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Preface

This book is about constrained optimization. It begins with a thorough treat-
ment of linear programming and proceeds to convex analysis, network flows, integer
programming, quadratic programming, and convex optimization. Along the way,
dynamic programming and the linear complementarity problem are touched on as
well.

The book aims to be a first introduction to the subject. Specific examples and
concrete algorithms precede more abstract topics. Nevertheless, topics covered are
developed in some depth, a large number of numerical examples are worked out
in detail, and many recent topics are included, most notably interior-point methods.
The exercises at the end of each chapter both illustrate the theory and, in some cases,
extend it.

Prerequisites. The book is divided into four parts. The first two parts assume
a background only in linear algebra. For the last two parts, some knowledge of
multivariate calculus is necessary. In particular, the student should know how to use
Lagrange multipliers to solve simple calculus problems in 2 and 3 dimensions.

Associated software. It is good to be able to solve small problems by hand,
but the problems one encounters in practice are large, requiring a computer for their
solution. Therefore, to fully appreciate the subject, one needs to solve large (prac-
tical) problems on a computer. An important feature of this book is that it comes
with software implementing the major algorithms described herein. At the time of
writing, software for the following five algorithms is available:

The two-phase simplex method as shown in Figure 6.1.

The self-dual simplex method as shown in Figure 7.1.

The path-following method as shown in Figure 18.1.

The homogeneous self-dual method as shown in Figure 22.1.

The long-step homogeneous self-dual method as described in Exercise
22.4.

The programs that implement these algorithms are written in C and can be
easily compiled on most hardware platforms. Students/instructors are encouraged
to install and compile these programs on their local hardware. Great pains have
been taken to make the source code for these programs readable (see Appendix A).
In particular, the names of the variables in the programs are consistent with the
notation of this book.

vii



viii PREFACE

There are two ways to run these programs. The first is to prepare the input in
a standard computer-file format, called MPS format, and to run the program using
such a file as input. The advantage of this input format is that there is an archive
of problems stored in this format, called the NETLIB suite, that one can download
and use immediately (a link to the NETLIB suite can be found at the web site men-
tioned below). But, this format is somewhat archaic and, in particular, it is not easy
to create these files by hand. Therefore, the programs can also be run from within a
problem modeling system called AMPL. AMPL allows one to describe mathemat-
ical programming problems using an easy to read, yet concise, algebraic notation.
To run the programs within AMPL, one simply tells AMPL the name of the solver-
program before asking that a problem be solved. The text that describes AMPL,
Fourer et al. (1993) makes an excellent companion to this book. It includes a dis-
cussion of many practical linear programming problems. It also has lots of exercises
to hone the modeling skills of the student.

Several interesting computer projects can be suggested. Here are a few sugges-
tions regarding the simplex codes:

e Incorporate the partial pricing strategy (see Section 8.7) into the two-
phase simplex method and compare it with full pricing.

e Incorporate the steepest-edge pivot rule (see Section 8.8) into the two-
phase simplex method and compare it with the largest-coefficient rule.

e Modify the code for either variant of the simplex method so that it can
treat bounds and ranges implicitly (see Chapter 9), and compare the per-
formance with the explicit treatment of the supplied codes.

e Implement a “warm-start” capability so that the sensitivity analyses dis-
cussed in Chapter 7 can be done.

e Extend the simplex codes to be able to handle integer programming prob-
lems using the branch-and-bound method described in Chapter 23.

As for the interior-point codes, one could try some of the following projects:

e Modify the code for the path-following algorithm so that it implements
the affine-scaling method (see Chapter 21), and then compare the two
methods.

e Modify the code for the path-following method so that it can treat bounds
and ranges implicitly (see Section 20.3), and compare the performance
against the explicit treatment in the given code.

e Modify the code for the path-following method to implement the higher-
order method described in Exercise 18.5. Compare.

e Extend the path-following code to solve quadratic programming problems
using the algorithm shown in Figure 24.3.

o Further extend the code so that it can solve convex optimization problems
using the algorithm shown in Figure 25.2.

And, perhaps the most interesting project of all:

e Compare the simplex codes against the interior-point code and decide for
yourself which algorithm is better on specific families of problems.
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The software implementing the various algorithms was developed using consistent
data structures and so making fair comparisons should be straightforward. The soft-
ware can be downloaded from the following web site:

http://www.princeton.edu/~rvdb/LPbook/

If, in the future, further codes relating to this text are developed (for example, a
self-dual network simplex code), they will be made available through this web site.
Features. Here are some other features that distinguish this book from others:

e The development of the simplex method leads to Dantzig’s parametric
self-dual method. A randomized variant of this method is shown to be
immune to the travails of degeneracy.

e The book gives a balanced treatment to both the traditional simplex method
and the newer interior-point methods. The notation and analysis is de-
veloped to be consistent across the methods. As a result, the self-dual
simplex method emerges as the variant of the simplex method with most
connections to interior-point methods.

e From the beginning and consistently throughout the book, linear program-
ming problems are formulated in symmetric form. By highlighting sym-
metry throughout, it is hoped that the reader will more fully understand
and appreciate duality theory.

e By slightly changing the right-hand side in the Klee—Minty problem, we
are able to write down an explicit dictionary for each vertex of the Klee—
Minty problem and thereby uncover (as a homework problem) a simple,
elegant argument why the Klee-Minty problem requires 2" — 1 pivots to
solve.

e The chapter on regression includes an analysis of the expected number
of pivots required by the self-dual variant of the simplex method. This
analysis is supported by an empirical study.

e There is an extensive treatment of modern interior-point methods, includ-
ing the primal-dual method, the affine-scaling method, and the self-dual
path-following method.

e In addition to the traditional applications, which come mostly from busi-
ness and economics, the book features other important applications such
as the optimal design of truss-like structures and L!-regression.

Exercises on the Web. There is always a need for fresh exercises. Hence, I have
created and plan to maintain a growing archive of exercises specifically created for
use in conjunction with this book. This archive is accessible from the book’s web
site:

http://www.princeton.edu/~rvdb/LPbook/

The problems in the archive are arranged according to the chapters of this book and
use notation consistent with that developed herein.

Advice on solving the exercises. Some problems are routine while others are
fairly challenging. Answers to some of the problems are given at the back of the book.


http://www.princeton.edu/~rvdb/LPbook/
http://www.princeton.edu/~rvdb/LPbook/

X PREFACE

In general, the advice given to me by Leonard Gross (when I was a student) should
help even on the hard problems: follow your nose.

Audience. This book evolved from lecture notes developed for my introductory
graduate course in linear programming as well as my upper-level undergraduate
course. A reasonable undergraduate syllabus would cover essentially all of Part 1
(Simplex Method and Duality), the first two chapters of Part 2 (Network Flows
and Applications), and the first chapter of Part 4 (Integer Programming). At the
graduate level, the syllabus should depend on the preparation of the students. For a
well-prepared class, one could cover the material in Parts 1 and 2 fairly quickly and
then spend more time on Parts 3 (Interior-Point Methods) and 4 (Extensions).

Dependencies. In general, Parts 2 and 3 are completely independent of each
other. Both depend, however, on the material in Part 1. The first Chapter in Part 4
(Integer Programming) depends only on material from Part 1, whereas the remaining
chapters build on Part 3 material.

Acknowledgments. My interest in linear programming was sparked by Robert
Garfinkel when we shared an office at Bell Labs. I would like to thank him for
his constant encouragement, advice, and support. This book benefited greatly from
the thoughtful comments and suggestions of David Bernstein and Michael Todd. I
would also like to thank the following colleagues for their help: Ronny Ben-Tal,
Leslie Hall, Yoshi Ikura, Victor Klee, Irvin Lustig, Avi Mandelbaum, Marc Meke-
ton, Narcis Nabona, James Orlin, Andrzej Ruszczynski, and Henry Wolkowicz. I
would like to thank Gary Folven at Kluwer and Fred Hillier, the series editor, for
encouraging me to undertake this project. I would like to thank my students for
finding many typos and occasionally more serious errors: John Gilmartin, Jacinta
Warnie, Stephen Woolbert, Lucia Wu, and Bing Yang. My thanks to Erhan Cinlar
for the many times he offered advice on questions of style. I hope this book re-
flects positively on his advice. Finally, I would like to acknowledge the support of
the National Science Foundation and the Air Force Office of Scientific Research
for supporting me while writing this book. In a time of declining resources, I am
especially grateful for their support.

Princeton, NJ, USA Robert J. Vanderbei



Preface to 2nd Edition

For the 2nd edition, many new exercises have been added. Also I have worked
hard to develop online tools to aid in learning the simplex method and duality theory.
These online tools can be found on the book’s web page:

http://www.princeton.edu/~rvdb/LPbook/

and are mentioned at appropriate places in the text. Besides the learning tools, I have
created several online exercises. These exercises use randomly generated problems
and therefore represent a virtually unlimited collection of “routine” exercises that
can be used to test basic understanding. Pointers to these online exercises are in-
cluded in the exercises sections at appropriate points.

Some other notable changes include:

e The chapter on network flows has been completely rewritten. Hopefully,
the new version is an improvement on the original.

e Two different fonts are now used to distinguish between the set of basic
indices and the basis matrix.

e The first edition placed great emphasis on the symmetry between the pri-
mal and the dual (the negative transpose property). The second edition
carries this further with a discussion of the relationship between the basic
and nonbasic matrices B and N as they appear in the primal and in the
dual. We show that, even though these matrices differ (they even have
different dimensions), B~! N in the dual is the negative transpose of the
corresponding matrix in the primal.

e In the chapters devoted to the simplex method in matrix notation, the col-
lection of variables 21, 22, . .., Zn, Y1, Y2, - - - , Ym Was replaced, in the first
edition, with the single array of variables y1, Y2, ..., Yn+m. This caused
great confusion as the variable y; in the original notation was changed
to ¥, +; in the new notation. For the second edition, I have changed the
notation for the single array to 21, 22, .. ., Zn+tm.

e A number of figures have been added to the chapters on convex analysis
and on network flow problems.

e The algorithm refered to as the primal-dual simplex method in the first
edition has been renamed the parametric self-dual simplex method in ac-
cordance with prior standard usage.

xi
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Xii PREFACE TO 2ND EDITION

e The last chapter, on convex optimization, has been extended with a dis-
cussion of merit functions and their use in shortenning steps to make some
otherwise nonconvergent problems converge.

Acknowledgments. Many readers have sent corrections and suggestions for
improvement. Many of the corrections were incorporated into earlier reprintings.
Only those that affected pagination were accrued to this new edition. Even though
I cannot now remember everyone who wrote, I am grateful to them all. Some sent
comments that had significant impact. They were Hande Benson, Eric Denardo,
Sudhakar Mandapati, Michael Overton, and Jos Sturm.

Princeton, NJ, USA Robert J. Vanderbei



Preface to 3rd Edition

It has been almost 7 years since the 2nd edition appeared and the publisher is
itching for me to finish a new edition. The previous edition had very few typos. I
have fixed them all! Of course, I’ve also added some new material and who knows
how many new typos I've introduced. The most significant new material is con-
tained in a new chapter on financial applications, which discusses a linear program-
ming variant of the portfolio selection problem and option pricing. I am grateful to
Alex d’ Aspremont for pointing out that the option pricing problem provides a nice
application of duality theory. Finally, I’d like to acknowledge the fact that half (four
out of eight) of the typos were reported to me by Trond Steihaug. Thanks Trond!

Princeton, NJ, USA Robert J. Vanderbei
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Preface to 4th Edition

Besides the ongoing tweaking and refining of the language and presentation of
the material, this edition also features new material in Chapters 4 and 12 on the
average performance of the simplex method.

I’d like to thank Cagin Ararat and Firdevs Ulus for carefully reviewing and
commenting on this new material.

Princeton, NJ, USA Robert J. Vanderbei
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We all love to instruct, though we can teach only
what is not worth knowing. — J. Austen



CHAPTER 1

Introduction

This book is mostly about a subject called Linear Programming. Before defining
what we mean, in general, by a linear programming problem, let us describe a few
practical real-world problems that serve to motivate and at least vaguely to define
this subject.

1. Managing a Production Facility

Consider a production facility for a manufacturing company. The facility is
capable of producing a variety of products that, for simplicity, we enumerate as
1,2,...,n. These products are constructed/manufactured/produced out of certain
raw materials. Suppose that there are m different raw materials, which again we
simply enumerate as 1, 2, . . ., m. The decisions involved in managing/operating this
facility are complicated and arise dynamically as market conditions evolve around
it. However, to describe a simple, fairly realistic optimization problem, we consider
a particular snapshot of the dynamic evolution. At this specific point in time, the
facility has, for each raw material ¢ = 1,2,...,m, a known amount, say b;, on
hand. Furthermore, each raw material has at this moment in time a known unit
market value. We denote the unit value of the ith raw material by p;.

In addition, each product is made from known amounts of the various raw ma-
terials. That is, producing one unit of product j requires a certain known amount,
say a;; units, of raw material ¢. Also, the jth final product can be sold at the known
prevailing market price of o; dollars per unit.

Throughout this section we make an important assumption:

The production facility is small relative to the market as a whole
and therefore cannot through its actions alter the prevailing mar-
ket value of its raw materials, nor can it affect the prevailing
market price for its products.

We consider two optimization problems related to the efficient operation of this
facility (later, in Chapter 5, we will see that these two problems are in fact closely
related to each other).

1.1. Production Manager as Optimist. The first problem we wish to consider
is the one faced by the company’s production manager. It is the problem of how to
use the raw materials on hand. Let us assume that she decides to produce x; units
of the jth product, 7 = 1,2,...,n. The revenue associated with the production of
one unit of product j is o;. But there is also a cost of raw materials that must be

R.J. Vanderbei, Linear Programming, International Series in Operations Research 3
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_1,
© Springer Science+Business Media New York 2014



4 1. INTRODUCTION

considered. The cost of producing one unit of product j is 2111 pia;;. Therefore,
the net revenue associated with the production of one unit is the difference between
the revenue and the cost. Since the net revenue plays an important role in our model,
we introduce notation for it by setting

m
Cj =05 — E PiGij, jZl,Q,...,TL.
i=1

Now, the net revenue corresponding to the production of x; units of product j is
simply c;x;, and the total net revenue is
n
(1.1) Z ;.
j=1
The production planner’s goal is to maximize this quantity. However, there are con-

straints on the production levels that she can assign. For example, each production
quantity x; must be nonnegative, and so she has the constraints

(1.2) >0, j=1,2,...,n

Secondly, she can’t produce more product than she has raw material for. The amount
of raw material ¢ consumed by a given production schedule is E?zl a;jx;, and so
she must adhere to the following constraints:

(1.3)  air;<b i=1,2,...,m.
j=1

To summarize, the production manager’s job is to determine production values x;,
7 =1,2,...,n,s0as to maximize (1.1) subject to the constraints given by (1.2) and
(1.3). This optimization problem is an example of a linear programming problem.
This particular example is often called the resource allocation problem.

1.2. Comptroller as Pessimist. In another office at the production facility
sits an executive called the comptroller. The comptroller’s problem (among others)
is to assign a value to the raw materials on hand. These values are needed for
accounting and planning purposes to determine the cost of inventory. There are
rules about how these values can be set. The most important such rule (and the only
one relevant to our discussion) is the following:

The company must be willing to sell the raw materials should
an outside firm offer to buy them at a price consistent with these
values.

Let w; denote the assigned unit value of the ¢th raw material, 7 = 1,2,... m.
That is, these are the numbers that the comptroller must determine. The lost oppor-
tunity cost of having b; units of raw material ¢ on hand is b;w;, and so the total lost
opportunity cost is

(1.4) i biw;.
i=1
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The comptroller’s goal is to minimize this lost opportunity cost (to make the finan-
cial statements look as good as possible). But again, there are constraints. First of
all, each assigned unit value w; must be no less than the prevailing unit market value
pi, since if it were less an outsider would buy the company’s raw material at a price
lower than p;, contradicting the assumption that p; is the prevailing market price.
That is,

(1.5) w; > Py, 1=1,2,...,m.
Similarly,
m
(16) Zwiaijzaj, j:1,2,...,n.
i=1

To see why, suppose that the opposite inequality holds for some specific product j.
Then an outsider could buy raw materials from the company, produce product j, and
sell it at a lower price than the prevailing market price. This contradicts the assump-
tion that o is the prevailing market price, which cannot be lowered by the actions
of the company we are studying. Minimizing (1.4) subject to the constraints given
by (1.5) and (1.6) is a linear programming problem. It takes on a slightly simpler
form if we make a change of variables by letting

Yi = W; — P4, 1=1,2,...,m.

In words, y; is the increase in the unit value of raw material 7 representing the “mark-
up” the company would charge should it wish simply to act as a reseller and sell raw
materials back to the market. In terms of these variables, the comptroller’s problem

is to minimize
m
> by
i=1
subject to
m
Zyiaijzcjv j:1727"'7n
i=1

and
inO, i:1,2,...,m.

Note that we’ve dropped a term, Z:ll b; pi, from the objective. It is a constant (the
market value of the raw materials), and so, while it affects the value of the function
being minimized, it does not have any impact on the actual optimal values of the
variables (whose determination is the comptroller’s main interest).

2. The Linear Programming Problem

In the two examples given above, there have been variables whose values are
to be decided in some optimal fashion. These variables are referred to as decision
variables. They are usually denoted as
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In linear programming, the objective is always to maximize or to minimize some
linear function of these decision variables

C =C1T1 + %2 + -+ CpTp.

This function is called the objective function. It often seems that real-world prob-
lems are most naturally formulated as minimizations (since real-world planners al-
ways seem to be pessimists), but when discussing mathematics it is usually nicer to
work with maximization problems. Of course, converting from one to the other is
trivial both from the modeler’s viewpoint (either minimize cost or maximize profit)
and from the analyst’s viewpoint (either maximize ¢ or minimize —(). Since this
book is primarily about the mathematics of linear programming, we usually take the
optimist’s view of maximizing the objective function.

In addition to the objective function, the examples also had constraints. Some
of these constraints were really simple, such as the requirement that some decision
variable be nonnegative. Others were more involved. But in all cases the constraints
consisted of either an equality or an inequality associated with some linear combi-
nation of the decision variables:

a1T1 + a2 + -+ + ApTn

IV I IA
=

It is easy to convert constraints from one form to another. For example, an
inequality constraint
a1xr1 + asxs + -+ apxr, < b
can be converted to an equality constraint by adding a nonnegative variable, w,
which we call a slack variable:

a1r1 + agxo + -+ -+ apr, +w =0, w > 0.
On the other hand, an equality constraint
ai1xr1 + asxes + -+ apx, =0
can be converted to inequality form by introducing two inequality constraints:
121+ a9 + -+ apx, <b
aixry + asxs + -+ + apx, > b,

Hence, in some sense, there is no a priori preference for how one poses the con-
straints (as long as they are linear, of course). However, we shall also see that, from
a mathematical point of view, there is a preferred presentation. It is to pose the
inequalities as less-thans and to stipulate that all the decision variables be nonnega-
tive. Hence, the linear programming problem, as we study it, can be formulated as

follows:
maximize c1x1+ CoXo+ -+  CpTp

subjectto aj1x1 + a2+ -+ aipr, < by
a21%1 + A2 + -+ G2pTn, < bo

Am1T1 + Am2T2 +---+ AmnTn S bm

T1, T2, ... Tp > 0.
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We refer to linear programs formulated this way as linear programs in standard
form. In our aim for consistency, we shall always use m to denote the number of
constraints, and n to denote the number of decision variables.

A proposal of specific values for the decision variables is called a solution. A
solution (z1, 2, ..., 2, ) is called feasible if it satisfies all of the constraints. It is
called optimal if in addition it attains the desired maximum. Some problems are just
simply infeasible, as the following example illustrates:

maximize Sxy + 4o

subject to T+ 20 <2
—2171 —QIQ S -9
1, z9 > 0.

Indeed, the second constraint implies that x1 4+ x2 > 4.5, which contradicts the first
constraint. If a problem has no feasible solution, then the problem itself is called
infeasible.

At the other extreme from infeasible problems, one finds unbounded problems.
A problem is unbounded if it has feasible solutions with arbitrarily large objective
values. For example, consider

maximize T — 4o
subjectto —2x1 + xo < —1
—x1 —2x9 < —2
> 0.

Ty, T2

Here, we could set x5 to zero and let x; be arbitrarily large. As long as z; is greater
than 2 the solution will be feasible, and as it gets large the objective function does
too. Hence, the problem is unbounded. In addition to finding optimal solutions
to linear programming problems, we shall also be interested in detecting when a
problem is infeasible or unbounded.

Exercises

1.1 A steel company must decide how to allocate next week’s time on a rolling
mill, which is a machine that takes unfinished slabs of steel as input and
can produce either of two semi-finished products: bands and coils. The
mill’s two products come off the rolling line at different rates:

Bands 200 tons/h
Coils 140 tons/h.

They also produce different profits:

Bands $25/ton
Coils  $30/ton.

Based on currently booked orders, the following upper bounds are placed
on the amount of each product to produce:

Bands 6,000 tons
Coils 4,000 tons.



1.2

1.3

1. INTRODUCTION

Given that there are 40 h of production time available this week, the prob-
lem is to decide how many tons of bands and how many tons of coils
should be produced to yield the greatest profit. Formulate this problem
as a linear programming problem. Can you solve this problem by inspec-
tion?

A small airline, Ivy Air, flies between three cities: Ithaca, Newark, and
Boston. They offer several flights but, for this problem, let us focus on
the Friday afternoon flight that departs from Ithaca, stops in Newark, and
continues to Boston. There are three types of passengers:

(a) Those traveling from Ithaca to Newark.

(b) Those traveling from Newark to Boston.

(c) Those traveling from Ithaca to Boston.
The aircraft is a small commuter plane that seats 30 passengers. The air-
line offers three fare classes:

(a) Y class: full coach.

(b) B class: nonrefundable.

(c) M class: nonrefundable, 3-week advanced purchase.
Ticket prices, which are largely determined by external influences (i.e.,
competitors), have been set and advertised as follows:

Ithaca—Newark Newark—Boston Ithaca—Boston

Y 300 160 360

B 220 130 280

M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determined
the following upper bounds on the number of potential customers in each
of the nine possible origin-destination/fare-class combinations:

Ithaca—Newark Newark—Boston Ithaca—Boston

Y 4 8 3

B 8 13 10

M 22 20 18

The goal is to decide how many tickets from each of the nine origin/
destination/fare-class combinations to sell. The constraints are that the
plane cannot be overbooked on either of the two legs of the flight and that
the number of tickets made available cannot exceed the forecasted maxi-
mum demand. The objective is to maximize the revenue. Formulate this
problem as a linear programming problem.

Suppose that Y is a random variable taking on one of n known values:
a1,a2,...,0n.
Suppose we know that Y either has distribution p given by

PY =a;) =p;
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or it has distribution ¢ given by
P(Y = a;) = ¢;.

Of course, the numbers p;, j = 1,2,...,n are nonnegative and sum to
one. The same is true for the ¢;’s. Based on a single observation of Y, we
wish to guess whether it has distribution p or distribution q. That is, for
each possible outcome a;, we will assert with probability x; that the dis-
tribution is p and with probability 1 —x; that the distribution is g. We wish
to determine the probabilities x;, 7 = 1,2, ..., n, such that the probability
of saying the distribution is p when in fact it is ¢ has probability no larger
than /3, where (3 is some small positive value (such as 0.05). Furthermore,
given this constraint, we wish to maximize the probability that we say the
distribution is p when in fact it is p. Formulate this maximization problem
as a linear programming problem.

Notes

The subject of linear programming has its roots in the study of linear inequal-
ities, which can be traced as far back as 1826 to the work of Fourier. Since then,
many mathematicians have proved special cases of the most important result in the
subject—the duality theorem. The applied side of the subject got its start in 1939
when L.V. Kantorovich noted the practical importance of a certain class of linear
programming problems and gave an algorithm for their solution—see Kantorovich
(1960). Unfortunately, for several years, Kantorovich’s work was unknown in the
West and unnoticed in the East. The subject really took off in 1947 when G.B.
Dantzig invented the simplex method for solving the linear programming problems
that arose in U.S. Air Force planning problems. The earliest published accounts
of Dantzig’s work appeared in 1951 (Dantzig 1951a,b). His monograph (Dantzig
1963) remains an important reference. In the same year that Dantzig invented the
simplex method, T.C. Koopmans showed that linear programming provided the ap-
propriate model for the analysis of classical economic theories. In 1975, the Royal
Swedish Academy of Sciences awarded the Nobel Prize in economic science to
L.V. Kantorovich and T.C. Koopmans “for their contributions to the theory of opti-
mum allocation of resources.” Apparently the academy regarded Dantzig’s work
as too mathematical for the prize in economics (and there is no Nobel Prize in
mathematics).

The textbooks by Bradley et al. (1977), Bazaraa et al. (1977), and Hillier and
Lieberman (1977) are known for their extensive collections of interesting practical
applications.



CHAPTER 2

The Simplex Method

In this chapter we present the simplex method as it applies to linear program-
ming problems in standard form.
1. An Example
We first illustrate how the simplex method works on a specific example:

maximize d5x1 + 4xo + 323

subjectto 2z +3x2+ 23 < 5

2.1) dr1+ o+ 223 < 11
3x1 +4xo+ 223 < 8

T, T2, T3 2 0.

We start by adding so-called slack variables. For each of the less-than inequalities
in (2.1) we introduce a new variable that represents the difference between the right-
hand side and the left-hand side. For example, for the first inequality,

2x1 + 312 + 23 < 5,
we introduce the slack variable w; defined by
w1 :5—21‘1—31‘2—1‘3.

It is clear then that this definition of w;, together with the stipulation that w; be
nonnegative, is equivalent to the original constraint. We carry out this procedure for
each of the less-than constraints to get an equivalent representation of the problem:

maximize (= 5x1 + 4xe + 3x3
subjectto w1 = 5 —2x1 —3x2 — X3
(22) wo = 11 — 4.131 — T2 — 2.7,‘3

w3z = 8—3x1 —4xy — 213
Zi, T2, T3, Wi, W2, W3 2 0.

Note that we have included a notation, (, for the value of the objective function,
Sx1 + 4xo + 3x3.

The simplex method is an iterative process in which we start with a solution
x1, %2, ..., ws that satisfies the equations and nonnegativities in (2.2) and then look
for a new solution z, Zs, . .., ws, which is better in the sense that it has a larger
objective function value:

51 + 4xo + 3T3 > dxy + 4o + 3x3.
R.J. Vanderbei, Linear Programming, International Series in Operations Research 11

& Management Science 196, DOI 10.1007/978-1-4614-7630-6_2,
© Springer Science+Business Media New York 2014
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We continue this process until we arrive at a solution that can’t be improved. This
final solution is then an optimal solution.

To start the iterative process, we need an initial feasible solution x1, x3, . . ., ws.
For our example, this is easy. We simply set all the original variables to zero and
use the defining equations to determine the slack variables:

Tr1 = 0, To — O, T3 = 0, w1 = 5, Wo = 1]., w3 = 8.

The objective function value associated with this solution is { = 0.
We now ask whether this solution can be improved. Since the coefficient of
21 in the objective function is positive, if we increase the value of x; from zero to
some positive value, we will increase (. But as we change its value, the values of
the slack variables will also change. We must make sure that we don’t let any of
them go negative. Since x5 and x5 are currently set to 0, we see that w; = 5 — 2z,
and so keeping w; nonnegative imposes the restriction that x; must not exceed
5/2. Similarly, the nonnegativity of wy imposes the bound that 1 < 11/4, and
the nonnegativity of ws introduces the bound that x; < 8/3. Since all of these
conditions must be met, we see that x; cannot be made larger than the smallest of
these bounds: 1 < 5/2. Our new, improved solution then is
) 1
5, 1'2:0, IgZO, w1:O, ’LUQI].7 w3:§.
This first step was straightforward. It is less obvious how to proceed. What
made the first step easy was the fact that we had one group of variables that were
initially zero and we had the rest explicitly expressed in terms of these. This prop-
erty can be arranged even for our new solution. Indeed, we simply must rewrite the
equations in (2.2) in such a way that x1, w2, w3, and ¢ are expressed as functions of
w1, T2, and x3. That is, the roles of x1 and w; must be swapped. To this end, we
use the equation for w; in (2.2) to solve for z;:
5 1 3 1
3 "W T g% 5
The equations for wsy, w3, and ¢ must also be doctored so that z; does not appear
on the right. The easiest way to accomplish this is to do so-called row operations on
the equations in (2.2). For example, if we take the equation for ws and subtract two
times the equation for w; and then bring the w; term to the right-hand side, we get

Tr, =

I =

wo = 1 + 2wy + Sxs.

Performing analogous row operations for ws and (, we can rewrite the equations
in (2.2) as

(=12.5—2.5w; — 3.529 + 0.5x3
T = 2.5 — 0.5’LU1 — 1.5.%‘2 — 0.5.’[73
Wo = 14+ 2w+ 5o
wz = 0.5+ 1.5w; + 0.525 — 0.5x3.

(2.3)
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Note that we can recover our current solution by setting the “independent” variables
to zero and using the equations to read off the values for the “dependent” variables.

Now we see that increasing w; or x5 will bring about a decrease in the ob-
jective function value, and so x3, being the only variable with a positive coef-
ficient, is the only independent variable that we can increase to obtain a further
increase in the objective function. Again, we need to determine how much this
variable can be increased without violating the requirement that all the dependent
variables remain nonnegative. This time we see that the equation for w, is not af-
fected by changes in x3, but the equations for z; and w3 do impose bounds, namely
rs < 5 and z3 < 1, respectively. The latter is the tighter bound, and so the new
solution is

131:2, I’QZO, $3:1, w1:0, U}QZ]., w3:0.

The corresponding objective function value is { = 13.

Once again, we must determine whether it is possible to increase the objective
function further and, if so, how. Therefore, we need to write our equations with
(,r1,ws, and x3 written as functions of wq, zo, and ws. Solving the last equation
in (2.3) for z3, we get

xr3 =14+ 3wy + 22 — 2ws.

Also, performing the appropriate row operations, we can eliminate x3 from the other
equations. The result of these operations is

4213— w1—3x2— ws
xr1 = 2—2w1—2x2+ ws
wo = 14 2w + dx9

r3= 143wy + x9—2ws.

(2.4)

We are now ready to begin the third iteration. The first step is to identify an
independent variable for which an increase in its value would produce a correspond-
ing increase in ¢. But this time there is no such variable, since all the variables have
negative coefficients in the expression for ¢. This fact not only brings the simplex
method to a standstill but also proves that the current solution is optimal. The reason
is quite simple. Since the equations in (2.4) are completely equivalent to those in
(2.2) and, since all the variables must be nonnegative, it follows that ( < 13 for
every feasible solution. Since our current solution attains the value of 13, we see
that it is indeed optimal.

1.1. Dictionaries, Bases, Etc. The systems of equations (2.2), (2.3), and (2.4)
that we have encountered along the way are called dictionaries. With the excep-
tion of (, the variables that appear on the left (i.e., the variables that we have been
referring to as the dependent variables) are called basic variables. Those on the
right (i.e., the independent variables) are called nonbasic variables. The solutions
we have obtained by setting the nonbasic variables to zero are called basic feasible
solutions.
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2. The Simplex Method

Consider the general linear programming problem presented in standard form:

n

maximize E cjT;

Jj=1
subject to Zaijxj < i=1,2,...,m
=1

;>0 j=12,...,n.

Our first task is to introduce slack variables and a name for the objective function

value:
n

¢= D ey
2.5) o
wi:bi—Zaijxj i:1,2,...,m.
j=1

As we saw in our example, as the simplex method proceeds, the slack variables be-
come intertwined with the original variables, and the whole collection is treated the
same. Therefore, it is at times convenient to have a notation in which the slack vari-
ables are more or less indistinguishable from the original variables. So we simply
add them to the end of the list of x-variables:

(T1ye ey Ty W1y ey W) = (T4, ooy Ty Ty« -+ s Tripom ) -

That is, we let z,,+; = w;. With this notation, we can rewrite (2.5) as
n
(= > it
Jj=1
n
xn+i:bi—2aijxj i=1,2,...,m.
j=1

This is the starting dictionary. As the simplex method progresses, it moves from one
dictionary to another in its search for an optimal solution. Each dictionary has m
basic variables and n nonbasic variables. Let 3 denote the collection of indices from
{1,2,...,n+m} corresponding to the basic variables, and let A/ denote the indices
corresponding to the nonbasic variables. Initially, we have A" = {1,2,...,n} and
B={n+1,n+2,...,n+ m}, but this of course changes after the first iteration.
Down the road, the current dictionary will look like this:

¢=C+ ) g
2.6 i
26) xi:bi—Zaijazj 1€ B.
JEN

Note that we have put bars over the coefficients to indicate that they change as the
algorithm progresses.
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Within each iteration of the simplex method, exactly one variable goes from
nonbasic to basic and exactly one variable goes from basic to nonbasic. We saw this
process in our example, but let us now describe it in general.

The variable that goes from nonbasic to basic is called the entering variable. 1t
is chosen with the aim of increasing (; that is, one whose coefficient is positive: pick
k from {j € N : ¢; > 0}. Note that if this set is empty, then the current solution
is optimal. If the set consists of more than one element (as is normally the case),
then we have a choice of which element to pick. There are several possible selection
criteria, some of which will be discussed in the next chapter. For now, suffice it to
say that we usually pick an index k having the largest coefficient (which again could
leave us with a choice).

The variable that goes from basic to nonbasic is called the leaving variable. 1t
is chosen to preserve nonnegativity of the current basic variables. Once we have
decided that x, will be the entering variable, its value will be increased from zero
to a positive value. This increase will change the values of the basic variables:

€T, = Bi — Qi T, 1€ B.

We must ensure that each of these variables remains nonnegative. Hence, we require
that

2.7 b; — apxy > 0, icB.

Of these expressions, the only ones that can go negative as x increases are those
for which a;, is positive; the rest remain fixed or increase. Hence, we can restrict
our attention to those ¢’s for which a;, is positive. And for such an 4, the value of
x, at which the expression becomes zero is
zy = b; /.

Since we don’t want any of these to go negative, we must raise x; only to the
smallest of all of these values:

= min  b;/a.

KT ieBian>0 if ik

Therefore, with a certain amount of latitude remaiging, the rule for selecting the
leaving variable is pick I from {i € B : @;;, > 0 and b; /a;, is minimal}.

The rule just given for selecting a leaving variable describes exactly the process
by which we use the rule in practice. That is, we look only at those variables for
which a;j, is positive and among those we select one with the smallest value of the
ratio b; /a;i. There is, however, another, entirely equivalent, way to write this rule
which we will often use. To derive this alternate expression we use the convention
that 0/0 = 0 and rewrite inequalities (2.7) as

1 a; )
—_ > _Lk, ieB
Tk bz
(we shall discuss shortly what happens when one of these ratios is an indeterminate
form 0/0 as well as what it means if none of the ratios are positive). Since we wish
to take the largest possible increase in xj, we see that
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_ —1
x max ik
k= —_ .
ieB bL

Hence, the rule for selecting the leaving variable is as follows: pick [ from {i € B :
a1, /b; is maximal}.

The main difference between these two ways of writing the rule is that in one
we minimize the ratio of @;;, to b; whereas in the other we maximize the reciprocal
ratio. Of course, in the minimize formulation one must take care about the sign
of the a;;’s. In the remainder of this book we will encounter these types of ratios
often. We will always write them in the maximize form since that is shorter to write,
acknowledging full well the fact that it is often more convenient, in practice, to do
it the other way.

Once the leaving-basic and entering-nonbasic variables have been selected, the
move from the current dictionary to the new dictionary involves appropriate row
operations to achieve the interchange. This step from one dictionary to the next is
called a pivot.

As mentioned above, there is often more than one choice for the entering and
the leaving variables. Particular rules that make the choice unambiguous are called
pivot rules.

3. Initialization

In the previous section, we presented the simplex method. However, we only
considered problems for which the right-hand sides were all nonnegative. This
ensured that the initial dictionary was feasible. In this section, we discuss what
to do when this is not the case.

Given a linear programming problem

n
maximize chxj
Jj=1
n
subject to Zaij:cj < i=1,2,....m
j=1
x; >0 j=12,...,n,

the initial dictionary that we introduced in the preceding section was

n
(= > ¢z
j=1
n
wi:bi— E Qi T i:1,2,...,m.
j=1

The solution associated with this dictionary is obtained by setting each x; to zero
and setting each w; equal to the corresponding b;. This solution is feasible if and
only if all the right-hand sides are nonnegative. But what if they are not? We handle
this difficulty by introducing an auxiliary problem for which
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(1) A feasible dictionary is easy to find and
(2) The optimal dictionary provides a feasible dictionary for the original prob-
lem.

The auxiliary problem is
maximize —xg
n
subject to Zaija:j —x0 < b; 1=1,2,...,m
j=1

;>0  j=0,1,...,n.

It is easy to give a feasible solution to this auxiliary problem. Indeed, we simply
set z; = 0, for j = 1,...,n, and then pick z sufficiently large. It is also easy
to see that the original problem has a feasible solution if and only if the auxiliary
problem has a feasible solution with zy = 0. In other words, the original problem
has a feasible solution if and only if the optimal solution to the auxiliary problem
has objective value zero.

Even though the auxiliary problem clearly has feasible solutions, we have not
yet shown that it has an easily obtained feasible dictionary. It is best to illustrate
how to obtain a feasible dictionary with an example:

maximize —2r; — o

subjectto —x1+ x9 < —1
—xr1 — 229 < =2
i) S 1
x1, 2 > 0.
The auxiliary problem is
maximize —zg
subjectto —x1 + a2 —x9 < —1
—T1 — 2£C2 — X0 S —2
Ty — X0 < 1
Zo, 1, T2 Z 0.

Next we introduce slack variables and write down an initial infeasible dictionary:

£= — %o
w1:71+x17 To + X
w2:—2+x1+2x2+x0
w3 = 1 — X2 + Xp.

This dictionary is infeasible, but it is easy to convert it into a feasible dictionary. In
fact, all we need to do is one pivot with variable x entering and the “most infeasible
variable,” wo, leaving the basis:

f:—2+x1+2x2—w2
w; = 1 — 322 + wo
Tro=— 27%172%24’11)2
w3 = 3—%1—3%2-’-71)2.
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Note that we now have a feasible dictionary, so we can apply the simplex method as
defined earlier in this chapter. For the first step, we pick x5 to enter and w; to leave
the basis:

E=-1.33+2; —0.67Tw; — 0.33w2

2= 0.33 —0.33w; + 0.33w2
o= 133 -1+ 0.67w; + 0.33w2
w3 = 2— xr1 + w1 .

Now, for the second step, we pick z; to enter and x to leave the basis:

= 0—wx
r9=0.33 — 0.33wy + 0.33ws
1 =1.33 — 29+ 0.67w; + 0.33w>
w3 = 0.67 + xg + 0.33w; — 0.33ws.

This dictionary is optimal for the auxiliary problem. We now drop xy from the
equations and reintroduce the original objective function:

(=221 —22 = -3 —w; —ws.
Hence, the starting feasible dictionary for the original problem is

C = —3 — w1 — w2
29 = 0.33 — 0.33w; + 0.33w2
z1 =1.33+0.67w; + 0.33ws
w3 = 0.67 4 0.33w; — 0.33ws.

As it turns out, this dictionary is optimal for the original problem (since the coef-
ficients of all the variables in the equation for ( are negative), but we can’t expect
to be this lucky in general. All we normally can expect is that the dictionary so ob-
tained will be feasible for the original problem, at which point we continue to apply
the simplex method until an optimal solution is reached.

The process of solving the auxiliary problem to find an initial feasible solution
is often referred to as Phase I, whereas the process of going from a feasible solution
to an optimal solution is called Phase I1.

4. Unboundedness

In this section, we discuss how to detect when the objective function value is
unbounded.

Let us now take a closer look at the “leaving variable” computation: pick [ from
{i € B : a;;/b; is maximal}. We avoided the issue before, but now we must face
what to do if a denominator in one of these ratios vanishes. If the numerator is
nonzero, then it is easy to see that the ratio should be interpreted as plus or minus
infinity depending on the sign of the numerator. For the case of 0/0, the correct
convention (as we’ll see momentarily) is to take this as a zero.

What if all of the ratios, @,/ b;, are nonpositive? In that case, none of the basic
variables will become zero as the entering variable increases. Hence, the entering
variable can be increased indefinitely to produce an arbitrarily large objective value.
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In such situations, we say that the problem is unbounded. For example, consider the
following dictionary:
(=5+ z3— 171
To =54 2x3 — 311
Tg = 7 — 4.131
Is = Zq.

The entering variable is x3 and the ratios are
-2/5, —0/7, 0/0.

Since none of these ratios is positive, the problem is unbounded.
In the next chapter, we will investigate what happens when some of these ratios
take the value + oo.

5. Geometry

When the number of variables in a linear programming problem is three or less,
we can graph the set of feasible solutions together with the level sets of the objective
function. From this picture, it is usually a trivial matter to write down the optimal
solution. To illustrate, consider the following problem:

maximize 3z + 2o

subjectto —x1 + 39 < 12
1+ 1 < 8

2$1 — X3 S 10

T1, T2 Z 0.

Each constraint (including the nonnegativity constraints on the variables) is a half-
plane. These half-planes can be determined by first graphing the equation one
obtains by replacing the inequality with an equality and then asking whether or not

—x;1+3x,=12

x1+x2=8

3x1 +2x2:22
3L 3x,+2x,=11

FIGURE 2.1. The set of feasible solutions together with level sets
of the objective function.
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some specific point that doesn’t satisfy the equality (often (0, 0) can be used) satis-
fies the inequality constraint. The set of feasible solutions is just the intersection of
these half-planes. For the problem given above, this set is shown in Figure 2.1. Also
shown are two level sets of the objective function. One of them indicates points at
which the objective function value is 11. This level set passes through the middle
of the set of feasible solutions. As the objective function value increases, the corre-
sponding level set moves to the right. The level set corresponding to the case where
the objective function equals 22 is the last level set that touches the set of feasible
solutions. Clearly, this is the maximum value of the objective function. The optimal
solution is the intersection of this level set with the set of feasible solutions. Hence,
we see from Figure 2.1 that the optimal solution is (z1,x2) = (6, 2).

