforge.net/projects/timidity/?source=dlp

CHAPTER 21 © TIMIDITY

#ifndef NO_STRING H
#include <string.h>
#else

#include <strings.h>
#endif

#include "support.h"
#include "timidity.h"
#include "output.h"

#include "controls.h"
#include "instrum.h"
#include "playmidi.h"
#include "readmidi.h"

static int ctl open(int using stdin, int using stdout);

static void ctl close(void);

static int ctl read(int32 *valp);

static int cmsg(int type, int verbosity level, char *fmt, ...);

static void ctl total time(long tt);

static void ctl file name(char *name);

static void ctl current time(int ct);

static void ctl_lyric(int lyricid);

static void ctl event(CtlEvent *e);

static int pass_playing list(int number of files, char *1list of files[]);

#define ctl karaoke_control mode

ControlMode ctl=

{
"my interface", 'm',
"my iface",
1, /* verbosity */
0, /* trace playing */
0, /* opened */
0, /* flags */
ctl open,
ctl close,
pass_playing list,
ctl_read,
NULL, /* write */
cmsg,
ctl event

};

static FILE *outfp;

int karaoke_error count;

static char *current file;

struct midi_file info *current file_info;

363

CHAPTER 21 © TIMIDITY

static int pass_playing list(int number_of files, char *1list of files[]) {
int n;

for (n = 0; n < number of files; n++) {
printf("Playing list %s\n", list of files[n]);

current file = list of files[n];

play midi file(list of files[n]);

}
return 0;
}
/*ARGSUSED*/
static int ctl open(int using stdin, int using stdout)
{
// sets output channel and prints info about the file
}
static void ctl close(void)
{
// close error channel
}
/*ARGSUSED*/
static int ctl_read(int32 *valp)
{
return RC_NONE;
}

static int cmsg(int type, int verbosity level, char *fmt, ...)

{

// prints an error message

return O;
}
static void ctl total time(long tt)
{ // counts playing time
}
static void ctl file name(char *name)
{ // prints playing status
}

364

CHAPTER 21

static void ctl current time(int secs)

{

}

// keeps track of current time

static void ctl lyric(int lyricid)

{

char *lyric;
current_file_info = get_midi_file info(current_file, 1);

lyric = event2string(lyricid);
if(lyric != NULL)

{
if(lyric[0] == ME_KARAOKE_LYRIC)
{
if(lyric[1] == '/' || lyric[1] == "\\")
{
fprintf(outfp, "\n%s", lyric + 2);
fflush(outfp);
}
else if(lyric[1] == '@")
if(lyric[2] == 'L")
fprintf(outfp, "\nLanguage: %s\n", lyric + 3);
else if(lyric[2] == 'T")
fprintf(outfp, "Title: %s\n", lyric + 3);
else
fprintf(outfp, "%s\n", lyric + 1);
}
else
{
fputs(lyric + 1, outfp);
fflush(outfp);
}
}
else
{
if(lyric[0] == ME_CHORUS TEXT || lyric[0] == ME_INSERT TEXT)
fprintf(outfp, "\r");
fputs(lyric + 1, outfp);
fflush(outfp);
}
}

TIMIDITY

365

CHAPTER 21 © TIMIDITY

static void ctl event(CtlEvent *e)

{
switch(e->type)
{

case CTLE_NOW_LOADING:
ctl file name((char *)e->vi);
break;
case CTLE_LOADING DONE:
// MIDI file is loaded, about to play
current_file_info = get_midi_file info(current_file, 1);
if (current file info != NULL) {
printf("file info not NULL\n");
} else {
printf("File info is NULL\n");
}

break;
case CTLE_PLAY_START:

ctl total time(e->v1);
break;
case CTLE_CURRENT_TIME:
ctl current_time((int)e->vi);
break;
#ifndef CFG_FOR_SF
case CTLE_LYRIC:
ctl lyric((int)e->v1);
break;
#endif

}

/*

* interface <id> loader();

*/
ControlMode *interface m loader(void)

{
}

return &ctl;
It is compiled to the interface file if_my_interface.so with the following:

gcc -fPIC -c -o my_interface.o my_interface.c
gcc -shared -o if_my interface.so my_interface.o

366

CHAPTER 21 © TIMIDITY

Running My Simple Interface

When I tried to run the interface using the standard package TiMidity v2.13.2-40.1, it crashed in a memory-
free call. The code is stripped, so tracking down why is not easy, and I haven’t bothered to do so yet—I'm not
sure what libraries, versions of code, and so on, the package distro was compiled against.

I had built my own copy of TiMidity from source. This worked fine. Note that when you build TiMidity
from source, you need to specify that it can load dynamic modules, for example, with the following:

congfigure --enable-audio=alsa --enable-vt100 --enable-debug -enable-dynamic
With the source built in a sub-directory TiMidity++-2.14.0, playing using this interface is done by

TiMidity++-2.14.0/timidity/timidity -d. -im 54154.mid

Playing a Background Video to a MIDI File

You can take the code from playing a video given earlier and put it as the “back end” of a TiMidity system as
a “video” interface. Essentially all that needs to be done is to change ct1_open from the simple interface to
call the Gtk code to play the video and change the identity of the interface.

The new “video” interface is video_player interface.c. The only essential change is to ctl_open,
which now reads as follows:

extern void init_gtk(void *args);

/*ARGSUSED*/
static int ctl open(int using stdin, int using stdout)

{

outfp=stdout;
ctl.opened=1;

init_ffmpeg();

/* start Gtk in its own thread */

pthread_t tid gtk;

pthread create(&tid gtk, NULL, init gtk, NULL);

return 0;

}

if video_player.so

367

CHAPTER 21 © TIMIDITY

The build command is as follows:

CFLAGS = -ITiMidity++-2.14.0/timidity -ITiMidity++-2.14.0 -ITiMidity++-2.14.0/utils $(shell
pkg-config --cflags gtk+-3.0 libavformat libavcodec libswscale libavutil)

LIBS3 = $(shell pkg-config --libs gtk+-3.0 libavformat libavcodec libswscale libavutil)

video_code.o: video_code.c
gcc -fPIC $(CFLAGS) -c -o video_code.o video code.c

if video player.so: video player interface.c video code.o
gcc -fPIC $(CFLAGS) -c -o video_player interface.o video_player_ interface.c
gcc -shared -o if_video_player.so video player interface.o video code.o \
$(LIBS3)

It is run with the following:

TiMidity++-2.14.0/timidity/timidity -d. -iv
54154 .mid

Conclusion

TiMidity is not designed for use by other applications. Either you add a new interface or work around the
TiMidity design to produce a library. This chapter has shown both mechanisms and illustrated them with
simple and more complex examples.

368

CHAPTER 22

Overview of Karaoke Systems W,

This chapter gives a quick summary of the successive chapters.

The whole purpose of this book—from my point of view—is to document what is going on in Linux

sound in my path to building a Linux karaoke system. This chapter looks at various explorations I have made
using the material of previous chapters.
First, what are my goals?

Be able to play KAR files (one of the possible karaoke file formats)

Show the lyrics at least one line at a time, highlighting the characters when they
should be sung

For Chinese songs, show the Pinyin (English) form of the lyrics as well as the
Chinese characters

Play a movie in the background
Display the melody in some form
Show the notes actually sung against the melody

Score the results in some way

Nothing I have yet done gets anywhere near these goals. Let me pick out the highlights of my
explorations so far:

The simplest “off-the-shelf” system is PyKaraoke, with kmid a close follower. These
play KAR files and highlight the lyrics but no more.

The simplest way to add microphone input to such a system is to use an external
mixer. These can also do reverb and other effects.

Jack and PulseAudio can trivially be used to add microphone input as play-through,
but effects take more work.

Java is really cool for nearly everything—except latency ruins it in the end.

FluidSynth can be hacked to give hooks to hang Karaoke from. But it is CPU intensive
and doesn’t leave room for much other processing.

TiMidity is a stand-alone system with configurable back ends. It can be configured
to give a crude karaoke system. But it can be hacked to make it into a library, which
gives it more potential. It is not as CPU intensive as FluidSynth.

© Jan Newmarch 2017
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_22

369

CHAPTER 22 = OVERVIEW OF KARAOKE SYSTEMS

e Playing a background movie can be done using FFmpeg and a GUI such as Gtk. Gtk
also has the mechanisms for overlaying highlighted lyrics on top of the video, but Gtk
2 and Gtk 3 differ in the mechanism.

e TiMidity can be combined with FFmpeg and Gtk to display highlighted lyrics against
a movie background.

e Scoring is still out of sight right now, although the Java library TarsosDSP can give
lots of information.

The following chapters cover these topics:
User-level tools

Karaoke is an “audience participation” sound system, in which the soundtrack
and usually the melody are played along with a moving display of the lyrics. This
chapter considers the features, formats, and user-level tools for playing karaoke.

Decoding the DKD files on the Songken Karaoke DVD

This chapter is about getting the information off my Songken Karaoke DVD so
that I can start writing programs to play the songs. It is not directly involved in
playing sound under Linux and is given as an appendix.

Java Sound

Java Sound has no direct support for karaoke. This chapter looks at how to
combine the Java Sound libraries with other libraries such as Swing to give a
karaoke player for MIDI files.

Subtitles

Many karaoke systems use subtitles imposed over a movie of some kind. This
chapter looks at how to do this with Linux systems. There are limited choices, but
itis possible.

FluidSynth

FluidSynth is an application for playing MIDI files and a library for MIDI
applications. It does not have the hooks for playing karaoke files. This chapter
discusses an extension to FluidSynth, which adds appropriate hooks and then
uses these to build a variety of karaoke systems.

TiMidity
TiMidity is designed as a stand-alone application with a particular kind of

extensibility. Out of the box it can sort of play karaoke but not well. This chapter
looks at how to work with TiMidity to build a karaoke system.

370

CHAPTER 23

Karaoke User-Level Tools

Karaoke is an “audience participation” sound system, in which the soundtrack and usually the melody are
played along with a moving display of the lyrics. Within this, there can be variations or different features.

e The lyrics can be shown all at once, while the music plays in sequence.

The lyrics can be highlighted in synchronization with the melody line.

¢ The melody line maybe will always play or can be switched off.

e Some players will also include a vocalist singing the song.

e Some players with vocals will turn off the vocals when someone is singing.

e Some players will give a graphical display of the notes of the melody.

e Some players will give a graphical display of the melody and also show the notes the
singers are singing.

e Some players will produce scores based on some evaluation of the singer’s accuracy.

The basis of such scoring is usually not known.

e Some players allow you to change the playback speed and the playback pitch.

e Most players will accept two microphones and can have reverb effects added to the
singer’s voices.

e Many players will allow you to select songs in advance to build a dynamic playlist.

Karaoke is popular in Asia and has a following in European countries. Karaoke systems are believed
to have originated in Asia, although the history according to Wikipedia (http://en.wikipedia.org/wiki/
Karaoke) is a little muddy.

There are various file formats for karaoke described at www.karawin.fr/defenst.php. This chapter
considers the features, formats, and user-level tools for playing karaoke.

Video CD Systems

Video CDs are an older form of video storage on an optical disc. The resolution is fairly low, typically 352x240
pixels, with a frame rate of 25 frames per second. Although they were used by a few movies, they have been
supplanted for movies by DVDs. However, they were used extensively at one stage for karaoke discs.

The cheaper CD/DVD players from Asia often have microphone inputs and can be used as karaoke
players with VCD discs. Typically files are simple movies in AVI or MPEG format, so you can just sing along.
While the lyrics are usually displayed, highlighted in time to the melody, there are no advanced features
such as scoring or a display of the melody.

© Jan Newmarch 2017 371
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_23

http://en.wikipedia.org/wiki/Karaoke
http://en.wikipedia.org/wiki/Karaoke
http://www.karawin.fr/defenst.php

CHAPTER 23 KARAOKE USER-LEVEL TOOLS

If you have VCD discs, they can be mounted as IC9660 files on your computer, but on a Linux system
you cannot directly extract the files. Players such as VLC, MPlayer, and Totem can play files from them.

You need to use something like vcdimager to extract files from a VCD disc. This may be in your package
system, or you can download it from the GNU developer site (waw.gnu.org/software/vcdimager/) and
build it from source. The video files can then be extracted as MPEG or AVI files with the following:

vedxrip --cdrom-device=/dev/cdrom --rip

(On my system I had to replace /dev/cdrom with /dev/sr1 as I could not extract from the default DVD
player. I found out what device it was by running mount and then unmounted it with umount.)

CD+G Discs

According to Wikipedia’s “CD+G” page (https://en.wikipedia.org/wiki/CD%2BG), “CD+G (also known
as CD+Graphics) is an extension of the compact disc standard that can present low-resolution graphics
alongside the audio data on the disc when played on a compatible device. CD+G discs are often used for
karaoke machines, which utilize this functionality to present onscreen lyrics for the song contained on
the disc”

Each song is composed of two files: an audio file and a video file containing the lyrics (and maybe some
background scenes).

There are many discs that you can buy using this format. You can’t play them directly on your computer.
Rhythmbox will play the audio but not the video. VLC and Totem don’t like them.

Ripping the files onto your computer for storage on your hard disk is not so straightforward. The audio
discs do not have a file system in the normal sense. For example, you cannot mount them using the Unix
mount command; they are not even in ISO format. Instead, you need to use a program like cdrdao to rip the
files to a binary file and then work on that.

$ cdrdao read-cd --driver generic-mmc-raw --device /dev/cdroms/cdrom0 --read-subchan rw_raw
mycd.toc

The previous code creates a data file and a table of contents file.

The format of the CDG files has not apparently been publically released but is described by Jim
Bumgardner (back in 1995!) at “CD+G Revealed: Playing back Karaoke tracks in Software” (http://jbum.
com/cdg_revealed.html).

Programs such as Sound Juicer will extract the audio tracks but leave the video behind.

MP3+G Files

MP3+G files are CD+G files adapted for use on a normal PC. They consist of an MP3 file containing the audio
and a CDG file containing the lyrics. Frequently they are zipped together.

Many sites selling CD+G files also sell MP3+G files. Various sites give instructions on how to create your
own MP3+G files. There are not many free sites.

The program cgdrip.py from cdgtools-0.3.2 can rip CD+G files from an audio disc and convert them
to a pair of MP3+G files. The instructions from the (Python) source code are as follows:

To start using cdgrip immediately, try the following from the
command-line (replacing the --device option by the path to your
(D device):

#

372

http://www.gnu.org/software/vcdimager/
https://en.wikipedia.org/wiki/CD+G
http://jbum.com/cdg_revealed.html
http://jbum.com/cdg_revealed.html

CHAPTER 23 | KARAOKE USER-LEVEL TOOLS

$ cdrdao read-cd --driver generic-mmc-raw --device /dev/cdroms/cdrom0 --read-subchan
w_raw mycd.toc

$ python cdgrip.py --with-cddb --delete-bin-toc mycd.toc

#

You may need to use a different --driver option or --read-subchan mode

to cdrdao depending on your CD device. For more in depth details, see

the usage instructions below.

Buying CD+G or MP3+G Files

There are many sites selling CD+G and MP3+G songs. Just do a Google search. However, the average price
per song is about $3, and if you want to build up a large collection, that can become expensive. Some sites
will give discounts for larger volume purchases, but even at $30 for 100 songs, the expense can be high.

Sites with very large collections come and go. At the time of writing, aceume.com offers 14,000 English
songs for US 399. But you could buy their AK3C Android All-in-one Cloud Karaoke Player with 21,000 English
songs and 35,000 Chinese songs included for US 600. That makes the economics of building your own karaoke
player become shakier. I will ignore that issue here—it’s your choice!

Converting MP3+G to Video Files

The tool ffmpeg can merge the audio and video to a single video file with the following, for example:
ffmpeg -i Tracki.cdg -i Tracki.mp3 -y Tracki.avi
Use the following to create an AVI file containing both video and audio:

avconv -i Trackl.cdg -i Trackl.mp3 test.avi
avconv -i test.avi -c:v 1ibx264 -c:a copy outputfile.mp4

This can be played by VLC, MPlayer, Rhythmbox, and so on.

There is a program called cdg2video. It is last dated February 2011, and changes in the FFmpeg
internals means that it no longer compiles. Even if you fix the obvious changes, there are a huge number of
complaints from the C compiler about the use of deprecated FFmpeg functions.

MPEG-4 Files

It is becoming common to have karaoke systems using MPEG-4 video players. These embed all of the
information into a video. There is no scoring system with players of these files.

Some rate them as much higher sound quality; see http://boards.straightdope.com/sdmb/
showthread. php?t=83441, for example. I suggest it is more an issue with the synthesizer used than the
format. Certainly high-end synthesizer manufacturers such as Yamaha would not agree!

MPEG-4 files are certainly larger than the corresponding MIDI files, and you will need a substantial disk
to hold many of them.

There are many sites selling MP4 songs. Just do a Google search. However, the average price per song is
about $3, and if you want to build up a large collection, that can become very expensive.

At the time of writing, there doesn’t seem to be a site selling large volumes of MPEG-4 songs. However,
there have been in the past and may be in the future.

373

http://code.google.com/p/cdg2video/
http://boards.straightdope.com/sdmb/showthread.php?t=83441
http://boards.straightdope.com/sdmb/showthread.php?t=83441

CHAPTER 23 ' KARAOKE USER-LEVEL TOOLS

Karaoke Machines

There are many karaoke machines that come with a DVD. In most cases, the songs are stored as MIDI files,
with the song track in one MIDI file and the lyrics in another. Some more recent systems will use WMA files
for the soundtrack, and this allows one track to have a vocal supplied and the other without the vocal. Such
systems will usually include a scoring mechanism, although the basis for the scoring is not made explicit.
The most recent ones are hard-disk-based, usually with MP4 files. They do not seem to have a scoring
system. The suppliers of these systems change regularly, even if the systems themselves are only re-badged.
I own systems by Malata and Sonken, but they were purchased many years ago. I'm not convinced that more
recent models are necessarily improvements.

The two systems I own show different characteristics. The Sonken MD-388" plays songs from multiple
languages, such as Chinese, Korean, English, and so on. My wife is Chinese, but I cannot read Chinese
characters. There is an Anglicized script called PinYin, and the Sonken shows both the Chinese characters
and the PinYin, so I can sing along too. It looks like Figure 23-1.

Figure 23-1. Screen dump of Sonken player

IThis is no longer sold by Sonken. However, there are similar models sold under different brand names.

374

CHAPTER 23 | KARAOKE USER-LEVEL TOOLS

The Malata MDVD-6619* does not show the PinYin when playing Chinese songs. But it does show the notes
you are supposed to be singing and the notes you are actually singing. Figure 23-2 shows that I am way off-key.

Figure 23-2. Screen dump of Malata player

MIDI Players

Karaoke files in MIDI format can be found from several sites, usually ending in . kar. Any MIDI player such
as TiMidity can play such files. However, they do not always show the lyrics synchronized to the melody.

Finding MIDI Files

There are several sites on the Web offering files in MIDI format.

MIDIZone (www.free-midi.org/)
midiworld (www.midiworld.com/)
CoolMIDI (www.cool-midi.com/)
ElectroFresh (http://electrofresh.com/)

“Newer models are sold in China but currently with a very limited English repertoire.

375

http://www.free-midi.org/
http://www.midiworld.com/
http://www.cool-midi.com/
http://electrofresh.com/

CHAPTER 23

KARAOKE USER-LEVEL TOOLS

Freemidi (http://freemidi.org/)

Karaoke Version (www.karaoke-version.com/)—for example, “House of the Rising
Sun” melody on track 4

MIDaoke (www.midaoke.com/)—for example, Pink Floyd’s “Wish You Were Here”
melody on track 2

Home Musician (http://karaoke.homemusician.net/)—for example, the Eagles’
“Hotel California” has the melody labeled “Melody” on Clarinet on track 4

KAR File Format

There is no formal standard for karaoke MIDI files. There is a widely accepted industry format called the
MIDI Karaoke Type 1 file format.

The following is from MIDI karaoke FAQ (http://gnese.free.fr/Projects/KaraokeTime/Fichiers/
karfaq.html):

What is the MIDI Karaoke Type 1 (.KAR) file format? A MIDI karaoke file is a
standard MIDI file type 1 that contains a separate track with lyrics of the song
entered as text events. Load one of the MIDI karaoke files into a sequencer to
examine the contents of the tracks of the file. The first track contains text events
that are used to make the file recognizable as the MIDI karaoke file. The @KMIDI
KARAOKE FILE text eventis used for that purpose. The optional text event @/0100
denotes the format version number. Anything starting with @I is any information
you want to include in the file.

The second track contains the text meta events for the lyrics of the song. The first
event is @LENGL. It identifies the language of the song, in this case, English. The
next couple of events start with @T, which identifies the title of the songs. You can
have up to three events like these. The first event should contain the title of the
song. Some programs (such as Soft Karaoke) read this event to get the name of
the song to be displayed in the File Open dialog box. The second event usually
contains the performer or author of the song. The third event can contain any
copyright information or anything else.

The rest of the second track contains the words of the song. Each event is the
syllable that is supposed to be sung at the time of the event. If the text starts with
\, it means to clear the screen and show the words at the top of the screen. If the
text starts with /, it means to go to the next line.

Important note: There can be only three lines per screen in a . kar file for Soft
Karaoke to play the file correctly. In other words, there can be only two forward
slashes beginning each line in a line of lyrics. The next line has to start with a
back slash.

There are several weaknesses in this format, listed here:

376

The list of possible languages is not specified, only English.
The encoding of text is not specified (for example, Unicode UTF-8).

There is no means of identifying the channel carrying the melody.

http://freemidi.org/
http://www.karaoke-version.com/
http://www.midaoke.com/
http://karaoke.homemusician.net/
http://gnese.free.fr/Projects/KaraokeTime/Fichiers/karfaq.html
http://gnese.free.fr/Projects/KaraokeTime/Fichiers/karfaq.html

CHAPTER 23 | KARAOKE USER-LEVEL TOOLS

PyKaraoke

PyKaraoke is a dedicated karaoke player written in Python, using a variety of libraries such as Pygame and
WxPython. It plays the song and shows where in the lyrics you are. A screen dump of “Smoke Gets in Your
Eyes” (www.midikaraoke.com/cgi-bin/songdir/jump.cgi?ID=1280) looks like Figure 23-3.

Ah | of course replied,

Something here inside,

cannot be denied.

They said someday you'll
find,

all who love are blind,
Ah when your heart's on fire

Figure 23-3. Screen dump of PyKaraoke

PyKaraoke plays the soundtrack and displays the lyrics. It does not act as a proper karaoke system by
also playing the singer’s input. But PyKaraoke uses the PulseAudio system, so you can simultaneously play
other programs. In particular, you can have PyKaraoke running in one window, while pa-mic-2-speaker is
running in another. PulseAudio will mix the two output streams and play both sources together. Of course,
there will no scoring possible in such a system without extra work.

id3
kmid
kmid is a KDE-based karaoke player. It plays the song and shows where in the lyrics you are. A screen dump
of “Smoke Gets in Your Eyes” looks like Figure 23-4.

3kmid seems to have disappeared from current KDE versions. This is a real shame since it was very good.

377

http://www.midikaraoke.com/cgi-bin/songdir/jump.cgi?ID=1280

CHAPTER 23 ' KARAOKE USER-LEVEL TOOLS

“‘smokegetsinyoureyes.kar’ [stopped] — KMid

File View Song Playlist Settings Help

= Print [g3Open B Quit | (9) Previous song (@ Rewind (®) stop (M) Play (1) Pause (B)F

Time Position ® Text Encoding

! , "Unicode (UTF-8)

0:25 0:50 Lol 1:41

Vol. Pitch

®
They asked me how I knew

my true love was true;

Ah I of course replied,
Something here inside,

cannot be denied.

They said someday you'll find,
all who are blind,

Ah when your heart's on fire
you must realize

Smoke gets 1n your eyes.

So I chaffed them and I

gaily laughed to think

they could doubt my love

Yet today my love has flown away,

=0 T am withant mv 1auva
Rhythm

Volume and Pitch

[

Tempo: 95.0 bpm I

;
1

Metronome: 14: 04 I e

Figure 23-4. kmid screen dump. kmid uses either TiMidity or FluidSynth as a MIDI back end.

378

CHAPTER 23 | KARAOKE USER-LEVEL TOOLS

kmid plays the soundtrack and displays the lyrics. It does not act as a proper karaoke system by also
playing the singer’s input. But kmid can use the PulseAudio system, so you can simultaneously play other
programs. In particular, you can have kmid running in one window, while pa-mic-2-speaker is running in
another. PulseAudio will mix the two output streams and play both sources together. Of course, there will no
scoring possible in such a system without extra work.

Microphone Inputs and Reverb Effects

Nearly all PCs and laptops have a sound card to play audio. While nearly all of these also have a microphone
input, some do not. For example, my Dell laptop does not, the Raspberry Pi does not, and many Android TV
media boxes do not.

Those computers without microphone inputs often have USB ports. They will usually accept USB sound
cards, and if the USB has a microphone input, then that is recognized.

If you want to support two or more microphones, then you will need the corresponding number of
sound cards or a mixer device. I have seen the Behringer MX-400 MicroMix, a four-channel compact low-
noise mixer, for $20, or you can find circuit diagrams on electronics sites (Google circuit diagram for audio
mixer).

Reverb is an effect that gives a fuller “body” to the voice by adding (artificial) echoes with different
delays. Behringer also makes the MIX800 MiniMix, which can mix two microphones with reverb effects and
also has a pass-through for line input (so you can play the music and control the microphones). (I have no
links to Behringer.) A similar unit is the UNIFY K9 Reverb Computer Karaoke Mixer.

DVD players from China often have dual microphone inputs with mix and reverb capabilities. Given
that they can cost as little as $13. Admittedly, for 1,000 units, it shows that mixing and reverb should not be
too costly. My guess is that they use something like the Mitsubishi M65845AFP (www.datasheetcatalog.
org/datasheet/MitsubishiElectricCorporation/mXuuvys.pdf), “DIGITAL ECHO WITH MICROPHONE
MIXING CIRCUIT” The data sheet shows a number of possible configurations, for those who like to build
their own.

Conclusion

There are a variety of karaoke systems, using VCD discs or dedicated systems. MIDI format karaoke files can
be played using ordinary MIDI software, and there are a couple of Linux karaoke players.

379

http://www.datasheetcatalog.org/datasheet/MitsubishiElectricCorporation/mXuuvys.pdf
http://www.datasheetcatalog.org/datasheet/MitsubishiElectricCorporation/mXuuvys.pdf

CHAPTER 24

MP3+G

This chapter explores using karaoke files in MP3+G format. Files are pulled off a server to a (small) computer
attached to a display device (my TV). Files are chosen using a Java Swing application running on Linux or
Windows.

In Chapter 23, I discussed the MP3+G format for karaoke. Each “song” consists of two files: an MP3 file for
the audio and a low-quality CDG file for the video (mainly the lyrics). Often these two files are zipped together.

Files can be extracted from CDG karaoke discs by using cdrdao and cdgrip.py. They can be played by
VLC when given the MP3 file as an argument. It will pick up the CDG file from the same directory.

Many people will have built up a sizeable collection of MP3+G songs. In this chapter, you will consider
how to list and play them, along with keeping lists of favorite songs. The chapter looks at a Java application to
perform this and is really just standard Swing programming. There are no special audio or karaoke features
considered in this chapter.

I keep my files on a server. I can access them in many ways on the other computers in the house:

Samba shares, HTTP downloads, SSH file system (sshfs), and so on. Some mechanisms are less portable
than others; for example, sshfs is not a standard Windows application, and SMB/Samba is not a standard
Android client. So, after getting everything working using sshfs (a no-brainer under standard Linux), I then
converted the applications to HTTP access. This has its own wrinkles.

The environment looks like Figure 24-1.

HTTP
server

data
request

Client

(Linux,
Win, song

Android) request
—

Figure 24-1. Client requesting songs on an HTTP server to play on PC

© Jan Newmarch 2017 381
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_24

http://dx.doi.org/10.1007/978-1-4842-2496-0_23

CHAPTER 24 © MP3+G

The Java client application for Linux and Windows looks like Figure 24-2.

)l Song Table -
{SK-34199) E2: X510 BT =
[SK-30366) 'ZHalol: MEHD

[SK-56572) Aphrodite's Child: RAIN AND TEARS
(SK-12057) : —#RifkE

[SK-16875) : JRRUE S

[SK-16754) #F4E: HRbinisng

(SK-5513) JF8A%E: Ak FLE RN

[SK-32640) B0|: Uj O}SS0]

(SK-36253) £0|; HM7} F2| Cpa| Dhoim
[5K-18001) TWHHE: EEtER(Merry Christmas)
(SK-32166) 23X LR 0] BT
(SK-37520) Z A 2: My Son

[SH-43159) BARTIE VH: SAYANG SAYANG
[SK-34974) Trdi2l: AT AZHE fI8t0]
[SK-35054) F2| 407} LjAHE

(SK-15147) SKMES: LTIEM il

(SK-17649) BEIR: BEH—H1E

[SK-44710) MUCHSIN A & TITIK 5: 51 BONCEL
[SK-52445) Phil Heggie: Millennium
[SK-42716) KLA PROJECT: KIDUNG MESRA
[SK-42655) MERIAM BELLINA: KAU KAU KAL
[SK-11184) : Pk

(SK-14005) : SR

[SK-37198) Zr4d: Always

[SH-51134) Garth Brooks: What She's Doing
[SK-34544) BHECL: 2bR{7}

{SK-12637) [E{T: AL8Ms

[SK-10631) : BILLY

Number | | Title Artist

(Jan | Linda | NEW |
(SK-50704) Sammy Davis Jr.: Mr.Bojangles
(5K-59302) Sting: Fields Of Gold
(5K-58231) Johnny Cash: Ring Of Fire

Find || Fiter || Reset || play | | addsongtalist || Delete sang frem

Figure 24-2. User interface on client

This shows the main window of songs and on its right the favorites window for two people, Jan and
Linda. The application handles multiple languages; English, Korean, and Chinese are shown.

382

CHAPTER 24 © MP3+G

Filters can be applied to the main song list. For example, filtering on the singer Sting gives Figure 24-3.

*]

Song Table

—0x

(SK-50857) Sting:
(SK-59199) Sting:
(SK-54940) Sting:
(SK-59302) Sting:
(SK-24020) Sting:
(SK-23826) Bryan Adams, Rod Stewart and Sting: ALL FOR LOVE
(SK-59179) Sting:
(SK-57258) Sting: THE SOUL CAGES
(SK-23833) Sting:
(SK-59816) Rod Stewart & Sting & B.Adams: All For Love
(SK-27159) Sting:
(SK-50279) Sting:
(SK-51501) Sting:
(SK-22055) Sting:
(SK-56010) Sting:
(SK-56901) Sting:
(SK-54998) Sting:
(SK-55572) Sting:
(SK-54853) Sting:
(SK-55541) Sting:
(SK-50487) Sting:
(SK-53544) Sting:
(SK-22732) Sting:
(SK-56149) Sting:

Russian

Desert Rose

FIELDS OF GOLD

Fields Of Gold

IF | EVER LOSE MY FAITH IN YOU

Brand New Day

IF | EVER LOSE MY FAITH IN YOU

FRAGIL

Every Breath You Take

Little Wing

ENGLISH MAN IN NEW YORK
LOVE IS THE SEVENTH WAVE
Soul Cages

FORTRESS AROUND YOUR HEART
IF YOU LOVE SOMEBODY SET THEM FREE
ENGLISH MAN IN NEW YORK

IF | EVER LOSE MY FAITH

| Was Brought To...

Desert Rose

MESSAGE IN A BOTTLE

MOON OVER BOURBON STREET

Number| | Title ‘

l Find H Filter H Reset H Play ‘

| Artist |sting

Figure 24-3. Songs by Sting

383

CHAPTER 24 = MP3+G

When Play is clicked, information about the selection is sent to the media player, currently a
CubieBoard2 connected to my HiFi/TV. The media computer fetches the files from the HTTP server. Files are
played on the media computer using VLC as it can handle MP3+G files.

File Organization

If MP3+G songs are ripped from CDG karaoke discs, then a natural organization would be to store the files in
directories, with each directory corresponding to one disc. You could give even more structure by grouping
the directories by common artist, by style of music, and so on. You can just assume a directory structure with
music files as leaf nodes. These files are kept on the HTTP server.

I currently have a large number of these files on my server. Information about these files needs to be
supplied to the clients. After a bit of experimentation, a Vector of SongInformation is created and serialized
using Java’s object serialization methods. The serialized file is also kept on the HTTP server. When a client
starts up, it gets this file from the HTTP server and deserializes it.

Building this vector means walking the directory tree on the HTTP server and recording information
as it goes. The Java code to walk directory trees is fairly straightforward. It is a little tedious if you want it to
be OS independent, but Java 1.7 introduced mechanisms to make this easier. These belong to the New I/O
(NIO.2) system. The first class of importance is java.nio.file.Path, which “[is] an object that may be used
to locate a file in a file system. It will typically represent a system-dependent file path.” A string representing
a file location in, say, a Linux or a Windows file system can be turned into a Path object with the following:

Path startingDir = FileSystems.getDefault().getPath(dirString);

Traversing a file system from a given path is done by walking a file tree and calling a node “visitor”
at each point. The visitor is a subclass of SimpleFileVisitor<Path>, and only for leaf nodes would you
override the method.
public FileVisitResult visitFile(Path file, BasicFileAttributes attr)

The traversal is done with the following:

Visitor pf = new Visitor();
Files.walkFileTree(startingDir, pf);

A full explanation of this is given on the Java Tutorials site in “Walking the File Tree” (http://docs.

oracle.com/javase/tutorial/essential/io/walk.html). You use this to load all song information from
disc into a vector of song paths in SongTable. java.

Song Information

The information about each song should include its path in the file system, the name of the artist(s), the title
of the song, and any other useful information. This information has to be pulled out of the file path of the
song. In my current setup, the files look like this:

/server/KARAOKE/Sonken/SK-50154 - Crosby, Stills - Carry On.mp3

384

http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html
http://docs.oracle.com/javase/tutorial/essential/io/walk.html
http://docs.oracle.com/javase/tutorial/essential/io/walk.html

CHAPTER 24 © MP3+G

Each song has a reasonably unique identifier (SK-50154), a unique path, and an artist and title.
Reasonably straightforward pattern matching code can extract these parts, as shown here:

Path file = ...
String fname = file.getFileName().toString();
if (fname.endsWith(".zip") ||
fname.endsWith(".mp3")) {
String root = fname.substring(o, fname.length()-4);
String parts[] = root.split(" - ", 3);
if (parts.length != 3)
return;

String index = parts[o0];
String artist = parts[i];
String title = parts[2];

SongInformation info = new SongInformation(file,
index,
title,
artist);

(The patterns produced by cdrip.py are not quite the same, but the code is easily changed.)
The SongInformation class captures this information and also includes methods for pattern matching
of a string against the various fields. For example, to check whether a title matches, use this:

public boolean titleMatch(String pattern) {
return title.matches("(?1i).*" + pattern + ".*");
}

This gives a case-independent match using Java regular expression support. See “Java Regex Tutorial”
(www.vogella.com/articles/JavaRegularExpressions/article.html) by Lars Vogel for more details.
The following is the complete SongInformation file:

import java.nio.file.Path;
import java.io.Serializable;

public class SongInformation implements Serializable {
// Public fields of each song record
public String path;
public String index;
/**
* song title in Unicode

*/
public String title;

385

http://www.vogella.com/articles/JavaRegularExpressions/article.html

CHAPTER 24 = MP3+G

/**
* artist in Unicode
*/
public String artist;

public SongInformation(Path path,

String index,
String title,
String artist) {

this.path = path.toString();

this.index = index;

this.title = title;

this.artist = artist;

}

public String toString() {
return "(" + index + ") " + artist + ": " + title;
}

public boolean titleMatch(String pattern) {
return title.matches("(?1i).*" + pattern + ".*");
}

public boolean artistMatch(String pattern) {
return artist.matches("(?1i).*" + pattern + ".*");
}

public boolean numberMatch(String pattern) {
return index.equals(pattern);
}

Song Table

The SongTable builds up a vector of SongInformation objects by traversing the file tree.

If there are many songs (say, in the thousands), this can lead to a slow startup time. To reduce this, once
a table is loaded, it is saved to disk as a persistent object by writing it to an ObjectOutputStream. The next
time the program is started, an attempt is made to read it back from this using an ObjectInputStream. Note
that you do not use the Java Persistence API (http://en.wikibooks.org/wiki/Java_Persistence/What_is_
Java_persistence%3F). Designed for J2EE, it is too heavyweight for our purposes here.

The SongTable also includes code to build smaller song tables based on matches between patterns and
the title (or artist or number). It can search for matches between a pattern and a song and build a new table
based on the matches. It contains a pointer to the original table for restoration later. This allows searches for
patterns to use the same data structure.

386

http://en.wikibooks.org/wiki/Java_Persistence/What_is_Java_persistence?
http://en.wikibooks.org/wiki/Java_Persistence/What_is_Java_persistence?

The code for SongTable is as follows:

import
import
import
import
import
import
import
import
import
import
import

Jjava.
java.
java.
java.
java.
java.
java.
java.
java.
java.
java.

util.Vector;
io.FileInputStream;

io.*;

nio.charset.Charset;

nio.file
nio.file

nio.file
nio.file

class Visitor
extends SimpleFileVisitor<Path> {

.Files;
.Path;
nio.file.

Paths;

.SimpleFileVisitor;
.FileVisitResult;

nio.file.
nio.file.

FileSystems;
attribute.*;

private Vector<SongInformation> songs;

public Visitor(Vector<SongInformation> songs) {
this.songs = songs;

}

@verride
public FileVisitResult visitFile(Path file,

BasicFileAttributes attr) {

if (attr.isRegularFile()) {

}

String fname = file.getFileName().toString();

//System.out.println("Regular file " + fname);
if (fname.endsWith(".zip") ||
fname.endsWith(".mp3") ||
fname.endsWith(".kar")) {
String root = fname.substring(o, fname.length()-4);
//System.err.println(" root " + root);
String parts[] = root.split(" - ", 3);
if (parts.length != 3)

return java.nio.file.FileVisitResult.CONTINUE;

String index = parts[o0];
String artist = parts[1];
String title = parts[2];

SongInformation info = new SongInformation(file,

index,
title,
artist);

songs.add(info);

return java.nio.file.FileVisitResult.CONTINUE;

CHAPTER 24 © MP3+G

387

CHAPTER 24 = MP3+G

public class SongTable {
private static final String SONG_INFO_ROOT = "/server/KARAOKE/KARAOKE/";
private static Vector<SongInformation> allSongs;

public Vector<SongInformation> songs =
new Vector<SongInformation> ();

public static long[] langCount = new long[0x23];

public SongTable(Vector<SongInformation> songs) {
this.songs = songs;
}

public SongTable(String[] args) throws java.io.IOException,
java.io.FileNotFoundException {
if (args.length >= 1) {
System.err.println("Loading from
loadTableFromSource(args[0]);

"+ args[o0]);

saveTableToStore();
} else {
loadTableFromStore();
}
}
private boolean loadTableFromStore() {
try {
File storeFile = new File("/server/KARAOKE/SongStore");
FileInputStream in = new FileInputStream(storeFile);
ObjectInputStream is = new ObjectInputStream(in);
songs = (Vector<SongInformation>) is.readObject();
in.close();
} catch(Exception e) {
System.err.println("Can't load store file " + e.toString());
return false;
}
return true;
}
private void saveTableToStore() {
try {
File storeFile = new File("/server/KARAOKE/SongStore");
FileOutputStream out = new FileOutputStream(storeFile);
ObjectOutputStream os = new ObjectOutputStream(out);
os.writeObject(songs);
os.flush();
out.close();
} catch(Exception e) {
System.err.println("Can't save store file " + e.toString());
}
}

388

CHAPTER 24

private void loadTableFromSource(String dir) throws java.io.IOException,
java.io.FileNotFoundException {

Path startingDir = FileSystems.getDefault().getPath(dir);
Visitor pf = new Visitor(songs);
Files.walkFileTree(startingDir, pf);

}

public java.util.Iterator<SongInformation> iterator() {
return songs.iterator();
}

public SongTable titleMatches(String pattern) {
Vector<SongInformation> matchSongs =
new Vector<SongInformation> ();

for (SongInformation song: songs) {
if (song.titleMatch(pattern)) {
matchSongs.add(song);
}

}

return new SongTable(matchSongs);

}

public SongTable artistMatches(String pattern) {
Vector<SongInformation> matchSongs =
new Vector<SongInformation> ();

for (SongInformation song: songs) {
if (song.artistMatch(pattern)) {
matchSongs.add(song);
}

}

return new SongTable(matchSongs);

}

public SongTable numberMatches(String pattern) {
Vector<SongInformation> matchSongs =
new Vector<SongInformation> ();

for (SongInformation song: songs) {
if (song.numberMatch(pattern)) {
matchSongs.add(song);
}

}

return new SongTable(matchSongs);

MP3+G

389

CHAPTER 24 = MP3+G

public String toString() {
StringBuffer buf = new StringBuffer();
for (SongInformation song: songs) {
buf.append(song.toString() + "\n");

return buf.toString();
}

public static void main(String[] args) {
// for testing
SongTable songs = null;

try {
songs = new SongTable(new String[] {SONG_INFO_ROOT});

} catch(Exception e) {
System.err.println(e.toString());
System.exit(1);

}

System.out.println(songs.artistMatches("Tom Jones").toString());

System.exit(0);

Favorites

I've built this system for my home environment system, and I have a regular group of friends visit. We each
have our favorite songs to sing, so we have made up lists on scraps of paper that get lost, have wine spilled on
them, and so on. So, this system includes a favorites list of songs.

Each favorites list is essentially just another SongTable. But I have put a JList around the table to
display it. The JList uses a DefaultListModel, and the constructor loads a song table into this list by
iterating through the table and adding elements.

int n = 0;
java.util.Iterator<SongInformation> iter = favouriteSongs.iterator();
while(iter.hasNext()) {
model.add(n++, iter.next());
}

Other Swing code adds three buttons along the bottom:
e Addsongto list
e Delete song from list
e Playsong

Adding a song to the list means taking the selected item from the main song table and adding it to this
table. The main table is passed into the constructor and just kept for the purpose of getting its selection. The
selected object is added to both the Swing JList and to the favorites SongTable.

Playing a song is done in a simple way: the full path to the song is written to standard output, newline
terminated. Another program in a pipeline can then pick this up; this is covered later in the chapter.

390

CHAPTER 24 © MP3+G

Favorites aren’t much good if they don’t persist from one day to the next! So, the same object storage
method as before is used as with the full song table. Each favorites file is saved on each change to the server.
The following is the code for Favourites:

import
import
import
import
import
import
import
import
import

public

java.awt.*;
java.awt.event.*;
javax.swing.event.*;
javax.swing.*;
javax.swing.SwingUtilities;
java.util.regex.*;
java.io.*;
java.nio.file.FileSystems;
java.nio.file.*;

class Favourites extends JPanel {

private DefaultListModel model = new DefaultlListModel();
private JList list;

//

whose favoutites these are

private String user;

//

songs in this favourites list

private final SongTable favouriteSongs;

// pointer back to main song table list
private final SongTableSwing songTable;

// This font displays Asian and European characters.

// It should be in your distro.

// Fonts displaying all Unicode are zysong.ttf and Cyberbit.ttf
// See http://unicode.org/resources/fonts.html

private Font font = new Font("WenQuanYi Zen Hei", Font.PLAIN, 16);

private int findIndex = -1;

public Favourites(final SongTableSwing songTable,

final SongTable favouriteSongs,
String user) {
this.songTable = songTable;
this.favouriteSongs = favouriteSongs;
this.user = user;

if (font == null) {
System.err.println("Can't find font");
}

int n = 0;
java.util.Iterator<SongInformation> iter = favouriteSongs.iterator();
while(iter.hasNext()) {
model.add(n++, iter.next());
}

391

CHAPTER 24 = MP3+G

BorderLayout mgr = new Borderlayout();

list = new JList(model);
list.setFont(font);
JScrollPane scrollPane = new JScrollPane(list);

setLayout(mgr);
add(scrollPane, BorderLayout.CENTER);

JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new GridLayout(2, 1));
add(bottomPanel, BorderLayout.SOUTH);

JPanel searchPanel = new JPanel();
bottomPanel.add(searchPanel);
searchPanel.setlLayout(new FlowLayout());

JPanel buttonPanel = new JPanel();
bottomPanel.add(buttonPanel);
buttonPanel.setlLayout(new FlowLayout());

JButton addSong = new JButton("Add song to list");
JButton deleteSong = new JButton(“"Delete song from list");
JButton play = new JButton("Play");

buttonPanel.add(addSong);
buttonPanel.add(deleteSong);
buttonPanel.add(play);

play.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

playSong();
};

deleteSong.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
SongInformation song = (SongInformation) list.getSelectedValue();
model.removeElement(song);
favouriteSongs.songs.remove(song);
saveToStore();

}

D;

addSong.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
SongInformation song = songTable.getSelection();
model.addElement(song);
favouriteSongs.songs.add(song);
saveToStore();

b

392

CHAPTER 24 © MP3+G

private void saveToStore() {

try {
File storeFile = new File("/server/KARAOKE/favourites/" + user);
FileOutputStream out = new FileOutputStream(storeFile);
ObjectOutputStream os = new ObjectOutputStream(out);
os.writeObject(favouriteSongs.songs);
os.flush();
out.close();

} catch(Exception e) {
System.err.println("Can't save favourites file " + e.toString());

}

}
/¥
* "play" a song by printing its file path to standard out.
* Can be used in a pipeline this way
*/
public void playSong() {
SongInformation song = (SongInformation) list.getSelectedValue();
if (song == null) {
return;
}

System.out.println(song.path.toString());
}

class SongInformationRenderer extends JLabel implements ListCellRenderer {

public Component getlListCellRendererComponent(
JList list,
Object value,
int index,
boolean isSelected,
boolean cellHasFocus) {
setText(value.toString());
return this;

All Favorites

There’s nothing special here. It just loads the tables for each person and builds a Favourites object that it
places in a JTabbedPane. It also adds a New tab for adding more users.
The code for Al1Favourites is as follows:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.Vector;
import java.nio.file.*;
import java.io.*;

393

CHAPTER 24 = MP3+G

public class AllFavourites extends JTabbedPane {
private SongTableSwing songTable;

public AllFavourites(SongTableSwing songTable) {
this.songTable = songTable;

loadFavourites();

NewPanel newP = new NewPanel(this);
addTab("NEW", null, newP);

}

private void loadFavourites() {
String userHome = System.getProperty("user.home");
Path favouritesPath = FileSystems.getDefault().getPath("/server/KARAOKE/favourites");
try {
DirectoryStream<Path> stream =
Files.newDirectoryStream(favouritesPath);
for (Path entry: stream) {
int nelmts = entry.getNameCount();
Path last = entry.subpath(nelmts-1, nelmts);
System.err.println("Favourite: " + last.toString());
File storeFile = entry.toFile();

FileInputStream in = new FileInputStream(storeFile);

ObjectInputStream is = new ObjectInputStream(in);

Vector<SongInformation> favouriteSongs =
(Vector<SongInformation>) is.readObject();

in.close();

for (SongInformation s: favouriteSongs) {
System.err.println("Fav: " + s.toString());

}

SongTable favouriteSongsTable = new SongTable(favouriteSongs);
Favourites f = new Favourites(songTable,
favouriteSongsTable,
last.toString());
addTab(last.toString(), null, f, last.toString());
System.err.println("Loaded favs " + last.toString());
}
} catch(Exception e) {
System.err.println(e.toString());
}

}

class NewPanel extends JPanel {
private JTabbedPane pane;

public NewPanel(final JTabbedPane pane) {
this.pane = pane;

394

CHAPTER 24 © MP3+G

setLayout(new FlowLayout());

JLabel namelLabel = new JLabel("Name of new person");
final JTextField nameField = new JTextField(10);
add(namelLabel);

add(nameField);

nameField.addActionListener(new ActionlListener(){
public void actionPerformed(ActionEvent e){
String name = nameField.getText();

SongTable songs = new SongTable(new Vector<SongInformation>());
Favourites favs = new Favourites(songTable, songs, name);

pane.addTab(name, null, favs);

s

Swing Song Table

This is mainly code to get the different song tables loaded and to buld the Swing interface. It also filters
the showing table based on the patterns matched. The originally loaded table is kept for restoration and
patching matching. The code for SongTableSwing is as follows:

import
import
import
import
import
import
import

public

java.awt.*;
java.awt.event.*;
javax.swing.event.*;
javax.swing.*;
javax.swing.SwingUtilities;
java.util.regex.*;
java.io.*;

class SongTableSwing extends JPanel {

private DefaultlListModel model = new DefaultListModel();
private JList list;
private static SongTable allSongs;

private JTextField numberField;
private JTextField langField;

private JTextField titleField;
private JTextField artistField;

//
//
//
//

This font displays Asian and European characters.