Exercises

Solve the following linear programming problems. If you wish, you may check
your arithmetic by using the simple online pivot tool:

www.princeton.edu/~rvdb/JAVA/pivot/simple.html

2.1 maximize 6x; + 8xo + Hxs + 914
subjectto 2x1 + 22+ x3+3x4 < 5
1 + 310 + x3+ 214 < 3
T1, T2, T3, T4 2 0.
2.2 maximize 2x; + o
subjectto 2x) + x5 < 4
21 + 3x9 < 3
41+ 29 <5
x1 + 520 < 1
T1, T2 Z O
2.3 maximize 2x; — 6xo
subjectto —x; — x9 —x3 < —
200 — x9 + a3 < 1
Ty, To, T3 =
24 maximize —ri; — 3To — I3
subjectto 2x7; — Hxo + w3 < —5H
2I1 — T2 + 2173 S 4
T, T2, T3 Z 0.
2.5 maximize x7 + 3x9
subjectto —x; — xy < —3
—x1+ x2 < —1
1+ 20 < 4
T1, T2 Z 0.


http://www.princeton.edu/~rvdb/JAVA/pivot/simple.html
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2.6 maximize x1 + 3T2
subjectto —x; — xy < —3
—x1+ x9 < —1
Ty +2rp <2
1, x2 > 0.
2.7 maximize x1 + 3%
subjectto —x1 — x9 < —3
—T1 + X2 S -1
—x1 4+ 220 <2
1, T2 = 0.
2.8 maximize 3x; + 2x9
subjectto x1 —2zy < 1
Tr1 — X9 S 2
21‘1 — T2 S 6
T S 5
2r1 + 29 < 16
1+ xp < 12
T, + 210 < 21
i) S 10
r1, T2 > 0.
2.9 maximize 2z, + 3xo + 4x3
subject to — 229 — 3x3 > =5
1+ a2+ 223 <4
1+ 2z + 323 < 7
x1, x2, x3 = 0.

2.10 maximize 6x; + 8x2 + 5x3 + 924
subjectto x1 + x3+ x3+ 4 = 1
x1, T2, I3, T4 Z 0.

2.11 minimize  z12 + 8x13 + 9w14 + 2w93 + Txoy + 3134

subjectto  zi12 + 13+ T4 > 1
—x12 + xog3 + X4 =0

—T13 — To3 + X3y = 0

T14 + ooy + w314 < 1
L12, X135 -+, T34 > 0.

2.12 Using today’s date (MMY'Y) for the seed value, solve 10 initially feasible
problems using the online pivot tool:

www.princeton.edu/~rvdb/JAVA/pivot/primal . html

2.13 Using today’s date (MMY'Y) for the seed value, solve 10 not necessarily
feasible problems using the online pivot tool:

www.princeton.edu/~rvdb/JAVA/pivot/primal_x0.html


http://www.princeton.edu/~rvdb/JAVA/pivot/primal.html
http://www.princeton.edu/~rvdb/JAVA/pivot/primal_x0.html
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2.14

2.15

2.16

2.17

2.18

2.19

2. THE SIMPLEX METHOD

Consider the following dictionary:

(=34 x1 + 622
wy =1+ x1 — 29
w2:572x173x2.

Using the largest coefficient rule to pick the entering variable, compute
the dictionary that results after one pivot.

Show that the following dictionary cannot be the optimal dictionary for
any linear programming problem in which w; and ws are the initial slack
variables:
(=4 —w — 29
T = 3 - 21’2
Wo = 1+ w, — X9 .

Hint: if it could, what was the original problem from whence it came?

Graph the feasible region for Exercise 2.8. Indicate on the graph the se-
quence of basic solutions produced by the simplex method.

Give an example showing that the variable that becomes basic in one iter-
ation of the simplex method can become nonbasic in the next iteration.

Show that the variable that becomes nonbasic in one iteration of the sim-
plex method cannot become basic in the next iteration.

Solve the following linear programming problem:

n
maximize g ;T
j=1

n
subject to qua:j <p
j=1

r; <1 j=12,...,n
.Z‘JZO j:1,2,...,n.
Here, the numbers p;, j = 1,2,...,n, are positive and sum to one. The

same is true of the ¢;’s:

n

> =1

j=1
q; > 0.
Furthermore (with only minor loss of generality), you may assume that
PL_P2_  _Pn
Q1 a2 qn

Finally, the parameter (3 is a small positive number. See Exercise 1.3 for
the motivation for this problem.
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Notes

The simplex method was invented by G.B. Dantzig in 1949. His monograph
(Dantzig 1963) is the classical reference. Most texts describe the simplex method
as a sequence of pivots on a table of numbers called the simplex tableau. Follow-
ing Chvatal (1983), we have developed the algorithm using the more memorable
dictionary notation.



CHAPTER 3

Degeneracy

In the previous chapter, we discussed what it means when the ratios computed
to calculate the leaving variable are all nonpositive (the problem is unbounded). In
this chapter, we take up the more delicate issue of what happens when some of the
ratios are infinite (i.e., their denominators vanish).

1. Definition of Degeneracy

We say that a dictionary is degenerate if b; vanishes for some i € B. A de-
generate dictionary could cause difficulties for the simplex method, but it might not.
For example, the dictionary we were discussing at the end of the last chapter,

C =5+ r3 — T1
I’2:5+21373$1
Ty="7 —4xq
L5 = L1,

is degenerate, but it was clear that the problem was unbounded and therefore no
more pivots were required. Furthermore, had the coefficient of x5 in the equation
for 22 been —2 instead of 2, then the simplex method would have picked x5 for the
leaving variable and no difficulties would have been encountered.

Problems arise, however, when a degenerate dictionary produces degenerate
pivots. We say that a pivot is a degenerate pivot if one of the ratios in the calculation
of the leaving variable is +00; i.e., if the numerator is positive and the denominator
vanishes. To see what happens, let’s look at a few examples.

2. Two Examples of Degenerate Problems

Here is an example of a degenerate dictionary in which the pivot is also
degenerate:
C =3 - 0511 + 2%2 — 1.5w1
(31) $3:1 —0.5%1 —05’[01
Wo = xr1— To+ w1 .

For this dictionary, the entering variable is x5 and the ratios computed to determine
the leaving variable are 0 and +oc. Hence, the leaving variable is ws, and the fact
that the ratio is infinite means that as soon as x5 is increased from zero to a positive

The original version of this chapter was revised. An erratum to this chapter can be found at DOI
10.1007/978-1-4614-7630-6_26

R.J. Vanderbei, Linear Programming, International Series in Operations Research 25
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_3,
© Springer Science+Business Media New York 2014
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value, wy will go negative. Therefore, x5 can’t really increase. Nonetheless, it can
be reclassified from nonbasic to basic (with wy going the other way). Let’s look at
the result of this degenerate pivot:

¢(=3+ 1.521 — 2ws + 0.5w;
(3.2) r3=1—0.521 — 0.5w4
To = xr1— W2+ w1 .

Note that ¢ remains unchanged at 3. Hence, this degenerate pivot has not produced
any increase in the objective function value. Furthermore, the values of the variables
haven’t even changed: both before and after this degenerate pivot, they are

(1'171'27.’173,’11)1,71]2) = (0707 17070)

But we are now representing this solution in a new way, and perhaps the next pivot
will make an improvement, or if not the next pivot perhaps the one after that. Let’s
see what happens for the problem at hand. The entering variable for the next it-
eration is x; and the leaving variable is x3, producing a nondegenerate pivot that
leads to
C:673m3—2w2 — W1
xr1 = 2—2x 3 — W1
$2:2—2$3— wy.

These two pivots illustrate what typically happens. When one reaches a degenerate
dictionary, it is usual that one or more of the subsequent pivots will be degenerate
but that eventually a nondegenerate pivot will lead us away from these degenerate
dictionaries. While it is typical for some pivot to “break away” from the degeneracy,
the real danger is that the simplex method will make a sequence of degenerate pivots
and eventually return to a dictionary that has appeared before, in which case the
simplex method enters an infinite loop and never finds an optimal solution. This
behavior is called cycling.

Unfortunately, under certain pivoting rules, cycling is possible. In fact, it is
possible even when using one of the most popular pivoting rules:

e Choose the entering variable as the one with the largest coefficient in the
(-row of the dictionary.

e When two or more variables compete for leaving the basis, pick an z-
variable over a slack variable and, if there is a choice, use the variable
with the smallest subscript. In other words, reading left to right, pick the
first leaving-variable candidate from the list:

L1y, T2y «+vy Ty, Wi, W2, ..., Wy

However, it is hard to find examples of cycling in which m and n are small. In fact,
it has been shown that if a problem has an optimal solution but cycles off-optimum,
then the problem must involve dictionaries with at least four (non-slack) variables
and two constraints. Here is an example that cycles:

C = r] — 21‘2 — 2.%‘4
w; = — 0.5x1 +3.520 + 223 — 41y
wy = — 0.521 + To + 0.523 — 0.514

U}gi].f xTy.
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And here is the sequence of dictionaries the above pivot rules produce. For the first
pivot, x1 enters and w; leaves bringing us to:

(= —2wi + 5z + 4wz — 1014
r1= —2wi+ Tro+ 4dws— 8uy
Wo = wi — 2.5x9 — 1.5x3 + 3.524

w3 = 1 + 211/1 - 7172 - 4$3 + 8:64 .
For the second iteration, x5 enters and w- leaves bringing us to:

C: 211.)2 + r3 — 3I4
= 0.8w; — 2.8wy — 0.2x3 + 1.814
To = 0.4w; — 0.4wy — 0.6x3 + 1.424

w3 =1 —0.8w; + 2.8ws + 0.20x3 — 1.8x4 .

For the third iteration, x3 enters and z; leaves:

C = 411.)1 — ].6’[1)2 — 5.’E1 + 61’4
T3 = 4wy, — 14dws — 5z + 924
To = — 2wy + 8ws + 3r1 — 4wy
w3 = 1 — X1.

For the fourth iteration, x4 enters and x- leaves:

C - w1 — 4’11}2 — 0.5.%’1 — 1.5$2
r3 = — 0.5wy + 4dws + 1.75x1 — 2.252x5
x4 = — 0.5wy + 2ws + 0.75x1 — 0.2529
w3 = 1 — x1.

In the fifth iteration, wy enters and x3 leaves:

C: — 2x3 + 4dwo + 31 — 619
wp = - 21‘3 + 8’LU2 + 35931 - 4.5$2
T4 = T3 — 2wy — 1+ 220
w3 = 1 — xI1.

Lastly, for the sixth iteration, w9 enters and x4 leaves:

(= — 24+  x1— 229
w, = 223 — 4xy — 0.5x1 + 3.529
wo = 0.5x3 — 0.524 — 0.521 + T2
w3 = 1 - 1.

Note that we have come back to the original dictionary, and so from here on
the simplex method simply cycles through these six dictionaries and never makes
any further progress toward an optimal solution. As bad as cycling is, the following
theorem tells us that nothing worse can happen:

THEOREM 3.1. If the simplex method fails to terminate, then it must cycle.

PROOF. A dictionary is completely determined by specifying which variables
are basic and which are nonbasic. There are only

(i) - e

m nlm!
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different possibilities. This number is big, but it is finite. If the simplex method fails
to terminate, it must visit some of these dictionaries more than once. Hence, the
algorithm cycles. (]

Note that, if the simplex method cycles, then all the pivots within the cycle
must be degenerate. This is easy to see, since the objective function value never
decreases. Hence, it follows that all the pivots within the cycle must have the same
objective function value, i.e., all of the these pivots must be degenerate.

In practice, degeneracy is common because a zero right-hand side value crops
up frequently in real-world problems. Cycling is not as common, but it can happen
and therefore must be addressed. Computer implementations of the simplex method
in which numbers are represented as integers or as simple rational numbers are at
risk of cycling and one of the techniques described in the following sections must
be used to avoid the problem. But, most implementations of the simplex method
are written with floating point numbers (the computer approximation to a full set of
real numbers). With floating point computation there is inevitable round-off error.
Hence, a zero appearing as a right-hand side value generally shows up not as an
exact zero but rather as a very small number. The result is that the dictionary appears
to be slightly off from actually being degenerate and therefore cycling is usually
avoided.

3. The Perturbation/Lexicographic Method

As we have seen, there is not just one algorithm called the simplex method.
Instead, the simplex method is a whole family of related algorithms from which
we can pick a specific instance by specifying what we have been referring to as
pivoting rules. We have also seen that, using a very natural pivoting rule, the sim-
plex method can fail to converge to an optimal solution by occasionally cycling
indefinitely through a sequence of degenerate pivots associated with a nonoptimal
solution.

So this raises a natural question: are there pivoting rules for which the simplex
method will, with certainty, either reach an optimal solution or prove that no such
solution exists? The answer to this question is yes, and we shall present two choices
of such pivoting rules.

The first method is based on the observation that degeneracy is sort of an ac-
cident. That is, a dictionary is degenerate if one or more of the b;’s vanish. Our
examples have generally used small integers for the data, and in this case it doesn’t
seem too surprising that sometimes cancellations occur and we end up with a de-
generate dictionary. But each right-hand side could in fact be any real number, and
in the world of real numbers the occurrence of any specific number, such as zero,
seems to be quite unlikely. So how about perturbing a given problem by adding
small random perturbations independently to each of the right-hand sides? If these
perturbations are small enough, we can think of them as insignificant and hence not
really changing the problem. If they are chosen independently, then the probability
of an exact cancellation is zero.
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Such random perturbation schemes are used in some implementations, but what
we have in mind as we discuss perturbation methods is something a little bit differ-
ent. Instead of using independent identically distributed random perturbations, let us
consider using a fixed perturbation for each constraint, with the perturbation getting
much smaller on each succeeding constraint. Indeed, we introduce a small positive
number ¢; for the first constraint and then a much smaller positive number €5 for
the second constraint, etc. We write this as

0<e, K- K e K€ < all other data.

The idea is that each ¢; acts on an entirely different scale from all the other ¢;’s and
the data for the problem. What we mean by this is that no linear combination of
the ¢;’s using coefficients that might arise in the course of the simplex method can
ever produce a number whose size is of the same order as the data in the problem.
Similarly, each of the “lower down” ¢;’s can never “escalate” to a higher level.
Hence, cancellations can only occur on a given scale. Of course, this complete
isolation of scales can never be truly achieved in the real numbers, so instead of
actually introducing specific values for the ¢;’s, we simply treat them as abstract
symbols having these scale properties.

To illustrate what we mean, let’s look at a specific example. Consider the fol-
lowing degenerate dictionary:

(= 621 +4a
wi=0+9x1 +4 2o
w22074x172x2
UJ3:1 — I32.

The first step is to introduce symbolic parameters
0<e3 e Ke

to get a perturbed problem:

C: 6.’E1+4{E2
w1 =0+ €1 +9x1 +4 29
we =10 + €2 —4dx— 229
w3z =1 + €3 — Za.

This dictionary is not degenerate. The entering variable is x; and the leaving vari-
able is unambiguously w-. The next dictionary is

(= 1.5¢e — 15w + X9
w1 =0+ €1 +2.25 ¢ — 225wy — 0.5 29
I =0 +0.25 €9 —0.25 w2 —0.5 i)
ws = 1 + €3 — ZI9.

For the next pivot, the entering variable is x5 and, using the fact that 2 < €1, we
see that the leaving variable is ;. The new dictionary is
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C: 262 — 2’(1)2—2.%‘1
w1 =0+ €1+ 2¢€9 — 2wa+ 11
1’2:0 +0.562 70.511}272581
wg =1 —05€e+ e3+0.5we +22;.

This last dictionary is optimal. At this point, we simply drop the symbolic ¢;
parameters and get an optimal dictionary for the unperturbed problem:

C — 2w2—2x1
wi=0— 2w+ x1
x2:070.5w272x1
QU3:1+05U}2+21’1

When treating the €;’s as symbols, the method is called the lexicographic
method. Note that the lexicographic method does not affect the choice of entering
variable but does amount to a precise prescription for the choice of leaving variable.

It turns out that the lexicographic method produces a variant of the simplex
method that never cycles:

THEOREM 3.2. The simplex method always terminates provided that the leaving
variable is selected by the lexicographic rule.

PROOF. It suffices to show that no degenerate dictionary is ever produced. As
we’ve discussed before, the ¢;’s operate on different scales and hence can’t cancel
with each other. Therefore, we can think of the ¢;’s as a collection of independent
variables. Extracting the e terms from the first dictionary, we see that we start with
the following pattern:

€1
€2

€Em-

And, after several pivots, the ¢ terms will form a system of linear combinations, say,

T11€1 + T12€2 ... + T1m€Em
T91€1 + 7T92€2 ... + Tom€m
T"m1€1 + T m2€2 ... + Tmm€Em-

Since this system of linear combinations is obtained from the original system by
pivot operations and, since pivot operations are reversible, it follows that the rank
of the two systems must be the same. Since the original system had rank m, we see
that every subsequent system must have rank m. This means that there must be at
least one nonzero 7;; in every row 4, which of course implies that none of the rows
can be degenerate. Hence, no dictionary can be degenerate. O
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4. Bland’s Rule

The second pivoting rule we consider is called Bland’s rule. It stipulates that
both the entering and the leaving variable be selected from their respective sets of
choices by choosing the variable x; with the smallest index k.

THEOREM 3.3. The simplex method always terminates provided that both the
entering and the leaving variable are chosen according to Bland’s rule.

The proof may look rather involved, but the reader who spends the time to
understand it will find the underlying elegance most rewarding.

PROOF. It suffices to show that such a variant of the simplex method never
cycles. We prove this by assuming that cycling does occur and then showing that
this assumption leads to a contradiction. So let’s assume that cycling does occur.
Without loss of generality, we may assume that it happens from the beginning. Let
Doy, D1, ..., Dy_; denote the dictionaries through which the method cycles. That
is, the simplex method produces the following sequence of dictionaries:

Dq, D1, ...,Dg_1,Do,D1,....

We say that a variable is fickle if it is in some basis and not in some other basis.
Let x; be the fickle variable having the largest index and let D denote a dictionary
in Dy, D, ..., Dy_1 in which x, leaves the basis. Again, without loss of generality
we may assume that D = Dj. Let x, denote the corresponding entering variable.
Suppose that D is recorded as follows:

(=v+ Z CjT;
JEN
mi:bi—Zaija:j 1€ B.
JEN
Since z; is the entering variable and x; is the leaving variable, we have that s € N
andt € B.
Now let D* be a dictionary in D1, Do, ..., Dy_1 in which z; enters the basis.
Suppose that D* is recorded as follows:

(=v*+ Z ci;
—
(3.3) ' .
x; = bf — Z a;;r; i€ B*.
JEN*
Since all the dictionaries are degenerate, we have that v* = v, and therefore we can
write the objective function in (3.3) as

n+m

(3.4) (=v+ Z c;xj7
=1

where we have extended the notation ¢; to all variables (both original and slack) by
setting ¢j = 0 for j € B*.
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Ignoring for the moment the possibility that some variables could go negative,
consider the solutions obtained by letting x4 increase while holding all other vari-
ables in V" at zero:

Ts =Y,
z; =0, j €N\ {s},
x; = by — a;sy, 1€ B.
The objective function at this point is given by
¢=v+csy.
However, using (3.4), we see that it is also given by
(=vtcy+ Y cfbi— aiy).
i€B
Equating these two expressions for ¢, we see that

(cs—cjﬁ—ZcfaiS) y:Zcfbi.

ieB i€B
Since this equation must be an identity for every y, it follows that the coefficient
multiplying y must vanish (as must the right-hand side):

cs —Ck —l—Zc;-kais =0.
i€B
Now, the fact that 4 is the entering variable in D implies that
cs > 0.

Recall that z; is the fickle variable with the largest index. Since x; is also fickle, we
see that s < ¢. Since x; is not the entering variable in D* (as x; is), we see that

c: <0.

From these last three displayed equations, we get

Zc?ais < 0.

ieB
Hence, there must exist an index » € B for which
3.5) crars < 0.

Consequently, ¢ # 0 and r € N*. Hence, x, is fickle and therefore r < ¢. In
fact, r < ¢, since cja;s > 0. To see that this product is positive, note that both its
factors are positive: c; is positive, since x is the entering variable in D*, and a5 is
positive, since x; is the leaving variable in D.

The fact that » < ¢ implies that ¢;; < 0 (otherwise, according to the smallest
index criteria, » would be the entering variable for D*). Hence, (3.5) implies that

ars > 0.

Now, since each of the dictionaries in the cycle describe the same solution, it follows
that every fickle variable is zero in all these dictionaries (since it is clearly zero in
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a dictionary in which it is nonbasic). In particular, x,, = 0. Butin D, x, is basic.
Hence,

b, =0.

These last two displayed equations imply that x,. was a candidate to be the leaving
variable in D, and since r < t, it should have been chosen over x;. This is the
contradiction we have been looking for. O

5. Fundamental Theorem of Linear Programming

Now that we have a Phase I algorithm and a variant of the simplex method that
is guaranteed to terminate, we can summarize the main points of this chapter in the
following theorem:

THEOREM 3.4. For an arbitrary linear program in standard form, the following
statements are true:

(1) If there is no optimal solution, then the problem is either infeasible or
unbounded.

(2) If a feasible solution exists, then a basic feasible solution exists.

(3) If an optimal solution exists, then a basic optimal solution exists.

PROOF. The Phase I algorithm either proves that the problem is infeasible or
produces a basic feasible solution. The Phase II algorithm either discovers that the
problem is unbounded or finds a basic optimal solution. These statements depend,
of course, on applying a variant of the simplex method that does not cycle, which
we now know to exist. (]

6. Geometry

As we saw in the previous chapter, the set of feasible solutions for a problem
in two dimensions is the intersection of a number of halfplanes, i.e., a polygon.
In three dimensions, the situation is similar. Consider, for example, the following
problem:

maximize 1y + 2z + 313

subjectto 1z + 2x3 < 3
(36) 9 + 213 < 2
X1, T2, T3 2 0

The set of points satisfying x1 + 2z3 = 3 is a plane. The inequality x1 + 2z3 < 3
therefore consists of all points on one side of this plane; that is, it is a halfspace.
The same is true for each of the other four inequalities. The feasible set consists
of those points in space that satisfy all five inequalities, i.e., those points lying in
the intersection of these halfspaces. This set is the polyhedron shown in Figure 3.1.
This polyhedron is bordered by five facets, each facet being a portion of one of the
planes that was defined by replacing a constraint inequality with an equation. For
example, the “front” facet in the figure is a portion of the plane z; + 2x3 = 3.
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X1

FIGURE 3.1. The set of feasible solutions for the problem given
by (3.6).

The facets acquire a particularly simple description if we introduce slack variables
into the problem:

wy = 3 — T — 21‘3

Wwo = 2 — T2 — 2.’]3'3 .

Indeed, each facet corresponds precisely to some variable (either original or slack)
vanishing. For instance, the front facet in the figure corresponds to w; = 0 whereas
the “left” facet corresponds to xo = 0.

The correspondences can be continued. Indeed, each edge of the polyhedron
corresponds to a pair of variables vanishing. For example, the edge lying at the
interface of the left and the front facets in the figure corresponds to both w; = 0 and
To — 0.

Going further yet, each vertex of the polyhedron corresponds to three variables
vanishing. For instance, the vertex whose coordinates are (1,0, 1) corresponds to
wy = 0,29 =0,and wy = 0.

Now, let’s think about applying the simplex method to this problem. Every
basic feasible solution involves two basic variables and three nonbasic variables.
Furthermore, the three nonbasic variables are, by definition, zero in the basic fea-
sible solution. Therefore, for this example, the basic feasible solutions stand in
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X3

X2:0

\ N
X1+2x3=2

X1

FIGURE 3.2. The set of feasible solutions for the (degenerate)
problem given by (3.7).

one-to-one correspondence with the vertices of the polyhedron. In fact, applying
the simplex method to this problem, one discovers that the sequence of vertices
visited by the algorithm is

(0,0,00 — (0,0,1) — (1,0,1) — (3,2,0).

The example we’ve been considering has the nice property that every vertex
is formed by the intersection of exactly three of the facets. But consider now the
following problem:

maximize x1 + 29 + 3x3

subject to x; + 2x3 < 2
3.7) To + 213 < 2
x1, r2, v3 > 0.

Algebraically, the only difference between this problem and the previous one is that
the right-hand side of the first inequality is now a 2 instead of a 3. But look at
the polyhedron of feasible solutions shown in Figure 3.2. The vertex (0,0,1) is
at the intersection of four of the facets, not three as one would “normally” expect.
This vertex does not correspond to one basic feasible solution; rather, there are four
degenerate basic feasible solutions, each representing it. We’ve seen two of them
before. Indeed, dictionaries (3.1) and (3.2) correspond to two of these degenerate
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dictionaries (in fact, dictionary (3.1) is the dictionary one obtains after one pivot of
the simplex method applied to problem (3.7)).

We end by considering the geometric effect of the perturbation method for re-
solving degeneracy. By perturbing the right-hand sides, one moves the planes that
determine the facets. If the moves are random or chosen with vastly different mag-
nitudes (all small), then one would expect that each vertex in the perturbed problem
would be determined by exactly three planes. That is, degenerate vertices from the
original problem get split into multiple nearby vertices in the perturbed problem.
For example, problem (3.6) can be thought of as a perturbation of degenerate prob-
lem (3.7) (the perturbation isn’t small, but it also isn’t so large as to obscure the
effect). Note how the degenerate vertex in Figure 3.2 appears as two vertices in
Figure 3.1.

Exercises

3.1 Solve the following linear program using the perturbation method to re-
solve degeneracy:

maximize 10x; — 57x9 — 93 — 2424
subject to 0.5x1 — 5.bxe — 2.52x3 + 924 < 0
0.52x1 — 1.529 — 0523+ x4 < O
X1 S ].
X1, T2, T3, T4 Z 0.

Note: The simple pivot tool with the Lexicographic labels can be used to
check your arithmetic:

www.princeton.edu/~rvdb/JAVA/pivot/simple.html

3.2 Solve the following linear program using Bland’s rule to resolve degener-

acy:
maximize 10xq — 57zo — 9x3 — 2424
subjectto 0.5z — 5.529 — 2.523 + 924 < 0
0.51‘1 — 1.51’2 — 0513 + Ty < 0
T S 1
T1, 2, T3, T4 > 0.

3.3 Using today’s date (MMYY) for the seed value, solve 10 possibly degen-
erate problems using the online pivot tool:

www.princeton.edu/~rvdb/JAVA/pivot/lexico.html

3.4 Consider the linear programming problems whose right-hand sides are
identically zero:

n

maximize g C;jT;

Jj=1
n

subject to Zaijxjgo i=1,2,...,m
j=1

;>0  j=12,...n


http://www.princeton.edu/~rvdb/JAVA/pivot/simple.html
http://www.princeton.edu/~rvdb/JAVA/pivot/lexico.html
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Show that either z; = 0 for all j is optimal or else the problem is
unbounded.

3.5 Consider the following linear program:

maximize x1 + 39
subject to —2x; < -5
Iy 2 0.

Show that this problem has feasible solutions but no vertex solutions. How
does this reconcile with the fundamental theorem of linear programming
(Theorem 3.4)?

3.6 Suppose that a linear programming problem has the following property:
its initial dictionary is not degenerate and, when solved by the simplex
method, there is never a tie for the choice of leaving variable.

(a) Can such a problem have degenerate dictionaries? Explain.
(b) Can such a problem cycle? Explain.

3.7 Consider the following dictionary:
(=54 2xy — 223 + 3z5
$6=4—2$2— r3 + Ts
Ty =2— X+ x3— x5
$1:6—2$2—2$3—3$5.

(a) Listall pairs (.., z5) such that «,. could be the entering variable and
x5 could be the leaving variable.

(b) List all such pairs if the largest-coefficient rule for choosing the en-
tering variable is used.

(c) List all such pairs if Bland’s rule for choosing the entering and leav-
ing variables is used.

Notes

The first example of cycling was given by Hoffman (1953). The fact that any

linear programming problem that cycles must have at least six variables and three
constraints was proved by Marshall and Suurballe (1969).

Early proofs of the fundamental theorem of linear programming (Theorem 3.4)

were constructive, relying, as in our development, on the existence of a variant of
the simplex method that works even in the presense of degeneracy. Hence, finding
such variants occupied the attention of early researchers in linear programming. The
perturbation method was first suggested by A. Orden and developed independently
by Charnes (1952). The essentially equivalent lexicographic method first appeared
in Dantzig et al. (1955). Theorem 3.3 was proved by Bland (1977).

For an extensive treatment of degeneracy issues see Gal (1994).



CHAPTER 4

Efficiency of the Simplex Method

In the previous chapter, we saw that the simplex method (with appropriate
pivoting rules to guarantee no cycling) will solve any linear programming prob-
lem for which an optimal solution exists. In this chapter, we investigate just how
fast it will solve a problem of a given size.

1. Performance Measures

Performance measures can be broadly divided into two types:

e Worst case
e Average case.

As its name implies, a worst-case analysis looks at all problems of a given “size” and
asks how much effort is needed to solve the hardest of these problems. Similarly,
an average-case analysis looks at the average amount of effort, averaging over all
problems of a given size. Worst-case analyses are generally easier than average-case
analyses. The reason is that, for worst-case analyses, one simply needs to give an
upper bound on how much effort is required and then exhibit a specific example that
attains this bound. However, for average-case analyses, one must have a stochastic
model of the space of “random linear programming problems” and then be able to
say something about the solution effort averaged over all the problems in the sample
space. There are two serious difficulties here. The first is that it is not clear at all how
one should model the space of random problems. Secondly, given such a model, one
must be able to evaluate the amount of effort required to solve every problem in the
sample space.

Therefore, worst-case analysis is more tractable than average-case analysis, but
it is also less relevant to a person who needs to solve real problems. In this chapter,
we will start by giving a detailed worst-case analysis of the simplex method using
the largest-coefficient rule to select the entering variable. We will then present and
discuss the results of some empirical studies in which millions of linear program-
ming problems were generated randomly and solved by the simplex method. Such
studies act as a surrogate for a true average-case analysis.

2. Measuring the Size of a Problem

Before looking at worst cases, we must discuss two issues. First, how do we
specify the size of a problem? Two parameters come naturally to mind: m and n.
Often, we simply use these two numbers to characterize the size a problem. How-
ever, we should mention some drawbacks associated with this choice. First of all,

R.J. Vanderbei, Linear Programming, International Series in Operations Research 39
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it would be preferable to use only one number to indicate size. Since the data for
a problem consist of the constraint coefficients together with the right-hand side
and objective function coefficients, perhaps we should use the total number of data
elements, which is roughly mn.

The product mn isn’t bad, but what if many or even most of the data elements
are zero? Wouldn’t one expect such a problem to be easier to solve? Efficient im-
plementations do indeed take advantage of the presence of lots of zeros, and so an
analysis should also account for this. Hence, a good measure might be simply the
number of nonzero data elements. This would definitely be an improvement, but one
can go further. On a computer, floating-point numbers are all the same size and can
be multiplied in the same amount of time. But if a person is to solve a problem by
hand (or use unlimited precision computation on a computer), then certainly multi-
plying 23 by 7 is a lot easier than multiplying 23,453.2352 by 86,833.245643. So
perhaps the best measure of a problem’s size is not the number of data elements, but
the actual number of bits needed to store all the data on a computer. This measure
is popular among most computer scientists and is usually denoted by L.

However, with a little further abstraction, the size of the data, L, is seen to be
ambiguous. As we saw in Chapter 1, real-world problems, while generally large
and sparse, usually can be described quite simply and involve only a small amount
of true input data that gets greatly expanded when setting the problem up with a
constraint matrix, right-hand side, and objective function. So should L represent
the number of bits needed to specify the nonzero constraint coefficients, objective
coefficients, and right-hand sides, or should it be the number of bits in the original
data set plus the number of bits in the description of how this data represents a linear
programming problem? No one currently uses this last notion of problem size, but
it seems fairly reasonable that they should (or at least that they should seriously
consider it). Anyway, our purpose here is merely to mention that these important
issues are lurking about, but, as stated above, we shall simply focus on m and n to
characterize the size of a problem.

3. Measuring the Effort to Solve a Problem

The second issue to discuss is how one should measure the amount of work
required to solve a problem. The best answer is the number of seconds of computer
time required to solve the problem, using the computer sitting on one’s desk. Un-
fortunately, there are (hopefully) many readers of this text, not all of whom use the
exact same computer. Even if they did, computer technology changes rapidly, and
a few years down the road everyone would be using something entirely different.
It would be nice if the National Institute of Standards and Technology (the govern-
ment organization in charge of setting standards, such as how many threads/inch a
standard light bulb should have) would identify a standard computer for the purpose
of benchmarking algorithms, but, needless to say, this is not very likely. So the
time needed to solve a problem, while the most desirable measure, is not the most
practical one here. Fortunately, there is a fairly reasonable substitute. Algorithms
are generally iterative processes, and the time to solve a problem can be factored
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into the number of iterations required to solve the problem times the amount of time
required to do each iteration. The first factor, the number of iterations, does not
depend on the computer and so is a reasonable surrogate for the actual time. This
surrogate is useful when comparing various algorithms within the same general class
of algorithms, in which the time per iteration can be expected to be about the same
among the algorithms; however, it becomes meaningless when one wishes to com-
pare two entirely different algorithms. For now, we shall measure the amount of
effort to solve a linear programming problem by counting the number of iterations,
i.e. pivots, needed to solve it.

4. Worst-Case Analysis of the Simplex Method

How bad can the simplex method be in the worst case? Well, we have already
seen that for some pivoting rules it can cycle, and hence the worst-case solution
time for such variants is infinite. However, what about noncycling variants of the
simplex method? Since the simplex method operates by moving from one basic
feasible solution to another without ever returning to a previously visited solution,
an upper bound on the number of iterations is simply the number of basic feasible
solutions, of which there can be at most

(i)

For a fixed value of the sum n + m, this expression is maximized when m = n.
And how big is it? It is not hard to show that

2n n

(see Exercise 4.9). It should be noted that, even though typographically compact,
the expression 22" is huge even when n is not very big. For example, for n = 25,
we have 2°0 = 1.1259 x 10%5.

Our best chance for finding a bad example is to look at the case where m = n.
In 1972, V. Klee and G.J. Minty were the first to discover an example in which the
simplex method using the largest coefficient rule requires 2" — 1 iterations to solve.
The example is quite simple to state:

n
maximize g 10"z
Jj=1

4.1 = . :
subjectto 2 10"z, + a; < 10077 i=1,2,....n
j=1
;>0 j=12,...,n.

It is instructive to look closely at the constraints. The first three constraints are

X1 S 1
20931 + T2 S 100
2001 + 20z2 +x3 < 10,000.



42 4. EFFICIENCY OF THE SIMPLEX METHOD

The first constraint simply says that x; is no bigger than one. With this in mind,
the second constraint says that xo has an upper bound of about 100, depending
on how big x; is. Similarly, the third constraint says that x3 is roughly no bigger
than 10,000 (again, this statement needs some adjustment depending on the sizes
of z; and x3). Therefore, the constraints are approximately just a set of upper
bounds, which means that the feasible region is virtually a stretched n-dimensional
hypercube':

OS X Sl
0< =z <100

0< z, <100" 1

For this reason, the feasible region for the Klee—Minty problem is often referred to
as the Klee—Minty cube. An n-dimensional hypercube has 2" vertices, and, as we
shall see, the simplex method with the largest-coefficient rule will start at one of
these vertices and visit every vertex before finally finding the optimal solution.

In order to gain a deeper understanding of the Klee—Minty problem, we first
replace the specific right-hand sides, 100, with more generic values, b;, having
the property that

1=0 <bhy €+ Kby
As in the previous chapter, we use the expression ¢ < b to mean that a is so much
smaller than b that no factors multiplying a and dividing b that arise in the course of
applying the simplex method to the problem at hand can ever make the resulting a
as large as the resulting b. Hence, we can think of the b;’s as independent variables
for now (specific values can be chosen later). Next, it is convenient to change each
right-hand side replacing b; with

1—1
> 1077b; + b,
j=1

Since the numbers b;, j = 1,2,...,% — 1 are “small potatoes” compared with b;,
this modification to the right-hand sides amounts to a very small perturbation. The
right-hand sides still grow by huge amounts as ¢ increases. Finally, we wish to add a
constant to the objective function so that our generalized Klee—Minty problem can
finally be written as

maximize Z 10"z — 3 Z 10"77b;

=1 i=1
(42) —1 o 1—1 o
subjectto 23 10"z, +a; <> 10°7b; + b, i=1,2,....n
i=1 =1
z; >0 ji=1,2,...,n

"More precisely, a hyperrectangle.



4. WORST-CASE ANALYSIS OF THE SIMPLEX METHOD 43

In Exercise 4.7, you are asked to prove that this problem takes 2 — 1 iterations.
To start to get a handle on the proof, here are the seven iterations that one gets with
n = 3. The initial dictionary is

¢=—209%; — Dby — 1bg + 10021 + 10z5 + x5
wy = by - x
Wo = 1061 + bo — 201 — 9
w3 = 100b1 + 10[)2 + bg - 200931 - 20172 — X3,

which is feasible. Using the largest coefficient rule, the entering variable is z1. From
the fact that each subsequent b; is huge compared with its predecessor it follows that
wy is the leaving variable. After the first iteration, the dictionary reads

C: %bl 71*20[)27 %b3—100w1+10x2 + 23
T = by -
we = —10by + by + 20w1 — 19
wz = —100by + 10b3 + b3 + 200w, — 2022 — x3.

Now, 5 enters and w- leaves, so after the second iteration we get:
¢= —&20()1 + 12ij — %bg, + 100wy — 10ws + x3
xr1 = b1 — w1
To= —10b; + by + 20w —  ws
wg = 100b; — 10bs + b3 — 200w, + 20wy — x3.
After the third iteration
(= %b1+1*20b2— %b3—100$1—10102+333
wq = b1 — X
T = 10b1 + b2 — 20.T1 — wao
w3z = —100b; — 10b3 + b3 + 2001 + 20ws — x3.
After the fourth iteration
¢(=—10p; — 0%y + 1b3 4+ 10021 + 10wy — w3
wq = bl — X1
To = 10by + by — 201 — wo
T3 = 71001)1 — 10[)2 + b3 + 200$1 + 2011}2 — Wws3.
After the fifth iteration
(= %bl — 12*0172 + %bg — 100wy + 10wy — w3
xr1 = bl — w1
o =—10b1 + bo + 20w, —  wso
I3 — ].OObl — 10b2 + b3 — 20071/1 + 20102 — ws.

After the sixth iteration
¢=—10p; + 19py + b3+ 100w; — 1023 — w3
xr, = b1 — w1
Wo = 7101)1 + bg + QOwl - i)
I3 — —100b1 + 10b2 + b3 + 200’11}1 — 201’2 — ws.
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And, finally, after the seventh iteration, we get

¢ =19 + Dby + $b3 — 10021 — 1022 — w3
wi= b -

we = 10by + by — 201 — 9

Tr3 = ].OObl + 10b2 + bg - 200561 - QOIQ — ws,

which is, of course, optimal.

A few observations should be made. First, every pivot is the swap of an x; with
the corresponding w;. Second, every dictionary looks just like the first one with the
exception that the w;’s and the x;’s have become intertwined and various signs have
changed (see Exercise 4.6).

Also note that the final dictionary could have been reached from the initial
dictionary in just one pivot if we had selected x3 to be the entering variable. But
the largest-coefficient rule dictated selecting x;. It is natural to wonder whether the
largest-coefficient rule could be replaced by some other pivot rule for which
the worst-case behavior would be much better than the 2" behavior of the largest-
coefficient rule. So far no one has found such a pivot rule. However, no one has
proved that such a rule does not exist either.

Finally, we mention that one desirable property of an algorithm is that it be
scale invariant. This means that should the units in which one measures the decision
variables in a problem be changed, the algorithm would still behave in exactly the
same manner. The simplex method with the largest-coefficient rule is not scale
invariant. To see this, consider changing variables in the Klee—Minty problem by
putting

z; =100""tz;.
In the new variables, the initial dictionary for the n = 3 Klee—Minty problem
becomes

¢=—20%; — by — $b3 + 100z + 1000Z5 + 100003
w1 = b1 — 1
Wo = 1061 + b — 20z, — To
ws = 100b; +1000by + b3 — 200Z; — 2000z, — 10000Z3.

Now, the largest-coefficient rule picks variable x3 to enter. Variable ws leaves, and
the method steps to the optimal solution in just one iteration. There exist pivot rules
for the simplex method that are scale invariant. But Klee—-Minty-like examples have
been found for most proposed alternative pivot rules (whether scale invariant or not).
In fact, it is an open question whether there exist pivot rules for which one can prove
that no problem instance requires an exponential number of iterations (as a function
of m or n).

5. Empirical Average Performance of the Simplex Method

To investigate the empirical average case performance of the simplex method,
we generated a large number of random linear programming problems and solved
each of them using the simplex method. There are many ways to generate random
problems. In this section, we consider one such method and analyze the results.
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As we have so dramatically seen, the number of iterations can depend on the
specific choice of pivot rule. In the code discussed below, we choose the entering
variable to be the one with the largest coefficient. The way we generate random
problems makes it unlikely that there will be ties in the choice of largest coeffi-
cient (at least after the first pivot). So, even though the program makes a choice,
it is not terribly important to articulate what that choice is. Similarly, there is little
chance for a tie when choosing a leaving variable, so we do not dwell on this matter
either.

We list below the source code. The program is written in a language called
MATLAB—a widely used language whose source code is fairly easy to read, even
for those not familiar with the language. So, to get started, here’s how we initialize
the data describing a linear programming problem:

m = round (10xexp (log(100)+rand())) ;
n round (10xexp (log (100) xrand())) ;

sigma = 10;

A = round(sigmax* (randn(m,n))) ;

b = round(sigmaxabs (randn(m,1))) ;
c round (sigmaxrandn(1l,n)) ;

Here, rand () generates a (pseudo) random number uniformly distributed on
the interval [0, 1] and round () simply rounds a number to its nearest integer value.
The formulas for m and n produce numbers between 10 and 1,000. The formula
may seem more complicated than one would expect. For example, one might sug-
gest this simpler formula: m = round (10 + 990xrand()). There is a good
reason for the more complicated version. We would like about half of the problems
to be between 10 and 100 and the other half to be between 100 and 1,000. Using the
simple scheme suggested above, only about 10 % of the numbers would be between
10 and 100. The vast majority would be between 100 and 1,000. So, what we want
is to have our numbers uniformly distributed when viewed on a logarithmic scale.
Our formula for m and n achieves this logarithmically-uniform distribution.