It should be in your distro.

Fonts displaying all Unicode are zysong.ttf and Cyberbit.ttf
See http://unicode.org/resources/fonts.html

private Font font = new Font("WenQuanYi Zen Hei", Font.PLAIN, 16);

//

font = new Font("Bitstream Cyberbit", Font.PLAIN, 16);

395

CHAPTER 24 = MP3+G

private int findIndex = -1;

/**
* Describe <code>main</code> method here.
*
* @param args a <code>String</code> value
*/
public static final void main(final String[] args) {
if (args.length >= 1 8&
args[o].startsWith("-h")) {
System.err.println("Usage: java SongTableSwing [song directory]");
System.exit(0);
}

allSongs = null;

try {
allSongs = new SongTable(args);

} catch(Exception e) {
System.err.println(e.toString());
System.exit(1);

}

JFrame frame = new JFrame();

frame.setTitle("Song Table");

frame.setSize(700, 800);
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

SongTableSwing panel = new SongTableSwing(allSongs);
frame.getContentPane().add(panel);

frame.setVisible(true);

JFrame favourites = new JFrame();
favourites.setTitle("Favourites");

favourites.setSize(600, 800);
favourites.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

AllFavourites lists = new AllFavourites(panel);
favourites.getContentPane().add(lists);

favourites.setVisible(true);
}
public SongTableSwing(SongTable songs) {

if (font == null) {
System.err.println("Can't fnd font");
}

396

int n = 0;
java.util.Iterator<SongInformation> iter = songs
while(iter.hasNext()) {

model.add(n++, iter.next());

// model.add(n++, iter.next().toString());

}

BorderLayout mgr = new Borderlayout();

list = new JList(model);

// list = new JList(songs);

list.setFont(font);

JScrollPane scrollPane = new JScrollPane(list);

// Support DnD
list.setDragEnabled(true);

setLayout(mgr);
add(scrollPane, BorderLayout.CENTER);

JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new GridLayout(2, 1));
add(bottomPanel, BorderLayout.SOUTH);

JPanel searchPanel = new JPanel();
bottomPanel.add(searchPanel);
searchPanel.setlLayout(new FlowLayout());

JLabel numberLabel = new JLabel("Number");
numberField = new JTextField(5);

JLabel langlabel = new JLabel("Language");
langField = new JTextField(8);

JLabel titleLabel = new JLabel("Title");
titleField = new JTextField(20);
titleField.setFont(font);

JLabel artistlLabel = new JlLabel("Artist");
artistField = new JTextField(10);
artistField.setFont(font);

searchPanel.add(numberLabel);
searchPanel.add(numberField);
searchPanel.add(titleLabel);
searchPanel.add(titleField);
searchPanel.add(artistLabel);
searchPanel.add(artistField);

.iterator();

CHAPTER 24

MP3+G

397

CHAPTER 24 = MP3+G

titleField.getDocument().addDocumentListener(new DocumentlListener() {
public void changedUpdate(DocumentEvent e) {
// rest find to -1 to restart any find searches
findIndex = -1;
// System.out.println("reset find index");
}
public void insertUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset insert find index");
}
public void removeUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset remove find index");

}
)s
artistField.getDocument().addDocumentListener(new DocumentListener() {
public void changedUpdate(DocumentEvent e) {
// rest find to -1 to restart any find searches
findIndex = -1;
// System.out.println("reset insert find index");
}
public void insertUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset insert find index");
}
public void removeUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset insert find index");

}
)5

titleField.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e){
filterSongs();
139K
artistField.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e){
filterSongs();

;s

JPanel buttonPanel = new JPanel();
bottomPanel.add(buttonPanel);
buttonPanel.setlLayout(new FlowLayout());

JButton find = new JButton("Find");
JButton filter = new JButton("Filter");
JButton reset = new JButton("Reset");
JButton play = new JButton("Play");

398

CHAPTER 24 © MP3+G

buttonPanel.add(find);
buttonPanel.add(filter);
buttonPanel.add(reset);
buttonPanel.add(play);

find.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
findSong();
}

b

filter.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
filterSongs();
}

};

reset.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
resetSongs();
}

1;

play.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

playSong();
};
}

public void findSong() {
String number = numberField.getText();
String language = langField.getText();
String title = titleField.getText();
String artist = artistField.getText();

if (number.length() != 0) {
return;
}

for (int n = findIndex + 1; n < model.getSize(); n++) {
SongInformation info = (SongInformation) model.getElementAt(n);

if ((title.length() != 0) && (artist.length() !'= 0)) {
if (info.titleMatch(title) && info.artistMatch(artist)) {
findIndex = n;
list.setSelectedIndex(n);
list.ensureIndexIsVisible(n);
break;

399

CHAPTER 24 = MP3+G

} else {

if ((title.length() != 0) && info.titleMatch(title)) {
findIndex = n;
list.setSelectedIndex(n);
list.ensureIndexIsVisible(n);
break;

} else if ((artist.length() != 0) &8 info.artistMatch(artist)) {
findIndex = n;
list.setSelectedIndex(n);
list.ensureIndexIsVisible(n);
break;

}

public void filterSongs() {
String title = titleField.getText();
String artist = artistField.getText();
String number = numberField.getText();
SongTable filteredSongs = allSongs;

if (allSongs == null) {
return;
}

if (title.length() != 0) {
filteredSongs = filteredSongs.titleMatches(title);

}
if (artist.length() != 0) {
filteredSongs = filteredSongs.artistMatches(artist);

if (number.length() != 0) {
filteredSongs = filteredSongs.numberMatches(number);
}

model.clear();
int n = 0;
java.util.Iterator<SongInformation> iter = filteredSongs.iterator();
while(iter.hasNext()) {
model.add(n++, iter.next());
}

400

CHAPTER 24 © MP3+G

public void resetSongs() {
artistField.setText("");
titleField.setText("");
model.clear();
int n = 0;
java.util.Iterator<SongInformation> iter = allSongs.iterator();
while(iter.hasNext()) {
model.add(n++, iter.next());
}

}

/**
* "play" a song by printing its file path to standard out.
* Can be used in a pipeline this way
*/
public void playSong() {
SongInformation song = (SongInformation) list.getSelectedValue();
if (song == null) {
return;
}

System.out.println(song.path);
}

public SongInformation getSelection() {
return (SongInformation) (list.getSelectedValue());
}

class SongInformationRenderer extends JlLabel implements ListCellRenderer {

public Component getlListCellRendererComponent(
JList list,
Object value,
int index,
boolean isSelected,
boolean cellHasFocus) {
setText(value.toString());
return this;

Playing Songs

Whenever a song is “played,” its file path is written to standard output. This makes it suitable for use in a
bash shell pipeline such as the following:

#!/bin/bash

VLC_OPTS="--play-and-exit --fullscreen"

401

CHAPTER 24 = MP3+G

java SongTableSwing |
while read line

do
if expr match "$line" ".*mp3"
then
vlc $VLC_OPTS "$line"
elif expr match "$line" ".*zip"
then
m -f /tmp/karaoke/*
unzip -d /tmp/karaoke "$line"
vlc $VLC_OPTS /tmp/karaoke/*.mp3
fi
done

VLC

VLC is an immensely flexible media player. It relies on a large set of plug-ins to enhance its basic core
functionality. You saw in an earlier chapter that if a directory contains both an MP3 file and a CDG file with
the same base name, then by asking it to play the MP3 file, it will also show the CDG video.

Common expectations of karaoke players are that you can adjust the speed and pitch. Currently VLC
cannot adjust pitch, but it does have a plug-in to adjust speed (while keeping the pitch unchanged). This
plug-in can be accessed by the Lua interface to VLC. Once it’s set up, you can send commands such as the
following across standard input from the process that started VLC (such as a command-line shell):

rate 1.04

This will change the speed and leave the pitch unchanged.
Setting up VLC to accept Lua commands from stdin can be done with the following command options:

vlc -I luaintf --lua-intf cli ...

Note that this takes away the standard GUI controls (menus, and so on) and controls VLC from
stdin only.
Currently, it is not simple to add pitch control to VLC. Take a deep breath.

e Turn off PulseAudio and start Jack.

e Run jack-rack and install the TAP_pitch filter.

e Run VLC with Jack output.

e Using qjackctl, hook VLC to output through jack-rack, which outputs to a system.
e Control pitch through the jack-rack GUL

Playing Songs Across the Network

I actually want to play songs from my server disk to a Raspberry Pi or CubieBoard connected to my TV and
control the play from a netbook sitting on my lap. This is a distributed system.

402

CHAPTER 24 © MP3+G

Mounting server files on a computer is simple: you can use NFS, Samba, and so on. I am currently using
sshfs as follows:

sshfs -o idmap=user -o rw -o allow_other newmarch@192.168.1.101:/home/httpd/html /server

For remote access/control, I replace the run command of the last section by a TCP client/server. On the
client, controlling the player, I have this:

java SongTableSwing | client 192.168.1.7

On the (Raspberry Pi/CubieBoard) server, I run this:

#!/bin/bash
set -x
VLC_OPTS="--play-and-exit -f"

server |
while read line
do
if expr match "$line" ".*mp3"
then
vlc $VLC_OPTS "$line"
elif expr match "$line" ".*zip"
then
rm -f /tmp/karaoke/*
unzip -d /tmp/karaoke "$line"
vlc $VLC_OPTS /tmp/karaoke/*.mp3
fi
done

The client/server files are just standard TCP files. The client reads a newline-terminated string from
standard input and writes it to the server, and the server prints the same line to standard output. Here is
client.c:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <string.h>

#define SIZE 1024
char buf[SIZE];
#define PORT 13000
int main(int argc, char *argv[]) {
int sockfd;
int nread;
struct sockaddr _in serv_addr;
if (argc != 2) {
fprintf(stderr, "usage: %s IPaddr\n", argv[0]);
exit(1);

403

CHAPTER 24 = MP3+G

while (fgets(buf, SIZE , stdin) != NULL) {
/* create endpoint */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror(NULL); exit(2);

/* connect to server */

serv_addr.sin family = AF_INET;
serv_addr.sin_addr.s addr = inet_addr(argv[1]);
serv_addr.sin_port = htons(PORT);

while (connect(sockfd,
(struct sockaddr *) &serv_addr,
sizeof(serv_addr)) < 0) {
/* allow for timesouts etc */
perror (NULL);
sleep(1);

printf("%s", buf);

nread = strlen(buf);

/* transfer data and quit */
write(sockfd, buf, nread);
close(sockfd);

Here is server.c:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <signal.h>

#define SIZE 1024
char buf[SIZE];
#define TIME_PORT 13000

int sockfd, client_sockfd;

void intHandler(int dummy) {
close(client_sockfd);
close(sockfd);
exit(1);

int main(int argc, char *argv[]) {
int sockfd, client_sockfd;
int nread, len;
struct sockaddr_in serv_addr, client_addr;
time t t;

404

CHAPTER 24 © MP3+G

signal(SIGINT, intHandler);

/* create endpoint */

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror (NULL); exit(2);

}

/* bind address */
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s addr = htonl(INADDR_ANY);
serv_addr.sin_port = htons(TIME_PORT);
if (bind(sockfd,
(struct sockaddr *) 8serv_addr,
sizeof(serv_addr)) < 0) {
perror(NULL); exit(3);
}
/* specify queue */
listen(sockfd, 5);
for (55) {
len = sizeof(client addr);
client_sockfd = accept(sockfd,
(struct sockaddr *) &client addr,
&len);
if (client sockfd == -1) {
perror(NULL); continue;
}

while ((nread = read(client sockfd, buf, SIZE-1)) > 0) {
buf[nread] = "'\0';
fputs(buf, stdout);

fflush(stdout);
}
close(client_sockfd);
}
}
Conclusion

This chapter showed how to build a player for MP3+G files.

405

CHAPTER 25

Karaoke Applications Using
Java Sound

Java has no library support for karaoke. That is too application specific. In this chapter, I give you code for a
karaoke player that can play KAR files. The player will show two lines of the lyrics to be played, with words
already played being highlighted in red. Along the top, it shows a simple piano keyboard with the notes that
are played in channel 1 of the MIDI file. In the middle, it shows the melody line, with a vertical line in the
middle to show the currently playing note.

The player looks like Figure 25-1.

LIEHEIE e e i A

| should be sleeping like a log

But when | get home to you

Figure 25-1. User interface of karaoke player

© Jan Newmarch 2017 407
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_25

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

Figure 25-2 shows the UML diagram.

Karaoke
Player

Midi
Player

Display
Receiver

Sequencer

Figure 25-2. Class diagram of karaoke player

Resources

Here are some resources:

Karaoke Time (http://gnese.free.fr/Projects/KaraokeTime/?1language=en),
downloaded as KaraokeTime.zip.

Chapter 8, “Overview of the MIDI Package” (http://docs.oracle.com/javase/7/

Midi
GUI

Synthesizer

docs/technotes/guides/sound/programmer_guide/chapter8.html#118852)

KaraokePlayer

The KaraokePlayer class extracts the file name of the karaoke file and creates a MidiPlayer to handle the file.

/*

* KaraokePlayer.java

*
*/

408

Melody
Panel

Attributed
Lyric
Panel

http://gnese.free.fr/Projects/KaraokeTime/?language=en
http://dx.doi.org/10.1007/978-1-4842-2496-0_8
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter8.html#118852
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter8.html#118852

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

import javax.swing.*;
public class KaraokePlayer {

public static void main(String[] args) throws Exception {
if (args.length I= 1) {
System.err.println("KaraokePlayer: usage: " +
"KaraokePlayer <midifile>");
System.exit(1);
}

String strFilename = args[0];

MidiPlayer midiPlayer = new MidiPlayer();
midiPlayer.playMidiFile(strFilename);

MidiPlayer

The MidiPlayer class creates a Sequence from the file. Sequence information is required at many
places, so rather than pass the sequence in parameters, it is stored in a singleton (static) object, a
SequenceInformation. This makes the sequence effectively a global object to the system.

The player then gets the default sequencer and transmits MIDI events to two receiver objects:
the default synthesizer to play the events and a DisplayReceiver to manage all the GUI handling. The
Sequencer method getTransmitter() is misnamed: each time it is called, it returns a new transmitter, each
time playing the same events to the respective receivers.

The following is from the Java SE documentation, specifically, Chapter 10, “Transmitting and Receiving
MIDI Messages” (http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer
guide/chapter10.html):

This code [in their example] introduces a dual invocation of the MidiDevice.
getTransmitter method, assigning the results to inPortTrans1 and
inPortTrans2. As mentioned earlier, a device can own multiple transmitters

and receivers. Each time MidiDevice.getTransmitter() is invoked for a given
device, another transmitter is returned, until no more are available, at which time
an exception will be thrown.

That way, the sequencer can send to two receivers.

Receivers do not get MetaMessages. These contain information such as text or lyric events. The
DisplayReceiver is registered as a MetaEventListener so that it can manage these events as well as other events.

The MidiPlayer is as follows:

import javax.sound.midi.MidiSystem;

import javax.sound.midi.InvalidMidiDataException;
import javax.sound.midi.Sequence;

import javax.sound.midi.Receiver;

import javax.sound.midi.Sequencer;

import javax.sound.midi.Transmitter;

import javax.sound.midi.MidiChannel;

import javax.sound.midi.MidiDevice;

import javax.sound.midi.Synthesizer;

409

http://dx.doi.org/10.1007/978-1-4842-2496-0_10
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter10.html
http://docs.oracle.com/javase/7/docs/technotes/guides/sound/programmer_guide/chapter10.html

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

import javax.sound.midi.ShortMessage;
import javax.sound.midi.SysexMessage;

import java.io.File;
import java.io.IOException;

public class MidiPlayer {
private DisplayReceiver receiver;

public void playMidiFile(String strFilename) throws Exception {
File midiFile = new File(strFilename);

/*
We try to get a Sequence object, loaded with the content

* of the MIDI file.

*/
Sequence sequence = null;
try {

sequence = MidiSystem.getSequence(midiFile);
}

catch (InvalidMidiDataException e) {
e.printStackTrace();
System.exit(1);

}

catch (IOException e) {
e.printStackTrace();
System.exit(1);

}

if (sequence == null) {
out("Cannot retrieve Sequence.");

} else {
SequenceInformation.setSequence(sequence);
playMidi(sequence);

}

}
public void playMidi(Sequence sequence) throws Exception {

Sequencer sequencer = MidiSystem.getSequencer(true);
sequencer.open();
sequencer.setSequence(sequence);

receiver = new DisplayReceiver(sequencer);
sequencer.getTransmitter().setReceiver(receiver);
sequencer.addMetaEventListener(receiver);

if (sequencer instance of Synthesizer) {

Debug.println("Sequencer is also a synthesizer");
} else {

410

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

Debug.println("Sequencer is not a synthesizer");

}

//sequencer.start();

/*
Synthesizer synthesizer = MidiSystem.getSynthesizer();
synthesizer.open();

if (synthesizer.getDefaultSoundbank() == null) {
// then you know that java sound is using the hardware soundbank
Debug.println("Synthesizer using h/w soundbank");

} else Debug.println("Synthesizer using s/w soundbank");

Receiver synthReceiver = synthesizer.getReceiver();
Transmitter seqTransmitter = sequencer.getTransmitter();
seqTransmitter.setReceiver(synthReceiver);

MidiChannel[] channels = synthesizer.getChannels();
Debug.println("Num channels is " + channels.length);

*/

sequencer.start();

/* default synth doesn't support pitch bending

Synthesizer synthesizer = MidiSystem.getSynthesizer();

MidiChannel[] channels = synthesizer.getChannels();

for (int i = 0; i < channels.length; i++) {
System.out.printf("Channel %d has bend %d\n", i, channels[i].getPitchBend());
channels[i].setPitchBend(16000);
System.out.printf("Channel %d now has bend %d\n", i, channels[i].getPitchBend());

}
*/

/* set volume - doesn't work */

/*KaraokeUML

for (int i = 0; i < channels.length; i++) {
channels[i].controlChange(7, 0);

}

*/

/*

System.out.println("Turning notes off");

for (int i = 0; i < channels.length; i++) {
channels[i].allNotesOff();
channels[i].allSound0ff();

}

*/

/* set volume - doesn't work either */
/*

try {

Thread.sleep(5000);

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

411

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

412

}

if (synthReceiver == MidiSystem.getReceiver())
System.out.println("Reciver is default");
else
System.out.println("Reciver is not default");
System.out.println("Receiver is " + synthReceiver.toString());
//synthReceiver = MidiSystem.getReceiver();
System.out.println("Receiver is now " + synthReceiver.toString());
ShortMessage volMessage = new ShortMessage();
int midiVolume = 1;
for (Receiver rec: synthesizer.getReceivers()) {
System.out.println("Setting vol on recveiver
for (int i = 0; i < channels.length; i++) {
try {
// volMessage.setMessage(ShortMessage.CONTROL_CHANGE, i, 123, midiVolume);
volMessage.setMessage(ShortMessage.CONTROL_CHANGE, i, 7, midiVolume);
} catch (InvalidMidiDataException e) {
e.printStackTrace();

+ rec.toString());

synthReceiver.send(volMessage, -1);
rec.send(volMessage, -1);

}
}

System.out.println("Changed midi volume");

*/

/* master volume control using sysex */

/* http://www.blitter.com/~russtopia/MIDI/~jglatt/tech/midispec/mastrvol.htm */
/*

SysexMessage sysexMessage = new SysexMessage();

/* volume values from http://www.bandtrax.com.au/sysex.htm */

/* default volume Ox7F * 128 + Ox7F from */

/*

byte[] data = {(byte) oxFo, (byte) ox7F, (byte) ox7F, (byte) ox04,

(byte) oxo1, (byte) oxo, (byte) ox7F, (byte) OxF7};
sysexMessage.setMessage(data, data.length);
synthReceiver.send(sysexMessage, -1);
for (Receiver rec: synthesizer.getReceivers()) {

System.out.println("Setting vol on recveiver
rec.send(sysexMessage, -1);

+ rec.toString());

}
*/

public DisplayReceiver getReceiver() {

}

return receiver;

private static void out(String strMessage)

{
}

System.out.println(strMessage);

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

DisplayReceiver

The DisplayReceiver collects both ShortMessages as a Receiver and MetaMessages as a
MetaEventListener. These are needed to see both the notes and the lyrics.

The DisplayReceiver decodes the notes and text sent to it. In turn, it passes these to a MidiGUI to show

them. This class is as follows:

DisplayReceiver

Acts as a Midi receiver to the default Java Midi sequencer.

It collects Midi events and Midi meta messages from the sequencer.
these are handed to a UI object for display.

The current UI object is a MidiGUI but could be replaced.

import javax.sound.midi.*;
import javax.swing.SwingUtilities;

public class DisplayReceiver implements Receiver,

MetaEventListener {
private MidiGUI gui;KaraokeUML
private Sequencer sequencer;
private int melodyChannel = SequenceInformation.getMelodyChannel();

public DisplayReceiver(Sequencer sequencer) {
this.sequencer = sequencer;
gui = new MidiGUI(sequencer);

}

public void close() {
}

/¥

* Called by a Transmitter to receive events

* as a Receiver

*/

public void send(MidiMessage msg, long timeStamp) {
// Note on/off messages come from the midi player
// but not meta messages

if (msg instanceof ShortMessage) {
ShortMessage smsg = (ShortMessage) msg;

String strMessage = "Channel " + smsg.getChannel() + " ";
switch (smsg.getCommand())

case Constants.MIDI_NOTE_OFF:
strMessage += "note Off " +

413

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

getKeyName(smsg.getData1()) +
break;

+ timeStamp;

case Constants.MIDI_NOTE_ON:
strMessage += "note On " +
getKeyName(smsg.getData1()) +

break;

+ timeStamp;

}
Debug.println(strMessage);
if (smsg.getChannel() == melodyChannel) {
gui.setNote(timeStamp, smsg.getCommand(), smsg.getData1());
}

}

public void meta(MetaMessage msg) {
Debug.println("Reciever got a meta message");
if (((MetaMessage) msg).getType() == Constants.MIDI TEXT TYPE) {
setLyric((MetaMessage) msg);
} else if (((MetaMessage) msg).getType() == Constants.MIDI END OF TRACK) {
System.exit(0);

}

public void setlLyric(MetaMessage message) {
byte[] data = message.getData();
String str = new String(data);
Debug.println("Lyric +\"" + str + "\" at
gui.setlyric(str);

+ sequencer.getTickPosition());

}

private static String[] keyNames = {"C", "c#", "D", "D#", "E", "F", "F#", "G", "G#",
IIAII, IlA#II, “B"};

public static String getKeyName(int keyNumber) {
if (keyNumber > 127) {
return "illegal value";
} else {
int note = keyNumber % 12;
int octave = keyNumber / 12;
return keyNames[note] + (octave - 1);

414

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

MidiGUI

The MidiGUI is called with two methods: setLyric() and setNote(). The GUI consists of three main areas:
an area to give a “piano” view of the melody as it is played (pianoPanel), an area to show the complete set
of melody notes (melodyPanel), and a set of Panels to show the lyrics. setNote() is fairly straightforward in
that it just calls drawNote() in the pianoPanel. setlyric() is considerably more complex.

Most karaoke players show a couple of lines of text for the lyrics. As lyrics are played, typically the text
will change color to match. When the end of a line is reached, focus will switch to the next line, and the
previous line will be replaced with another line of lyrics.

Each line must hold a line of lyrics. The line must be able to react to lyrics as they are played. This is
handled by an AttributedTextPanel, shown later. The main task is to feed changes in lyrics through to the
selected panel so that it can display them in the correct colors.

The other principal task for the MidiGUI here is to switch focus between AttributedTextPanels when
the end of line is detected and to update the next line of text. The new lines of text can’t come from the lyrics
as they are played but must instead be constructed from the sequence containing all the notes and lyrics.
The convenience class SequenceInformation (shown later) takes a Sequence object and has a method to
extract an array of LyricLine objects. Each panel displaying a line is given a line from this array.

import javax.swing.*;
import java.awt.*;

import java.awt.event.*;
import javax.sound.midi.*;
import java.util.Vector;
import java.util.Map;
import java.io.*;

public class MidiGUI extends JFrame {
//private GridlLayout mgr = new GridlLayout(3,1);
private BorderLayout mgr = new BorderlLayout();

private PianoPanel pianoPanel;
private MelodyPanel melodyPanel;

private AttributedlLyricPanel lyrici;

private AttributedlLyricPanel lyric2;

private AttributedlLyricPanel[] lyriclLinePanels;
private int whichLyricPanel = 0;

private JPanel lyricsPanel = new JPanel();
private Sequencer sequencer;

private Sequence sequence;

private Vector<LyriclLine> lyriclines;

private int lyricline = -1;

private boolean inlLyricHeader = true;
private Vector<DurationNote> melodyNotes;

private Map<Character, String> pinyinMap;

415

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

private int language;

public MidiGUI(final Sequencer sequencer) {
this.sequencer = sequencer;
sequence = sequencer.getSequence();

// get lyrics and notes from Sequence Info
lyricLines = SequenceInformation.getlLyrics();
melodyNotes = SequenceInformation.getMelodyNotes();
language = SequenceInformation.getlLanguage();

pianoPanel = new PianoPanel(sequencer);
melodyPanel = new MelodyPanel(sequencer);

pinyinMap = CharsetEncoding.loadPinyinMap();

lyricl = new AttributedLyricPanel(pinyinMap);

lyric2 = new AttributedLyricPanel(pinyinMap);

lyricLinePanels = new AttributedLyricPanel[] {
lyrici, lyric2};

Debug.println("Lyrics ");
for (LyricLine line: lyriclines) {

Debug.println(line.line + " "
" num notes

+ line.startTick + + line.endTick +

+ line.notes.size());

}

getContentPane().setLayout(mgr);
/*
getContentPane().add(pianoPanel);
getContentPane().add(melodyPanel);

getContentPane().add(lyricsPanel);

*/

getContentPane().add(pianoPanel, BorderLayout.PAGE_START);
getContentPane().add(melodyPanel, BorderLayout.CENTER);

getContentPane().add(lyricsPanel, BorderLayout.PAGE_END);

lyricsPanel.setlLayout(new GridLayout(2, 1));
lyricsPanel.add(lyric1);
lyricsPanel.add(lyric2);
setlLanguage(language);

setText(lyricLinePanels[whichLyricPanel], lyricLines.elementAt(0).line);
Debug.println("First lyric line: " + lyriclLines.elementAt(0).line);
if (lyricline < lyriclines.size() - 1) {
setText(lyriclLinePanels[(whichLyricPanel+1) % 2], lyriclLines.elementAt(1).line);
Debug.println(“"Second lyric line: " + lyriclLines.elementAt(1).line);

416

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

// handle window closing
setDefaultCloseOperation(JFrame.DO_NOTHING ON CLOSE);
addWindowListener (new WindowAdapter() {
public void windowClosing(WindowEvent e) {
sequencer.stop();
System.exit(0);
}
D;

// handle resize events
addComponentListener(new ComponentAdapter() {
public void componentResized(ComponentEvent e) {
Debug.printf("Component has resized to width %d, height %d\n",
getWidth(), getHeight());
// force resize of children - especially the middle MelodyPanel
e.getComponent().validate();
}
public void componentShown(ComponentEvent e) {
Debug.printf("Component is visible with width %d, height %d\n",
getWidth(), getHeight());
}
1;

setSize (1600, 900);
setVisible(true);
}

public void setlLanguage(int lang) {
lyrici.setlanguage(lang);
lyric2.setlanguage(lang);

}

/¥
* A lyric starts with a header section

* We have to skip over that, but can pick useful
* data out of it

*/

/X%
* header format is
* \@Llanguage code

¥ \@Ttitle
* \@Tsinger
*/

public void setlLyric(String txt) {
Debug.println("Setting lyric to " + txt);
if (inLyricHeader) {
if (txt.startsWith("e")) {
Debug.println("Header: " + txt);
return;

417

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

} else {
inlyricHeader = false;
}

}

if ((lyricLine == -1) 8& (txt.charAt(0) == '"\\")) {
lyricline = 0;
colourlyric(lyricLinePanels[whichLyricPanel], txt.substring(1));
// lyriclLinePanels[whichLyricPanel].colourLyric(txt.substring(1));
return;

}

if (txt.equals("\r\n") || (txt.charAt(o) == '/') || (txt.charAt(0) == "\\")) {
if (lyricline < lyriclines.size() -1)
Debug.println("Setting next lyric line to \"" +
lyricLines.elementAt(lyricLine + 1).line + "\"");

final int thisPanel = whichLyricPanel;
whichLyricPanel = (whichLyricPanel + 1) % 2;

Debug.println("Setting new lyric line at tick " +
sequencer.getTickPosition());

lyricline++;

// if it's a \ r /, the rest of the txt should be the next word to
// be coloured

if ((txt.charAt(0) == '/") || (txt.charAt(0o) == "\\")) {
Debug.println("Colouring newline of " + txt);
colourlyric(lyricLinePanels[whichLyricPanel], txt.substring(1));

}

// Update the current line of text to show the one after next
// But delay the update until 0.25 seconds after the next line
// starts playing, to preserve visual continuity
if (lyricline + 1 < lyriclines.size()) {
/*
long startNextlLineTick = lyricLines.elementAt(lyriclLine).startTick;
long delayForTicks = startNextLineTick - sequencer.getTickPosition();
Debug.println("Next current " + startNextlLineTick + " " + sequencer.
getTickPosition());
float microSecsPerQNote = sequencer.getTempoInMPQ();
float delayInMicroSecs = microSecsPerQNote * delayForTicks / 24 + 250000L;
*/

final Vector<DurationNote> notes = lyriclLines.elementAt(lyricLine).notes;
final int nextLineForPanel = lyriclLine + 1;

if (lyriclines.size() >= nextlLineForPanel) {

418

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

Timer timer = new Timer((int) 1000,
new ActionListener() {
public void actionPerformed(ActionEvent e) {
if (nextLineForPanel >= lyriclines.size()) {
return;
}

setText(lyricLinePanels[t
hisPanel], lyriclines.
elementAt(nextLineForPanel).line);
//lyricLinePanels[thisPanel].
setText(lyricLines.
elementAt(nextLineForPanel).line);

}
1

timer.setRepeats(false);
timer.start();

} else {
// no more lines

}

}

} else {
Debug.println("Playing lyric " + txt);
colourLyric(lyricLinePanels[whichLyricPanel], txt);
//1yricLinePanels[whichLyricPanel].colourLyric(txt);

}

/**

* colour the lyric of a panel.

* called by one thread, makes changes in GUI thread

*/

private void colourlLyric(final AttributedLyricPanel p, final String txt) {

SwingUtilities.invokelater(new Runnable() {
public void run() {

Debug.print("Colouring lyric \"" + txt + "\"");
if (p == lyric1) Debug.println(" on panel 1");
else Debug.println(" on panel 2");
p.colourlyric(txt);

Vioio
* set the lyric of a panel.
* called by one thread, makes changes in GUI thread
*/
private void setText(final AttributedlLyricPanel p, final String txt) {
SwingUtilities.invokelater(new Runnable() {
public void run() {

419

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

Debug.println("Setting text \"" + txt + "\"");
if (p == lyric1) Debug.println(" on panel 1");
else Debug.println(" on panel 2");
p.setText(txt);

}
);
}

public void setNote(long timeStamp, int onOff, int note) {
Debug.printf("Setting note in gui to %d\n", note);

if (onOff == Constants.MIDI _NOTE OFF) {
pianoPanel.drawNoteOff(note);

} else if (onOff == Constants.MIDI_NOTE_ON) {
pianoPanel.drawNoteOn(note);

}

AttributedLyricPanel

The panel to display a line of lyrics must be able to show text in two colors: the lyrics already played and
the lyrics yet to be played. The Java AttributedText class is useful for this, as the text can be marked with
different attributes such as colors. This is wrapped in an AttributedTextPanel, shown later.

One minor wrinkle concerns language. Chinese has both the character form and a Romanized form
called PinYin. Chinese speakers can read the character form. People like me can understand only the PinYin
form. So if the language is Chinese, then the AttributedTextPanel shows the PinYin alongside the Chinese
characters. The language identity should be passed to the AttributedLyricPanel as well.

The AttributedLyricPanel is as follows:

import javax.swing.*;
import java.awt.*;
import java.awt.font.*;
import java.text.*;
import java.util.Map;

public class AttributedLyricPanel extends JPanel {

40;

private final int PINYIN Y =
= 90,

private final int TEXT_Y

private String text;

private AttributedString attrText;

private int coloured = 0;

private Font font = new Font(Constants.CHINESE FONT, Font.PLAIN, 36);
private Font smallFont = new Font(Constants.CHINESE_FONT, Font.PLAIN, 24);
private Color red = Color.RED;

private int language;

private String pinyinTxt = null;

420

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

private Map<Character, String> pinyinMap = null;

public AttributedlLyricPanel(Map<Character, String> pinyinMap) {
this.pinyinMap = pinyinMap;

public Dimension getPreferredSize() {
return new Dimension(1000, TEXT_ Y + 20);
}

public void setlLanguage(int lang) {

language = lang;

Debug.printf("Lang in panel is %X\n", lang);
}

public boolean isChinese() {
switch (language) {
case SongInformation.CHINESE1:
case SongInformation.CHINESE2:
case SongInformation.CHINESES8:
case SongInformation.CHINESE131:
case SongInformation.TAIWANESE3:
case SongInformation.TAIWANESE7:
case SongInformation.CANTONESE:

return true;

}

return false;

}

public void setText(String txt) {

coloured = 0;
text = txt;
Debug.println(“"set text " + text);
attrText = new AttributedString(text);
if (text.length() == 0) {

return;
}

attrText.addAttribute(TextAttribute.FONT, font, 0, text.length());

if (isChinese()) {
pinyinTxt = "";
for (int n = 0; n < txt.length(); n++) {
char ch = txt.charAt(n);
String pinyin = pinyinMap.get(ch);
if (pinyin != null) {
pinyinTxt += pinyin + " ";
} else {
Debug.printf("No pinyin map for character \"%c\"\n", ch);
}

421

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

422

repaint();

}

public void colourlLyric(String txt) {
coloured += txt.length();
if (coloured != 0) {
repaint();

}

/X%
* Draw the string with the first part in red, rest in green.

* String is centred
*/

@0verride
public void paintComponent(Graphics g) {
if ((text.length() == 0) || (coloured > text.length())) {
return;

g.setFont(font);

FontMetrics metrics = g.getFontMetrics();
int strWidth = metrics.stringWidth(text);
int panelWidth = getWidth();

int offset = (panelWidth - strWidth) / 2;

if (coloured != 0) {
try {
attrText.addAttribute(TextAttribute.FOREGROUND, red, 0, coloured);
} catch(Exception e) {
System.out.println(attrText.toString() + " " + e.toString());
}
}

g.clearRect(0, 0, getWidth(), getHeight());
try {

g.drawString(attrText.getIterator(), offset, TEXT Y);
} catch (Exception e) {

System.err.println("Attr Str exception on " + text);
}

// Draw the Pinyin if it's not zero

if (pinyinTxt != null 8& pinyinTxt.length() != 0) {
g.setFont(smallFont);
metrics = g.getFontMetrics();
strWidth = metrics.stringWidth(pinyinTxt);
offset = (panelWidth - strWidth) / 2;

g.drawString(pinyinTxt, offset, PINYIN Y);
g.setFont(font);

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

PianoPanel

The PianoPanel shows a piano-like keyboard. As a note is turned on, it colors the note in blue and returns
to normal any previously playing note. When a note is turned off, the note reverts to its normal color
(black or white).

Coloring notes is called by setNote as none on/note off messages come from the sequencer.

The PianoPanel is as follows:

import java.util.Vector;
import javax.swing.*;
import java.awt.*;

import javax.sound.midi.*;

public class PianoPanel extends JPanel {

private final int HEIGHT = 100;
private final int HEICGHT_OFFSET = 10;

long timeStamp;

private Vector<DurationNote> notes;
private Vector<DurationNote> sungNotes;
private int lastNoteDrawn = -1;

private Sequencer sequencer;

private Sequence sequence;

private int maxNote;

private int minNote;

private Vector<DurationNote> unresolvedNotes = new Vector<DurationNote> ();
private int playingNote = -1;
public PianoPanel(Sequencer sequencer) {

maxNote = SequenceInformation.getMaxMelodyNote();
minNote = SequenceInformation.getMinMelodyNote();
Debug.println("Max: " + maxNote + " Min " + minNote);

}

public Dimension getPreferredSize() {
return new Dimension(1000, 120);
}

public void drawNoteOff(int note) {
if (note < minNote || note > maxNote) {
return;
}

Debug.println("Note off played is " + note);

if (note != playingNote) {
// Sometimes "note off" followed immediately by "note on"
// gets mixed up to "note on" followed by "note off".

423

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

// Ignore the "note off" since the next note has already
// been processed
Debug.println("Ignoring note off");
return;
}
playingNote = -1;
repaint();

public void drawNoteOn(int note) {
if (note < minNote || note > maxNote) {
return;
}

Debug.println("Note on played is " + note);
playingNote = note;

repaint();
}

private void drawPiano(Graphics g, int width, int height) {
int noteWidth = width / (Constants.MIDI_NOTE_C8 - Constants.MIDI_NOTE_AO);
for (int noteNum = Constants.MIDI _NOTE_A0; // AO
noteNum <= Constants.MIDI_NOTE_C8; // C8
noteNum++) {

drawNote(g, noteNum, noteWidth);

}

private void drawNote(Graphics g, int noteNum, int width) {

if (isWhite(noteNum)) {
noteNum -= Constants.MIDI_NOTE_Ao;
g.setColor(Color.WHITE);
g.fillRect(noteNum*width, HEIGHT OFFSET, width, HEIGHT);
g.setColor(Color.BLACK);
g.drawRect(noteNum*width, HEIGHT OFFSET, width, HEIGHT);

} else {
noteNum -= Constants.MIDI_NOTE_Ao;
g.setColor(Color.BLACK);
g.fillRect(noteNum*width, HEIGHT OFFSET, width, HEIGHT);

}
if (playingNote != -1) {

g.setColor(Color.BLUE);
g.fillRect((playingNote - Constants.MIDI NOTE A0) * width, HEIGHT OFFSET, width, HEIGHT);

424

CHAPTER 25

private boolean isWhite(int noteNum) {

}

noteNum = noteNum % 12;
switch (noteNum) {
case 1:
case 3:
case 6:
case 8:
case 10:
case 13:
return false;
default:
return true;
}

@0verride
public void paintComponent(Graphics g) {

int ht = getHeight();
int width = getWidth();

drawPiano(g, width, ht);

MelodyPanel

The MelodyPanel is a scrolling panel showing all the notes of the melody. The currently playing note is

centered in the display. This is done by drawing all the notes into a BufferedImage and then copying across

the relevant part every 50 milliseconds.
The MelodyPanel is as follows:

import
import
import
import
import
import
import
import

public

java.util.Vector;
javax.swing.*;

java.awt.*;

java.awt.event.*;
javax.sound.midi.*;
java.awt.image.BufferedImage;
java.io.*;

javax.imageio.*;

class MelodyPanel extends JPanel {

private static int DBL_BUF_SCALE = 2;

private static final int NOTE_HEIGHT
private static final int SLEEP_MSECS

10;
55

KARAOKE APPLICATIONS USING JAVA SOUND

425

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

private long timeStamp;

private Vector<DurationNote> notes;
private Sequencer sequencer;
private Sequence sequence;

private int maxNote;

private int minNote;

private long tickLength = -1;
private long currentTick = -1;
private Image image = null;

/X%

* The panel where the melody notes are shown in a
* scrolling panel

*/

public MelodyPanel(Sequencer sequencer) {

maxNote = SequenceInformation.getMaxMelodyNote();

minNote = SequenceInformation.getMinMelodyNote();

Debug.println("Max: " + maxNote + " Min " + minNote);

notes = SequenceInformation.getMelodyNotes();

this.sequencer = sequencer;

ticklLength = sequencer.getTickLength() + 1000; // hack to make white space at end,
plus fix bug

//new TickPointer().start();
// handle resize events
addComponentListener(new ComponentAdapter() {
public void componentResized(ComponentEvent e) {
Debug.printf("Component melody panel has resized to width %d, height %d\n",
getWidth(), getHeight());

public void componentShown(ComponentEvent e) {
Debug.printf("Component malody panel is visible with width %d, height %d\n",
getWidth(), getHeight());

B;
}

Vioio
* Redraw the melody image after each tick
* to give a scrolling effect
*/
private class TickPointer extends Thread {
public void run() {
while (true) {
currentTick = sequencer.getTickPosition();
MelodyPanel.this.repaint();
/*
SwingUtilities.invokelater(
new Runnable() {

426

}

/**

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

public void run() {
synchronized(MelodyPanel.this) {
MelodyPanel.this.repaint();

}

D;
*/
try {
sleep(SLEEP_MSECS);
} catch (Exception e) {
// keep going
e.printStackTrace();

* Draw the melody into a buffer so we can just copy bits to the screen

*/
private
try

void drawMelody(Graphics g, int front, int width, int height) {
{

g.setColor(Color.WHITE);
g.fillRect(0, 0, width, height);
g.setColor(Color.BLACK);

String title = SequenceInformation.getTitle();
if (title != null) {

for

//Font f = new Font("SanSerif", Font.ITALIC, 40);

Font f = new Font(Constants.CHINESE FONT, Font.ITALIC, 40);
g.setFont(f);

int strWidth = g.getFontMetrics().stringWidth(title);
g.drawString(title, (front - strWidth/2), height/2);
Debug.println("Drawn title " + title);

(DurationNote note: notes) {
long startNote = note.startTick;
long endNote = note.endTick;

int value = note.note;

int ht = (value - minNote) * (height - NOTE HEIGHT) / (maxNote - minNote) + NOTE HEIGHT/2;
// it's upside down
ht = height - ht;

long start = front + (int) (startNote * DBL_BUF SCALE);
long end = front + (int) (endNote * DBL BUF SCALE);

427

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

428

drawNote(g, ht, start, end);
//g.drawString(title, (int)start, (int)height/2);
}
} catch(Exception e) {
System.err.println("Drawing melody error
}

+ e.toString());

}

/**

* Draw a horizontal bar to represent a nore

*/

private void drawNote(Graphics g, int height, long start, long end) {
Debug.printf("Drawing melody at start %d end %d height %d\n", start, end, height -
NOTE_HEIGHT/2);

g.fillRect((int) start, height - NOTE_HEIGHT/2, (int) (end-start), NOTE_HEIGHT);
}

/**

* Draw a vertical line in the middle of the screen to

* represent where we are in the playing notes

*/

private void paintTick(Graphics g, long width, long height) {
long x = (currentTick * width) / tickLength;
g.drawLine((int) width/2, 0, (int) width/2, (int) height);
//System.err.println("Painted tcik");

}

// leave space at the front of the image to draw title, etc
int front = 1000;

Vais
* First time, draw the melody notes into an off-screen buffer
* After that, copy a segment of the buffer into the image,
* with the centre of the image the current note
*/
@verride
public void paintComponent(Graphics g) {
int ht = getHeight();
int width = getWidth();
//int front = width / 2;

synchronized(this) {
if (image == null) {

* We want to stretch out the notes so that they appear nice and wide on the screen.
* A DBL_BUF_SCALE of 2 does this okay. But then tickLength * DBL_BUF SCALE may end
* up larger than an int, and we can't make a BufferedImage wider than MAXINT.

* So we may have to adjust DBL_BUF_SCALE.
*
*

Yes, I know we ask Java to rescale images on the fly, but that costs in runtime.