The vector ¢ of objective function coefficients is generated using the function
randn (). This function is like rand () but, instead of generating numbers with a
uniform distribution, it generates numbers with a Gaussian (aka “normal”) distribu-
tion with mean 0 and standard deviation 1. Multiplying such a variable by sigma,
which is set to 10, increases the standard deviation to 10. The arguments (1,n)
passed to randn () tells the random number generator not to produce just one such
number but rather to produce a 1 X n matrix, i.e. a row vector, of independent
instances of these random variables. There is no particular reason to round the co-
efficients in the row vector c to be integers. The only reason this was done was to
make the random problems seem slightly more realistic since many/most real-world
problems involve data that is mostly integer-valued. The matrix A and the right-
hand side vector b are generated in a manner similar to how c is generated. But,
note that the formula for b involves the abs () which returns absolute values so
that all elements of b are non-negative. This minor, but important, twist is done to
ensure that the starting dictionary is feasible. Here’s the main pivot loop:
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iter = 0;

while max(c) > eps,
% pick largest coefficient

[cj, col] = max(c);

Acol = A(:,col);

% select leaving variable

if sum(Acol<-eps) == 0,
opt = -1; % unbounded
'unbounded’
break;
end
nums = b.x* (Acol<-eps);
dens = -Acol.x (Acol<-eps);
[t, row] = min(nums./dens) ;

Arow = A(row, :);

a = A(row,col); % pivot element

A = A - AcolxArow/a;

A(row,:) = -Arow/a;
A(:,col) = Acol/a;
A(row,col) = 1/a;

brow = b(row) ;
b = b - browxAcol/a;

b(row) = -brow/a;
ccol = c(col);

c = ¢ - ccolxArow/a;
c(col) = ccol/a;

iter = iter+1;
end

In this code, the expression max (c) computes the maximum value of the elements
of the vector c. It returns both the maximum value and the index at which this value
was attained (the first such index if there are more than one). So, ¢j is the maximal
coefficient and col is the index at which this maximum is attained. Hence col
is the entering column. Given the matrix A, the expression A (:,col) denotes
the column vector consisting of the elements from the col column of A. Hence,
Acol denotes the column of the dictionary associated with the entering variable.
The next lines of this short code selects the leaving variable, which is in the row
called row. Given the entering column and the leaving row, all that remains is to
update the coefficients in the objective function, the right-hand side, and the array
of coefficients A. The last few lines encode exactly what one needs to do to carry
out a pivot.
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Empirical Performance of the Simplex Method
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FIGURE 4.1. Starting from a primal feasible solution and using
the primal simplex method to pivot to an optimal solution, shown
here is a log-log plot showing the number of pivots required to
reach optimality (or discover that the problem is unbounded) plot-
ted against m + n. Points plotted in blue correspond to problems
having an optimal solution whereas points plotted in green corre-
spond to unbounded problems.

The code was run 1,000 times and for each randomly generated problem the
values of m, n, and the number of iterations, iter, were saved. Figure 4.1 shows a
plot of the number of pivots plotted against the sum m+n. Note that this is a log-log
plot. That is, both the horizontal and vertical axes are stretched logarithmically.

The data points shown in blue correspond to problems where an optimal solution
was obtained whereas those shown in green correspond to unbounded problems.
Clearly, unboundedness is a common occurance for problems generated randomly.
In fact, of the 1,000 problems, 501 had optimal solutions and the remaining 499
were unbounded. These numbers suggest that the probability of encountering an
unbounded problem is exactly one half. This is likely true but it has not been
proven. Further investigation reveals that instances where m > n are almost never
unbounded whereas the preponderance of m < n instances are unbounded. Of
course, the way m and n were generated, it is true that m < n and m > n are
equally likely.
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Empirical Performance of the Simplex Method
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FIGURE 4.2. The same data as shown in Figure 4.1 but plotted
against n instead of m + n.

One might be tempted to add code that rounds to zero any right-hand side value
that is within a small tolerance of zero. For example, we could add

b = b.x(abs (b) >eps) ;

just before the line defining row. Doing so forces dictionaries to be degenerate and
this can lead to cycling. Experiments show that, with this extra line of code, about 5
out of 1,000 instances will cycle due to degeneracy. Without the extra line of code,
no instances cycled.

A second observation is that, for a given value of m + n, there seems to be an
effective upper limit on the number of pivots required. Some problems, especially
the unbounded ones but also many having an optimal solution, solve in many fewer
iterations.

The fact that some problems solved quickly even when m+n was large suggests
that perhaps m + n is not the best measure of problem size. Figure 4.2 shows the
same data plotted using just n as the measure of problem size. Interestingly, this
change dramatically improves the correlation between size and number of iterations
for those problems that arrived at an optimal solution. But, the unbounded problems
are still spread out quite a bit.

Upon reflection, it seems that perhaps a problem is “easy” if either m or n is
small relative to the other. To test this idea, we plot the number of iterations against
the minimum of m and n. This plot is shown in Figure 4.3. It appears like we
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FIGURE 4.3. The same data as before but plotted against the min-
imum of m and n.

have finally arrived at the best measure of size. Performing a statistical analysis (see
Chapter 12), we can empirically derive the straight line through this log-log plot that
best matches the data. Separate lines for the blue (optimal) and green (unbounded)
points are shown on the graph. For the blue points, the equation is given by

logT ~ —1.90 + 1.70 log(min(m, n))

where T' denotes the number of pivots required to solve a problem. Taking the
exponential of both sides, we get

T ~ 671.9061.70 log(min(m,n)) _ 0.150 min(m, n)l.?O.
For the green (unbounded) points, the equation is
T ~ 0.180 min(m,n)"*2.

In both cases, the rate of growth of T with respect to min(m, n) is “superlinear” as
the exponents are both larger than 1. Figure 4.4 is a regular, that is not log-log, plot
of the number of simplex pivots versus the minimum of m and n. This plot makes
the superlinearity easy to spot.

Finally, a careful comparison of the blue (optimal solution) data points in
Figures 4.2 and 4.3 reveals that they are almost all in exactly the same position
in the two plots. The reason is that the vast majority of the problems that had an
optimal solution were problems in which n was smaller than m.
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FIGURE 4.4. The same comparison as in Figure 4.3 but plot lin-
early rather than log-log. This version makes clear that the num-
ber of pivots grows faster than linearly.

Exercises

In solving the following problems, the simple pivot tool can be used to check
your arithmetic:

www.princeton.edu/~rvdb/JAVA/pivot/simple.html

4.1 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 4xq + Hxo

subjectto 2x1 + 2z9 < 9
X S 4

To § 3

T1, T2 Z 0.

4.2 Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 2x; + o
subject to 3x1 + 22 <
1, v2 > 0.


http://www.princeton.edu/~rvdb/JAVA/pivot/simple.html

4.3

4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11
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Compare the performance of the largest-coefficient and the smallest-index
pivoting rules on the following linear program:

maximize 3xq + Hxo

subjectto  x1 + 2z4
T

T2

Ty, T2

AVAVARVARVAN
oW

Solve the Klee-Minty problem (4.1) for n = 3.

Solve the four variable Klee-Minty problem using the online pivot tool:
www.princeton.edu/~rvdb/JAVA/pivot/kleeminty.html

Consider the dictionary
n o 1
(= _Z%‘lo - (257 = »’Uj)
Jj=1
i—1
wi =Y 661079 (by = 2x5) + (b — i) i=1,2,...,m,
j=1

where the b;’s are as in the Klee—-Minty problem (4.2) and where each ¢;
is +1. Fix k and consider the pivot in which x, enters the basis and wy,
leaves the basis. Show that the resulting dictionary is of the same form as
before. How are the new ¢;’s related to the old ¢;’s?

Use the result of the previous problem to show that the Klee—Minty prob-
lem (4.2) requires 2" — 1 iterations.

Consider the Klee—-Minty problem (4.2). Suppose that b; = 3°~! for some
£ > 1. Find the greatest lower bound on the set of /3’s for which the this
problem requires 2" — 1 iterations.

Show that, for any integer n,

n

Consider a linear programming problem that has an optimal dictionary
in which exactly k of the original slack variables are nonbasic. Show
that by ignoring feasibility preservation of intermediate dictionaries
this dictionary can be arrived at in exactly k£ pivots. Don’t forget to
allow for the fact that some pivot elements might be zero. Hint: see
Exercise 2.15.

(MATLAB required.) Modify the MATLAB code posted at
www.princeton.edu/~rvdb/LPbook/complexity/primalsimplex.m

so that data elements in A, b, and ¢ are not rounded off to integers. Run
the code and compare the results to those shown in Figure 4.3.


http://www.princeton.edu/~rvdb/JAVA/pivot/kleeminty.html
http://www.princeton.edu/~rvdb/LPbook/complexity/primalsimplex.m
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4.12 (MATLAB required.) Modify the MATLAB code posted at
www.princeton.edu/~rvdb/LPbook/complexity/primalsimplex.m

so that the output is a log-log plot of the number of pivots versus the
product m times n. Run the code and compare the results to those shown
in Figure 4.3.

Notes

The first example of a linear programming problem in n variables and n con-
straints taking 2" — 1 iterations to solve was published by Klee and Minty (1972).
Several researchers, including Smale (1983), Borgwardt (1982, 1987a), Adler and
Megiddo (1985), and Todd (1986), have studied the average number of iterations.
For a survey of probabilistic methods, the reader should consult Borgwardt (1987b).

Roughly speaking, a class of problems is said to have polynomial complexity
if there is a polynomial p for which every problem of “size” n in the class can be
solved by some algorithm in at most p(n) operations. For many years it was un-
known whether linear programming had polynomial complexity. The Klee—Minty
examples show that, if linear programming is polynomial, then the simplex method
is not the algorithm that gives the polynomial bound, since 2" is not dominated by
any polynomial. In 1979, Khachian gave a new algorithm for linear programming,
called the ellipsoid method, which is polynomial and therefore established once and
for all that linear programming has polynomial complexity. The collection of all
problem classes having polynomial complexity is usually denoted by P. A class of
problems is said to belong to the class NP if, given a (proposed) solution, one can
verify its optimality in a number of operations that is bounded by some polynomial
in the “size” of the problem. Clearly, P C AP (since, if we can solve from scratch
in a polynomial amount of time, surely we can verify optimality at least that fast).
An important problem in theoretical computer science is to determine whether or
not P is a strict subset of N/P.

The study of how difficult it is to solve a class of problems is called complexity
theory. Readers interested in pursuing this subject further should consult Garey and
Johnson (1977).


http://www.princeton.edu/~rvdb/LPbook/complexity/primalsimplex.m

CHAPTER 5

Duality Theory

Associated with every linear program is another called its dual. The dual of this
dual linear program is the original linear program (which is then referred to as the
primal linear program). Hence, linear programs come in primal/dual pairs. It turns
out that every feasible solution for one of these two linear programs gives a bound
on the optimal objective function value for the other. These ideas are important and
form a subject called duality theory, which is the topic of this chapter.

1. Motivation: Finding Upper Bounds
We begin with an example:

maximize 4x1 + o+ 3x3

subjectto  x1 + 4xo <1
3r1— 9o+ 23 < 3
Z1, T2, w3 > 0.

Our first observation is that every feasible solution provides a lower bound on the
optimal objective function value, (*. For example, the solution (z1,z2,23) =
(1,0,0) tells us that ¢* > 4. Using the feasible solution (1, x2,z3) = (0,0, 3), we
see that (* > 9. But how good is this bound? Is it close to the optimal value? To
answer, we need to give upper bounds, which we can find as follows. Let’s multiply
the first constraint by 2 and add that to 3 times the second constraint:

+3 (3z1 — 2 + x3) 3(3)
11171 —|— 5I2 + 3I3 11

<
<

Now, since each variable is nonnegative, we can compare the sum against the ob-
jective function and notice that

4r1 + 219 + 323 < 1l + 529 + 323 < 11.

Hence, ¢* < 11. We have localized the search to somewhere between 9 and 11.
These bounds leave a gap (within which the optimal solution lies), but they are better
than nothing. Furthermore, they can be improved. To get a better upper bound, we
again apply the same upper bounding technique, but we replace the specific numbers
we used before with variables and then try to find the values of those variables
that give us the best upper bound. So we start by multiplying the two constraints

R.J. Vanderbei, Linear Programming, International Series in Operations Research 53
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by nonnegative numbers, y; and ys, respectively. The fact that these numbers are
nonnegative implies that they preserve the direction of the inequalities. Hence,

y1( z1 + dao ) < Y1
+yo( 3x1 — o+ x3) < 3y
(Y1 + 3y2)w1 + (dy1 — y2)w2 + (y2)z3 < Y1 + 3yo.

If we stipulate that each of the coefficients of the x;’s be at least as large as the
corresponding coefficient in the objective function,

y1 +3y2 > 4
dypy — y2 2 1
y22 )

then we can compare the objective function against this sum (and its bound):

C = 4$1+$2+3Z3
(y1 + 3y2)z1 + (dy1 — y2)w2 + (y2)73
Y1 + 3y2.

IAIA

We now have an upper bound, y; + 3y2, which we should minimize in our effort
to obtain the best possible upper bound. Therefore, we are naturally led to the
following optimization problem:

minimize y; + 3y2

subjectto  y1 + 3y > 4
dyy — y2 =2 1

y2 > 3

Y1, Y2 > 0

This problem is called the dual linear programming problem associated with the
given linear programming problem. In the next section, we will define the dual
linear programming problem in general.

2. The Dual Problem
Given a linear programming problem in standard form,

n

maximize E CjT;
Jj=1
n

5.1
G- subject to E ai;r; < b; 1=12,....m
j=1

z; >0 7=12,...,n,
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the associated dual linear program is given by
m
minimize Z by
i=1

m

subject to Zyiaij > ¢ j=12....n
i=1

y; > 0 1 =1,2,...,m.

Since we started with (5.1), it is called the primal problem. Our first order of
business is to show that taking the dual of the dual returns us to the primal. To
see this, we first must write the dual problem in standard form. That is, we must
change the minimization into a maximization and we must change the first set of
greater-than-or-equal-to constraints into less-than-or-equal-to. Of course, we must
effect these changes without altering the problem. To change a minimization into a
maximization, we note that to minimize something it is equivalent to maximize its
negative and then negate the answer:

min zm:biyi = —max (— Zm: biyi> .
i=1 =1

To change the direction of the inequalities, we simply multiply through by minus
one. The resulting equivalent representation of the dual problem in standard form
then is

m
—maximize Z(—bi)yi
i=1
m
subject to Z(—aij)yig (—Cj) 1=12,...,n
i=1

Now we can take its dual:
n
—minimize Z(—cj)xj

j=1
n

subject to Z(—aij)xj > (=b;) 1=1,2,...,m
j=1

z;> 0 i=1,2,....n,

which is clearly equivalent to the primal problem as formulated in (5.1).

3. The Weak Duality Theorem

As we saw in our example, the dual problem provides upper bounds for the
primal objective function value. This result is true in general and is referred to as
the Weak Duality Theorem:
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Primal Values Dual Values
1 [ —
1 L
Gap
Primal Values Dual Values
I _
No Gap

FIGURE 5.1. The primal objective values are all less than the dual
objective values. An important question is whether or not there is
a gap between the largest primal value and the smallest dual value.

THEOREM 5.1.1If (x1,22,...,2,) is feasible for the primal and (yi,y2,
-y Ym) is feasible for the dual, then

chxj < Zblyl
J i

PROOF. The proof is a simple chain of obvious inequalities:
Feins <3 (L)
, 7 ;
= z YiQij T
ij

J

=2 | Do | w
i J
Szbwu
i

where the first inequality follows from the fact that each x; is nonnegative and each
c; is no larger than ) . y;a;;. The second inequality, of course, holds for similar
reasons. ]

Consider the subset of the real line consisting of all possible values for the
primal objective function, and consider the analogous subset associated with the
dual problem. The weak duality theorem tells us that the set of primal values lies
entirely to the left of the set of dual values. As we shall see shortly, these sets are
both closed intervals (perhaps of infinite extent), and the right endpoint of the primal
set butts up against the left endpoint of the dual set (see Figure 5.1). That is, there is
no gap between the optimal objective function value for the primal and for the dual.
The lack of a gap between primal and dual objective values provides a convenient
tool for verifying optimality. Indeed, if we can exhibit a feasible primal solution
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(z7,25,...,2}) and a feasible dual solution (v}, v3,. ..,y ) for which
* *
> ozt =Y by,
j i

then we may conclude that each of these solutions is optimal for its respective prob-
lem. To see that the primal solution is optimal, consider any other feasible solution

(z1,x2,...,2,). By the weak duality theorem, we have that
Doy < ) byl =) e
J ( J
Now, since (z7,x3,...,z}) was assumed to be feasible, we see that it must be

optimal. An analogous argument shows that the dual solution is also optimal for
the dual problem. As an example, consider the solutions z = (0, 0.25, 3.25) and
y = (1,3) in our example. Both these solutions are feasible, and both yield an
objective value of 10. Hence, the weak duality theorem says that these solutions are
optimal.

4. The Strong Duality Theorem

The fact that for linear programming there is never a gap between the primal
and the dual optimal objective values is usually referred to as the Strong Duality
Theorem:

THEOREM 5.2. If the primal problem has an optimal solution,

*

z* = (x],25,...,2,),
then the dual also has an optimal solution,

Y= (yiy; cee 73/:1)7
such that

(5.2) > ey =Y by
j i

Carefully written proofs, while attractive for their tightness, sometimes obfus-
cate the main idea. In such cases, it is better to illustrate the idea with a simple
example. Anyone who has taken a course in linear algebra probably already appre-
ciates such a statement. In any case, it is true here as we explain the strong duality
theorem.

The main idea that we wish to illustrate here is that, as the simplex method
solves the primal problem, it also implicitly solves the dual problem, and it does so
in such a way that (5.2) holds.

To see what we mean, let us return to the example discussed in Section 5.1.
We start by introducing variables w;, @ = 1,2, for the primal slacks and z;, j =
1,2, 3, for the dual slacks. Since the inequality constraints in the dual problem are
greater-than constraints, each dual slack is defined as a left-hand side minus the
corresponding right-hand side. For example,

21:y1—|—3y2—4.
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Therefore, the primal and dual dictionaries are written as follows:

¢= 4r1 + x9 + 323
(P) ’LU1=1— a:1—4x2

’LU2:3*31171+ To — XT3 .

—{= = y1— 3y

z21=—4+ y1+3y2
zo=—14+4y1 — o
23 =—3 + Y2 .

D)

Note that we have recorded the negative of the dual objective function, since we
prefer to maximize the objective function appearing in a dictionary. Also note that
the numbers in the dual dictionary are simply the negative of the numbers in the pri-
mal dictionary arranged with the rows and columns interchanged. Indeed, stripping
away everything but the numbers, we have

0 4 1 3 0—1-3

neg.—transp. -4 1 3
1-1-4 — 1 41
3-3 1-1 30 1

That is, as a table of numbers, the dual dictionary is the negative transpose of the
primal dictionary.

Our goal now is to apply the simplex method to the primal problem and at the
same time perform the analogous pivots on the dual problem. We shall discover that
the negative-transpose property persists throughout the iterations.

Since the primal dictionary is feasible, no Phase I procedure is necessary. For
the first pivot, we pick x3 as the entering variable (z; has the largest coefficient,
but z3 provides the greatest one-step increase in the objective). With this choice,
the leaving variable must be ws. Since the rows and columns are interchanged in
the dual dictionary, we see that “column” x3 in the primal dictionary corresponds
to “row” zs in the dual dictionary. Similarly, row wy in the primal corresponds to
column ¥ in the dual. Hence, to make an analogous pivot in the dual dictionary, we
select y» as the entering variable and z3 as the leaving variable. While this choice of
entering and leaving variable may seem odd compared to how we have chosen enter-
ing and leaving variables before, we should note that our earlier choice was guided
by the desire to increase the objective function while preserving feasibility. Here,
the dual dictionary is not even feasible, and so such considerations are meaningless.
Once we give up those rules for the choice of entering and leaving variables, it is
easy to see that a pivot can be performed with any choice of entering and leaving
variables provided only that the coefficient on the entering variable in the constraint
of the leaving variables does not vanish. Such is the case with the current choice.
Hence, we do the pivot in both the primal and the dual. The result is
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(=9 — 51 + 422 — 3w
(P) ’LU1=1— x1—4x2
T3 =3 —3r1+ a2 — wa.

—§{=-9— y1 — 3z
Z1 = 5+ y1+3z3
zo=—4+4y1 — 23
Y2 = 3 + z3.

D)

Note that these two dictionaries still have the property of being negative-transposes
of each other. For the next pivot, the entering variable in the primal dictionary is zo
(this time there is no choice) and the leaving variable is w;. In the dual dictionary,
the corresponding entering variable is y; and the leaving variable is z5. Doing the
pivots, we get

C: 10 — 6.131 — wy — 3’LU2
P) zo = 0.25 — 0.25z1 — 0.25w,
T3 — 3.25 — 325L1 - 025’(01 — Wy .

—&=—10 — 0.2529 — 3.2523

(D) 21 = 6 + 0.2529 + 3.2523
Y1 = 1+ 0.2529 4+ 0.2523
Y2 = 3 + 23 .

This primal dictionary is optimal, since the coefficients in the objective row are all
negative. Looking at the dual dictionary, we see that it is now feasible for the anal-
ogous reason. In fact, it is optimal too. Finally, both the primal and dual objective
function values are 10.

The situation should now be clear. Given a linear programming problem, which
is assumed to possess an optimal solution, first apply the Phase I procedure to get
a basic feasible starting dictionary for Phase II. Then apply the simplex method to
find an optimal solution. Each primal dictionary generated by the simplex method
implicitly defines a corresponding dual dictionary as follows: first write down the
negative transpose and then replace each x; with a z; and each w; with a ;. As long
as the primal dictionary is not optimal, the implicitly defined dual dictionary will be
infeasible. But once an optimal primal dictionary is found, the corresponding dual
dictionary will be feasible. Since its objective coefficients are always nonpositive,
this feasible dual dictionary is also optimal. Furthermore, at each iteration, the
current primal objective function value coincides with the current dual objective
function value.

To see why the negative transpose property is preserved from one dictionary
to the next, let’s observe the effect of one pivot. To keep notations uncluttered, we
consider only four generic entries in a table of coefficients: the pivot element, which
we denote by a, one other element on the pivot element’s row, call it b, one other
in its column, call it ¢, and a fourth element, denoted d, chosen to make these four
entries into a rectangle. A little thought (and perhaps some staring at the examples
above) reveals that a pivot produces the following changes:
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The pivot element gets replaced by its reciprocal;

Elements in the pivot row get negated and divided by the pivot element;
Elements in the pivot column get divided by the pivot element; and

All other elements, such as d, get decreased by be/a.

These effects can be summarized on our generic table as follows:

1

b a 0 0
pivot

d c d— @ E

a a

Now, if we start with a dual dictionary that is the negative transpose of the primal
and apply one pivot operation, we get

be
+

S

Note that the resulting dual table is the negative transpose of the resulting primal
table. By induction we then conclude that, if we start with this property, it will be
preserved throughout the solution process.

Since the strong duality theorem is the most important theorem in this book,
we present here a careful proof. Those readers who are satisfied with the above
discussion may skip the proof.

PROOF OF THEOREM 5.2. It suffices to exhibit a dual feasible solution y* sat-
isfying (5.2). Suppose we apply the simplex method. We know that the simplex
method produces an optimal solution whenever one exists, and we have assumed
that one does indeed exist. Hence, the final dictionary will be an optimal dictionary
for the primal problem. The objective function in this final dictionary is ordinarily

written as
C = C + Z ijj'
JEN
But, since this is the optimal dictionary and we prefer stars to bars for denoting
optimal “stuff,” let us write (* instead of . Also, the collection of nonbasic vari-
ables will generally consist of a combination of original variables as well as slack
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variables. Instead of using ¢; for the coefficients of these variables, let us use ¢ for
the objective coefficients corresponding to original variables, and let us use d; for
the objective coefficients corresponding to slack variables. Also, for those original
variables that are basic we put c;‘? = 0, and for those slack variables that are basic
we put d7 = 0. With these new notations, we can rewrite the objective function as

=" +Zc;mj —&—Zd;‘wi.
j=1 i=1

As we know, ¢* is the objective function value corresponding to the optimal primal
solution:

n
(5.3) =) e
j=1
Now, put
(5.4) yr = —df, i=1,2,...,m.

We shall show that y* = (yi,v5,...,y),) is feasible for the dual problem and
satisfies (5.2). To this end, we write the objective function two ways:

n n m
% * . *,
E cjry ="+ E c;xj+ E d;w;
j=1 j=1 i=1
m

n n
=D Gy (=l | b= ) aya
j=1 i=1 j=1
m n m
i SCUED S G5 o B
i—1 j=1 i—1

Since all these expressions are linear in the variables x;, we can equate the coeffi-
cients of each variable appearing on the left-hand side with the corresponding coef-
ficient appearing in the last expression on the right-hand side. We can also equate
the constant terms on the two sides. Hence,

(5.5) ¢ => by
=1
m
(5.6) cj:c;f—l—Zy;‘aij, ji=12...,n.
i=1

Combining (5.3) and (5.5), we get that (5.2) holds. Also, the optimality of the
dictionary for the primal problem implies that each ¢ is nonpositive, and hence we
see from (5.6) that

m
nyaijZCj, j=1,2,...,n.
i=1
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By the same reasoning, each d; is nonpositive, and so we see from (5.4) that
y; >0, 1=1,2,...,m.

These last two sets of inequalities are precisely the conditions that guarantee dual
feasibility. This completes the proof. (|

The strong duality theorem tells us that, whenever the primal problem has an
optimal solution, the dual problem has one also and there is no duality gap. But what
if the primal problem does not have an optimal solution? For example, suppose that
it is unbounded. The unboundedness of the primal together with the weak duality
theorem tells us immediately that the dual problem must be infeasible. Similarly,
if the dual problem is unbounded, then the primal problem must be infeasible. It
is natural to hope that these three cases are the only possibilities, because if they
were we could then think of the strong duality theorem holding globally. That is,
even if, say, the primal is unbounded, the fact that then the dual is infeasible is like
saying that the primal and dual have a zero duality gap sitting out at +occ. Similarly,
an infeasible primal together with an unbounded dual could be viewed as a pair in
which the gap is zero and sits at —oo.

But it turns out that there is a fourth possibility that sometimes occurs—it can
happen that both the primal and the dual problems are infeasible. For example,
consider the following problem:

maximize 2r; — o

subjectto x; —xo < 1
—r1 + T < =2
T, T2 > 0.

It is easy to see that both this problem and its dual are infeasible. For these problems,
one can think of there being a huge duality gap extending from —oo to +o0.

Duality theory is often useful in that it provides a certificate of optimality. For
example, suppose that you were asked to solve a really huge and difficult linear
program. After spending weeks or months at the computer, you are finally able
to get the simplex method to solve the problem, producing as it does an optimal
dual solution y* in addition to the optimal primal solution z*. Now, how are you
going to convince your boss that your solution is correct? Do you really want to ask
her to verify the correctness of your computer programs? The answer is probably
not. And in fact it is not necessary. All you need to do is supply the primal and
the dual solution, and she only has to check that the primal solution is feasible for
the primal problem (that’s easy), the dual solution is feasible for the dual problem
(that’s just as easy), and the primal and dual objective values agree (and that’s even
easier). Certificates of optimality have also been known to dramatically reduce the
amount of time certain underpaid professors have to devote to grading homework
assignments!

As we’ve seen, the simplex method applied to a primal problem actually solves
both the primal and the dual. Since the dual of the dual is the primal, applying
the simplex method to the dual also solves both the primal and the dual problem.
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Sometimes it is easier to apply the simplex method to the dual, for example, if the
dual has an obvious basic feasible solution but the primal does not. We take up this
topic in the next chapter.

5. Complementary Slackness

Sometimes it is necessary to recover an optimal dual solution when only an
optimal primal solution is known. The following theorem, known as the Comple-
mentary Slackness Theorem, can help in this regard.

THEOREM 5.3. Suppose that © = (1,22, . ..,Zy) is primal feasible and that
y = (Y1,Y2, - - -, Ym) is dual feasible. Let (w1, wa, ..., wy,) denote the correspond-
ing primal slack variables, and let (21, z2, . . ., 2 ) denote the corresponding dual

slack variables. Then x and y are optimal for their respective problems if and only if
rjzj = 0, forj=1,2,...,n,
(CN)) w;y; = 0, fori=1,2,...,m.

PROOF. We begin by revisiting the chain of inequalities used to prove the weak
duality theorem:

(5.8) g cjry < § (E yﬂij) Zj
j j i

:E E Qi T5 | Yi
i J

(5.9) < by

Recall that the first inequality arises from the fact that each term in the left-hand
sum is dominated by the corresponding term in the right-hand sum. Furthermore,
this domination is a consequence of the fact that each x; is nonnegative and

¢ < Z Yilij.
i

Hence, inequality (5.8) will be an equality if and only if, for every j = 1,2,...,n,
either x; = 0 or¢; = Zl Yia;j. But since

cj = E Yitij — Cj,
i

we see that the alternative to x; = 0 is simply that z; = 0. Of course, the state-
ment that at least one of these two numbers vanishes can be succinctly expressed by
saying that the product vanishes.

An analogous analysis of inequality (5.9) shows that it is an equality if and only
if (5.7) holds. This then completes the proof. (]

Suppose that we have a nondegenerate primal basic optimal solution

¥t = (z],x5,...,2))



64 5. DUALITY THEORY

and we wish to find a corresponding optimal solution for the dual. Let

w* = (wi,ws,...,w;)
denote the corresponding slack variables, which were probably given along with the
x;’s but if not can be easily obtained from their definition as slack variables:

* L __,*
w; =b; g aijT;.
J

The dual constraints are

(5.10) > wiaij—zi=c¢;,  j=12,...n,

where we have written the inequalities in equality form by introducing slack vari-
ables z;, j = 1,2,...,n. These constraints form n equations in m + n unknowns.
But the basic optimal solution (x*,w™) is a collection of n + m variables, many of
which are positive. In fact, since the primal solution is assumed to be nondegenerate,
it follows that the m basic variables will be strictly positive. The complementary
slackness theorem then tells us that the corresponding dual variables must vanish.
Hence, of the m + n variables in (5.10), we can set m of them to zero. We are then
left with just n equations in n unknowns, which we would expect to have a unique
solution that can be solved for. If there is a unique solution, all the components
should be nonnegative. If any are negative, this would stand in contradiction to the
assumed optimality of x*.

6. The Dual Simplex Method

In this section, we study what happens if we apply the simplex method to the
dual problem. As we saw in our discussion of the strong duality theorem, one can
actually apply the simplex method to the dual problem without ever writing down
the dual problem or its dictionaries. Instead, the so-called dual simplex method is
seen simply as a new way of picking the entering and leaving variables in a sequence
of primal dictionaries.

We begin with an example:

maximize —x; — X9
subjectto —2x1 — zy < 4
—2x1 + 41y < —8
—x1 + 3.172 S -7
z1, x2 > 0.
The dual of this problem is
minimize  4y; — 8ys — Ty3
subjectto —2y; — 2y2 — y3 > —1
—y1 +4y2 +3ys = —1
Yi, Y2, Y3 2 0.
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Introducing variables w;, ¢ = 1,2, 3, for the primal slacks and z;, j = 1,2, for the
dual slacks, we can write down the initial primal and dual dictionaries:

(P) (= — z1— T2
w1 = 4+ 2z + o9
we = —8 + 2x1 — 4xo
w3 =—7+ 1 — 3o

(D) —{= —4y1 +8y2 + Tys
z21=1—=2y1 —2y2 — y3
29 =1— y1 +4y2 + 3ys .
As before, we have recorded the negative of the dual objective function, since we
prefer to maximize the objective function appearing in a dictionary. More impor-
tantly, note that the dual dictionary is feasible, whereas the primal one is not. This
suggests that it would be sensible to apply the simplex method to the dual. Let us
do so, but as we go we keep track of the analogous pivots applied to the primal
dictionary. For example, the entering variable in the initial dual dictionary is yo,
and the leaving variable then is z;. Since ws is complementary to yo and x1 is
complementary to z, we will use ws and x; as the entering/leaving variables in the
primal dictionary. Of course, since ws is basic and x; is nonbasic, wo must be the
leaving variable and x; the entering variable—i.e., the reverse of what we have for
the complementary variables in the dual dictionary. The result of these pivots is
P) ¢ =—4— 0.5wy — 32
wy = 12 + wo + dxg
T = 4+ 05102 + QZQ
w3 = -3+ 05@02 — T2

(D) —§= 4-—12y; — 42+ 3ys
yo =0.5—  y1 —0.52z; — 0.5y3
Zo= 33— dy1— 21+ ys.
Continuing to work on the dual, we now see that ys is the entering variable and o

leaves. Hence, for the primal we use w3 and ws as the leaving and entering variable,
respectively. After pivoting, we have

P) (=—7— w3 —4xs
wyp = 18 + 2U)3 + 71‘2
Tr1 = 7+ U)3+3(E2
wo = 6+ 2wsg + 2o

(D) —f =7- 18y1 - 721 - 6y2
y3=1— 2y1 — 21 — 2y
2o =4 — Ty — 321 — 2ys .

Now we notice that both dictionaries are optimal.
Of course, in each of the above dictionaries, the table of numbers in each dual
dictionary is the negative-transpose of the corresponding primal table. Therefore,
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we never need to write the dual dictionary; the dual simplex method can be entirely
described in terms of the primal dictionaries. Indeed, first we note that the dictionary
must be dual feasible. This means that all the coefficients of the nonbasic variables
in the primal objective function must be nonpositive. Given this, we proceed as
follows. First we select the leaving variable by picking that basic variable whose
constant term in the dictionary is the most negative (if there are none, then the
current dictionary is optimal). Then we pick the entering variable by scanning across
this row of the dictionary and comparing ratios of the coefficients in this row to the
corresponding coefficients in the objective row, looking for the largest negated ratio
just as we did in the primal simplex method. Once the entering and leaving variable
are identified, we pivot to the next dictionary and continue from there. The reader is
encouraged to trace the pivots in the above example, paying particular attention to
how one determines the entering and leaving variables by looking only at the primal
dictionary.

7. A Dual-Based Phase I Algorithm

The dual simplex method described in the previous section provides us with a
new Phase I algorithm, which if nothing else is at least more elegant than the one
we gave in Chapter 2. Let us illustrate it using an example:

maximize —x1 + 4x9

subjectto —2x7 — zy < 4
—2x1 + 429 < =8
-1 + 31‘2 S -7

Ty, T2 Z 0.

The primal dictionary for this problem is

P) (= — z1+4x
w; = 442x+ 2
w2:78+2x174x2
’(U3:—7+ 1'1—3.1‘2,

and even though at this point we realize that we don’t need to look at the dual
dictionary, let’s track it anyway:

D) —§=  — 4y +8ys + Tys
z1= 1—-2y1 —2y2 — y3
2o = —4 — y1 +4ys + 3ys .
Clearly, neither the primal nor the dual dictionary is feasible. But by changing the
primal objective function, we can easily produce a dual feasible dictionary. For
example, let us temporarily change the primal objective function to

= —%1 — X2.

Then the corresponding initial dual dictionary is feasible. In fact, it coincides with
the dual dictionary we considered in the previous section, so we already know the
optimal solution for this modified problem. The optimal primal dictionary is
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77:*7* w374x2
w1 = 18 + 2ws + Txo
T = T4+ w3+ e
we = 6+ 2wz + 2x5 .

This primal dictionary is optimal for the modified problem but not for the original
problem. However, it is feasible for the original problem, and we can now simply
reinstate the intended objective function and continue with Phase II. Indeed,

C = - + 41‘2
= *(74’ ws + 3%2) + 4o

= —7— w3 + 2.
Hence, the starting dictionary for Phase II is

(=—-T— w3+ x
wyp = 18 + 2ws + Txo
Tr1 = 7+ w3+3x2
Wy = 6+2U)3+2.’E2

The entering variable is x5. Looking for a leaving variable, we discover that this
problem is unbounded. Of course, more typically one would expect to have to do
several iterations of Phase II to find the optimal solution (or show unboundedness).
Here we just got lucky that the game ended so soon.

It is interesting to note how we detect infeasibility with this new Phase I algo-
rithm. The modified problem is guaranteed always to be dual feasible. It is easy to
see that the primal problem is infeasible if and only if the modified problem is dual
unbounded (which the dual simplex method will detect just as the primal simplex
method detects primal unboundedness).

The two-phase algorithm we have just presented can be thought of as a dual-
primal algorithm, since we first apply the dual simplex method to a modified dual
feasible problem and then finish off by applying the primal simplex method to the
original problem, starting from the feasible dictionary produced by Phase I. One
could consider turning this around and doing a primal-dual two-phase algorithm.
Here, the right-hand side of the primal problem would be modified to produce an
obvious primal feasible solution. The primal simplex method would then be applied.
The optimal solution to this primal problem will then be feasible for the original
dual problem but will not be optimal for it. But then the dual simplex method can
be applied, starting with this dual feasible basis until an optimal solution for the dual
problem is obtained.

8. The Dual of a Problem in General Form

In Chapter 1, we saw that linear programming problems can be formulated in
a variety of ways. In this section, we derive the form of the dual when the primal
problem is not necessarily presented in standard form.
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First, let us consider the case where the linear constraints are equalities (and the
variables are nonnegative):

n
maximize chxj
j=1
(5.11) ] n _
subject to Zaijxj:bi 1=1,2,....m
j=1

z; >0 7=1,2,...,n.

As we mentioned in Chapter 1, this problem can be reformulated with inequality
constraints by simply writing each equality as two inequalities: one greater-than-or-
equal-to and one less-than-or-equal-to:

n

maximize E Cix;
j=1

n
subject to Zaijxjg b; i=1,2,....m
j=1

n
Zaijszbi i:1,2,...,m
j=1

;>0 7=12,...,n.

Then negating each greater-than-or-equal-to constraint, we can put the problem into
standard form:

n

maximize g Cjx;

Jj=1
n
subject to Zaija:jg b; 1=1,2,...,m
Jj=1
n
Z —a;2; < —b; i=1,2,...,m
Jj=1

z; >0 ji=1,2,...,n.

Now that the problem is in standard form, we can write down its dual. Since there
are two sets of m inequality constraints, we need two sets of m dual variables.
Let’s denote the dual variables associated with the first set of m constraints by yl+ ,
¢t = 1,2,...,m, and the remaining dual variables by vy, , ¢ = 1,2,...,m. With
these notations, the dual problem is

m

m
minimize Z biy — Z biy;
i=1 i=1

m m

subject to Zy?_aijfzyi_aijzcj j=12....n
i=1 i=1

vy >0 i=1,2,...,m.
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Primal Dual

Equality constraint Free variable
Inequality constraint | Nonnegative variable

Free variable Equality constraint
Nonnegative variable | Inequality constraint

TABLE 5.1. Rules for forming the dual.

A moment’s reflection reveals that we can simplify this problem. If we put
ylzyj—y;7 i:1727...7m,

the dual problem reduces to

m
minimize E biy;
i=1

m
subject to Zyiaij >cj j=12,...,n.
i=1

This problem is the dual associated with (5.11). Note what has changed from when
we were considering problems in standard form: now the dual variables are not
restricted to be nonnegative. And that is the message: equality constraints in the
primal yield unconstrained variables (also referred to as free variables) in the dual,
whereas inequality constraints in the primal yield nonnegative variables in the dual.
Employing the symmetry between the primal and the dual, we can say more: free
variables in the primal yield equality constraints in the dual, whereas nonnegative
variables in the primal yield inequality constraints in the dual. These rules are
summarized in Table 5.1.

9. Resource Allocation Problems

Let us return to the production facility problem studied in Chapter 1. Recall
that this problem involves a production facility that can take a variety of raw ma-
terials (enumerated ¢ = 1,2,...,m) and turn them into a variety of final products
(enumerated j = 1,2, ...,n). We assume as before that the current market value of
a unit of the ¢th raw material is p;, that the current market price for a unit of the jth
product is o, that producing one unit of product j requires a;; units of raw material
i, and that at the current moment in time the facility has on hand b; units of the ith
raw material.

The current market values/prices are, by definition, related to each other by the
formulas

Uj:Zpiaij, j:l,Q,...,n.
i

These equations hold whenever the market is in equilibrium. (Of course, it is
crucial to assume here that the collection of “raw materials” appearing on the right-
hand side is exhaustive, including such items as depreciation of fixed assets and
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physical labor.) In the real world, the market is always essentially in equilibrium.
Nonetheless, it continually experiences small perturbations that ripple through it and
move the equilibrium to new levels.

These perturbations can be from several causes, an important one being inno-
vation. One possible innovation is to improve the production process. This means
that the values of some of the a;;’s are reduced. Now, suddenly there is a windfall
profit for each unit of product j produced. This windfall profit is given by

(512) Cj =05 — Zplaw

Of course, eventually most producers of these products will take advantage of the
same innovation, and once the suppliers get wind of the profits being made, they
will get in on the action by raising the price of the raw materials.! Nonetheless,
there is always a time lag; it is during this time that fortunes are made.