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

Debug.println("tick*DBLBUFSCALE " + tickLength * DBL_BUF SCALE);

if ((long) (tickLength * DBL BUF SCALE) > (long) Short.MAX VALUE) {
// DBL_BUF_SCALE = ((float) Integer.MAX VALUE) / ((float) tickLength);
DBL_BUF_SCALE = 1;
Debug.println("Adjusted DBL_BUF_SCALE to "+ DBL_BUF SCALE);

}

Debug.println("DBL_BUF_SCALE is "+ DBL_BUF SCALE);

// draw melody into a buffered image

Debug.printf("New buffered img width %d ht %d\n", tickLength, ht);

image = new BufferedImage(front + (int) (tickLength * DBL_BUF_SCALE), ht,
BufferedImage.TYPE_INT RGB);

Graphics ig = image.getGraphics();

drawMelody(ig, front, (int) (tickLength * DBL BUF_SCALE), ht);

new TickPointer().start();

try {
File outputfile = new File("saved.png");
ImageIO.write((BufferedImage) image, "png", outputfile);
} catch (Exception e) {
System.err.println("Error in image write

+ e.toString());

}
}
//System.err.printf("Drawing img from %d ht %d width %d\n",
// front + (int) (currentTick * DBL BUF_SCALE - width/2), ht, width);

boolean b = g.drawImage(image, 0, 0, width, ht,
front + (int) (currentTick * DBL BUF_SCALE - width/2), o,
front + (int) (currentTick * DBL_BUF_SCALE + width/2), ht,
null);
/*System.out.printf("Ht of BI %d, width %d\n", ((BufferedImage)image).getHeight(),
((BufferedImage) image).getWidth());
*/

//if (b) System.err.println("Drawn ok"); else System.err.println("NOt drawn ok");
paintTick(g, width, ht);

429

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

Sequencelnformation

The SequenceInformation class is a convenience class that is used by several other classes. It stores a copy of
the sequence, the lyric lines, and the melody notes to show lyrics and melody by the user interface, as well as
the song title, the maximum and minimum notes to set the scale of the notes display, and which channel the

melody is on.

public class SequenceInformation {

private
private
private
private
private
private
private
private

private

static
static
static
static
static
static
static
static

static

Sequence sequence = null;
Vector<LyriclLine> lyriclines = null;
Vector<DurationNote> melodyNotes = null;
int lang = -1;

String title = null;

String performer = null;

int maxNote;

int minNote;

int melodyChannel = -1;// no such channel

The methods of this class are as follows:

public static void
public static long

public static
public static
public static
public static
public static
public static
public static
public static

setSequence(Sequence seq)
getTickLength()

int getMelodyChannel()

int getLanguage()

String getTitle()

String getPerformer()
Vector<LyricLine> getlyrics()
Vector<DurationNote> getMelodyNotes()
int getMaxMelodyNote()

int getMinMelodyNote()

The code to getLyrics() needs to walk through the tracks in the sequence looking for MetaMessages of
type MIDI_TEXT_TYPE and then adding them to the current line or starting a new line on a line break. Along
the way it picks up the metadata of performer and title from the start of the file.

/%

* Build a vector of lyric lines
* Each line has a start and an end tick
* and a string for the lyrics in that line

*/

public static Vector<LyricLine> getlLyrics() {
if (lyriclLines != null) {

}

430

return

lyriclines;

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

lyriclines = new Vector<lLyricLine> ();
LyricLine nextlLyricLine = new LyriclLine();
StringBuffer buff = new StringBuffer();
long ticks = oL;

Track[] tracks = sequence.getTracks();
for (int nTrack = 0; nTrack < tracks.length; nTrack++) {
for (int n = 0; n < tracks[nTrack].size(); n++) {
MidiEvent evt = tracks[nTrack].get(n);
MidiMessage msg = evt.getMessage();
ticks = evt.getTick();

if (msg instanceof MetaMessage) {
Debug.println("Got a meta mesg in seq");

if (((MetaMessage) msg).getType() == Constants.MIDI TEXT TYPE) {

MetaMessage message = (MetaMessage) msg;

byte[] data = message.getData();
String str = new String(data);
Debug.println("Got a text mesg in seq \""
if (ticks == 0) {
if (str.startswith("eL")) {
lang = decodelang(str.substring(2));
} else if (str.startsWith("@T")) {
if (title == null) {
title = str.substring(2);
} else {
performer = str.substring(2);
}

}
if (ticks » 0) {

//if (str.equals("\r") || str.equals("\n")) {
if ((data[o] == '/") || (data[o0] == "\\")) {

if (buff.length() == 0) {

// blank line - maybe at start of song

// fix start time from NO_TICK
nextlyricline.startTick = ticks;
} else {

nextLyriclLine.line = buff.toString();

nextLyriclLine.endTick = ticks;
lyriclines.add(nextLyriclLine);
buff.delete(0, buff.length());

nextLyricLine = new LyriclLine();

}
buff.append(str.substring(1));

} else {

if (nextlLyriclLine.startTick == Constants.NO TICK) {

+ str + "\

431

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

nextlLyricline.startTick = ticks;

}
buff.append(str);

}

}

// save last line (but only once)

if (buff.length() !'= 0) {
nextLyricLine.line = buff.toString();
nextlyriclLine.endTick = ticks;
lyricLines.add(nextLyricLine);
buff.delete(0, buff.length());

}

if (Debug.DEBUG) {
dumpLyrics();

return lyriclines;

}

The code for getMelodyNotes () traverses the sequence looking for MIDI on/off notes in the melody
channel. The code is a little bit messy because of some songs having “unclean” data: they may contain note
values outside of the permissible range and sometimes overlap instead of one note finishing before the next
starts. This code is as follows:

/*
* gets a vector of lyric notes
* side-effect: sets last tick
*/
public static Vector<DurationNote> getMelodyNotes() {
if (melodyChannel == -1) {
getMelodyChannel();
}

if (melodyNotes != null) {
return melodyNotes;
}

melodyNotes = new Vector<DurationNote> ();
Vector<DurationNote> unresolvedNotes = new Vector<DurationNote> ();

Track[] tracks = sequence.getTracks();
for (int nTrack = 0; nTrack < tracks.length; nTrack++) {
for (int n = 0; n < tracks[nTrack].size(); n++) {
MidiEvent evt = tracks[nTrack].get(n);
MidiMessage msg = evt.getMessage();
long ticks = evt.getTick();

432

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

if (msg instanceof ShortMessage) {
ShortMessage smsg= (ShortMessage) msg;
if (smsg.getChannel() == melodyChannel) {
int note = smsg.getData1();
if (note < Constants.MIDI_NOTE A0 || note > Constants.MIDI_NOTE (8)

{
continue;
}
if (smsg.getCommand() == Constants.MIDI_NOTE ON) {
// note on

DurationNote dnote = new DurationNote(ticks, note);
melodyNotes.add(dnote);
unresolvedNotes.add(dnote);

} else if (smsg.getCommand() == Constants.MIDI_NOTE_OFF) {
// note off
for (int m = 0; m < unresolvedNotes.size(); m++) {
DurationNote dnote = unresolvedNotes.elementAt(m);
if (dnote.note == note) {
dnote.duration = ticks - dnote.startTick;
dnote.endTick = ticks;
unresolvedNotes.remove(m);

}
}

return melodyNotes;

}

The last method of any complexity is getMelodyChannel (). MIDI messages do not distinguish which
channel contains the melody. Most songs have the melody on channel 1, but not all. So, a heuristic has to be
used: search for a channel where the first note to be played is pretty close to the first real lyric. This is not 100
percent reliable.

public static int getMelodyChannel() {

boolean firstNoteSeen[] = {false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false};

boolean possibleChannel[] = {false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false};

if (melodyChannel != -1) {

return melodyChannel;
}

if (lyriclLines == null) {
lyriclines = getLyrics();
}

433

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

long startlyricTick = ((LyriclLine) lyriclLines.get(0)).startTick;
Debug.printf("Lyrics start at %d\n", startlyricTick);

Track[] tracks = sequence.getTracks();
for (int nTrack = 0; nTrack < tracks.length; nTrack++) {
Track track = tracks[nTrack];
for (int nEvent = 0; nEvent < track.size(); nEvent++) {
MidiEvent evt = track.get(nEvent);
MidiMessage msg = evt.getMessage();
if (msg instanceof ShortMessage) {
ShortMessage smsg= (ShortMessage) msg;
int channel = smsg.getChannel();
if (firstNoteSeen[channel]) {
continue;
}

if (smsg.getCommand() == Constants.MIDI_NOTE ON) {
long tick = evt.getTick();
Debug.printf("First note on for channel %d at tick %d\n",
channel, tick);
firstNoteSeen[channel] = true;
if (Math.abs(startlyricTick - tick) < 10) {
// close enough - we hope!
melodyChannel = channel;
possibleChannel[channel] = true;
Debug.printf("Possible melody channel is %d\n", channel);

if (tick > startlyricTick + 11) {
break;
}

}

return melodyChannel;

}

The other methods are relatively straightforward and are omitted.

PinYin

For Chinese language files, one of my aims was to display the PinYin (Romanized form) of the Chinese
hierographic characters. For this, I need to be able to rewrite any sequence of Chinese characters into
their PinYin form. I couldn’t find a list of characters and their corresponding characters. The closest is the

Chinese-English Dictionary (www.mandarintools.com/worddict.html) from which you can download the
dictionary as a text file. Typical lines in this file are as follows:

T i [bua laia] /not bad/good/fine/

434

http://www.mandarintools.com/worddict.html

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

Each line has the traditional characters followed by the simplified characters, the PinYin in [...], and
then English meanings.
I used the following shell script to make a list of character/PinYin pairs:

#!/bin/bash
get pairs of character + pinyin by throwing away other stuff in the dictionary

awk '{print $2, $3}' cedict ts.u8 | grep -v '[A-Z]' |
grep -v 'A.[~]' | sed -e 's/\[//' -e 's/\]//' -e 's/[0-9]$//" |
sort | uniq -w 1 > pinyinmap.txt

to give lines such as the following:

4 hao
7 shuo
an ru

Iid fei

This can then be read into a Java Map, and then quick lookups can be done to translate Chinese to PinYin.

Karaoke Player with Sampling

The karaoke player described so far is functionally equivalent to kmidi and pykar. It plays KAR files, shows
the notes, and scrolls through the lyrics. To sing along with it, you need to use an ALSA or PulseAudio player.

But Java can also play sampled sounds, as discussed in an earlier chapter. So, that code can be brought
into the karaoke player to give a more complete solution. For MID]I, Java normally gives only a Gervill
synthesizer, which is a software synthesizer that plays out through the PulseAudio default device. The actual
output device is not accessible through Java and is controlled by the underlying PulseAudio output device.
But for sampled media, the input devices can be controlled. So, in the following code, a selection box allows
a choice of sampled input device and leaves the output device to the default.

/*
* KaraokePlayer.java
*

*/

import javax.swing.*;
import javax.sound.sampled.*;

public class KaraokePlayerSampled {
public static void main(String[] args) throws Exception {
if (args.length != 1) {
System.err.println("KaraokePlayer: usage: " +
"KaraokePlayer <midifile>");
System.exit(1);

String strFilename = args[0];

435

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

Mixer.Info[] mixerInfo = AudioSystem.getMixerInfo();

String[] possibleValues = new String[mixerInfo.length];

for(int cnt = 0; cnt < mixerInfo.length; cnt++){
possibleValues[cnt] = mixerInfo[cnt].getName();

}

Object selectedValue = JOptionPane.showInputDialog(null, "Choose mixer",

"Input"”,

JOptionPane.INFORMATION MESSAGE, null,
possibleValues, possibleValues[0]);

System.out.println("Mixer string selected " + ((String)selectedValue));

Mixer mixer = null;
for(int cnt = 0; cnt < mixerInfo.length; cnt++){
if (mixerInfo[cnt].getName().equals((String)selectedValue)) {
mixer = AudioSystem.getMixer(mixerInfo[cnt]);
System.out.println("Got a mixer");
break;

}
}//end for loop

MidiPlayer midiPlayer = new MidiPlayer();
midiPlayer.playMidiFile(strFilename);

SampledPlayer sampledPlayer = new SampledPlayer(/* midiPlayer.getReceiver(),
sampledPlayer.playAudio();

The code to play the sampled media is pretty much the same as you have seen before.
import java.io.IOException;

import javax.sound.sampled.line;

import javax.sound.sampled.Mixer;

import javax.sound.sampled.AudioFormat;
import javax.sound.sampled.AudioInputStream;
import javax.sound.sampled.AudioSystem;
import javax.sound.sampled.Dataline;

import javax.sound.sampled.TargetDataline;
import javax.sound.sampled.FloatControl;
import javax.sound.sampled.LineUnavailableException;
import javax.sound.sampled.SourceDataline;
import javax.sound.sampled.Control;

import javax.swing.*;
public class SampledPlayer {

private DisplayReceiver receiver;
private Mixer mixer;

436

*/ mixer);

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

public SampledPlayer(/* DisplayReceiver receiver, */ Mixer mixer) {
this.receiver = receiver;
this.mixer = mixer;

}

//This method creates and returns an
// AudioFormat object for a given set of format
// parameters. If these parameters don't work
// well for you, try some of the other
// allowable parameter values, which are shown
// in comments following the declarations.
private static AudioFormat getAudioFormat(){
float sampleRate = 44100.0F;
//8000,11025,16000,22050, 44100
int sampleSizeInBits = 16;

/78,16

int channels = 1;

/71,2

boolean signed = true;

//true,false

boolean bigEndian = false;

//true,false

return new AudioFormat(sampleRate,
sampleSizeInBits,
channels,
signed,
bigEndian);

}//end getAudioFormat

public void playAudio() throws Exception {
AudioFormat audioFormat;
TargetDataline targetDataline;

audioFormat = getAudioFormat();
DatalLine.Info datalLineInfo =
new Dataline.Info(
TargetDataline.class,
audioFormat);
targetDataline = (TargetDataLine)
AudioSystem.getLine(dataLineInfo);

targetDataline.open(audioFormat,
audioFormat.getFrameSize() * Constants.FRAMES PER BUFFER);
targetDataline.start();

/*

for (Control control: targetDataline.getControls()) {
System.out.println("Target control: " + control.getType());
}

*/

playAudioStream(new AudioInputStream(targetDataline), mixer);
} // playAudioFile

437

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

/** Plays audio from the given audio input stream. */
public void playAudioStream(AudioInputStream audioInputStream, Mixer mixer) {

new AudioPlayer(audioInputStream, mixer).start();
} // playAudioStream

class AudioPlayer extends Thread {
AudioInputStream audioInputStream;
SourceDataline dataline;
AudioFormat audioFormat;

// YIN stuff
// PitchProcessorlrapper ppw;

AudioPlayer(AudioInputStream audioInputStream, Mixer mixer) {
this.audioInputStream = audioInputStream;

// Set to nearly max, like Midi sequencer does
Thread curr = Thread.currentThread();
Debug.println("Priority on sampled: " + curr.getPriority());
int priority = Thread.NORM_PRIORITY

+ ((Thread.MAX PRIORITY - Thread.NORM_PRIORITY) * 3) / 4;
curr.setPriority(priority);
Debug.println("Priority now on sampled:

+ curr.getPriority());

// Audio format provides information like sample rate, size, channels.
audioFormat = audioInputStream.getFormat();
Debug.println("Play input audio format=" + audioFormat);

// Open a data line to play our type of sampled audio.
// Use SourceDataline for play and TargetDataline for record.

if (mixer == null) {
System.out.println("can't find a mixer");
} else {
Line.Info[] lines = mixer.getSourcelLineInfo();
if (lines.length >= 1) {
try {
datalLine = (SourceDataline) AudioSystem.getlLine(lines[0]);
System.out.println("Got a source line for " + mixer.toString());
} catch(Exception e) {
}
} else {
System.out.println("no source lines for this mixer
}

+ mixer.toString());

for (Control control: mixer.getControls()) {
System.out.println("Mixer control: " + control.getType());
}

438

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

DatalLine.Info info = null;
if (dataline == null) {
info = new Dataline.Info(SourceDataline.class, audioFormat);
if (!AudioSystem.isLineSupported(info)) {
System.out.println("Play.playAudioStream does not handle this type of
audio on this system.");
return;

}

try {
// Create a SourceDataline for play back (throws LineUnavailableException).
if (dataline == null) {
datalLine = (SourceDataline) AudioSystem.getLine(info);

Debug.println("SourceDataline class=" + dataline.getClass());

// The line acquires system resources (throws LineAvailableException).
dataline.open(audioFormat,
audioFormat.getFrameSize() * Constants.FRAMES_PER_BUFFER);

for (Control control: dataline.getControls()) {
System.out.println("Source control: " + control.getType());
}

// Adjust the volume on the output line.

if(dataline.isControlSupported(FloatControl.Type.VOLUME)) {
// if(datalLine.isControlSupported(FloatControl.Type.MASTER GAIN)) {
//FloatControl volume = (FloatControl) dataline.getControl(

FloatControl.Type.MASTER GAIN);
FloatControl volume = (FloatControl) dataline.getControl(FloatControl.
Type.VOLUME);

System.out.println("Max vol " + volume.getMaximum());
System.out.println("Min vol " + volume.getMinimum());
System.out.println("Current vol " + volume.getValue());
volume.setValue(60000.0F);
System.out.println("New vol " + volume.getValue());

} else {
System.out.println("Volume control not supported");

}

if (dataline.isControlSupported(FloatControl.Type.REVERB RETURN)) {
System.out.println("reverb return supported");

} else {
System.out.println("reverb return not supported");

if (datalLine.isControlSupported(FloatControl.Type.REVERB_SEND)) {
System.out.println("reverb send supported");

} else {
System.out.println("reverb send not supported");

}

} catch (LineUnavailableException e) {
e.printStackTrace();
}

439

CHAPTER 25 = KARAOKE APPLICATIONS USING JAVA SOUND

// ppw = new PitchProcessorWrapper(audioInputStream, receiver);

}
public void run() {

// Allows the line to move data in and out to a port.
dataline.start();

// Create a buffer for moving data from the audio stream to the line.

int bufferSize = (int) audioFormat.getSampleRate() * audioFormat.getFrameSize();
bufferSize = audioFormat.getFrameSize() * Constants.FRAMES_PER_BUFFER;
Debug.println("Buffer size: " + bufferSize);

byte [] buffer = new byte[bufferSize];

try {
int bytesRead = 0;
while (bytesRead >= 0) {
bytesRead = audioInputStream.read(buffer, o, buffer.length);
if (bytesRead »>= 0) {
int framesWritten = dataline.write(buffer, 0, bytesRead);
// ppw.write(buffer, bytesRead);

} // while

} catch (IOException e) {
e.printStackTrace();

}

// Continues data line I/0 until its buffer is drained.
dataline.drain();

Debug.println("Sampled player closing line.");
// Closes the data line, freeing any resources such as the audio device.
dataline.close();

}

// Turn into a GUI version or pick up from prefs
public void listMixers() {
try{
Mixer.Info[] mixerInfo =
AudioSystem.getMixerInfo();
System.out.println("Available mixers:");
for(int cnt = 0; cnt < mixerInfo.length;
cnt++){
System.out.println(mixerInfo[cnt].
getName());

Mixer mixer = AudioSystem.getMixer(mixerInfo[cnt]);
Line.Info[] sourcelines = mixer.getSourcelineInfo();
for (Line.Info s: sourcelLines) {

System.out.println(" Source line: " + s.toString());

440

CHAPTER 25 I KARAOKE APPLICATIONS USING JAVA SOUND

}

Line.Info[] targetLines = mixer.getTargetLineInfo();
for (Line.Info t: targetlLines) {

System.out.println(" Target line: " + t.toString());
}

}//end for loop
} catch(Exception e) {

}

Comments on Device Choices

If the default devices are chosen, the input and output devices are the PulseAudio default devices. Normally
these would both be the computer’s sound card. However, the default devices can be changed using, for
example, the PulseAudio volume control. These can set either the input device, the output device, or both.
The dialogue can also be used to set the input device for sampled media.

This raises a number of possible scenarios:

e The default PulseAudio device selects the same device for input and output.
e The default PulseAudio device selects different devices for input and output.

e The default PulseAudio device is used for output, while the ALSA device is used for
input, but the physical device is the same.

e The default PulseAudio device is used for output, while the ALSA device is used for
input, and the physical devices are different.

Using different devices raises the problem of clock drift, where the devices have different clocks that
are not synchronized. The worst case seems to be the second one, where over a three-minute song on my
system I could hear a noticeable lag in playing the sampled audio, while the KAR file played happily. It also
introduced a noticeable latency in playing the sampled audio.

Performance

The program top can give you a good idea of how much CPU is used by various processes. My current
computer is a high-end Dell laptop with a quad-core Intel i7-2760QM CPU running at 2.4GHz. According
to CPU Benchmarks (www.cpubenchmark.net/), the processor is in the “High End CPU Chart.” On this
computer, tested with various KAR files, PulseAudio takes about 30 percent of the CPU, while Java
takes about 60 percent. On occasions these figures were exceeded. There is not much left for additional
functionality!

In addition, while playing a MIDI file, sometimes the Java process hangs, resuming with up to 600
percent CPU usage (I don’t know how top manages to record that). This makes it effectively unusable, and I
am not sure where the problem lies.

Conclusion

Java Sound has no direct support for karaoke. This chapter looked at how to combine the Java Sound
libraries with other libraries such as Swing to create a karaoke player for MIDI files. It requires a high-end
computer to run these programs.

441

http://www.cpubenchmark.net/

CHAPTER 26

Subtitles and Closed Captions W,

Many karaoke systems use subtitles! imposed over a movie of some kind. Programs like kmid and my Java
programs play lyrics on some sort of canvas object. This gives a pretty boring background. Video CDs or
MPEG-4 files have a nicer background but have the lyrics hard-coded onto the background video, so there is
little chance for manipulation of them. CD+G files keep the lyrics separate from the video, but there doesn’t
seem to be any way of playing them directly from Linux. They can be converted to MP3+G, and they can be
played by VLC, which loads the MP3 file and picks up the corresponding . cdg file.

This chapter considers subtitles that can be created independently, combined with video and audio in
some way, and then played. The current situation is not completely satisfactory.

Resources

Check out this resource:

e “Subtitling with Linux Tutorial” (http://sub.wordnerd.de/linux-subs.html)

Subtitle Formats

This chapter is concerned here with what are called soft subtitles, where the subtitles are stored in a separate
file from the video or audio and are combined during rendering. The Wikipedia page “Subtitle (captioning)”
(http://en.wikipedia.org/wiki/Subtitle (captioning))is along article goinginto many issues about
subtitling. It also contains a list of subtitle formats, but the one that seems to be of most use in this context is
SubStation Alpha.

MPlayer

According to the MPlayer page “Subtitles and OSD” (www.mplayerhq.hu/DOCS/HTML/en/subosd.htm), the
following are the formats recognized by MPlayer:

1. VOBsub
2. OGM
3. CC/(closed caption)

'Rigorously, subtitles refer to what is spoken, while closed captions may include other sounds such as doors slamming.
For karaoke, there is no need to distinguish them.

© Jan Newmarch 2017 443
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_26

http://sub.wordnerd.de/linux-subs.html
http://en.wikipedia.org/wiki/Subtitle_(captioning
http://www.mplayerhq.hu/DOCS/HTML/en/subosd.htm

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

MicroDVD
SubRip
SubViewer
Sami

VPlayer

© e N o g &

RT
10. SSA
11. PJS (Phoenix Japanimation Society)

12. MPsub

13. AQTitle

14. JACOsub
VLC

According to VLC (www.videolan.org/vlc/features.php?cat=sub), support under Linux includes the
following subtitle formats:

1. DVD

Text files (MicroDVD, SubRIP, SubViewer, SSA1-5, SAMI, VPlayer)
Closed captions

Vobsub

Universal Subtitle Format (USF)

SVCD/CVD

DVB

OGM

© © N 9 g ~ w N

CMML
10. Kate

If you play some sort of video file, say XYZ.mpg, and there is also a file with the same root name and
appropriate extension such as XYZ.ass (the extension for SubStation Alpha), then VLC will automatically
load the subtitles file and play it. If the subtitles file has a different name, then it can be loaded from the VLC
menu Video » Subtitles Track. However, this does not appear to be as reliable as sharing the name.

Gnome Subtitles

See “Gnome Subtitles 1.3 is out!” (http://gnome-subtitles.sourceforge.net/). Gnome supports Adobe
Encore DVD, Advanced Sub Station, Alpha AQ, Title DKS Subtitle Format FAB Subtitler Karaoke Lyrics
LRC Karaoke Lyrics VKT MacSUB MicroDVD MPlayer MPlayer 2 MPSub Panimator Phoenix Japanimation
Society Power DivX Sofni SubCreator 1.x SubRip Sub Station Alpha SubViewer 1.0, SubViewer 2.0, and
ViPlay Subtitle File.

444

http://www.videolan.org/vlc/features.php?cat=sub
http://gnome-subtitles.sourceforge.net/

CHAPTER 26 ' SUBTITLES AND CLOSED CAPTIONS

SubStation Alpha

The SSA/ASS specification is at MooDub.free (http://moodub.free.fr/video/ass-specs.doc). It is brief
and appears to contain some minor errors with respect to later specifications and implementations. For
example, the time format is different. Or are the later ones all wrong?

SSA/ASS files can be used stand-alone. They can also be included in container formats such as
Matroska files, discussed briefly in Chapter 3. When they are embedded into MKV files, some restrictions
(www.matroska.org/technical/specs/subtitles/ssa.html) are made, such as the text being converted
into UTF-8 Unicode.

ASS files are divided into several sections.

1. General information about the environment the subtitle file expects,
such as the X and Y resolutions

Style information such as colors and fonts

3. Eventinformation, which is where the subtitle text is given along with timing
information and any special effects to be applied

Under normal circumstances you would not directly create such files using a text editor. Instead, the
program Aegisub gives you a GUI environment in which to create the files. Essentially, you just enter the text
lines, plus the start and end times for each line to be displayed.

Figure 26-1 shows a screen dump.

DESE » 2 2 Dol 29mK SBR > J HMIFIw PHORW

Comment |Default v | |Actor v
o * | 0:01:08.00 0:01:12.00 0:00:04.00 0 0 0

B 7 VS fn AB A2 A8 M Commit | @ Time

Isaidit's alright

0:00:22.00

: 100:25.00 | Default
0:00:25.00 | 0:00:27.00 | Default

Style [Text

Here comes the sun

|doo doo doo doo

0:00:27.00 | 0:00:30.00 | Default
0:00:30.00 | 0:00:35.00 | Default

Here comes the sun

.I said it's alright

0:00:40.00 | 0:00:40.00 |Default

Little

0:00:40.00 | 0:00:42.00 | Default
0:00:42.00 | 0:00:44.00 | Default
0:00:44.00 | 0:00:48.00 | Default

darling

[it's been a long

cold lonely winter

Bl m|--.|!a| Wl el w ~|»—-£1t

0:00:50.00 | 0:00:50.00 | Default
0:00:50.00 | 0:00:52.00 | Default

Little

.darh'ng

0:00:52.00 | 0:00:55.00 | Default
0:00:55.00 | 0:00:58.00 | Default
0:01:00.00 | 0:01:00.00 |Default

It feels like years

since it's been here

|Here comes

0:01:01.00 | 0:01:03.00 | Default
0:01:05.00 ' 0:01:07.00 | Default

0:01:22.00 | 0:01:22.00 | Default
0:01:23.00 | 0:01:24.00 | Default
0:01:24.00 | 0:01:27.00 | Default

the sun

[Here comes the sun
0:01:08.00 | 0:01:12.00 | Default |
I ' |Little

.darllng

|The smile's retuming

| said it's alright

0:01:27.00 | 0:01:31.00 | Default
0:01:32.00 | 0:01:32.00 | Default

to their faces

|Little

Figure 26-1. Aegisub screenshot

445

http://moodub.free.fr/video/ass-specs.doc
http://www.matroska.org/technical/specs/subtitles/ssa.html

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

Many special effects are possible. The video on Bill Cresswell's blog (https://billcreswell.
wordpress.com/tag/aegisub/) is an excellent example. Here is the direct YouTube link: www. youtube. com/
watch?v=0Z0dgdglrAo.

For completeness, here is part of an ASS file I created:

[Script Info]

; Script generated by Aegisub 2.1.9
; http://www.aegisub.org/
Title: Default Aegisub file
ScriptType: v4.00+
WrapStyle: 0

PlayResX: 640

PlayResY: 480
ScaledBorderAndShadow: yes
Video Aspect Ratio: 0

Video Zoom: 6

Video Position: 0

[V4+ Styles]

Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour,
Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline,
Shadow, Alignment, MarginlL, MarginR, MarginV, Encoding

Style: Default,Arial,20,&HOOFFFFFF,&H00B4FCFC,8H00000008,
&H80000008,0,0,0,0,100,100,0,0,1,2,2,2,10,10,10,1

[Events]

Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
Dialogue: 0,0:00:18.22,0:00:19.94,Default,,0000,0000,0000, ,Here comes the sun
Dialogue: 0,0:00:20.19,0:00:21.75,Default, ,0000,0000,0000,,doo doo doo doo
Dialogue: 0,0:00:22.16,0:00:24.20,Default,,0000,0000,0000, ,Here comes the sun
Dialogue: 0,0:00:24.61,0:00:28.24,Default,,0000,0000,0000,,I said it's alright

Karaoke Effects in ASS Files

Aline in an ASS file essentially consists of a time to start the display, a time to finish the display, and the text
itself. However, karaoke users are accustomed to the text being highlighted as it is played.
ASS supports two major highlight styles.

1. Words are highlighted one at a time.
2. The text is highlighted by filling from the left.

These effects are done by embedding “karaoke overrides” into the text. These are in {} with a duration
time in hundredths of a second.
The details are as follows:

1. Word highlighting

An override of the form {\k<time>} will highlight the following word for time
hundredths of a second. An example is as follows:

{\k100}Here {\k150}comes {\k50}the {\k150}sun
446

https://billcreswell.wordpress.com/tag/aegisub/
https://billcreswell.wordpress.com/tag/aegisub/
http://www.youtube.com/watch?v=0Z0dgdglrAo
http://www.youtube.com/watch?v=0Z0dgdglrAo

CHAPTER 26 ' SUBTITLES AND CLOSED CAPTIONS

2. Fill highlighting

An override of the form {\kf<time>} will progressively fill up the following word
for time hundredths of a second. An example is as follows:

{\kf100}Here {\kf150}comes {\kf50}the {\kf150}sun

The three styles appear as follows:

3. Lines with no highlighting (see Figure 26-2)

Here comes the sun

Figure 26-2. Subtitles without highlighting

447

CHAPTER 26 ' SUBTITLES AND CLOSED CAPTIONS

4. Word highlighting (see Figure 26-3)

Here comes

Figure 26-3. Subtitles with word highlighting

448

CHAPTER 26 ' SUBTITLES AND CLOSED CAPTIONS

5. Fill highlighting (see Figure 26-4)

Here cor

Figure 26-4. Subtitles with fill highlighting

Multiline Karaoke

Ideally, a karaoke system should have a “look-ahead” mechanism whereby you can see the next line before
having to sing it. This can be done by showing two lines of text with overlapping times at different heights.
The algorithm is as follows:

When line N with markup is shown,

show line N+1 without markup
After line N is finished, continue showing line N+1
When line N+1 is due to show,

finish showing unmarked line N+1

show line N+1 with markup

449

CHAPTER 26 ' SUBTITLES AND CLOSED CAPTIONS

Here is the song “Here Comes the Sun” with lyrics:

Here comes the sun
doo doo doo doo

Here comes the sun
I said it's alright

The resultant ASS file should look like this:

Dialogue: 0,0:00:18.22,0:00:19.94,Default,,0000,0000,0100,,{\kf16}Here
{\kf46}comes {\kf43}the {\kf67}sun

Dialogue: 0,0:00:18.22,0:00:20.19,Default,,0000,0000,0000,,doo doo doo doo
Dialogue: 0,0:00:20.19,0:00:21.75,Default,,0000,0000,0000, ,{\kf17}doo
{\kf25}doo {\kf21}doo {\kf92}doo

Dialogue: 0,0:00:20.19,0:00:22.16,Default,,0000,0000,0100, ,Here comes the sun
Dialogue: 0,0:00:22.16,0:00:24.20,Default,,0000,0000,0100,,{\kf17}Here
{\kf46}comes {\kf43}the {\kf97}sun

Dialogue: 0,0:00:22.16,0:00:24.61,Default,,0000,0000,0000,,I said it's alright

Figure 26-5 shows what it looks like.

Here.comesitl,

do0/doo ' doo doo

Figure 26-5. Multiline subtitles

450

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

libass

SubStation Alpha and its renderers appear to have been through a complex history. According to “The old
and present: VSFilter” (http://blog.aegisub.org/2010/02/0ld-and-present-vsfilter.html), the ASS
format was finalized in about 2004, and the renderer VSFilter was made open source at that time. However,
around 2007 development of VSFilter ceased, and several forks were made. These introduced several
extensions to the format, such as the blur tag by Aegisub. Some of these forks since merged, some were
abandoned, and for some of these forks there is still code in the wild.

libass (http://code.google.com/p/1libass/) is the main rendering library for Linux. An alternative,
xy-vsfilter, claims to be faster, more reliable, and so on, but does not seem to have a Linux implementation.
libass supports some of the later extensions. These seem to be the Aegisub 2008 extensions, according to
“VSFilter hacks” (http://blog.aegisub.org/2008/07/vstilter-hacks.html).

Converting KAR Files to MKV Files with ASS Subtitles

Follow these steps:

1. To pull out the lyrics from a KAR or MIDI file, use the Java DumpSequence given in
Chapter 18, as follows, to get a dump of all events:

java DumpSequence song.kar > song.dump

2. For line-only display, use the following Python script generated by Aegisub 2.1.9
to extract the lyrics and save them in ASS format:

#!/usr/bin/python

import fileinput
import string
import math

TEXT_STR = "Dialogue: 0,%s,%s,Default,,0000,0000,0000,Karaoke,"

textStr = TEXT_STR
startTime = -1
endTime = -1

def printPreface():

print '[Script Info]\r\n\
; Script generated by Aegisub 2.1.9\r\n\
; http://www.aegisub.org/\r\n\
Title: Default Aegisub file\r\n\
ScriptType: v4.00+\1r\n\
WrapStyle: O\r\n\
PlayResX: 640\r\n\
PlayResY: 480\r\n\
ScaledBorderAndShadow: yes\r\n\
Video Aspect Ratio: O\r\n\
Video Zoom: 6\r\n\
Video Position: 0\r\n\

451

http://blog.aegisub.org/2010/02/old-and-present-vsfilter.html
http://code.google.com/p/libass/
http://blog.aegisub.org/2008/07/vsfilter-hacks.html
http://dx.doi.org/10.1007/978-1-4842-2496-0_18

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

452

\1\n\

[V4+ Styles]\r\n\

Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour,
BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle,
BorderStyle, Outline, Shadow, Alignment, MarginlL, MarginR, MarginV, Encoding\r\n\
Style: Default,Arial,36,&HOOFFFFFF,&H000000FF,8H00000000,
&H00000000,0,0,0,0,100,100,0,0,1,2,2,2,10,10,10,1\r\n\

\1\n\

[Events]\r\n\

Format: Layer, Start, End, Style, Name, MarginlL, MarginR, MarginV, Effect, Text'

def

def

timeFormat(s):
global microSecondsPerTick

tf = float(s)
tf /= 62.6 #ticks per sec

This should be right , but is too slow
#tf = (tf * microSecondsPerTick) / 1000000

t = int(math.floor(tf))

hundredths = round((tf-t)*100)

secs =t % 60

t /= 60

mins = t % 60

t /= 60

hrs = t

return "%01d:%02d:%02d.%02d" % (hrs, mins, secs, hundredths)

doLyric(words):
global textStr
global startTime
global endTime
global TEXT_STR

if words[1] == "0:":
#print "skipping"
return

time = string.rstrip(words[1], ':')
if startTime == -1:
startTime = time
#print words[1],
if len(words) ==
if words[4][0] == "\\' or words[4][0] == '/':
#print "My name is %s and weight is %d kg!" % ('Zara', 21)
#print startTime, endTime
print textStr % (timeFormat(startTime), timeFormat(endTime)) + "\r\n",
textStr = TEXT_STR + words[4][:1]
startTime = -1
else:

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

textStr += words[4]
else:
textStr += ' '

endTime = time
printPreface()

for line in fileinput.input():
words = line.split()

if len(words) »>= 2:

if words[0] == "Resolution:":
ticksPerBeat = words[1]

elif words[0] == "Length:":
numTicks = int(words[1])

elif words[0] == "Duration:":
duration = int(words[1])
microSecondsPerTick = duration/numTicks
print "Duration %d numTicks %d microSecondsPerTick %d" %
(duration, numTicks, microSecondsPerTick)

if len(words) >= 3 and words[2] == "Text":
doLyric(words)

Here’s an example:

python lyric2ass4kar.py song.dump > song.ass

For fill lyrics display, use the following Python script to extract the lyrics and save
them in ASS format:

#!/usr/bin/python

import fileinput
import string
import math

TEXT_STR = "Dialogue: 0,%s,%s,Default,,0000,0000,0000,,"

textStr = "{\kf%d}"
plainTextStr = ""
startTime = -1
startWordTime = -1
endTime = -1

453

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

454

def printPreface():
print '[Script Info]\r\n\
; Script generated by Aegisub 2.1.9\r\n\
; http://www.aegisub.org/\r\n\
Title: Default Aegisub file\r\n\
ScriptType: v4.00+\r\n\
WrapStyle: O\r\n\
PlayResX: 640\r\n\
PlayResY: 480\r\n\
ScaledBorderAndShadow: yes\r\n\
Video Aspect Ratio: O\r\n\
Video Zoom: 6\r\n\
Video Position: 0\r\n\
\1\n\
[V4+ Styles]\r\n\
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour,
BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle,
BorderStyle, Outline, Shadow, Alignment, MarginlL, MarginR, MarginV, Encoding\r\n\
Style: Default,Arial,36,8HOOFFFFFF,&H000000FF,&H00000000,
&H00000000,0,0,0,0,100,100,0,0,1,2,2,2,10,10,10,1\r\n\
\r\n\
[Events]\r\n\
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text'

def timeFormat(s):
global microSecondsPerTick

tf = float(s)

frames per sec should be 60: 120 beats/min, 30 ticks per beat
but it is too slow on 54154
tf /= 62.6 #ticks per sec

This should be right , but is too slow
tf = (tf * microSecondsPerTick) / 1000000

t = int(math.floor(tf))

hundredths = round((tf-t)*100)

secs =t % 60

t /= 60

mins = t % 60

t /= 60

hrs = t

return "%01d:%02d:%02d.%02d" % (hrs, mins, secs, hundredths)

def durat(end, start):
fend = float(end)
fstart = float(start)
d = (fend - fstart) / 62.9
#print end, start, d
return round(d*100)

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

def doLyric(words):
global textStr
global plainTextStr
global startTime
global endTime
global TEXT_STR
global startWordTime
global lineNum
if words[1] == "0:":
#print "skipping"
return

time = string.rstrip(words[1], ':')
if startTime == -1:
startTime = time
starthWordTime = time
previousEndTime = time
#print words[1],
if len(words) == 5:
if words[4][0] == "\\' or words[4][0] == '/':
#print "My name is %s and weight is %d kg!" % ('Zara', 21)
#print startTime, endTime
dur = durat(time, startWordTime)
textStr = textStr % (dur)
if len(words[4]) == 1:
print TEXT _STR % (timeFormat(startTime),
timeFormat(endTime)) + \
textStr + "\r\n",

next word
textStr = "{\kf%d}" + words[4][1:]
startTime = -1
else:
textStr += words[4]
else:
it's a space, gets lost by the split
dur = durat(time, startWordTime)
textStr = textStr % (dur) + " {\kf%d}"
startWordTime = time

endTime = time
printPreface()
print "Dialogue: 0,0:00:18.22,0:00:19.94,Default,,0000,0000,0000,,{\k16}Here {\
k46}comes {\k43}the {\k67}sun"

for line in fileinput.input():
words = line.split()

455

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

if len(words) »>= 2:

if words[0] == "Resolution:":
ticksPerBeat = words[1]

elif words[0] == "Length:":
numTicks = int(words[1])

elif words[0] == "Duration:":
duration = int(words[1])
microSecondsPerTick = duration/numTicks
print "Duration %d numTicks %d microSecondsPerTick %d" % (duration,
numTicks, microSecondsPerTick)

if len(words) >= 3 and words[2] == "Text":
doLyric(words)

Here’s an example:

python lyric2karaokeass4kar.py song.dump > song.ass

4. For multiline lyrics display, use the following Python script to extract the lyrics
and save them in ASS format:

#!/usr/bin/python

import fileinput
import string
import math

START EVENTS = ["Dialogue: 0,%s,%s,Default,,0000,0000,0000,,",
"Dialogue: 0,%s,%s,Default,,0000,0000,0100,,"]

TEXT_STR = "Dialogue: 0,%s,%s,Default,,0000,0000,0000,,"
TEXT_STR2 = "Dialogue: 0,%s,%s,Default,,0000,0000,0100,,"

textStr = "{\kf%d}"
plainTextStr = ""
startTime = -1
previousStartTime = -1
startWordTime = -1
endTime = -1
previousEndTime = -1
lineNum = 0

def printPreface():
print '[Script Info]\r\n\
; Script generated by Aegisub 2.1.9\r\n\
; http://www.aegisub.org/\r\n\
Title: Default Aegisub file\r\n\
ScriptType: v4.00+\1r\n\
WrapStyle: O\r\n\
PlayResX: 640\r\n\

456

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

PlayResY: 480\r\n\

ScaledBorderAndShadow: yes\r\n\

Video Aspect Ratio: 0\r\n\

Video Zoom: 6\r\n\

Video Position: 0\r\n\

\1\n\

[V4+ Styles]\r\n\

Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour,
BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle,
BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding\r\n\
Style: Default,Arial,36,&HOOFFFFFF,&H000000FF ,&H00000000,
&H00000000,0,0,0,0,100,100,0,0,1,2,2,2,10,10,10,1\r\n\

\1\n\

[Events]\r\n\

Format: Layer, Start, End, Style, Name, MarginlL, MarginR, MarginV, Effect, Text'

def timeFormat(s):
global microSecondsPerTick

tf = float(s)

print "factori is %f instead of %f" % ((1.0*microSecondsPerTick / 1000000),
(1.0/62.9))

frames per sec should be 60: 120 beats/min, 30 ticks per beat

but it is too slow on 54154

tf /= 62.6 #ticks per sec

This should be right , but is too slow
tf = (tf * microSecondsPerTick) / 1000000

t = int(math.floor(tf))
hundredths = round((tf-t)*100)
secs =t % 60

t /= 60#!/usr/bin/python

import fileinput
import string
import math

START EVENTS = ["Dialogue: 0,%s,%s,Default,,0000,0000,0000,,",
"Dialogue: 0,%s,%s,Default,,0000,0000,0100,,"]

TEXT_STR = "Dialogue: 0,%s,%s,Default,,0000,0000,0000,,"
TEXT_STR2 = "Dialogue: 0,%s,%s,Default,,0000,0000,0100,,"

textStr = "{\kf%d}"
plainTextStr = ""
startTime = -1
previousStartTime = -1
startWordTime = -1
endTime = -1
previousEndTime = -1
lineNum = 0

457

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

458

def

printPreface():
print '[Script Info]\r\n\

; Script generated by Aegisub 2.1.9\r\n\

; http://www.aegisub.org/\r\n\

Title: Default Aegisub file\r\n\

ScriptType: v4.00+\r\n\

WrapStyle: O\r\n\

PlayResX: 640\r\n\

PlayResY: 480\r\n\

ScaledBorderAndShadow: yes\r\n\

Video Aspect Ratio: O\r\n\

Video Zoom: 6\r\n\

Video Position: 0\r\n\

\1\n\

[V4+ Styles]\r\n\

Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour,
BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle,
BorderStyle, Outline, Shadow, Alignment, MarginlL, MarginR, MarginV, Encoding\r\n\
Style: Default,Arial,36,8HOOFFFFFF,&H000000FF,&H00000000,
&Ho0000000,0,0,0,0,100,100,0,0,1,2,2,2,10,10,10,1\r\n\

\r\n\

[Events]\r\n\

Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text'

def

timeFormat(s):
global microSecondsPerTick

tf = float(s)
print "factori is %f instead of %f" % ((1.0*microSecondsPerTick / 1000000),

(1.0/62.9))

def

frames per sec should be 60: 120 beats/min, 30 ticks per beat
but it is too slow on 54154
tf /= 62.6 #ticks per sec

This should be right , but is too slow
tf = (tf * microSecondsPerTick) / 1000000

t = int(math.floor(tf))

hundredths = round((tf-t)*100)

secs =t % 60

t /= 60

mins = t % 60

t /= 60

hrs = t

return "%01d:%02d:%02d.%02d" % (hrs, mins, secs, hundredths)

durat(end, start):

fend = float(end)

fstart = float(start)

d = (fend - fstart) / 62.9
#print end, start, d
return round(d*100)

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

def doLyric(words):
global textStr
global plainTextStr
global startTime
global endTime
global previousStartTime
global previousEndTime
global TEXT_STR
global startWordTime
global lineNum

if words[1] == "0:":
#print "skipping"
return

time = string.rstrip(words[1], ':')
if startTime == -1:
startTime = time
starthWordTime = time
previousEndTime = time
#print words[1],
if len(words) ==
if words[4][0] == "\\' or words[4][0] == '/':
#print "My name is %s and weight is %d kg!" % ('Zara', 21)
#print startTime, endTime
dur = durat(time, startWordTime)
textStr = textStr % (dur)

if len(words[4]) == 1:

if previousStartTime != -1:
print START_EVENTS[lineNum % 2] %
(timeFormat(previousStartTime),
timeFormat
(previousEndTime)) + \
plainTextStr + "\r\n",
print START EVENTS[lineNum % 2] % (timeFormat(startTime),
timeFormat(endTime)) + \
textStr + "\r\n",

next word
lineNum += 1
#previousEndTime = time
textStr = "{\kf%d}" + words[4][1:]
plainTextStr = words[4][1:]
previousStartTime = startTime
startTime = -1
else:

textStr += words[4]
plainTextStr += words[4]

else:

459

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

#print textStr

#dur = duration(time, startWordTime)
dur = durat(time, startWordTime)
textStr = textStr % (dur) + " {\kf%d}"
plainTextStr += ' '

startWordTime = time

endTime = time

printPreface()
print "Dialogue: 0,0:00:18.22,0:00:19.94,Default,,0000,0000,0000,,
{\k16}Here {\k46}comes {\k43}the {\k67}sun"

for line in fileinput.input():
words = line.split()

if len(words) »>= 2:

if words[0] == "Resolution:":
ticksPerBeat = words[1]

elif words[0] == "Length:":
numTicks = int(words[1])

elif words[0] == "Duration:":
duration = int(words[1])
microSecondsPerTick = duration/numTicks
print "Duration %d numTicks %d microSecondsPerTick %d" %
(duration, numTicks, microSecondsPerTick)

if len(words) >= 3 and words[2] == "Text":
doLyric(words)

mins = t % 60

t /= 60

hrs = t

return "%01d:%02d:%02d.%02d" % (hrs, mins, secs, hundredths)

def durat(end, start):
fend = float(end)
fstart = float(start)
d = (fend - fstart) / 62.9
#print end, start, d
return round(d*100)

def dolLyric(words):
global textStr
global plainTextStr
global startTime
global endTime
global previousStartTime
global previousEndTime
global TEXT_STR
global startWordTime
global lineNum

460

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

if words[1] == "0:":
#print "skipping"
return

time = string.rstrip(words[1], ':')
if startTime == -1:
startTime = time
starthWordTime = time
previousEndTime = time
#print words[1],
if len(words) ==
if words[4][0] == "\\' or words[4][0] == '/':
#print "My name is %s and weight is %d kg!" % ('Zara', 21)
#print startTime, endTime
dur = durat(time, startWordTime)
textStr = textStr % (dur)

if len(words[4]) == 1:

if previousStartTime != -1:
print START_EVENTS[lineNum % 2] %
(timeFormat(previousStartTime),
timeFormat
(previousEndTime)) + \
plainTextStr + "\r\n",
print START EVENTS[lineNum % 2] % (timeFormat(startTime),
timeFormat(endTime)) + \
textStr + "\r\n",

next word
lineNum += 1
#previousEndTime = time
textStr = "{\kf%d}" + words[4][1:]
plainTextStr = words[4][1:]
previousStartTime = startTime
startTime = -1
else:
textStr += words[4]
plainTextStr += words[4]
else:
#print textStr
#dur = duration(time, startWordTime)
dur = durat(time, startWordTime)
textStr = textStr % (dur) + " {\kf%d}"
plainTextStr += ' '
startWordTime = time

endTime = time

461

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

printPreface()
print "Dialogue: 0,0:00:18.22,0:00:19.94,Default,,0000,0000,0000,,
{\k16}Here {\k46}comes {\k43}the {\k67}sun"

for line in fileinput.input():
words = line.split()
if len(words) »>= 2:
if words[0] == "Resolution:":
ticksPerBeat = words[1]
elif words[0] == "Length:":
numTicks = int(words[1])
elif words[0] == "Duration:":
duration = int(words[1])
microSecondsPerTick = duration/numTicks
print "Duration %d numTicks %d microSecondsPerTick %d" %
(duration, numTicks, microSecondsPerTick)

if len(words) »>= 3 and words[2] == "Text":
doLyric(words)

Here is an example:

python lyric2karaokeass4kar.py song.dump > song.ass

5. Convert the MIDI sound file to a WAV file using fluidsynth.

fluidsynth -F song.wav /usr/share/sounds/sf2/FluidR3_CM.sf2 song.kar

6. Convert the WAV file to MP3.

lame song.wav song.mp3

7. Find a suitable video-only file for your background (I used one off my karaoke
discs) and then merge them into an MKV file.

mkvmerge -o 54154.mkv 54154.mp3 54154.ass BACKO1.MPG

The resultant MKV file can then be played as a stand-alone file by MPlayer.
mplayer song.mkv

It can also be played by VLC, but only with the ASS file present.

vlc song.mkv

462

CHAPTER 26 = SUBTITLES AND CLOSED CAPTIONS

Screen captures were shown earlier in the chapter, depending on the karaoke effect chosen.

Timing is, however, an issue. The default MIDI tempo is 120 beats per minute, and a common tick rate
is 30 ticks per beat. This leads to a rate of 60 MIDI ticks per second. However, you are now playing MP3 files
and ASS files, neither of which are MIDI files anymore and which are not necessarily synchronized. With a
rate of 60 ticks per second in converting from MIDI to ASS, the lyrics run too slowly. Experimentally I have
found 62.9 to be a reasonable rate for at least some files.

HTML5 Subtitles

HTMLS5 has support for video types, although exactly what video format is supported by which brower is
variable. This includes support for subtitles and closed captions, using the HTML 5.1 track element. A search
will turn up several detailed articles discussing this in more detail.

You need to prepare a file of timing and text instructions. The format shown in examples is as a . vtt file
and can be as follows:

WEBVTT

1
00:00:01.000 --> 00:00:30.000 D:vertical A:start
This is the first line of text, displaying from 1-30 seconds

2

00:00:35.000 --> 00:00:50.000

And the second line of text

separated over two lines from 35 to 50 seconds

Here the first line is WEBVTT, and blocks of text are separated by blank lines. The format of VTT files is
specified at “WebVTT: The Web Video Text Tracks Format” (http://dev.w3.org/html5/webvtt/).
The HTML then references the audio/video files and the subtitles file as follows:

<video controls>
<source src="output.webm" controls>
<track src="54154.vtt" kind="subtitles" srclang="en" label="English" default />
<!-- fallback for rubbish browsers -->

</video>

463

http://dev.w3.org/html5/webvtt/

CHAPTER 26 SUBTITLES AND CLOSED CAPTIONS

Figure 26-6 shows a screen capture.

This |s the first line of text, dlsplaylng from 1 10 seconds

} - 0:05 (cCIl” .|

Figure 26-6. HTML5 subtitles

There does not seem to be any mechanism for highlighting words progressively in a line. Possibly
JavaScript may be able to do so, but after a cursory look, it doesn’t seem likely. This makes it not yet suitable
for karaoke.

Conclusion

This chapter discussed methods for overlaying subtitle text onto a changing video image. It is feasible, but
there are only a few viable mechanisms.

464

CHAPTER 27

Karaoke FluidSynth

FluidSynth is an application for playing MIDI files and a library for MIDI applications. It does not have the
hooks for playing karaoke files. This chapter discusses an extension to FluidSynth that adds appropriate
hooks and then uses these to build a variety of karaoke systems.

Resources

Here are some resources:
e FluidSynth home page (http://sourceforge.net/apps/trac/fluidsynth/)
e FluidSynth download page (http://sourceforge.net/projects/fluidsynth/)

e FluidSynth 1.1 developer documentation (http://fluidsynth.sourceforge.net/
api/)

e SourceArchive’s fluidsynth documentation (http://fluidsynth.sourcearchive.
com/documentation/1.1.5-1/main.html)

Players

fluidsynth is a command-line MIDI player. It runs under ALSA with the following command line:

fluidsynth -a alsa -1 <soundfont> <files...>

Play MIDI Files

The FluidSynth API consists of the following:
e Asequencer created using new_fluid_player
e Asynthesizer created using new_fluid_synth

e Anaudio player created using new_fluid_audio_driver that runs in a separate
thread

© Jan Newmarch 2017 465
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_27

http://sourceforge.net/apps/trac/fluidsynth/
http://sourceforge.net/projects/fluidsynth/
http://fluidsynth.sourceforge.net/api/
http://fluidsynth.sourceforge.net/api/
http://fluidsynth.sourcearchive.com/documentation/1.1.5-1/main.html
http://fluidsynth.sourcearchive.com/documentation/1.1.5-1/main.html

CHAPTER 27 = KARAOKE FLUIDSYNTH

e A ‘“settings” object that can be used to control many features of the other
components, created with new_fluid_settings and modified with calls such as
fluid_settings setstr

A typical program to play a sequence of MIDI files using ALSA follows. It creates the various objects,
sets the audio player to use ALSA, and then adds each sound font and MIDI file to the player. The call to
fluid_player play then plays each MIDI file in turn. This program is just a repeat of the program shown in
Chapter 20.

#include <fluidsynth.h>
#include <fluid_midi.h>

int main(int argc, char** argv)

{
int i;
fluid_settings t* settings;
fluid_synth_t* synth;
fluid_player_ t* player;
fluid_audio_driver t* adriver;

settings = new _fluid settings();

fluid_settings setstr(settings, "audio.driver", "alsa");
synth = new_fluid synth(settings);

player = new_fluid player(synth);

adriver = new fluid audio driver(settings, synth);
/* process command line arguments */
for (i = 1; i < argc; i++) {
if (fluid_is soundfont(argv[i])) {
fluid_synth_sfload(synth, argv[1], 1);
} else {
fluid player add(player, argv[i]);
}

}

/* play the midi files, if any */
fluid _player play(player);

/* wait for playback termination */
fluid_player join(player);

/* cleanup */

delete fluid audio driver(adriver);
delete fluid player(player);

delete fluid synth(synth);

delete fluid settings(settings);
return 0;

466

http://dx.doi.org/10.1007/978-1-4842-2496-0_20

CHAPTER 27 © KARAOKE FLUIDSYNTH

Extending FluidSynth with Callbacks

Callbacks are functions registered with an application that are called when certain events occur. To build a
karaoke player, you need to know the following:

e When afile is loaded so that you can extract all the lyrics from it for display at the
right times

e When each meta lyric or text event occurs as output from a sequencer so that you
can see what lyric is about to be sung

The first of these is fairly straightforward: FluidSynth has a function fluid_player load that will load
a file. You can change the code to add a suitable callback into that function that will give you access to the
loaded MIDI file.

Getting lyric or text events out of a sequencer is not so easy, since they are never meant to appear! The
MIDI specification allows these event types within a MIDI file, but they are not wire types so should never be
sent from a sequencer to a synthesizer. The Java MIDI API makes them available by an out-of-band call to a
meta event handler. FluidSynth just throws them away.

On the other hand, FluidSynth already has a callback to handle MIDI events sent from the sequencer to
the synthesizer. It is the function fluid_synth_handle_midi_event and is set with the call fluid_player_
set_playback_callback. What you need to do is to first alter the existing FluidSynth code so that lyric and
text events are passed through. Then insert a new playback callback that will intercept those events and do
something with them while passing on all other events to the default handler. The default handler will ignore
any such events anyway, so it does not need to be changed.

I have added one new function to FluidSynth, fluid_player set onload_callback, and added
appropriate code to pass on some meta events. Then it is a matter of writing an onload callback to walk
through the MIDI data from the parsed input file and writing a suitable MIDI event callback to handle the
intercepted meta events while passing the rest through to the default handler.

These changes have been made to give a new source package fluidsynth-1.1.6-karaoke.tar.bz2. If
you just want to work from a patch file, that is fluid.patch. The patch has been submitted to the FluidSynth
maintainers.

To build from this package, do the same as you normally would.

tar jxf fluidsynth-1.1.6-karaoke.tar.bz2
cd fluidsynth-1.1.6

./configure

make clean

make

To get ALSA support, you will need to have installed the 1ibasound2-dev package, like for Jack and
other packages. You probably won't have many of them installed, so don’t run make install or you will
overwrite the normal fluidsynth package, which will probably have more features.

The previous program modified to just print out the lyric lines and the lyric events as they occur is
karaoke_player.c, shown here:

#include <fluidsynth.h>
#include <fluid midi.h>

/X%
* This MIDI event callback filters out the TEXT and LYRIC events
* and passes the rest to the default event handler.

467

CHAPTER 27 = KARAOKE FLUIDSYNTH

* Here we just print the text of the event, more
* complex handling can be done

int event callback(void *data, fluid midi event t *event) {

}

/¥
* This is called whenever new data is loaded, such as a new file.
* Here we extract the TEXT and LYRIC events and just print them
* to stdout. They could e.g. be saved and displayed in a GUI
* as the events are received by the event callback.

fluid_synth_t* synth = (fluid_synth_t*) data;
int type = fluid midi event get type(event);
int chan = fluid_midi_event_get channel(event);
if (synth == NULL) printf("Synth is null\n");
switch(type) {
case MIDI_TEXT:
printf("Callback: Playing text event %s (length %d)\n",
(char *) event->paramptr, event->parami);
return FLUID_OK;

case MIDI_LYRIC:
printf("Callback: Playing lyric event %d %s\n",
event->param1, (char *) event->paramptr);
return FLUID OK;
}

return fluid synth_handle _midi event(data, event);

int onload callback(void *data, fluid player t *player) {

}

printf("Load callback, tracks %d \n", player->ntracks);
int n;
for (n = 0; n < player->ntracks; n++) {
fluid track t *track = player->track[n];
printf("Track %d\n", n);
fluid midi event t *event = fluid track first event(track);
while (event != NULL) {
switch (event->type) {
case MIDI_TEXT:
case MIDI_LYRIC:
printf("Loaded event %s\n", (char *) event->paramptr);

event = fluid track next event(track);
}
}
return FLUID OK;

int main(int argc, char** argv)

{

468

int i;
fluid_settings_t* settings;

CHAPTER 27 © KARAOKE FLUIDSYNTH

fluid synth _t* synth;

fluid_player t* player;

fluid_audio_driver t* adriver;

settings = new_fluid settings();

fluid settings setstr(settings, "audio.driver", "alsa");
fluid_settings setint(settings, "synth.polyphony", 64);
synth = new_fluid_synth(settings);

player = new fluid _player(synth);

/* Set the MIDI event callback to our own functions rather than the system default */
fluid player set playback callback(player, event callback, synth);

/* Add an onload callback so we can get information from new data before it plays */
fluid player set onload callback(player, onload callback, NULL);

adriver = new fluid audio driver(settings, synth);
/* process command line arguments */
for (i = 1; i < argc; i++) {
if (fluid_is soundfont(argv[i])) {
fluid_synth_sfload(synth, argv[1], 1);
} else {
fluid player add(player, argv[i]);
}

}

/* play the midi files, if any */
fluid player play(player);

/* wait for playback termination */
fluid_player_join(player);

/* cleanup */

delete fluid audio driver(adriver);
delete fluid player(player);

delete fluid synth(synth);

delete fluid settings(settings);
return 0;

Assuming the new fluidsynth package is in an immediate subdirectory, to compile the program, you
will need to pick up the local includes and libraries.

gcc -g -I fluidsynth-1.1.6/include/ -I fluidsynth-1.1.6/src/midi/ -I fluidsynth-1.1.6/src/
utils/ -c -o karaoke player.o karaoke player.c

gcc karaoke_player.o -Lfluidsynth-1.1.6/src/.1libs -1 fluidsynth -o karaoke_player
To run the program, you will also need to pick up the local library and the sound font file.

export LD LIBRARY PATH=./fluidsynth-1.1.6/src/.1libs/
./karaoke_player /usr/share/soundfonts/FluidR3_GM.sf2 54154.mid

469

CHAPTER 27 = KARAOKE FLUIDSYNTH

The output for a typical KAR file is as follows:

Load callback, tracks 1
Track o

Loaded event #

Loaded event 0

Loaded event 0

Loaded event 0

Loaded event 1

Loaded event

Callback: Playing lyric event
Callback: Playing lyric event
Callback: Playing lyric event
Callback: Playing lyric event
Callback: Playing lyric event
Callback: Playing lyric event

W NNNNDN
P O O O =

Displaying and Coloring Text with Gtk

While there are many ways in which karaoke text can be displayed, a common pattern is to display two
lines of text: the currently playing line and the next one. The current line is progressively highlighted and on
completion is replaced by the next line.

In Chapter 25 you did that. But the Java libraries have not been polished and are distinctly slow and
heavyweight. They also seem to be low priority on Oracle’s development schedule for Java. So, here you will
look at an alternative GUI and make use of the FluidSynth library. I chose the Gtk library for the reasons
outlined in Chapter 15.

The first task is to build up an array of lyric lines as the file is loaded. You are asssuming KAR format files
with up-front information as to the title, and so on, prefixed with @ and with newlines prefixed with \.

struct lyric t {
gchar *lyric;
long tick;
b
typedef struct lyric_t lyric_t;

struct lyric lines t {
char *language;
char *title;
char *performer;
GArray *lines; // array of GString *
};
typedef struct _lyric_lines_t lyric_lines_t;

GArray *lyrics;
lyric_lines_t lyric_lines;

470

http://dx.doi.org/10.1007/978-1-4842-2496-0_25
http://dx.doi.org/10.1007/978-1-4842-2496-0_15

CHAPTER 27 © KARAOKE FLUIDSYNTH

void build lyric lines() {
int n;
lyric_t *plyric;
GString *line = g string new("");
GArray *lines = g array sized new(FALSE, FALSE, sizeof(GString *), 64);

lyric_lines.title = NULL;

for (n = 0; n < lyrics->len; n++) {
plyric = g array index(lyrics, lyric_t *, n);
gchar *lyric = plyric->lyric;
int tick = plyric->tick;

if ((strlen(lyric) »>= 2) & (lyric[o] == '@") 8& (lyric[1] == 'L")) {
lyric_lines.language = lyric + 2;
continue;

}

if ((strlen(lyric) »>= 2) & (lyric[o] == '@") 8& (lyric[1] == 'T")) {
if (lyric_lines.title == NULL) {
lyric_lines.title = lyric + 2;
} else {
lyric_lines.performer = lyric + 2;
}

continue;

}

if (lyric[o] == '@") {
// some other stuff like @KMIDI KARAOKE FILE
continue;

}

if ((Qyric[o] == '/") || (lyric[o] == "\\")) {
// start of a new line
// add to lines
g array append val(lines, line);
line = g string new(lyric + 1);
} else {
line = g_string append(line, lyric);
}

}

lyric_lines.lines = lines;

printf("Title is %s, performer is %s, language is %s\n",
lyric_lines.title, lyric_lines.performer, lyric_lines.language);
for (n = 0; n < lines->len; n++) {
printf("Line is %s\n", g array index(lines, GString *, n)->str);
}

471

CHAPTER 27 = KARAOKE FLUIDSYNTH

This is called from the onload callback.

int onload callback(void *data, fluid player t *player) {
long ticks = oL;
lyric_t *plyric;

printf("Load callback, tracks %d \n", player->ntracks);
int n;
for (n = 0; n < player->ntracks; n++) {
fluid_track t *track = player->track[n];
printf("Track %d\n", n);
fluid midi event t *event = fluid track first event(track);
while (event != NULL) {
switch (fluid midi _event get type (event)) {
case MIDI TEXT:
case MIDI_LYRIC:

/* there's no fluid_midi_event_get sysex()
or fluid midi event get time() so we
have to look inside the opaque struct

*/

ticks += event->dtime;

printf("Loaded event %s for time %d\n",

event->paramptr,
ticks);

plyric = g new(lyric_t, 1);

plyric->lyric = g strdup(event->paramptr);

plyric->tick = ticks;

g array append val(lyrics, plyric);

}

event = fluid track next_event(track);

}

printf("Saved %d lyric events\n", lyrics->len);
for (n = 0; n < lyrics->len; n++) {

plyric = g array index(lyrics, lyric_t *, n);

printf("Saved lyric %s at %d\n", plyric->lyric, plyric->tick);
}

build lyric lines();

The standard GUI part is to build an interface consisting of two labels, one above the other to hold lines
of lyrics. This is just ordinary Gtk.

The final part is to handle lyric or text events from the sequencer. If the event is a \, then the current
text in a label must be replaced with new text, after a small pause. Otherwise, the text in the label has to be
progressively colored to indicate what is next to be played.

In Chapter 15, I discussed using Cairo to draw in pixbufs and using Pango to structure the text. The Gtk
label understands Pango directly, so you just use Pango to format the text and display it in the label. This
involves constructing an HTML string with the first part colored red and the rest in black. This can be set in
the label, and there is no need to use Cairo.

472

http://dx.doi.org/10.1007/978-1-4842-2496-0_15

CHAPTER 27 © KARAOKE FLUIDSYNTH

The program is gtkkaraoke_player.c.

Warning The following program crashes regularly when trying to copy a Pango attribute list in the Gtk code
for sizing a label. Debugging shows that the Pango copy function is set to NULL somewhere in Gtk and shouldn’t
be. I have no fix as yet and haven’t replicated the bug in a simple enough way to log a bug report.

#include <fluidsynth.h>
#include <fluid midi.h>
#include <string.h>

#include <gtk/gtk.h>

/* GString stuff from https://developer.gnome.org/glib/2.31/glib-Strings.html
Memory alloc from https://developer.gnome.org/glib/2.30/glib-Memory-Allocation.html
Packing demo from https://developer.gnome.org/gtk-tutorial/2.90/x386.html
Thread stuff from https://developer.gnome.org/gtk-faq/stable/x481.html
GArrays from http://www.gtk.org/api/2.6/glib/glib-Arrays.html
Pango attributes from http://www.ibm.com/developerworks/library/1-u-pango2/
Timeouts at http://www.gtk.org/tutorial1.2/gtk_tut-17.html
*/
struct lyric t {
gchar *lyric;

long tick;

};
typedef struct lyric_t lyric_t;

struct lyric lines t {

char *language;

char *title;

char *performer;

GArray *lines; // array of GString *
};
typedef struct lyric lines_t lyric_lines t;
GArray *lyrics;
lyric_lines_t lyric_lines;
fluid synth t* synth;
GtkWidget *lyric_labels[2];
fluid_player_t* player;

int current_panel = -1; // panel showing current lyric line
int current_line = 0; // which line is the current lyric

473

CHAPTER 27 = KARAOKE FLUIDSYNTH

gchar *current_lyric; // currently playing lyric line
GString *front_of _lyric; // part of lyric to be coloured red
GString *end_of_lyric; // part of lyric to not be coloured
gchar *markup[] = {"",
"",
""};
gchar *markup_newline[] = {"",
""};
GString *marked up_label;

struct reset label data {
GtkLabel *label;
gchar *text;
PangoAttrlList *attrs;

};
typedef struct reset label data reset label data;

/**
* redraw a label some time later
*/
gint reset label cb(gpointer data) {
reset label data *rdata = (reset label data *) data;

if (rdata-»>label == NULL) {
printf("Label is null, cant set its text \n");
return FALSE;

}
printf("Resetting label callback to \"%s\"\n", rdata->text);
gdk_threads_enter();

gchar *str;
str = g strconcat(markup newline[0], rdata->text, markup newline[1], NULL);

PangoAttrList *attrs;
gchar *text;
pango _parse markup (str, -1,0, &attrs, &text, NULL, NULL);

gtk label set text(rdata->label, text);
gtk label set attributes(rdata->label, attrs);

gdk_threads leave();
GtkAllocation* alloc = g new(GtkAllocation, 1);
gtk_widget get allocation((GtkWidget *) (rdata->label), alloc);

printf("Set label text to \"%s\"\n", gtk_label get text(rdata->label));
printf("Label has height %d width %d\n", alloc->height, alloc->width);

474

CHAPTER 27 © KARAOKE FLUIDSYNTH

printf("Set other label text to \"%s\"\n",
gtk_label get text(rdata->label == lyric_labels[0] ?
lyric labels[1] : lyric_labels[0]));
gtk widget get allocation((GtkWidget *) (rdata->label == lyric labels[0] ?
lyric labels[1] : lyric labels[0]), alloc);
printf("Label has height %d width %d\n", alloc->height, alloc->width);

return FALSE;
}

/**
* This MIDI event callback filters out the TEXT and LYRIC events
* and passes the rest to the default event handler.
* Here we colour the text in a Gtk label
*/
int event_callback(void *data, fluid midi event t *event) {
fluid_synth_t* synth = (fluid_synth_t*) data;
int type = fluid midi_event get type(event);
int chan = fluid midi event get channel(event);
if (synth == NULL) printf("Synth is null\n");
switch(type) {
case MIDI_TEXT:
printf("Callback: Playing text event %s (length %d)\n",
(char *) event->paramptr, event->parami);

if (((char *) event->paramptr)[0] == "\\') {
// we've got a new line, change the label text on the NEXT panel
int next_panel = current_panel; // really (current_panel+2)%2
int next_line = current_line + 2;
gchar *next_lyric;

if (current line + 2 >= lyric_lines.lines->len) {
return FLUID_OK;
}

current_line += 1;
current_panel = (current panel + 1) % 2;

// set up new line as current line
char *lyric = event->paramptr;

// find the next line from lyric_lines array
current_lyric = g array index(lyric_lines.lines, GString *, current line)->str;

// lyric is in 2 parts: front coloured, end uncoloured

front_of lyric = g string new(lyric+1); // lose \

end of lyric = g string new(current_lyric);

printf("New line. Setting front to %s end to \"%s\"\n", lyric+1, current lyric);

// update label for next line after this one

char *str = g_array index(lyric_lines.lines, GString *, next_line)->str;
printf("Setting text in label %d to \"%s\"\n", next panel, str);

475

CHAPTER 27 = KARAOKE FLUIDSYNTH

next_lyric = g array index(lyric_lines.lines, GString *, next_line)->str;
gdk_threads_enter();

// change the label after one second to avoid visual "jar"
reset_label data *label data;

label data = g new(reset_label data, 1);

label _data->label = (GtkLabel *) lyric labels[next_panel];
label data->text = next_lyric;

g timeout add(1000, reset label cb, label data);

// Dies if you try to flush at this point!
/7 gdk_flush();

gdk_threads_leave();
} else {
// change text colour as chars are played, using Pango attributes
char *lyric = event->paramptr;
if ((front_of lyric != NULL) & (lyric != NULL)) {
// add the new lyric to the front of the existing coloured
g string append(front_of lyric, lyric);
char *s = front_of lyric->str;
printf("Displaying \"%s\"\n", current_lyric);
printf(" Colouring \"%s\"\n", s);
printf(" Not colouring \"%s\"\n", current lyric + strlen(s));

// todo: avoid memory leak

marked_up_label = g string new(markup[0]);

g string append(marked up label, s);

g string append(marked up label, markup[1]);

g string append(marked up label, current lyric + strlen(s));
g string append(marked up label, markup[2]);

printf("Marked up label \"%s\"\n", marked up label->str);

/* Example from http://www.ibm.com/developerworks/library/1-u-pango2/

*/

PangoAttrlList *attrs;
gchar *text;
gdk_threads_enter();

pango_parse markup (marked up label->str, -1,0, &attrs, &text, NULL, NULL);
printf("Marked up label parsed ok\n");
gtk label set text((GtkLabel *) lyric labels[current panel],
text);

gtk label set attributes(GTK_LABEL(lyric_labels[current panel]), attrs);
// Dies if you try to flush at this point!

//gdk_flush();

gdk threads_leave();
}
}

return FLUID_OK;

476

CHAPTER 27

case MIDI LYRIC:
printf("Callback: Playing lyric event %d %s\n",
event->parami, (char *) event->paramptr);
return FLUID_OK;

case MIDI_EOT:
printf("End of track\n");
exit(0);

// default handler for all other events
return fluid synth_handle _midi event(data, event);

}

/*

* Build array of lyric lines from the MIDI file data
*/

void build_lyric lines() {

int n;

lyric_t *plyric;

GString *line = g string new("");

GArray *lines = g array sized new(FALSE, FALSE, sizeof(GString *), 64);

lyric_lines.title = NULL;

for (n = 0; n < lyrics->len; n++) {
plyric = g array index(lyrics, lyric_t *, n);
gchar *lyric = plyric->lyric;
int tick = plyric->tick;

if ((strlen(lyric) »>= 2) 88 (lyric[o] == '@') && (lyric[1] == 'L")) {
lyric_lines.language = lyric + 2;
continue;
}
if ((strlen(lyric) »>= 2) & (lyric[o] == '@") 8& (lyric[1] == 'T")) {
if (lyric_lines.title == NULL) {
lyric_lines.title = lyric + 2;
} else {
lyric_lines.performer = lyric + 2;
}
continue;
}

if (lyric[o] == '@") {
// some other stuff like @KMIDI KARAOKE FILE
continue;

KARAOKE FLUIDSYNTH

477

CHAPTER 27 = KARAOKE FLUIDSYNTH

}

/**

if ((lyricfo] == '/") || (lyric[o] == "\\")) {
// start of a new line
// add to lines
g array append val(lines, line);
line = g_string new(lyric + 1);
} else {
line = g string_append(line, lyric);
}

}

lyric_lines.lines = lines;

printf("Title is %s, performer is %s, language is %s\n",
lyric lines.title, lyric_lines.performer, lyric_lines.language);
for (n = 0; n < lines->len; n++) {
printf("Line is %s\n", g_array_index(lines, GString *, n)->str);
}

* This is called whenever new data is loaded, such as a new file.
* Here we extract the TEXT and LYRIC events and save them
* into an array

*/
int

478

onload callback(void *data, fluid player t *player) {
long ticks = oL;
lyric_t *plyric;

printf("Load callback, tracks %d \n", player->ntracks);
int n;
for (n = 0; n < player->ntracks; n++) {
fluid_track t *track = player->track[n];
printf("Track %d\n", n);
fluid midi event t *event = fluid track first event(track);
while (event != NULL) {
switch (fluid midi_event get type (event)) {
case MIDI_TEXT:
case MIDI_LYRIC:

/* there's no fluid midi_event get sysex()
or fluid midi event get time() so we
have to look inside the opaque struct

*/

ticks += event->dtime;

printf("Loaded event %s for time %1ld\n",

(char *) event->paramptr,
ticks);

plyric = g new(lyric_t, 1);

plyric->lyric = g_strdup(event->paramptr);

plyric->tick = ticks;

g_array append_val(lyrics, plyric);

CHAPTER 27 © KARAOKE FLUIDSYNTH

event = fluid track next event(track);

}

printf("Saved %d lyric events\n", lyrics->len);
for (n = 0; n < lyrics->len; n++) {

plyric = g array index(lyrics, lyric_t *, n);

printf("Saved lyric %s at %ld\n", plyric->lyric, plyric->tick);
}

build_lyric_lines();

// stick the first two lines into the labels so we can see

// what is coming

gdk_threads_enter();

char *str = g array index(lyric_lines.lines, GString *, 1)->str;
gtk label set text((GtkLabel *) lyric labels[0], str);

str = g array index(lyric_lines.lines, GString *, 2)-»>str;

gtk label set text((GtkLabel *) lyric labels[1], str);

// gdk_flush ();

/* release GTK thread lock */
gdk_threads_leave();

return FLUID OK;
}

/* Called when the windows are realized

*/

static void realize cb (GtkWidget *widget, gpointer data) {
/* now we can play the midi files, if any */
fluid player play(player);

}

static gboolean delete event(GtkWidget *widget,
GdkEvent *event,
gpointer data)

{
/* If you return FALSE in the "delete-event" signal handler,
* GTK will emit the "destroy" signal. Returning TRUE means
* you don't want the window to be destroyed.
* This is useful for popping up 'are you sure you want to quit?’
* type dialogs. */
g print ("delete event occurred\n");
/* Change TRUE to FALSE and the main window will be destroyed with
* a "delete-event". */
return TRUE;
}

479

CHAPTER 27 = KARAOKE FLUIDSYNTH

/* Another callback */

static void destroy(GtkWidget *widget,
gpointer data)

{

}

gtk _main_quit ();
int main(int argc, char** argv)

/* set up the fluidsynth stuff */
int i;
fluid_settings t* settings;

fluid_audio_driver t* adriver;

settings = new fluid settings();

fluid settings setstr(settings, "audio.driver", "alsa");
fluid_settings setint(settings, "synth.polyphony", 64);

fluid settings setint(settings, "synth.reverb.active", FALSE);
fluid settings setint(settings, "synth.sample-rate", 22050);
synth = new_fluid synth(settings);

player = new_fluid_player(synth);

lyrics = g _array sized new(FALSE, FALSE, sizeof(lyric_t *), 1024);

/* Set the MIDI event callback to our own functions rather than the system default */
fluid player set playback callback(player, event callback, synth);

/* Add an onload callback so we can get information from new data before it plays */
fluid player set onload callback(player, onload callback, NULL);

adriver = new_fluid audio driver(settings, synth);
/* process command line arguments */
for (i = 1; i < argc; i++) {
if (fluid_is_soundfont(argv[i])) {
fluid_synth_sfload(synth, argv[1], 1);
} else {
fluid _player add(player, argv[i]);
}

}

// Gtk stuff now

/* GtkWidget is the storage type for widgets */
GtkWidget *window;

GtkWidget *button;

GtkWidget *lyrics_box;

/* This is called in all GTK applications. Arguments are parsed

* from the command line and are returned to the application. */
gtk_init (8argc, &argv);

480

CHAPTER 27

/* create a new window */
window = gtk window new (GTK_WINDOW TOPLEVEL);

/* When the window is given the "delete-event" signal (this is given
* by the window manager, usually by the "close" option, or on the
* titlebar), we ask it to call the delete event () function
* as defined above. The data passed to the callback
* function is NULL and is ignored in the callback function. */
g signal connect (window, "delete-event",
G _CALLBACK (delete event), NULL);

/* Here we connect the "destroy" event to a signal handler.
* This event occurs when we call gtk widget destroy() on the window,
* or if we return FALSE in the "delete-event" callback. */
g signal connect (window, "destroy",
G_CALLBACK (destroy), NULL);

g signal connect (window, "realize", G CALLBACK (realize cb), NULL);

/* Sets the border width of the window. */
gtk_container_set border width (GTK_CONTAINER (window), 10);

// Gtk 3.0 deprecates gtk _vbox_new in favour of gtk grid

// but that isn't in Gtk 2.0, so we ignore warnings for now
lyrics_box = gtk vbox_new(TRUE, 1);

gtk widget show(lyrics box);

char *str = " "
lyric_labels[0]
lyric_labels[1]

-

gtk_label new(str);
gtk_label new(str);

gtk widget show (lyric_labels[0]);
gtk_widget_show (lyric_labels[1]);

KARAOKE FLUIDSYNTH

gtk _box_pack_start (GTK BOX (lyrics box), lyric labels[o], TRUE, TRUE, 0);
gtk_box_pack_start (GTK BOX (lyrics_box), lyric_labels[1], TRUE, TRUE, 0);

/* This packs the button into the window (a gtk container). */
gtk_container add (GTK_CONTAINER (window), lyrics box);

/* and the window */
gtk widget show (window);

/* A1l GTK applications must have a gtk main(). Control ends here
* and waits for an event to occur (like a key press or

* mouse event). */

gtk_main ();

/* wait for playback termination */
fluid_player_join(player);
/* cleanup */

481

CHAPTER 27 = KARAOKE FLUIDSYNTH

delete fluid audio driver(adriver);
delete fluid player(player);

delete fluid synth(synth);

delete fluid settings(settings);
return 0;

When run, it looks like Figure 27-1.

Here comes the sun
doo doo doo doo

Figure 27-1. Caption

Playing a Background Video with Gtk

Chapter 15 showed how to play a background video with images (using pixbufs), text (using Cairo), and
colored text (using Pango). You can extend that by adding in the dynamic text display for playing karaoke.

You can capture each lyric line in a structure, which keeps the whole line, the part that has been sung
already, the Pango markup for the line, and the Pango attributes.

typedef struct coloured line t {
gchar *line;
gchar *front_of line;
gchar *marked_up_line;
PangoAttrlList *attrs;

} coloured line t;

This is updated each time a MIDI lyric event occurs, in a thread listening to the FluidSynth sequencer.

A separate thread plays the video and on each frame overlays the frame image with the current and next
lyric. This is set into a GdkImage for display by Gtk.

The program is gtkkaraoke_player video pango.c

#include <fluidsynth.h>

#include <fluid_midi.h>

#include <string.h>

#include <gtk/gtk.h>

#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>

#include <libswscale/swscale.h>

// saving as pixbufs leaks memory
//#define USE_PIXBUF

482

http://dx.doi.org/10.1007/978-1-4842-2496-0_15

CHAPTER 27 © KARAOKE FLUIDSYNTH

/* 1un by

gtkkaraoke player video_pango /usr/share/sounds/sf2/FluidR3_GM.sf2 /home/newmarch/Music/
karaoke/sonken/songs/54154.kar
*/

/*

* APIs:

* GString: https://developer.gnome.org/glib/2.28/glib-Strings.html

* Pango text attributes: https://developer.gnome.org/pango/stable/pango-Text-Attributes.
html#pango-parse-markup

* Pango layout: http://www.gtk.org/api/2.6/pango/pango-Layout-Objects.html

* Cairo rendering: https://developer.gnome.org/pango/stable/pango-Cairo-Rendering.
html#pango-cairo-create-layout

* Cairo surface_t: http://cairographics.org/manual/cairo-cairo-surface-t.html

* GTK+ 3 Reference Manual: https://developer.gnome.org/gtk3/3.0/

* Gdk Pixbufs: https://developer.gnome.org/gdk/stable/gdk-Pixbufs.html

*/

struct lyric t {
gchar *lyric;
long tick;

1
typedef struct lyric t lyric t;

struct lyric_lines t {
char *language;
char *title;
char *performer;
GArray *lines; // array of GString *
};
typedef struct lyric_lines_t lyric_lines_t;

GArray *lyrics;
lyric lines_t lyric_lines;

typedef struct _coloured line t {
gchar *line;
gchar *front_of line;
gchar *marked_up_line;
PangoAttrList *attrs;

#ifdef USE_PIXBUF
GdkPixbuf *pixbuf;

#endif

} coloured line t;

coloured line_t coloured lines[2];

fluid_synth_t* synth;

483

CHAPTER 27 = KARAOKE FLUIDSYNTH

GtkWidget *image;

#if GTK_MAJOR_VERSION ==
GdkPixmap *dbuf_pixmap;
#endif

int height lyric_pixbufs[] = {300, 400}; // vertical offset of lyric in video
fluid_player_ t* player;

int current_panel = 1; // panel showing current lyric line

int current_line = 0; // which line is the current lyric

gchar *current_lyric; // currently playing lyric line
GString *front_of_lyric; // part of lyric to be coloured red
//GString *end_of lyric; // part of lyrci to not be coloured

// Colours seem to get mixed up when putting a pixbuf onto a pixbuf

#ifdef USE_PIXBUF

#define RED blue

f#else

#define RED red

#endif

gchar *markup[] = {"",
"",

""};
gchar *markup_newline[] = {"",
""};

GString *marked_up_label;

/* FFMpeg vbls */

AVFormatContext *pFormatCtx = NULL;
AVCodecContext *pCodecCtx = NULL;
int videoStream;

struct SwsContext *sws_ctx = NULL;
AVCodec *pCodec = NULL;

void markup line(coloured line t *1ine) {
GString *str = g string new(markup[0]);
g string_append(str, line->front_of_line);
g string append(str, markup[1]);
g string append(str, line->line + strlen(line->front of_line));
g string append(str, markup[2]);
printf("Marked up label \"%s\"\n", str->str);

line->marked_up_line = str->str;
// we have to free line->marked up line

pango_parse markup(str->str, -1,0, &(line->attrs), NULL, NULL, NULL);
g string free(str, FALSE);

484

CHAPTER 27 © KARAOKE FLUIDSYNTH

#ifdef USE_PIXBUF

void update line pixbuf(coloured line t *line) {
//return;
cairo_surface_t *surface;
cairo_t *cr;

int lyric_width = 480;

int lyric_height = 60;

surface = cairo_image surface create (CAIRO FORMAT ARGB32,
lyric_width, lyric_height);

cr = cairo create (surface);

PangoLayout *layout;
PangoFontDescription *desc;

// draw the attributed text

layout = pango cairo create layout (cr);
pango_layout_set text (layout, line->line, -1);
pango_layout_set attributes(layout, line->attrs);

// centre the image in the surface
int width, height;
pango _layout get pixel size(layout,
&qwidth,
&height);
cairo_move_to(cr, (lyric_width-width)/2, 0);

pango _cairo update layout (cr, layout);
pango_cairo_show layout (cr, layout);

// pull the pixbuf out of the surface

unsigned char *data = cairo_image surface get data(surface);

width = cairo_image surface get width(surface);

height = cairo image surface get height(surface);

int stride = cairo image surface get stride(surface);

printf("Text surface width %d height %d stride %d\n", width, height, stride);

GdkPixbuf *old pixbuf = line->pixbuf;

line->pixbuf = gdk pixbuf new_from_data(data, GDK_COLORSPACE RGB, 1, 8, width, height,
stride, NULL, NULL);

cairo_surface destroy(surface);

g object _unref(old pixbuf);

}
#endif

Jx*¥
* This MIDI event callback filters out the TEXT and LYRIC events

* and passes the rest to the default event handler.
*/

485

CHAPTER 27 = KARAOKE FLUIDSYNTH

int event callback(void *data, fluid midi event t *event) {
fluid synth t* synth = (fluid_synth t*) data;

int type

= fluid midi_event get type(event);

int chan = fluid midi event get channel(event);
if (synth == NULL) printf("Synth is null\n");

//return 0;

switch(type) {
case MIDI_TEXT:

printf("Callback: Playing text event %s (length %d)\n",

(char *) event->paramptr, (int) event->parami);

if (((char *) event->paramptr)[0] == "\\') {

int next_panel = current_panel; // really (current_panel+2)%2
int next_line = current_line + 2;
gchar *next_lyric;

if (current_line + 2 >= lyric_lines.lines->len) {
return FLUID OK;
}

current_line += 1;
current _panel = (current panel + 1) % 2;

// set up new line as current line

char *lyric = event->paramptr;

current lyric = g array index(lyric_lines.lines, GString *, current line)->str;
front_of_lyric = g string new(lyric+1); // lose \

printf("New line. Setting front to %s end to \"%s\"\n", lyric+i, current_lyric);

coloured lines[current panel].line = current lyric;
coloured lines[current panel].front of line = lyric+i;
markup line(coloured lines+current panel);

#ifdef USE_PIXBUF

#endif

486

update line pixbuf(coloured lines+current panel);

// update label for next line after this one
next lyric = g array index(lyric lines.lines, GString *, next line)-»>str;

marked up label = g string new(markup newline[0]);

g string append(marked up label, next lyric);

g string append(marked up label, markup newline[1]);

PangoAttrlList *attrs;

gchar *text;

pango_parse _markup (marked up label->str, -1,0, &attrs, &text, NULL, NULL);

coloured lines[next panel].line = next lyric;

coloured lines[next_panel].front_of line = "";
markup_line(coloured_lines+next_panel);

CHAPTER 27 © KARAOKE FLUIDSYNTH

#ifdef USE_PIXBUF
update_line pixbuf(coloured lines+next panel);
#endif
} else {
// change text colour as chars are played
char *lyric = event->paramptr;
if ((front_of lyric != NULL) &% (lyric != NULL)) {
g string append(front_of lyric, lyric);
char *s = front_of lyric->str;
coloured lines[current panel].front of line = s;
markup line(coloured lines+current panel);
#ifdef USE_PIXBUF
update line pixbuf(coloured lines+current panel);
#endif
}
}
return FLUID_OK;
case MIDI_LYRIC:
printf("Callback: Playing lyric event %d %s\n", (int) event->parami, (char *) event-
>paramptr);
return FLUID_OK;

case MIDI EOT:
printf("End of track\n");
exit(0);

return fluid synth_handle midi event(data, event);

}

void build lyric lines() {
int n;
lyric_t *plyric;
GString *line = g_string new("");
GArray *lines = g array sized new(FALSE, FALSE, sizeof(GString *), 64);

lyric_lines.title = NULL;

for (n = 0; n < lyrics->len; n++) {
plyric = g array index(lyrics, lyric_t *, n);
gchar *lyric = plyric->lyric;
int tick = plyric->tick;

if ((strlen(lyric) »>= 2) & (lyric[o] == '@") 8& (lyric[1] == 'L")) {

lyric_lines.language = lyric + 2;
continue;

487

CHAPTER 27 = KARAOKE FLUIDSYNTH

if ((strlen(lyric) »>= 2) 88 (lyric[o] == '@') && (lyric[1] == 'T")) {
if (lyric_lines.title == NULL) {
lyric_lines.title = lyric + 2;
} else {
lyric_lines.performer = lyric + 2;

}
continue;
}
if (lyric[o] == '@") {
// some other stuff like @KMIDI KARAOKE FILE
continue;
}

if ((yric[o] == '/*) || (Lyric[o] == "\')) {
// start of a new line
// add to lines
g array append val(lines, line);
line = g string new(lyric + 1);

} else {
line = g string append(line, lyric);

}

}

lyric_lines.lines = lines;

printf("Title is %s, performer is %s, language is %s\n",
lyric lines.title, lyric_lines.performer, lyric_lines.language);
for (n = 0; n < lines->len; n++) {
printf("Line is %s\n", g array index(lines, GString *, n)->str);
}

}

Vioio
* This is called whenever new data is loaded, such as a new file.
* Here we extract the TEXT and LYRIC events and just print them
* to stdout. They could e.g. be saved and displayed in a GUI
* as the events are received by the event callback.
*/
int onload callback(void *data, fluid player t *player) {
long ticks = oL;
lyric_t *plyric;

printf("Load callback, tracks %d \n", player->ntracks);
int n;
for (n = 0; n < player->ntracks; n++) {
fluid_track t *track = player->track[n];
printf("Track %d\n", n);
fluid midi event t *event = fluid track first event(track);

488

}

CHAPTER 27

while (event != NULL) {
switch (fluid midi event get type (event)) {
case MIDI_TEXT:
case MIDI_LYRIC:

/* there's no fluid midi_event get sysex()
or fluid midi event get time() so we
have to look inside the opaque struct

*/

ticks += event->dtime;

printf("Loaded event %s for time %1ld\n",

(char *) event->paramptr,
ticks);

plyric = g new(lyric_t, 1);

plyric->lyric = g_strdup(event->paramptr);

plyric->tick = ticks;

g_array append_val(lyrics, plyric);

}

event = fluid track next event(track);

}

printf("Saved %d lyric events\n", lyrics->len);
for (n = 0; n < lyrics->len; n++) {

plyric = g array index(lyrics, lyric_t *, n);

printf("Saved lyric %s at %ld\n", plyric->lyric, plyric->tick);
}

build lyric_lines();

return FLUID OK;

static void overlay lyric(cairo_t *cr,

coloured_line_t *line,
int ht) {

PangoLayout *layout;

int height, width;

if (line->line == NULL) {
return;
}

layout = pango cairo create layout (cr);
pango_layout set text (layout, line->line, -1);
pango layout set attributes(layout, line->attrs);
pango layout get pixel size(layout,

8width,

&height);
cairo move to(cr, (720-width)/2, ht);

KARAOKE FLUIDSYNTH

489

CHAPTER 27 = KARAOKE FLUIDSYNTH

pango_cairo_update layout (cr, layout);
pango_cairo show layout (cr, layout);

g object_unref(layout);

static void pixmap_destroy notify(guchar *pixels,
gpointer data) {
printf("Ddestroy pixmap\n");
}

static void *play background(void *args) {
/* based on code from
http://www.cs.dartmouth.edu/~xy/cs23/gtk.html
http://cdry.wordpress.com/2009/09/09/using-custom-io-callbacks-with-ffmpeg/
*/

int i;

AVPacket packet;

int frameFinished;
AVFrame *pFrame = NULL;

int oldSize;

char *oldData;

int bytesDecoded;
GdkPixbuf *pixbuf;
AVFrame *picture RGB;
char *buffer;

#if GTK_MAJOR VERSION == 2
GdkPixmap *pixmap;
GdkBitmap *mask;

#endif

pFrame=avcodec_alloc_frame();

i=0;

picture RGB = avcodec_alloc_frame();

buffer = malloc (avpicture get size(PIX FMT RGB24, 720, 576));

avpicture fill((AVPicture *)picture RGB, buffer, PIX FMT RGB24, 720, 576);

while(av_read frame(pFormatCtx, &packet)>=0) {
if(packet.stream_index==videoStream) {

//printf("Frame %d\n", i++);

usleep(33670); // 29.7 frames per second

// Decode video frame

avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished,
8packet);

int width = pCodecCtx->width;

int height = pCodecCtx->height;

490

CHAPTER 27 © KARAOKE FLUIDSYNTH

sws_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_
fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT RGB24, SWS_BICUBIC, NULL,
NULL, NULL);

if (frameFinished) {
printf("Frame %d\n", i++);

sws_scale(sws_ctx, (uint8_t const * const *) pFrame->data, pFrame-
>linesize, 0, pCodecCtx->height, picture RGB->data, picture RGB->linesize);

pixbuf = gdk pixbuf new from data(picture RGB->data[0], GDK_COLORSPACE_RGB,
0, 8, 720, 480, picture RGB->linesize[0], pixmap_destroy notify, NULL);

/* start GTK thread lock for drawing */
gdk_threads_enter();

#define SHOW_LYRIC
#ifdef SHOW_LYRIC
// Create the destination surface
cairo surface t *surface = cairo image surface create (CAIRO FORMAT ARGB32,
width, height);
cairo t *cr = cairo create(surface);

// draw the background image
gdk _cairo_set source pixbuf(cr, pixbuf, 0, 0);
cairo paint (cr);

#ifdef USE_PIXBUF
// draw the lyric
GdkPixbuf *lyric_pixbuf = coloured lines[current panel].pixbuf;
if (lyric_pixbuf != NULL) {
int width = gdk_pixbuf get width(lyric_pixbuf);
gdk_cairo_set source pixbuf(cr,
lyric_pixbuf,
(720-width)/2,
height lyric_pixbufs[current panel]);
cairo paint (cr);

}

int next_panel = (current panel+1) % 2;
lyric_pixbuf = coloured lines[next panel].pixbuf;
if (lyric_pixbuf != NULL) {
int width = gdk_pixbuf get width(lyric_pixbuf);
gdk_cairo_set source pixbuf(cr,
lyric_pixbuf,
(720-width)/2,
height lyric_pixbufs[next_panel]);
cairo paint (cr);

491

CHAPTER 27 = KARAOKE FLUIDSYNTH

#else

overlay lyric(cr,
coloured_lines+current_panel,
height_lyric_pixbufs[current_panel]);

int next_panel = (current panel+1) % 2;
overlay lyric(cr,
coloured_lines+next_panel,
height_lyric_pixbufs[next_panel]);
#endif
pixbuf = gdk pixbuf get from surface(surface,
0,
0,
width,
height);

gtk image set from pixbuf((GtkImage*) image, pixbuf);

g_object_unref(pixbuf); /* reclaim memory */
//g_object_unref(layout);
cairo_surface_destroy(surface);
cairo destroy(cr);
#else
gtk_image_set from_pixbuf((GtkImage*) image, pixbuf);
#endif /* SHOW_LYRIC */

/* release GTK thread lock */
gdk_threads leave();

}

av_free packet(&packet);
}

sws_freeContext(sws_ctx);

printf("Video over!\n");
exit(0);
}

static void *play midi(void *args) {
fluid _player play(player);

printf("Audio finished\n");
//exit(0);
}

/* Called when the windows are realized

*/

static void realize cb (GtkWidget *widget, gpointer data) {
/* start the video playing in its own thread */
pthread_t tid;
pthread create(&tid, NULL, play background, NULL);

492

}

CHAPTER 27

/* start the MIDI file playing in its own thread */
pthread_t tid_midi;
pthread create(&tid midi, NULL, play midi, NULL);

static gboolean delete event(GtkWidget *widget,

}

GdkEvent *event,
gpointer data)

/* If you return FALSE in the "delete-event" signal handler,

GTK will emit the "destroy" signal. Returning TRUE means

you don't want the window to be destroyed.