To be concrete, let us assume that the time lag is about 1 month (depending on
the industry, this lag time could be considered too short or too long). Suppose also
that the production manager decides to produce x; units of product j and that all
units produced are sold immediately at their market value. Then the total revenue
during this month will be }_; ojx;. The value of the raw materials on hand at the
beginning of the month was ) . p;b;. Also, if we denote the new price levels for the
raw materials at the end of the month by w;, i = 1,2, ..., m, then the value of any
remaining inventory at the end of the month is given by

E w; bi— E Qi
i J

(if any term is negative, then it represents the cost of purchasing additional raw mate-
rials to meet the month’s production requirements—we assume that these additional
purchases are made at the new, higher, end-of-month price). The total windfall, call
it , (over all products) for this month can now be written as

(513) W:Z(le'j+zwi bi—Zaijxj 72/)1()1
7 % 7 i

Our aim is to choose production levels z;, j = 1,2,...,n, that maximize this
windfall. But our supplier’s aim is to choose prices w;, 7 = 1,2,...,m, so as to
minimize our windfall. Before studying these optimizations, let us first rewrite the
windfall in a more convenient form. As in Chapter 1, let y; denote the increase in
the price of raw material . That is,

(5.14) w; = pi + Yi-

10ne could take the prices of raw materials as fixed and argue that the value of the final products
will fall. It doesn’t really matter which view one adopts, since prices are relative anyway. The point is
simply that the difference between the price of the raw materials and the price of the final products must
narrow due to this innovation.
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Substituting (5.14) into (5.13) and then simplifying notations using (5.12), we see
that

(5.15) =Y i+ Y yi [ bi— Y i,
J i J

To emphasize that 7 depends on each of the x;’s and on the y;’s, we sometimes
write it as 7(T1, . - ., Tny Y1y« -« s Ym)-

Now let us return to the competing optimizations. Given z; for j = 1,2,...,n,
the suppliers react to minimize 7 (x1,...,%n,Y1,--.,Ym). Looking at (5.15), we
see that for any resource ¢ in short supply, that is,

bi — Zaijxj < 0,
J

the suppliers will jack up the price immensely (i.e., y; = oc0). To avoid this obvi-
ously bad situation, the production manager will be sure to set the production levels
so that

Zaijxjgb,-, i:1,2,...,m.
J
On the other hand, for any resource ¢ that is not exhausted during the windfall month,
that is,
b; — Z QijTi > 0,
J

the suppliers will have no incentive to change the prevailing market price (i.e.,
y; =0). Therefore, from the production manager’s point of view, the problem re-
duces to one of maximizing
D g
J

subject to the constraints that
Zaijxjgbi, 2'21,2,...,7717
J

; >0,  j=12...,n

This is just our usual primal linear programming problem. This is the problem that
the production manager needs to solve in anticipation of adversarial suppliers.

Now let us look at the problem from the suppliers’ point of view. Rearranging
the terms in (5.15) by writing

(5.16) = Z (Cj - Z]ﬁ%j) T + Zyibi»
J i i

we see that if the suppliers set prices in such a manner that a windfall remains on
the jth product even after the price adjustment, that is,

¢ — Zyz’aij >0,
i
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then the production manager would be able to generate for the facility an arbitrarily
large windfall by producing a huge amount of the jth product (i.e., z; = 00). We
assume that this is unacceptable to the suppliers, and so they will determine their
price increases so that

ZyiaijZCj, i=12...,n.
A

Also, if the suppliers set the price increases too high so that the production facility
will lose money by producing product j, that is,

Cj — Zyiaij < O,
7

then the production manager would simply decide not to engage in that activity.
That is, she would set z; = 0. Hence, the first term in (5.16) will always be zero,
and so the optimization problem faced by the suppliers is to minimize

Z biyi
i
subject to the constraints that
Zyiaijzcj7 j:1727"'7na
i

Yy >0, i=12...,m.

This is precisely the dual of the production manager’s problem!

As we’ve seen earlier with the strong duality theorem, if the production man-
ager’s problem has an optimal solution, then so does the suppliers’ problem, and
the two objectives agree. This means than an equilibrium can be reestablished by
setting the production levels and the price hikes according to the optimal solutions
to these two linear programming problems.

10. Lagrangian Duality

The analysis of the preceding section is an example of a general technique that
forms the foundation of a subject called Lagrangian duality, which we shall briefly
describe.

Let us start by summarizing what we did. It was quite simple. The analysis
revolved around a function

(@1, T Y1y Ym) = chxj - Zzyiaiﬂj + Zyibi~
j i i

To streamline notations, let x stand for the entire collection of variables x1, xo,
..., &, and let y stand for the collection of y;’s so that we can write 7(z,y) in
place of m(x1,. .., Zn, Y1, -, Ym). Written with these notations, we showed in the
previous section that

max ggﬁ(x,y) = min max 7(z, y).
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We also showed that the inner optimization could in both cases be solved explicitly,
that the max—min problem reduced to a linear programming problem, and that the
min—max problem reduced to the dual linear programming problem.

One could imagine trying to carry out the same program for functions 7 that
don’t necessarily have the form shown above. In the general case, one needs to
consider each step carefully. The max—min problem is called the primal problem,
and the min—max problem is called the dual problem. However, it may or may not
be true that these two problems have the same optimal objective values. In fact, the
subject is interesting because one can indeed state specific, verifyable conditions
for which the two problems do agree. Also, one would like to be able to solve the
inner optimizations explicitly so that the primal problem can be stated as a pure
maximization problem and the dual can be stated as a pure minimization problem.
This, too, is often doable. There are various ways in which one can extend the
notions of duality beyond the context of linear programming. The one just described
is referred to as Lagrangian duality. It is perhaps the most important such extension.

Exercises
In solving the following problems, the advanced pivot tool can be used to check
your arithmetic:
www.princeton.edu/~rvdb/JAVA/pivot/advanced.html
5.1 What is the dual of the following linear programming problem:

maximize x1 — 2%

subjectto  x1 + 229 — 3+ x4 > 0
41’1 + 3LL‘2 + 4IC3 — 211]4 < 3
—x1— X9 + 223+ x4 = 1

T2, X3 Z 0.

5.2 Illustrate Theorem 5.2 on the problem in Exercise 2.9.
5.3 Illustrate Theorem 5.2 on the problem in Exercise 2.1.
5.4 Tllustrate Theorem 5.2 on the problem in Exercise 2.2.

5.5 Consider the following linear programming problem:

maximize 2x1 + 8ro — T3 — 214
subjectto 2z + 3o +6xy < 6
—2x1 + 4x9 + 323 <15
3x1 + 2209 — 2w3 —4xy < 4
Z1, T2, T3, T4 > 0.
Suppose that, in solving this problem, you have arrived at the following
dictionary:
¢=3.5—0.25w; + 6.2529 — 0.5ws — 1.524
xr1 = 3.0 — 0511)1 — 1.5$2 — 30.1‘4

wy = 0.0 + 1.25w; — 3.2525 — 1.5w3 + 13.524
r3 = 2.5 — 0.75w; — 1.2529 4+ 0.5bwg — 6.5xy4 .


http://www.princeton.edu/~rvdb/JAVA/pivot/advanced.html
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5.6

5.7

5.8

5.9

5.10

5.11

5.12

5. DUALITY THEORY

(a) Write down the dual problem.

(b) In the dictionary shown above, which variables are basic? Which are
nonbasic?

(c) Write down the primal solution corresponding to the given dictio-
nary. Is it feasible? Is it degenerate?

(d) Write down the corresponding dual dictionary.

(e) Write down the dual solution. Is it feasible?

(f) Do the primal/dual solutions you wrote above satisfy the comple-
mentary slackness property?

(g) Is the current primal solution optimal?

(h) For the next (primal) pivot, which variable will enter if the largest
coefficient rule is used? Which will leave? Will the pivot be degen-
erate?

Solve the following linear program:

maximize —x; — 2T9

subjectto —2x7 + 7Tzo < 6
—3([51 + Z9 S -1
91 —4dxs < 6
Tr1 — T2 < 1
7.231 — 31‘2 S 6
75261 + 2.172 S -3
Ty, T2 Z 0.

Solve the linear program given in Exercise 2.3 using the dual-primal two-
phase algorithm.

Solve the linear program given in Exercise 2.4 using the dual-primal two-
phase algorithm.

Solve the linear program given in Exercise 2.6 using the dual-primal two-
phase algorithm.

Using today’s date (MMY'Y) for the seed value, solve 10 problems using
the dual phase I primal phase II simplex method:

www.princeton.edu/~rvdb/JAVA/pivot/dp2phase.html

Using today’s date (MMYY) for the seed value, solve 10 problems using
the primal phase I dual phase II simplex method:

www.princeton.edu/~rvdb/JAVA/pivot/pd2phase.html

For x and y in R, compute

o 4 m B
max min (—y) an min max (z—y)

and note whether or not they are equal.


http://www.princeton.edu/~rvdb/JAVA/pivot/dp2phase.html
http://www.princeton.edu/~rvdb/JAVA/pivot/pd2phase.html
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5.13 Consider the following process. Starting with a linear programming prob-
lem in standard form,

n
maximize g CjT;
j=1

subject to Zaijxj <b; 1=1,2,....m

first form its dual:
m
minimize Z by
i=1

m

subject to Zyiaij > cj j=12...,n
i=1

y; > 0 1 =1,2,...,m.

Then replace the minimization in the dual with a maximization to get a
new linear programming problem, which we can write in standard form
as follows:

m
maximize Z biyi
i=1
m
subject to Z —Yii; < —¢; j=12,....n
i=1
y;i >0 1=1,2,...,m.

If we identify a linear programming problem with its data, (a;;, b;,¢;),
the above process can be thought of as a transformation 7" on the space of
data defined by

(aij,biy ) = (=aji, —¢;,b;).

Let (*(aij;,b;,c;) denote the optimal objective function value of the
standard-form linear programming problem having data (a;j,b;,c;).
By strong duality together with the fact that a maximization dominates
a minimization, it follows that

C"(aij, bi, c5) < CF(—aji, —cj, by).

Now if we repeat this process, we get

(aij, b, c5)

NI I I
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and hence that

C*(aij, bi, cj)

VAN VAN VAN VA
~y Yy N

*(aijv bi7 Cj)'

But the first and the last entry in this chain of inequalities are equal. There-
fore, all these inequalities would seem to be equalities. While this out-
come could happen sometimes, it certainly isn’t always true. What is the
error in this logic? Can you state a (correct) nontrivial theorem that fol-
lows from this line of reasoning? Can you give an example where the four
inequalities are indeed all equalities?

Consider the following variant of the resource allocation problem:
n
maximize Z CjT;
j=1

(5.17 "
) subject to Zaijmj < b; i=1,2,...,m
j=1

OSJJJ‘SUJ‘ j:1,2,...,n.

As usual, the c¢;’s denote the unit prices for the products and the b;’s denote
the number of units on hand for each raw material. In this variant, the u;’s
denote upper bounds on the number of units of each product that can be
sold at the set price. Now, let’s assume that the raw materials have not
been purchased yet and it is part of the problem to determine the b;’s. Let
pi,t = 1,2,...,m denote the price for raw material :. The problem then
becomes an optimization over both the ;’s and the b;’s:

n m
maximize E cjTj — E pib;
j=1 i=1

n
subject to Z a;;r; —b; <0 )
j=1

I
-
N

0<z; <uy 7=12,...,n
b; >0 1=1,2

(a) Show that this problem always has an optimal solution.

(b) Let yf(b), i = 1,2,...,m, denote optimal dual variables for the
original resource allocation problem (5.17). Note that we’ve explic-
itly indicated that these dual variables depend on the b’s. Also, we
assume that problem (5.17) is both primal and dual non-degenerate
so the y; (D) is uniquely defined. Show that the optimal value of the
bi’s, call them b;’s, satisfy

yi () = pi-
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Hint: You will need to use the fact that, for resource allocation prob-
lems, we have a;; > 0 for all i, and all j.

5.15 Consider the following linear program:

n

maximize E DPjx;

j=1
n
subject to quxj <p
j=1
z; <1 j=12...,n
z;>0 i=12...,n.

Here, the numbers p;, j = 1,2,...,n are positive and sum to one. The
same is true of the ¢;’s:

J=1
q; > 0
Furthermore, assume that
PL_P2_  _Pn
q1 q2 dn

and that the parameter § is a small positive number. Let & = min{j :
¢j+1+ -+ aqn < B}. Let yo denote the dual variable associated with the
constraint involving /3, and let y; denote the dual variable associated with
the upper bound of 1 on variable x;. Using duality theory, show that the
optimal values of the primal and dual variables are given by

0 i<k
z; = ﬁ_Qk'+(11;"'_Qn i=k
1 1>k
Dk -
q;l: J=0
0 0<j<k

Yj = _
%(%—%@ i>k
See Exercise 1.3 for the motivation for this problem.

5.16 Diet Problem. An MIT graduate student was trying to make ends meet on
a very small stipend. He went to the library and looked up the
National Research Council’s publication entitled “Recommended Dietary
Allowances” and was able to determine a minimum daily intake quantity
of each essential nutrient for a male in his weight and age category. Let m
denote the number of nutrients that he identified as important to his diet,
and let b; for¢ = 1,2,...,m denote his personal minimum daily require-
ments. Next, he made a list of his favorite foods (which, except for pizza
and due mostly to laziness and ineptitude in the kitchen, consisted almost
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entirely of frozen prepared meals). He then went to the local grocery store
and made a list of the unit price for each of his favorite foods. Let us de-
note these prices as ¢; for j = 1,2,...,n. In addition to prices, he also
looked at the labels and collected information about how much of the crit-
ical nutrients are contained in one serving of each food. Let us denote by
a;; the amount of nutrient 7 contained in food j. (Fortunately, he was able
to call his favorite pizza delivery service and get similar information from
them.) In terms of this information, he formulated the following linear
programming problem:

n
minimize E Cjx;
J=1
n
subject to E a;;Ti > by i=1,2,....m
j=1

z; >0 ji=1,2,...,n

Formulate the dual to this linear program. Can you introduce another
person into the above story whose problem would naturally be to solve
the dual?

Saddle points. A function h(y) defined for y € R is called strongly convex
if

e h'(y) >0forally € R,

o lim, , o h'(y) = —o0, and

o lim,_, W' (y) = oo.
A function h is called strongly concave if —h is strongly convex. Let
7(z,y), be a function defined for (x,y) € R? and having the following
form

m(z,y) = f(z) — 2y + g(y),

where f is strongly concave and g is strongly convex. Using elementary
calculus
1. Show that there is one and only one point (*,y*) € R? at which the
gradient of T,

_— [ 87r/(9x}7

o /0y

vanishes. Hint: From the two equations obtained by setting the
derivatives to zero, derive two other relations having the form r =
¢(x) and y = Y(y). Then study the functions ¢ and 1) to show that
there is one and only one solution.

2. Show that

. e
Igggggﬁﬂ(m,y) =n(z",y") = ryfgﬁgrglgﬁm(w,y),
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where (2*, y*) denotes the “critical point” identified in Part 1 above.
(Note: Be sure to check the signs of the second derivatives for both
the inner and the outer optimizations.)
Associated with each strongly convex function / is another function, called
the Legendre transform of h and denoted by Ly, defined by

Ln(2) = max(zy —h(y)), z€R.

3. Using elementary calculus, show that L;, is strongly convex.
4. Show that

. B -
maxmin(z, y) = max(f () — Ly())

and that
3 = i L— - .
pin gy rey) = plalow) + Ly ()

5. Show that the Legendre transform of the Legendre transform of a
function is the function itself. That is,

Ly, (2) = h(2) forall z € R.

Hint: This can be proved from scratch but it is easier to use the result
of Part 2 above.

Notes

The idea behind the strong duality theorem can be traced back to conversations
between G.B. Dantzig and J. von Neumann in the fall of 1947, but an explicit state-
ment did not surface until the paper of Gale et al. (1951). The term primal problem
was coined by G.B. Dantzig’s father, T. Dantzig. The dual simplex method was first
proposed by Lemke (1954).

The solution to Exercise 5.13 (which is left to the reader to supply) suggests that
arandom linear programming problem is infeasible with probability 1/4, unbounded
with probability 1/4, and has an optimal solution with probability 1/2.



CHAPTER 6

The Simplex Method in Matrix Notation

So far, we have avoided using matrix notation to present linear programming
problems and the simplex method. In this chapter, we shall recast everything into
matrix notation. At the same time, we will emphasize the close relations between
the primal and the dual problems.

1. Matrix Notation

As usual, we begin our discussion with the standard-form linear programming
problem:

n

maximize g CjT;
j=1

n
subjectto Zaij(ﬂjé bz 1= 1,2,...,m
j=1

z; >0 ji=1,2,...n

In the past, we have generally denoted slack variables by w;’s but have noted that
sometimes it is convenient just to string them onto the end of the list of original
variables. Such is the case now, and so we introduce slack variables as follows:

n
xn+i:bi_ E AT, i:1,2,...,m.
j=1

With these slack variables, we now write our problem in matrix form:

maximize ¢’z

subjectto Az =10

x>0,
where
a1 a2 ... A1n 1
a21 a2 ... a2n 1
(6.1 A= : : . ) ;
Am1 Am2 ... Gmn 1
R.J. Vanderbei, Linear Programming, International Series in Operations Research 81

& Management Science 196, DOI 10.1007/978-1-4614-7630-6_6,
© Springer Science+Business Media New York 2014
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C1 T
C2 €2
by
b :
(6.2) b= . , c=1|¢ |, and x= Tn
: 0 Tn+1
bm .
L 0 J L Tn4+m |

As we know, the simplex method is an iterative procedure in which each iter-
ation is characterized by specifying which m of the n 4+ m variables are basic. As
before, we denote by B the set of indices corresponding to the basic variables, and
we denote by N the remaining nonbasic indices.

In component notation, the ith component of Az can be broken up into a basic
part and a nonbasic part:

n+m

(6.3) D ayry =Y agw;+ Y ;.
j=1

JjEB JEN

We wish to introduce a notation for matrices that will allow us to break up the matrix
product Ax analogously. To this end, let B denote an m x m matrix whose columns
consist precisely of the m columns of A that are associated with the basic variables.
Similarly, let IV denote an m x n matrix whose columns are the n nonbasic columns
of A. Then we write A in a partitioned-matrix form as follows:

A=[B N]

Strictly speaking, the matrix on the right does not equal the A matrix. Instead, it
is the A matrix with its columns rearranged in such a manner that all the columns
associated with basic variables are listed first followed by the nonbasic columns.
Nonetheless, as long as we are consistent and rearrange the rows of x in the same
way, then no harm is done. Indeed, let us similarly rearrange the rows of = and write

x
=],
TN
Then the following separation of Ax into a sum of two terms is true and captures
the same separation into basic and nonbasic parts as we had in (6.3):

Ar=[B N] Bﬂ = Brg + N

By similarly partitioning ¢, we can write

T
T B B T T
cx= = cRT CNIN -
[ ] [W} BB T N



2. THE PRIMAL SIMPLEX METHOD 83

2. The Primal Simplex Method
A dictionary has the property that the basic variables are written as functions of
the nonbasic variables. In matrix notation, we see that the constraint equations
Ar =b
can be written as
Bxg+ Nxpn = 0.

The fact that the basic variables x5 can be written as a function of the nonbasic
variables x s is equivalent to the fact that the matrix B is invertible, and hence,

(6.4) zg =B 'b— B !Nz

(The fact that B is invertible means that its m column vectors are linearly indepen-
dent and therefore form a basis for R™—this is why the basic variables are called
basic, in case you were wondering.) Similarly, the objective function can be written
as

(6.5) ¢ =chap +chnrn
= cg (B_lb — B_le/\/) + C;"\}xN
=cgB 'b— (B'N)Tep — cN)TxN.

Combining (6.5) and (6.4), we see that we can write the dictionary associated
with basis B as

_ _ T
©6.6) ¢ chiib - ((531 IN) T ep —cn)” an
rg= B7'b— B "Nuzy.
Comparing against the component-form notation of Chapter 2 (see (2.6)), we make
the following identifications:

cEB b=
ev — (B7'N)es = [¢)]
B = [b)]
B7'N = [ay],

where the bracketed expressions on the right denote vectors and matrices with the
index ¢ running over B and the index j running over A/. The basic solution associ-
ated with dictionary (6.6) is obtained by setting x»r equal to zero:

xy =0,
(6.7) T =B""b.
As we saw in the last chapter, associated with each primal dictionary there is
a dual dictionary that is simply the negative-transpose of the primal. However, to
have the negative-transpose property, it is important to correctly associate comple-

mentary pairs of variables. So first we recall that, for the current discussion, we
have appended the primal slack variables to the end of the original variables:

(T1, ey Ty Wy e, W) — (T1, oo Ty Tt 1y -« s Tikn ) -
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Also recall that the dual slack variables are complementary to the original primal
variables and that the original dual variables are complementary to the primal slack
variables. Therefore, to maintain the desired complementarity condition between
like indices in the primal and the dual, we need to relabel the dual variables and
append them to the end of the dual slacks:

(215 oy Zns YLy oo o Ym) — (215 ey Zns Zntly - -+ Zntm)-

With this relabeling of the dual variables, the dual dictionary corresponding to
(6.6) is

—£= —cEB71b— (B71b)T 25

v =B 'N)Tcg —cn+ (B7IN)T 2.
The dual solution associated with this dictionary is obtained by setting 23 equal to
Zero:

zp =0,
(6.8) 2= (B7T'N)Tep —en.
Using (6.7) and (6.8) and introducing the shorthand
(6.9) ¢* = c5B™ ',

we see that we can write the primal dictionary succinctly as

(= =2 ay
(6.10) rp=1zj— B 'Nuy.

The associated dual dictionary then has a very symmetric appearance:

—{=—C"—(25)" 28
6.10) v = zi+ (B7IN) 2.
The (primal) simplex method can be described briefly as follows. The starting
assumptions are that we are given

(1) A partition of the n+ m indices into a collection 53 of m basic indices and
a collection NV of n nonbasic ones with the property that the basis matrix
B is invertible,

(2) An associated current primal solution x > 0 (and x}, = 0), and

(3) An associated current dual solution 2z, (with zz = 0)

such that the dictionary given by (6.10) represents the primal objective function and
the primal constraints. The simplex method then produces a sequence of steps to
“adjacent” bases such that the current value (* of the objective function ( increases
at each step (or, at least, would increase if the step size were positive), updating
x and z}, along the way. Two bases are said to be adjacent to each other if they
differ in only one index. That is, given a basis B, an adjacent basis is determined
by removing one basic index and replacing it with a nonbasic index. The index that
gets removed corresponds to the leaving variable, whereas the index that gets added
corresponds to the entering variable.

One step of the simplex method is called an iteration. We now elaborate further
on the details by describing one iteration as a sequence of specific steps.
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Step 1. Check for Optimality. If 23, > 0, stop. The current solution is optimal.
To see this, first note that the simplex method always maintains primal feasibility
and complementarity. Indeed, the primal solution is feasible, since x% > 0 and
xn = 0 and the dictionary embodies the primal constraints. Also, the fact that
x5 = 0 and 2z = 0 implies that the primal and dual solutions are complementary.
Hence, all that is required for optimality is dual feasibility. But by looking at the
associated dual dictionary (6.11), we see that the dual solution is feasible if and only
if 25, > 0.

Step 2. Select Entering Variable. Pick an index j € N for which z; < 0.
Variable x; is the entering variable.

Step 3. Compute Primal Step Direction Axpg. Having selected the entering
variable, it is our intention to let its value increase from zero. Hence, we let

F o
0
JjN = t - tej,
0] N\
: jth position
. 0 -

where we follow the common convention of letting e; denote the unit vector that
is zero in every component except for a one in the position associated with index j
(note that, because of our index rearrangement conventions, this is not generally the
Jth element of the vector). Then from (6.10), we have that

x5 = x5 — B~ Nte;.
Hence, we see that the step direction Az for the primal basic variables is given by
-1
Axp = B~ Ne;.

Step 4. Compute Primal Step Length. We wish to pick the largest ¢ > 0 for
which every component of 3 remains nonnegative. That is, we wish to pick the
largest ¢ for which

xg > tAzpg.
Since, for each i € B*, 7 > 0 and ¢t > 0, we can divide both sides of the above
inequality by these numbers and preserve the sense of the inequality. Therefore,
doing this division, we get the requirement that

1>Al‘i
t = oz’

K2

forall 7 € B.

We want to let ¢ be as large as possible, and so 1/t should be made as small as pos-
sible. The smallest possible value for 1/¢ that satisfies all the required inequalities
is obviously
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Hence, the largest ¢ for which all of the inequalities hold is given by

-1
A(L’i

t = | max .
i€eB  x}

As always, the correct convention for 0/0 is to set such ratios to zero. Also, if the
maximum is less than or equal to zero, we can stop here—the primal is unbounded.
Step 5. Select Leaving Variable. The leaving variable is chosen as any variable
x;, 1 € B, for which the maximum in the calculation of ¢ is obtained.
Step 6. Compute Dual Step Direction Azys. Essentially all that remains is to
explain how z}, changes. To see how, it is convenient to look at the dual dictionary.
Since in that dictionary z; is the entering variable, we see that

Azy = —(B7IN)Te;.
Step 7. Compute Dual Step Length. Since we know that z; is the leaving

variable in the dual dictionary, we see immediately that the step length for the dual
variables is

.
i

= TZ] .
Step 8. Update Current Primal and Dual Solutions. We now have everything
we need to update the data in the dictionary:

S

Tp 4t
xR i —tAzg
and
zi 4 s
Zh < Zn — SAzyr.
Step 9. Update Basis. Finally, we update the basis:
B+ B\ {i}U{j}.
We close this section with the important remark that the simplex method as
presented here, while it may look different from the component-form presentation
given in Chapter 2, is in fact mathematically identical to it. That is, given the same

set of pivoting rules and starting from the same primal dictionary, the two algorithms
will generate exactly the same sequence of dictionaries.

3. An Example

In case the reader is feeling at this point that there are too many letters and
not enough numbers, here is an example that illustrates the matrix approach to the
simplex method. The problem we wish to solve is

maximize 4x; + 3x2

subjectto x1 — 3 < 1
2$1— i) S 3

To S 5

> 0.

Ty, T2
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The matrix A is given by

1 -1 1
2 -1 1
0 1 1

(Note that some zeros have not been shown.) The initial sets of basic and nonbasic
indices are

B={3,4,5} and N ={1,2}.
Corresponding to these sets, we have the submatrices of A:

1 1 -1
B = 1 N=|2 -1
1 0 1
From (6.7) we see that the initial values of the basic variables are given by
1
zg=b=1| 3 |,
5

and from (6.8) the initial nonbasic dual variables are simply

. 4
ZN:—CN:|:3:|.

Since z3 > 0, the initial solution is primal feasible, and hence we can apply the
simplex method without needing any Phase I procedure.

3.1. First Iteration. Step I. Since z}, has some negative components, the
current solution is not optimal.

Step 2. Since zj = —4 and this is the most negative of the two nonbasic dual
variables, we see that the entering index is

j=1
Step 3.

Step 4.

. 120\ " .
= m —_, =, — =
*11°375

Step 5. Since the ratio that achieved the maximum in Step 4 was the first ratio
and this ratio corresponds to basis index 3, we see that

1=3.
Step 6.

aoe == ——[ 1 2 0] 0 [
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88
Step 7.
2 _
S = 7J = 74 =
AZJ‘ -1
Step 8.
1 1 0
] =1, xp= |3 |—-1]|2 =111,
) 0 5

- =[] 3]-[ 3]

Step 9. The new sets of basic and nonbasic indices are
B={1,4,5} and N ={3,2}.

Corresponding to these sets, we have the new basic and nonbasic submatrices of A,

1 [1 -1
B=|21 N=|0 —-1],
| 0 1 10 1
and the new basic primal variables and nonbasic dual variables:
. xl 1 ) - 2 4
= | x; [ =11 av=| o = 7 |-
Ty | 5 L 72

3.2. Second Iteration. Step I. Since zj, has some negative components, the

current solution is not optimal.

Step 2. Since z5 = —7, we see that the entering index is
j=2.
Step 3.
1 -1 0 1
Arg =B 'Nej= |2 1 0 -1 {1}: 1
0 1 0 1 1
Step 4.

-11 1)}
t=maxq—, -, - =1
1°1°5
Step 5. Since the ratio that achieved the maximum in Step 4 was the second

ratio and this ratio corresponds to basis index 4, we see that
1 =4.

Step 6.
Azy = —(B7'N)Te;
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Step 7.
z5 -7
= ——=—=1.
s AZJ‘ -1
Step 8.
1 -1 2
x5 =1, xg=111|-1 11 =101,
5 1 4

AL i i i e BT

Step 9. The new sets of basic and nonbasic indices are
B={1,2,5} and N ={3,4}.

Corresponding to these sets, we have the new basic and nonbasic submatrices of A,

1 -1 0 10
B=|2 -1 0 N=|01/|,
0 1 1 00
and the new basic primal variables and nonbasic dual variables:
rg=| x5 | =11 v A 7|
i 4 4

3.3. Third Iteration. Step I. Since z}, has some negative components, the
current solution is not optimal.

Step 2. Since z53 = —10, we see that the entering index is
j=3.
Step 3.
1 -1 01 '[10 . ~1
Arg=B"'Ne;j=|2 -1 0 01 {J: —2
0o 1 1 00 2

Step 4.

1 -2 23\ !
t=|maxq—,—,— =2
2714

Step 5. Since the ratio that achieved the maximum in Step 4 was the third ratio
and this ratio corresponds to basis index 5, we see that

1=5.
Step 6.
Azy = —(B7'N)Te;
—1
10 0 1 2 0 0 9
= “lorof| Lt L1 O1=1 1
0 0 1 1
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Step 7.
zi =10
— :5
s AZj —2
Step 8.
2 -1 4
x5 =2, zg=|1|—-2] =2 =151,
4 2 0
* . -10 -2 0
s I B R

Step 9. The new sets of basic and nonbasic indices are
B=1{1,2,3} and N = {5,4}.

Corresponding to these sets, we have the new basic and nonbasic submatrices of A,

1 -1 1 00
B=]2 -1 0 N=]01],
0 1 0 10
and the new basic primal variables and nonbasic dual variables:
| o . _[=]_[>
Tg=| x5 | = | 5 = o2 =g |
z 2 4

3.4. Fourth Iteration. Step /. Since z}, has all nonnegative components, the
current solution is optimal. The optimal objective function value is

¢* = 4at +3z5 = 31.

It is undoubtedly clear at this point that the matrix approach, as we have pre-
sented it, is quite a bit more tedious than the dictionary manipulations with which
we are quite familiar. The reason is that, with the dictionary approach, dictionary
entries get updated from one iteration to the next and the updating process is fairly
easy, whereas with the matrix approach, we continually compute everything from
scratch and therefore end up solving many systems of equations. In the next chapter,
we will deal with this issue and show that these systems of equations don’t really
have to be solved from scratch each time; instead, there is a certain updating that
can be done that is quite analogous to the updating of a dictionary. However, be-
fore we take up such practical considerations, let us finish our general discussion
of the simplex method by casting the dual simplex method into matrix notation and
discussing some related issues.

4. The Dual Simplex Method

In the presentation of the primal simplex method given in the previous section,
we tried to make the symmetry between the primal and the dual problems as evident
as possible. One advantage of this approach is that we can now easily write down
the dual simplex method. Instead of assuming that the primal dictionary is feasible
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(zj > 0), we now assume that the dual dictionary is feasible (z3, > 0) and perform
the analogous steps:

Step 1. Check for Optimality. If x; > 0, stop. The current solution is optimal.
Note that for the dual simplex method, dual feasibility and complementarity are
maintained from the beginning, and the algorithm terminates once a primal feasible
solution is discovered.

Step 2. Select Entering Variable. Pick an index i € B for which 7 < 0.
Variable z; is the entering variable.

Step 3. Compute Dual Step Direction Azys. From the dual dictionary, we see
that

Azy = —(B7IN)Te;.

Step 4. Compute Dual Step Length. We wish to pick the largest s > 0 for which
every component of 2 remains nonnegative. As in the primal simplex method, this
computation involves computing the maximum of some ratios:

-1
AZ]'

§ = | max —; .
JEN Z5

If s is not positive, then stop here—the dual is unbounded (implying, of course, that
the primal is infeasible).

Step 5. Select Leaving Variable. The leaving variable is chosen as any variable
Zj, ] € N, for which the maximum in the calculation of s is obtained.

Step 6. Compute Primal Step Direction Axpg. To see how xj; changes in the
dual dictionary, it is convenient to look at the primal dictionary. Since in that dictio-
nary x; is the entering variable, we see that

Arp = B_lNej.

Step 7. Compute Primal Step Length. Since we know that x; is the leaving
variable in the primal dictionary, we see immediately that the step length for the

primal variables is
I
Step 8. Update Current Primal and Dual Solutions. We now have everything

we need to update the data in the dictionary:

T —
T — wp—tAzg.
and
— s
Zn 2y — SAzy
Step 9. Update Basis. Finally, we update the basis:
B« B\ {i} U{j}.

To further emphasize the similarities between the primal and the dual simplex
methods, Figure 6.1 shows the two algorithms side by side.
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Primal Simplex

Suppose z3 > 0
while (zx, 2 0) {
pickj € {j e N: 2} <0}
Azp = B™'Ne;
-1
Axl-
t= maX;en —
T
Az
pick i € argmax; Bﬂ

Az = —(B_lN)Te;
%

_AZ]'
xj <t
Th v — tAxp
Zi s
2 2 — sAzy
B« B\ {1} U{j}

S

Dual Simplex

Suppose zj, > 0

while (x5 2 0) {
picki € {i € B: zf <0}
Azy = —(B7IN)Te;

—1

AZJ‘
5= | maxjen —;
X
J
. . AZj
pick j € argmaxjeNZ—*
J
Arp = B_lNej
P
Aaci
zj <t
Th < xp — tAzp
]
Zhr < 2h — sAzy
B« B\ {i} U{j}

FIGURE 6.1. The primal and the dual simplex methods.

5. Two-Phase Methods

B={n+1,n+2,...,n+m}

Let us summarize the algorithm obtained by applying the dual simplex method
as a Phase I procedure followed by the primal simplex method as a Phase II. Initially,
we set

and N ={1,2,...,n}.

Then from (6.1) we see that A = [N B], where

a1 a2 ... Qaip 1
a1 aszo ... A2, 1
N = , B = ,
am1 Am2 .. Qmn 1
and from (6.2) we have
C1 0
Co 0
cn = and cg=| .

Cn 0
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Substituting these expressions into the definitions of z, z},, and ¢*, we find that
5 =B"'b=0
2y = (B7IN)Tep —en = ey
" =0.

Hence, the initial dictionary reads:

(= cyan
rg=b— Nxu.

If b has all nonnegative components and cas has all nonpositive components,
then this dictionary is optimal—the problem was trivial. Suppose, however, that one
of these two vectors (but not both) has components of the wrong sign. For exam-
ple, suppose that b is okay (all nonnegative components) but ¢y has some positive
components. Then this dictionary is primal feasible, and we can start immediately
with the primal simplex method. On the other hand, suppose that cys has all non-
positive components but b has some negative ones. Then the starting dictionary is
dual feasible, and we can commence immediately with the dual simplex algorithm.

The last, and most common, case is where both b and cx have components of
the wrong sign. In this case, we must employ a two-phase procedure. There are two
choices. We could temporarily replace cys with another vector that is nonpositive.
Then the modified problem is dual feasible, and so we can apply the dual simplex
method to find an optimal solution of this modified problem. After that, the original
objective function could be reinstated. With the original objective function, the
optimal solution from Phase I is most likely not optimal, but it is feasible, and
therefore the primal simplex method can be used to find the optimal solution to the
original problem.

The other choice would be to modify b instead of cys, thereby obtaining a primal
feasible solution to a modified problem. Then we would use the primal simplex
method on the modified problem to obtain its optimal solution, which will then be
dual feasible for the original problem, and so the dual simplex method can be used
to finish the problem.

6. Negative Transpose Property

In our discussion of duality in Chapter 5, we emphasized the symmetry be-
tween the primal problem and its dual. This symmetry can be easily summarized
by saying that the dual of a standard-form linear programming problem is the neg-
ative transpose of the primal problem. Now, in this chapter, the symmetry appears
to have been lost. For example, the basis matrix is an m X m matrix. Why m x m
and not n x n? It seems strange. In fact, if we had started with the dual problem,
added slack variables to it, and introduced a basis matrix on that side it would be an
n X n matrix. How are these two basis matrices related? It turns out that they are
not themselves related in any simple way, but the important matrix B~ N is still
the negative transpose of the analogous dual construct. The purpose of this section
is to make this connection clear.
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Consider a standard-form linear programming problem

maximize ¢’z

subjectto  Ax<b
x>0,
and its dual
minimize b7y
subjectto ATy > ¢
y > 0.
Let w be a vector containing the slack variables for the primal problem, let z be a
slack vector for the dual problem, and write both problems in equality form:

maximize ¢z

subjectto Ax+w=10
z,w > 0,
and
minimize b7y
subjectto ATy —z=¢
y,z > 0.
Introducing three new notations,

A=[AT], a[g], and f{z]

the primal problem can be rewritten succinctly as follows:
maximize &'z
subjectto Az =10
z>0.

Similarly, using “hats” for new notations on the dual side,

A=[-147], i;:m, and yz{ﬂ

the dual problem can be rewritten in this way:
minimize I;ng
subject to Aj=c
j>0.

Note that the matrix A = [ A I]is an m x (n+m) matrix. The first n columns
of it are the initial nonbasic variables and the last m columns are the initial basic
columns. After doing some simplex pivots, the basic and nonbasic columns get
jumbled up but we can still write the equality

[AI]l|=[N B]
with the understanding that the equality only holds after rearranging the columns
appropriately.
On the dual side, the matrix A = [ —1 AT ]is an n x (n+ m) matrix. The first
n columns of it are the initial basic variables (for the dual problem) and the last m
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columns are the initial nonbasic columns. If the same set of pivots that were applied
to the primal problem are also applied to the dual, then the columns get rearranged
in exactly the same way as they did for the primal and we can write

(-1 AT]=[B N]
again with the proviso that the columns of one matrix must be rearranged in a spe-
cific manner to bring it into exact equality with the other matrix.

Now, the primal dictionary involves the matrix B! N whereas the dual dictio-
nary involves the matrix B™IN. It probably doesn’t seem at all obvious that these
two matrices are negative transposes of each other. To see that it is so, consider
what happens when we multiply A by AT in both the permuted notation and the
unpermuted notation:

AAT:[Nzﬂ[BT] NBT + BNT
NT
and

AEZ[AQ[X]:_A+AZQ

These two expressions obviously must agree so we see that

NBT + BNT =o.
Putting the two terms on the opposite sides of the equality sign and multiplying on
the right by the inverse of BT and on the left by the inverse of B3, we get that

B*N:f@ﬂN),
which is the property we wished to establish.

Exercises

6.1 Consider the following linear programming problem:

maximize —6x7 + 32x2 — 93

subject to —2x;1 + 10z — 33 < —6
T — Tro +2x3 < 4
z1, T2, z3 = 0.
Suppose that, in solving this problem, you have arrived at the following
dictionary:
(= —18 — 3x4 + 229
xr3 = 2 — 1‘4+4I272J}5
T, = 21’4— $2+31'5.

(a) Which variables are basic? Which are nonbasic?

(b) Write down the vector, 2, of current primal basic solution values.
(c) Write down the vector, 2}, of current dual nonbasic solution values.
(d) Write down B~ N.

(e) Is the primal solution associated with this dictionary feasible?
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(f) Is it optimal?
(g) Isit degenerate?

6.2 Consider the following linear programming problem:

maximize xq1 + 2x9 + 4x3 + 8xy4 + 1615

subjectto  x1 + 2x5 + 3x3 +4x4 + Hxs < 2
Tx1 + Ddxo — 3x3 — 214 <0
X1, T2, Tz, Tgy, Tz = 0.

Consider the situation in which x3 and x5 are basic and all other variables
are nonbasic. Write down:

(@) B,

(b) N,

(©) b,

(d) cs,

e cns

() B7'N,

(9) x5 =B~'D,

(h) ¢* = cEB™'b,

(i) 2z} = (B7'N)Tep — cp,

(j) The dictionary corresponding to this basis.

6.3 Solve the problem in Exercise 2.1 using the matrix form of the primal
simplex method.

6.4 Solve the problem in Exercise 2.4 using the matrix form of the dual sim-
plex method.

6.5 Solve the problem in Exercise 2.3 using the two-phase approach in matrix
form.

6.6 Find the dual of the following linear program:

T

maximize c'z
subjectto a < Ax < b
I < <.

6.7 (a) Let A be a given m x n matrix, ¢ a given n-vector, and b a given
m-vector. Consider the following max-min problem:
(T T T

maxmin (¢ z —y Az +b .

>0 y>0 ( 4 + y)
By noting that the inner optimization can be carried out explicitly,
show that this problem can be reduced to a linear programming prob-
lem. Write it explicitly.

(b) What linear programming problem do you get if the min and max are
interchanged?
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Notes

In this chapter, we have accomplished two tasks: (1) we have expressed the
simplex method in matrix notation, and (2) we have reduced the information we
carry from iteration to iteration to simply the list of basic variables together with
current values of the primal basic variables and the dual nonbasic variables. In
particular, it is not necessary to calculate explicitly all the entries of the matrix
B7IN.

What’s in a name? There are times when one thing has two names. So far in
this book, we have discussed essentially only one algorithm: the simplex method
(assuming, of course, that specific pivot rules have been settled on). But this one
algorithm is sometimes referred to as the simplex method and at other times it is
referred to as the revised simplex method. The distinction being made with this new
name has nothing to do with the algorithm. Rather it refers to the specifics of an im-
plementation. Indeed, an implementation of the simplex method that avoids explicit
calculation of the matrix B~V is referred to as an implementation of the revised
simplex method. We shall see in Chapter 8 why it is beneficial to avoid computing
B7IN.



CHAPTER 7

Sensitivity and Parametric Analyses

In this chapter, we consider two related subjects. The first, called sensitiv-
ity analysis (or postoptimality analysis) addresses the following question: having
found an optimal solution to a given linear programming problem, how much can
we change the data and have the current partition into basic and nonbasic variables
remain optimal? The second subject addresses situations in which one wishes to
solve not just one linear program, but a whole family of problems parametrized by
a single real variable.

We shall study parametric analysis in a very specific context in which we wish
to find the optimal solution to a given linear programming problem by starting from
a problem whose solution is trivially known and then deforming this problem back
to the original problem, maintaining as we go optimality of the current solution.
The result of this deformation approach to solving a linear programming problem
is a new variant of the simplex method, which is called the parametric self-dual
simplex method. We will see in later chapters that this variant of the simplex method
resembles, in certain respects, the interior-point methods that we shall study.

1. Sensitivity Analysis

One often needs to solve not just one linear programming problem but several
closely related problems. There are many reasons that this need might arise. For
example, the data that define the problem may have been rather uncertain and one
may wish to consider various possible data scenarios. Or perhaps the data are known
accurately but change from day to day, and the problem must be resolved for each
new day. Whatever the reason, this situation is quite common. So one is led to
ask whether it is possible to exploit the knowledge of a previously obtained optimal
solution to obtain more quickly the optimal solution to the problem at hand. Of
course, the answer is often yes, and this is the subject of this section.