This is useful for popping up 'are you sure you want to quit?’
type dialogs. */

* X ¥ ¥

g print ("delete event occurred\n");

/* Change TRUE to FALSE and the main window will be destroyed with
* a "delete-event". */

return TRUE;

/* Another callback */
static void destroy(GtkWidget *widget,

{
}

gpointer data)

gtk_main_quit ();

int main(int argc, char** argv)

{

XInitThreads();
int i;
fluid_settings t* settings;

fluid_audio_driver t* adriver;

settings = new fluid settings();

fluid_settings setstr(settings, "audio.driver", "alsa");
//fluid_settings_setint(settings, "lash.enable", 0);

fluid settings setint(settings, "synth.polyphony", 64);

fluid _settings setint(settings, "synth.reverb.active", FALSE);
fluid settings setint(settings, "synth.sample-rate", 22050);
synth = new_fluid synth(settings);

player = new fluid player(synth);

lyrics = g _array sized new(FALSE, FALSE, sizeof(lyric_t *), 1024);

KARAOKE FLUIDSYNTH

493

CHAPTER 27 = KARAOKE FLUIDSYNTH

494

/* Set the MIDI event callback to our own functions rather than the system default */
fluid player set playback callback(player, event callback, synth);

/* Add an onload callback so we can get information from new data before it plays */
fluid player set onload callback(player, onload callback, NULL);

adriver = new_fluid audio driver(settings, synth);
/* process command line arguments */
for (i = 1; i < argc; i++) {
if (fluid_is soundfont(argv[i])) {
fluid_synth_sfload(synth, argv[1], 1);
} else {
fluid player add(player, argv[i]);
}

}
/* FFMpeg stuff */

AVFrame *pFrame = NULL;
AVPacket packet;

AVDictionary *optionsDict = NULL;

av_register_all();

if(avformat_open_input(8pFormatCtx, "short.mpg", NULL, NULL)!=0) {

printf("Couldn't open video file\n");
return -1; // Couldn't open file

}

// Retrieve stream information

if(avformat_find stream_ info(pFormatCtx, NULL)<0) {
printf("Couldn't find stream information\n");
return -1; // Couldn't find stream information

}

// Dump information about file onto standard error
av_dump_format(pFormatCtx, 0, argv[1], 0);

// Find the first video stream
videoStream=-1;
for(i=0; i<pFormatCtx->nb_streams; i++)

if(pFormatCtx->streams[i]->codec->codec_type==AVMEDIA TYPE VIDEO) {

videoStream=i;
break;
}
if(videoStream==-1)
return -1; // Didn't find a video stream

CHAPTER 27

for(i=0; i<pFormatCtx->nb_streams; i++)
if(pFormatCtx->streams[i]->codec->codec_type==AVMEDIA TYPE_AUDIO) {
printf("Found an audio stream too\n");
break;

}

// Get a pointer to the codec context for the video stream
pCodecCtx=pFormatCtx->streams[videoStream]->codec;

// Find the decoder for the video stream
pCodec=avcodec_find_decoder(pCodecCtx->codec_id);
if(pCodec==NULL) {
fprintf(stderr, "Unsupported codec!\n");
return -1; // Codec not found

}

// Open codec

if(avcodec_open2(pCodecCtx, pCodec, 8optionsDict)<0) {
printf("Could not open codec\n");
return -1; // Could not open codec

}

Sws_ctx =
sws_getContext
(

pCodecCtx->width,
pCodecCtx->height,
pCodecCtx->pix_fmt,
pCodecCtx->width,
pCodecCtx->height,
PIX_FMT_YUV420P,
SWS_BILINEAR,

NULL,

NULL,

NULL

)5
/* GTK stuff now */

/* GtkWidget is the storage type for widgets */
GtkWidget *window;

GtkWidget *button;

GtkWidget *lyrics_box;

/* This is called in all GTK applications. Arguments are parsed
* from the command line and are returned to the application. */
gtk_init (8argc, &argv);

/* create a new window */
window = gtk window new (GTK_WINDOW TOPLEVEL);

KARAOKE FLUIDSYNTH

495

CHAPTER 27 = KARAOKE FLUIDSYNTH

496

/* When the window is given the "delete-event" signal (this is given
* by the window manager, usually by the "close" option, or on the
* titlebar), we ask it to call the delete event () function
* as defined above. The data passed to the callback
* function is NULL and is ignored in the callback function. */
g_signal_connect (window, "delete-event",
G CALLBACK (delete event), NULL);

/* Here we connect the "destroy" event to a signal handler.
* This event occurs when we call gtk widget destroy() on the window,
* or if we return FALSE in the "delete-event" callback. */
g signal connect (window, "destroy",
G_CALLBACK (destroy), NULL);

g signal connect (window, "realize", G CALLBACK (realize cb), NULL);

/* Sets the border width of the window. */
gtk_container_set border width (GTK_CONTAINER (window), 10);

lyrics_box = gtk vbox_new(TRUE, 1);
gtk widget show(lyrics box);

/*

char *str = "
lyric_labels[o]
str = "World";
lyric_labels[1] = gtk label new(str);
*/

gtk label new(str);

image = gtk_image new();

//image_drawable = gtk drawing_area_new();
//gtk widget set size request (canvas, 720, 480);
//gtk_drawing area_size((GtkDrawingArea *) image drawable, 720, 480);

//gtk_widget show (lyric_labels[0]);
//gtk_widget show (lyric_labels[1]);

gtk_widget_show (image);

//gtk_box_pack_start (GTK_BOX (lyrics_box), lyric_labels[o], TRUE, TRUE,
//gtk_box_pack_start (GTK_BOX (lyrics box), lyric_labels[1], TRUE, TRUE,
gtk _box_pack _start (GTK BOX (lyrics box), image, TRUE, TRUE, 0);
//gtk_box_pack_start (GTK BOX (lyrics box), canvas, TRUE, TRUE, 0);

0);
0);

//gtk_box_pack start (GTK BOX (lyrics box), image drawable, TRUE, TRUE, 0);

/* This packs the button into the window (a gtk container). */
gtk _container add (GTK_CONTAINER (window), lyrics box);

/* and the window */
gtk_widget_show (window);

CHAPTER 27

/* All GTK applications must have a gtk main(). Control ends here

* and waits for an event to occur (like a key press or

* mouse event). *
gtk_main ();

return 0;

/* wait for playback termination */
fluid_player join(player);

/* cleanup */

delete fluid audio driver(adriver);
delete fluid player(player);

delete fluid synth(synth);

delete fluid settings(settings);

return 0;

The application looks like Figure 27-2.

Figure 27-2. Caption

Conclusion

By extending FluidSynth, it can be made into a karaoke player in various ways. It is quite heavy in CPU usage,
though. On my laptop, the final version runs at about 100 percent CPU.

KARAOKE FLUIDSYNTH

497

CHAPTER 28

TiMidity and Karaoke

TiMidity is a MIDI player, not a karaoke player. It is designed as a stand-alone application with a particular
kind of extensibility. Out of the box it can sort of play karaoke but not well. This chapter looks at how to work
with TiMidity to build a karaoke system.

By default it just plays the MIDI music, with the lyrics printed out.

$timidity ../54154.mid

Requested buffer size 32768, fragment size 8192

ALSA pcm 'default' set buffer size 32768, period size 8192 bytes
Playing ../54154.mid

MIDI file: ../54154.mid

Format: 1 Tracks: 1 Divisions: 30

No instrument mapped to tone bank 0, program 92 - this instrument will not be heard
#0001

@@00@12

@Here Comes The Sun

@

@@Beatles

Here comes the sun

doo doo doo doo

Here comes the sun

I said it's alright

Little

darling

But it has a number of alternative interfaces that give different displays. If you run timidity with the -h
(help) option, it will show a screen including something like this:

Available interfaces (-i, --interface option):

-in ncurses interface

-ie Emacs interface (invoked from “M-x timidity')
-ia XAW interface

-id dumb interface

-ir remote interface

-iA ALSA sequencer interface

The default interface is “dumb,” but if you run with, say, the Xaw interface, you get a display like
Figure 28-1.

© Jan Newmarch 2017 499
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_28

CHAPTER 28 © TIMIDITY AND KARAOKE

Yolune 70

Figure 28-1. TiMidity with Xaw interface

There is, however, one unfortunate effect: the lyrics are displayed before they are due to be played! To
get the lyrics played just as they should be sung, you need to turn on the --trace option. From the man
page, “Toggles trace mode. In trace mode, TiMidity++ attempts to display its current state in real time.” (You
may find the link between documentation and behavior a little less than obvious.)

timidity --trace ../54154.mid

This now works fine for MIDI files; the lyrics are displayed when they should be sung. But it doesn’t
display the lyrics for KAR files. For that you need the - -trace-text-meta option.

timidity --trace --trace-text-meta ../54154.kar
So, by this stage, TiMidity will display the lyrics on the screen in real time for karaoke files (and MIDI

files with lyric events). To have your own control over this display, you need to build your own TiMidity
interface.

TiMidity and Jack

In Chapter 17, I discussed playing MIDI files using Jack. Jack is designed to link audio sources and sinks in
arbitrary configurations. By running gjackctl, you can link, for example, microphone outputs to speaker
inputs. This is done by dragging capture_1 to playback 1, and so on, and it looks like Figure 28-2.

500

http://dx.doi.org/10.1007/978-1-4842-2496-0_17

CHAPTER 28 I TIMIDITY AND KARAOKE

E 3 Connections - JACK Audio Conneckion Kit —-0Ox
Audio | MIDI ' ALSA
Readable Clients / Output Ports ¥ Writable Clients / Input Ports v
v @ system v @@ system
A capture_1 _— ¢ playback_1
A capture_2 —_— ¢ playback_2

A Connect || X Disconnect || o€ Disconnect All € Expand All O Refresh |

Figure 28-2. gjackctl showing microphone to speakers

If TiMidity is then run with Jack output, you get instant karaoke. You can also see the lyrics played in real
time using the --trace option.

timidity -0j --trace 54154.mid
The connections are shown in qjackctl in Figure 28-3.

3 Connecktions - JACK Audio Connection Kit —0OXx
Audio | MIDI = ALSA

Readable Clients / Output Ports ¥ Writable Clients / Input Ports v
v @ system v @@ system

A capture_1 ¢ playback_1

A capture_2 ; ¢ playback_2
> [TiMidity

A Connect || X Disconnect || o€ Disconnect All € Expand All O Refresh |

Figure 28-3. gjackctl showing TiMidity

The lyric display is klunky and will be improved later.
501

CHAPTER 28 © TIMIDITY AND KARAOKE

TiMidity Interface

You will need to have the TiMidity source downloaded from SourceForge TiMidity++ (http://sourceforge.
net/projects/timidity/?source=dlp).
In Chapter 21, I discussed two alternative ways of building applications using TiMidity.

e You can build a front end with TiMidity as a library back end.

¢ You can use standard TiMidity with a custom-built interface as the back end to
TiMidity.
Both options are possible here, with one wrinkle: if you want to capture MIDI events, then you have to
do so as a back end to TiMidity, which requires that you build a TiMidity interface.
To recap, the different interface files for TiMidity are stored in the directory interface and include files
such as dumb_c.c for the dumb interface. They all revolve around a data structure ControlMode defined in
timidity/controls.h.

typedef struct {
char *id_name, id_character;
char *id_short_name;
int verbosity, trace playing, opened;

int32 flags;

int (*open)(int using stdin, int using_stdout);
void (*close)(void);
int (*pass_playing list)(int number of files, char *1list of files[]);
int (*read)(int32 *valp);
int (*write)(char *buf, int32 size);
int (*cmsg)(int type, int verbosity level, char *fmt, ...);
void (*event)(CtlEvent *ev); /* Control events */
} ControlMode;

For the simplest values of the functions in this structure, see the code for the dumb interface in
interface/dumb_c.c.

For dealing with lyrics, the main field to set is the function event (). This will be passed a pointer to a
CtlEvent, which is defined in timidity/controls.h.

typedef struct CtlEvent {
int type; /* See above */
ptr_size t vi, v2, v3, v4;/* Event value */
} CtlEvent;

The type field distinguishes a large number of event types such as CTLE_NOW_LOADING and CTLE_PITCH
BEND. The type of interest to you is CTLE_LYRIC.
Typical code to handle this is in interface/dumb_c.c, which prints event information to output.

502

http://sourceforge.net/projects/timidity/?source=dlp
http://sourceforge.net/projects/timidity/?source=dlp
http://dx.doi.org/10.1007/978-1-4842-2496-0_21

CHAPTER 28

static void ctl event(CtlEvent *e)
{
switch(e->type) {
case CTLE_LYRIC:
ctl lyric((int)e->v1);
break;
}
}

static void ctl lyric(int lyricid)
{

char *lyric;

lyric = event2string(lyricid);
if(lyric != NULL)

if(lyric[0] == ME_KARAOKE_LYRIC)
if(lyric[1] == '/' || lyric[1] == "\\")

fprintf(outfp, "\n%s", lyric + 2);
fflush(outfp);

else if(lyric[1] == '@")

if(lyric[2] == 'L")
fprintf(outfp, "\nLanguage: %s\n", lyric + 3);
else if(lyric[2] == 'T")
fprintf(outfp, "Title: %s\n", lyric + 3);
else
fprintf(outfp, "%s\n", lyric + 1);
}
else
{
fputs(lyric + 1, outfp);
fflush(outfp);
}
}
else
{
if(lyric[o] == ME_CHORUS TEXT [lyric[0] == ME_INSERT TEXT)
fprintf(outfp, "\r");
fputs(lyric + 1, outfp);
fflush(outfp);

TIMIDITY AND KARAOKE

503

CHAPTER 28 © TIMIDITY AND KARAOKE

Getting the List of Lyrics

The failing of the current interfaces in TiMidity with regard to karaoke is that while they can show the lyrics
as they are played, they don’t show the lyric lines and progressively highlight them as they are played. For

that, you need the set of lyrics.

TiMidity in fact builds a list of lyrics and makes them accessible. It has a function event2string() that
takes an integer parameter from 1 upward. For each value, it returns the string of a lyric or text event, finally
returning NULL on the end of the list. The first character returned is a type parameter; the rest is the string.

Using GLib functions, you can build up an array of lines for a KAR file with the following:

struct lyric t {

};

gchar *lyric;
long tick; // not used here

typedef struct lyric_t lyric_t;

struct lyric lines t {

};

char *language;

char *title;

char *performer;

GArray *lines; // array of GString *

typedef struct _lyric lines_t lyric_lines_t;

GArray *lyrics;
lyric_lines_t lyric_lines;

static void build lyric lines() {

504

int n;

lyric_t *plyric;

GString *line = g string new("");

GArray *lines = g array sized new(FALSE, FALSE, sizeof(GString *), 64);

lyric_lines.title = NULL;

n=1;

char *evt str;

while ((evt str = event2string(n++)) != NULL) {
gchar *lyric = evt str+1;

if ((strlen(lyric) »>= 2) & (lyric[o] == '@") 8& (lyric[1] == 'L")) {
lyric_lines.language = lyric + 2;
continue;

}

if ((strlen(lyric) »>= 2) & (lyric[o] == '@") 8& (lyric[1]
if (lyric_lines.title == NULL) {
lyric lines.title = lyric + 2;
} else {

T A

CHAPTER 28 I TIMIDITY AND KARAOKE

lyric lines.performer = lyric + 2;
}

continue;

}

if (lyric[o] == '@") {
// some other stuff like @KMIDI KARAOKE FILE
continue;

}

if ((Lyriclo] == /') || (Lyrico] == "\')) {
// start of a new line
// add to lines
g array append val(lines, line);
line = g string new(lyric + 1);
} else {
line = g_string append(line, lyric);
}

}

lyric_lines.lines = lines;

printf("Title is %s, performer is %s, language is %s\n",
lyric lines.title, lyric_lines.performer, lyric_lines.language);
for (n = 0; n < lines->len; n++) {
printf("Line is %s\n", g array index(lines, GString *, n)->str);
}

The function build lyric_lines() should be called from the CTLE_LOADING_DONE branch of ctl_
event().

TiMidity Options

If you choose to use TiMidity as the front end, then you need to run it with suitable options. These include
turning tracing on and also dynamically loading your new interface. This can be done, for example, with the

u . n

following for a “v” interface in the current directory:

timidity -d. -iv --trace --trace-text-meta ...

The alternative is building a main program that calls TiMidity as a library. The command-line
parameters to TiMidity then have to be included as hard-coded parameters in the application. One is easy:
the Ct1Mode has a field trace_playing and setting it to 1 turns tracing on. Including text events as lyric
events requires digging a bit deeper into TiMidity but just requires (shortly after initializing the library) the
following:

extern int opt trace text meta event;
opt_trace_ text_meta event = 1;

505

CHAPTER 28 © TIMIDITY AND KARAOKE

Playing Lyrics Using Pango + Cairo + Xlib

I want to be able to play my karaoke files on the Raspberry Pi and similar systems on a chip (SOCs).
Unfortunately, the Raspberry Pi has a grossly underpowered CPU, so I have ended up using a CubieBoard 2.

Anything involving heavy graphics is not possible on this CPU. All of the MIDI players hit close to (or
over) 100 percent CPU usage just by themselves. So, the system discussed in the next section, showing
background video, isn’t feasible on the Raspberry Pi without the use of the GPU, which is discussed in my
book Raspberry Pi GPU Audio Video Programming. The programs discussed in the sequel play fine on any
current laptops and desktops.

In this section, you use TiMidity as the MIDI player with a minimal back end to display the lyrics as they
are played. The lowest level of GUI support is used, namely, Xlib. This can be used to draw text using low-
level Xlib calls such as XDrawImageString. This works fine with ASCII languages and, with appropriate font
choices, with other languages in the ISO-8859 family.

Asian languages are harder to deal with in standard C. They involve 1- or 2-byte characters when using
an encoding such as UTF-8. To manage these, it is easiest to switch to a library designed to handle them
such, such as Cairo.

Cairo is good for drawing simple text. For example, for Chinese characters you have to find a font that
will allow you to draw them. Alternatively, you can jump up one further level to Pango. Pango looks after all
the font issues and produces glyphs that are sent to the X server.

That approach is adopted in the following interface, x_code. c.

The essential difference between the previous naive interface section and the Xlib interface of this
section lies, of course, in the drawing. The function build_lyric_lines gives you access to the set of lines to
render. Additional data types are required for Pango and Cairo as follows:

GArray *lyrics;
GString *lyrics array[NUM_LINES];

lyric_lines_t lyric_lines;

typedef struct coloured line t {
gchar *line;
gchar *front_of line;
gchar *marked_up_line;
PangoAttrlList *attrs;

} coloured line t;

int height lyric pixbufs[] = {100, 200, 300, 400}; // vertical offset of lyric in video
int coloured text offset;

// int current_panel = 1; // panel showing current lyric line
int current_line = 0; // which line is the current lyric
gchar *current lyric; // currently playing lyric line
GString *front_of_lyric; // part of lyric to be coloured red
//GString *end_of lyric; // part of lyrci to not be coloured

gchar *markup[] = {"",
"",

""};
gchar *markup_newline[] = {"",
""};

GString *marked_up_label;

506

CHAPTER 28 I TIMIDITY AND KARAOKE

PangoFontDescription *font_description;

cairo_surface_t *surface;
cairo_t *cr;

The markup string will draw played text in red and unplayed text in white, while markup_newline will
clear the previous line. The principal drawing functions are as follows:

static void paint_background() {
cr = cairo create(surface);
cairo set source rgb(cr, 0.0, 0.8, 0.0);
cairo_paint(cr);
cairo_destroy(cr);

}

static void set font() {
font_description = pango font description new ();
pango_font_description_set family (font description, "serif");
pango_font description set weight (font description, PANGO WEIGHT BOLD);
pango_font description set absolute size (font description, 32 * PANGO SCALE);

}

static int draw_text(char *text, float red, float green, float blue, int height, int offset)
{

// See http://cairographics.org/FAQ/

PangolLayout *layout;

int width, ht;

cairo_text_extents_t extents;

layout = pango cairo create layout (cr);
pango layout set font description (layout, font description);
pango layout set text (layout, text, -1);

if (offset == 0) {
pango layout get size(layout, &width, 8ht);
offset = (WIDTH - (width/PANGO SCALE)) / 2;
}

cairo set source rgb (cr, red, green, blue);
cairo move to (cr, offset, height);

pango_cairo_show_layout (cr, layout);

g _object_unref (layout);
return offset;

507

CHAPTER 28 © TIMIDITY AND KARAOKE

The function to initialize X and Cairo is as follows:

static void init X() {
int screenNumber;
unsigned long foreground, background;
int screen_width, screen_height;
Screen *screen;
XSizeHints hints;
char **argv = NULL;
XGCValues gcValues;
Colormap colormap;
XColor rgb_color, hw_color;

Font font;
//char *FNAME = "hanzigb24st";
char *FNAME = "-misc-fixed-medium-r-normal--0-0-100-100-c-0-is010646-1";

display = XOpenDisplay(NULL);
if (display == NULL) {
fprintf(stderr, "Can't open dsplay\n");
exit(1);
}
screenNumber = DefaultScreen(display);
foreground = BlackPixel(display, screenNumber);
background = WhitePixel(display, screenNumber);

screen = DefaultScreenOfDisplay(display);
screen width = WidthOfScreen(screen);
screen_height = HeightOfScreen(screen);

hints.x = (screen_width - WIDTH) / 2;
hints.y = (screen_height - HEIGHT) / 2;
hints.width = WIDTH;

hints.height = HEIGHT;

hints.flags = PPosition | PSize;

window = XCreateSimpleWindow(display,
DefaultRootWindow(display),
hints.x, hints.y, WIDTH, HEIGHT, 10,
foreground, background);

XSetStandardProperties(display, window,
"TiMidity", "TiMidity",
None,

argv, O,
&hints);

XMapWindow(display, window);

508

CHAPTER 28 I TIMIDITY AND KARAOKE

set_font();
surface = cairo xlib_surface create(display, window,

DefaultVisual(display, 0), WIDTH, HEIGHT);
cairo x1ib surface set size(surface, WIDTH, HEIGHT);

paint_background();

/*

cr = cairo create(surface);

draw_text(g_array_index(lyric_lines.lines, GString *, 0)->str,
0.0, 0.0, 1.0, height lyric pixbufs[0]);

draw_text(g_array_index(lyric_lines.lines, GString*, 1)->str,
0.0, 0.0, 1.0, height lyric_pixbufs[0]);

cairo destroy(cr);

*/

XFlush(display);

The key function is ctl_lyric, which is responsible for handling lyrics as they are played. If the lyric
signals and end of line with \ or /, then it has to update the current_line. The next lines redraw the text
of each line and then progressively step through the current line, coloring the first part red and the rest in
white.

static void ctl lyric(int lyricid)
{

char *lyric;
current_file_info = get_midi_file info(current_file, 1);

lyric = event2string(lyricid);
if(lyric != NULL)

lyric++;
printf("Got a lyric %s\n", lyric);

if ((*lyric == "\\") || (*¥lyric == '/")) {

int next_line = current line + NUM_LINES;
gchar *next_lyric;

if (current line + NUM_LINES < lyric lines.lines->len) {
current_line += 1;

// update label for next line after this one
next lyric = g array index(lyric lines.lines, GString *, next line)-»>str;

} else {
current_line += 1;
lyrics_array[(next line-1) % NUM LINES] = NULL;

next_lyric = "";

509

CHAPTER 28 © TIMIDITY AND KARAOKE

// set up new line as current line

if (current_line < lyric_lines.lines->len) {
GString *gstr = g array index(lyric lines.lines, GString *, current line);
current_lyric = gstr->str;
front_of_lyric = g_string new(lyric+1); // lose slosh

}

printf("New line. Setting front to %s end to \"%s\"\n", lyric+1, current lyric);

// Now draw stuff
paint_background();

cr = cairo create(surface);

int n;
for (n = 0; n < NUM_LINES; n++) {

if (lyrics_array[n] !s NULL) {
draw_text(lyrics_array[n]->str,
0.0, 0.0, 0.5, height lyric pixbufs[n], 0);
}
}

// redraw current and next lines
if (current_line < lyric_lines.lines->len) {
if (current line »>= 2) {
// redraw last line still in red
GString *gstr = lyrics array[(current line-2) % NUM_LINES];
if (gstr != NULL) {
draw_text(gstr->str,
1.0, 0.0, 00,
height lyric pixbufs[(current line-2) % NUM_LINES],
0);
}
}
// draw next line in brighter blue
coloured text offset = draw text(lyrics array[(current line-1) % NUM_LINES]-
>str,
0.0, 0.0, 1.0, height lyric_pixbufs[(current line-1) % NUM_LINES], 0);
printf("coloured text offset %d\n", coloured text offset);
}

if (next_line < lyric_lines.lines->len) {
lyrics_array[(next line-1) % NUM _LINES] =
g array index(lyric lines.lines, GString *, next line);

}

cairo_destroy(cr);
XFlush(display);

510

CHAPTER 28 I TIMIDITY AND KARAOKE

} else {
// change text colour as chars are played
if ((front_of lyric != NULL) & (lyric != NULL)) {
g string append(front_of lyric, lyric);
char *s = front_of lyric->str;
//coloured lines[current panel].front _of line = s;

cairo t *cr = cairo_create(surface);

// See http://cairographics.org/FAQ/

draw_text(s, 1.0, 0.0, 0.0,
height lyric pixbufs[(current line-1) % NUM_LINES],
coloured text offset);

cairo_destroy(cr);
XFlush(display);

The file x_code.c is compiled with the following:

CFLAGS = $(shell pkg-config --cflags gtk+-$(V).0 libavformat libavcodec libswscale
libavutil) -ITiMidity++-2.14.0/timidity/ -ITiMidity++-2.14.0/utils

LIBS = -lasound -1 glib-2.0 $(shell pkg-config --1libs gtk+-$(V).0 libavformat libavcodec
libavutil libswscale) -lpthread -1X11

gcc -fPIC $(CFLAGS) -c -o x_code.o x_code.c $(LIBS)
gcc -shared -o if x.so x_code.o $(LIBS)

Again, this uses a locally compiled and built version of TiMidity because the Ubuntu version crashes. It
is run with the following:

TiMidity++-2.14.0/timidity/timidity -d. -ix --trace --trace-text-meta <KAR file>

511

CHAPTER 28 ' TIMIDITY AND KARAOKE

e TiMidity

Playing a Background Video with Gtk

In Chapter 27, I discussed a program to show lyrics overlaid onto a movie. Apart from the previous
considerations, the rest of the application follows similarly to the FluidSynth case: build a set of lyric lines,
display them using Pango over Gtk pixbufs, and when a new lyric event occurs, update the corresponding
colors in the lyric line.

All of the dynamic action needs to occur out of the back end of TiMidity, particularly in the function
ctl_event. Other parts such as initializing FFmpeg and Gtk must also occur in the back end when using
standard TiMidity. If TiMidity is used as a library, this initialization could occur in the front or the back. For
simplicity, you just place it all in the back in the file video_code.c.

As in the previous section, you have some initial data structures and values and will have an array of two
lines of coloured_line_t.

struct lyric t {

gchar *lyric;
long tick;

};
typedef struct lyric t lyric t;

512

http://dx.doi.org/10.1007/978-1-4842-2496-0_27

CHAPTER 28 I TIMIDITY AND KARAOKE

struct lyric lines t {
char *language;
char *title;
char *performer;
GArray *lines; // array of GString *
};
typedef struct 1lyric lines t lyric lines t;

GArray *lyrics;
lyric_lines_t lyric_lines;

typedef struct coloured line t {
gchar *line;
gchar *front_of line;
gchar *marked_up_line;
PangoAttrlList *attrs;

#ifdef USE_PIXBUF
GdkPixbuf *pixbuf;

#endif

} coloured line t;

coloured line t coloured lines[2];
GtkWidget *image;
int height lyric_pixbufs[] = {300, 400}; // vertical offset of lyric in video

int current panel = 1; // panel showing current lyric line

int current_line = 0; // which line is the current lyric
gchar *current_lyric; // currently playing lyric line
GString *front_of lyric; // part of lyric to be coloured red
//GString *end_of lyric; // part of lyrci to not be coloured

// Colours seem to get mixed up when putting a pixbuf onto a pixbuf
#ifdef USE_PIXBUF

#define RED blue

#else

#define RED red

#endif

gchar *markup[] = {"",
"",

b ""};
gchar *markup newline[] = {"",
""};

GString *marked up_label;

513

CHAPTER 28 © TIMIDITY AND KARAOKE

There are now essentially two blocks of code: one to keep the array of colored lines up-to-date as
each new lyric is played and one to play the video with the colored lines on top. The first block has three
functions: markup_line to prepare a string with the HTML markup, update line pixbuf to create a new
pixbuf by applying the Pango attributes to the marked-up line, and ctl_lyric, which is triggered on each
new lyric event.

The first two functions are as follows:

void markup line(coloured line t *1ine) {
GString *str = g string new(markup[0]);
g string append(str, line->front of line);
g string append(str, markup[1]);
g string append(str, line->line + strlen(line->front of line));
g string append(str, markup[2]);
printf("Marked up label \"%s\"\n", str->str);

line->marked up_line = str->str;
// we have to free line->marked_up_line

pango_parse markup(str->str, -1,0, &(line->attrs), NULL, NULL, NULL);
g string free(str, FALSE);
}

void update line pixbuf(coloured line t *line) {
//return;
cairo_surface t *surface;
cairo_t *cr;

int lyric_width = 480;

int lyric_height = 60;

surface = cairo_image surface create (CAIRO FORMAT ARGB32,
lyric_width, lyric_height);

cr = cairo create (surface);

PangolLayout *layout;
PangoFontDescription *desc;

// draw the attributed text

layout = pango cairo create layout (cr);
pango_layout_set text (layout, line->line, -1);
pango_layout set attributes(layout, line->attrs);

// centre the image in the surface
int width, height;
pango_layout_get pixel size(layout,
dwidth,
8height);
cairo_move_to(cr, (lyric_width-width)/2, 0);

pango_cairo_update layout (cr, layout);
pango_cairo show layout (cr, layout);

514

CHAPTER 28 I TIMIDITY AND KARAOKE

// pull the pixbuf out of the surface

unsigned char *data = cairo_image surface get data(surface);

width = cairo_image surface get width(surface);

height = cairo image surface get height(surface);

int stride = cairo image surface get stride(surface);

printf("Text surface width %d height %d stride %d\n", width, height, stride);

GdkPixbuf *old_pixbuf = line->pixbuf;

line->pixbuf = gdk pixbuf new_from data(data, GDK_COLORSPACE RGB, 1, 8, width, height,
stride, NULL, NULL);

cairo surface destroy(surface);

g object_unref(old pixbuf);

The function to handle each new lyric event needs to work out if a newline event has occurred, which is
when the lyric is the single \ character. Then it needs to update the current_line index and also to replace
the previous line by a new one. Once that is done, for all events the current line is marked and its pixmap
generated for drawing. The ctl _lyric function is as follows:

static void ctl lyric(int lyricid)
{

char *lyric;
current_file info = get midi_file info(current file, 1);

lyric = event2string(lyricid);
if(lyric != NULL)
lyric++;
printf("Got a lyric %s\n", lyric);
if (*lyric == "\\') {
int next_panel = current_panel; // really (current_panel+2)%2
int next_line = current line + 2;
gchar *next_lyric;

if (current_line + 2 >= lyric_lines.lines->len) {
return;
}

current_line += 1;
current_panel = (current panel + 1) % 2;

// set up new line as current line

current_lyric = g array index(lyric_lines.lines, GString *, current line)->str;
front_of lyric = g string new(lyric+1); // lose \

printf("New line. Setting front to %s end to \"%s\"\n", lyric+1, current lyric);

coloured lines[current panel].line = current lyric;
coloured lines[current panel].front of line = lyric+i;
markup line(coloured lines+current panel);
#ifdef USE_PIXBUF
update line pixbuf(coloured lines+current panel);
#endif

515

CHAPTER 28 © TIMIDITY AND KARAOKE

}

// update label for next line after this one

next_lyric = g array index(lyric_lines.lines, GString *, next_line)-»>str;

marked up label = g string new(markup newline[0]);

g string append(marked up label, next lyric);

g string append(marked up_label, markup newline[1]);
PangoAttrList *attrs;

gchar *text;

pango_parse markup (marked up label->str, -1,0, &attrs, &text, NULL, NULL);

coloured lines[next panel].line = next lyric;
coloured lines[next panel].front of line = "";
markup line(coloured lines+next panel);

update line pixbuf(coloured lines+next panel);

} else {

// change text colour as chars are played
if ((front_of lyric != NULL) && (lyric != NULL)) {
g string append(front_of lyric, lyric);
char *s = front_of lyric->str;
coloured lines[current_panel].front of line = s;
markup line(coloured lines+current panel);
update line pixbuf(coloured lines+current panel);

static gboolean draw_image(gpointer user data) {

GdkPixbuf *pixbuf = (GdkPixbuf *) user data;

gtk_image set from pixbuf((GtkImage *) image, pixbuf);
gtk widget queue_draw(image);
g object_unref(pixbuf);

return G_SOURCE_REMOVE;
The function to play the video and overlay the colored lines has nothing essentially new. It reads a

frame from the video and puts it into a pixbuf. Then for each of the lyric panels, it draws the colored line into
the pixbuf. Finally, it calls gdk_threads_add_idle so that Gtk can draw the pixbufin its main thread. The

function play_background is as follows:

static void *play background(void *args) {

516

int i,

AVPacket packet;

int frameFinished;
AVFrame *pFrame = NULL;

CHAPTER 28 I TIMIDITY AND KARAOKE

int oldSize;

char *oldData;

int bytesDecoded;
GdkPixbuf *pixbuf;
AVFrame *picture RGB;
char *buffer;

pFrame=av_frame_alloc();

i=0;

picture RGB = avcodec_frame alloc();

buffer = malloc (avpicture get size(PIX_ FMT RGB24, 720, 576));

avpicture fill((AVPicture *)picture RGB, buffer, PIX FMT RGB24, 720, 576);

int width = pCodecCtx->width;
int height = pCodecCtx->height;

sws_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt,
pCodecCtx->width, pCodecCtx->height, PIX FMT_
RGB24,
SWS_BICUBIC, NULL, NULL, NULL);

while(av_read frame(pFormatCtx, &packet)>=0) {
if(packet.stream index==videoStream) {
//printf("Frame %d\n", i++);
usleep(33670); // 29.7 frames per second
// Decode video frame
avcodec_decode_video2(pCodecCtx, pFrame, &frameFinished,
&packet);

if (frameFinished) {
//printf("Frame %d\n", i++);

sws_scale(sws_ctx, (uint8 t const * const *) pFrame->data, pFrame-
>linesize, o0,
pCodecCtx->height, picture RGB->data,
picture RGB->linesize);

pixbuf = gdk pixbuf new from data(picture RGB->data[0], GDK_COLORSPACE_RGB,
O) 8J
width, height, picture RGB->linesize[0],
pixmap_destroy notify, NULL);

// Create the destination surface

cairo surface t *surface = cairo image surface create (CAIRO FORMAT ARGB32,
width, height);

cairo t *cr = cairo create(surface);

517

CHAPTER 28 © TIMIDITY AND KARAOKE

// draw the background image
gdk _cairo_set source pixbuf(cr, pixbuf, 0, 0);
cairo paint (cr);

// draw the lyric
GdkPixbuf *lyric_pixbuf = coloured lines[current panel].pixbuf;
if (lyric_pixbuf != NULL) {
int width = gdk_pixbuf get width(lyric_pixbuf);
gdk _cairo_set source pixbuf(cr,
lyric_pixbuf,
(720-width)/2,
height lyric_pixbufs[current panell);
cairo paint (cr);

}

int next_panel = (current panel+l) % 2;
lyric_pixbuf = coloured lines[next _panel].pixbuf;
if (lyric_pixbuf != NULL) {
int width = gdk_pixbuf_get width(lyric_pixbuf);
gdk_cairo_set_source_pixbuf(cr,
lyric_pixbuf,
(720-width)/2,
height lyric_pixbufs[next_panell);
cairo paint (cr);

}

pixbuf = gdk pixbuf get from surface(surface,
0,
0,
width,
height);

gdk_threads_add_idle(draw_image, pixbuf);

/* reclaim memory */
sws_freeContext(sws_ctx);
g object_unref(layout);
cairo _surface destroy(surface);
cairo destroy(cr);

}

av_free packet(8packet);
}

sws_freeContext(sws_ctx);
printf("Video over!\n");
exit(0);
It is run with the following:
TiMidity++-2.14.0/timidity/timidity -d. -iv --trace --trace-text-meta <KAR file>

In appearance, it looks like Figure 28-4.

518

CHAPTER 28 I TIMIDITY AND KARAOKE

111

doo doe doo doo

Figure 28-4. Caption

Background Video with TiMidity as Library

The code for this follows the same structure as the code in Chapter 21. It is in the file gtkkaraoke_player
video_pango.c

#include <stdio.h>
#include <stdlib.h>

#include "sysdep.h"
#include "controls.h"

extern ControlMode *video ctl;
extern ControlMode *ctl;

static void init timidity() {
int err;

timidity start initialize();

519

http://dx.doi.org/10.1007/978-1-4842-2496-0_21

CHAPTER 28 © TIMIDITY AND KARAOKE

if ((err = timidity pre load configuration()) != 0) {
printf("couldn't pre-load configuration file\n");
exit(1);

}

err += timidity post load configuration();

if (err) {
printf("couldn't post-load configuration file\n");
exit(1);

}
timidity init player();

extern int opt_trace_text_meta_event;
opt_trace_text_meta_event = 1;

ctl = 8video ctl;

//ctl->trace_playing = 1;
//opt_trace_text_meta_event = 1;

}

#define MIDI_FILE "54154.kar"

static void *play midi(void *args) {
char *argv[1];
argv[0] = MIDI_FILE;
int argc = 1;

timidity play main(argc, argv);

printf("Audio finished\n");

exit(0);
}
int main(int argc, char** argv)
{
int i;
/* TiMidity */
init_timidity();
play midi(NULL);
return 0;
}

520

CHAPTER 28 I TIMIDITY AND KARAOKE

Background Video with TiMidity as Front End

The interface needs to be built as a shared library with the following:

if_video.so: video_code.c
gcc -fPIC $(CFLAGS) -c -o video code.o video code.c $(LIBS)
gcc -shared -o if video.so video_code.o $(LIBS)

TiMidity is then run with options.
timidity -d. -iv --trace --trace-text-meta

As before, it crashes TiMidity from the Ubuntu distro but works fine with TiMidity built from source in
the current Linux environment.

Adding Microphone Input

At this stage you have a single application that can play a MIDI file, play a background movie, and display
highlighted lyrics on top of the video. There is no microphone input to sing along.

Singing along can be handled either within this application or by an external process. If you want to
include it in the current application, then you will have to build a mixer for two audio streams. Java does this
in the Java Sound package, but in C you would need to do that yourself. It can be done in ALSA but would
involve complex ALSA mixer code.

Jack makes it easy to mix audio, from different processes. The earlier section showed how to do that.

Along-term goal is to include scoring, and so on. However, that takes you into the realm of deep signal
processing (identifying notes sung using algorithms such as YIN, for example), which is beyond the scope of
this book.

Conclusion

This chapter showed you how to use TiMidity as a MIDI player for a karaoke system. On my laptop it uses
about 35 percent of the CPU with Gtk 3.0.

521

CHAPTER 29

Jack and Karaoke

Jack is designed for professional audio. In this chapter you will apply the techniques from earlier chapters to
building a karaoke system.

Using Jack Rack for Effects

Karaoke takes inputs from MIDI sources and from microphones. These are mixed together. Generally there
is an overall volume control, but there is usually a volume control for the microphones as well. While the
MIDI source should be passed straight through, it is common to apply a reverb effect to the microphones.

These are all effects that can be supplied by LADSPA modules (see Chapter 14). The Jack application
jack-rack makes these plug-ins accessible to Jack applications so that LADSPA effects can be applied to Jack
pipelines.

It is fairly straightforward to add a module to a session. Click the + button and choose from the
enormous menu of effects. For example, choosing the Karaoke plug-in from the Utilities menu looks like
Figure 29-1.

© Jan Newmarch 2017 523
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_29

http://dx.doi.org/10.1007/978-1-4842-2496-0_14

CHAPTER 29 JACK AND KARAOKE

gl JAcKRack-rackxml 0020202020 [H=FT
+ v i) |5 B b 5 Ee
Constant Signal Generator (const_1909.s0, 1 ch)
Generators v DC Offset Remover (dc_remove_1207.50, 1 ch)
Simulators v Exponential signal decay (decay_1886.s0, 1 ch)
Time v Hilbert transFormer (hilbert_1440.s0, 1 ch, 1 aux out)
Frequency v Inverter (inv_1429.s0, 1 ch)
Amplitude 4 Karaoke (karaoke_'x109.50, 2 ch)
Spectral v Artificial latency (latency_1914.s0, 1 ch)
Uncategorised v | Matrix: MS to Stereo (matrix_ms_st 1421.s0, 2 ch)

Matrix Spatialiser (matrix_spatialiser_1422.s0, 2 ch)
Matrix: Stereo to MS (matrix_st_ms_1420.s0, 2 ch)

Mono to Stereo splitter (split_1406.s0, 1 ch, 1 aux out)
Step Demuxer (step_muxer_1212.s0, 1 ch, 8 auxin)
Surround matrix encoder (surround_encoder_1401.50, 2 ¢
z-1 (zm1_1428.50, 1 ch)

Signal Sum (IAIA) (sum_1665.50, 1 ch, 1 auxin)

Signal Sum (JAIC) (sum_1665.50, 1 ch)

Signal Product (IAIA) (product_1668.s0, 1 ch, 1 auxin)
Signal Product (JAIC) (product_1668.s0, 1 ch)

Figure 29-1. Selecting Karaoke effect in Jack Rack

The following are some of the modules that might be relevant:

e Karaoke (number 1409), which shows in the Utilities menu. This will attempt to
remove center vocals from a music track.

e There are a number of reverb modules that appear in the Simulators » Reverb
menu.

e GVerb

e Plate reverb

e TAP Reverberator (from the TAP plug-ins)

The TAP Reverberator seems to be the most full featured (but is not guaranteed
to be in real time).

e There are a number of amplifiers in the Amplitude » Amplifiers menu.

524

CHAPTER 29 © JACK AND KARAOKE

Multiple modules can be applied in a single jack-rack application, and multiple applications can be
run. For example, applying a volume control to a microphone and then applying reverb before sending it
to the speakers can be done by adding the TAP reverberator and then one of the amplifiers. This looks like
Figure 29-2.

= JACK Rack - rack.xml — X

+ - QA E B
TAP Reverberator ||~ |[X|| v || Enable | Wet/Dry

Decay [ms] 2500.0000
Dry Level [dB] ' 0.000000
Wet Level [dB] | -4,636591

Comb Filters On
Allpass Filters | Oon
Bandpass Filter | Oon
Enhanced Stereo | _ On
Reverb Type | AfterBurn -
Simple amplifier | ~ | x| v | Enable || Wet/Dry Lock All
Amps gain (dB) - | 6‘.546762 .