We shall treat a number of possible situations. All of them assume that a prob-
lem has been solved to optimality. This means that we have at our disposal the final,
optimal dictionary:

(= ¢ —zfan
TE=TH — B INzy.
Suppose we wish to change the objective coefficients from c to, say, ¢. It is natural to
ask how the dictionary at hand could be adjusted to become a valid dictionary for the
new problem. That is, we want to maintain the current classification of the variables
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into basic and nonbasic variables and simply adjust (*, z}, and x}; appropriately.
Recall from (6.7) to (6.9) that

rj = B,
Zir = (B7*N) ep — e,
¢t =cEB M.

Hence, the change from c to ¢ requires us to recompute zx, and ¢*, but x; remains
unchanged. Therefore, after recomputing z3- and ¢*, the new dictionary is still
primal feasible, and so there is no need for a Phase I procedure: we can jump straight
into the primal simplex method, and if ¢ is not too different from ¢, we can expect
to get to the new optimal solution in a relatively small number of steps.

Now suppose that instead of changing ¢, we wish to change only the right-hand
side b. In this case, we see that we need to recompute xj and ¢*, but z}, remains
unchanged. Hence, the new dictionary will be dual feasible, and so we can apply
the dual simplex method to arrive at the new optimal solution fairly directly.

Therefore, changing just the objective function or just the right-hand side results
in a new dictionary having nice feasibility properties. What if we need/want to
change some (or all) entries in both the objective function and the right-hand side
and maybe even the constraint matrix too? In this case, everything changes: (*,
Zjr» . Even the entries in B and N change. Nonetheless, as long as the new
basis matrix B is nonsingular, we can make a new dictionary that preserves the old
classification into basic and nonbasic variables. The new dictionary will most likely
be neither primal feasible nor dual feasible, but if the changes in the data are fairly
small in magnitude, one would still expect that this starting dictionary will get us to
an optimal solution in fewer iterations than simply starting from scratch. While there
is no guarantee that any of these so-called warm-starts will end up in fewer iterations
to optimality, extensive empirical evidence indicates that this procedure often makes
a substantial improvement: sometimes the warm-started problems solve in as little
as 1 % of the time it takes to solve the original problem.

1.1. Ranging. Often one does not wish to solve a modification of the original
problem, but instead just wants to ask a hypothetical question:

If I were to change the objective function by increasing or de-
creasing one of the objective coefficients a small amount, how
much could I increase/decrease it without changing the optimal-
ity of my current basis?

To study this question, let us suppose that ¢ gets changed to ¢ + tAc, where t is a
real number and Ac is a given vector (which is often all zeros except for a one in a
single entry, but we don’t need to restrict the discussion to this case). It is easy to
see that 2}, gets incremented by

tAzp,

where

(7.1) Azy = (BN Acg — Acy.
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Hence, the current basis will remain dual feasible as long as
(7.2) Zy +tAzy > 0.

We’ve manipulated this type of inequality many times before, and so it should be
clear that, for ¢ > 0, this inequality will remain valid as long as

-1
AZj
t < | max — .
JEN zj*

Similar manipulations show that, for ¢ < 0, the lower bound is

-1
. AZj
t > | min — .
JEN ¥

J

Combining these two inequalities, we see that £ must lie in the interval

-1 -1
. A,Zj AZj
min —— <t < | max ——; .
JEN 25 JEN 25

Let us illustrate these calculations with an example. Consider the following
linear programming problem:

maximize 5xy + 4zo + 3x3

subjectto 2x1 +3x2 + 23 < 5
41+ o + 223 < 11
311 +4IQ + 21’3 § 8
Ir1, T2, I3 2 0

The optimal dictionary for this problem is given by

5213—33?2— T4 — Tp
r3= 14+ o+ 314 — 274
xrp = 2—21‘2—21‘4+ Te
5= 14 5x9+2x4 .

The optimal basis is B = {3, 1, 5}. Suppose we want to know how much the coef-
ficient of 5 on x; in the objective function can change without altering the optimality
of this basis. From the statement of the problem, we see that
c=[ 5 4 3 0 0o o]
Since we are interested in changes in the first coefficient, we put
Ae=[ 1 0 0o o o o],
We partition ¢ according to the final (optimal) basis. Hence, we have

0 0
Acg= 1|1 and Acy =10
0 0
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Next, we need to compute Az,s using (7.1). We could compute B~' NV from scratch,
but it is easier to extract it from the constraint coefficients in the final dictionary.
Indeed,

1 3 -2
-B7'N=| -2 -2 1
5 2 0
Hence, from (7.1) we see that
2
Azy = 2
-1

Now, (7.2) gives the condition on ¢. Writing it out componentwise, we get
3+2t >0, 142t>0, and 1—-¢>0.

These three inequalities, which must all hold, can be summarized by saying that
1
——<t<1
g St=

Hence, in terms of the coefficient on x;, we finally see that it can range from 4.5
to 6.

Now suppose we change b to b + tAb and ask how much ¢ can change before
the current basis becomes nonoptimal. In this case, z} does not change, but x3; gets
incremented by tAx g, where

Azp = B7'Ab.
Hence, the current basis will remain optimal as long as ¢ lies in the interval

. Al‘i -t AI, -t
min — <t < | max— .
i€B xF i€B T

3 7

2. Parametric Analysis and the Homotopy Method

In this section, we illustrate the notion of parametric analysis by applying a
technique called the homotopy method to get a new algorithm for solving linear
programming problems. The homotopy method is a general technique in which
one creates a continuous deformation that changes a given difficult problem into
a related but trivially solved problem and then attempts to work backwards from
the trivial problem to the difficult problem by solving (hopefully without too much
effort) all the problems in between. Of course, there is a continuum of problems
between the hard one and the trivial one, and so we shouldn’t expect that this tech-
nique will be effective in every situation; but for linear programming and for many
other problem domains, it turns out to yield efficient algorithms.
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We start with an example. Suppose we wish to solve the following linear pro-
gramming problem:

maximize —2x, + 3x9

subjectto —z; + x2 < —1
—x1 — 229 < =2
i) S 1
r1, 13 > 0.
The starting dictionary is
(= — 21 — (—3)x2
r3=—1+ x1 — )
Ty = —2+ xr1 + 2%2
Is = 1 - xg .

This dictionary is neither primal nor dual feasible. Let’s perturb it by adding a
positive real number £ to each right-hand side and subtracting it from each objective
function coefficient. We now arrive at a family of dictionaries, parametrized by p:

(= — @2+ p)z — (=3+pas
r3=—14pu+ 1 — To
(7.3) Ty=—-24+pn+ T+ 2z
r5= 14pu — Z2 .

Clearly, for p sufficiently large, specifically p« > 3, this dictionary is both primal
and dual feasible. Hence, the associated solution z = [0,0, —1 + g, =2 + p, 1 + y
is optimal. Starting with p large, we reduce it as much as we can while keeping
dictionary (7.3) optimal. This dictionary will become nonoptimal as soon as p < 3,
since the associated dual variable y5 = —3 + p will become negative. In other
words, the coefficient of x5, which is 3 — p, will become positive. This change of
sign on the coefficient of x5 suggests that we make a primal pivot in which x5 enters
the basis. The usual ratio test (using the specific value of p = 3) indicates that x3
must be the leaving variable. Making the pivot, we get

(=-3+4p—p* — (=1 +2p)x; — (3 — 3

ro=—-1+ p + Ty — T3
gy =—4+3u + 3xr1 — 2x3
T5 = 2 — xr1 + xs3.

This dictionary is optimal as long as
—1+2u >0, 3—pu >0,
“1+p=>0, —4+3p > 0.
These inequalities reduce to
4
- < u<3.
3 SHS

So now we can reduce p from its current value of 3 down to 4/3. If we reduce it
below 4/3, the primal feasibility inequality, —4 + 3 > 0, becomes violated. This
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violation suggests that we perform a dual pivot with x4 serving as the leaving vari-
able. The usual (dual) ratio test (with ;1 = 4/3) then tells us that 27 must be the
entering variable. Doing the pivot, we get

C==2+ip+p®— (-1 + 2wy — (T + Lp)as

XTo = % + %.’174 — %1’3
— 4 1 2
T1= 3~ U + 524+ 373
Ty = % + — %1‘4 + %xg
Now the conditions for optimality are
1 . 2 >0 7 n 1 >0
g gl=" 3T3h=n
4 >0 2 +u>0
3 K =U, 3 Iz )
which reduce to )
- < < —
2 =H=3

For the next iteration, we reduce p to 1/2 and see that the inequality that becomes
binding is the dual feasibility inequality
1 2
—=+-u>0.
3 T gh=
Hence, we do a primal pivot with x4 entering the basis. The leaving variable is x5,

and the new dictionary is

(=-1 —p* = (1= 2p)as — (2+ p)as
ry= 1+ p - 5
T = 2 — x5 + X3
Ty = 2+ 3u — 3zs + 3.
For this dictionary, the range of optimality is given by

14+p>0, 24+3u>0,

which reduces to

This range covers p = 0, and so now we can set x4 to 0 and get an optimal dictionary
for our original problem:

C:—l— LE5—21}3

Ty — 1-— Is
T = 2 — T5 + I3
Ty = 2—3r5+ x3.

The algorithm we have just illustrated is called the parametric self-dual simplex
method." We shall often refer to it more simply as the self-dual simplex method. It
has some attractive features. First, in contrast to the methods presented earlier, this

I the first edition, this method was called the primal—dual simplex method.
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algorithm does not require a separate Phase I procedure. It starts with any problem,
be it primal infeasible, dual infeasible, or both, and it systematically performs pivots
(whether primal or dual) until it finds an optimal solution.

A second feature is that a trivial modification of the algorithm can avoid en-
tirely ever encountering a degenerate dictionary. Indeed, suppose that, instead of
adding/subtracting p from each of the right-hand sides and objective coefficients,
we add/subtract a positive constant times p. Suppose further that the positive con-
stant is different in each addition/subtraction. In fact, suppose that they are chosen
independently from, say, a uniform distribution on [1/2, 3/2]. Then with probability
one, the algorithm will produce no primal degenerate or dual degenerate dictionary
in any iteration. In Chapter 3, we discussed perturbing the right-hand side of a linear
programming problem to avoid degeneracy in the primal simplex method, but back
then the perturbation changed the problem. The present perturbation does not in any
way affect the problem that is solved.

With the above randomization trick to resolve the degeneracy issue, the analy-
sis of the convergence of the algorithm is straightforward. Indeed, let us consider a
problem that is feasible and bounded (the questions regarding feasibility and bound-
edness are addressed in Exercise 7.10). For each nondegenerate pivot, the next value
of 1 will be strictly less than the current value. Since each of these p values is de-
termined by a partition of the variables into basics and nonbasics and there are only
a finite number of such partitions, it follows that the method must reach a partition
with a negative p value in a finite number of steps.

3. The Parametric Self-Dual Simplex Method

In the previous section, we illustrated on an example a new algorithm for solv-
ing linear programming problems, called the parametric self-dual simplex method.
In this section, we shall lay out the algorithm in matrix notation.

Our starting point is an initial dictionary as written in (6.10) and transcribed
here for convenience:

(= ¢ —2lan
TE=TH — B INzy,
where
zp=B""b
2= (BT'N) e —en
C* = cgay = cE B
Generally speaking, we don’t expect this dictionary to be either primal or dual fea-
sible. So we perturb it by adding essentially arbitrary perturbations Zp and Zxs to
x and 2z}, respectively:
(= ¢ = (2 + pan) Ty
zp = (¥ + pZ) — B~ Nay.
We assume that the perturbations are all strictly positive,

z >0 and zZn > 0,
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so that by taking p sufficiently large the perturbed dictionary will be optimal. (Ac-
tually, to guarantee optimality for large 1, we only need to perturb those primal and
dual variables that are negative in the initial dictionary.)

The parametric self-dual simplex method generates a sequence of dictionaries
having the same form as the initial one—except, of course, the basis 5 will change,
and hence all the data vectors (z};, Zx/, £, and Z) will change too. Additionally,
the current value of the objective function (* will, with the exception of the first
dictionary, depend on f.

One step of the self-dual simplex method can be described as follows. First, we
compute the smallest value of i for which the current dictionary is optimal. Letting
w* denote this value, we see that

p' =min{p : 2x + pZn > 0and i + pzp > 0}.

There is either a j € N for which z;i+p*z; = 0oran: € Bfor which z] +p*z; =
0 (if there are multiple choices, an arbitrary selection is made). If the blocking
constraint corresponds to a nonbasic index j € N, then we do one step of the
primal simplex method. If, on the other hand, it corresponds to a basic index i € B,
then we do one step of the dual simplex method.

Suppose, for definiteness, that the blocking constraint corresponds to an index
J € N. Then, to do a primal pivot, we declare x; to be the entering variable, and
we compute the step direction for the primal basic variables as the jth column of
the dictionary. That is,

Az = BN €j.

Using this step direction, we find an index ¢ € B that achieves the maximal value of
Awx;/(xf + p*T;). Variable z; is the leaving variable. After figuring out the leaving
variable, the step direction vector for the dual nonbasic variables is just the negative
of the ¢th row of the dictionary

Azy = —(B7IN)Te;.

After computing the primal and dual step directions, it is easy to see that the step
length adjustments are given by

Z; — fi
t= , t= ,
ALL‘i ALL’Z‘
* —
R
= s = .
AZJ‘ AZj

And from these, it is easy to write down the new solution vectors:

* — n * — —
Tyt Tyt oz 8, %48,

xp — v — tAzg, Ip — T —tAxg,
Zh 4 Za — SAzyr, IN & ZN — 5Azp.

Finally, the basis is updated by adding the entering variable and removing the leav-
ing variable

B+ B\ {i} U{j}.
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4 *
Compute 4* = max | max ——, max ——-
JEN  Z; i€B Xy

z;>0 ;>0

While (u* > 0) {

If max is achieved by

jeN: 1€ B:

Azp = B_lNej Azy = —(B7IN)Te;

ick i & ick j € argmax &
pick ¢ € argmaxiegx? TRy pick 7 g jeNz; + uz
AZNZ*(BilN)Tei A(EBZB_lNGj
; x; 7 Z

o A:gi Az

_4

Az; Az

et Tt

zf s Zi 5

TR Tl — tAzg T +— T — tAzg
Zx & 2 — sAzn IN & ZN — SAzn

B« B\{i}u{j}
Recompute p* as above

FIGURE 7.1. The parametric self-dual simplex method.

The algorithm is summarized in Figure 7.1.

Exercises

In solving the following problems, the advanced pivot tool can be used to check
your arithmetic:

www.princeton.edu/~rvdb/JAVA/pivot/advanced.html
7.1 The final dictionary for

maximize x1 + 2x9 + T3+ T4

subjectto 2x1 + o +bxrs+ x4 < 8
2:61 + 2.172 + 4$4 S 12
3331 + Z9 + 2:]']3 § 18

>

T1, T2, T3, T4


http://www.princeton.edu/~rvdb/JAVA/pivot/advanced.html
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7.2

7.3

74

7.5

7.6

7.7
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(=124 — 1227 — 0.2x5 — 0.92¢ — 2.824
Ty = 6 — T — 0.5376 — 2.%‘4
z3= 04— 0227 — 0.225 + 0.1xg + 0.224
Ty = 11.2 — 161’1 + 04I5 + 031‘6 + 16174 .

(the last three variables are the slack variables).
(a) What will be an optimal solution to the problem if the objective func-
tion is changed to

3x1 + 220 + 13 + 147

(b) What will be an optimal solution to the problem if the objective func-
tion is changed to

Ty + 21’2 + 051’3 + £E4?

(c) What will be an optimal solution to the problem if the second con-
straint’s right-hand side is changed to 26?

For each of the objective coefficients in the problem in Exercise 7.1, find
the range of values for which the final dictionary will remain optimal.

Consider the following dictionary which arises in solving a problem using
the self-dual simplex method:

C=-3  —(-1+2was - (3 p)us
rTo=—14+ pu+ T — T3
Ty = —4 + S/L + 3£E1 — 2333
Ts = 2 —+ T + ZTs.

(a) For which values of p is the current dictionary optimal?
(b) For the next pivot in the self-dual simplex method, identify the enter-
ing and the leaving variable.

Solve the linear program given in Exercise 2.3 using the self-dual simplex
method. Hint: It is easier to use dictionary notation than matrix notation.

Solve the linear program given in Exercise 2.4 using the self-dual simplex
method. Hint: It is easier to use dictionary notation than matrix notation.

Solve the linear program given in Exercise 2.6 using the self-dual simplex
method. Hint: It is easier to use dictionary notation than matrix notation.

Using today’s date (MMY'Y) for the seed value, solve ten problems using
the self-dual simplex method:

www.princeton.edu/~rvdb/JAVA/pivot/pd1phase.html
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7.8 Use the self-dual simplex method to solve the following problem:

maximize 3T — o

subjectto 1 —xo < 1
—I1 + X9 S —4
1, x2 > 0.

7.9 Let P, denote the perturbed primal problem (with perturbation 1). Show
that if P, is infeasible, then P, is infeasible for every p/ < p. State and
prove an analogous result for the perturbed dual problem.

7.10 Using the notation of Figure 7.1 state precise conditions for detecting in-
feasibility and/or unboundedness in the self-dual simplex method.

7.11 Consider the following one parameter family of linear programming prob-
lems (parametrized by p):

max (4 —4p)xo — 221 — 2xe — 223 — 214

S.t. To— 1 <1
o — I3 < 2

o — I3 < 4

o — x4 <8

Zo, T1, T2, T3, T4 > 0

Starting from 1 = oo, use the parametric simplex method to decrease p
as far as possible. Don’t stop at 4 = 0. If you cannot get to yp = —o0,
explain why. Hint: the pivots are straight forward and, after the first cou-
ple, a clear pattern should emerge which will make the subsequent pivots
easy. Clearly indicate the range of p values for which each dictionary is
optimal.

Notes

Parametric analysis has its roots in Gass and Saaty (1955). G.B. Dantzig’s clas-
sic book (Dantzig 1963) describes the self-dual simplex method under the name of
the self-dual parametric simplex method. 1t is a special case of “Lemke’s algorithm”
for the linear complementarity problem (Lemke 1965) (see Exercise 18.7). Smale
(1983) and Borgwardt (1982) were first to realize that the parametric self-dual sim-
plex method is amenable to probabilistic analysis. For a more recent discussion
of homotopy methods and the parametric self-dual simplex method, see Nazareth
(1986, 1987).



CHAPTER 8

Implementation Issues

In the previous chapter, we rewrote the simplex method using matrix notation.
This is the first step toward our aim of describing the simplex method as one would
implement it as a computer program. In this chapter, we shall continue in this direc-
tion by addressing some important implementation issues.

The most time-consuming steps in the simplex method are the computations

Axp = B~ Ne; and Azy = —(B7IN)Te;,
and the difficulty in these steps arises from the B~!. Of course, we don’t ever

actually compute the inverse of the basis matrix. Instead, we calculate, say, Az by
solving the following system of equations:

8.1) BAzp = aj,

where
aj =N ej
is the column of N associated with nonbasic variable x ;.
Similarly, the calculation of Azys is also broken into two steps:

(8.2) BTy = ¢,
Azy = —NTo.

Here, the first step is the solution of a large system of equations, this time involving
BT instead of B, and the second step is the comparatively trivial task of multiplying
a vector on the left by the matrix —N7T.

Solving the systems of equations (8.1) and (8.2) is where most of the com-
plexity of a simplex iteration lies. We discuss solving such systems in the first two
sections. In the second section, we look at the effect of sparsity on these systems.
The next few sections explain how to reuse and/or update the computations of one
iteration in subsequent iterations. In the final sections, we address a few other issues
that affect the efficiency of an implementation.

1. Solving Systems of Equations: LU-Factorization
In this section, we discuss solving systems of equations of the form
Bx = b,
where B is an invertible m X m matrix and b is an arbitrary m-vector. (Analysis of

the transpose BTz = b is left to Exercise 8.4.) Our first thought is to use Gaussian
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elimination. This idea is correct, but to explain how Gaussian elimination is actually
implemented, we need to take a fresh look at how it works. To explain, let us
consider an example:

2 4 -2

3 1 1
B=|-1 -1 -2
-1 —6
1 4

(Note that, to emphasize the importance of sparsity, zero entries are simply left
blank.) In Gaussian elimination, one begins by subtracting appropriate multiples
of the first row from each subsequent row to get zeros in the first column below
the diagonal. For our specific example, we subtract 3/2 times the first row from
the second row and we subtract —1/2 times the first row from the third row. The
result is

2 4 -2
1-6 1 3

1 -3

-1 —6

1 4

Shortly, we will want to remember the values of the nonzero elements in the first
column. Therefore, let us agree to do the row operations that are required to elimi-
nate nonzeros, but when we write down the result of the elimination, we will leave
the nonzeros there. With this convention, the result of the elimination of the first
column can be written as

Note that we have drawn a line to separate the eliminated top/left parts of the matrix
from the uneliminated lower-right part.

Next, we eliminate the nonzeros below the second diagonal (there’s only one)
by subtracting an appropriate multiple of the second row from each subsequent row.
Again, we write the answer without zeroing out the eliminated elements:

2 4 -2
3 1-6 1 3
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After eliminating the third column, we get

2 4 -2
3 1-6 1 3
-1 1 -3

-1 -6/ 1-21
1 7

Now, the remaining uneliminated part is already an upper triangular matrix, and
hence no more elimination is required.

At this point, you are probably wondering how this strangely produced matrix
is related to the original matrix B. The answer is both simple and elegant. First, take
the final matrix and split it into three matrices: the matrix consisting of all elements
on or below the diagonal, the matrix consisting of just the diagonal elements, and
the matrix consisting of all elements on or above the diagonal. It is amazing but
true that B is simply the product of the resulting lower triangular matrix times the
inverse of the diagonal matrix times the upper triangular matrix:

—1

2 2 2 4 -2

3 1 1 1-6 1 3
B=|-1 1 1 1 -3
-1-6 1 1 1 -21

1 7 7 7

(If you don’t believe it, multiply them and see.) Normally, the product of the lower
triangular matrix and the diagonal matrix is denoted by L,

2 2 - 1
31 1 31
L=1|-1 1 1 = _% 1 ,
—-1-6 1 1 ~1-6 1
1 7 7 1 1

2 4 -2
1-6 1 3
U= 1 -3
1 -21
7
The resulting representation,
B=1LU,

is called an LU-factorization of B. Finding an LU -factorization is equivalent to
Gaussian elimination in the sense that multiplying B on the left by L' has the
effect of applying row operations to B to put it into upper-triangular form U.



114 8. IMPLEMENTATION ISSUES

The value of an LU-factorization is that it can be used to solve systems of
equations. For example, suppose that we wish to solve equation (8.1), where B is
as above and

7
-2
(8.3) aj = 0
3
0
First, we substitute LU for B so that the system becomes
LUAzp = aj;.

Now, if we let y = U Ax g, then we can solve
Ly=15b
for y, and once y is known, we can solve
UAxp =1y

for Axp. Because L is lower triangular, solving Ly = b is easy. Indeed, writing the
system out,

1 Y1 7

% 1 Yo -2
-3 1 Ys = 0 )

~1-6 1 m 3

1 1 Ys 0

we notice immediately that y; = 7. Then, given y;, it becomes clear from the
second equation that y, = —2 — (3/2)y; = —25/2. Continuing in this way, we find
that

7
U1 _25
2
Y2 7
Y3 = 2
23
Y4 =
Ys 7
2

The process of successively solving for the elements of the vector y starting with
the first and proceeding to the last is called forward substitution.

Of course, solving UAzp = y is easy too, since U is upper triangular. The
system to solve is given by

2 4 -2 Az 25
1-6 1 3 Az 72

1 -3 Al‘;), = 2

1 —21 Azy 23

7 Al‘5 2

|
[CIEN
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(note that, to keep notations simple, we are assuming that the basic indices are 1
through 5 so that Azp = (Ax1, Azg, Axs, Axy, Azs)). This time we start with
the last equation and see that Axs = —1/2. Then the second to last equation tells
us that Azy = 23/2 4+ 21(Axs) = 1. After working our way to the first equation,
we have

A.Tl -1
AJ?Q 0
Axg= | Azs | = 2
A$4 1
A:L'5 7%

This process of working from the last element of Axzp back to the first is called
backward substitution.

2. Exploiting Sparsity

In the previous section, we took a specific matrix B and constructed an LU
factorization of it. However, with that example we were lucky in that every diagonal
element was nonzero at the moment it was used to eliminate the nonzeros below
it. Had we encountered a zero diagonal element, we would have been forced to
rearrange the columns and/or the rows of the matrix to put a nonzero element in this
position. For a random matrix (whatever that means), the odds of encountering a
zero are nil, but a basis matrix can be expected to have plenty of zeros in it, since,
for example, it is likely to contain columns associated with slack variables, which
are all zero except for one 1. A matrix that contains zeros is called a sparse matrix.

When a sparse matrix has lots of zeros, two things happen. First, the chances of
being required to make row and/or column permutations is high. Second, additional
computational efficiency can be obtained by making further row and/or column per-
mutations with the aim of keeping L and/or U as sparse as possible.

The problem of finding the “best” permutation is, in itself, harder than the lin-
ear programming problem that we ultimately wish to solve. But there are simple
heuristics that help to preserve sparsity in L and U. We shall focus on just one
such heuristic, called the minimum-degree ordering heuristic, which is describe as
follows:

Before eliminating the nonzeros below a diagonal “pivot” el-
ement, scan all uneliminated rows and select the sparsest row,
i.e., that row having the fewest nonzeros in its uneliminated part
(ties can be broken arbitrarily). Swap this row with the pivot
row. Then scan the uneliminated nonzeros in this row and select
that one whose column has the fewest nonzeros in its unelim-
inated part. Swap this column with the pivot column so that
this nonzero becomes the pivot element. (Of course, provisions
should be made to reject such a pivot element if its value is close
to zero.)
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As a matter of terminology, the number of nonzeros in the uneliminated part of
a row/column is called the degree of the row/column. Hence, the name of the
heuristic.

Let’s apply the minimum-degree heuristic to the LU -factorization of the matrix
B studied in the previous section. To keep track of the row and column permuta-
tions, we will indicate original row indices on the left and original column indices
across the top. Hence, we start with:

1 2 3 4 5
1 2 4 -2
2 3 1 1
B= 3 -1 -1 —2
4 -1 —6
5 1 4

To begin, row 4 has the fewest nonzeros, and within row 4, the —1 in column 2
belongs to the column with the fewest nonzeros. Hence, we swap rows 1 and 4 and
we swap columns 1 and 2 to rewrite B as

2 1 3 4 5

4 -1 —6
2 1 3 1

B= 3 -1 -1 -2
1 2 4 —2
) 1 4

Now, we eliminate the nonzeros under the first diagonal element (and, as before, we
leave the eliminated nonzeros as they were). The result is

2 1 3 4 5

4 -1 —6
2 3 1 -6
3 -1 -1 -2
1 2 4 -2
) 1 4

Before doing the elimination associated with the second diagonal element, we
note that row 5 is the row with minimum degree, and within row 5, the element 1 in
column 3 has minimum column degree. Hence, we swap rows 2 and 5 and we swap
columns 1 and 3 to get

4 -1 —6
5 1 4
3 -1 -1 -2
1 4 2 -2
2 1 3 1 -6
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Now we eliminate the nonzeros under the second diagonal element to get

2 3 1 4 5
-1 —6

N = W O

For the third stage of elimination, note that row 3 is a minimum-degree row and
that, among the nonzero elements of that row, the —1 is in a minimum-degree col-
umn. Hence, for this stage no permutations are needed. The result of the elimination

18
2 3 1 4 5

4 -1 —6
5 1 4
3 -1 -1 2
1 4 2 —14
2 1 3 1

For the next stage of the elimination, both of the remaining two rows have the
same degree, and hence we don’t need to swap rows. But we do need to swap
columns 5 and 4 to put the —14 into the diagonal position. The result of the swap is

2 3 1 5 4

4 -1 —6
) 1 4
3 -1 -1 2
1 4  2|-14
2 1 3 1

At this point, we notice that the remaining 2 X 2 uneliminated part of the matrix
is already upper triangular (in fact, diagonal), and hence no more elimination is
needed.

With the elimination completed, we can extract the matrices L and U in the
usual way:

4 [ -1 ~1
5 1 1
Lo=3 -1 -1 ~1
1 4 2-14 -+
2 1 3 1 1

(OIS I
|
—
—
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and
2 3 1 5 4
-1 —6
1 4
U= -1 2
—14

1

(Note that the columns of L and the rows of U do not have any “original” indices
associated with them, and so no permutation is indicated across the top of L or down
the left side of U.)

This LU -factorization has five off-diagonal nonzeros in L and three off-diagonal
nonzeros in U for a total of eight off-diagonal nonzeros. In contrast, the LU fac-
torization from the previous section had a total of 12 off-diagonal nonzeros. Hence,
the minimum-degree ordering heuristic paid off for this example by reducing the
number of nonzeros by 33 %. While such a reduction may not seem like a big deal
for small matrices such as our 5 x 5 example, for large matrices the difference can
be dramatic.

The fact that we have permuted the rows and columns to get this factoriza-
tion has only a small impact on how one uses the factorization to solve systems of
equations. To illustrate, let us solve the same system that we considered before:
BAzp = aj, where a; is given by (8.3). The first step in solving this system is to
permute the rows of a; so that they agree with the rows of L and then to use forward
substitution to solve the system Ly = a;. Writing it out, the system looks like this:

4 1 Y1 4 3
5 1 Yo 5 0
3 -1 1 ys | = 3 0
1 4 -2 1 Ya 1 7
2 -1 -3 1 | Y5 2 | -2
The result of the forward substitution is that
1 3
Y2 0
(8.4) ys | =10
Ya 7
Ys 1

The next step is to solve the system U Az = y. Writing this system out, we get

2 3 1 5 4

-1 —6 2 Al‘g 3
1 4 3 | Azxs 0

-1 2 1 Az | =1|0

—14 5 | Axs 7

1| 4| Axy 1



3. REUSING A FACTORIZATION 119

Using backward substitution, we see that

2 Z&xg 0
3 Al‘g, 2
1 A.I‘l = -1
5 A£E5 —%
4 Z&$4 1

Finally, we rewrite the solution listing the elements of Axp in their original order:

A.%‘l -1
Z&$2 0
Arg= | Azz | = 2
Al’4 1
Al'g, —%

Of course, the answer obtained here agrees with the one obtained at the end of the

previous section.

Even with good fill-in minimizing heuristics such as minimum-degree, the LU -
factorization remains a significant computational bottleneck. To see why, consider
for the moment dense matrices. If we were to write a subroutine to carry out an
LU -factorization, we would find that the main body of the routine would have a big
triply nested loop:

for each column index j {
for each remaining row index i ({
for each remaining column index k {
update the (i,k) entry in accordance with
the aim to make the (i,j) entry be zero

Since each of these loops involves approximately m steps, the LU-factorization
routine requires about m? operations and hence is called an order m? algorithm.
Similar considerations tell us that the forward and backward substitutions are both
order m? algorithms. This means that forward and backward substitution can be
done much faster than LU-factorization. Indeed, if m = 5,000, then factorization
takes a couple of 1,000 times longer than a forward or backward substitution. Of
course, this argument is for dense matrices. But for sparse matrices a similar, if less
dramatic, effect is seen. Typically, for sparse matrices, one expects that factorization
will take from 10 to 100 times longer than substitution. Therefore, it is important to
perform as few LU -factorizations as possible. This is the subject of the next section.

3. Reusing a Factorization

In the previous two sections, we showed how to use an LU-factorization of B
to solve the system of equations

ELAIB = Gy
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for the primal step direction Az . Since the basis matrix doesn’t change much from
one iteration of the simplex method to the next (columns get replaced by new ones
one at a time), we ask whether the LU -factorization of B from the current iteration
might somehow be used again to solve the systems of equations that arise in the next
iteration (or even the next several iterations).

Let B denote the current basis (for which a factorization has already been com-
puted) and let B denote the basis of the next iteration. Then B is simply B with
the column that holds the column vector a; associated with the leaving variable x;
replaced by a new column vector a; associated with the entering variable x;. This
verbal description can be converted into a formula:

(8.5) B =B+ (aj —a;)e} .

Here, as before, e; denotes the vector that is all zeros except for a one in the position
associated with index +—to be definite, let us say that this position is the pth position
in the vector. To see why this formula is correct, it is helpful to realize that a column
vector, say a, times eiT produces a matrix that is all zero except for the pth column,
which contains the column vector a.

Since the basis B is invertible, (8.5) can be rewritten as

B=DB(I+B '(a; —a;)e}).
Denote the matrix in parentheses by E. Recall that a; = Nej, since it is the column
vector from A associated with the entering variable x ;. Hence,
B_laj = B_lNej = Auxpg,
which is a vector we need to compute in the current iteration anyway. Also,
B7la; = e,
since a; is the column of B associated with the leaving variable ;. Therefore, we
can write £/ more simply as

E =1+ (Azp —e;)el.
Now, if I has a simple inverse, then we can use it together with the LU -factorization

of B to provide an efficient means of solving systems of equations involving B. The
following proposition shows that I does indeed have a simple inverse.

PROPOSITION 8.1. Given two column vectors u and v for which 1 4+ vTu # 0,

U/UT

1+ oTu
PROOF. The proof is trivial. We simply multiply the matrix by its supposed
inverse and check that we get the identity:

(I+ uvT)_l =7

T T T, T
uv uv uv’ uv
T+w) (-2 ) =T+ wT - -
(4w )( 1—|—vTu) v 1+0Tu 1407w
1 vy
=1 (11— —
v ( 1+vTu 1+1)Tu>

:I7
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where the last equality follows from the observation that the parenthesized expres-
sion vanishes. ]

The identity in Proposition 8.1 may seem mysterious, but in fact it has a simple
derivation based on the explicit formula for the sum of a geometric series:

ijzif, f0r|€|<1
7=0

This is an identity for real numbers, but it also holds for matrices:
dXI=(I-X)"",
=0

provided that the absolute value of each of the eigenvalues of X is less than one (we
don’t prove this here, since it’s just for motivation). Assuming, for the moment, that
the absolute values of the eigenvalues of uv” are less than one (actually, all but one
of them are zero), we can expand (I + uvT)’l in a geometric series, reassociate
products, and collapse the resulting geometric series to get

(I+ uvT)fl =1 —w! + (uw?) () = (v (v (uw®) + - - -

=71 —w +uwu)? —u@Tuw) (T u)? +---
=I—u(l—v"u+ (u)?—- )"
1
Sy ———
“TroTu”
B uv?
1+ 0T’

where the last equality follows from the fact that 1/(1 + v7'u) is a scalar and there-
fore can be pulled out of the vector/matrix calculation.
Applying Proposition 8.1 to matrix E, we see that

(Azp — 61')6?
1+ el (Azg —e)
(Azp — ei)eiT

A.l?i

- Amjl -

E7' =

= J -

_ A:L’jp7 1
Azi
1
Ami

AJSJ'
— " Iptl

Azj,
L T T An; 1 _
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Now, let’s look at the systems of equations that need to be solved in the next
iteration. Using tildes to denote items associated with the next iteration, we see that
we need to solve

BA@B = dj and BT@ = éi
(actually, we should probably put the tilde on the j instead of the a; and on the ¢
instead of the e;, but doing so seems less aesthetically appealing, even though it’s
more correct). Recalling that B = BE, we see that the first system is equivalent to

BEAzp = aj,
which can be solved in two stages:
Bu = aj,
EAZp = u.

Of course, the second system (involving FE) is trivial, since we have an explicit
formula for the inverse of E:

Aig = E
Uy
= Uu — E(AJCB — 67;)

(where, in keeping with our tradition, we have used u; to denote the element of u
associated with the basic variable z;—that is, u; is the pth entry of u).
The system involving B” is handled in the same manner. Indeed, first we
rewrite it as
ETBTp = ¢

and then observe that it too can be solved in two steps:

ETU = éi7

BTo =u.
This time, the first step is the trivial one':

u=E"T¢
(A.’E B — ei)Téi
A.Iz' '

Note that the fraction in the preceding equation is a scalar, and so this final expres-
sion for u shows that it is a vector with at most two nonzeros—that is, the result is
utterly trivial even if the formula looks a little bit cumbersome.

We end this section by returning briefly to our example. Suppose that B is B
with column 3 replaced by the vector a; given in (8.3). Suppose that

i=[ 5 0 0o 0o —1]".

=€ —¢€

To solve BA:%B = a;, we first solve Bu = a; using our LU-factorization of B.
The result of the forward and backward substitutions is

1Occasionally we use the superscript —7" for the transpose of the inverse of a matrix. Hence,
E-T = (E-HT.
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wu=[ 0 3 1 -3 —3]".
Next, we solve for AZg = E~1u:
- g -
0 1 0 ;
U 3 1 0 0
AZp :u—A—S(Axg—eg) = 1 ~3 2|1 -11 = z
3 -3 1 0 7
1 1
—32 —3 0 :
L —7

Of course, it is easy to check that we have gotten the correct answer: simply multiply
B times AZp and check that it equals ;. It does.

4. Performance Tradeoffs

The idea of writing the next basis as a product of the current basis times an
easily invertible matrix can be extended over several iterations. For example, if we
look k iterations out, we can write

By = BoFEoE; - Ejp_1.

If we have an LU-factorization of By and we have saved enough information to
reconstruct each E;, then we can use this product to solve systems of equations
involving Bj.

Note that in order to reconstruct £, all we need to save is the primal step
direction vector Am{g (and an integer telling which column it goes in). In actual
implementations, these vectors are stored in lists. For historical reasons, this list
is called an eta-file (and the matrices E; are called eta matrices). Given the LU-
factorization of By and the eta-file, it is an easy matter to solve systems of equations
involving either B or B”. However, as k gets large, the amount of work required
to go through the entire eta-file begins to dominate the amount of work that would
be required to simply form a new LU -factorization of the current basis. Hence, the
best strategy is to use an eta-file but with periodic refactorization of the basis (and
accompanied purging of the eta-file).

The question then becomes: how often should one recompute a factorization
of the current basis? To answer this question, suppose that we know that it takes F’
arithmetic operations to form an LU -factorization (of a typical basis for the problem
at hand), S operations to do one forward/backward substitution, and E operations
to multiply by the inverse of one eta-matrix. Then the number of operations for
the initial iteration of the simplex method is F' + 2.5 (since we need to do an LU-
factorization and two forward/backward substitutions—one for the system involving
the basis and the other for the system involving its transpose). Then, in the next
iteration, we need to do two forward/backward substitutions and two eta-inverse
calculations. Each subsequent iteration is the same as the previous, except that there
are two extra eta-inverse calculations. Hence, the average number of arithmetic
operations per iteration if we refactorize after every K iterations is
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::%«F+Z$+2@+JD+2W+QE

o+ 2(S+ (K —1)E))

T(K)

1
=_—_F+2 K —1)E.
% +25+4( )

Treating K as a real variable for the moment, we can differentiate this expression
with respect to K, set the derivative equal to zero, and solve for K to get an estimate

for the optimal choice of K:
| F
K=1/—=.
E

As should be clear from our earlier discussions, E is of order m and, if the basis
matrix is dense, F' is of order m?. Hence, for dense matrices, our estimates would
indicate that refactorizations should take place every m iterations or so. However,
for sparse matrices, ' will be substantially less that m3—more like a constant times
m2—which would indicate that refactorizations should occur on the order of every
/m iterations. In practice, one typically allows the value of K to be a user-settable
parameter whose default value is set to something like 100.

5. Updating a Factorization

There is an important alternative to the eta-matrix method for reusing an LU-
factorization, which we shall describe in this section and the next. As always, it
is easiest to work with an example, so let’s continue with the same example we’ve
been using throughout this chapter.

Recall that the matrix B is simply B with its third column replaced by the
vector a; given in (8.3):

1 2 3 4 5 2 3 1 b5 4
1 2 7 -2 4 -1 3 —6
~ 2 3 1] =2 1 5) 4
B = 3 -1 -2 3 -1 -2
4 -1 3 —6 1 72 =2

5 4 2 1| -2 3 1

(Note that we’ve highlighted the new column by putting a box around it.)

Since L='B = U and B differs from B in only one column, it follows that
L~'B coincides with U except for the column that got changed. And, since this
column got replaced by a;, it follows that this column of L~'B contains L~ ta;,
which we’ve already computed and found to be given by (8.4). Hence,

2 3 1 5 4
-1 3 —6
4

U W N
|
—_
N

(8.6) L 'B

EN|
\
—_
IS

—_
—_
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As we saw before, the columns of L have no “original” indices to relate back to, and
so one can simply take them to be numbered in natural order. The same is then true
for the rows of L ™! and hence for the rows of L~ B. That is why the rows shown
above are numbered as they are. We’ve shown these numbers explicitly, since they
are about to get permuted.

The boxed column in (8.6) is called a spike, since it has nonzeros below the
diagonal. The 4 x 4 submatrix constructed from rows 2 through 5 and columns 3,
1, 5, and 4 is called the bump. To get this matrix back into upper-triangular form,
one could do row operations to eliminate the nonzeros in the spike that lie below the
diagonal. But such row operations could create fill-in anywhere in the bump. Such
fill-in would be more than one would like to encounter. However, consider what
happens if the spike column is moved to the rightmost column of the bump, shifting
the other columns left one position in the process, and if the top row of the bump
(i.e., row 2) is moved to the bottom of the bump, shifting the other bump rows up
by one. The result of these permutations is

1 [ -1 —6 3

15 3 1 2
L7B=, —14 7
5 11

2 4

(For future reference, we’ve boxed the bump.) In general, the effect of this permu-
tation is that the column spike gets replaced by a row spike along the bottom row of
the bump:

* Ok X ¥ X ¥ ¥ ¥ X

* ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥

* ¥ X X ok ¥

* ¥ X ¥ ¥ ¥ X

¥ ¥ ¥ X ¥ X ¥ ¥

¥ ¥ X X X ¥ ¥ ¥ ¥

* ¥ K X K X ¥ ¥ X X

¥ ¥ K X K X X X X ¥ ¥
|

* ¥ X X

* ¥ ¥ ¥ ¥

¥ ¥ ¥ ¥ ¥ ¥

* Ok X ¥ Ok X X

¥ ¥ X X X ¥ ¥ ¥ X

* X X ¥ X X X ¥ ¥

¥ ¥ ¥ ¥ K ¥ ¥ ¥ ¥ ¥

* Ok K X K X K X X ¥ X

Now any fill-in produced by row operations is confined to the spike row. In our
example, there is only one nonzero in the spike row, and to eliminate it we need to
add 2/7 times row 4 to it. This row operation can be represented algebraically as
multiplication on the left by the matrix

1

o
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That is,
2 1 5 4 3
1 -1 —6 3
S 3 -1 2
EL B = 4 —14 7
5 1 1
2 2

If we denote the new upper triangular matrix by U, then, solving for B, we get the
following factorization of B:

B=LE'U.

We can use this new factorization to solve systems of equations. For example,
to solve

BAZp = a;,
we first solve
(8.7) Ly =a;
for y. Then, given y, we compute
2= By,
and finally we solve
UAip =z

for AZg. It is clear from the following chain of equalities that these three steps
compute AZg:

Aig=U"'2=U"'"Ey=U"'EL 'a; = B 'a,.

For our example, we use forward substitution to solve (8.7) for y. The result is

1 0 1 0
2 | -1 3| -1
y=3 | 1| = 4 7
4 7 5 | -3
5 | -3 2 | -1

w
|
s
<
I

RO T W
\]
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Finally, backward substitution using U is performed to compute AZg:
2 1 5 4 3

1 -1 —6 31 2 1 0
3 -1 2 1 3| -1
4 —14 7T 51?7 =4 7
5 1 1] 4 5 | -3
2 21 3 2 1

The result of the backward substitution is

Ap =

W = Ot =N
|
NI NN R = =
L
Il
T W N =

ENESTES I SISV T

which agrees with the solution we g_ot before using eta-matrices.
6. Shrinking the Bump

There is an important enhancement to the factorization updating technique de-
scribed in the previous section. After permuting rows and columns converting the
spike column into a spike row, we can exploit the fact that the spike row is often
very sparse (coming as it does from what was originally the top row of the bump)
and do further row and column permutations to reduce the size of the bump. To see
what we mean, let’s look at our example. First, we note that the leftmost element
of the spike row is zero (and hence that the left column of the bump is a singleton
column). Therefore, we can simply declare that this column and the corresponding
top row do not belong to the bump. That is, we can immediately reduce the size of
the bump by one:

2 1 5 4 3

1 -1 —6 3
3 -1 2
4 —14 7
) 1 1
2 4

This idea can be extended to any column that has a single nonzero in the bump.
For example, column 4 is a singleton column too. The trick now is to move this
column to the leftmost column of the bump, pushing the intermediate columns to
the right, and to apply the same permutation to the rows. After permuting the rows
and columns like this, the bump can be reduced in size again:

2 1 4 5 3
-1 -6 3
-1 2

—14

N = Ot W =
—
EN{E
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Furthermore, this reduction in the bump causes a new singleton column to appear
(since a singleton need only be a singleton within the bump), namely, column 3.
Hence, we permute once again. This time just the column gets permuted, since the
singleton is already in the correct row. The bump gets reduced in size once again,
now to a 1 x 1 bump, which is not really a bump at all:

2 1 4 3
1 -1 3
3 -1
5 1 1
4 7 —14

\V]

Note that we have restored upper triangularity using only permutations; no row
operations were needed. While this doesn’t always happen, it is a common and
certainly welcome event.

Our example, being fairly small, doesn’t exhibit all the possible bump-reducing
permutations. In addition to looking for singleton columns, one can also look for
singleton rows. Each singleton row can be moved to the bottom of the bump. At the
same time, the associated column is moved to the right-hand column of the bump.
After this permutation, the right-hand column and the bottom row can be removed
from the bump.

Before closing this section, we reiterate a few important points. First, as the
bump gets smaller, the chances of finding further singletons increases. Also, with
the exception of the lower-right diagonal element of the bump, all other diagonal
elements are guaranteed to be nonzero, since the matrix U from which U is derived
has this property. Therefore, most bump reductions apply the same permutation to
the rows as to the columns. Finally, we have illustrated how to update the factoriza-
tion once, but this technique can, of course, be applied over and over. Eventually,
however, it becomes more efficient to refactorize the basis from scratch.

7. Partial Pricing

In many real-world problems, the number of constraints m is small compared
with the number of variables n. Looking over the steps of the primal simplex
method, we see that the only steps involving n-vectors are Step 2, in which we
pick a nonbasic variable to be the entering variable,

pick j € {j € N1 27 <0}
Step 6, in which we compute the step direction for the dual variables,
Azy = —(B'N)Tey:
and Step 8, in which we update the dual variables,
2 S Zn — SAzZ.

Scanning all the nonbasic indices in Step 2 requires looking at n candidates. When
n is huge, this step is likely to be a bottleneck step for the algorithm. However,
there is no requirement that all indices be scanned. We could simply scan from
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the beginning and stop at the first index j for which 27 is negative (as in Bland’s
rule). However, in practice, it is felt that picking an index j corresponding to a very
negative z; produces an algorithm that is likely to reach optimality faster. Therefore,
the following scheme, referred to as partial pricing is often employed. Initially, scan
only a fraction of the indices (say n/3), and set aside a handful of good ones (say,
the 40 or so having the most negative z7). Then use only these 40 in Steps 2, 6,
and 8 for subsequent iterations until less than a certain fraction (say, 1/2) of them
remain eligible. At this point, use (6.8) to compute the current values of a new batch
of n/3 nonbasic dual variables, and go back to the beginning of this partial pricing
process by setting aside the best 40. In this way, most of the iterations look like they
only have 40 nonbasic variables. Only occasionally does the grim reality of the full
huge number of nonbasic variables surface.

Looking at the dual simplex method (Figure 6.1), we see that we aren’t so lucky.
In it, vectors of length n arise in the max-ratio test:

-1
AZj
t = | max —=
JEN z;

. . AZj
pick j € argmaxj€N7.
J
Here, the entire collection of nonbasic indices must be checked; otherwise, dual
feasibility will be lost and the algorithm will fail. Therefore, in cases where n is
huge relative to m and partial pricing is used, it is important not to use the dual
simplex method as a Phase I procedure. Instead, one should use the technique of
adding artificial variables as we did in Chapter 2 to force an initial feasible solution.

8. Steepest Edge

In Chapter 4, we saw that one of the drawbacks of the largest-coefficient rule
is its sensitivity to the scale in which variables are quantified. In this section, we
shall discuss a pivot rule that partially remedies this problem. Recall that each step
of the simplex method is a step along an edge of the feasible region from one vertex
to an adjacent vertex. The largest coefficient rule picks the variable that gives the
largest rate of increase of the objective function. However, this rate of increase is
measured in the “space of nonbasic variables” (we view the basic variables simply
as dependent variables). Also, this space changes from one iteration to the next.
Hence, in a certain respect, it would seem wiser to measure the rate of increase in
the larger space consisting of all the variables, both basic and nonbasic. When the
rate of increase is gauged in this larger space, the pivot rule is called the steepest-
edge rule. It is the subject of this section.

Fix a nonbasic index j € A. We wish to consider whether z; should be the
entering variable. If it were, the step direction vector would be

Azr = { Az } = [ —B7'Ne }
Az e;
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This vector points out along the edge corresponding to the pivot that would result
by letting x; enter the basis. As we know, the objective function is

f(x) =z = chap + chan.
The derivative of f(x) in the direction of Az is given by

of T Az Az + Ay
Az [ Azl [[Az]]

The numerator is easy (and familiar):

cEAxp + Ay = ¢j — cs B Ne;
= (CN — (BilN)TCB)j

-
= ZJ.

The denominator is more troublesome:
[Az|? = |Azp]|* + 1= || B~'Nej[|* + 1.

To calculate B~ Ne; for every j € N is exactly the same as computing the matrix
B~ N, which (as we’ve discussed before) is time consuming and therefore a com-
putation we wish to avoid. But it turns out that we can compute B! Ne; for every
J € N once at the start (when B is essentially, if not identically, an identity matrix)
and then update the norms of these vectors using a simple formula, which we shall
now derive.
Let
vp = ||[B" ' Neg|?, keN.

Suppose that we know these numbers, we use them to perform one step of the sim-
plex method, and we are now at the beginning of the next iteration. As usual, let
us denote quantities in this next iteration by putting tildes on them. For example,
B denotes the new basis matrix. As we’ve seen before, B is related to B by the
equation B = BE, where

(Azp —e;)el

B =1- Ax;
Now, let’s compute the new v values:
U = afB_TE_lak
=alBTETE'B
88)  =afB7T <I - —ei(Af”ABx: ei)T) (I - (AxBA;iei)€?> B~ ay.
Recall from (8.2) that we must compute
v=BT¢

in the course of the old iteration. If, in addition, we compute

w = BiTA.Z‘B
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then, expanding out the product in (8.8) and expressing the resulting terms using v
and w, we get the following formula for quickly updating the old v’s to the new v’s:

2
(aTv)2 ”A‘rB — & ”

Ax; k (Ax;)?

Recent computational studies using this update formula have shown that the steepest-

edge rule for choosing the entering variable is competitive against, if not superior
to, other pivot rules.

B = 2afv(w —v)Tay

Exercises

8.1 (a) Without permuting rows or columns, compute the LU -factorization

of
2 5 6
1 1 3 9 6
(8.9) B = 2 6 4
4 1
-1 -3 -1
(b) Solve the system BAzg = a; where
0
2
Clj = 1
3
0

(c) Suppose that B is B with its second column replaced by a;. Solve
the system BAZg = a; where

using the eta-matrix method.

(d) Solve the system BAig = a; again, this time using the factorization
updating method.

8.2 Use the minimum-degree ordering heuristic to find an LU -factorization
of the matrix B given by (8.9).

8.3 A permutation matrix is a matrix of zeros and ones for which each row
has one 1 and each column has one 1.
(a) Let B be an m x m matrix, and let P be a permutation matrix. Show
that PB is a matrix obtained by permuting the rows of B and that
BP is a matrix obtained by permuting the columns of B. Are the
two permutations the same?
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(b) Show that every permutation of the rows of a matrix B corresponds
to multiplying B on the left by a permutation matrix.
(c) Show that for any permutation matrix P,

p~t=pT.
8.4 Explain how to use the factorization B = LU to solve
BTz =b.

Notes

Techniques for exploiting sparsity in matrix factorization have their roots in the
paper by Markowitz (1957). A few standard references on matrix factorization are
the books of Duff et al. (1986), Golub and VanLoan (1989), and Gill et al. (1991).
The eta-matrix technique given in Section 8.3 for using an old basis to solve systems
of equations involving the current basis was first described by Dantzig and Orchard-
Hayes (1954). The factorization updating technique described in Section 8.5 is the
method given by Forrest and Tomlin (1972). The bump reduction techniques of
Section 8.6 were first introduced by Saunders (1973) and Reid (1982). The steepest-
edge pivoting rule is due to Goldfarb and Reid (1977). A similar rule, known as
Devex, was given by Harris (1973).



CHAPTER 9

Problems in General Form

Up until now, we have always considered our problems to be given in standard
form. However, for real-world problems it is often convenient to formulate problems
in the following form:

maximize T
©.1) subjectto a < Ax < b
Il < z< u.

Two-sided constraints such as those given here are called constraints with ranges.
The vector [ is called the vector of lower bounds, and wu is the vector of upper
bounds. We allow some of the data to take infinite values; that is, for each i =
1,2,...,m,

—o00 < a; < b < oo,
and, foreachj =1,2,...,n,

—00 < lj < wuy < oo.

In this chapter, we shall show how to modify the simplex method to handle problems
presented in this form.

1. The Primal Simplex Method

It is easiest to illustrate the ideas with an example:

maximize 3x1 — X9
subjectto 1 < —x14+ x93 < 5
2 S —3&?1 + 2562 S 10
21‘1 — T2 S 0
-2 S T
0 S X9 S 6.

With this formulation, zero no longer plays the special role it once did. Instead, that
role is replaced by the notion of a variable or a constraint being at its upper or lower
bound. Therefore, instead of defining slack variables for each constraint, we use w;
simply to denote the value of the ith constraint:

w)p = —I1 + Zo
wo = 731’1 + 2582
w3 = 21’1 — T2 .
R.J. Vanderbei, Linear Programming, International Series in Operations Research 133
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The constraints can then be interpreted as upper and lower bounds on these vari-
ables. Now when we record our problem in a dictionary, we will have to keep
explicit track of the upper and lower bound on the original x; variables and the new
w; variables. Also, the value of a nonbasic variable is no longer implicit; it could
be at either its upper or its lower bound. Hence, we shall indicate which is the case
by putting a box around the relevant bound. Finally, we need to keep track of the
values of the basic variables. Hence, we shall write our dictionary as follows:

l o]

00

u

(= 3x1— x3=-6

1 5lwi= —21+ 2= 2
210 |wo = =321 + 229 = 6
—o0 0wz = 21— x29=-4.

Since all the w;’s are between their upper and lower bounds, this dictionary is fea-
sible. But it is not optimal, since x; could be increased from its present value at
the lower bound, thereby increasing the objective function’s value. Hence, x; shall
be the entering variable for the first iteration. Looking at w;, we see that £ can be
raised only 1 unit before w; hits its lower bound. Similarly, 1 can be raised by 4/3
units, at which point ws hits its lower bound. Finally, if 21 were raised 2 units, then
ws would hit its upper bound. The tightest of these constraints is the one on w;, and
so w1 becomes the leaving variable—which, in the next iteration, will then be at its
lower bound. Performing the usual row operations, we get
! [0]

5 6

u

(= —-3w1 + 229 = —3

200 |r1= —w + x9=-1
210 W9 = 3w1 — Ty = 3
—00 0wy =—-2w1 + x9=-2.

Note, of course, that the objective function value has increased (from —6 to —3).
For the second iteration, raising xo from its lower bound will produce an increase
in . Hence, x5 is the entering variable. Looking at the basic variables (z, ws, and
ws), we see that wo will be the first variable to hit a bound, namely, its lower bound.
Hence, w> is the leaving variable, which will become nonbasic at its lower bound:

:
U 5 10

( =3w; — 2wy = —1

20|11 =2w; — wa= 0

0 6 1’2:311}17 Wo = 1

—0 0jwy= wi — wy=-—1.

For the third iteration, w; is the entering variable, and ws is the leaving vari-
able, since it hits its upper bound before any other basic variables hit a bound.
The result is
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l —00
u [0] 10

¢ = 3ws + wy = 2

—2 oco|lx1 = 2wz + wy = 2

0 6 To = 3103 + 2w2 =4
1 5 wp = w3 + w2 = 2 .

Now for the next iteration, note that the coefficients on both w3 and wy are positive.
But wjs is at its upper bound, and so if it were to change, it would have to decrease.
However, this would mean a decrease in the objective function. Hence, only wq
can enter the basis, in which case x5 is the leaving variable getting set to its upper
bound:

l —00 0
u [o] [
C = 1.5ws + 0522 =3
-2 |1 = 0.5wz + 0.529 =3
210 wo = 7]..5103 + 05172 =3
15 w1 = —0.5?113 + 051’2 =3.

For this dictionary, both ws and x- are at their upper bounds and have positive
coefficients in the formula for (. Hence, neither can be moved off from its bound to
increase the objective function. Therefore, the current solution is optimal.

2. The Dual Simplex Method

The problem considered in the previous section had an initial dictionary that
was feasible. But as always, we must address the case where the initial dictionary
is not feasible. That is, we must define a Phase I algorithm. Following the ideas
presented in Chapter 5, we base our Phase I algorithm on a dual simplex method.
To this end, we need to introduce the dual of (9.1). So first we rewrite (9.1) as

maximize ¢’z
subjectto Az < b
—Axr < —a
r < u
—r < -,
and adding slack variables, we have
maximize clx
subjectto Ax+ f = b
—Az+p = —a
r+t = u
—x+g -1

fipt,g> 0.
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We see immediately from the inequality form of the primal that the dual can be
written as
minimize  bTv —a’q+uls —ITh
9.2) subjectto AT (v —q) —(h—3s) = ¢
v, 4, S, h Z 0.

Furthermore, at optimality, the dual variables are complementary to the correspond-
ing primal slack variables:

fivi =0 i=1,2,...,m,

piq; =0 1=1,2,...,m,
9.3) o :

thjZO jZl,Q,...,TL,

gjhj:O j:].,Q,...,TL.

Note that for each i, if b; > a;, then at optimality v; and ¢; must be comple-
mentary to each other. Indeed, if both were positive, then they could be reduced
by an equal amount without destroying feasibility, and the objective function value
would strictly decrease, thereby implying that the supposedly optimal solution is not
optimal. Similarly, if for some ¢, b; = a;, then it is no longer required that v; and
q; be complementary at optimality; but, given an optimal solution for which both
v; and g; are positive, we can decrease both these values at the same rate until the
smaller of the two reaches zero, all the while preserving feasibility of the solution
and not changing the objective function value. Hence, there always exists an opti-
mal solution in which every component of v is complementary to the corresponding
component of q. The same argument shows that if there exists an optimal solution,
then there exists one in which all the components of A and s are complementary to
each other as well.

For a real variable &, its positive part £T is defined as

¢+ = max{¢,0}
and its negative part £~ is defined similarly as
& =max{-¢,0}.
Clearly, both £ and £~ are nonnegative. Furthermore, they are complementary,
Ef=0  or & =0,
and their difference represents &:
E=¢r-¢.
From the complementarity of the components of v against the components of

q, we can think of them as the positive and negative parts of the components of just
one vector . So let us write:

Similarly, let us write
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If we impose these complementarity conditions not just at optimality but also from
the start, then we can eliminate v, ¢, s, and h from the dual and write it simply as
minimize b7yt —aTy” +uTzt — T2

.4 subjectto ATy —z=c,

where the notation y denotes the componentwise positive part of y, etc. This prob-
lem is an example from the class of problems called piecewise linear programs.
Usually, piecewise linear programs are solved by converting them into linear pro-
grams. Here, however, we wish to go in the other direction. We shall present an
algorithm for (9.4) that will serve as an algorithm for (9.2). We will call this algo-
rithm the dual simplex method for problems in general form.

To economize on the presentation, we shall present the dual simplex method
in the context of a Phase I algorithm for linear programs in general form. Also,
to avoid cumbersome notations, we shall present the algorithm with the following
example:

maximize 2r1 — To
subjectto 0 < 21+ 22 < 6
2 < —x1 + 229 < 10
9.5) vl — 19 < 0
—2 § X
1 S T2 S 5
The piecewise linear formulation of the dual is
minimize 6y;” + 10y, + 2z - zF
— 2y, +ooy; + o00zy + 52y
subjectto Y1 — Yo+ ys— 21 = 2
y1+ 2y2—  ys — - zm=-1.

Note that the objective function has coefficients that are infinite. The correct
convention is that infinity times a variable is plus infinity if the variable is positive,
zero if the variable is zero, and minus infinity if the variable is negative.

Since the objective function is nonlinear (taking positive and negative parts of
variables is certainly a nonlinear operation), we will not be able to do the usual row
operations on the objective function. Therefore, in each iteration, we simply study
it as is. But as usual, we prefer to think in terms of maximization, and so we record

the negative of the objective function:
©.6) —& =6y — lOy;_' - 22';: + z;_'
+ 2y, —ooys — 00z, — Dzy .

We can of course perform row operations on the two constraints, so we set up

the usual sort of dictionary for them:

n1==24+y1— Y2+ys3
9.7

©7 Zo= 14wy +2y2 —ys.

For the dual problem, all the action takes place at zero. That is, slopes in the objec-
tive function change when a variable goes from negative to positive. Since nonbasic
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variable are supposed to be set where the action is, we associate a current solution
with each dictionary by setting the nonbasic variables to zero. Hence, the solution
associated with the initial dictionary is

(ylvaa Ys, 21, 22) = (0707 Oa 727 1)

The fact that z; is negative implies that z; is a positive number and hence that the
objective function value associated with this solution is minus infinity. Whenever
the objective function value is minus infinity, we say that the solution is infeasible.
We also refer to the associated dictionary as infeasible. Hence, the initial dictionary
given in (9.7) is infeasible.

The dual simplex method must start with a dual feasible solution. But since we
intend to use the dual simplex method simply to find a feasible solution for (9.5), we
are free to change the objective function in (9.5) any way we please. In particular,
we can change it from

=2z — 22
to
n = —2x1 — x2.
Making that change to the primal leaves the dual objective function unchanged, but
produces a feasible dual dictionary:

21=24+y1 — y2+ Y3

9.8
©-8) zo=1+y1 + 2y —y3.

For comparison purposes, let us also record the corresponding primal dictio-
nary. It is easy to write down the equations defining the w;’s, but how do we know
whether the z;’s are supposed to be at their upper or their lower bounds? The an-
swer comes from the requirement that the primal and dual satisfy the complemen-
tarity conditions given in (9.3). Indeed, from the dual dictionary we see that z; = 1.
Hence, z;” = 1. But since zf’ is just a surrogate for hy, we see that iy is positive
and hence that g; must be zero. This means that 21 must be at its lower bound. Sim-
ilarly, for the sake of complementarity, x5 must also be at its lower bound. Hence,
the primal dictionary is

l
U o0 5
n = —-I — Tro =
0 6|lw = rT + x5 = —1
2 10 wy = —x1 + 2.]32 = 4
—oo 0 w3 = r1 — T2 = -3 .

Note that it is infeasible, since w; is not between its upper and lower bounds.

We are now ready to describe the first iteration of the dual simplex method.
To this end, we ask whether we can improve the dual objective function value by
moving one of the nonbasic variables (y;, y2, or y3) away from zero. Of course,
each of these three variables can be moved either to the positive or the negative side
of zero; we must analyze these six cases individually. First of all, note that since
z1 1s positive at the current solution, it follows that zf =z and z; = 0ina
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neighborhood of the current solution. A similar statement can be made for 25, and
so we can rewrite (9.6) locally around the current solution as

—¢ = 6y — 10yF — 221 + 29
+ 2y, —ooyy -

Now, as y; is increased from zero, the rate of increase of —¢ is simply the derivative
of the right-hand side with respect to y;, where we must keep in mind that z; and 29
are functions of y; via the dictionary (9.8). Hence, the rate of increase is —6 — 2 +
1 = —T; i.e., the objective function decreases at a rate of 7 units per unit increase
of y;. If, on the other hand, y» is decreased from zero into negative territory, then
the rate of increase of —¢ is the negative of the derivative of the right-hand side. In
this case we get no contribution from y; but we do get something from z; and 23
for a total of 2 — 1 = 1. Hence, the rate of increase as we move in this direction is
one unit increase per unit move. We can analyze changes to y» and y3. The entire
situation can be summarized as follows:

Y1 / —6— 2 + 1= —7

nN 0+2-1= 1

ya /1 —104+2+2= —6

Yo N 2—-2-2= -2

Y3 / 0—-2—-1= -3

Ys \y —00 + 2+ 1= —o0.

Of these six cases, the only one that brings about an increase in —¢ is the one in
which y; is sent negative. Hence, y; shall be our entering variable, and it will go
negative. To find the leaving variable, we must ask: as y; goes negative, which of
z1 and zo will hit zero first? For the current dictionary, zo gets to zero first and
so becomes the leaving variable. Performing the usual row operations, the new
dictionary for the dual problem is

z1= 142z —3y2 + 2ys
y1=—1+4+22—2y2 — y3.

Let us have a look at the new primal dictionary. The fact that y; was the entering
variable in the dual dictionary implies that wy is the leaving variable in the primal.
Furthermore, the fact that y; has gone negative implies that y;” is now positive, and
so complementarity then demands that ¢; be zero; i.e., w; should go to its lower
bound. The fact that zo was the leaving variable in the dual dictionary implies that
x2 is the entering variable in the primal. Hence, the new primal dictionary is

l [0]
00 6

U
n= —x1— wy= 2
1 5|lxg= —21+ w1 = 2
210 Wo = 73‘%1 + 211.)1 = 6
—00 0 |wg= 21— wi=-4.

We are now ready to begin the second iteration. Therefore, we ask which non-
basic variable should be moved away from zero (and in which direction). As before,
we first note that z; positive implies that z;” = z; and z; = 0 and that y; negative



140 9. PROBLEMS IN GENERAL FORM

implies that yf = 0 and y; = —y;. Hence, the objective function can be written
locally around the current solution as
—&= — 10ys — 2z + 2
+ 2y, — ooys —5zy .

We now summarize the possibilities in a small table:

2,/ 1-2= -1

N\ —5+2= -3

yo /1 —104+6= —4

Y2\ 2-6= —4

ys /1 0—4= —4

ys \y —00 +4=—00.
Note that all the changes are negative, meaning that there are no possibilities to
increase the objective function any further. That is, the current dual solution is
optimal. Of course, this also could have been deduced by observing that the primal
dictionary is feasible (which is what we are looking for, after all).

Even though this example of the dual simplex method has terminated after only
one iteration, it should be clear how to proceed had it not terminated.

Now that we have a feasible solution for the primal, we could solve the problem
to optimality by simply reinstating the original objective function and proceeding
by applying the primal simplex method in a Phase II procedure to find the optimal
solution. Since the primal simplex method has already been discussed, we stop here
on this problem.

Exercises

Solve the following linear programming problems:

9.1 maximize —xq1 + I9
subjectto —x1 + 22 < 5
T, — 2%2 S 9
0<z; <6
0 S T2 S 8.

9.2 maximize —3x; — To + X3+ 2x4 — T5+ xg— x7— 4xs

subject to T +4r3+ x4 —dxs — 226+ 317 —b6g = 7
Tro —3x3 — x4+ 4x5+ 16— 2207+ Hrg = —3
0§$1§ 8

0§£L‘2§ 6

0<z3 <10

0S£4§ 15

0§I5S 2

0<axs <10

0§x7§ 4

0§$Cg§ 3.

Notes

Dantzig (1955) was the first to consider variants of the simplex method that
handle bounds and ranges implicitly.



CHAPTER 10

Convex Analysis

This book is mostly about linear programming. However, this subject, impor-
tant as it is, is just a subset of a larger subject called convex analysis. In this chapter,
we shall give a brief introduction to this broader subject. In particular, we shall prove
a few of the fundamental results of convex analysis and see that their proofs depend
on some of the theory of linear programming that we have already developed.

1. Convex Sets

Given a finite set of points, 21, 22, ..., z,, in R, a point z in R™ is called a
convex combination of these points if'

n
z = E thj,
Jj=1

where t; > 0 for each j and Z?Zl t; = 1. Itis called a strict convex combination if
none of the ¢;’s vanish. For n = 2, the set of all convex combinations of two points
is simply the line segment connecting them.

A subset S of R™ is called convex if, for every x and y in .S, S also contains all
points on the line segment connecting = and y. That is, tx + (1 —t)y € .S, for every
0 <t < 1. See Figure 10.1.

Certain elementary properties of convex sets are trivial to prove. For example,
the intersection of an arbitrary collection of convex sets is convex. Indeed, let S,
a € I, denote a collection of convex sets indexed by some set /. Then the claim is
that NyerSy is convex. To see this, consider an arbitrary pair of points z and y in
the intersection. It follows that « and y are in each S,. By the convexity of .S, it
follows that S, contains the line segment connecting = and y. Since each of these
sets contains the line segment, so does their intersection. Hence, the intersection is
convex.

Here is another easy one:

THEOREM 10.1. A set C' is convex if and only if it contains all convex combina-
tions of points in C.

1'Until now we’ve used subscripts for the components of a vector. In this chapter, subscripts will be
used to list sequences of vectors. Hopefully, this will cause no confusion.

R.J. Vanderbei, Linear Programming, International Series in Operations Research 141
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_10,
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FIGURE 10.1. The set on the left is convex—for any pair of points
in the set, the line segment connecting the two points is also con-
tained in the set. The set on the right is not convex—there exists
pairs of points, such as the x and y shown, for which the connect-
ing line segment is not entirely in the set.

PROOF. Let C' be a convex set. By definition, C' contains all convex combina-
tions of pairs of points in C'. The first nontrivial step is to show that C' contains all
convex combinations of triples of points in C. To see this, fix 21, 29, and z3 in C'
and consider

z = t121 +tazz + t323,
where t; > 0 for each j and 23:1 t; = 1. If any of the ¢;’s vanish, then z is really
just a convex combination of two points and so belongs to C'. Hence, suppose that
each of the t;’s is strictly positive. Rewrite z as follows:

t t
z = (1 —t3) (1 —1t3Z1 + 1 —2t322> + t323

tq to
=(1-t 21+ 29 | + t3z3.
( 3)<t1+t2 ! t1 419 2) 83

Since C' contains all convex combinations of pairs of points, it follows that

t ’
21+ z9 € C.
bty Nty 2

Now, since z is a convex combination of the two points o + T4 T i, +t —2_— 25 and z3,
both of which belong to C, it follows that z is in C. It is easy to see (pun intended)
that this argument can be extended to an inductive proof that C' contains all convex
combinations of finite collections of points in C'. Indeed, one must simply show that
the fact that C' contains all convex combinations of n points from C implies that it
contains all convex combinations of n + 1 points from C. We leave the details to
the reader.

Of course, proving that a set is convex if it contains every convex combination
of its points is trivial: simply take convex combinations of pairs to get that it is
convex. O

For each set .S in R™ (not necessarily convex), there exists a smallest convex
set, which we shall denote by conv(S), containing S. It is defined, quite simply,
as the intersection of all convex sets containing S. From our discussion about in-
tersections, it follows that this set is convex. The set conv(\S) is called the convex
hull of S. This definition can be thought of as a definition from the “outside,” since
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it involves forming the intersection of a collection of sets that contain S. Our next
theorem gives a characterization of convex sets from the “inside”:

THEOREM 10.2. The convex hull conv(S) of a set S in R™ consists precisely of
the set of all convex combinations of finite collections of points from S.

PROOF. Let H denote the set of all convex combinations of finite sets of points
in S:

H={z=> tizj:in>12z€Sandt; >0forallj, and Y ;=1

j=1 j=1

It suffices to show that (1) H contains S, (2) H is convex, and (3) every convex set
containing .S also contains H.

To see that H contains S, just take n» = 1 in the definition of H.

To see that H is convex, fix two points x and y in H and a real number 0 < ¢ <
1. We must show that z = tx + (1 — t)y € H. The fact that x € H implies that
x =3 ._, pjxj, for some r > 1, where p; > 0forj = 1,2,...,7, 35 p; = 1,
and z; € S for j = 1,2,...,r. Similarly, the fact that y is in /{ implies that
y = >.5_1 qjyy, for some s > 1, where ¢; > O forj = 1,2,...,5, 37, q; = 1,
andy; € Sforj =1,2,...,s. Hence,

z=tr+(1—t)y= thjﬂfj + Z(l — t)q;;-

j=1 j=1

Since the coefficients (¢p1,...,tp,, (1 — t)q1,...,(1 — t)gs) are all positive and
sum to one, it follows that this last expression for z is a convex combination of 7+ s
points from S. Hence, z is in H. Since = and y were arbitrary points in H and ¢
was an arbitrary real number between zero and one, the fact that z € H implies that
H is convex.

It remains simply to show that H is contained in every convex set containing
S. Let C be such a set (i.e., convex and containing S). From Theorem 10.1 and the
fact that C' contains .5, it follows that C' contains all convex combinations of points
in S. Hence, C contains H. O

2. Carathéodory’s Theorem

In the previous section, we showed that the convex hull of a set .S can be con-
structed by forming all convex combinations of finite sets of points from .S. In 1907,
Carathéodory showed that it is not necessary to use all finite sets. Instead, m + 1
points suffice:

THEOREM 10.3. The convex hull conv(S) of a set S in R™ consists of all convex
combinations of m + 1 points from S

m—+1
conv(S) =< z = Z tjzj i z; € Sandt; > 0 forall j, and th =1
Jj=1 J
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PROOF. Let H denote the set on the right. From Theorem 10.2, we see that H
is contained in conv(.S). Therefore, it suffices to show that every point in conv(S)
belongs to H. To this end, fix a point z in conv(S). By Theorem 10.2, there ex-

ists a collection of, say, n points 21, z2, ..., 2z, in .S and associated nonnegative
multipliers ¢1, ¢, . . ., t, summing to one such that
n
(10.1) 2=tz
j=1
Let A denote the matrix consisting of the points z1, 2o, . . . , 2, as the columns of A:
A= [zl Zg - zn]

Also, let * denote the vector consisting of the multipliers ¢y, ta, ..., t,:

tq

to

¥ = .
tn

Finally, let b = z. Then from (10.1), we see that z* is feasible for the following
linear programming problem:

maximize ¢’z

subjectto Ax = b

(10.2) a1
0.

T
The fundamental theorem of linear programming (Theorem 3.4) tells us that ev-
ery feasible linear program has a basic feasible solution. For such a solution, only
the basic variables can be nonzero. The number of basic variables in (10.2) co-
incides with the number of equality constraints; that is, there are at most m + 1
variables that are nonzero. Hence, this basic feasible solution corresponds to a con-
vex combination of just m + 1 of the original n points. (See Exercise 10.5.) O

IVl

It is easy to see that the number m + 1 is the best possible. For example, the
point (1/(m+1),1/(m+1),...,1/(m+ 1)) in R™ belongs to the convex hull of
the m + 1 points eq, ea, . .., €, 0 but is not a convex combination of any subset of
them.

3. The Separation Theorem

We shall define a halfspace of R™ to be any set given by a single (nontrivial)
linear inequality:

(10.3) {zr e R": Zajmj < b}, (a1,az,...,a,) # 0.
j=1
Every halfspace is convex. To see this, suppose that x = (z1,22,...,2,) and

y = (y1,Y2,---,Yyn) both satisfy the linear inequality in (10.3). Fix ¢ between
zero and one. Then both ¢ and 1 — ¢ are nonnegative, and so multiplying by them
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preserves the direction of inequality. Therefore, multiplying 0Ty < b by ¢ and
>_;a;y; < bby 1 —t and then adding, we get

> ay(try + (1= t)y;) <b.

That is, tx + (1 — )y also satisfies the inequality defining the halfspace.

If we allow the vector of coefficients (a1, as,...,ay) in the definition of a
halfspace to vanish, then we call the set so defined a generalized halfspace. 1t is
easy to see that every generalized halfspace is simply a halfspace, all of R™, or the
empty set. Also, every generalized halfspace is clearly convex.

A polyhedron is defined as the intersection of a finite collection of generalized
halfspaces. That is, a polyhedron is any set of the form

n
reR™: Zaija:j <b,i=1,2,....m
Jj=1

Every polyhedron, being the intersection of a collection of convex sets, is convex.

The following theorem is called the Separation Theorem for polyhedra.

THEOREM 10.4. Let P and P be two disjoint nonempty polyhedra in R". Then
there exist disjoint halfspaces H and H such that P C H and P C H.

PROOF. Suppose that P and P are given by the following systems of
inequalities:

P ={z: Az <b},
P={z:Ax <b}.

The disjointness of P and P implies that there is no solution to the system

o<

To continue the proof, we need a result known as Farkas’ Lemma, which says that
Az < bhas no solutions if and only if there is an m-vector y such that

ATy =0
y>0
bT'y < 0.
We shall prove this result in the next section. For now, let us apply Farkas” Lemma

to the situation at hand. Indeed, the fact that there are no solutions to (10.4) implies
that there exists a vector, which we shall write in block form as

HE
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such that

(10.5) (AT AT] m =ATy+ AT5 = 0
Yy

10.6 7 > 0

100 i

(10.7) [T 7] m =bTy+b'y < o.

From the last condition, we see that either b7y < 0 or BTQ < 0 (or both). Without
loss of generality, we may assume that

vI'y < 0.

Farkas’ Lemma (this time applied in the other direction) together with the nonempti-
ness of P now implies that

ATy 0.
Put

H = {x (AT Tz < bTy} and H= {a: (AT Tz > —l;Tg}} .

These sets are clearly halfspaces. To finish the proof, we must show that they are
disjoint and contain their corresponding polyhedra.

First of all, it follows from (10.7) that H and H are disjoint. Indeed, suppose
that z € H. Then (ATy)Tz < bTy < —b"§, which implies that z is not in H.

To show that P C H, fix x in P. Then Az < b. Since y > 0 (as we know from
(10.6)), it follows then that y” Az < 3yT'b. But this is exactly the condition that says
that = belongs to H. Since = was an arbitrary point in P, it follows that P C H.

Showing that P is a subset of H is s1m11ar Indeed, suppose that 2 € P. Then
Az < b Multiplying on the left by —§” and noting that § > 0, we see that
—§T Az > —gTb. But from (10.5) we see that —j7 Az = yT Az, and so this last
inequality is exactly the condition that x € H. Again, the arbitrariness of x € P
implies that P C H, and the proof is complete. (|

4. Farkas’ Lemma

The following result, known as Farkas’ Lemma, played a fundamental role in
the proof of the separation theorem of the preceding section (Theorem 10.4). In this
section, we state it formally as a lemma and give its proof.

LEMMA 10.5. The system Ax < b has no solutions if and only if there is a y
such that

ATy

(10.8) Y

by

AN
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PROOF. Consider the linear program

maximize 0
subjectto Az < b
and its dual
minimize b7y
subjectto ATy = 0
Y 0.
Clearly, the dual is feasible (just take y = 0). So if the primal is feasible, then the
dual is bounded. Also, if the primal is infeasible, the dual must be unbounded. That
is, the primal is infeasible if and only if the dual is unbounded. To finish the proof,
we claim that the dual is unbounded if and only if there exists a solution to (10.8).
Indeed, suppose that the dual is unbounded. The dual simplex method is guaranteed
to prove that it is unbounded, and it does so as follows. At the last iteration, a step
direction Ay is computed that preserves feasibility, i.e.,

AT Ay =0,
is a descent direction for the objective function, i.e.,
bI'Ay <0,
and is a direction for which the step length is unbounded, i.e.,
Ay > 0.

But these three properties show that Ay is the solution to (10.8) that we were looking
for. Conversely, suppose that there is a solution to (10.8). Call it Ay. It is easy to
see that starting from y = 0, this step direction provides an unbounded decrease in
the objective function. This completes the proof. (]

AVAN

5. Strict Complementarity

In this section, we consider the usual inequality-form linear programming prob-
lem, which we write with its slack variables shown explicitly:

maximize ¢’z

(10.9) subjectto Az 4+w=0
z,w > 0.
As we know, the dual can be written as follows:
minimize b7y
(10.10) subjectto ATy —z=¢
y,z > 0.

In our study of duality theory in Chapter 5, we saw that every pair of optimal solu-
tions to these two problems possesses a property called complementary slackness. If
(z*,w*) denotes an optimal solution to the primal and (y*, z*) denotes an optimal
solution to the dual, then the complementary slackness theorem says that, for each
J=12,...,n,either 27 = 0 or z; = 0 (or both) and, for each ¢ = 1,2,...,m,
either y7 = 0 or w; = 0 (or both). In this section, we shall prove that there are
optimal pairs of solutions for which the parenthetical “or both” statements don’t
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happen. That is, there are optimal solutions for which exactly one member of each
pair (z7,27) vanishes and exactly one member from each pair (y;, w;) vanishes.
In such cases, we say that the optimal solutions are strictly complementary to each
other. The strictness of the complementary slackness is often expressed by saying
that z* + z* > 0 and y* + w* > 0.2

As a warm-up, we prove the following theorem.

THEOREM 10.6. If both the primal and the dual have feasible solutions, then
there exists a primal feasible solution (T, ) and a dual feasible solution (g, Z) such
thatx +z > 0and y + w > 0.

PROOF. If there is a feasible primal solution Z for which Z; > 0, then it doesn’t
matter whether there is a feasible dual solution whose jth slack variable is strictly
positive. But what about indices j for which x; = 0 for every feasible solution? Let
7 be such an index. Consider the following linear programming problem:

maximize
(10.11) subjectto  Ax<b
x> 0.

This problem is feasible, since its constraints are the same as for the original primal
problem (10.9). Furthermore, it has an optimal solution (the corresponding objective
function value is zero). The dual of (10.11) is:
minimize b7y
subjectto ATy > e;
y=>0.

By the strong duality theorem, the dual has an optimal solution, say y’. Letting 2’
denote the corresponding slack variable, we have that
ATy — 2 = e;
y', 2 > 0.
Now, let y be any feasible solution to (10.10) and let z be the corresponding slack
variable. Then the above properties of 3’ and 2’ imply that y + 3’ is feasible for
(10.10) and its slack is z + 2’ 4 e;. Clearly, for this dual feasible solution we have
that the jth component of its vector of slack variables is at least 1. To summa-
rize, we have shown that, for each j, there exists a primal feasible solution, call it
(#9)29)), and a dual feasible solution, call it (y/), (), such that x;j) +zj(-j) > 0.
In the same way, one can exhibit primal and dual feasible solutions for which each
individual dual variable and its corresponding primal slack add to a positive number.
To complete the proof, we now form a strict convex combination of these n + m
feasible solutions. Since the feasible region for a linear programming problem is
convex, these convex combinations preserve primal and dual feasibility. Since the
convex combination is strict, it follows that every primal variable and its dual slack
add to a strictly positive number as does every dual variable and its primal slack. [

2Given any vector &, we use the notation £ > 0 to indicate that every component of & is strictly
positive: £; > 0 for all j.
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A variable x; that must vanish in order for a linear programming problem to
be feasible is called a null variable. The previous theorem says that if a variable is
null, then its dual slack is not null.

The following theorem is called the Strict Complementary Slackness Theorem

THEOREM 10.7. If a linear programming problem has an optimal solution, then
there is an optimal solution (x*, w*) and an optimal dual solution (y*, z*) such that
¥+ 2" > 0and y* +w* > 0.

We already know from the complementary slackness theorem (Theorem 5.1)
that «* and z* are complementary to each other as are y* and w*. This theorem
then asserts that the complementary slackness is strict.

PROOF. The proof is much the same as the proof of Theorem 10.6 except this
time we look at an index j for which x; vanishes in every optimal solution. We then
consider the following problem:

maximize x;
subject to Az <b
cTa>C*
x>0,

(10.12)

where (* denotes the objective value of the optimal solution to the original problem.
In addition to the dual variables y corresponding to the Az < b constraints, there
is one more dual variable, call it ¢, associated with the constraint ¢Tz > C*. The
analysis of problem (10.12) is similar to the analysis given in Theorem 10.6 except
that one must now consider two cases: (a) the optimal value of ¢ is strictly positive
and (b) the optimal value of ¢ vanishes. The details are left as an exercise (see
Exercise 10.6). U

Exercises
10.1 Is R™ a polyhedron?

10.2 For each b € R™, let £*(b) denote the optimal objective function value
for the following linear program:

maximize ¢l

subjectto  Ax<b
x> 0.