Figure 29-2. Jack Rack with reverb and amplifier plug-ins

I'm running this on a USB Sound Blaster TruStudioPro. This is only 16 bits, and I can’t seem to find
a suitable Jack hardware configuration. So, I'm running Jack by hand using a plug device, which Jack
complains about but works anyway.

jackd -dalsa -dplughw:2 -r 48000

Although gladish can see it under its Jack configuration menu, I haven’t managed to get gladish to
accept the Sound Blaster as a setting. So far I can only manage to get Jack running under as a plug device,
and gladish keeps swapping it back to a hardware device.

qjackctl does an OK job of saving and restoring sessions, starting jack-rack with its correct plug-ins
and their settings, and linking it to the correct capture and playback ports.

525

CHAPTER 29 JACK AND KARAOKE

Playing MIDI

The major synthesizer engines TiMidity and FluidSynth will output to ALSA devices. To bring them into the

Jack world, Jack needs to be started with the -Xseq option or needs a2jmidid to be run.

You can try to manage the connections using the Jack session manager (for example, gjackctl). But this
hits a snag using the MIDI synthesizers such as TiMidity or FluidSynth since they assume PulseAudio output

rather than Jack output. Restoring a session fails to restore the synthesizer with Jack output.

You can try to manage the connections using LADSPA. Unfortunately, I have so far been unable to
manage the Jack server settings using gladish. So, it starts Jack using the default ALSA settings and doesn’t
use the -Xseq setting to map the ALSA ports to Jack. You need to start a2jmidid, and then it can successfully

manage a session of, for example, timidity, jack_keyboard, and a2jmidid.
Even then, the connection diagram looks like a mess (Figure 29-3).

[Timidity -
Studio Room Application View Too
Juf JIL)
[Lo] timidity Hardware Capture
!] capture_1
[Lo]jack-keyboard capture 2 Hardware Playback
aiomi Al midi_capture_1 playback_1
[Lo] a2jmidid playback 2
midi_pla “
midi_playback_2
T midi_playback_3
Bmidiky midi_playback_4
port_1 midi_playback_S
port_2 midi_playback_6
midi_playback_7
midi_playback_8
midi_playback_9
jack-keyboard
midi_out FAILED a2jmidid
FAILED 22jmidid (capture): Midi Through| [14] (capture): Midi Through Port-0
FAILED 22 ck i
FAILED a2,)\ idi
FAILED a2jmi iMimr)-['JEB]r_phybock:: Tih
id (playback): TiMidity [128] (playback): TiMidity port 2
FAILED a2jmidid (playback): TiMidity [128] (playback): TiMidity port 3
J iMidity [132] (playback): TiMidity port 0
FAILED a2jmidid (playback): TiMidity [132] (playback): TiMidity port 1
FAILED a2jmidid (playback): TiMidity [132] (playback): TiMidity port 2
FAILED a2jmidid (playback): TiMidity [132] (playback): TiMidity port 3
0 dropouts
Timidicy @ 48kHz Odropouts DSP: 1.5%(1.7%)

Figure 29-3. LADISH playing MIDI

526

CHAPTER 29 © JACK AND KARAOKE

TiMidity Plus Jack Rack

In Chapter 28, you used TiMidity with a Jack back end and an Xaw interface to give a basic karaoke system.
You can now improve on that by using Jack Rack effects.

e Run TiMidity with Jack output and an Xaw interface, and synchronize the lyrics to
the sound with this:

timidity -ia -B2,8 -0j -EFverb=0 --trace --trace-text-meta

e Run Jack Rack with the TAP Reverberator and a volume control installed.

e Connect ports using qjackctl.

The resulting system looks like Figure 29-4.

TAP Reverberator |~ x| ~| Enable | Wet/Dry

Decay[ms) 2500.0000
prev back fud_ nest quit rand reps DryLevel [dB] 0.000000
Wet Level [dB] 0.000000

Yolune

Comb Filters On
AllpassFilters On

Bandpass Filter On

Enhanced Sterec On

Reverb Type | AfterBurn =

Simple amplifier | ~ (x| v | Enable Wet/Dry Lock AlL

Amps gain (dB) 0.000000

* Connections - JACK Audio Connection Kit =0Ox

Audio | MIDI | ALSA

Readable Clients / Output Ports Writable Clients / Input Ports

v Wl jack_rack v Wl jack_rack
rd out_1 B in_1
& out_2 X in_2
v @l system * @ system
A capture_1 i playback_1
A capture_2 41 playback 2
v [TiMidity
ré port_1

port_2

X Disconnect || # Disconnect All € Expand All

Figure 29-4. TiMidity with Jack Rack

527

http://dx.doi.org/10.1007/978-1-4842-2496-0_28

CHAPTER 29 JACK AND KARAOKE

Customizing TiMidity Build

The version of TiMidity from the Ubuntu distro crashes if I try to dynamically load another interface. As the
code is stripped, it is not possible to find out why. So, to add a new interface, you need to build TiMidity from
source.

The commands I now use are as follows:

./configure --enable-audio=alsa,jack \
--enable-interface=xaw,gtk \
--enable-server \
--enable-dynamic

make clean

make

An interface with a key, say “k,” can then be run with Jack output with the following:

timidity -d. -ik -0j --trace --trace-text-meta 54154.mid

Playing MP3+G with Jack Rack Pitch Shifting

The player VLC will play MP3+G files. Often the MP3+G is a zipped file containing both an MP3 file and
s CDG file with the same root. This must be unzipped and then can be played by giving VLC the MP3 file
name.

vlc file.mp3

This will pick up the CDG file and display the lyrics.
VLC can be used with Jack with the --aout jack option.

vlc --aout jack file.mp3
A common request for VLC is to have a “pitch control” mechanism. While it should be possible to add
LADPSA pitch controls to VLC, no one has gotten around to it yet. But you can still add LADSPA effects

through jack-rack.
The steps are as follows:

1. You may need to stop PulseAudio temporarily with, for example, pasuspender cat.

2. Start the Jack daemon running as usual with the following:
jackd -d alsa

3. Startqgjackctl so you have some control over Jack connections.

528

CHAPTER 29 © JACK AND KARAOKE

4. Start jack-rack. Using the + button, select Frequency » Pitch shifters » TAP
Pitch Shifter. Don’t forget to enable it; it should look like Figure 29-5.

= JACK Rack —-0OX

+ -« (TBEE B

TAP Pitch Shifter | ~ | x| v || Enable | Wet/Dry Lock All
Semitone Shift | 2.400000
Rate Shift [%] 0.000000
DryLevel [dB]) -90.00000
Wet Level [dB] 0.000000

Figure 29-5. Jack Rack with pitch shifter

Note that in qjackctl, jack-rack shows as jack_rack (the minus has been
replaced with an underscore), which is the proper Jack name of jack-rack.
Connect the output of jack-rack to system.

529

CHAPTER 29 JACK AND KARAOKE

5. Nowstartvlc --aout jack soyou can set up the correct configuration.

Choose Tools » Preferences, and in “Show settings” set the radio button to All.

Then under Audio » Output modules » Jack, check “Automatically connect
to writable clients” and connect to clients matching jack_rack (note the
underscore). This should look like Figure 29-6.

v @ Advanced |-
CPU features
CGNUTLS
Logging
Network Syn| :

v £ Audio

» Filters
¥ Output modt

ALSA -
File
0SS
Speexresam
SRC resample
» Visualizations
v i Input / Code
» Access modu
» Audio codecs

. __!‘_Pl&ﬂlkl.lxﬁf.‘-‘._ - =

Show settings
() Simple @ Al

JACK audio output

& Automatically connect to writable clients

N preferepces [

Connect to clients matching !jack_rack

Reset Preferences | Cancel

Figure 29-6. VLC selecting output client

530

CHAPTER 29 © JACK AND KARAOKE

6. The next time you start vlc with, for example, vlc --aout jack BST.mp3,
gjackctl should look like Figure 29-7.

% —-0Ox
Audio | MIDI | ALSA

Readable Clients / Output Ports Writable Clients / Input v

» W jack_rack » B jack rack
> I system e
» [l vic_2862

A Connect || X Disconnect || € Disconnect All | | € ExpandAll | | ORefresh |

Figure 29-7. gjackctl with VLC connected to Jack Rack

531

CHAPTER 29 JACK AND KARAOKE

The music should play through jack-rack where you can adjust the pitch.
Figure 29-8 shows the result of VLC playing MP3 audio through the pitch filter and also showing the
CDG video.

Connections - JACK Audio Connection Kit |—O X

Audio | MIDI | ALSA

Readable Clients / Cutput Por « Writable Clients / Inpt
- » Wl jack rack — jack_rack
: - I jack e B jack_
» I system = = » [l system
» Wl vic_3076 =i ﬁ

X Disconnect || #Disconnect All | € ExpandAll || O Refresh 1

= JACK Rack i =D I

+ -w B 2T B |

TAP Pitch Shifter .~ % .~ Enable Wet/Dry Lock All
Semitone Shift 0.000000
Rate Shift [%)] ee———— 0.000000
Dry Level [dB] -90.00000
Wet Level [dB] 0.000000

= e T = |

Figure 29-8. VLC playing through pitch shifter

Conclusion

This chapter discussed a number of ways of building Jack pipelines to add effects to MIDI and MP3+G files.

532

CHAPTER 30

Streaming Audio

Streaming audio generally involves sending audio from one node on a network to another node. There
are a number of ways in which this can be done, using a number of formats. This chapter briefly discusses
some of them.

HTTP

HTTP is the protocol underlying the Web. The protocol is agnostic to the content it carries. While it was
originally designed to carry HTML documents, it is now used to transport image files, Postscript documents,
PowerPoint files, and almost anything else. This includes media files, the subject of this book.

HTTP Servers

Content is delivered from a web site by means of HTTP servers. The most well-known of these is Apache, but
in the Linux world Nginx and Lighttpd are also common. There are a number of proprietary servers as well.

An HTTP server can deliver static files stored on the server or construct content dynamically from, for
example, a database connection.

HTTP Clients

There are many clients for HTTP streams, generally known as user agents. These include browsers as well as
many of the audio players discussed earlier.

HTTP Browsers

Point your browser to the URL of an audio file and it will pass the content to a helper that will attempt to play
the file. The browser will choose the helper based on the file extension of the URL or based on the content
type of the file as delivered in the HTTP header from the HTTP server.

MPlayer

MPlayer is HTTP-aware. You just give the URL of the file.

mplayer http://localhost/audio/enigma/audio_01.ogg

© Jan Newmarch 2017 533
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_30

CHAPTER 30~ STREAMING AUDIO

VLC

VLC is also HTTP-aware. You just give the URL of the file.

vlc http://localhost/audio/enigma/audio_01.ogg

Streaming vs. Downloading

If you download a file from the Web, then you can play it once it has finished downloading. This means that
play is delayed until the entire file has been saved into the local file system. Since it is now local, it can play
without worrying about network delays. Here is a simple shell script to illustrate this:

wget -0 tmp http://localhost/audio/enigma/audio_01.o0gg
mplayer tmp
m tmp

The alternative is to read the resource from the Web and hand it as it is received to a player, using some
sort of pipeline. This is fine as long as the pipeline is large enough to buffer enough of the resource so that it
can cope with network delays. It is illustrated with the following:

wget -0 - http://localhost/audio/enigma/audio 01.ogg | mplayer -

(Yes, I know, MPlayer can stream URLs directly; I'm just making a point here.)

HTMLS5

HTMLS5 is the latest version of HTML. HTMLS5 is a “living standard.” Ugh! That means it isn’t a standard at
all, but just a label for a specification that is in a state of flux. There is now an audio element, <audio>, that is
implemented by many browsers.

For example, the following HTML will try the Ogg file first, and if the client cannot play it, it will try the
MP3 file, and if it cannot play that, then it will display the failure message:

<audio controls="controls"<
<source src="audio 01.ogg" type="audio/ogg"<
<source src="audio 01.mp3" type="audio/mpeg"<
Your browser does not support the audio element.
</audio<

Figure 30-1 shows what it looks like in the browser.

Figure 30-1. Caption

534

CHAPTER 30 STREAMING AUDIO

DLNA

Digital Living Network Alliance (DLNA) is designed for sharing digital media such as photos, audio, and
video in a home network. It is built on top of the Universal Plug and Play (UPnP) protocol suite. This in turn
is built on one of the uglier of the Internet standards, SOAP. UPnP itself compounds this poor choice of base
technologies by using what can only be described as an appallingly badly engineered hack in order to handle
media information. With its most complex data type being a string, UPnP buries complete XML documents
inside these strings so that one XML document contains another XML document as an embedded string. Oh
dear, better-quality engineers could surely have come up with better solutions than this!

UPnP is open in that it can describe many different home network devices and formats of data. DLNA
restricts this to only a few “approved” types and then makes the specification private, only available after
paying a fee.

Despite all this, an increasing number of devices are “DLNA enabled” such as TVs, BluRay players, and
so on. It seems like DLNA is here to stay.

Matthew Panton in “DLNA for media streamers—what does it all mean?” (http://news.cnet.
com/8301-17938_105-10007069-1.html) pointed out some further issues with DLNA, mainly relating to the
supported file formats. The truth of his comments are illustrated by my latest purchase of a Sony BDP-S390
BluRay player. It supports LPCM (.wav) as required, but out of the optional MP3, WMA9, AC-3, AAC, and
ATRAC3plus, it only supports MP3, AAC/HE-AAC (.m4a), and WMAS9 Standard (.wma). And of course, Ogg is
nowhere in any of the DLNA lists.

The site DLNA Open Source Projects (http://elinux.org/DLNA_Open_Source Projects)listsa
number of Linux DLNA players. I have successfully used the CyberGarage Java client and server and the
MediaTomb server.

Icecast

Shoutcast is a proprietary piece of server software for Internet streaming of audio, which has set the standard
for streaming. Icecast is the serious open source competitor, which is just as good in quality and superior
as open source and which supports a larger variety of formats. To the receiver of a stream, Icecast is just an
HTTP server. The back end is the interesting part, as Icecast uses the Shoutcast protocol to receive audio
from a variety of sources such as online radio, microphones, or playlists.

IceS is one of the ways that Icecast can get its audio streams and is included in the distro. For further
information, see the IceS v2.0 documentation (www. icecast.org/docs/ices-2.0.2/).

Flumotion

From the Flumotion site (www.flumotion.net/), “Flumotion Streaming Software allows broadcasters and
companies to stream content live and on demand in all the leading formats from a single server. Flumotion
also offers a streaming platform and WebTV, which reduce workflow and costs by covering the entire
streaming value chain. This end-to-end yet modular solution includes signal acquisition, encoding,
multi-format transcoding, streaming of contents, and state-of-the art interface design. The media back
office allows for advanced content management and optimal monetization through rich media advertising.”

Conclusion

This chapter gave a brief overview of some of the streaming mechanisms available. HTML5 embedding
provides an easy way of including audio (and video) into web pages, while systems such as Icecast and
Flumotion can be used for professional audio systems such as radio stations.

535

http://news.cnet.com/8301-17938_105-10007069-1.html
http://news.cnet.com/8301-17938_105-10007069-1.html
http://elinux.org/DLNA_Open_Source_Projects
http://www.icecast.org/docs/ices-2.0.2/
http://www.flumotion.net/

CHAPTER 31

Raspberry Pi

The Raspberry Pi (RPi) is a low-cost Linux computer developed with the intention of giving students

entering university computer science courses a good, cheap environment in which to play. And it does! I've
got a bunch of colleagues at work, well into middle-age, who have leapt upon it to play with. So far their kids
haven’t had a look, though....

Resources

Here are some resources:

“Why is my audio (sound) output not working?” (http://raspberrypi.
stackexchange.com/questions/44/why-is-my-audio-sound-output-not-working)

Raspberry Pi GitHub sources (https://github.com/raspberryp)
RPi VideoCore APIs (http://elinux.org/RPi_VideoCore_ APIs)

Linux Gizmos (http://1inuxgizmos.com/) reporting on many systems on a chip
(SoCs) including the RPi

“Tutorial: VLC with hardware acceleration on Raspberry Pi” (http://intensecode.
blogspot.com.au/2013/10/tutorial-vlc-with-hardware-acceleration.html?sho
wComment=1405938529843#c6761170597378687078) by Helder Araujo Carneiro

“Using direct textures on Android” (http://snorp.net/2011/12/16/android-
direct-texture.html) and how to get from EGLImage to OpenGL texture

“Raspberry Pi and real-time, low-latency audio” (http://wiki.linuxaudio.org/
wiki/raspberrypi)

The Basics

The following sections cover the basics.

Hardware

The Raspberry Pi (RPi) 3 Model B has 1Gb RAM, four USB ports, WiFi and Bluetooth, and an Ethernet port. It
has HDMI and analog audio and video outputs. The following is from the FAQ (www.raspberrypi.org/fags):

© Jan Newmarch 2017
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_31

537

http://raspberrypi.stackexchange.com/questions/44/why-is-my-audio-sound-output-not-working
http://raspberrypi.stackexchange.com/questions/44/why-is-my-audio-sound-output-not-working
https://github.com/raspberryp
http://elinux.org/RPi_VideoCore_APIs
http://linuxgizmos.com/
http://intensecode.blogspot.com.au/2013/10/tutorial-vlc-with-hardware-acceleration.html?showComment=1405938529843#c6761170597378687078
http://intensecode.blogspot.com.au/2013/10/tutorial-vlc-with-hardware-acceleration.html?showComment=1405938529843#c6761170597378687078
http://intensecode.blogspot.com.au/2013/10/tutorial-vlc-with-hardware-acceleration.html?showComment=1405938529843#c6761170597378687078
http://snorp.net/2011/12/16/android-direct-texture.html
http://snorp.net/2011/12/16/android-direct-texture.html
http://wiki.linuxaudio.org/wiki/raspberrypi
http://wiki.linuxaudio.org/wiki/raspberrypi
http://www.raspberrypi.org/faqs

CHAPTER 31 © RASPBERRY PI

“All versions and revisions of the Raspberry Pi other than the Raspberry Pi 2B/3B use the
Broadcom BCMZ2835. This contains an ARM1176]JZFS with floating point, running at
700MHz, and a VideoCore 4 GPU. The GPU is capable of Blu-Ray-quality playback, using
H.264 at 40MBits/s. It has a fast 3D core, accessed using the supplied OpenGL ES2.0 and
OpenVG libraries. The Model 2B uses the Broadcom BCM2836. This contains a quad-core
ARM Cortex-a7 processor with floating point and NEON, running at 900MHz, and the
same VideoCore 4 GPU that is in the other models of Raspberry Pi. The Model 3B uses
the Broadcom BCM2837, containing a quad-core ARM Cortex-A53 running at 1.2GHz. Its
GPU capabilities are equivalent to the Pi 2.”

The RPi has audio out through the HDMI port and also through an analog 3.5mm audio out. There is no
audio in. However, there are USB ports, and a USB sound card can be plugged in, which is recognized by the

Linux distros.
The CPU is an ARM CPU. You can find a simple overview of the differences between the ARM and

Intel

instruction sets in “ARM vs. x86 Processors: What's the Difference?” (www.brighthub.com/computing/

hardware/articles/107133.aspx).

Alternative Single-Board Computers

There are many single-board computers. Wikipedia has a list of single-board computers
(http://en.wikipedia.org/wiki/List_of single board computers); they are all potential alternatives
to the RPi. Here is just a quick selection:

538

Gumstix (http://en.wikipedia.org/wiki/Gumstix)

This is a single-board computer that has been around for many years (I got one
in 2004). It isn’t high powered, but it isn’t meant to be.

Arduino (http://en.wikipedia.org/wiki/Arduino)

The Arduino is designed as a microcontroller for electronic projects. It uses an
ARM Cortec-M3 CPU, which has even lower specs than the RPi.

UDOO (www.udoo.org/)

UDOO attempts to marry the best of the RPi and Arduino with two CPUs into a
single-board computer.

ODroid (http://odroid.com/)

The ODroid U2 is a higher-powered system than the RPI, evaluated by Gigaom
(http://gigaom.com/2013/02/11/following-raspberry-pi-the-89-odroid-
u2-continues-small-cheap-computing-movement/). It is about double the price.

BeagleBone (http://beagleboard.org/Products/BeagleBone%20Black)

The BeagleBone Black has a slightly better CPU (ARM Cortex-A8) than the RPi
and is a bit more expensive.

http://www.brighthub.com/computing/hardware/articles/107133.aspx
http://www.brighthub.com/computing/hardware/articles/107133.aspx
http://en.wikipedia.org/wiki/List_of_single_board_computers
http://en.wikipedia.org/wiki/Gumstix
http://en.wikipedia.org/wiki/Arduino
http://www.udoo.org/
http://odroid.com/
http://gigaom.com/2013/02/11/following-raspberry-pi-the-89-odroid-u2-continues-small-cheap-computing-movement/
http://gigaom.com/2013/02/11/following-raspberry-pi-the-89-odroid-u2-continues-small-cheap-computing-movement/
http://beagleboard.org/Products/BeagleBone Black

CHAPTER 31 ' RASPBERRY PI

Distros

Several Linux images are available from the Raspberry Pi site, and others are being developed elsewhere.
I'm using the Debian-based image that essentially comes in two forms: with soft float using Debian
and with hard float using the FPU, called Raspbian. The hard float image is required for decent sound
processing, which is heavily floating-point dependent. There is a good article benchmarking these against
each other at www.memetic.org/raspbian-benchmarking-armel-vs-armhf/. Another set of benchmarks
isathttp://elinux.org/RaspberryPiPerformance. Basically, these show that you should use the hard
float version if you want good floating-point performance, and this is required for audio processing.
ELinux.org maintains a list of RPi distributions (http://elinux.org/RPi Distributions). There are
many standard Linux distros included here, such as Fedora, Debian, Arch, SUSE, Gentoo, and others. The
RPi has gained traction as a media center based on the XBMC media center, and this is represented by
distros such as Raspbmc and OpenElec.
So, how does it get along with the various audio tools discussed so far? It’s a mixed bag.

No Sound

I plugged mine into a 29-inch ViewSonic monitor using the HDMI connectors. Initially I got no sound from
either the 3.5mm analog output or the HDMI monitor. This is explained at “Why is my audio (sound) output
not working?” (http://raspberrypi.stackexchange.com/questions/44/why-is-my-audio-sound-output-
not-working). I edited the file /boot/config.txt and uncommented the line "hdmi_drive=2".Talso used
the following command, where n is 0=auto, 1=headphones, 2=hdmi to toggle between outputs:

sudo amixer cset numid=3 <n>

After that, the sound is fine.

ALSA

The Raspberry Pi uses the ALSA driver snd_bcm2835, and this can manage HDMI output. The command
alsa-infois not present, but as this is a shell script, it can be copied from elsewhere and will run on the
RPi. Some of the usual configuration files and commands on a larger distro are missing, but it shows on the
Raspbian distro (with many omissions) for an RPi2.

U HHHHE AR AR A

I1ALSA Information Script v 0.4.64
VUHHEHHHH

IScript ran on: Sun Nov 13 11:13:36 UTC 2016
I'1ALSA Version

Driver version: k4.7.2-v7+

Library version: 1.0.28

Utilities version: 1.0.28

I'lLoaded ALSA modules

539

http://www.memetic.org/raspbian-benchmarking-armel-vs-armhf/
http://elinux.org/RaspberryPiPerformance
http://elinux.org/RPi_Distributions
http://raspberrypi.stackexchange.com/questions/44/why-is-my-audio-sound-output-not-working
http://raspberrypi.stackexchange.com/questions/44/why-is-my-audio-sound-output-not-working

CHAPTER 31 © RASPBERRY PI

snd_bcm2835

11Soundcards recognised by ALSA
R L L L EE e P L PR

0 [ALSA

]: bcm2835 - bcm2835 ALSA
bcm2835 ALSA

I1Aplay/Arecord output
R R R L LR

APLAY

k | ist of PLAYBACK Hardware Devices ****
card 0: ALSA [bcm2835 ALSA], device 0: bcm2835 ALSA [bcm2835 ALSA]
Subdevices: 8/8

Subdevice
Subdevice
Subdevice
Subdevice
Subdevice
Subdevice
Subdevice
Subdevice

#0:
#1:
#2:
#3:
#4:
#5:
#6:
#7:

subdevice
subdevice
subdevice
subdevice
subdevice
subdevice
subdevice
subdevice

#o
#1
#2
#3
#4
#5
#6
#7

card 0: ALSA [bcm2835 ALSA],
Subdevices: 1/1
Subdevice #0: subdevice #0

ARECORD

device 1: bcm2835 ALSA [bcm2835 IEC958/HDMI]

k | ist of CAPTURE Hardware Devices ****

I1Amixer output
L L

[Mixer controls for card 0 [ALSA]

Card hw:0 'ALSA'/'bcm2835 ALSA'
: 'Broadcom Mixer'

Mixer name
Components
Controls

Simple ctr

1s

: 6
: 1

Simple mixer control 'PCM',0
Capabilities: pvolume pvolume-joined pswitch pswitch-joined
Playback channels: Mono
Limits: Playback -10239 - 400
Mono: Playback -2000 [77%] [-20.00dB] [on]

540

CHAPTER 31 = RASPBERRY PI

Sampled Audio Players

Earlier chapters have made extensive use of a number of audio tools. The RPi is still a Linux system, so you
would expect that the audio tools behave normally on the RPi. But it is worth confirming!

MPlayer

MPlayer plays fine on the default ALSA modules, for MP3, OGG, and WAV files.

VLC

VLC attempts to play WAV files, but it is very broken up on the soft float distro. CPU usage is up around 90
percent, and it is quite unplayable. The soft distro is no longer used, for that kind of reason. The hard float
distro can play MP3, OGG, and WAV files.

alsaplayer
The program alsaplayer plays files in formats such as Ogg-Vorbis and MP3 using the standard hard float distro.

omxplayer

The RPi has a GPU, and this can be used by omxplayer. It can play Ogg-Vorbis files with only 12 percent CPU
usage and looks to be a good candidate for audio as well as video.

Is It X Using the CPU?

Apparently not just X: gnome-player works fine.

Sampled Audio Capture

The RPi does not have an audio-in or line-in port. I connected my Sound Blaster USB card through a
powered USB hub. It shows up with arecord -1 as follows:

k | ist of CAPTURE Hardware Devices ****

card 1: Pro [SB X-Fi Surround 5.1 Pro], device 0: USB Audio [USB Audio]
Subdevices: 1/1
Subdevice #0: subdevice #0

So, to ALSA, it is device hw:1,0.

ALSA

The standard program arecord works if you get the options correct.

arecord -D hw:1,0 -f S16_LE -c 2 -1 48000 tmp.s16
Recording WAVE 'tmp.s16' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo

541

CHAPTER 31 © RASPBERRY PI

The resulting file can be played back using this:
aplay -D hw:1,1 -c 2 -r 48000 -f S16_LE tmp.s16

In Chapter X, I gave the source for a program called alsa_capture.c. When run with the following:
alsa_capture hw:1,0 tmp.s16

it records PCM data in stereo at 48,000Hz.

MIDI Players

While standard audio tools work fine, MIDI players are very heavy on the CPU. This section looks at
customizing the common players to play OK.

TiMidity
TiMidity averages about 50 percent CPU on the RPi 2 and 38 percent CPU on the RPi 3. This may make it

unusable if other applications (such as a GUI front end) are also in use.
To make the RPi more usable, in the timidity.cfg file, uncomment the following lines:

If you have a slow CPU, uncomment these:

#opt EFresamp=d #disable resampling

#opt EFvlpf=d #disable VLPF

#opt EFreverb=d #disable reverb

#opt EFchorus=d #disable chorus

#opt EFdelay=d #disable delay

#opt anti-alias=d #disable sample anti-aliasing

#opt EWPVSETOZ #disable all Midi Controls

#opt p32a #default to 32 voices with auto reduction
#opt s32kHz #default sample frequency to 32kHz

#opt fast-decay #fast decay notes

This brings the CPU usage on the RP2 down to about 30 percent. (Thanks to Chivalry Timber,
http://chivalrytimberz.wordpress.com/2012/12/03/pi-lights/.)

pykaraoke

This uses only 40 percent of the CPU and plays OK, even with a GUL

FluidSynth/qgsynth

On both the RPi2 and RPi3, CPU usage is up around 85 to 90 percent.

542

http://chivalrytimberz.wordpress.com/2012/12/03/pi-lights/

CHAPTER 31 = RASPBERRY PI

Scheduling

Sometimes FluidSynth complains about not being able to reset the scheduler. Aere Greenway
(http://1lists.gnu.org/archive/html/fluid-dev/2012-10/msg00018.html) suggests making the
following security changes:

You need to create a file (whose name starts with your user-ID) in the following folder:
/etc/security/limits.d. For example, my user-ID is aere, so the file name I use is: aere.
conf. The file needs to contain the following lines:

aere - rtprio 85
aere - memlock unlimited

Make sure to substitute your user ID in place of aere.

Noncauses

The following were suggested as causes of the problems but ultimately discarded:

e FluidSynth can be configured to use either doubles or floats. The default is doubles,
and these are slow on ARM chips. Switching to floats didn’t remove the problem
peaks in CPU use.

e FluidSynth uses sound font files, and these are quite large. About 40MB is typical.
Switching to smaller fonts didn’t help; memory use was not the problem.

e Buffering is small in FluidSynth. The -z parameter can be used to make it larger.
Buffering was not the problem, and changing it didn’t help.

e Anumber of operations are known to be expensive in CPU. FluidSynth supports
a number of interpolation algorithms, and these can be set using its command
interpreter with, for example, interp 0 to turn off interpolation. Other expensive
operations include reverb, polyphony, and chorus. Mucking around with any of
these in isolation proved fruitless.

Solutions
The two solutions that I have found are
e polyphony=64 and reverb=false

e rate=22050, which brings CPU usage down to about 55 percent

Java Sound

Iinstalled OpenJDK version 8, the default Java version currently. The program DeviceInfo was given in
Chapter X. The output from this on the RPi is as follows:

Mixers:

PulseAudio Mixer, version 0.02
Mixer: org.classpath.icedtea.pulseaudio.PulseAudioMixer@144bcfa

543

http://lists.gnu.org/archive/html/fluid-dev/2012-10/msg00018.html

CHAPTER 31 © RASPBERRY PI

Source lines
interface SourceDataline supporting 42 audio formats, and buffers of 0 to 1000000 bytes
interface Clip supporting 42 audio formats, and buffers of 0 to 1000000 bytes
Target lines
interface TargetDataline supporting 42 audio formats, and buffers of 0 to 1000000 bytes
ALSA [default], version 4.7.2-v7+
Mixer: com.sun.media.sound.DirectAudioDevice@d3c617
Source lines
interface SourceDataline supporting 84 audio formats, and buffers of at least 32 bytes
interface Clip supporting 84 audio formats, and buffers of at least 32 bytes
Target lines
ALSA [plughw:0,0], version 4.7.2-v7+
Mixer: com.sun.media.sound.DirectAudioDevice@1c63996
Source lines
interface SourceDataline supporting 8 audio formats, and buffers of at least 32 bytes
interface Clip supporting 8 audio formats, and buffers of at least 32 bytes
Target lines
ALSA [plughw:0,1], version 4.7.2-v7+
Mixer: com.sun.media.sound.DirectAudioDevice@11210ee
Source lines
interface SourceDataline supporting 8 audio formats, and buffers of at least 32 bytes
interface Clip supporting 8 audio formats, and buffers of at least 32 bytes
Target lines
Port ALSA [hw:0], version 4.7.2-v7+
Mixer: com.sun.media.sound.PortMixer@40e464
Source lines
Target lines
PCM target port

Although this is using the PulseAudio mixer, PulseAudio isn’t actually running (at this stage)! So, it can
use only the ALSA interface.

The program PlayAudioFile was given in Chapter 9. This can play .wav files OK. But it can’t play Ogg-
Vorbis or MP3 files and throws an UnsupportedAudioFileException.

PulseAudio

PulseAudio installs OK from the repositories and runs with no problems. The output from pulsedevlist is
as follows:

=======[Qutput Device #1]=======

Description: bcm2835 ALSA Analog Stereo

Name: alsa output.platform-bcm2835 AUDO.0.analog-stereo
Index: 0

=======] Input Device #1]z======

Description: Monitor of bcm2835 ALSA Analog Stereo

Name: alsa_output.platform-bcm2835 AUDO.0.analog-stereo.monitor
Index: 0

544

http://dx.doi.org/10.1007/978-1-4842-2496-0_9

CHAPTER 31 = RASPBERRY PI

Java MIDI

open]JDK supports the Java MIDI devices. The program DeviceInfo reports the following:

MIDI devices:
Name: Gervill, Decription: Software MIDI Synthesizer, Vendor: OpenJDK
Device is a synthesizer
Open receivers:

Default receiver: com.sun.media.sound.SoftReceiver@10655dd

Open receivers now:
com.sun.media.sound.SoftReceiver@10655dd

Open transmitters:
No default transmitter
Name: Real Time Sequencer, Decription: Software sequencer, Vendor: Sun Microsystems
Device is a sequencer
Open receivers:

Default receiver: com.sun.media.sound.RealTimeSequencer$SequencerReceiver@120999

Open receivers now:
com.sun.media.sound.RealTimeSequencer$SequencerReceiver@120999

Open transmitters:
Default transmitter: com.sun.media.sound.RealTimeSequencer$SequencerTransmitter@65a77f

Open transmitters now:
com.sun.media.sound.RealTimeSequencer$SequencerTransmitter@65a77f
Default system sequencer is Real Time Sequencer
Default system synthesizer is Gervill

Programs like DumpSequence work OK. But the SimpleMidiPlayer hits 80 percent CPU usage and is
unusable. So, any idea of a karaoke player using Java on the RPi is simply not good. There is a thread on
the Raspberry Pi site discussing the problems with sound (www.raspberrypi.org/phpBB3/viewtopic.
php?f=388t=11009).

OpenMAX

Audio and video can be played on the Raspberry Pi using the OpenMAX IL toolkit. This has been
implemented by Broadcom for its GPU used by the RPi. This is partly covered in Chapter 13 and is covered in
depth in my book Raspberry Pi GPU Audio and Video Programming.

Conclusion

The Raspberry Pi is an exciting new toy to play with. There are many competitors on the block, but it has still
sold more than ten million devices. This chapter covered some of the audio aspects of the device.

545

http://www.raspberrypi.org/phpBB3/viewtopic.php?f=38&t=11009
http://www.raspberrypi.org/phpBB3/viewtopic.php?f=38&t=11009
http://dx.doi.org/10.1007/978-1-4842-2496-0_13

CHAPTER 32

Conclusion

These are my final words.

Where Did | Start?

The following were the starting points for all this:
e Ihave two karaoke machines, each with different capabilities.
e Iwanted to build a “best of both worlds” machine from my computers.

e My initial attempt using the Java Sound API worked but suffered from latency,
enough to make it unusable.

e Attempts to move any part of this Java solution to low-powered devices like the
Raspberry Pi just failed miserably.

Where Did | Get To?

Well, I got most of the way there. I now have a system playing videos in the background and playing
karaoke files using the TiMidity synthesizer. I didn’t get scoring systems working, but that involves a further
exploration into digital signal processing.

I actually got it all working on the Raspberry Pi, but that meant digging into the Raspberry Pi’s GPU to
handle the video effects, and I have dealt with its GPU programming in a separate book.

How Did | Get There?

Well, obviously I needed to play with sound. I started with the Java Sound API, and when that proved to have
latency issues, I started hunting through all aspects of sound on Linux. That’s why this book has sections

on ALSA, Jack, PulseAudio, and more. I couldn’t find the information I was looking for in a clear enough
manner, so as I discovered more, I wrote it all down, and the result is this book.

I hope you find it to be of general value and not just something that fed my particular obsession. I've
learned a tremendous amount in writing this book, and I feel confident that if you want to do anything with
sound under Linux, then this book will give you at least some of the answers.

Regards, and good luck with your own projects!

© Jan Newmarch 2017 547
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_32

APPENDIX A

Decoding the DKD Files on the
Sonken Karaoke DVD

This chapter is about getting the information off my Sonken karaoke DVD so that I can start writing
programs to play the songs. It is not directly involved in playing sound under Linux and can be skipped.

Introduction

I have two karaoke players, a Sonken MD-388 and a Malata MDVD-6619. Between the two of them, they
have all the features I think I need from karaoke players, including the following:

e Selecting and playing tunes (of course!)

e Ahuge range of both Chinese and English-language songs (my wife is Chinese,
and I am English)

e Both Mandarin and PinYin shown for the Chinese songs so that I can sing along too

e The notes of the melody displayed along with the notes that the singer is
actually singing

e Scoring system showing different features

The Malata is really good in that it shows the notes of the melody and also shows the notes that you are
singing. But it has a pathetic range of English songs and doesn’t show the PinYin for the Chinese songs. The
Songen has a good selection of both and shows the PinYin but doesn’t show the notes and has a simplistic
scoring system.

So, I want to take the songs off my Sonken DVD and play them either on the Malata or on my PC.
Playing them on my PC is preferred because then I am limited only by the programs that I can write and am
not so dependent on a vendor’s machine. So, my immediate goal is to get the songs off the Sonken DVD and
start playing them in the ways that I want.

The files on the Sonken DVD are in DKD format. This is an undocumented format probably standing
for Digital Karaoke Disc. Many people have worked on this format, and there has been much discussion
in forums such as Karaoke Engineering. These include “Understanding the HOTDOG files on DVD
of California electronics” (http://o0ld.nabble.com/Understanding-the-HOTDOG-files-on-DVD-of-
California-electronics-td11359745.html), “Decoding JBK 6628 DVD Karaoke Disc” (http://o0ld.
nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html) (these two links no longer seem to
have any content, though), and “Karaoke Huyndai 99” (http://board.midibuddy.net/showpost.php?p=533
7228postcount=31).

© Jan Newmarch 2017 549
J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0_33

http://old.nabble.com/Understanding-the-HOTDOG-files-on-DVD-of-California-electronics-td11359745.html
http://old.nabble.com/Understanding-the-HOTDOG-files-on-DVD-of-California-electronics-td11359745.html
http://old.nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html
http://old.nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html
http://board.midibuddy.net/showpost.php?p=533722&postcount=31
http://board.midibuddy.net/showpost.php?p=533722&postcount=31

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

When I started looking at my disc, I went about it in a different direction than many of the posters in
these forums. Also, the results in the forums were presented in an ad hoc and often confusing manner, as
could be expected. So, I ended up re-inventing a lot of what had already been discovered, as well as coming
up with some new stuff.

In hindsight, I could have saved myself weeks of work if I had paid proper attention to what was said
in the forums. So, this appendix is my attempt to lay out the results in a simple and logical enough way so
that people trying to do similar things with their own discs can easily work out what is applicable to their
situation and what is different.

This chapter will cover the following:

e Whatfiles are on my DVD

e What each file contains (overview)

e Matching song titles to song numbers
¢ Finding the song data on the disc

e Extracting the song data

e Decoding the song data

This appendix is not complete, as there is still more to be discovered.

Format Shifting

Isn'titillegal to copy your DVDs? It’s not in Australia, under the right conditions (see the
Copyright Amendment Act 2006 FAQ at www.ag.gov.au/Copyright/Issuesandreviews/Pages/
CopyrightAmendmentAct2006FAQs.aspx).

Will I be able to copy my music collection onto my iPod? Yes. You can format-
shift music that you own to devices such as an MP3 player, Xbox 360, or your
computer.

I'am just copying the music I legally bought with the Sonken DVD to my computer for personal use.
That is within the Australian Copyright Amendment Act. You should check whether your country allows the
same rights.

Don’t ask for any copies of the files off my DVD. That would be illegal, and I'm not going
todoit.

Files on the DVD

My Sonken DVD contains these files:

BACK01.MPG

DTSMUS00.DKD
DTSMUSO1.DKD
DTSMUS02.DKD
DTSMUS03.DKD
DTSMUS04.DKD
DTSMUSO5 . DKD
DTSMUS06 . DKD

550

http://www.ag.gov.au/Copyright/Issuesandreviews/Pages/CopyrightAmendmentAct2006FAQs.aspx
http://www.ag.gov.au/Copyright/Issuesandreviews/Pages/CopyrightAmendmentAct2006FAQs.aspx

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

DTSMUSO7.DKD
DTSMUS10.DKD
DTSMUS20.DKD

BACK01.MPG

This is the MP3 file that plays in the background.

DTSMUS00.DKD to DTSMUS07.DKD

These are the song files. The number of these depends on how many songs are on the DVD.

DTSMUS10.DKD

No one has worked out what this file is for yet.

DTSMUS20.DKD

This file contains the list of song number, song title, and artist as given in the song book. The song number in
this file is one less than the song number in the book.

Decoding DTSMUS20.DKD

I'm on a Linux system, and I use Linux/Unix utilities and applications. Equivalents exist under other OSs
such as Windows and Apple.

Song Information

The Unix command strings lists all the ASCII 8-bit encoded strings in a file that are at least four characters
long. Running this command on all the DVD files shows that DTSMUS20.DKD is the only one with lots of
English-language strings, and these strings are the song titles on the DVD.

A brief selection is as follows:

Come To Me

Come To Me Boy
Condition Of My Heart
Fly To The Sky

Cool Love

Count Down

Cowboy

Crazy

The actual strings that would show on your disc depend, of course, on the songs on it. You would need
some English-language titles on it for this to work, of course!

551

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

To make further progress, you need a binary editor. Iuse bvi. emacs has a binary editor mode as well.
Search using the editor for a song title you know is on the disc. For example, searching for the Beatles’ “Here

Comes the Sun” shows the following block:

000AA920
000AA930
000AA940
000AA950
000AA960
000AA970

The string “Here Comes the Sun” starts at 0xAA94C followed by a null byte. This is followed at 0XAA95F

12 D3 88 48 65 72
65 20 52 61 69 6E
79 74 68 6D 69 63
20 43 6F 6D 65 73
65 61 74 6C 65 73
46 6F 72 20 59 6F

65 20 43
20 41 67
73 00 1F
20 54 68
00 1B 12
75 00 46

6F
61
12
65
D3
69

6D 65 73 20
69 6E 00 45
D3 89 48 65
20 53 75 6E
8A 48 65 72
72 65 68 6F

54 68 ...Here Comes Th
75 72 e Rain Again.Eur
72 65 ythmics..... Here
00 42 Comes The Sun.B
65 20 eatles..... Here
75 73 For You.Firehous

by the null-terminated “Beatles” Immediately before this is 4 bytes. The length of these two strings

(including the null bytes) and the 4 bytes is 0x1F, and this is the first of the four preceding bytes. So, the block
consists of a 4-byte header followed by a null-terminated song title followed by a null-terminated artist. Byte
1is the length of the song information block including the 4-byte header.

Byte 2 of the header block is 0x12. jim75 at “Decoding JBK 6628 DVD Karaoke Disc” (http://o0ld.
nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html) discovered the document JBK_

Manual%5B1%5D.doc. In it is a list of country codes, shown here:

00 : KOREAN
01 : CHINESE(reserved)
02 : CHINESE

03 : TAIWANESE
04 : JAPANESE
05 : RUSSIAN

06 : THAI

07 : TAIWANESE(reserved)
08 : CHINESE(reserved)
09 : CANTONESE

12 : ENGLISH

13 : VIETNAMESE

14 : PHILIPPINE

15 : TURKEY

16 : SPANISH

17 : INDONESIAN

18 : MALAYSIAN

19 : PORTUGUESE

20 : FRENCH
21 : INDIAN
22 : BRASIL

The Beatles’ song has 0x12 in byte 2 of the header, and this matches the country code in the table. This

is confirmed by looking at other language files.
I discovered later that the WMA files have their own codes. So far I have seen the following:

83 : CHINESE WMA
92 : ENGLISH WMA
94 : PHILIPPINE WMA

552

http://old.nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html
http://old.nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

I guess you can see a pattern with the earlier ones!

Bytes 3 and 4 of the header are 0xD389, which is 54153 in decimal. This is one less than the song
number in the book (54154). So, bytes 3 and 4 are a 16-bit short integer, one less than the song index in
the book.

This pattern is repeated throughout the file, so each record has this format.

Beginning/End of Data

There is a long sequence of bytes near the beginning of the file: “01 01 01 01 01 ... This finishes on my file at
0x9F23. By comparing the index number with those in my song book, I confirm this is the start of the Korean
songs and probably the start of all songs. I haven’t found any table giving me this start value.

Checking a number of songs gives me this table:

e English songs start at 60x9562D (song 24452, type 0x12)
¢ Cantonese at 0x8F5D2 (song 13701, type 3)

e Korean at 0x9F23 (song 37847, type 0)

e Indonesian at 0x11F942 (song 42002, type 0x17)

e Hindi at 0x134227 (song 45058, type 0x21)

e Philippine at 0xD5D20 (song 62775, type 0x14)

e Russian at 0x110428 (song 41012, type 5)

e Spanish at 0xF5145 (song 26487, type 0x16)

e Mandarin (1 character) at 0x413BE (song 1388, type 3)

I can’t find the Vietnamese songs, though. There don’t seem to any on my disc. My song book is lying! I
guess there is some table somewhere giving these start points, but I haven’t found it. These were all found by
looking at my song book and then in the file.

The end of the block is signaled by a sequence of “FF FF FF FF ...” at 0x136C92.

But there is a lot of stuff both before and after the song information block. I don’t know what it means.

Chinese Songs

The first English song in my book is “Gump” by Al Wierd, song number 24452. In the table of contents file
DTSMUS20. DK this is at 0x9562D (611885). The entry before this is “20 03 3A 04 CE D2 B4 F2 C1 CB D2 BB

CD A8 B2 BB CB B5 BB B0 B5 C4 B5 E7 BB B0 B8 F8 C4 E3 00 00.” The song code is “3A 04,” in other words,
14852, which is song number 14853 (one offset, remember!). When I play that song on my karaoke machine,
I'm in luck: the first character of the song is F%, which I recognize as the Chinese word “I” (in PinYin: wo3).
Its encoding in the file is “CE D2.” I've got Chinese input installed on my computer so I can search for this
Chinese character.

A Google search for Unicode value of # shows me the following:
[RESOLVED] Converting Unicode Character Literal to Uint16 variable ...
www.codeguru.com > ... > C++ (Non Visual C++ Issues)
5 posts - 2 authors - 1 Jul 2011

I've determined that the unicode character 'F' has a hex value of
0x6211 by looking it up on the "GNOME Character Map 2.32.1"

553

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

and if I do this....