Suppose that £*(b) < oo for all b. Show that the function £*(b) is concave
(a function f on R™ is called concave if f(tx+ (1 —1t)y) > tf(x)+ (1 —
t)f(y) forall z and y in R™ and all 0 < ¢ < 1). Hint: Consider the dual
problem.

10.3 Describe how one needs to modify the proof of Theorem 10.4 to get a
proof of the following result:
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10.5

10.6
10.7
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Let P and P be two disjoint polyhedra in R™. Then there exist
disjoint generalized halfspaces H and H such that P C H and
PCH.

Find a strictly complementary solution to the following linear program-
ming problem and its dual:

maximize 2x; + o

subjectto 4x1 + 225 < 6
To S 1

2x1 + x9 S 3

Ty, T2 Z 0.

There is a slight oversimplification in the proof of Theorem 10.3. Can you
spot it? Can you fix it?

Complete the proof of Theorem 10.7.

Interior solutions. Prove the following statement: If a linear programming
problem has feasible solutions and the set of feasible solutions is bounded,
then there is a strictly positive dual feasible solution: y¥ > 0 and z > 0.
Hint. It is easier to prove the equivalent statement: if a linear program-
ming problem has feasible solutions and the dual has null variables, then
the set of primal feasible solutions is an unbounded set.

Notes

Carathéodory (1907) proved Theorem 10.3. Farkas (1902) proved Lemma 10.5.
Several similar results were discovered by many others, including Gordan (1873),
Stiemke (1915), Ville (1938), and Tucker (1956). The standard reference on convex
analysis is Rockafellar (1970).



CHAPTER 11

Game Theory

In this chapter, we shall study if not the most practical then certainly an elegant
application of linear programming. The subject is called game theory, and we shall
focus on the simplest type of game, called the finite two-person zero-sum game, or
just matrix game for short. Our primary goal shall be to prove the famous Minimax
Theorem, which was first discovered and proved by John von Neumann in 1928.
His original proof of this theorem was rather involved and depended on another
beautiful theorem from mathematics, the Brouwer Fixed-Point Theorem. However,
it eventually became clear that the solution of matrix games could be found by
solving a certain linear programming problem and that the Minimax Theorem is
just a fairly straightforward consequence of the Duality Theorem.

1. Matrix Games

A matrix game is a two-person game defined as follows. Each person first
selects, independently of the other, an action from a finite set of choices (the two
players in general will be confronted with different sets of actions from which to
choose). Then both reveal to each other their choice. If we let ¢ denote the first
player’s choice and j denote the second player’s choice, then the rules of the game
stipulate that the first player will pay the second player a;; dollars. The array of
possible payments

A = [ay]

is presumed known to both players before the game begins. Of course, if a;; is
negative for some pair (i, j), then the payment goes in the reverse direction—from
the second player to the first. For obvious reasons, we shall refer to the first player as
the row player and the second player as the column player. Since we have assumed
that the row player has only a finite number of actions from which to choose, we
can enumerate these actions and assume without loss of generality that ¢ is simply
an integer selected from 1 to m. Similarly, we can assume that j is simply an index
ranging from 1 to n (in its real-world interpretation, row action 3 will generally
have nothing to do with column action 3—the number 3 simply indicates that it is
the third action in the enumerated list of choices).

Let us look at a specific familiar example. Namely, consider the game every
child knows, called Paper—Scissors—Rock. To refresh the memory of older readers,
this is a two-person game in which at the count of three each player declares either
Paper, Scissors, or Rock. If both players declare the same object, then the round is a

R.J. Vanderbei, Linear Programming, International Series in Operations Research 151
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draw. But Paper loses to Scissors (since scissors can cut a piece of paper), Scissors
loses to Rock (since a rock can dull scissors), and finally Rock loses to Paper (since
a piece of paper can cover up a rock—it’s a weak argument but that’s the way the
game is defined). Clearly, for this game, if we enumerate the actions of declaring
Paper, Scissors, or Rock as 1, 2, 3, respectively, then the payoff matrix is

0 1 -1
-1 0 1
1 -1 0

With this matrix, neither player has an obvious (i.e., deterministic) winning strategy.
If the column player were always to declare Paper (hoping that the row player will
declare Rock), then the row player could counter by always declaring Scissors and
guaranteeing herself a winning of one dollar in every round. In fact, if the column
player were to stick to any specific declaration, then the row player would eventually
get wise to it and respond appropriately to guarantee that she wins. Of course, the
same logic applies to the row player. Hence, neither player should employ the same
declaration over and over. Instead, they should randomize their declarations. In fact,
due to the symmetry of this particular game, both players should make each of the
three possible declarations with equal likelihood.

But what about less trivial games? For example, suppose that the payoffs in the
Paper—Scissors—Rock game are altered so that the payoff matrix becomes

0 1 -2
A=| -3 0 4
5 =6 0

This new game still has the property that every deterministic strategy can be foiled
by an intelligent opponent. Hence, randomized behavior remains appropriate. But
the best probabilities are no longer uniformly 1/3. Also, who has the edge in this
game? Since the total of the payoffs that go from the row player to the column player
is 10 whereas the total of the payoffs that go to the row player is 11, we suspect that
the row player might have the edge. But this is just a guess. Is it correct? If it is
correct, how much can the row player expect to win on average in each round? If
the row player knows this number accurately and the column player does not, then
the row player could offer to pay the column player a small fee for playing each
round. If the fee is smaller than the expected winnings, then the row player can still
be confident that over time she will make a nice profit. The purpose of this chapter
is to answer these questions precisely.

Let us return now to the general setup. Consider the row player. By a random-
ized strategy, we mean that, at each play of the game, it appears (from the column
player’s viewpoint) that the row player is making her choices at random according
to some fixed probability distribution. Let y; denote the probability that the row
player selects action ¢. The vector y composed of these probabilities is called a sto-
chastic vector. Mathematically, a vector is a stochastic vector if it has nonnegative
components that sum up to one:

y>0 and ely=1,
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where e denotes the vector consisting of all ones. Of course, the column player must
also adopt a randomized strategy. Let x; denote the probability that the column
player selects action j, and let = denote the stochastic vector composed of these
probabilities.

The expected payoff to the column player is computed by summing over all
possible outcomes the payoff associated with that outcome times the probability
of the outcome. The set of possible outcomes is simply the set of pairs (i, ) as
1 ranges over the row indices (1,2,...,m) and j ranges over the column indices
(1,2,...,n). For outcome (7, j) the payoff is a,;, and, assuming that the row and
column players behave independently, the probability of this outcome is simply
y;xj. Hence, the expected payoff to the column player is

Z yiaijxj = yTA.’E.

]
2. Optimal Strategies

Suppose that the column player adopts strategy x (i.e., decides to play in accor-
dance with the stochastic vector x). Then the row player’s best defense is to use the
strategy y* that achieves the following minimum:

minimize y? Az
(11.1) subjectto  ely=1
y=>0.

From the fundamental theorem of linear programming, we know that this problem
has a basic optimal solution. For this problem, the basic solutions are simply y
vectors that are zero in every component except for one, which is one. That is, the
basic optimal solutions correspond to deterministic strategies. This is fairly obvious
if we look again at our example. Suppose that

1/3
x=| 1/3
1/3
Then
-1/3
Az = 1/3 |,
| —1/3
and so the row player’s best choice is to select either ¢ = 1 (Paper) or ¢« = 3 (Rock)
or any combination thereof. That is, an optimal solution is y* = (1,0, 0) (it is not
unique).

Since for any given x the row player will adopt the strategy that achieves the
minimum in (11.1), it follows that the column player should employ a strategy =*
that attains the following maximum:

(11.2) max min yT Az,
¢y

where the max and the min are over all stochastic vectors (of the appropriate
dimension).
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The question then becomes: how do we solve (11.2)7 It turns out that this
problem can be reformulated as a linear programming problem. Indeed, we have
already seen that the inner optimization (the minimization) can be taken over just
the deterministic strategies:

miny? Az = mine! Az,
y i

where we have used e; to denote the vector of all zeros except for a one in position
1. Hence, the max-min problem given in (11.2) can be rewritten as

maximize  (min; e} Az)
n
subject to ij =1
j=1
;>0 7=1,2,...,n.

Now, if we introduce a new variable, v, representing a lower bound on the eiTA:v’s,
then we see that the problem can be recast as a linear program:

maximize v

subject to v<elAx i=1,2,...,m
n
> wi=1
j=1
z; >0 j=12,...,n.

Switching back to vector notation, the problem can be written as

maximize v

subjectto  wve — Ax <0

eTae=1

x> 0.

Finally, writing in block-matrix form, we get

maximize [O 1} {ﬂ

. —A 0
(113) Sub_]ect to |: eT 8 :| |:i:| |:1:|

x>0
v free.

I IA

Now let’s turn it around. By symmetry, the row player seeks a strategy y* that
attains optimality in the following min-max problem:
min maxy’ Az,
y xX
which can be reformulated as the following linear program:
minimize u
subjectto  ue — ATy >0
eTy=1
y > 0.
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Writing in block-matrix form, we get

u

(11.4) , A" e[yl = [0
subject to [ ool lul = 11

Y2

u

minimize [0 1] m

0
free.

3. The Minimax Theorem

Having reduced the computation of the optimal strategies * and y* to the so-
lution of linear programs, it is now a simple matter to show that they are consistent
with each other. The next theorem, which establishes this consistency, is called the
Minimax Theorem:

THEOREM 11.1. There exist stochastic vectors x* and y* for which
max y*’ Az = min y” Ax*.
z Yy

PROOF. The proof follows trivially from the observation that (11.4) is the dual
of (11.3). Therefore, v* = w*. Furthermore,
v* = mine! Az* = miny” Az*,
i Y
and similarly,
T

T
u* = maxe; ATy* = max 2T ATy* = maxy*’ Ax.
J T T

O

The common optimal value v* = u* of the primal and dual linear programs is
called the value of the game. From the Minimax Theorem, we see that, by adopting
strategy y*, the row player assures herself of losing no more than v units per round
on the average. Similarly, the column player can assure himself of winning at least v
units per round on the average by adopting strategy x*. A game whose value is zero
is therefore a fair game. Games where the roles of the two players are interchange-
able are clearly fair. Such games are called symmetric. They are characterized by
payoff matrices having the property that a;; = —a;; for all ¢ and j (in particular, m
must equal n and the diagonal must vanish).

For the Paper—Scissors—Rock game, the linear programming problem that the
column player needs to solve is

maximize v

0o -1 2 1 x| < |0
subject to 0 —4 1 2| < |0
5 6 0 1 x| < |0
1 1 1 0 v| =1

Z1,%2, 23>0

v free.
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In nonmatrix notation, it looks like this:

maximize v
subject to —x9 4+ 223 +v < 0
3x1 —d4xs3+v <0
—5x1 + 6x9 +v <0
r1+ X2+ x3 =1
T, T2, I3 Z 0.

This linear programming problem deviates from our standard inequality form in
two respects: (1) it has an equality constraint and (2) it has a free variable. There
are several ways in which one can convert this problem into standard form. The
most compact conversion is as follows. First, use the equality constraint to solve
explicitly for one of the x;’s, say x3:

$3:1—$1—$2.

Then eliminate this variable from the remaining equations to get

maximize v
subjectto —2x; — 3z +v < —2
Tx1 +4xs +v < 4
—5x1 + 620 +v < 0
T+ T2 < 1
x1, w2 > 0.

The elimination of x3 has changed the last constraint from an equality into an in-
equality.

The next step is to write down a starting dictionary. To do this, we need to
introduce slack variables for each of these constraints. It is natural (and desirable)
to denote the slack variable for the last constraint by x3. In fact, doing this, we get
the following starting dictionary:

&= v
Ty =—-242r1 +3x3 — v
r5 = 4—Try —4as —v
Te = b5xr1 — 6x9 — v
T3 = 1-— r1 — X2 .

The variable v is not constrained to be nonnegative. Therefore, there is no reason
for it to be nonbasic. Let us do an arbitrary pivot with v as the entering variable and
any basic variable as the leaving variable (well, not exactly any—we must make
sure that it causes no division by 0, so therefore x3 is not a candidate). Picking x4
to leave, we get
E=—-2+42x1 + 319 — 24
v=—2+4 211 + 312 — 24
Is 6—91‘1—7I2+CE4
T = 24+ 3x1 — 929 + 24
I3 = 1-— r1 — T2 .
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Since v is free of sign constraints, it will never leave the basis (since a leaving
variable is, by definition, a variable that hits its lower bound—uv has no such bound).
Therefore, we may as well remove it from the dictionary altogether; it can always
be computed at the end. Hence, we note that

v=—2+42x1 4 3T3 — T4,

or better yet that
v=_¢,

and the dictionary now becomes

6272+21‘1+3I275€4

Is — 6791’177.%24’1’4
T = 24+ 3x1 — 929 + 24
T3 = 1-— ry — T2 .

At last, we are in a position to apply the simplex method. Two (tedious) iterations
bring us to the optimal dictionary. Since it involves fractions, we multiply each
equation by an integer to make each number in the dictionary an integer. Indeed,
after multiplying by 102, the optimal dictionary is given by

1026 = —16 — 27x5 — 13x¢ — 6224
10221 = 40— 9z5 + Txg + 214
10229 = 36 — 3x5 — 9xg + 1224
102.1‘3 = 26 + 12]}5 + 2.5(56 - 143}4 .

From this dictionary, it is easy to read off the optimal primal solution:

[ 40/102 ]
x* = | 36/102
| 26/102 |
Also, since x4, x5, and xg are complementary to y1, Y2, and ys in the dual problem,
the optimal dual solution is
[ 62/102
y = 27/102 |.
| 13/102 |

Finally, the value of the game is
v*=¢" = —-16/102 = —0.15686275,

which indicates that the row player does indeed have an advantage and can expect
to make on the average close to 16 cents per round.

4. Poker

Some card games such as poker involve a round of bidding in which the play-
ers at times bluff by increasing their bid in an attempt to coerce their opponents
into backing down, even though if the challenge is accepted they will surely lose.
Similarly, they will sometimes underbid to give their opponents false hope. In this
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section, we shall study a simplified version of poker (the real game is too hard to
analyze) to see if bluffing and underbidding are justified bidding strategies.

Simplified poker involves two players, A and B, and a deck having three cards,
1, 2, and 3. At the beginning of a round, each player “antes up” $1 and is dealt one
card from the deck. A bidding session follows in which each player in turn, starting
with A, either (a) bets and adds $1 to the “kitty” or (b) passes. Bidding terminates
when

a bet is followed by a bet,
a pass is followed by a pass, or
a bet is followed by a pass.

In the first two cases, the winner of the round is decided by comparing cards, and
the kitty goes to the player with the higher card. In the third case, bet followed by
pass, the player who bet wins the round independently of who had the higher card
(in real poker, the player who passes is said to fold).

With these simplified betting rules, there are only five possible betting
scenarios:

A passes, B passes: $1 to holder of higher card
A passes, B bets, A passes: $1toB
A passes, B bets, A bets: $2 to holder of higher card
A bets, B passes: $1to A
A bets, B bets: $2 to holder of higher card

After being dealt a card, player A will decide to bet along one of three lines:

1. Pass. If B bets, pass again.
2. Pass. If B bets, bet.
3. Bet.

Similarly, after being dealt a card, player B can bet along one of four lines:

1. Pass no matter what.

2. If A passes, pass, but if A bets, bet.
3. If A passes, bet, but if A bets, pass.
4. Bet no matter what.

To model the situation as a matrix game, we must identify each player’s pure strate-
gies. A pure strategy is a statement of what line of betting a player intends to follow
for each possible card that the player is dealt. Hence, the players’ pure strategies
can be denoted by triples (y1, y2, y3), where y; is the line of betting that the player
will use when holding card ¢. (For player A, the y;’s can take values 1, 2, and 3,
whereas for player B, they can take values 1, 2, 3, and 4.)

Given a pure strategy for both players, one can compute the average payment
from, say, A to B. For example, suppose that player A adopts strategy (3, 1,2) and
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player B adopts strategy (3,2,4). There are six ways in which the cards can be
dealt, and we can analyze each of them as follows:

card dealt | betting session payment
A B AtoB
1 2 A bets, B bets 2

1 3 A bets, B bets 2

2 1 A passes, B bets, A passes 1

2 3 A passes, B bets, A passes 1

3 1 A passes, B bets, A bets -2

3 2 A passes, B passes -1

Since each of the six deals are equally likely, the average payment from A to B is
2+24+1+1-2-1)/6=0.5.

The calculation of the average payment must be carried out for every combi-
nation of pairs of strategies. How many are there? Player A has 3 x 3 x 3 = 27
pure strategies and player B has 4 x 4 x 4 = 64 pure strategies. Hence, there are
27x64 = 1,728 pairs. Calculating the average payment for all these pairs is a daunt-
ing task. Fortunately, we can reduce the number of pure strategies (and hence the
number of pairs) that need to be considered by making a few simple observations.

The first observation is that a player holding a 1 should never answer a bet with
a bet, since the player will lose regardless of the answering bet and will lose less by
passing. This logic implies that, when holding a 1,

player A should refrain from betting along line 2;
player B should refrain from betting along lines 2 and 4.

More clearly improvable strategies can be ruled out when holding the highest
card. For example, a player holding a 3 should never answer a bet with a pass, since
by passing the player will lose, but by betting the player will win. Furthermore,
when holding a 3, a player should always answer a pass with a bet, since in either
case the player is going to win, but answering with a bet opens the possibility of
the opponent betting again and thereby increasing the size of the win for the player
holding the 3. Hence, when holding a 3,

player A should refrain from betting along line 1;
player B should refrain from betting along lines 1, 2, and 3.

Eliminating from consideration the above lines of betting, we see that player
A now has 2 x 3 x 2 = 12 pure strategies and player B has 2 x 4 x 1 = 8 pure
strategies. The number of pairs has therefore dropped to 96—a significant reduction.
Not only do we eliminate these “bad” strategies from the mathematical model but
also we assume that both players know that these bad strategies will not be used.
That is, player A can assume that player B will play intelligently, and player B
can assume the same of A. This knowledge then leads to further reductions. For
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example, when holding a 2, player A should refrain from betting along line 3. To
reach this conclusion, we must carefully enumerate possibilities. Since player A
holds the 2, player B holds either the 1 or the 3. But we’ve already determined what
player B will do in both of those cases. Using this knowledge, it is not hard to see
that player A would be unwise to bet along line 3. A similar analysis reveals that,
when holding a 2, player B should refrain from lines 3 and 4. Therefore, player A
now has only 2 x 2 x 2 = 8 pure strategies and player B hasonly 2 x 2 x 1 =4
pure strategies.

At this point, no further reductions are possible. Computing the payoff matrix,
we get

(1,1,4) (1,2,4) (3,1,4) (3,2,4)
(1L1,2) T s 5]
(1’173) 7% % é
(1,2,2) % % _% _%
A= (1,2,3) : -3
(37173) _% % % %
(3.2,2) 3 -3 G
(37273) L % _é é _
Solving the matrix game, we find that
* T
y=[5 0020007
and
* 2 11T
=[3003].

These stochastic vectors can be summarized as simple statements of the optimal
randomized strategies for the two players. Indeed, player A’s optimal strategy is as
follows:

when holding 1, mix lines 1 and 3 in 5:1 proportion;
when holding 2, mix lines 1 and 2 in 1:1 proportion;
when holding 3, mix lines 2 and 3 in 1:1 proportion.

Similarly, player B’s optimal strategy can be described as

when holding 1, mix lines 1 and 3 in 2:1 proportion;
when holding 2, mix lines 1 and 2 in 2:1 proportion;
when holding 3, use line 4.
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Note that it is optimal for player A to use line 3 when holding a 1 at least some of

the time.

Since line 3 says to bet, this bet is a bluff. Player B also bluffs some-

times, since betting line 3 is sometimes used when holding a 1. Clearly, the optimal
strategies also exhibit some underbidding.

11.1

11.2

11.3

114
11.5

11.6

11.7

Exercises

Players A and B each hide a nickel or a dime. If the hidden coins match,
player A gets both; if they don’t match, then B gets both. Find the opti-
mal strategies. Which player has the advantage? Solve the problem for
arbitrary denominations a and b.

Players A and B each pick a number between 1 and 100. The game is a
draw if both players pick the same number. Otherwise, the player who
picks the smaller number wins unless that smaller number is one less than
the opponent’s number, in which case the opponent wins. Find the optimal
strategy for this game.

We say that row r dominates row s if a,; > ag; forall j = 1,2,...,n.
Similarly, column r is said to dominate column s if a;. > a;s for all
i =1,2,..., m. Show that
(a) If a row (say, ) dominates another row, then the row player has an
optimal strategy y* in which ) = 0.
(b) If a column (say, s) is dominated by another column, then the column
player has an optimal strategy x* in which 2} = 0.
Use these results to reduce the following payoff matrix to a 2 X 2 matrix:
-6 2 -4 -7 =5
0 4 -2 -9 -1
-7 3 -3 -8 -2
2 -3 6 0 3

Solve simplified poker assuming that antes are $2 and bets are $1.

Give necessary and sufficient conditions for the rth pure strategy of the
row and the sth pure strategy of the column player to be simultaneously
optimal.

Use the Minimax Theorem to show that

maxmin y? Az = minmax y’ Az.
Bimatrix Games. Consider the following two-person game defined in
terms of a pair of m x n matrices A and B: if the row player selects
row index ¢ and the column player selects column index j, then the row
player pays a;; dollars and the column player pays b;; dollars. Stochastic
vectors x* and y* are said to form a Nash equilibrium if

vl Az < yT Az for all y
y*T'Bx* < y*TBx for all x.
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11.8

11.9

11. GAME THEORY

The purpose of this exercise is to relate Nash equilibria to the problem of
finding vectors = and y that satisfy

e I R R e

(11.5) Y W; 0, for all 7,
0
0

252 , for all 7,
x’ w’ y? z

(AVANI

(vectors w and z can be thought of as being defined by the matrix equal-
ity). Problem (11.5) is called a linear complementarity problem.
(a) Show that there is no loss in generality in assuming that A and B
have all positive entries.
(b) Assuming that A and B have all positive entries, show that, if (z*, y*)
is a Nash equilibrium, then
= z" y/ _ y*
y*TA{I?* ’ y*TB(E*
solves the linear complementarity problem (11.5).
(c) Show that, if (2’,y’) solves the linear complementarity problem
(11.5), then

’ /
* z * y
xZTI’ y:T/

elx ety

is a Nash equilibrium.
(An algorithm for solving the linear complementarity problem is devel-
oped in Exercise 18.7.)

The Game of Morra. Two players simultaneously throw out one or two
fingers and call out their guess as to what the total sum of the outstretched
fingers will be. If a player guesses right, but his opponent does not, he
receives payment equal to his guess. In all other cases, it is a draw.

(a) List the pure strategies for this game.

(b) Write down the payoff matrix for this game.

(c) Formulate the row player’s problem as a linear programming prob-
lem. (Hint: Recall that the row player’s problem is to minimize the
maximum expected payout.)

(d) What is the value of this game?

(e) Find the optimal randomized strategy.

Heads I Win—Tails You Lose. In the classical coin-tossing game, player
A tosses a fair coin. If it comes up heads player B pays player A $2 but
if it comes up tails player A pays player B $2. As a two-person zero-
sum game, this game is rather trivial since neither player has anything to
decide (after agreeing to play the game). In fact, the matrix for this game
is a 1 x 1 matrix with only a zero in it, which represents the expected
payoff from player A to B.
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Now consider the same game with the following twist. Player A is
allowed to peek at the outcome and then decide either to stay in the game
or to bow out. If player A bows out, then he automatically loses but only
has to pay player B $1. Of course, player A must inform player B of
his decision. If his decision is to stay in the game, then player B has the
option either to stay in the game or not. If she decides to get out, then she
loses $1 to player A. If both players stay in the game, then the rules are
as in the classical game: heads means player A wins, tails means player B
wins.

(a) List the strategies for each player in this game. (Hint: Don’t forget
that a strategy is something that a player has control over.)

(b) Write down the payoff matrix.

(c) A few of player A’s strategies are uniformly inferior to others. These
strategies can be ruled out. Which of player A’s strategies can be
ruled out?

(d) Formulate the row player’s problem as a linear programming prob-
lem. (Hints: (1) Recall that the row player’s problem is to minimize
the maximum expected payout. (2) Don’t include rows that you ruled
out in the previous part.)

(e) Find the optimal randomized strategy.

(f) Discuss whether this game is interesting or not.

Notes

The Minimax Theorem was proved by von Neumann (1928). Important ref-
erences include Gale et al. (1951), von Neumann and Morgenstern (1947), Karlin
(1959), and Dresher (1961). Simplified poker was invented and analyzed by Kuhn
(1950). Exercises 11.1 and 11.2 are borrowed from Chvatal (1983).



CHAPTER 12

Regression

In this chapter, we shall study an application of linear programming to an area
of statistics called regression. As a specific example, we shall use size and iteration-
count data collected from a standard suite of linear programming problems to derive
a regression estimate of the number of iterations needed to solve problems of a
given size.

1. Measures of Mediocrity

We begin our discussion with an example. Here are the midterm exam scores
for a linear programming course:

28, 62, 80, 84, 86, 86, 92, 95, 98.

Let m denote the number of exam scores (i.e., m = 9)and letb;, 1 = 1,2,...,m,
denote the actual scores (arranged in increasing order as above). The most naive
measure of the “average” score is just the mean value, Z, defined by
1 m
r=— b; = 79.0.
s

This is an example of a statistic, which, by definition, is a function of a set of
data. Statistics are computed so that one does not need to bother with reporting
large tables of raw numbers. (Admittedly, the task of reporting the above list of
nine exam scores is not very onerous, but this is just an example.) Now, suppose
the professor in question did not report the scores but instead just gave summary
statistics. Consider the student who got an 80 on the exam. This student surely
didn’t feel great about this score but might have thought that at least it was better
than average. However, as the raw data makes clear, this student really did worse
than average! on the exam (the professor confesses that the exam was rather easy).
In fact, out of the nine students, the one who got an 80 scored third from the bottom
of the class. Furthermore, the student who scored worst on the exam did so badly
that one might expect this student to drop the course, thereby making the 80 look
even worse.

Any statistician would, of course, immediately suggest that we report the
median score instead of the mean. The median score is, by definition, that score

1“Average” is usually taken as synonymous with “mean” but in this section we shall use it in an
imprecise sense, employing other technically defined terms for specific meanings.
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FIGURE 12.1. The objective function whose minimum occurs at
the median.

which is worse than half of the other scores and better than the other half. In other
words, the median Z is defined as

Li' = b(m+1)/2 = 86.

(Here and in various places in this chapter, we shall assume that m is odd so that
certain formulas such as this one remain fairly simple.) Clearly, the 86 gives a more
accurate indication of what the average score on the exam was.

There is a close connection between these statistical concepts and optimization.
For example, the mean Z minimizes, over all real numbers x, the sum of the squared
deviations between the data points and x itself. That is,

T = argmin, Z(x —b;)?.
i=1
To verify this claim, we let f(z) = >0, (z — b;)?, differentiate with respect to ,
and set the derivative to zero to get
fl(x) = ZQ(JZ —b;) = 0.

i=1

Solving this equation for the critical point® z, we see that

The fact that this critical point is a minimum rather than a maximum (or a saddle
point) follows from the fact that f”/(x) > 0 for all z € R.

%Recall from calculus that a critical point is any point at which the derivative vanishes or fails to
exist.
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The median & also enjoys a close connection with optimization. Indeed, it is
the point that minimizes the sum of the absolute values of the difference between
each data point and itself. That is,

m
& = argmin, cp Z |z — b;].
i=1

To see that this is correct, we again use calculus. Let

fl@)=>" |z —bi
i=1

This function is continuous, piecewise linear, and convex (see Figure 12.1). How-
ever, it is not differentiable at the data points. Nonetheless, we can look at its
derivative at other points to see where it jumps across zero. The derivative, for

T ¢ {bl,bg,...,bm},is

7@ = senle — ),

where
1 ifzx >0
sgn(z) = 0 ifx=0
-1 if x < 0.

Hence, we see that the derivative at z is just the number of data points to the left of
2 minus the number of data points to the right. Clearly, this derivative jumps across
zero at the median, implying that the median is the minimum.

In this chapter, we shall discuss certain generalizations of means and medi-
ans called regressions. At the end, we will consider a specific example that is of
particular interest to us: the empirical average performance of the simplex method.

2. Multidimensional Measures: Regression Analysis

The analysis of the previous section can be recast as follows. Given a “random”
observation b, we assume that it consists of two parts: a fixed, but unknown, part
denoted by x and a random fluctuation about this fixed part, which we denote by e.
Hence,

b=x+e
Now, if we take several observations and index them as ¢ = 1,2,...,m, the b’s and
the €’s will vary, but x is assumed to be the same for all observations. Therefore, we
can summarize the situation by writing

b; = + €, 1=1,2,...,m.

We now see that the mean is simply the value of = that minimizes the sum of the
squares of the €;’is. Similarly, the median is the value of = that minimizes the sum
of the absolute values of the ¢;’s.

Sometimes one wishes to do more than merely identify some sort of “average.”
For example, a medical researcher might collect blood pressure data on thousands
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of patients with the aim of identifying how blood pressure depends on age, obesity
(defined as weight over height), sex, etc. So associated with each observation b of
a blood pressure are values of these control variables. Let’s denote by a; the age
of a person, as the obesity, as the sex, etc. Let n denote the number of different
control variables being considered by the researcher. In (linear) regression analysis,
we assume that the response b depends linearly on the control variables. Hence, we
assume that there are (unknown) numbers z;, 7 = 1,2, ..., n, such that

n
b = Za]‘l’j =+ €.
j=1

This equation is referred to as the regression model. Of course, the researcher col-
lects data from thousands of patients, and so the data items, b and the a;’s, must be
indexed over these patients. That is,

n
bi: E aijxj+€i7 i:l,?,...,m.
=1

If we let b denote the vector of observations, € the vector of random fluctuations,
and A the matrix whose ith row consists of the values of the control variables for
the ith patient, then the regression model can be expressed in matrix notation as

(12.1) b= Ax + .

In regression analysis, the goal is to find the vector = that best explains the
observations b. Hence, we wish to pick values that minimize, in some sense, the
vector €’s. Just as for the mean and median, we can consider minimizing either
the sum of the squares of the ¢;’s or the sum of the absolute values of the ¢;’s. There
are even other possibilities. In the next two sections, we will discuss the range of
possibilities and then give specifics for the two mentioned above.

3. L2-Regression

There are several notions of the size of a vector. The most familiar one is the

Euclidean length
lylla = 3y,

This notion of length corresponds to our physical notion (at least when the dimen-
sion is low, such as 1, 2, or 3). However, one can use any power inside the sum
as long as the corresponding root accompanies it on the outside of the sum. For
1 < p < o0, we get then the so-called LP-norm of a vector y

lylly = O yb)'/P.

Other than p = 2, the second most important case is p = 1 (and the third most
important case corresponds to the limit as p tends to infinity).

Measuring the size of € in (12.1) using the L?-norm, we arrive at the L2-
regression problem, which is to find Z that attains the minimum L?-norm for the
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difference between b and Ax. Of course, it is entirely equivalent to minimize the
square of the L2-norm, and so we get
T = argmin, ||b — Az||3.

Just as for the mean, there is an explicit formula for z. To find it, we again rely on
elementary calculus. Indeed, let

flz)=1b— Al’”% = Z (bi - Z%‘j%‘) .

7

In this multidimensional setting, a critical point is defined as a point at which the
derivative with respect to every variable vanishes. So if we denote a critical point
by Z, we see that it must satisfy the following equations:

of i}
awk(.ﬁ):zi:Q(bi—zj:aijx]‘)(—aik):O, ]4}21,2,...,77,.
Simplifying these equations, we get
Za’ikbi:zzaika}i]’jjv k=1,2,...,n.
i i

In matrix notation, these equations can be summarized as follows:

ATy = AT Az.
In other words, assuming that A7 A is invertible, we get
(12.2) z=(ATA)"1ATp,

This is the formula for L2-regression. It is also commonly called least squares
regression. In Section 12.6, we will use this formula to solve a specific regression
problem.

Example. The simplest and most common regression model arises when one
wishes to describe a response variable b as a linear function of a single input variable
a. In this case, the model is

b=ax1 + x2.

The unknowns here are the slope x; and the intercept 5. Figure 12.2 shows a plot
of three pairs (a, b) through which we want to draw the “best” straight line. At first
glance, this model does not seem to fit the regression paradigm, since regression
models (as we’ve defined them) do not involve a term for a nonzero intercept. But
the model here can be made to fit by introducing a new control variable, say, ao,
which is always set to 1. While we’re at it, let’s change our notation for a to a; so
that the model can now be written as

b=aix1 + asxs.

The three data points can then be summarized in matrix notation as
1 01 2 €1

25 | =21 {1]+ €

3 4 1| L™ €3
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For this problem,
and
Hence,

T
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FIGURE 12.2. Three data points for a linear regression.

=515 sl ]-1%]

4. L'-Regression

Just as the median gives a more robust estimate of the “average value” of a
collection of numbers than the mean, Ll—regression is less sensitive to outliers than
least squares regression is. It is defined by minimizing the L'-norm of the deviation
vector in (12.1). That is, the problem is to find Z as follows:

& = argmin, ||b — Ax||;.

Unlike for least squares regression, there is no explicit formula for the solution to
the L!-regression problem. However, the problem can be reformulated as a linear
programming problem. Indeed, it is easy to see that the L!-regression problem,
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minimize E b; — E ai;Tj
i J

can be rewritten as

minimize ), 1;

SubjeCttO tl—‘bz—zja”xj‘ :O, i:1,2,...,m7
which is equivalent to the following linear programming problem:

minimize Y . t;
(12.3) . : .
subjectto —t; < b; — Zj ai;r; <t, i=1,2,...,m.

Hence, to solve the L!-regression problem, it suffices to solve this linear program-
ming problem. In the next section, we shall present an alternative algorithm for

computing the solution to an L'-regression problem.

Example. Returning to the example of the last section, the L!-regression prob-
lem is solved by finding the optimal solution to the following linear programming
problem:

minimize t1 +to +i3
subject to —T9—1t1 < -1
72%17()’]2 7t2 § —2.5
—4x1—x2 —t3 S -3
.%‘2—251 < 1
2x1+1o —to < 25
4xi14x9 —t3 < 3
ty, t2, t3> 0.

The solution to this linear programming problem is

- 0.5
=7 |
which clearly indicates that the point (2, 2.5) is viewed by the L!-regression as an
outlier, since the regression line passes exactly through the other two points.

5. Iteratively Reweighted Least Squares

Even though calculus cannot be used to obtain an explicit formula for the
solution to the L!-regression problem, it can be used to obtain an iterative procedure
that, when properly initialized, converges to the solution of the L!-regression prob-
lem. The resulting iterative process is called iteratively reweighted least squares. In
this section, we briefly discuss this method. We start by considering the objective
function for L!-regression:
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f(@) = b= Az|y

i J

Differentiating this objective function is a problem, since it involves absolute values.
Howeyver, the absolute value function

9(2) = ||

is differentiable everywhere except at one point: z = 0. Furthermore, we can use
the following simple formula for the derivative, where it exists:
z

9(2) =15

|2’

Using this formula to differentiate f with respect to each variable, and setting the
derivatives to zero, we get the following equations for critical points:

Z QijTj
124 W) =0, k=1,2,...,n.
(124 8:619 Z |b —Z aUmJ|( aik) K

If we introduce the following shorthand notation for the deviations,

.T) = bl — Zaijxj s
J
we see that we can rewrite (12.4) as

Zazkb Zzavk“w% E=1,2,...,n.

Now, if we let E, denote the diagonal matrix containing the vector €(x) on the
diagonal, we can write these equations in matrix notation as follows:

ATE ' = ATE ' Ax.

This equation can’t be solved for z as we were able to do in L?-regression because
of the dependence of the diagonal matrix on x. But let us rearrange this system of
equations by multiplying both sides by the inverse of AT E* A. The result is

v = (ATE;'A) T ATE .

This formula suggests an iterative scheme that hopefully converges to a solution.
Indeed, we start by initializing 2 arbitrarily and then use the above formula to
successively compute new approximations. If we let z* denote the approximation
at the kth iteration, then the update formula can be expressed as

P = (ATESA) T ATES M,

Assuming only that the matrix inverse exists at every iteration, one can show that
this iteration scheme converges to a solution to the L'-regression problem.
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6. An Example: How Fast Is the Simplex Method?

In Chapter 4, we discussed the worst-case behavior of the simplex method and
studied the Klee—Minty problem that achieves the worst case. We also discussed the
importance of empirical studies of algorithm performance. In this section, we shall
introduce a model that allows us to summarize the results of these empirical studies.

We wish to relate the number of simplex iterations 1" required to solve a lin-
ear programming problem to the number of constraints m and/or the number of
variables n in the problem (or some combination of the two). As any statistician
will report, the first step is to introduce an appropriate model.> Hence, we begin
by asking: how many iterations, on average, do we expect the simplex method to
take if the problem has m constraints and n variables? To propose an answer to
this question, consider the initial dictionary associated with a given problem. This
dictionary involves m values, x3, for the primal basic variables, and n values, ¥}/,
for the dual nonbasic variables. We would like each of these m + n variables to
have nonnegative values, since that would indicate optimality. If we assume that
the initial dictionary is nondegenerate, then one would expect on the average that
(m + n)/2 of the values would be positive and the remaining (m + n)/2 values
would be negative.

Now let’s look at the dynamics of the simplex method. Each iteration focuses
on exactly one of the negative values. Suppose, for the sake of discussion, that the
negative value corresponds to a dual nonbasic variable, that is, one of the coeffi-
cients in the objective row of the dictionary. Then the simplex method selects the
corresponding primal nonbasic variable to enter the basis, and a leaving variable is
chosen by a ratio test. After the pivot, the variable that exited now appears as a
nonbasic variable in the same position that the entering variable held before. Fur-
thermore, the coefficient on this variable is guaranteed to be positive (since we’ve
assumed nondegeneracy). Hence, the effect of one pivot of the simplex method is
to correct the sign of one of the negative values from the list of m + n values of
interest. Of course, the pivot also affects all the other values, but there seems no
reason to assume that the situation relative to them will have any tendency to get
better or worse, on the average. Therefore, we can think of the simplex method as
statistically reducing the number of negative values by one at each iteration.

Since we expect on the average that an initial dictionary will have (m + n)/2
negative values, it follows that the simplex method should take (m + n)/2 itera-
tions, on average. Of course, these expectations are predicated on the assumption
that degenerate dictionaries don’t arise. As we saw in Section 7.2, the self-dual sim-
plex method initialized with random perturbations will, with probability one, never
encounter a degenerate dictionary. Hence, we hypothesize that this variant of the
simplex method will, on average, take (m + n)/2 iterations. It is important to note
the main point of our hypothesis; namely, that the number of iterations is linear in
m + n as opposed, say, to quadratic or cubic.

3In the social sciences, a fundamental difficulty is the lack of specific arguments validating the
appropriateness of the models commonly introduced.
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We can test our hypothesis by first supposing that 7" can be approximated by a

function of the form
2%(m + n)?
for a pair of real numbers o and 3. Our goal then is to find the value for these
parameters that best fits the data obtained from a set of empirical observations.
(We’ve written the leading constant as 2% simply for symmetry with the other
factor—there is no fundamental need to do this.) This multiplicative representation
of the number of iterations can be converted into an additive (in « and [3) represen-
tation by taking logarithms. Introducing an € to represent the difference between the
model’s prediction and the true number of iterations, we see that the model can be
written as
logT = alog2 + Blog(m + n) + e.

Now, suppose that several observations are made. Using subscripts to distinguish
the various observations, we get the following equations:

log T} log2 log(mi + n1) €1
log Ty log2 log(msa + no) a €2
. = . . + .
: : : [ B } :
log T}, log2 log(mg + nyg) €L

If we let b denote the vector on the left, A the matrix on the right, x the vector
multiplied by A, and e the vector of deviations, then the model can be expressed as

b= Ax +,

where A and b are given. As we’ve seen, this is just a regression model, which we
can solve as an L!-regression or as an L2-regression.

Given real data, we shall solve this model both ways. Table 12.1 shows specific
data obtained by running the self-dual simplex method described in Chapter 7 (with
randomized initial perturbations) against most of the problems in a standard suite
of test problems (called the NETLIB suite Gay 1985). Some problems were too big
to run on the workstation used for this experiment, and others were formulated with
free variables that the code was not equipped to handle.

Using (12.2) to solve the problem as an L2-regression, we get

al] [ —1.03561
R 1.05152 |-

T ~ 0.488(m + n)'0%2.

This is amazingly close to our hypothesized formula, (m +n)/2. Figure 12.3 shows
a log-log plot of T vs. m + n with the L?-regression line drawn through it. It is
clear from this graph that a straight line (in the log—log plot) is a good model for
fitting this data.

Using (12.3) to solving the problem, we get

al [ —0.9508
6| 1.0491 |-

Or, in other words,
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Name m n iters Name m n iters
25fv47 777 1,545 5,089 || nesm 646 2,740 5,829
80bau3b | 2,021 9,195 10,514 || recipe 74 136 80
adlittle 53 96 141 scl105 104 103 92
afiro 25 32 16 || sc205 203 202 191
agg?2 481 301 204 || sc50a 49 48 46
agg3 481 301 193 || sc50b 48 48 53
bandm 224 379 1,139 || scagr25 347 499 1,336
beaconfd 111 172 113 scagr7 95 139 339
blend 72 83 117 || scfxml 282 439 531
bnll 564 1,113 2,580 || scfxm2 564 878 1,197
bnl2 1,874 3,134 6,381 scfxm3 846 1,317 1,886
boeing1 298 373 619 || scorpion 292 331 411
boeing2 125 143 168 || scrs8 447 1,131 783
bore3d 138 188 227 scsdl 77 760 172
brandy 123 205 585 scsd6 147 1,350 494
czprob 689 2,770 2,635 scsd8 397 2,750 1,548
d6cube 403 6,183 5,883 || sctapl 284 480 643
degen2 444 534 1,421 sctap2 1,033 1,880 1,037
degen3 1,503 1,818 6,398 || sctap3 1,408 2480 1,339
€226 162 260 598 || seba 449 896 766
etamacro 334 542 1,580 sharelb 107 217 404
fffF800 476 817 1,029 || share2b 93 79 189
finnis 398 541 680 || shell 487 1476 1,155
fitld 24 1,026 925 || ship04l 317 1915 597
fitlp 627 1,677 15284 || shipO4s 241 1,291 560
forplan 133 415 576 || ship081 520 3,149 1,091
ganges 1,121 1,493 2,716 || ship08s 326 1,632 897
greenbea | 1,948 4,131 21,476 || shipl2l 687 4,224 1,654
growl5 300 645 681 ship12s 417 1,996 1,360
grow22 440 946 999 sierra 1,212 2,016 793
grow7 140 301 322 standata 301 1,038 74
israel 163 142 209 || standmps 409 1,038 295
kb2 43 41 63 || stocforl 98 100 81
lotfi 134 300 242 || stocfor2 2,129 2,015 2,127
maros 680 1,062 2,998

TABLE 12.1. Number of iterations for the self-dual simplex method.