Then looking up 0x6211 on Unicode Search (www. khngai.com/chinese/tools/codeunicode.php) gives
gold.

Unicode 6211 (25105)
GB Code CED2 (4650)
Big 5 Code A7DA

CNS Code 1-4A3C

There’s the CED2 in the second line as GB Code. So there you go: the character set is GB (probably
GB2312 with EUC-CN encoding) with code for % as CED2.

Just to make sure, using the table by Mary Ansell at GB Code Table (www.ansell-uebersetzungen.com/
gborder.html), the bytes “CE D2 B4 F2 C1 CB D2 BB CD A8 B2 BB CB B5 BB B0 B5 C4 B5 E7 BB B0 B8 F8 C4
E3” translate into “F; ¥T T — i ..., which is indeed the song.

Other Languages

I'm not familiar with other language encodings so haven’t investigated the Thai, Vietnamese, and so on. The
Korean seems to be EUC-KR.

Programs

The earlier investigations by others have resulted programs in C or C++. These are generally stand-alone
programs. I would like to build a collection of reusable modules, so I have chosen Java as an implementation
language.

Java Goodies

Java is a good object-oriented language that supports good design. It includes a MIDI player and MIDI
classes. It supports multiple language encodings so it is easy to switch from, say, GB-2312 to Unicode. It has
good cross-platform GUI support.

Java Baddies

Java doesn’t support unsigned integer types. This sucks really badly here since so many data types are
unsigned for these programs. Even bytes in Java are signed. Here are some of the tricks:

e Make all types the next size up: byte to int, int to long, long to long. Just hope that
unsigned longs aren’t really needed.

e Ifyouneed an unsigned byte and you have an int and you need it to fit into 8 bits,
cast to a byte and hope it’s not too big.

e Typecast all over the place to keep the compiler happy, such as when a byte is
required from an int, (byte) n.

554

http://www.khngai.com/chinese/tools/codeunicode.php
http://www.ansell-uebersetzungen.com/gborder.html
http://www.ansell-uebersetzungen.com/gborder.html

Classes

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

Watch signs all over the place. If you want to right shift a number, the operator >>
preserves sign extensions, so, for example, in binary 1XYZ... shifts to 1111XYZ... You
need to use >>>, which results in 0001XYZ.

If you want to assign an unsigned byte to an int, watch signs again. You may need the
following:

n=b>02?b:25-b

To build an unsigned int from two unsigned bytes, signs will stuff you again: n = (b1l
<< 8) + b2 will get it wrong if either bl or b2 is -ve. Instead, use the following:

n=((b1>07?Dbl: 25 -b1l) << 8) + (b22>07?b2: 25 - b2)

(No joke!)

The song class, SongInformation.java, contains information about a single song and is given here:

public class SongInformation {

// Public fields of each song record

/**

* Song number in the file, one less than in songbook

*/
public

/**

long number;

* song title in Unicode

*/
public

/**

String title;

* artist in Unicode

*/
public

/**

String artist;

* integer value of language code

*/
public

public
public
public
public
public
public

int language;

static final int KOREAN = 0;
static final int CHINESE1 = 1;
static final int CHINESE2 = 2;
static final int TAIWANESE3 =
static final int JAPANESE = 4;
static final int RUSSIAN = 5;

35

555

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

public static final int THAI = 6;
public static final int TAIWANESE7 =
public static final int CHINESE8 = 8;
public static final int CANTONESE = 9;
public static final int ENGLISH = 0x12;
public static final int VIETNAMESE = 0x13;
public static final int PHILIPPINE = 0x14;
public static final int TURKEY = 0x15;
public static final int SPANISH = 0x16;
public static final int INDONESIAN = 0x17;
public static final int MALAYSIAN = 0x18;
public static final int PORTUGUESE = 0x19;
public static final int FRENCH = 0x20;
public static final int INDIAN = Ox21;
public static final int BRASIL = 0x22;
public static final int CHINESE131 = 131;
public static final int ENGLISH146 = 146;
public static final int PHILIPPINE148 = 148;

7;

public SongInformation(long number,

String title,
String artist,
int language) {

this.number = number;

this.title = title;

this.artist = artist;

this.language = language;

}

public String toString() {
return "" + (number+1) +
}

public boolean titleMatch(String pattern) {
// System.out.println("Pattern: " + pattern);
return title.matches("(?1i).*" + pattern + ".*");

(" + language + ") \"" + title + "\" " + artist;

}

public boolean artistMatch(String pattern) {
return artist.matches("(?i).*" + pattern + ".*");

}

public boolean numberMatch(String pattern) {
Long n;
try {

n = Long.parselong(pattern) - 1;

//System.out.println("Long is "
} catch(Exception e) {

//System.out.println(e.toString());

+n);

556

}

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

return false;

return number == n;

}

public boolean languageMatch(int lang) {
return language == lang;

}

The song table class, SongTable. java, holds a list of song information objects.

import java.
import java.
import java.
import java.

util.Vector;
io.FileInputStream;
io.*;
nio.charset.Charset;

// public class SongTable implements java.util.Iterator {
// public class SongTable extends Vector<SongInformation> {
public class SongTable {

private static final String SONG_INFO_FILE = "/home/newmarch/Music/karaoke/sonken/
DTSMUS20.DKD";
private static final long INFO START = 0x9F23;

public static final int ENGLISH = 0x12;

private static Vector<SongInformation> allSongs;

private Vector<SongInformation> songs =
new Vector<SongInformation> ();

public static long[] langCount = new long[0x23];

public SongTable(Vector<SongInformation> songs) {
this.songs = songs;

}

public SongTable() throws java.io.IOException,

java.io.FileNotFoundException {

FileInputStream fstream = new FileInputStream(SONG_INFO FILE);
fstream.skip(INFO_START);
while (true) {

int len;
int lang;
long number;

len = fstream.read();

lang = fstream.read();

number = readShort(fstream);

if (len == OxFF &3 lang == OxFF 8& number == OXFFFFL) {

557

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

break;
}
byte[] bytes = new byte[len - 4];
fstream.read(bytes);

int endTitle;

// find null at end of title

for (endTitle = 0; bytes[endTitle] != 0; endTitle++)
5

byte[] titleBytes = new byte[endTitle];

byte[] artistBytes = new byte[len - endTitle - 6];

System.arraycopy(bytes, 0, titleBytes, 0, titleBytes.length);
System.arraycopy(bytes, endTitle + 1,
artistBytes, 0, artistBytes.length);
String title = toUnicode(lang, titleBytes);
String artist = toUnicode(lang, artistBytes);
// System.out.printf("artist: %s, title: %s, lang: %d, number %d\n",
artist, title, lang, number);
SongInformation info = new SongInformation(number,
title,
artist,
lang);
songs.add(info);

if (lang > ox22) {
//System.out.println("Illegal lang value
} else {
langCount[lang]++;
}

+ lang + " at song " + number);

}

allSongs = songs;

}

public void dumpTable() {
for (SongInformation song: songs) {
System.out.println(""

+ (song.number+1) + " - " +

song.artist + " - " +
song.title);

}

public java.util.Iterator<SongInformation> iterator() {
return songs.iterator();
}

private int readShort(FileInputStream f) throws java.io.IOException {
int n1 = f.read();
int n2 = f.read();
return (n1 << 8) + n2;

558

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

private String toUnicode(int lang, byte[] bytes) {

switch (lang) {

case SongInformation.ENGLISH:

case SongInformation.ENGLISH146:

case SongInformation.PHILIPPINE:

case SongInformation.PHILIPPINE148:
// case SongInformation.HINDI:

case SongInformation.INDONESIAN:

case SongInformation.SPANISH:
return new String(bytes);

case SongInformation.CHINESE1:

case SongInformation.CHINESE2:

case SongInformation.CHINESES8:

case SongInformation.CHINESE131:

case SongInformation.TAIWANESE3:

case SongInformation.TAIWANESE7:

case SongInformation.CANTONESE:
Charset charset = Charset.forName("gb2312");
return new String(bytes, charset);

case SongInformation.KOREAN:
charset = Charset.forName("euckr");
return new String(bytes, charset);

default:
return "";
}

public SongInformation getNumber(long number) {

for (SongInformation info: songs) {
if (info.number == number) {
return info;
}

}

return null;

public SongTable titleMatches(String pattern) {

Vector<SongInformation> matchSongs =
new Vector<SongInformation> ();

for (SongInformation song: songs) {
if (song.titleMatch(pattern)) {
matchSongs.add(song);
}

}

return new SongTable(matchSongs);

559

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

public SongTable artistMatches(String pattern) {
Vector<SongInformation> matchSongs =
new Vector<SongInformation> ();

for (SongInformation song: songs) {
if (song.artistMatch(pattern)) {
matchSongs.add(song);
}

}

return new SongTable(matchSongs);

public SongTable numberMatches(String pattern) {
Vector<SongInformation> matchSongs =
new Vector<SongInformation> ();

for (SongInformation song: songs) {
if (song.numberMatch(pattern)) {
matchSongs.add(song);
}

}

return new SongTable(matchSongs);

}

public String toString() {
StringBuffer buf = new StringBuffer();
for (SongInformation song: songs) {
buf.append(song.toString() + "\n");

return buf.toString();
}

public static void main(String[] args) {

// for testing

SongTable songs = null;

try {
songs = new SongTable();

} catch(Exception e) {
System.err.println(e.toString());
System.exit(1);

}

songs.dumpTable();

System.exit(0);

// Should print "54151 Help Yourself Tom Jones"
System.out.println(songs.getNumber(54150).toString());

// Should print "18062 {{[2 (Z5K) {GE"
System.out.println(songs.getNumber(18061).toString());

System.out.println(songs.artistMatches("Tom Jones").toString());

560

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

/* Prints
54151 Help Yourself Tom Jones
50213 Daughter Of Darkness Tom Jones
23914 DELILAH Tom Jones
52834 Funny Familiar Forgotten Feelings Tom Jones
54114 Green green grass of home Tom Jones
54151 Help Yourself Tom Jones
55365 I (WHO HAVE NOTHING) TOM JONES
52768 I Believe Tom Jones
55509 I WHO HAVE NOTHING TOM JONES
55594 I'll Never Fall Inlove Again Tom Jones
55609 I'm Coming Home Tom Jones
51435 It's Not Unusual Tom Jones
55817 KISS Tom Jones
52842 Little Green Apples Tom Jones
51439 Love Me Tonight Tom Jones
56212 My Elusive Dream TOM JONES
56386 ONE DAY SOON Tom Jones
22862 THAT WONDERFUL SOUND Tom Jones
57170 THE GREEN GREEN GRASS OF HOME TOM JONES
57294 The Wonderful Sound Tom Jones
23819 TILL Tom Jones
51759 What's New Pussycat Tom Jones
52862 With These Hands Tom Jones
57715 Without Love Tom Jones
57836 You're My World Tom Jones
*/

for (int n = 1; n < langCount.length; n++) {
if (langCount[n] != 0) {
System.out.println("Count:
}

+ langCount[n] + " of lang " + n);

}

// Check Russian, etc
System.out.println("Russian " + '\u0411');
System.out.println("Korean " + '\u0411');
System.exit(0);

You may need to adjust the constant values in the file-based constructor for this to work properly
for you.

A Java program using Swing to allow the display and searching of the song titles is SongTableSwing.
Jjava.

import java.awt.*;

import java.awt.event.*;
import javax.swing.event.*;
import javax.swing.*;

561

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

import javax.swing.SwingUtilities;
import java.util.regex.*;
import java.io.*;

public class SongTableSwing extends JPanel {
private DefaultlListModel model = new DefaultListModel();
private JlList list;
private static SongTable allSongs;

private JTextField numberField;
private JTextField langField;

private JTextField titleField;
private JTextField artistField;

// This font displays Asian and European characters.

// It should be in your distro.

// Fonts displaying all Unicode are zysong.ttf and Cyberbit.ttf
// See http://unicode.org/resources/fonts.html

private Font font = new Font("WenQuanYi Zen Hei", Font.PLAIN, 16);
// font = new Font("Bitstream Cyberbit", Font.PLAIN, 16);

private int findIndex = -1;

/**

* Describe <code>main</code> method here.

ES

* @param args a <code>String</code> value

*/

public static final void main(final String[] args) {
allSongs = null;

try {
allSongs = new SongTable();

} catch(Exception e) {
System.err.println(e.toString());
System.exit(1);

}

JFrame frame = new JFrame();

frame.setTitle("Song Table");

frame.setSize(1000, 800);
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

SongTableSwing panel = new SongTableSwing(allSongs);
frame.getContentPane().add(panel);

frame.setVisible(true);

}

public SongTableSwing(SongTable songs) {

562

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

if (font == null) {
System.err.println("Can't fnd font");
}

int n = 0;

java.util.Iterator<SongInformation> iter = songs.iterator();

while(iter.hasNext()) {
model.add(n++, iter.next());

// model.add(n++, iter.next().toString());

}

BorderLayout mgr = new Borderlayout();

list = new JList(model);
// list = new JList(songs);
list.setFont(font);

JScrollPane scrollPane = new JScrollPane(list);

setLayout(mgr);
add(scrollPane, BorderLayout.CENTER);

JPanel bottomPanel = new JPanel();
bottomPanel.setLayout(new GridLayout(2, 1));
add(bottomPanel, BorderLayout.SOUTH);

JPanel searchPanel = new JPanel();
bottomPanel.add(searchPanel);
searchPanel.setLayout(new FlowLayout());

JLabel numberLabel = new JLabel("Number");
numberField = new JTextField(5);

JLabel langlLabel = new JLabel("Language");
langField = new JTextField(8);

JLabel titlelLabel = new JLabel("Title");
titleField = new JTextField(20);
titleField.setFont(font);

JLabel artistlLabel = new JLabel("Artist");
artistField = new JTextField(10);
artistField.setFont(font);

searchPanel.add(numberLabel);
searchPanel.add(numberField);
// searchPanel.add(langlLabel);
// searchPanel.add(langField);
searchPanel.add(titleLabel);

563

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

searchPanel.add(titleField);
searchPanel.add(artistlLabel);
searchPanel.add(artistField);

titleField.getDocument().addDocumentListener(new DocumentListener() {
public void changedUpdate(DocumentEvent e) {
// rest find to -1 to restart any find searches
findIndex = -1;
// System.out.println("reset find index");
}
public void insertUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset insert find index");
}
public void removeUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset remove find index");

}
)s
artistField.getDocument().addDocumentListener(new DocumentListener() {
public void changedUpdate(DocumentEvent e) {
// rest find to -1 to restart any find searches
findIndex = -1;
// System.out.println("reset insert find index");
}
public void insertUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset insert find index");
}
public void removeUpdate(DocumentEvent e) {
findIndex = -1;
// System.out.println("reset insert find index");

}
);

titleField.addActionListener(new ActionlListener(){
public void actionPerformed(ActionEvent e){
filterSongs();
1)
artistField.addActionlListener(new ActionListener(){
public void actionPerformed(ActionEvent e){
filterSongs();
1)
numberField.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent e){
filterSongs();

1)

564

}

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

JPanel buttonPanel = new JPanel();
bottomPanel.add(buttonPanel);
buttonPanel.setlLayout(new FlowLayout());

JButton find = new JButton("Find");
JButton filter = new JButton("Filter");
JButton reset = new JButton("Reset");
JButton play = new JButton("Play");
buttonPanel.add(find);
buttonPanel.add(filter);
buttonPanel.add(reset);
buttonPanel.add(play);

find.addActionListener(new ActionlListener() {
public void actionPerformed(ActionEvent e) {
findSong();
}

};

filter.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
filterSongs();

B;

reset.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
resetSongs();

B;

play.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

playSong();
}s

public void findSong() {

String number = numberField.getText();
String language = langField.getText();
String title = titleField.getText();

String artist = artistField.getText();

if (number.length() != 0) {
try {

long num = Integer.parseInt(number) - 1;
for (int n = 0; n < model.getSize(); n++) {

SongInformation info = (SongInformation) model.getElementAt(n);

if (info.number == num) {

565

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

566

list.setSelectedIndex(n);
list.ensureIndexIsVisible(n);
return;

}

} catch(Exception e) {
System.err.println("Not a number");
numberField.setText("");

}

return;

}

/*
System.out.println("Title " + title + title.length() +
"artist " + artist + artist.length() +
" find start " + findIndex +
model size " + model.getSize());
if (title.length() == 0 && artist.length() == 0) {
System.err.println("no search terms");
return;

}
*/

//System.out.println("Search " + searchStr + " from index
for (int n = findIndex + 1; n < model.getSize(); n++) {

" + findIndex);

SongInformation info = (SongInformation) model.getElementAt(n);

//System.out.println(info.toString());

if ((title.length() != 0) && (artist.length() !'= 0)) {

if (info.titleMatch(title) && info.artistMatch(artist)) {
// System.out.println("Found " + info.toString());

findIndex = n;
list.setSelectedIndex(n);
list.ensureIndexIsVisible(n);
break;

}
} else {

if ((title.length() != 0) && info.titleMatch(title)) {
// System.out.println("Found " + info.toString());

findIndex = n;
list.setSelectedIndex(n);
list.ensureIndexIsVisible(n);
break;

} else if ((artist.length() != 0) &8 info.artistMatch(artist)) {
// System.out.println("Found " + info.toString());

findIndex = n;
list.setSelectedIndex(n);
list.ensureIndexIsVisible(n);
break;

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

}

public void filterSongs() {
String title = titleField.getText();
String artist = artistField.getText();
String number = numberField.getText();
SongTable filteredSongs = allSongs;

if (allSongs == null) {
// System.err.println("Songs is null");
return;

}

if (title.length() != 0) {
filteredSongs = filteredSongs.titleMatches(title);
}

if (artist.length() != 0) {
filteredSongs = filteredSongs.artistMatches(artist);
}

if (number.length() != 0) {
filteredSongs = filteredSongs.numberMatches(number);
}

model.clear();
int n = 0;
java.util.Iterator<SongInformation> iter = filteredSongs.iterator();
while(iter.hasNext()) {
model.add(n++, iter.next());
}

}

public void resetSongs() {
artistField.setText("");
titleField.setText("");
numberField.setText("");
model.clear();
int n = 0;
java.util.Iterator<SongInformation> iter = allSongs.iterator();
while(iter.hasNext()) {
model.add(n++, iter.next());
}

}

Vioio

* "play" a song by printing its id to standard out.

* Can be used in a pipeline this way

*/

public void playSong() {
SongInformation song = (SongInformation) list.getSelectedValue();
if (song == null) {

567

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

return;
}
long number = song.number + 1;
System.out.println("" + number);

}

class SongInformationRenderer extends JLabel implements ListCellRenderer {

public Component getlListCellRendererComponent(
JList list,
Object value,
int index,
boolean isSelected,
boolean cellHasFocus) {
setText(value.toString());
return this;

When Play is selected, it will print the song ID to standard output for use in a pipeline.

The Data Files

The following sections will cover the data files.

General

The files DTSMUS00. DKD to DTSMUS07 .DKD contain the music files. There are two formats for the music:
Microsoft WMA files and MIDI files. In my song books, some songs are marked as having a singer. These turn
out to be the WMA files. Those without a singer are MIDI files.

The WMA files are just that. The MIDI files are slightly compressed and have to be decoded before they
can be played.

Each song block has at the beginning a section containing the lyrics. These are compressed and have to
be decoded.

The data for one song forms a record of contiguous bytes. These records are collected into blocks, also
contiguous. The blocks are separate. There is a “superblock” of pointers to these blocks. Part of the song
number is an index into the superblock, selecting the block. The rest of the song number is an index of the
record in the block.

568

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

My Route into This

I came backward into this and only arrived at understanding what others had accomplished after some time.
So, in case it helps any others, here is my route.

Iused the Unix command strings to discover the song information in DTSMUS10.DKD. On the other files
it didn’t seem to produce much. But there were ASCII strings in these files, and some were repeated. So, I
wrote a shell pipeline to sort these strings and count them. The pipeline for one file was as follows:

strings DTSMUS05.DKD | sort |uniq -c | sort -n -r |less
This produced these results:

1229 :ty|
1018 j?wK
843]/«
756 Seh
747 Ser
747 _\D+P
674 :"yt
234 IRI$

The results weren’t inspiring. But when I looked inside the files to see where “Ser” was occurring, I also
saw the following:

q03C3E230 F6 01 00 00 00 02 00 16 00 57 00 69 00 6E 00 64W.i.n.d

03C3E240 00 6F 00 77 00 73 00 20 00 4D 00 65 00 64 00 69 .o.w.s. .M.e.d.i
03C3E250 00 61 00 20 00 41 00 75 00 64 00 69 00 6F 00 20 .a. .A.u.d.i.o.
03C3E260 00 39 00 00 00 24 00 20 00 34 00 38 00 20 00 6B .9...%. .4.8. .k

03C3E270 00 62 00 70 00 73 00 2C 00 20 00 34 00 34 00 20 .b.p.s.,. .4.4.
03C3E280 00 6B 00 48 00 7A 00 2C 00 20 00 73 00 74 00 65 .k.H.z.,. .s.t.e

03C3E290 00 72 00 65 00 6F 00 20 00 31 00 2D 00 70 00 61 .r.e.o. .1.-.p.a
03C3E2A0 00 73 00 73 00 20 00 43 00 42 00 52 00 00 00 02 .s.s. .C.B.R....
03C3E2BO 00 61 01 91 07 DC B7 B7 A9 CF 11 8E E6 00 CO OC .aceveeenneennns
03C3E2C0 20 53 65 72 00 00 00 00 00 00 00 40 9E 69 F8 4D Ser....... @.i.M

Wow! Two-byte characters!
The strings command has options to look at, for example, 2-byte big-endian character strings. The
command

strings -e b DTSMUSO05.DKD

turned up this:

IsVBR
DeviceConformanceTemplate
WM/WMADRCPeakReference
WM/WMADRCAverageReference
WMFSDKVersion

569

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

9.00.00.2980
WMFSDKNeeded
0.0.0.0000

These are all part of the WMA format.
According to Gary Kessler's File Signatures Table (www.garykessler.net/library/file_sigs.html),
the signature of a WMA file is given by the header shown here:

30 26 B2 75 8E 66 CF 11
A6 D9 00 AA 00 62 CE 6C

That pattern does occur, with the previous strings appearing some time later.

The spec for the ASF/WMA file format is at www.microsoft.com/download/en/details.aspx?displayl
ang=en8id=14995, although you are advised not to read it in case you want to do anything open source with
such files.

So, on that basis, I could identify the start of WMA files. The four bytes preceding each WMA file are the
length of the file. From that I could find the end of the file, which turned out to be the start of a record for the
next record containing some stuff and then the next WMA file.

In these records, I could see patterns I couldn’t understand, but also from byte 36 on I could see strings
like this:

AIN'T IT FUNNY HOW TIME SLIPS AWAY, Str length: 34
00000000 10 50 41 10 50 49 10 50 4E 10 50 27 10 50 54 10 .PA.PI.PN.P'.PT.

00000010 50 20 11 F1 25 12 71 05 04 61 05 05 51 21 13 01 P ..%.q..a..Q!..
00000020 02 05 91 2B 10 20 48 10 50 4F 10 50 57 13 40 00 ...+. H.PO.PW.@.

00000030 12 61 02 12 01 02 04 D1 05 04 51 3B 05 31 05 04 .A........ Q;.1..
00000040 C1 29 10 20 50 10 51 45 10 21 28 10 21 1E 10 21 .). P.QE.!(.!..!
00000050 3A 14 F1 05 13 31 02 10 C1 OF 11 A1 58 15 A0 00 :....1...... X...
00000060 15 70 00 13 A0 A9 B TR

Canyou see AIN'T (as .PA.PI.PN.P'.PT)?

But I couldn’t figure out what the encoding was or how to find the table of song starts. That’s when I was
ready to look at the earlier stuff and understand how it applied to me. (See “Understanding the HOTDOG
files on DVD of California electronics” (http://0ld.nabble.com/Understanding-the-HOTDOG-files-on-
DVD-of-California-electronics-td11359745.html), “Decoding JBK 6628 DVD Karaoke Disc” (http://
old.nabble.com/Decoding-IBK-6628-DVD-Karaoke-Disc-td12261269.html), and “Karaoke Huyndai 99”
(http://board.midibuddy.net/showpost.php?p=533722&postcount=31).

The Superblock

The file DTSMUS00.DKD starts with a bunch of nulls. At 0x200 it starts to kick in with data. This was identified
as the start of a “table of tables,” in other words, a superblock. Each entry in this superblock is a 4-byte
integer, which turns out to be an index to tables in the data files. The superblock is terminated by a sequence
of nulls (for me at 0x5F4), and there are fewer than 256 indexes in the table.

The value of these superblock entries seems to have changed in different versions. In the JBK disc and
also on mine, the values have to be multiplied by 0x800 to give a “virtual offset” in the data files.

To give meaning to this, on my disc at 0x200 is the following:

00000200 00 00 00 01 00 00 08 6C 00 00 OF C1 00 00 17 7A
00000210 00 00 1E 81 00 00 25 21 00 00 2B 8D 00 00 32 B7

570

http://www.garykessler.net/library/file_sigs.html
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=14995
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=14995
http://old.nabble.com/Understanding-the-HOTDOG-files-on-DVD-of-California-electronics-td11359745.html
http://old.nabble.com/Understanding-the-HOTDOG-files-on-DVD-of-California-electronics-td11359745.html
http://old.nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html
http://old.nabble.com/Decoding-JBK-6628-DVD-Karaoke-Disc-td12261269.html
http://board.midibuddy.net/showpost.php?p=533722&postcount=31

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

So, the table values are 0x1, 0x86C, 0xFC1, 0x177A, The “virtual addresses” are 0x800, 0x436000
(0x86C * 0x800), and so on. If you go to these addresses, you'll see before the address is a bunch of nulls, and
at that address is data.

I call them virtual addresses because there are eight data files on my DVD, and most addresses are
larger than any of the files. The files (except the last) in my case are all 1065353216L bytes. The “obvious”
solution works: the file number is address/file size, and the offset into the file is address percentage file size.
You can check this by looking for the nulls before the address of each block.

Song Start Tables

Each of the tables indexed from the superblock is a table of song indexes. Each table contains 4-byte indexes.
Each table has at most 0x100 entries or is terminated by a zero index. Each index is the offset from the table
start of the beginning of a song entry.

Locating Song Entry from Song Number

Given a song number such as 54154, “Here Comes the Sun,” you can now find the song entry. Reduce the
song number by 1 to 54153. It is a 16-bit number. The top 8 bits are the index of the song index table in the
superblock. The bottom 8 bits are the index of the song entry in the song index table.

Here is the pseudocode:

songNumber = get number for song from DTSMUS20.DKD
superBlockIdx = songNumber >>
indexTableIdx = songNumber & OxFF

seek (DTSMUS00.DKD, superBlockIdx)
superBlockValue = read 4-byte int from DTSMUS00.DKD

locationIndexTable = superBlockValue * 0x800
fileNumber = locationIndexTable / fileSize
indexTableStart = locationIndexTable % fileSize
entrylocation = indexTableStart + indexTableIdx

seek(fileNumber, entrylocation)
read song entry

Song Entries

Each song entry has a header and is followed by two blocks that I call the information block and the song
data block. Each header block has a 2-byte type code and a 2-byte integer length. The type code is either
0x0800 or 0x0000. The code signals the encoding of the song data: 0x0800 is a WMA file, while 0x0000 is a
MIDI file.

If the type code is 0x0 such as the Beatles’ “Help!” (song number 51765), then the information block has
the length in the header block and starts 12 bytes further in. The song data block immediately follows this.

If the type code is 0x8000, then the information block starts 4 bytes in for the length given in the header.
The song block starts on the next 16-byte boundary from the end of the information block.

The song block starts with a 4-byte header, which is the length of the song data for all types.

571

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

Song Data

If the song type is 0x8000, then the song data is a WMA file. All songs looked at have a singer included in this
file.

If the song type is 0x0, then (from the book) there is no singer in the songs looked at. The file is encoded
and decodes to a MIDI file.

Decoding MIDI Files

All files have a lyric block followed by a music block. The lyric block is compressed, and it has been
discovered that this is LZW compression. This decompresses to a set of 4-byte chunks. The first two bytes are
characters of the lyric. For 1-byte encodings such as English or Vietnamese, the first byte is one character,
and the second is either zero or another character (two bytes such as \r\n). For two-byte encodings such as
GB-2312, the two bytes form one character.

The next two bytes are the length of time the character string plays for.

Lyric Block

Each lyric block starts with strings such as ""#0001 @@00@12 @Help Yourself @ @@Tom Jones".The
language code is in there as NN in @O0@NN. The song title, writer, and singer are clear. (Note: these characters
are all 4 bytes apart!) For English, itis 12 and so on.

Bytes 0 and 1 of each block are a character in the lyric. Bytes 2 and 3 are the duration of each character.
To turn them into MIDI data, the durations have to be turned into the start/stop of each character.

My Java program to do this is SongExtracter. java.

import java.io.*;
import javax.sound.midi.*;
import java.nio.charset.Charset;

public class SongExtracter {
private static final boolean DEBUG = false;

private String[] dataFiles = new String[] {

"DTSMUS00.DKD", "DTSMUS01.DKD", "DTSMUS02.DKD",

"DTSMUS03.DKD", "DTSMUS04.DKD", "DTSMUSO5.DKD",

"DTSMUS06.DKD", "DTSMUSO7.DKD"};
private String superBlockFileName = dataFiles[0];
private static final String DATADIR = "/home/newmarch/Music/karaoke/sonken/";
private static final String SONGDIR ="/home/newmarch/Music/karaoke/sonken/songs/";
//private static final String SONGDIR ="/server/KARAOKE/KARAOKE/Sonken/";
private static final long SUPERBLOCK OFFSET = 0x200;
private static final long BLOCK MULTIPLIER = 0x800;
private static final long FILE_SIZE = 0x3F800000L;

private static final int SIZE_UINT = 4;
private static final int SIZE USHORT = 2;

572

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

private static final int ENGLISH = 12;

public RawSong getRawSong(int songNumber)

}

throws java.io.IOException,
java.io.FileNotFoundException {
if (songNumber < 1) {
throw new FileNotFoundException();
}

// song number in files is one less than song number in books, so
songNumber--;

long locationIndexTable = getTableIndexFromSuperblock(songNumber);
debug("Index table at %X\n", locationIndexTable);

long locationSongDataBlock = getSongIndex(songNumber, locationIndexTable);

// Now we are at the start of the data block
return readRawSongData(locationSongDataBlock);

//debug("Data block at %X\n", songStart);

private long getTableIndexFromSuperblock(int songNumber)

}

/*
* Virtual address of song data block

throws java.io.IOException,

java.io.FileNotFoundException {
// index into superblock of table of song offsets
int superBlockIdx = songNumber >> 8;
debug("Superblock index %X\n", superBlockIdx);
File superBlockFile = new File(DATADIR + superBlockFileName);
FileInputStream fstream = new FileInputStream(superBlockFile);
fstream.skip (SUPERBLOCK OFFSET + superBlockIdx * SIZE UINT);
debug("Skipping to %X\n", SUPERBLOCK OFFSET + superBlockIdx*4);
long superBlockValue = readUInt(fstream);

// virtual address of the index table for this song
long locationIndexTable = superBlockValue * BLOCK MULTIPLIER;

return locationIndexTable;

private long getSongIndex(int songNumber, long locationIndexTable)

throws java.io.IOException,
java.io.FileNotFoundException {

573

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

// index of song into table of song ofsets
int indexTableIdx = songNumber & OxFF;
debug("Index into index table %X\n", indexTableIdx);

// translate virtual address to physical address

int whichFile = (int) (locationIndexTable / FILE SIZE);

long indexTableStart = locationIndexTable % FILE SIZE;

debug("Which file %d index into file %X\n", whichFile, indexTableStart);

File songDataFile = new File(DATADIR + dataFiles[whichFile]);

FileInputStream dataStream = new FileInputStream(songDataFile);
dataStream.skip(indexTableStart + indexTableIdx * SIZE UINT);

debug("Song data index is at %X\n", indexTableStart + indexTableIdx*SIZE_UINT);

long songStart = readUInt(dataStream) + indexTableStart;

return songStart + whichFile * FILE_SIZE;
}

private RawSong readRawSongData(long locationSongDataBlock)
throws java.io.IOException {
int whichFile = (int) (locationSongDataBlock / FILE_SIZE);
long dataStart = locationSongDataBlock % FILE_SIZE;
debug("Which song file %d into file %X\n", whichFile, dataStart);

File songDataFile = new File(DATADIR + dataFiles[whichFile]);
FileInputStream dataStream = new FileInputStream(songDataFile);
dataStream.skip(dataStart);

RawSong rs = new RawSong();

rs.type = readUShort(dataStream);

rs.compressedLyriclength = readUShort(dataStream);

// discard next short

readUShort(dataStream);

rs.uncompressedlLyricLength = readUShort(dataStream);

debug("Type %X, clLength %X ulLength %X\n", rs.type, rs.compressedLyriclLength,
rs.uncompressedLyriclength);

// don't know what the next word is for, skip it
//dataStream.skip(4);
readUInt(dataStream);

// get the compressed lyric
rs.lyric = new byte[rs.compressedlLyriclLength];
dataStream.read(rs.lyric);

long toBoundary = 0;
long songlength = 0;
long uncompressedSonglength = 0;

574

}

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

// get the song data

if (rs.type == 0) {
// Midi file starts in 4 bytes time
songlength = readUInt(dataStream);
uncompressedSonglength = readUInt(dataStream);
System.out.printf("Song data length %d, uncompressed %d\n",

songlLength, uncompressedSonglLength);

rs.uncompressedSonglength = uncompressedSonglLength;

// next word is language again?
//toBoundary = 4;
//dataStream. skip(toBoundary);
readUInt(dataStream);
} else {
// WMA starts on next 16-byte boundary
if((dataStart + rs.compressedlLyriclLength + 12) % 16 != 0) {
// dataStart already on 16-byte boundary, so just need extra since then
toBoundary = 16 - ((rs.compressedLyricLength + 12) % 16);
debug("Read lyric data to %X\n", dataStart + rs.compressedlLyriclLength + 12);
debug("Length %X to boundary %X\n", rs.compressedlLyriclLength, toBoundary);
dataStream.skip(toBoundary);
}
songlength = readUInt(dataStream);
}

rs.music = new byte[(int) songlength];
dataStream.read(rs.music);

return rs;

private long readUInt(InputStream is) throws IOException {

}

long val = 0;

for (int n = 0; n < SIZE UINT; n++) {
int ¢ = is.read();
val = (val << 8) + ¢;

}

debug("ReadUInt %#X\n", val);

return val;

private int readUShort(InputStream is) throws IOException {

int val = 0;

for (int n = 0; n < SIZE USHORT; n++) {
int ¢ = is.read();
val = (val <« 8) + ¢;

575

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

debug("ReadUShort %X\n", val);
return val;

}

void debug(String f, Object ...args) {
if (DEBUG) {
System.out.printf("Debug:
}

+ f, args);
}

public Song getSong(RawSong rs) {
Song song;
if (rs.type == 0x8000) {
song = new WMASong(rs);
} else {
song = new MidiSong(rs);
}

return song;

}

public static void main(String[] args) {
if (args.length != 1) {
System.err.println("Usage: java SongExtractor <song numnber>");
System.exit(1);
}

SongExtracter se = new SongExtracter();

try {
RawSong rs = se.getRawSong(Integer.parseInt(args[0]));
rs.dumpToFile(args[0]);

Song song = se.getSong(xs);
song.dumpToFile(args[0]);
song.dumpLyric();

} catch(Exception e) {
e.printStackTrace();

}

}

private class RawSong {
/**
* type == 0x0 is Midi
* type == 0x8000 is WMA
*/
public int type;
public int compressedlLyriclength;
public int uncompressedlLyriclLength;
public long uncompressedSonglength; // only needed for compressed Midi
public byte[] lyric;
public byte[] music;

576

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

public void dumpToFile(String fileName) throws IOException {
FileOutputStream fout = new FileOutputStream(SONGDIR + fileName + ".lyric");
fout.write(lyric);
fout.close();

fout = new FileOutputStream(SONGDIR + fileName + ".music");
fout.write(music);
fout.close();

}

private class Song {
public int type;
public byte[] lyric;
public byte[] music;
protected Sequence sequence;
protected int language = -1;

public Song(RawSong rs) {
type = rs.type;
lyric = decodelyric(rs.lyric,
rs.uncompressedLyricLength);

}

/**
* Raw lyric is LZW compressed. Decompress it
*/
public byte[] decodelLyric(byte[] compressedlLyric, long uncompressedLength) {
// uclen is short by at least 2 - other code adds 10 so we do too
// TODO: change LZW to use a Vector to build result so we don't have to guess at
length
byte[] result = new byte[(int) uncompressedlLength + 10];
LZW 1zw = new LZW();
int len = lzw.expand(compressedLyric, compressedLyric.length, result);
System.out.printf("uncompressedLength %d, actual %d\n", uncompressedlLength,
len);
lyric = new byte[len];
System.arraycopy(result, 0, lyric, 0, (int) uncompressedlLength);
return lyric;

}

public void dumpToFile(String fileName) throws IOException {
FileOutputStream fout = new FileOutputStream(SONGDIR + fileName +
".decodedlyric");
fout.write(lyric);
fout.close();

fout = new FileOutputStream(SONGDIR + fileName + ".decodedmusic");

577

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

fout.write(music);
fout.close();

fout = new FileOutputStream(SONGDIR + fileName + ".mid");
if (sequence == null) {

System.out.println("Seq is null");
} else {

// type is MIDI type 0

MidiSystem.write(sequence, 0, fout);

}

public void dumpLyric() {
for (int n = 0; n < lyric.length; n += 4) {
if (lyric[n] == "\1r") {
System.out.println();
} else {
System.out.printf("%c", lyric[n] & OxFF);
}

}
System.out.println();

System.out.printf("Language is %X\n", getlanguageCode());
}

/**
* Lyric contains the language code as string @OO@NN in header section
*/
public int getlLanguageCode() {
int lang = 0;

// Look for @00@NN and return NN
for (int n = 0; n < lyric.length-20; n += 4) {
if (lyric[n] == (byte) '@' 8&
lyric[n+4] == (byte) '0' &&
lyric[n+8] == (byte) '0' &&
lyric[n+12] == (byte) '@") {
lang = ((lyric[n+16]-'0") << 4) + lyric[n+20]-'0";
break;
}
}

return lang;

}

/X¥*
* Lyric is in a language specific encoding. Translate to Unicode UTF-8.
* Not all languages are handled because I don't have a full set of examples
*/
public byte[] lyricToUnicode(byte[] bytes) {
if (language == -1) {
language = getlanguageCode();

578

}

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

switch (language) {
case SongInformation.ENGLISH:
return bytes;

case SongInformation.KOREAN: {
Charset charset = Charset.forName("gb2312");
String str = new String(bytes, charset);
bytes = str.getBytes();
System.out.println(str);
return bytes;

case SongInformation.CHINESE1:

case SongInformation.CHINESE2:

case SongInformation.CHINESES8:

case SongInformation.CHINESE131:

case SongInformation.TAIWANESE3:

case SongInformation.TAIWANESE7:

case SongInformation.CANTONESE:
Charset charset = Charset.forName("gb2312");
String str = new String(bytes, charset);
bytes = str.getBytes();
System.out.println(str);
return bytes;

}

// language not handled

return bytes;

public void durationToOnOff() {

}

public Track createSequence() {

}

public void addMsgToTrack(MidiMessage msg, Track track, long tick) {

Track track;

try {

sequence = new Sequence(Sequence.PPQ, 30);
} catch(InvalidMidiDataException e) {

// help!!!
}

track = sequence.createTrack();

addLyricToTrack(track);
return track;

MidiEvent midiEvent = new MidiEvent(msg, tick);

579

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

// No need to sort or delay insertion. From the Java API

// "The list of events is kept in time order, meaning that this
// event inserted at the appropriate place in the list"
track.add(midiEvent);

}

/**
* return byte as int, converting to unsigned if needed
*/
protected int ub2i(byte b) {
return b >= 0?2 b : 256 + b;
}

public void addLyricToTrack(Track track) {
long lastDelay = 0;
int offset = 0;
int datao;
int datai;
final int LYRIC = 0x05;
MetaMessage msg;

while (offset < lyric.length-4) {
int data3 = ub2i(lyric[offset+3]);
int data2 = ub2i(lyric[offset+2]);
datao = ub2i(lyric[offset]);
datal = ub2i(lyric[offset+1]);

long delay = (data3 << 8) + dataz;

offset += 4;
byte[] data;
int len;
long tick;

//System.out.printf("Lyric offset %X char %X after %d with delay %d
made of %d %d\n", offset, datao, lastDelay, delay, lyric[offset-1],
lyric[offset-2]);

if (data1 == 0) {

data = new byte[] {(byte) datao}; //, (byte) MetaMessage.META};
} else {

data = new byte[] {(byte) datao, (byte) datai}; // , (byte) MetaMessage.META};
}

data = lyricToUnicode(data);
msg = new MetaMessage();

if (delay » 0) {
tick = delay;
lastDelay = delay;
} else {
tick = lastDelay;

580

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

}

try {
msg.setMessage(LYRIC, data, data.length);

} catch(InvalidMidiDataException e) {
e.printStackTrace();
continue;

}
addMsgToTrack(msg, track, tick);

}

private class WMASong extends Song {

public WMASong(RawSong rs) {
// We want to decode the lyric, but just copy the music data
super(rs);
music = rs.music;
createSequence();

}

public void dumpToFile(String fileName) throws IOException {
System.out.println("Dumping WMA to " + fileName + ".wma");
super.dumpToFile(fileName);
FileOutputStream fout = new FileOutputStream(fileName + ".wma");
fout.write(music);
fout.close();

}

private class MidiSong extends Song {

private S‘tl’ing[] keyNameS - {"C", "C#", “D", "D#“, "E", “F", "F#“, an’ “G#", "A“,
“A#", "B“};

public MidiSong(RawSong rs) {
// We want the decoded lyric plus also need to decode the music
// and then turn it into a Midi sequence
super(rs);
decodeMusic(rs);
createSequence();

}

public void dumpToFile(String fileName) throws IOException {
System.out.println("Dumping Midi to " + fileName);
super.dumpToFile(fileName);

581

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

public String getKeyName(int nKeyNumber)

{
if (nKeyNumber > 127)
return "illegal value";
}
else
{
int nNote = nKeyNumber % 12;
int nOctave = nKeyNumber / 12;
return keyNames[nNote] + (nOctave - 1);
}
}

public byte[] decodeMusic(RawSong rs) {
byte[] compressedMusic = rs.music;
long uncompressedSonglength = rs.uncompressedSonglLength;

// TODO: change LZW to use a Vector to build result so we don't have to guess at
length

byte[] expanded = new byte[(int) uncompressedSonglength + 20];

LZW 1zw = new LZW();

int len = lzw.expand(compressedMusic, compressedMusic.length, expanded);
System.out.printf("Uncompressed %d, Actual %d\n", compressedMusic.length, len);
music = new byte[len];

System.arraycopy(expanded, 0, music, 0, (int) len);

return music;

}

public Track createSequence() {
Track track = super.createSequence();
addMusicToTrack(track);
return track;

}

public void addMusicToTrack(Track track) {
int timeline = 0;
int offset = 0;
int midiChannelNumber = 1;

/* From http://board.midibuddy.net/showpost.php?p=5337228postcount=31
Block of 5 bytes :
XX XX XX XX XX
1st byte = Delay Time
2nd byte = Delay Time when the velocity will be o,
this one will generate another midi event
with velocity 0 (see above).

582

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

3nd byte = Event, for example 9x : Note On for channel x+1,
cx for PrCh, bx for Par, ex for Pitch Bend....
4th byte = Note
5th byte = Velocity
*/
System.out.println("Adding music to track");
while (offset < music.length - 5) {

int startDelayTime = ub2i(music[offset++]);
int endDelayTime = ub2i(music[offset++]);
int event = ub2i(music[offset++]);

int data1l = ub2i(music[offset++]);

int data2 = ub2i(music[offset++]);

int tick = timeline + startDelayTime;
System.out.printf("Offset %X event %X timeline %d\n", offset, event & OxFF,
tick);

ShortMessage msg = new ShortMessage();
ShortMessage msg2 = null;

try {
// For Midi event types see http://www.midi.org/techspecs/midimessages.
php
switch (event & 0xFo) {
case ShortMessage.CONTROL_CHANGE: // Control Change 0xBO
case ShortMessage.PITCH BEND: // Pitch Wheel Change OxEO
msg.setMessage(event, datal, data2);
/*
writeChannel(midiChannelNumber, chunk[2], false);
writeChannel(midiChannelNumber, chunk[3], false);
writeChannel(midiChannelNumber, chunk[4], false);
*/
break;

case ShortMessage.PROGRAM_CHANGE: // Program Change 0xCO
case ShortMessage.CHANNEL PRESSURE: // Channel Pressure (After-touch)
0xDo

msg.setMessage(event, datai, 0);

break;

case 0x00:
// case 0x90:
// Note on
int note = datai;
int velocity = data2;

/* We have to generate a pair of note on/note off.
The C code manages getting the order of events

583

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

done correctly by keeping a list of note off events

and sticking them into the Midi sequence when appropriate.
The Java add() looks after timing for us, so we'll

generate a note off first and add it, and then do the note on

*/
System.out.printf("Note on %s at %d, off at %d at offset %X channel
%d\n",
getKeyName(note),
tick, tick + endDelayTime, offset, (event
30xF)+1);
// ON

msg.setMessage(ShortMessage .NOTE_ON | (event & OxF),
note, velocity);

// OFF

msg2 = new ShortMessage();

msg2.setMessage(ShortMessage.NOTE_OFF | (event & OxF),
note, velocity);

break;

case OxFO: // System Exclusive
// We'll write the data as is to the buffer
offset -= 3;
// msg = SysexMessage();
while (music[offset] != (byte) OxF7) // bytes only go upto 127

GRRRR!'!'!
{
//writeChannel(midiChannelNumber, midiData[midiOffset],
false);
System.out.printf("sysex: %x\n", music[offset]);
offset++;
if (offset >= music.length) {
System.err.println("Run off end of array while
processing Sysex");
break;
}
//writeChannel(midiChannelNumber, midiData[midiOffset], false);
offset++;

System.out.printf("Ignoring sysex %02X\n", event);
// ignore the message for now
continue;

// break;

default:
System.out.printf("Unrecognized code %02X\n", event);

584

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

continue;

} catch(InvalidMidiDataException e) {
e.printStackTrace();
}

addMsgToTrack(msg, track, tick);

if (msg2 != null) {
if (endDelayTime <= 0) System.out.println("Start and end at same time");
addMsgToTrack(msg2, track, tick + endDelayTime);

msg2 = null;
}
timeline = tick;
}
}
}
}
The support classes are in LZW. java.
/**

* Based on code by Mark Nelson
* http://marknelson.us/1989/10/01/1zw-data-compression/
*/

public class LZW {

private final int BITS = 12; /* Setting the number of bits to 12, 13*/
private final int HASHING SHIFT = (BITS-8); /* or 14 affects several constants. */
private final int MAX_VALUE = (1 << BITS) - 1; /* Note that MS-DOS machines need to */
private final int MAX_CODE = MAX_VALUE - 1; /* compile their code in large model if*/

/* 14 bits are selected. */
private final int TABLE_SIZE = 5021; /* The string table size needs to be a */
/* prime number that is somewhat larger*/
/* than 2**BITS. */

private final int NEXT_CODE = 257;

private long[] prefix_code = new long[TABLE_SIZE];; /* This array holds the
prefix codes */
private int[] append character = new int[TABLE SIZE]; /* This array holds the

appended chars */
private int[] decode stack; /* This array holds the decoded string */

private int input_bit count=0;

585

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

private long input_bit buffer=0; // must be 32 bits
private int offset = 0;

/*

** This routine simply decodes a string from the string table, storing
** it in a buffer. The buffer can then be output in reverse order by
** the expansion program.

*/
/* IN: returns size of buffer used
*/
private int decode_string(int idx, long code)
{
int i;
i=0;
while (code > (NEXT_CODE - 1))
{
decode_stack[idx++] = append character[(int) code];
code=prefix_code[(int) code];
if (i++>=MAX_CODE)
{
System.err.printf("Fatal error during code expansion.\n");
return 0;
}
}
decode_stack[idx]= (int) code;
return idx;
}
/*

** The following two routines are used to output variable length
** codes. They are written strictly for clarity, and are not

** particularyl efficient.

*/

long input_code(byte[] inputBuffer, int inputLength, int dummy offset, boolean
firstTime)

{

long return_value;

//int pOffsetIdx = 0;
if (firstTime)

input_bit_count = 0;

input_bit buffer = 0;
}

while (input bit count <= 24 83 offset < inputlength)

586

}

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

/*
input_bit buffer |= (long) inputBuffer[offset++] << (24 - input_bit count);
input_bit_buffer &= OXFFFFFFFFL;
System.out.printf("input buffer %d\n", (long) inputBuffer[offset]);
*/
// Java doesn't have unsigned types. Have to play stupid games when mixing
// shifts and type coercions
long val = inputBuffer[offset++];
if (val < 0) {
val = 256 + val;
}

// System.out.printf("input buffer: %d\n", val);

//7if (((long) inpu) < 0) System.out.println("Byte is -ve???");

input_bit buffer |= (((long) val) << (24 - input_bit_count)) & OXFFFFFFFFL;
//input_bit_buffer &= OxFFFFFFFFL;

// System.out.printf("input bit buffer %d\n", input_bit_buffer);

/*

if (input_bit_buffer < 0) {
System.err.println(“"Negative!!!");

}

*/

input_bit count += 8;

}

if (offset >= inputLength & input_bit count < 12)
return MAX_VALUE;

return_value = input_bit buffer »>>> (32 - BITS);
input_bit buffer <<= BITS;

input_bit_buffer &= OXFFFFFFFFL;

input_bit_count -= BITS;

return return value;

void dumplLyric(int data)

}

/*
*x
*x

k%

*/

System.out.printf("LZW: %d\n", data);
if (data == oxd)
System.out.printf("\n");

This is the expansion routine. It takes an LZW format file, and expands
it to an output file. The code here should be a fairly close match to
the algorithm in the accompanying article.

public int expand(byte[] intputBuffer, int inputBufferSize, byte[] outBuffer)

587

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

long next_code = NEXT_CODE;/* This is the next available code to define */
long new_code;
long old_code;
int character;
int string_idx;

int offsetOut = 0;
prefix_code new long[TABLE_SIZE];

append_character = new int[TABLE_SIZE];
decode_stack = new int[4000];

0ld_code= input_code(intputBuffer, inputBufferSize, offset, true); /* Read in the
first code, initialize the */

character = (int) old code; /* character variable, and send the first */
outBuffer[offsetOut++] = (byte) old code; /*
code to the output file */

//outTest(output, old_code);
// dumpLyric((int) old code);

/*

** This is the main expansion loop. It reads in characters from the LZW file
** until it sees the special code used to inidicate the end of the data.

*/

while ((new_code=input_code(intputBuffer, inputBufferSize, offset, false))

= (MAX_VALUE))

// dumpLyric((int)new_code);

/*

** This code checks for the special STRING+CHARACTER+STRING+CHARACTER+STRING
** case which generates an undefined code. It handles it by decoding

** the last code, and adding a single character to the end of the decode

string.
*/
if (new_code>=next_code)
{
if (new_code > next_code)
{
System.err.printf("Invalid code: offset:%X new:%X
next:%X\n", offset, new code, next code);
break;
}
decode_stack[0]= (int) character;
string_idx=decode string(1, old code);
}
else
{

/*
** Otherwise we do a straight decode of the new code.

588

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

*/
string idx=decode_string(0,new_code);
}
/*
** Now we output the decoded string in reverse order.
*/

character=decode_stack[string idx];
while (string idx >= 0)

{
int data = decode_stack[string_idx--];
outBuffer[offsetOut] = (byte) data;
//outTest(output, *string--);
if (offsetOut % 4 == 0) {
//dumpLyric(data);
}
offsetOut++;
}
/*
** Finally, if possible, add a new code to the string table.
*/
if (next_code > Oxfff)
{
next_code = NEXT_CODE;
System.err.printf("*");
}

// test code
if (next_code > oxffo || next_code < ox10f)

{
}

Debug.printf("%02X ", new_code);

prefix_code[(int) next code]=0ld code;
append_character[(int) next _code] = (int) character;
next_code++;

old code=new_code;

}
Debug.printf("offset out is %d\n", offsetOut);
return offsetOut;

Here is SongInformation. java:

public class SongInformation {

589

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

// Public fields of each song record

/**

* Song number in the file, one less than in songbook
*/

public long number;

/**

* song title in Unicode
*/

public String title;

/**
* artist in Unicode
*/
public String artist;

Jx*¥
* integer value of language code
*/

public int language;

public static final int KOREAN = 0;
public static final int CHINESE1
public static final int CHINESE2
public static final int TAIWANESE3 = 3 ;
public static final int 3JAPANESE = 4;
public static final int RUSSIAN = 5;
public static final int THAI = 6;
public static final int TAIWANESE7 =
public static final int CHINESE8 = 8;
public static final int CANTONESE = 9;
public static final int ENGLISH = 0x12;
public static final int VIETNAMESE = 0x13;
public static final int PHILIPPINE = 0x14;
public static final int TURKEY = 0x15;
public static final int SPANISH = 0x16;
public static final int INDONESIAN = 0x17;
public static final int MALAYSIAN = 0x18;
public static final int PORTUGUESE = 0x19;
public static final int FRENCH = 0x20;
public static final int INDIAN = Ox21;
public static final int BRASIL = 0x22;
public static final int CHINESE131 = 131;
public static final int ENGLISH146 = 146;
public static final int PHILIPPINE148 = 148;

15
2;

7;

public SongInformation(long number,
String title,
String artist,
int language) {
this.number = number;

590

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

this.title = title;
this.artist = artist;
this.language = language;

}

public String toString() {
return "" + (number+1) +
}

public boolean titleMatch(String pattern) {
// System.out.println("Pattern: " + pattern);
return title.matches("(?1).*" + pattern + ".*");

(" + language + ") \"" + title + "\" " + artist;

public boolean artistMatch(String pattern) {
return artist.matches("(?1i).*" + pattern + ".*");

}
public boolean numberMatch(String pattern) {
Long n;
try {
n = Long.parselong(pattern) - 1;
//System.out.println("Long is " + n);
} catch(Exception e) {
//System.out.println(e.toString());
return false;
}
return number == n;
}

public boolean languageMatch(int lang) {
return language == lang;
}

Here is Debug. java:

public class Debug {
public static final boolean DEBUG = false;
public static void println(String str) {

if (DEBUG) {
System.out.println(str);
}

}

public static void printf(String format, Object... args) {
if (DEBUG) {
System.out.printf(format, args);
}

591

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

}
}
To compile these, run this:
javac SongExtracter.java LZW.java Debug.java SongInformation.java
Run this with the following:
java SongExtracter <song number >
The program to convert these MIDI files to karaoke KAR files is KARConverter. java.
/*
* KARConverter. java
*
* The output from decodnig the Sonken data is not in
* the format required by the KAR "standard".
* e.g. we need @T for the title,
* and LYRIC events need to be changed to TEXT events
* Tempo has to be changed too
*
*/

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;

import javax.sound.midi.MidiSystem;

import javax.sound.midi.InvalidMidiDataException;
import javax.sound.midi.Sequence;

import javax.sound.midi.Track;

import javax.sound.midi.MidiEvent;

import javax.sound.midi.MidiMessage;

import javax.sound.midi.ShortMessage;

import javax.sound.midi.MetaMessage;

import javax.sound.midi.SysexMessage;

import javax.sound.midi.Receiver;

public class KARConverter {
private static int LYRIC = 5;
private static int TEXT = 1;

private static boolean firstlLyricEvent = true;
public static void main(String[] args) {
if (args.length != 1) {

out("KARConverter: usage:");
out("\tjava KARConverter <file>");

592

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

System.exit(1);

* args[0] is the common prefix of the two files
*/

File inFile = new File(args[0] + ".mid");

File outFile = new File(args[0] + ".kar");

/*

* We try to get a Sequence object, which the content
* of the MIDI file.

*/

Sequence inSequence = null;

Sequence outSequence = null;

try {

inSequence = MidiSystem.getSequence(inFile);
} catch (InvalidMidiDataException e) {
e.printStackTrace();
System.exit(1);
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}

if (inSequence == null) {
out("Cannot retrieve Sequence.");
} else {
try {
outSequence = new Sequence(inSequence.getDivisionType(),
inSequence.getResolution());
} catch(InvalidMidiDataException e) {
e.printStackTrace();
System.exit(1);

createFirstTrack(outSequence);
Track[] tracks = inSequence.getTracks();
fixTrack(tracks[0], outSequence);
}
FileOutputStream outStream = null;
try {
outStream = new FileOutputStream(outFile);
MidiSystem.write(outSequence, 1, outStream);
} catch(Exception e) {
e.printStackTrace();
System.exit(1);

public static void fixTrack(Track oldTrack, Sequence seq) {

Track lyricTrack = seq.createTrack();
Track dataTrack = seq.createTrack();

593

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

594

int nEvent = fixHeader(oldTrack, lyricTrack);
System.out.println("nEvent " + nEvent);
for (; nEvent < oldTrack.size(); nEvent++) {
MidiEvent event = oldTrack.get(nEvent);
if (isLyricEvent(event)) {
event = convertlLyricToText(event);
lyricTrack.add(event);
} else {
dataTrack.add(event);
}

public static int fixHeader(Track oldTrack, Track lyricTrack) {

int nEvent;

// events at 0-10 are meaningless
// events at 11, 12 should be the language code,
// but maybe at 12, 13
nEvent = 11;
MetaMessage langl = (MetaMessage) (oldTrack.get(nEvent).getMessage());
String val = new String(langl.getData());
if (val.equals("@")) {
// try 12
langl = (MetaMessage) (oldTrack.get(++nEvent).getMessage());

MetaMessage lang2 = (MetaMessage) (oldTrack.get(++nEvent).getMessage());
String lang = new String(langl.getData()) +
new String(lang2.getData());
System.out.println("Lang " + lang);
byte[] karLang = getKARLang(lang);

MetaMessage msg = new MetaMessage();

try {
msg.setMessage(TEXT, karlLang, karLang.length);
MidiEvent evt = new MidiEvent(msg, OL);
lyricTrack.add(evt);

} catch(InvalidMidiDataException e) {

}

// song title is next
StringBuffer titleBuff = new StringBuffer();
for (nEvent = 15; nEvent < oldTrack.size(); nEvent++) {
MidiEvent event = oldTrack.get(nEvent);
msg = (MetaMessage) (event.getMessage());
String contents = new String(msg.getData());
if (contents.equals("@")) {

break;

}

if (contents.equals("\r\n")) {
continue;

}

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

titleBuff.append(contents);
}
String title = "@T" + titleBuff.toString();
System.out.println("Title '" + title +"'");
byte[] titleBytes = title.getBytes();

msg = new MetaMessage();

try {
msg.setMessage(TEXT, titleBytes, titleBytes.length);
MidiEvent evt = new MidiEvent(msg, OL);
lyricTrack.add(evt);

} catch(InvalidMidiDataException e) {

}

// skip the next 2 @'s
for (int skip = 0; skip < 2; skip++) {
for (++nEvent; nEvent < oldTrack.size(); nEvent++) {
MidiEvent event = oldTrack.get(nEvent);
msg = (MetaMessage) (event.getMessage());
String contents = new String(msg.getData());
if (contents.equals("@")) {
break;

}

}

// then the singer

StringBuffer singerBuff = new StringBuffer();

for (++nEvent; nEvent < oldTrack.size(); nEvent++) {
MidiEvent event = oldTrack.get(nEvent);
if (event.getTick() != 0) {

break;

}

if (! isLyricEvent(event)) {
break;

}

msg = (MetaMessage) (event.getMessage());
String contents = new String(msg.getData());
if (contents.equals("\r\n")) {

continue;
}

singerBuff.append(contents);

}
String singer = "@T" + singerBuff.toString();
System.out.println("Singer '" + singer +"'");

byte[] singerBytes = singer.getBytes();

msg = new MetaMessage();
try {

595

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

msg.setMessage(1, singerBytes, singerBytes.length);
MidiEvent evt = new MidiEvent(msg, OL);
lyricTrack.add(evt);

} catch(InvalidMidiDataException e) {

}

return nEvent;

}

public static boolean islLyricEvent(MidiEvent event) {
if (event.getMessage() instanceof MetaMessage) {
MetaMessage msg = (MetaMessage) (event.getMessage());
if (msg.getType() == LYRIC) {
return true;
}

}

return false;

}

public static MidiEvent convertlyricToText(MidiEvent event) {
if (event.getMessage() instanceof MetaMessage) {
MetaMessage msg = (MetaMessage) (event.getMessage());
if (msg.getType() == LYRIC) {
byte[] newMsgData = null;
if (firstlLyricEvent) {
// need to stick a \ at the front
newMsgData = new byte[msg.getData().length + 1];
System.arraycopy(msg.getData(), 0, newMsgData, 1, msg.getData().length);
newMsgData[0] = "\\';
firstLyricEvent = false;
} else {
newMsgData = msg.getData();
if ((new String(newMsgData)).equals("\r\n")) {
newMsgData = "\\".getBytes();

}
}
try {
/*
msg.setMessage (TEXT,
msg.getData(),
msg.getData().length);
*/
msg.setMessage (TEXT,

newMsgData,
newMsgData.length);
} catch(InvalidMidiDataException e) {
e.printStackTrace();
}
}
}

return event;

596

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

public static byte[] getKARLang(String lang) {
System.out.println("lang is " + lang);
if (lang.equals("12")) {
return "@LENG".getBytes();
}

// don't know any other language specs, so guess
if (lang.equals("01")) {

return "@LCHI".getBytes();
}

if (lang.equals("02")) {
return "@LCHI".getBytes();

}
if (lang.equals("08")) {
return "@LCHI".getBytes();

if (lang.equals("09")) {
return "@LCHI".getBytes();
}

if (lang.equals("07")) {
return "@LCHI".getBytes();
}

if (lang.equals("")) {
return "@L".getBytes();
}

if (lang.equals("")) {
return "@LENG".getBytes();

}
if (lang.equals("")) {
return "@LENG".getBytes();

}
if (lang.equals("")) {
return "@LENG".getBytes();

}
if (lang.equals("")) {

return "@LENG".getBytes();
}

if (lang.equals("")) {
return "@LENG".getBytes();
}

return ("@L" + lang).getBytes();
}

public static void copyNotesTrack(Track oldTrack, Sequence seq) {
Track newTrack = seq.createTrack();

for (int nEvent = 0; nEvent < oldTrack.size(); nEvent++)

{
MidiEvent event = oldTrack.get(nEvent);

597

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

newTrack.add(event);

}

public static void createFirstTrack(Sequence sequence) {
Track track = sequence.createTrack();
MetaMessage msgl = new MetaMessage();
MetaMessage msg2 = new MetaMessage();

byte data[] = "Soft Karaoke".getBytes();
try {
msgl.setMessage(3, data, data.length);
} catch(InvalidMidiDataException e) {
e.printStackTrace();
return;
}
MidiEvent event = new MidiEvent(msgi, OL);
track.add(event);

data = "@KMIDI KARAOKE FILE".getBytes();
try {
msg2.setMessage(1, data, data.length);
} catch(InvalidMidiDataException e) {
e.printStackTrace();
return;
}
MidiEvent event2 = new MidiEvent(msg2, oL);
track.add(event2);

}

public static void output(MidiEvent event)

{
MidiMessage message = event.getMessage();
long 1Ticks = event.getTick();

}

private static void out(String strMessage)

{
System.out.println(strMessage);

}

}

/*¥*¥* KARConverter.java ***/

598

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

Playing MIDI Files

The MIDI files extracted from the disc can be played using standard MIDI players such as TiMidity. The
lyrics are included, and the melody line is in MIDI channel 1. I've written a batch of Java programs using
Swing and also the Java Sound framework, which can play and do things to MIDI files. At the same time as
playing MIDI files, I can also do cool karaoke things such as show the lyrics, show the notes that should be
played, and show progress through the lyrics.

Playing WMA Files

WMA files are “evil” They are based on two Microsoft proprietary formats. The first is the Advanced Systems
Format (ASF) file format, which describes the “container” for the music data. The second is the Windows
Media Audio 9 codec.

ASF is the primary problem. Microsoft has a published specification (www.microsoft.com/en-us/
download/details.aspx?id=14995) that is strongly antagonistic to anything open source. The license states
that if you build an implementation based on that specification, then you:

e Cannot distribute the source code
e Can only distribute the object code

e Cannot distribute the object code except as part of a “solution” (in other words,
libraries seem to be banned)

e Cannot distribute your object code for no charge
e Cannot set your license to allow derivative works

What'’s more, you are not allowed to begin any new implementation after January 1, 2012, and it is
already January 2017!

Just to make it a little worse, Microsoft has patent 6041345, “Active stream format for holding multiple
media streams” (www.google.com/patents/US6041345), which was filed in 1997. The patent appears to
cover the same ground as many other such formats that were in existence at the time, so the standing of this
patent (were it to be challenged) is not clear. However, it has been used to block the GPL-licensed project
VirtualDub (www.advogato.org/article/101.html) from supporting ASE The status of patenting a file
format is a little suspect anyway but may become a little clearer after Oracle wins or loses its claim to patent
the Java APL

The FFmpeg project (http://ffmpeg.org/) has nevertheless done a clean-room implementation
of ASF, reverse-engineering the file format and not using the ASF specification at all. It has also reverse-
engineered the WMA codec. This allows players such as MPlayer and VLC to play ASF/WMA files. FFmpeg
itself can also convert from ASF/WMA to better formats such as Ogg Vorbis.

There is no Java handler for WMA files, and given the license, there is unlikely to be one unless it is
based on FFmpeg.

The WMA files that I have extracted from the DVD have the following characteristics:

e Each file has two channels.
e Each channel carries a mono signal.

e Theright channel carries all the instruments, the backing vocals, and also the lead
singer.

e The left channel carries all the instruments and backing vocals but not the lead
singer.

599

http://www.microsoft.com/en-us/download/details.aspx?id=14995
http://www.microsoft.com/en-us/download/details.aspx?id=14995
http://www.google.com/patents/US6041345
http://www.advogato.org/article/101.html
http://ffmpeg.org/

APPENDIXA DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

The Sonken player plays the right channel if no one is singing into the microphone but switches to the
left channel (effectively muting the lead singer) as soon as someone sings into a microphone. It's simple and
effective.

The lyrics are still there in the track data as MIDI and can be extracted as before. They can be played by
a MIDI player. I have no idea (yet) how to synchronize playing the MIDI and the WMA files.

KAR Format

The resultant MIDI files are not in KAR format. This means that karaoke players such as pykaraoke may
have problems playing them. It is not too hard to convert the files to this format: loop through the sequence,
writing or modifying MIDI events as appropriate. The program is not very exciting but is downloadable as
KARConverter.

Playing Songs with pykar

One of the simplest ways to play karaoke MIDI files is by using pykar (www. kibosh.org/pykaraoke/).
Regrettably, the songs ripped from the Sonken disc do not play properly. This is because of a mixture of bugs
in pykar and features required that are not supplied. The problems and their solutions follow.

Tempo

Many MIDI files will set the tempo explicitly using the meta event Set Tempo, 0x51. These files often do not.
pykar expects a MIDI file to include this event and otherwise defaults to a tempo of zero beats per minute. As
might be expected, this throws out all timing calculations performed by pykar.

As the Sonic Spot (www.sonicspot.com/guide/midifiles.html) explains, “If no set tempo event is
present, 120 beats per minute is assumed.” It gives a formula for calculating the appropriate tempo value,
which is 60000000/120.

This requires one change to one pykaraoke file: change line 190 of pykar . py from this:

sele.Tempo = [(0, 0)]

to this:

self.Tempo = [(0, 500000)]

Language Encoding

The file pykdb. py claims that cp1252 is the default character encoding for karaoke files and uses a font called
DejaVuSans.t, which is appropriate for displaying such characters. This encoding adds in various European
symbols such as 4 in the top 128 bits of a byte, in addition to standard ASCIL.

I'm not sure where pykaraoke got that information from, but it certainly doesn’t apply to Chinese
karaoke. I don’t know what encodings Chinese, Japanese, Korean, and so on, use, but my code dumps them
out as Unicode UTF-8. A suitable font for Unicode is Cyberbit.ttf. (See the “Fonts” chapter in my lecture
notes on Global Software at http://jan.newmarch.name/i18n/.)

600

http://www.kibosh.org/pykaraoke/
http://www.sonicspot.com/guide/midifiles.html
http://jan.newmarch.name/i18n/

APPENDIX A DECODING THE DKD FILES ON THE SONKEN KARAOKE DVD

The file pykdb. py needs the following lines:

self.KarEncoding = 'cp1252' # Default text encoding in karaoke files
self.KarFont = FontData("DejaVuSans.ttf")

changed to the following:

self.KarEncoding = 'utf-8' # Default text encoding in karaoke files
self.KarFont = FontData("Cyberbit.ttf")

and a copy of Cyberbit.tt copied to the directory /usr/share/pykaraoke/fonts/.

Songs with No Notes

Some songs on the disc have no MIDI notes, as this is all in a WMA file. The MIDI file has only the lyrics.
pykaraoke only plays up to the last note, which is at zero! So, no lyrics are played.

Conclusion

This chapter discussed basically a forensics issue: how to get information off a DVD when the format of the
files is not known. It doesn’t have anything directly to do with playing sound, although it does give me a big
source of files that I have already paid for.

601

Index

A

aconnect, 344, 348
AdaptableMidiPlayer.java, 342
AdjustableMidiPlayer.java, 340
Advanced Linux Sound Architecture (ALSA)
aplay/arecord, 23
applications, 32
audio file, 46-48
captured sound, 52
configuration files, 27, 29
configuration space information, 40
devices/aliases, 24-27, 177
hardware cards and devices, 34
initialization, 46
interrupts, 52
managing latency, 52
MPlayer, 33
parameters, 49
programs, 33
resources, 21
software parameters, 53-55
speaker-test, 22
TiMidity, 33
user space tools, 21
VLC, 33
Advanced Systems Format (ASF), 13, 599
Alpha channel, 308
alsactl control program, 22
alsa-info (collect information), 27
alsamixer command, 21
alsa_sink component, 259-260
amp program, 291
analyseplugin amp, 280
Application libraries, 302
Application programming interface (API)
asynchronous
client sources, 133-138
file playing, 93-101
1/0 callbacks, 101-112
latency controlling, 112-120
list of devices, 79, 81-84

© Jan Newmarch 2017

microphone to speaker, 120-125
PulseAudio server, 78
sources and sinks, 84-88
stream recording, 89-93
structure, 78
volume on devices, 126-128
default output device, 71
file recording, 73, 75-76
functions, 70-71
playing file, 71-73
source-sink, 76-77
applyplugin command, 278
AttributedLyricPanel, 420
Audacity, 9, 163
Audio
analog and sampled signals, 1, 2
analysis, 1
audio_decode component, 248

audio_render device and component, 260, 262

AudioFormat, 197
AudiolnputStream, 197, 199, 206
device, 28
digital signals, 1
frame, 2
jitter, 4
latency, 3
mixing, 5
overrun and underrun, 3
PCM stream, 2
ports, 245
production, sounds, 1
sample format, 2
AudioSystem class, 197
Australian Copyright Amendment Act, 550

Bellagio code
implementation, 258
library, 238, 246
output, 241-242

J. Newmarch, Linux Sound Programming, DOI 10.1007/978-1-4842-2496-0

INDEX

Broadcom
convenience functions, 239
implementation, 237
OpenMAX IL implementation, 239

C

Cairo context, 309

Callback functions, 262

CD+Graphics (CD+G) discs, 372
buying sites discs, 373

Client lists, 128-132

Client sources, 133-138

Command-line processing, 213

Complex sound system, 179

Component resources, 262

C programming, 217

D

Data files
DTSMUS00.DKD to DTSMUS07
.DKD, 568
DTSMUS10.DKD, 569
Microsoft WMA and MIDI, 568
song data, 572
song entries, 571
song entry and song number, 571
song start tables, 571
strings command, 569-570
superblock, 570
DataLine.Info, 199
Decoding DTSMUS20.DKD
begin/end of data, 553
Chinese songs, 553
language encodings, 554
MIDI files
lyric block, 572-598
programs
classes, 568
Java Baddies, 554
Java Goodies, 554
swing, 561
song information, 551-553
SongTableSwing.java, 561
Device drivers, 16
Device information, 328
Digital Karaoke disc, 549
Disk1/0, 170
DisplayReceiver, 413
dmix command, 58

604

DumpSequence.java program, 330
Digital versatile disc (DVD), 7

E

Edirol Studio Canvas SD-20 synthesizer, 338
Extensible Binary Meta Language (EBML), 13

F

FFmpeg, 227, 293
environment, 304
functions, 230
Libav programming, 228

functions, 229

main loop, 266

resources, 227

video postprocessing and scaling, 229

File-based constructor, 561

fluidsynth command, 324

FluidSynth font, 344, 370
MIDI files, 352
players, 351
python, 353
Qsynth, 351
resources, 351

Format shifting, 550

G

gdk_pixbuf _add_alpha() method, 308
getLyrics() method, 430
getMelodyChannel() method, 433
getMelodyNotes() method, 432
GNOME

MPlayer, 7

subtitles, 444
Gnome control center (Sound)

ALSA, 70

default input and output

devices, 66

device names, 69

PulseAudio, 70
gst-device-monitor, 216
gst-discoverer, 215
gst-inspect, 213-214
gst-launch program, 217
gst-play, 216
GStreamer, 9, 323

components, 211

elements, 212

pipeline, 212

source and sink pads, 212
Gtk, 297

application, 302

versions 2 and 3, 299
Gtk 2.0, 301, 306
Gtk 3.0, 301
Gtk 3 overlay function, 307-308
GTK applications, 306
GTK_MAJOR_VERSION, 299

H

HTMLS5 subtitles, 463

idiUnavailableException, 328
info.c, 249
1/0 callbacks, 101-112

J

Jack
application, 146
audacity, 163
audio applications, 149
compiling, 150
delaying audio, 157
jack_connect, 181
jack-supplied programs, 147
mixing audio, 148
mplayer, 146
PALSA device, 147
port information, 151
PulseAudio, 144
sine wave, 165
session API, 189
source code distribution, 153
tool, 146
VLC, 146

Java Sound, 321, 370
AttributedLyricPanel, 420
Baddies, 554
classes, 327
CPU, 441
DisplayReceiver, 413
Goodies, 554
input and output devices, 441
javaSound devices, 210
KaraokePlayer, 408-409, 435
MelodyPanel, 425
Microphone to Speaker, 206
MidiGUI, 415

INDEX

MidiPlayer, 409
PianoPanel, 423
PinYin, 434
playing, 334
programmer guide, 327
resources, 327, 408
Sequencelnformation
class, 430
getLyrics() method, 430
getMelodyChannel() method, 433
getMelodyNotes(), 432
methods, 430
start() method, 335
UML diagram, 408
user interface, 407
Jitter, 4
jre/lib/resources.jar, 210
jsresources.org dump, 330

K

KaraokePlayer, 408-410, 435
Karaoke systems
DKD files, 370
FluidSynth, 370
goals, 369
Java Sound, 370
subtitles, 370
TiMidity, 370
user-level tools, 370
Karaoke user-level tools
CD+G discs, 372
features, 371
files-MKYV files
line-only display, 451
lyrics display, 453
multiline lyrics display, 456
steps, 451
KAR file format, 376, 600
kmid, 377-378
machines
Malata and Sonken systems, 374
Malata player, 375
Sonken player, 374
microphone inputs, 379
MIDI players
format, 375
web sites, 375
MP3+G files, 372-373
MPEG-4 video files, 373
PyKaraoke, 377
reverb effects, 379
Video CD systems, 371
kmid, 377-378

605

INDEX

L

LADSPA
API, 196
aware applications, 188
control mechanism, 281
descriptor, 279
manager, 180
resources, 277
session, 185
user-level tools, 277
LADSPA_PortDescriptor, 279
LADSPA_PortRangeHint, 279
Latency controls, 112-120
Libao
audio output, 223
resources, 223
libass, 451
Libav pipeline, 228
LIM code, 240
hardware-supported versions, 239
implementation, 260
output, 243-244
Linux system
ALSA and PulseAudio, 19
audio relationships, 18
device drivers, 16
kernel module, 347
layers of audio tools and devices, 16
new wrinkles, 19
players (see Players)
resources, 15
Unix systems, 261, 293
sound servers, 17-18
listcomponents.c, 239
loadLADSPAPluginLibrary, 280
Loopback module, 69

Macro setHeader, 245
Malata MDVD-6619, 549
Matroska, 13
MelodyPanel, 425
Meta Events, 318
Microphone to speaker, 120-125
Musical Instrument Digital Interface (MIDI)
ALSA
aconnect, 344
resources, 343
sequencer clients, 343
applications, 147
commands, 317

606

components, 317
files, 599
comparison, 324
decoding (see Decoding MIDI files)
playing, 599
principal tools, 321
pykar, 600
resources, 321
rosegarden, 324
sound font, 321
tempo explicitly, 600
timidity, 322
VLC module, 325
interface, 33
minimal system, 318
resources, 317
synthesizer, 317
MidiDevice.Info device, 339
MidiGUI, 415
MidiPlayer, 409
MidiSystem class, 327
MidiSystem.getMidiDevice (info)., 339
mono_amp.c, 282, 284-286
Mono amplifier client, 280, 286
MP3, 12
file, 229
MPEG+ID3 data, 229
MPEG-4 video files, 373
MP3+G files, 372
AllFavourites code, 393
audio and video files, 373
buying sites, 373
environment, 381
file organization, 384
HTTP server, 381
network (play songs), 402
playing songs, 401
singer Sting, 383
song
favorites, 390
SongInformation class, 384
table, 386
swing song table, 395
user interface, 382
VLC, 402
MPlayer, 7, 146
Multiline karaoke, 449
Multipurpose multimedia
processing, 211

N

Note events, 318

(0

Ogsg
files, 217
Vorbis, 12
OMX_AllocateBuffer, 249
OMX audio mixer component, 239
OMX audio volume control, 239
OMX_GetParameter (), 245
OMX_GetRolesOfComponent, 239
OpenMAX, 265
components, 236
concepts, 236
hardware-supported versions, 239
IL, 262
API, 236
components, 237
library, 246
implementations, 237
main loop, 265
multistep process, 260
resources, 235

P

pactl/pacmd command, 68-69
paman command, 62-63
Pango, 313-315
reference manual, 312
parec/paplay/pacat, 67
pavucontrol command, 64-65
pavumeter command, 64
PianoPanel, 423
PinYin, 434
Pipeline model, 211
Pitch Bend, 340
Pixbufs, 300
Pixmaps, 300
PLATFORM_API_LinuxOS_ALSA_Ports.c, 210
playAudio(), 207
Players
MPlayer, 7
Totem, 8
VLG, 7
PlayMicrophone()., 207
play_video.c, 294-296
PortAudio devices, 164
Principal FFmpeg tool, 228
Program change events, 318
PulseAudio, 143
command line, 61
resources, 61
Pulse-code modulation (PCM), 2, 11
alias information, 37
audio files, 260

INDEX

devices, 49

functions, 34
Pykar, 600
PyKaraoke, 377

Q

Qjackctl, 164, 182

R

Raspberry Pi, 237, 242
audio render component, 260
Raw MIDI
physical devices, 347
virtual devices, 347
RawMidi interface, 347
Resource Interchange File
Format (RIFF), 12

S

seqdemao.c, 345

Sequencelnformation
class, 430
getLyrics() method, 430
getMelodyChannel() method, 433
getMelodyNotes(), 432
methods, 430

Sequencers, 318

Session management
callback function, 190
Jack modules, 179
LASH, 181
Linux audio, 181
resources, 179
UUuID, 189

setTempoFactor, 340

Signal handler, 162

Sink client, 138, 140-141

snd_pcm_writei, 52

Soft subtitles, 443

Soft synth TiMidity, 342

SongExtracter.java, 572

SonglInformation.java, 555

Songs playing, pykar
language encoding, 600
meta event Set Tempo, 600
songs with no notes, 601

SongTable.java, 386, 557

SongTableSwing.java, 561

Sonken karaoke DVD
datafiles (see Data files)
files, 550

Sonken MD-388, 549

607

INDEX

Sound codecs and file formats
audio (see Audio)
audio and video data, 11
cards, 148
encoded audio data, 11
fonts, 323
Matroska, 13-14

T

TiMidity design, 147, 370
build library, 356

environments hook management, 356

interface

ControlMode structure, 361

MP3, 12 dumb interface, 362
Ogg Vorbis, 12 entry point, 360
PCM data, 11 files and directories, 362

PCM streams, 12
servers, 17-18

running interface, 367
shared objects, 360

WMA, 13 video (MIDI files), 367
Sound tools library entry points, 357
audacity, 9 Jack, 323

converting formats and applying

effects, 8
FFmpeg/avcony, 9
GStreamer, 9

MIDI file (video files), 358
minimal application, 357
output device, 323

Xaw interface, 355

sox, 8-9 toString() method, 339
SourceDataLine, 206 Totem, 8
Sox, 8-9
Speaker-test, 22 U

Stereo amplifer, 286
SubStation alpha, 445
Subtitles, 370
ASS file
effects, 446
fill highlighting, 449
no highlighting, 447
word highlighting, 448
Gnome, 444
HTMLS5, 463
KAR files-MKV files
line-only display, 451
lyrics display, 453
multiline lyrics
display, 456

UML class diagram, 206

Unique universal identifier (UUID), 189

USB Sound Blaster card, 148

\'

Video compact disc (VCD), 7
CD systems, 371
file and stores, 294
Threads and Gtk, 302
windows, 304
VideoLAN’s documentation, 8
VLC media player, 7, 402, 444
module, 325

steps, 451
libass, 451
MPlayer page, 443 w
multiline karaoke, 449 Waveform Audio File Format (WAV/WAVE), 12
resource, 443 Windows Media Audio 9 codec, 599
soft subtitles, 443 Windows Media Audio (WMA), 13
SubStation playing, 599
Alpha, 445
VLC, 444
Superblock, 570 X! Y! Z
Swing song table, 395 X Window System, 300
Synthesizer, 334 architecture model, 300

608

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Basic Concepts of Sound
	Sampled Audio
	Sample Rate
	Sample Format
	Frames
	Pulse-Code Modulation
	Overrun and Underrun
	Latency
	Jitter
	Mixing
	Conclusion

	Chapter 2: User-Level Tools
	Players
	MPlayer
	VLC
	Totem

	Sound Tools
	sox
	FFmpeg/avconv
	GStreamer
	Audacity

	Conclusion

	Chapter 3: Sound Codecs and File Formats
	Overview
	PCM
	WAV
	MP3
	Ogg Vorbis
	WMA
	Matroska
	Conclusion

	Chapter 4: Overview of Linux Sound Architecture
	Resources
	Components
	Device Drivers
	Sound Servers
	Complexities

	Conclusion

	Chapter 5: ALSA
	Resources
	User Space Tools
	alsamixer
	alsactl
	speaker-test
	aplay/arecord
	Identifying ALSA Cards
	Device Names
	ALSA Configuration Files
	alsa-info
	Applications Using ALSA
	MPlayer
	VLC
	TiMidity

	Programming ALSA
	Hardware Device Information
	PCM Device Information
	Configuration Space Information
	ALSA Initialization
	Capture Audio to a File
	Playback Audio from a File
	Using Interrupts
	Managing Latency
	Playback of Captured Sound

	Mixing Audio
	Mixing Using dmix
	Mixing Using PulseAudio
	Simple Mixer API: Volume Control

	Writing an ALSA Device Driver
	Conclusion

	Chapter 6: PulseAudio
	Resources
	Starting, Stopping, and Pausing PulseAudio
	User Space Tools
	paman
	pavumeter
	pavucontrol
	Gnome Control Center (Sound)
	parec/paplay/pacat
	pactl/pacmd
	Device Names
	Loopback Module
	PulseAudio and ALSA

	Programming with PulseAudio
	Simple API
	Play a File
	Record to a File
	Play from Source to Sink

	Asynchronous API
	List of Devices
	Monitoring Ongoing Changes: New Sources and Sinks
	Record a Stream
	Play a File
	Play a File Using I/O Callbacks
	Controlling Latency
	Play Microphone to Speaker
	Setting the Volume on Devices
	Listing Clients
	Listing Client Sources and Sinks
	Controlling the Volume of a Sink Client

	Conclusion

	Chapter 7: Jack
	Resources
	Starting Jack
	User Tools
	Applications Using Jack
	mplayer
	VLC
	TiMidity
	Jack-Supplied Programs
	Other Jack Programs

	Using a Different Sound Card
	How Can I Use Multiple Sound Cards with Jack?
	Mixing Audio
	Writing Audio Applications with Jack
	Compiling
	Port Information
	Copy Input to Output
	Delaying Audio
	Audacity with Jack
	Play a Sine Wave
	Saving Input to Disk
	Interacting with ALSA Devices
	Conclusion

	Chapter 8: Session Management
	Resources
	Session Management Issues
	jack_connect
	LASH
	Jack Sessions
	LADISH
	Jack Session API
	LADISH API
	Conclusion

	Chapter 9: Java Sound
	Resources
	Key Java Sound Classes
	Information About Devices
	Playing Audio from a File
	Recording Audio to a File
	Play Microphone to Speaker
	Where Does JavaSound Get Its Devices From?
	Conclusion

	Chapter 10: GStreamer
	Resources
	Overview
	Command-Line Processing
	gst-inspect
	gst-discoverer
	gst-device-monitor
	gst-play
	gst-launch

	C Programming
	Writing Plug-ins
	Conclusion

	Chapter 11: libao
	Resources
	libao
	Conclusion

	Chapter 12: FFmpeg/Libav
	Resources
	The FFmpeg/Libav Controversy
	FFmpeg Command-Line Tools
	Programming
	Decoding an MP3 File
	Conclusion

	Chapter 13: OpenMAX IL
	Resources
	Quotes
	OpenMAX IL Concepts
	OpenMAX IL Components
	Implementations
	Raspberry Pi
	Bellagio
	LIM
	Hardware-Supported Versions

	Implementations of Components
	Getting Information About an IL Component

	Playing PCM Audio Files
	State
	Threads
	Hungarian Notation in OpenMAX IL
	Callbacks
	Component Resources
	Setting the Output Device
	Main Loop
	Complete Program

	Conclusion

	Chapter 14: LADSPA
	Resources
	User-Level Tools
	The Type LADSPA_Descriptor
	Loading a Plug-in
	A Mono Amplifier Client
	A Stereo Amplifer with GUI
	The amp Program
	Conclusion

	Chapter 15: Displaying Video with Overlays Using Gtk and FFmpeg
	FFmpeg
	Basic Gtk
	Versions of Gtk
	Displaying the Video Using Gtk
	Pixmaps
	Pixbufs
	X, Wayland, and Mir
	Gtk 3.0
	Gtk 2.0
	Threads and Gtk
	The Code

	Overlaying an Image on Top of an Image
	Alpha Channel
	Using Cairo to Draw on an Image
	Drawing Text Using Pango
	Conclusion

	Chapter 16: MIDI
	Resources
	Components of a MIDI System
	Synthesizer
	Sequencers
	Other Components

	MIDI Events
	Program Change Events
	Note Events
	Meta Events

	Conclusion

	Chapter 17: User-Level Tools for MIDI
	Resources
	Sound Fonts
	TiMidity
	TiMidity as a Server
	Setting TiMidity Output Device
	TiMidity and Jack

	GStreamer
	fluidsynth
	fluidsynth as a Server

	Rosegarden
	WildMIDI
	Comparison
	VLC
	Conclusion

	Chapter 18: MIDI Java Sound
	Resources
	Key Java Sound MIDI Classes
	Device Information
	Dumping a MIDI File
	Playing a MIDI File
	Changing the Soundbank
	Changing Pitch and Speed
	Using TiMidity Instead of the Default Gervill Synthesizer
	Conclusion

	Chapter 19: MIDI ALSA
	Resources
	ALSA Sequencer Clients
	aconnect
	seqdemo
	aplaymidi
	Raw MIDI Ports
	Raw MIDI Physical Devices
	Raw MIDI Virtual Devices
	Mapping MIDI Clients into MIDI Raw Space

	Turning Off All Notes
	Conclusion

	Chapter 20: FluidSynth
	Resources
	Players
	Play MIDI Files
	Python
	Conclusion

	Chapter 21: TiMidity
	TiMidity Design
	Turning TiMidity into a Library
	Managed Environments Hook
	Building the Library
	Library Entry Points
	A Minimal Application
	Playing a Background Video to a MIDI File

	Building a New Interface
	Shared Objects
	Entry Point
	ControlMode
	Include Files
	My Simple Interface
	Running My Simple Interface
	Playing a Background Video to a MIDI File

	Conclusion

	Chapter 22: Overview of Karaoke Systems
	Chapter 23: Karaoke User-Level Tools
	Video CD Systems
	CD+G Discs
	MP3+G Files
	Buying CD+G or MP3+G Files
	Converting MP3+G to Video Files
	MPEG-4 Files
	Karaoke Machines
	MIDI Players
	Finding MIDI Files
	KAR File Format
	PyKaraoke
	kmid3
	Microphone Inputs and Reverb Effects
	Conclusion

	Chapter 24: MP3+G
	File Organization
	Song Information
	Song Table
	Favorites
	All Favorites
	Swing Song Table
	Playing Songs
	VLC
	Playing Songs Across the Network
	Conclusion

	Chapter 25: Karaoke Applications Using Java Sound
	Resources
	KaraokePlayer
	MidiPlayer
	DisplayReceiver
	MidiGUI
	AttributedLyricPanel
	PianoPanel
	MelodyPanel
	SequenceInformation
	PinYin
	Karaoke Player with Sampling
	Comments on Device Choices
	Performance
	Conclusion

	Chapter 26: Subtitles and Closed Captions
	Resources
	Subtitle Formats
	MPlayer
	VLC
	Gnome Subtitles
	SubStation Alpha

	Karaoke Effects in ASS Files
	Multiline Karaoke
	libass
	Converting KAR Files to MKV Files with ASS Subtitles
	HTML5 Subtitles
	Conclusion

	Chapter 27: Karaoke FluidSynth
	Resources
	Players
	Play MIDI Files
	Extending FluidSynth with Callbacks
	Displaying and Coloring Text with Gtk
	Playing a Background Video with Gtk
	Conclusion

	Chapter 28: TiMidity and Karaoke
	TiMidity and Jack
	TiMidity Interface
	Getting the List of Lyrics
	TiMidity Options
	Playing Lyrics Using Pango + Cairo + Xlib
	Playing a Background Video with Gtk
	Background Video with TiMidity as Library
	Background Video with TiMidity as Front End
	Adding Microphone Input
	Conclusion

	Chapter 29: Jack and Karaoke
	Using Jack Rack for Effects
	Playing MIDI
	TiMidity Plus Jack Rack
	Customizing TiMidity Build
	Playing MP3+G with Jack Rack Pitch Shifting
	Conclusion

	Chapter 30: Streaming Audio
	HTTP
	HTTP Servers
	HTTP Clients
	HTTP Browsers
	MPlayer
	VLC

	Streaming vs. Downloading

	HTML5
	DLNA
	Icecast
	Flumotion
	Conclusion

	Chapter 31: Raspberry Pi
	Resources
	The Basics
	Hardware
	Alternative Single-Board Computers
	Distros

	No Sound
	ALSA
	Sampled Audio Players
	MPlayer
	VLC
	alsaplayer
	omxplayer
	Is It X Using the CPU?

	Sampled Audio Capture
	ALSA

	MIDI Players
	TiMidity
	pykaraoke
	FluidSynth/qsynth
	Scheduling
	Noncauses
	Solutions

	Java Sound
	PulseAudio
	Java MIDI
	OpenMAX
	Conclusion

	Chapter 32: Conclusion
	Where Did I Start?
	Where Did I Get To?
	How Did I Get There?

	Appendix A
: Decoding the DKD Files on the Sonken Karaoke DVD
	Introduction
	Format Shifting
	Files on the DVD
	BACK01.MPG
	DTSMUS00.DKD to DTSMUS07.DKD
	DTSMUS10.DKD
	DTSMUS20.DKD

	Decoding DTSMUS20.DKD
	Song Information
	Beginning/End of Data
	Chinese Songs
	Other Languages
	Programs
	Java Goodies
	Java Baddies
	Classes

	The Data Files
	General
	My Route into This
	The Superblock
	Song Start Tables
	Locating Song Entry from Song Number
	Song Entries
	Song Data

	Decoding MIDI Files
	Lyric Block

	Playing MIDI Files
	Playing WMA Files
	KAR Format
	Playing Songs with pykar
	Tempo
	Language Encoding
	Songs with No Notes

	Conclusion

	Index