In other words,
T ~ 0.517(m + n)*0%.

The fact that this regression formula agrees closely with the L2-regression indicates
that the data set contains no outliers. In Section 12.6.1, we will consider randomly
generated problems and see at least one example where the L' and L? regression
lines differ significantly.

6.1. Random Problems. Now, let’s consider random problems generated in a
manner similar to the way we did it back in Chapter 4. We do, however, introduce
some changes. First of all, the problems in Chapter 4 were generated in such a
manner as to guarantee primal feasibility but dual feasibility was left to chance—
that is, many (half) of the problems were unbounded. The problems we wish to
consider now will be assumed to have optimal solutions (real-world problems are
often, but not always, known to have an optimal solution because of the underlying
physical model and therefore primal or dual infeasibility is often an indicator of
data and/or modeling errors). To guarantee the existence of an optimal solution, we
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Parametric Self-Dual Simplex Method
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FIGURE 12.3. A log-log plot of T'vs. m + n and the L' and L?
regression lines.

generate random optimal primal and dual solutions and associated random optimal
slack/surplus variables. Here’s the MATLAB code for that:

x = round(sigmaxrand(n,l)) .* (rand(n,1)>0.5);
y = round(sigmaxrand(l,m)) . (rand(1l,m)>0.5);
z = round(sigmasrand(l,n)).*(rand(1l,n)>0.5);
w = round (sigmaxrand(m,1l)) .* (rand(m,1)>0.5);

(as in Chapter 4, sigma is a constant initialized to 10). We then define A, b, and ¢
as problem data consistent with these optimal solutions:

A = round(sigmax* (randn(m,n))) .* (rand(m,n)>0.5) ;

b = Axx + w;

c = y*A - zZ;
Note that we have made one other key change from before—we have randomly
forced about half of the optimal values of the variables and about half of the con-
straint matrix coefficients to be zero. This change makes the problems slightly more
realistic as real-world problems often have much sparsity.

Next, we need to initialize a right-hand side perturbation and an objective func-
tion perturbation:

b0 = rand(m,1);

c0 -rand(1,n) ;
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There are just three relatively simple changes to the code defining the simplex
method itself to convert it from a primal-simplex algorithm to the parametric self-
dual method. The first is to change the line of code that checks if the problem has
been solved. Before, we only needed to check if all of the objective coefficients had
become negative (dual feasibility) because primal feasibility was built in. Now, we
have to check both primal and dual feasibility:

while max(c) > eps || min(b) < -eps,

Secondly, the choice of enter/leaving variables must be updated as it is now based
on minimizing the perturbation parameter:

[mu_col, col]l = max( (-c./c0).*(cO<-eps));
[mu_row, row] = max( (-b./b0).x*(b0> eps))
if mu col >= mu row,

mu = mu_col;

Acol = A(:,col);

[t, row] = max(-Acol./ (b+muxb0)) ;
else

7

mu = mu_row;
Arow = A(row, :);
[s, col]l = max(-Arow./ (c+muxc0Q)) ;
end

Finally, as part of every pivot we have to update b0 and c0:

brow = b0 (row) ;
b0 = b0 - browxAcol/a;

b0 (row) = -brow/a;
ccol = cO0(col) ;

c0 = c0 - ccolxArow/a;
c0(col) = ccol/a;

The code was run 1,000 times. Figure 12.4 shows the number of pivots plotted
against the sum m-+n. Just as we saw with the primal simplex method in Chapter 4,
m + n does not seem to be a good measure of problem size as many problems of a
given size solve much more quickly than the more typical cases. Hence, there are
a number of “outliers.” Overlayed on the scatter plot are the L' and L? regression
lines. While neither regression line follows what appears to be an upper line of
points that seems to dominate the results, the L' is closer to that than is the L? line.

The result of the L!-regression is:

T ~ 6—0.72261.12log(m+n) — 0486(m + n)l.lZ.
The result of the L?-regression is:
T ~ 6—0.60661.0510g(m+n) — O546(m + ’I’L)1'05.

Finally, as in Chapter 4, min(m, n) is a better measure of problem size for these
randomly generated problems. Figure 12.5 shows the same data plotted against
min(m, n).
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Empirical Performance of the Self-Dual Simplex Method
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FIGURE 12.4. The parametric self-dual simplex method was used
to solve 1,000 problems known to have an optimal solution.
Shown here is a log-log plot showing the number of pivots
required to reach optimality plotted against m + n. Also shown
are the L' and L? regression lines.

In this case, both regression lines are about the same:

T ~ 670.261.4610g(min(m,n)) 1.46'

= 0.8 min(m,n)

Exercises
12.1 Find the L2-regression line for the data shown in Figure 12.6.
12.2 Find the L*-regression line for the data shown in Figure 12.6.

12.3 Midrange. Given a sorted set of real numbers, {b1, b, . .., b,, }, show that
the midrange, & = (b1 + b,,)/2, minimizes the maximum deviation from
the set of observations. That is,

1 .
§(b1 + by,) = argmin, max |z — b;].
12.4 Centroid. Given a set of points {b1,ba, ..., b, } on the plane R?, show

that the centroid
1 m
i=
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FIGURE 12.5. The parametric self-dual simplex method was used
to solve 1,000 problems known to have an optimal solution.
Shown here is a log-log plot showing the number of pivots
required to reach optimality plotted against min(m,n). In this
case, the L! and L? regression lines are almost exactly on top of
each other.

minimizes the sum of the squares of the distance to each point in the set.
That is, Z solves the following optimization problem:

m
minimize Z llz — b;||2
i=1
Note: Each data point b; is a vector in R? whose components are denoted,
say, by b;1 and b;2, and, as usual, the subscript 2 on the norm denotes the
Euclidean norm. Hence,

2 = bill2 = /(21 — bi1)2 + (22 — bi2)2.

12.5 Facility Location. A common problem is to determine where to locate
a facility so that the distance from its customers is minimized. That is,
given a set of points {by,ba, ..., b, } on the plane R?, the problem is to
find & = (&1, &3) that solves the following optimization problem:

m
minimize Z |z — b;l|2.
i=1
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FIGURE 12.6. Four data points for a linear regression.

As for Ll—regression, there is no explicit formula for &, but an iterative
scheme can be derived along the same lines as in Section 12.5. Derive an
explicit formula for this iteration scheme.

12.6 A Simple Steiner Tree. Suppose there are only three customers in the fa-

12.7

cility location problem of the previous exercise. Suppose that the triangle
formed by b1, by, and b has no angles greater than 120°. Show that the
solution Z to the facility location problem is the unique point in the trian-
gle from whose perspective the three customers are 120° apart from each
other. What is the solution if one of the angles, say, at vertex by, is more
than 120°?

Sales Force Planning. A distributor of office equipment finds that the
business has seasonal peaks and valleys. The company uses two types of
sales persons: (a) regular employees who are employed year-round and
cost the company $17.50/h (fully loaded for benefits and taxes) and (b)
temporary employees supplied by an outside agency at a cost of $25/h.
Projections for the number of hours of labor by month for the following
year are shown in Table 12.2. Let a; denote the number of hours of labor
needed for month 7 and let  denote the number of hours per month of
labor that will be handled by regular employees. To minimize total labor
costs, one needs to solve the following optimization problem:

minimize » (25 max(a; — x,0) + 17.50z).

7
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Jan 390 | May 310 | Sep 550
Feb 420 | Jun 590 | Oct 360
Mar 340 | Jul 340 | Nov 420
Apr 320 | Aug 580 | Dec 600

TABLE 12.2. Projected labor hours by month.

(a) Show how to reformulate this problem as a linear programming prob-
lem.

(b) Solve the problem for the specific data given above.

(c) Use calculus to find a formula giving the optimal value for z.

12.8 Acceleration Due to Gravity. The law of gravity from classical physics
says that an object dropped from a tall building will, in the absence of air
resistance, have a constant rate of acceleration g so that the height z, as a
function of time t, is given by

1
x(t) = —ith.

Unfortunately, the effects of air resistance cannot be ignored. To include
them, we assume that the object experiences a retarding force that is di-
rectly proportional to its speed. Letting v(¢) denote the velocity of the
object at time ¢, the equations that describe the motion are then given by

2'(t) = v(t), t>0, x(0) =0,
V() = —g — fo(t), t >0, v(0) =0

(f is the unknown constant of proportionality from the air resistance).
These equations can be solved explicitly for  as a function of ¢:

x@y:—%(fﬁ—1+f0
u(t) = —% (1- e_ft) .

It is clear from the equation for the velocity that the terminal velocity is
g/ f. It would be nice to be able to compute g by measuring this velocity,
but this is not possible, since the terminal velocity involves both f and g.
However, we can use the formula for (¢) to get a two-parameter model
from which we can compute both f and g. Indeed, if we assume that all
measurements are taken after terminal velocity has been “reached” (i.e.,
when e/t is much smaller than 1), then we can write a simple linear
expression relating position to time:

g9

xr =
2o
Now, in our experiments we shall set values of = (corresponding to spe-
cific positions below the drop point) and measure the time at which the
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Obs. | Position Time
number (m) (s)
1 —-10 3.72

2 —-20 7.06

3 —-30 10.46

4 —10  3.71

5 —20  7.00

6 —-30 1048

7 —10  3.67

8 —-20 7.08

9 —-30 10.33

TABLE 12.3. Time at which a falling object passes certain points.

object passes these positions. Since we prefer to write regression mod-
els with the observed variable expressed as a linear function of the control
variables, let us rearrange the above expression so that ¢ appears as a func-
tion of x:

L f

t=—— 2.
f g

Using this regression model and the data shown in Table 12.3, do an
L?-regression to compute estimates for 1/f and —f/g. From these es-
timates derive an estimate for g. If you have access to linear program-
ming software, solve the problem using an L'-regression and compare
your answers.

12.9 [teratively Reweighted Least Squares. Show that the sequence of iterates

in the iteratively reweighted least squares algorithm produces a monoton-
ically decreasing sequence of objective function values by filling in the
details in the following outline. First, recall that the objective function for
L'-regression is given by

m

f(x) = b= Azl =) ei(w),

i=1
where

Gi((I}) = bi — Zaijxj .
j=1
Also, the function that defines the iterative scheme is given by
T(x) = (ATE;'A) " ATE ™,

where E,. denotes the diagonal matrix with the vector () on its diagonal.
Our aim is to show that

f(T(x)) < f(x).
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In order to prove this inequality, let

9u(2) = i <) _ 1B, /% (b — Az)|l3.
= @)
(a) Use calculus to show that, for each x, T'(x) is a global minimum of
gz-
(b) Show that g, (z) = f(x).
(c) By writing

€i(T(x)) = €(x) + (e:(T(x)) — eil))

and then substituting the right-hand expression into the definition of
92 (T(x)), show that

92(T(x)) = 2f(T(x)) — f ().

(d) Combine the three steps above to finish the proof.

12.10 In our study of means and medians, we showed that the median of a
collection of numbers, bq,bs,...,b,, is the number Z that minimizes
> |z — bj|. Let 11 be a real parameter.

(a) Give a statistical interpretation to the following optimization problem:

minimize Z (lz = bj] + p(x —by)).
J
Hint: the special cases = 0,+1/2,+1 might help clarify the gen-
eral situation.

(b) Express the above problem as a linear programming problem.

(c) The parametric simplex method can be used to solve families of lin-
ear programming problems indexed by a parameter p (such as we
have here). Starting at 4 = oo and proceeding to ;1 = —oco one
solves all of the linear programs with just a finite number of pivots.
Use the parametric simplex method to solve the problems of the pre-
vious part in the case where n = 4 and by = 1, by = 2, b3 = 4, and
by = 8.

(d) Now consider the general case. Write down the dictionary that
appears in the k-th iteration and show by induction that it is correct.

12.11 Show that the L°°-norm is just the maximum of the absolute values.
That is,

lim {|[],, = max [].

Notes

Gonin and Money (1989) and Dodge (1987) are two references on regression
that include discussion of both L? and L' regression. The standard reference on L'
regression is Bloomfield and Steiger (1983).
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Several researchers, including Smale (1983), Borgwardt (1982, 1987a), Adler
and Megiddo (1985), and Todd (1986), have studied the average number of itera-
tions of the simplex method as a function of m and/or n. The model discussed in
this chapter is similar to the sign-invariant model introduced by Adler and Berenguer
(1981).



CHAPTER 13

Financial Applications

In this chapter, we shall study some applications of linear programming to
problems in quantitative finance.

1. Portfolio Selection

Every investor, from the individual to the professional fund manager, must de-
cide on an appropriate mix of assets to include in his or her investment portfolio.
Given a collection of potential investments (indexed, say, from 1 to n), let R; denote
the return in the next time period on investment j, j = 1,...,n. In general, R; is a
random variable, although some investments may be essentially deterministic.

A portfolio is determined by specifying what fraction of one’s assets to put into
each investment. That is, a portfolio is a collection of nonnegative numbers x;,
j =1,...,n, that sum to one. The return (on each dollar) one would obtain using a

given portfolio is given by
R= Z T Rj .
J

The reward associated with such a portfolio is defined as the expected return':

ER =Y z,ER;.
J
If reward were the only issue, then the problem would be trivial: simply put ev-
erything in the investment with the highest expected return. But unfortunately, in-
vestments with high reward typically also carry a high level of risk. That is, even
though they are expected to do very well in the long run, they also tend to be erratic
in the short term. There are many ways to define risk, some better than others. We
will define the risk associated with an investment (or, for that matter, a portfolio of
investments) to be the mean absolute deviation from the mean (MAD):

n this chapter, we assume a modest familiarity with the ideas and notations of probability: the
symbol E denotes expected value, which means that, if R is a random variable that takes values
R(1), R(2), ..., R(T) with equal probability, then

1z
ER = — R(t).
S0
t=1
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E|R—ER| =E | x;(R; — ER))
J

=E Zl‘jRj 5
J

where Rj = R; — ER;. One would like to maximize the reward while at the same
time not incur excessive risk. Whenever confronted with two (or more) competing
objectives, it is necessary to consider a spectrum of possible optimal solutions as
one moves from putting most weight on one objective to the other. In our port-
folio selection problem, we form a linear combination of the reward and the risk
(parametrized here by ) and maximize that:

maximize g Z 2;ER; — E Z :cj]:?j
13.1 ! ’
(13.1) subject to Z z;=1
J
;>0 j=12,...n

Here, 1 is a positive parameter that represents the importance of risk relative to
reward: high values of i tend to maximize reward regardless of risk, whereas low
values attempt to minimize risk.

It is important to note that by diversifying (that is, not putting everything into
one investment), it might be possible to reduce the risk without reducing the reward.
To see how this can happen, consider a hypothetical situation involving two invest-
ments A and B. Each year, investment A either goes up 30 % or goes down 10 %,
but unfortunately, the ups and downs are unpredictable (that is, each year is inde-
pendent of the previous years and is an up year with probability 1/2). Investment
B is also highly volatile. In fact, in any year in which A goes up 30 %, investment
B goes down 10 %, and in the years in which A goes down 10 %, B goes up 30 %.
Clearly, by putting half of our portfolio into A and half into B, we can create a port-
folio that goes up 10 % every year without fail. The act of identifying investments
that are negatively correlated with each other (such as A and B) and dividing the
portfolio among these investments is called hedging. Unfortunately, it is fairly diffi-
cult to find pairs of investments with strong negative correlations. But such negative
correlations do occur. Generally speaking, they can be expected to occur when the
fortunes of both A and B depend on a common underlying factor. For example, a
hot, rainless summer is good for energy but bad for agriculture.

Solving problem (13.1) requires knowledge of the joint distribution of the I2;’s.
However, this distribution is not known theoretically but instead must be estimated
by looking at historical data. For example, Table 13.1 shows monthly returns over a
recent 2-year period for one bond fund (3-year Treasury Bonds) and eight different
sector index funds: Materials (XLB), Energy (XLE), Financial (XLF), Industrial
(XLI), Technology (XLK), Staples (XLP), Utilities (XLU), and Healthcare (XLV).
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Year- SHY XLB XLE XLF XLI XLK XLP XLU XLV

Month | Bonds Materials Energy Financial Indust. Tech. Staples Util.  Health
2007-04 | 1.000 1.044 1.068 1.016 1.035  1.032  1.004 0987 1.014
2007-03 | 1.003 1.015 1.051 1.039 1.046  1.047 1.028 1.049 1.073

2007-02 | 1.005 1.024 1.062 0.994 1.008 1.010 1.021 1.036  1.002
2007-01 | 1.007 1.027 0.980 0.971 0989 0973  0.985 1.053  0.977
2006-12 | 1.002 1.040 0.991 1.009 1.021 1.020 1.020 0996  1.030
2006-11 1.001 0.995 0.969 1.030 0.997  0.989 1.020 0999  1.007
2006-10 | 1.005 1.044 1.086 1.007 1.024 1.028  0.991 1.026  0.999
2006-09 | 1.004 1.060 1.043 1.023 1.028 1.040 1.018 1.053  1.003
2006-08 | 1.004 1.000 0.963 1.040 1.038 1.040 0999 0985 1.015
2006-07 | 1.008 1.030 0.949 1.012 1.011 1.070 1.039 1.028  1.029
2006-06 | 1.007 0.963 1.034 1.023 0943 0974 1.016 1.048  1.055
2006-05 | 1.002 1.005 1.022 0.995 0.999  0.995 1.018 1.023 1.000
2006-04 | 1.002 0.960 0.972 0.962 0983  0.935 1.002 1.016  0.979
2006-03 | 1.002 1.035 1.050 1.043 1.021  0.987 1.010 1.016  0.969
2006-02 | 1.002 1.047 1.042 1.003 1.044  1.023 1.008 0954  0.987
2006-01 1.000 0.978 0.908 1.021 1.031 1.002 1.008 1.013 1.012
2005-12 | 1.002 1.048 1.146 1.009 1.003 1.034 1.002 1.024  1.013
2005-11 | 1.004 1.029 1.018 1.000 1.005  0.969 1.001 1.009  1.035
2005-10 | 1.004 1.076 1.015 1.048 1.058 1.063 1.009 0999 1.012
2005-09 | 0.999 1.002 0.909 1.030 0986 0977 099 0936  0.969
2005-08 | 0.997 1.008 1.063 1.009 1.017 1.002 1.014 1.042  0.995
2005-07 | 1.007 0.958 1.064 0.983 0976  0.991 0.983 1.006  0.996
2005-06 | 0.996 1.056 1.071 1.016 1.038  1.057 1.032 1.023  1.023
2005-05 | 1.002 0.980 1.070 1.012 0974 0987  0.981 1.059  0.994

TABLE 13.1. Monthly returns per dollar for each of nine invest-
ments over 2 years. That is, $1 invested in the energy sector fund
XLE on April 1, 2007, was worth $1.068 on April 30, 2007.

Let R,;(t) denote the return on investment j over 7' monthly time periods as shown
in Table 13.1. One way to estimate the mean ER; is simply to take the average of
the historical returns:

1 T
ER; = = R;(t).
t=1

=l

1.1. Reduction to a Linear Programming Problem. As formulated, the prob-
lem in (13.1) is not a linear programming problem. We use the same trick we used
in the previous chapter to replace each absolute value with a new variable and then
impose inequality constraints that ensure that the new variable will indeed be the
appropriate absolute value once an optimal value to the problem has been obtained.
But first, let us rewrite (13.1) with the expected value operation replaced by a simple
averaging over the given historical data:

T
1
maximize g T — T E E zj(R;(t) — ;)
P t=1

J
subject to Z z;=1
J

(13.2)

z; >0 j=12,...,n,
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where

N

1 T
rj==> Ryt
t=1

denotes the expected reward for asset j. Now, replace ‘Z ;i (R(t) —ry)| with a
new variable y; and rewrite the optimization problem as

T
1
maximize uszrj -7 Zyt
j t=1
subjectto —y; < Y x;(R;(t) =)<y t=1,2,....T,

J
Zj I’j = 1
z; >0 i=12....n
Yyt >0 t
As we’ve seen in other contexts before, at optimality one of the two inequalities

involving y; must actually be an equality because if both inequalities were strict
then it would be possible to further increase the objective function by reducing ;.

(13.3)

1.2. Solution via Parametric Simplex Method. The problem formulation
given by (13.3) is a linear program that can be solved for any particular value of
1 using the methods described in previous chapters. However, we can do much bet-
ter than this. The problem is a parametric linear programming problem, where the
parameter is the risk aversion parameter u. If we can give a value of y for which a
basic optimal solution is obvious, then we can start from this basic solution and use
the parametric simplex method to find the optimal solution associated with each and
every value of p. It is easy to see that for u larger than some threshold, the optimal
solution is to put all of our portfolio into a single asset, the one with the highest
expected reward r;. Let j* denote this highest reward asset:

Tjx > T for all j.

We need to write (13.3) in dictionary form. To this end, let us introduce slack
variables w;” and w; :

T
1
maximize uz:xjrj -7 Zyt
J t=1
subjectto —y; — ij(Rj(t) —rj)+w, =0 t=1,2,...,T,

J
—yt—&—zjxj(Rj(t)—rj)—i—w;r:O t=1,2,...,T,
dojmi=1
€5 >0 j =

Yt w:r ,wy, >0 t
We have 3T + n nonnegative variables and 27" + 1 equality constraints. Hence, we
need to find 27" + 1 basic variables and T" + n — 1 nonbasic variables. Since we
know the optimal values for each of the allocation variables, x ;- = 1 and the rest of
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the x;’s vanish, it is straightforward to figure out the values of the other variables as
well. We can then simply declare any variable that is positive to be basic and declare
the rest to be nonbasic. With this prescription, the variable x ;- must be basic. The
remaining x;’s are nonbasic. Similarly, all of the y;’s are nonzero and hence basic.
For each ¢, either w; or w;" is basic and the other is nonbasic. To say which is
which, we need to introduce some additional notation. Let

Dyj = R;(t) —rj.

Then it is easy to check that w;  is basic if Dy« > 0 and w;" is basic if Dy« < 0
(the unlikely case where D;;~ = 0 can be decided arbitrarily). Let

t={t:Dy->0} and T ={t: Dy <0}

and let
B 1, forteT™
= -1, forteT~

It’s tedious, but here’s the optimal dictionary:

ZetDt]* — 7 Z Zet Dtj Dtj '—* Z U)t — 7 Z wt
JAG* t=1 teT— teT+
ey (=)
J#5*
Yo = — Dyj= - Z (Dij — Dyj= )z +w; teT™
J#5*
w; = 2D+ +2 > (Dy— Dy )y Fw; teTt
J#5*
Yyt = Dtj* + Z Dt] DtJ i +U}£‘r te T+
J#T*
w =-2Dy =2 Y (D — D)y +w; teT™
J#5*
T+ = 1 — ij
J#T*

We can now check that, for large i, this dictionary is optimal. Indeed, the objective
coefficients on the w; and w;" variables in the first row of the objective function
are negative. The coefficients on the x;’s in the first row can be positive or negative
but for y sufficiently large, the negative coefficients on the x;’s in the second row
dominate and make all coefficients negative after considering both rows. Similarly,
the fact that all of the basic variables are positive follows immediately from the
definitions of T+ and T~

A few simple inequalities determine the p-threshold above which the given
dictionary is optimal. The parametric simplex method can then be used to system-
atically reduce p to zero. Along the way, each dictionary encountered corresponds
to an optimal solution for some range of u values. Hence, in one pass we have
solved the portfolio selection problem for every investor from the bravest to the
most cautious. Figure 13.1 shows all of the optimal portfolios. The set of all risk—
reward profiles that are possible is shown in Figure 13.2. The lower-right boundary
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FIGURE 13.1. Optimal portfolios as a function of risk parameter (.

of this set is the so-called efficient frontier. Any portfolio that produces a risk—
reward combination that does not lie on the efficient frontier can be improved either
by increasing its mean reward without changing the risk or by decreasing the risk
without changing the mean reward. Hence, one should only invest in portfolios that
lie on the efficient frontier.

2. Option Pricing

Option pricing is one of the fundamental problems of quantitative finance. In
this section we will describe briefly what an option is and formulate upper and lower
bounds on the price as a linear programming problem.

An option is a derivative security, which means that it is derived from a simpler
security such as a stock. There are many types of options, some quite exotic. For
the purposes of this book, I will only describe the simplest type of option, the call
option. A call option is a contract between two parties in which one party, the buyer,
is given the option to buy from the other party a particular stock at a particular price
at a particular time some weeks or months in the future. For example, on June 1st,
2007, Apple Computer stock was selling for $121 per share. On this date, it was
possible to buy an option allowing one to purchase Apple stock for $130 (the so-
called strike price) a share 10 weeks in the future (the expiration date). The seller
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FIGURE 13.2. The efficient frontier.

was offering this contract for a price of $3.20. Where does this price come from?
The simple answer is that it is determined solely by the marketplace, since option
contract themselves can be bought and sold up until their expiration date. But, as
technical folks, we seek an analytical formula that tells us what a fair price ought to
be. This we can do.

To explain how to price the option, we need to think a little bit more about the
value of the option on the date of expiration. If Apple stock does well over the
next 10 weeks and ends up at $140 per share, then on the day of expiration I can
exercise the contract and buy the stock for $130. I can then immediately sell the
stock for $140 and pocket the $10 difference. Of course, I paid $3.20 for the right
to do this. Hence, my net profit is $6.80. Now, suppose instead of rising to $140
per share, the stock only climbs to $132 per share. In this case, I will still want to
exercise the option because I can pocket a $2 difference. But, after subtracting the
cost of the option, I’ve actually lost a modest $1.20 per share. Finally, suppose that
the stock only goes up to $125 per share. In this case, I will let the option expire
without exercising it. I will have lost only the $3.20 that I originally paid for the
option. Finally, consider the case where in the intervening 10 weeks some really
bad news surfaces that drives Apple stock down to $100 per share. Had I actually
bought Apple stock, I would now be out $21 per share, which could be a substantial
amount of money if I had bought lots of shares. But, by buying the option, I'm only
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FIGURE 13.3. A graph of the value of the option at expiration as
a function of stock price. In this example, the strike price is $130.

out $3.20 per share. This is the attraction of call options. They allow an investor
who is optimistic about the economy (or a particular company) to take a chance
without risking much on the down side. Figure 13.3 shows a plot of the net profit
per share as a function of the share price at expiration.

Let sg denote the (known) current stock price and let S; denote the (not yet
known, i.e., random) stock price at expiration. A key feature of options is that their
value at the expiration date is given by a specific function i (S7) of the stock price
at expiration. For the specific call option discussed above, the function h(S7) is
the “hockey-stick” shaped function shown in Figure 13.3. If we think we know the
distribution of the random variable 51, then we could compute its expected value
and, if we ignore the discounting for inflation, we could use this to price the option:

p = Eh(51).

Unfortunately, we generally don’t know the distribution of 5.

We can, however, make some indirect inferences based on “market wisdom”
that constrain the possible values for p and thereby implicitly tell us something
about the distribution of S;. Specifically, let us imagine that there are already a
number of options being traded in the market that are based on the same underlying
stock and have the same expiration date. Let us suppose that there are already n
options being traded in the market with known prices. That is, there are specific
functions h;(S1), j = 1,2,...,n, for which there are already known prices p;.
One can think of the underlying stock itself as the simplest possible option. Since
the stock is traded, it too provides some information about the future. We assume
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that this trivial asset is the j = 1 option in the collection of known priced options.
For this option, we have h;(S7) = S7 and p1 = s¢. To these n options, we add one
more: cash. One dollar today will be worth one dollar on the expiration date (again,
we are ignoring here the time value of money). In a sense, this is also and option.
The problem we wish to consider is how to price a new option whose payout
function we denote by ¢(.51). Consider building a portfolio of the available options
consisting of xg “shares” of dollars, z; shares of the underlying stock, and x; shares
of option j (5 = 2,...,n). Today, this portfolio costs
n
o+ X180 + Z Tip;-
j=2

At the expiration date, the portolio’s value will be

To+ 1151 + ZthJ(Sl)

=2
Suppose that no matter how S; turns out, the value of the new option dominates that
of the portfolio:

Ty + 151 + Zfﬂg (51) < g(S51).
j=2
Then, it must be the case that the price p of the new option today must also dominate
the cost of this portfolio:

n
o + 2150 + Zl‘jpj <p.
j=2
This is called a no-arbitrage condition. This no-arbitrage condition implies a lower
bound p on the price of the new option, which we can maximize:
n
maximize xg + x1So + Z ;D5
Jj= 2

subjectto g+ 151 + Zw] (S1) < g(S1)-
Jj=2
This problem actually has an infinite number of constraints because the inequality
must hold no matter what value S; takes on. It can be made into a linear program-
ming problem by introducing a finite set of possible values, say s1(1),s1(2),...,
s1(m). The resulting linear programming problem can thus be written as

maximize p = g + 180 + ijpj
(13.4) J=2
subject to g + 151 (4 +Zx] ) <g(s1(d)), i=1,...,m.

In a completely analogous manner we can find a tight upper bound p for p by solving
a minimization problem:
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n
minimize ﬁ = X —+ T1S80 —+ E ijj
=2

(13.5) n
subject to xo + 151 (1) + ijhj(sl(i)) >g(s1(49)), i=1,....,m.
j=2

The dual problem associated with (13.4) is
minimize X:g(sl(z))yz
1 Z yi=1,
Z 81Ei)yi = S0,
Z h;(sl(i))yi =pj, j=2,...,n

i=1,...

Note that the first and last constraints tell us that the y;’s are a system of probabili-
ties. Given this interpretation of the y;’s as probabilities, the expression

Z s1(1)y;
?
is just an expected value of the random variable S; computed using these probabil-
ities. So, the constraint ZZ s1(4)y; = so means that the expected stock price at the
end of the time period must match the current stock price, when computed with the
y; probabilities. For this reason, we call these probabilities risk neutral. Similarly,
the constraints ), h;(s1(4))y; = pj, j = 2,...,n, tell us that each of the options
must also be priced in such a way that the expected future price matches the current
market price.

subject to

yi207

, M.

Exercises

13.1 Find every portfolio on the efficient frontier using the most recent 6 months
of data for the Bond (SHY), Materials (XLB), Energy (XLE), and Finacial
(XLF) sectors as shown in Table 13.1 (that is, using the upper left 6 x 4

subblock of data).
13.2 On Planet Claire, markets are highly volatile. Here’s some recent histori-
cal data:
Year- Hair Cosmetics Cash
Month | Products
2007-04 1.0 2.0 1.0
2007-03 2.0 2.0 1.0
2007-02 2.0 0.5 1.0
2007-01 0.5 2.0 1.0

Find every portfolio on Planet Claire’s efficient frontier.

13.3 What is the dual of (13.5)?
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Notes

The portfolio selection problem originates with Markowitz (1959). He won the
1990 Nobel prize in Economics for this work. In its original formulation, risk is
modeled by the variance of the portfolio’s value rather than the absolute deviation
from the mean considered here. We will discuss the quadratic formulation later in
Chapter 24.

The MAD risk measure we have considered in this chapter has many nice prop-
erties the most important of which is that it produces portfolios that are guaranteed
not to be stochastically dominated (to second order) by other portfolios. Many risk
measures fail to possess this important property. See Ruszczyriski and Vanderbei
(2003) for details.
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Network-Type Problems



Allow me to say, ..., that the arguments with
which you have supported this extraordinary
application have been as frivolous as the
application was ill-judged. — J. Austen



CHAPTER 14

Network Flow Problems

Many linear programming problems can be viewed as a problem of minimizing
the “transportation” cost of moving materials through a network to meet demands
for material at various locations given sources of material at other locations. Such
problems are called network flow problems. They form the most important special
class of linear programming problems. Transportation, electric, and communication
networks provide obvious examples of application areas. Less obvious, but just
as important, are applications in facilities location, resource management, financial
planning, and others.

In this chapter we shall formulate a special type of linear programming problem
called the minimum-cost network flow problem. It turns out that the simplex method
when applied to this problem has a very simple description and some important spe-
cial properties. Implementations that exploit these properties benefit dramatically.

1. Networks

A network consists of two types of objects: nodes and arcs. We shall let A/
denote the set of nodes. We let m denote the number of nodes (i.e., the cardinality
of the set \V).

The nodes are connected by arcs. Arcs are assumed to be directed. This means
that an arc connecting node ¢ to node j is not the same as an arc connecting node j
to node i. For this reason, we denote arcs using the standard mathematical notation
for ordered pairs. That is, the arc connecting node ¢ to node j is denoted simply as
(4,7). We let A denote the set of all arcs in the network. This set is a subset of the
set of all possible arcs:

AC{(i,7) 4,5 e N,i# j}.
In typical networks, the set .A is much smaller than the set of all arcs. In fact, usually
each node is only connected to a handful of “nearby” nodes.

The pair (N, A) is called a nerwork. It is also sometimes called a graph or
a digraph (to emphasize the fact that the arcs are directed). Figure 14.1 shows a
network having 7 nodes and 14 arcs.

To specify a network flow problem, we need to indicate the supply of (or de-
mand for) material at each node. So, for each ¢ € N/, let b; denote the amount
of material being supplied to the network at node <. We shall use the convention
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10.1007/978-1-4614-7630-6_26

R.J. Vanderbei, Linear Programming, International Series in Operations Research 199
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_14,
© Springer Science+Business Media New York 2014


http://dx.doi.org/10.1007/978-1-4614-7630-6_26

200 14. NETWORK FLOW PROBLEMS

FIGURE 14.1. A network having 7 nodes and 14 arcs. The num-
bers written next to the nodes denote the supply at the node (neg-
ative values indicate demands; missing values indicate no supply
or demand).

that negative supplies are in fact demands. Hence, our problem will be to move the
material that sits at the supply nodes over to the demand nodes. The movements
must be along the arcs of the network (and adhering to the directions of the arcs).
Since, except for the supply and demand, there is no other way for material to enter
or leave the system, it follows that the total supply must equal the total demand for
the problem to have a feasible solution. Hence, we shall always assume that

> b =0.
ieN
To help us decide the paths along which materials should move, we assume

that each arc, say, (i, 7), has associated with it a cost ¢; ; that represents the cost of
shipping one unit from 7 to j directly along arc (4, j). The decision variables then
are how much material to ship along each arc. That is, for each (i, j) € A, z;; will
denote the quantity shipped directly from 4 to j along arc (7, j). The objective is to
minimize the total cost of moving the supply to meet the demand:

minimize Z CijTij.
(i,5)€A
As we mentioned before, the constraints on the decision variables are that they

ensure flow balance at each node. Let us consider a fixed node, say, ¥k € N. The
total flow into node k is given by
> o

7

(i,k)eA
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FIGURE 14.2. The costs on the arcs for the network in Figure 14.1.

Similarly, the total flow out from node k& is

E Tj-

J:
(kj)eA

The difference between these two quantities is the net inflow, which must be equal
to the demand at the node. Hence, the flow balance constraints can be written as

Z Tik — Z xkj:—bk, keWN.

i J:
(i,k)eA (k,j)eA
Finally, the flow on each arc must be nonnegative (otherwise it would be going in
the wrong direction):
Tij >0, (Z,j) e A

Figure 14.2 shows cost information for the network shown in Figure 14.1. In

matrix notation, the problem can be written as follows:
T

minimize c¢'x
(14.1) subjectto  Ax = —b
x>0,
where
27 = [ Tac Tad Tae Tba Tbc Tbe Ldb Lde Lfa Tfb Tfe Tfg Lgb xge} >
-1 -1-1 1 1 0
-1 -1-1 1 1 1 0
1 1 1 —6
A= 1 —1 -1 , b= |-6],
1 1 1 1 —2
-1 -1-1-1 9
1 -1-1 5

CT:[48 28 10 7 65 7 38 15 56 48 108 24 33 19}‘
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In network flow problems, the constraint matrix A is called the node—arc inci-
dence matrix.

The network flow problem differs from our usual standard form linear pro-
gramming problem in two respects: (1) it is a minimization instead of a maximiza-
tion and (2) the constraints are equalities instead of inequalities. Nonetheless, we
have studied before how duality applies to problems in nonstandard form. The dual
of (14.1) is

maximize —bTy
subjectto ATy +z=c¢
z> 0.

Written in network notation, the dual is

maximize — Z biy;
1EN
subjectto  y; — y; + zij = Cij, (i,j) € A
zij > 0, (i,5) € A.

Finally, it is not hard to check that the complementarity conditions (to be satisfied
by an optimal primal—dual solution pair) are

TijZij = 0, (Lj) e A

We shall often refer to the primal variables as primal flows.

2. Spanning Trees and Bases

Network flow problems can be solved efficiently because the basis matrices
have a special structure that can be described nicely in terms of the network. In
order to explain this structure, we need to introduce a number of definitions.

First of all, an ordered list of nodes (n1, na,...,ny) is called a path in the net-
work if each adjacent pair of nodes in the list is connected by an arc in the network.
It is important to note that we do not assume that the arcs point in any particular
direction. For example, for nodes n; and n;, 1, there must be an arc in the network.
It could run either from n; to n;4; or from n;4; to n;. (One should think about
one-way roads—even though cars can only go one way, pedestrians are allowed to
walk along the path of the road in either direction.) A network is called connected if
there is a path connecting every pair of nodes (see Figure 14.3). For the remainder
of this chapter, we make the following assumption:

Assumption. The network is connected.

For any arc (4, j), we refer to i as its fail and j as its head.

A cycle is a path in which the last node coincides with the first node. A network
is called acyclic if it does not contain any cycles (see Figure 14.4).

A network is a tree if it is connected and acyclic (see Figure 14.5). A network
(N, A) is called a subnetwork of (N, A) if N € N and A C A. A subnetwork
(N, A) is a spanning tree if it is a tree and N' = N. Since a spanning tree’s node
set coincides with the node set of the underlying network, it suffices to refer to a
spanning tree by simply giving its arc set.
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S

FIGURE 14.3. The network on the left is connected whereas the
one on the right is not.

S

FIGURE 14.4. The network on the /eft contains a cycle whereas
the one on the right is acyclic.

FIGURE 14.5. The network on the left is a tree whereas the two
on the right not—they fail in the first case by being disconnected
and in the second by containing a cycle.

Given a network flow problem, any selection of primal flow values that satisfies
the balance equations at every node will be called a balanced flow. It is important to
note that we do not require the flows to be nonnegative to be a balanced flow. That
is, we allow flows to go in the wrong direction. If all the flows are nonnegative,
then a balanced flow is called a feasible flow. Given a spanning tree, a balanced
flow that assigns zero flow to every arc not on the spanning tree will be called a
tree solution. Consider, for example, the tree shown in Figure 14.6. The num-
bers shown on the arcs of the spanning tree give the tree solution corresponding to
the supplies/demands shown in Figure 14.1. They were obtained by starting at the
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FIGURE 14.6. The fat arcs show a spanning tree for the network
in Figure 14.1. The numbers shown on the arcs of the spanning
tree are the primal flows, the numbers shown next to the nodes
are the dual variables, and the numbers shown on the arcs not
belonging to the spanning tree are the dual slacks.

“leaves” of the tree and working “inward.” For instance, the flows could be solved
for successively as follows:

flow bal at d: Taq = 06,
flow bal at a: Tfg — Tad = 0 = 1z =6,
flow bal at f: — T — T =—9 = xp =3,
flow bal at c: Tpe = 6,
flow bal at b: T+ Tgp —Toe =0 = xg =3,
flow bal at e: Tge = 2.

It is easy to see that this process always works. The reason is that every tree must
have at least one leaf node, and deleting a leaf node together with the edge leading
into it produces a subtree.

The above computation suggests that spanning trees are related to bases in the
simplex method. Let us pursue this idea. Normally, a basis is an invertible square
submatrix of the constraint matrix. But for incidence matrices, no such submatrix
exists. To see why, note that if we sum together all the rows of A, we get a row
vector of all zeros (since each column of A has exactly one +1 and one —1). Of
course, every square submatrix of A has this same property and so is singular. In
fact, we shall show in a moment that for a connected network, there is exactly one
redundant equation (i.e., the rank of A is exactly m — 1).
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Let us select some node, say, the last one, and delete the flow-balance constraint
associated with this node from the constraints defining the problem (since it is re-
dundant anyway). Let’s call this node the root node. Let A denote the incidence
matrix A without the row corresponding to the root node (i.e., the last row), and let
b denote the supply/demand vector with the last entry deleted. The most important
property of network flow problems is summarized in the following theorem:

THEOREM 14.1. A square submatrix of A is a basis if and only if the arcs to
which its columns correspond form a spanning tree.

Rather than presenting a formal proof of this theorem, it is more instructive to
explain the idea using the example we’ve been studying. Therefore, consider the
spanning tree shown in Figure 14.6, and let B denote the square submatrix of A
corresponding to this tree. The matrix B is invertible if and only if every system of
equations of the form

Bu=2p

has a unique solution. This is exactly the type of equation that we already solved to
find the tree solution associated with the spanning tree:

B:L'B = —b.

We solved this system of equations by looking at the spanning tree and realizing that
we could work our way to a solution by starting with the leaves and working inward.
This process amounts to a permutation of the rows and columns of B to get a lower
triangular matrix. Indeed, for the calculations given above, we have permuted the
rows by P and the columns by @) to get

(a,d) (fa) (£b) (b,c) (gb) (ge)
1
-1 1
PBQT =

o o0 o oo
\
—_
\
—_

1

The fact that B is invertible is now immediately apparent from the fact that the per-
muted matrix is lower triangular. In fact, it has only +1’s and —1’s on the diagonal.
Therefore, we can solve systems of equations involving B without ever having to
do any divisions. Also, since the off-diagonal entries are also +1’s, it follows that
we don’t need to do any multiplications either. Every system of equations involving
the matrix B can be solved by a simple sequence of additions and subtractions.

We have shown that, given a spanning tree, the submatrix of A consisting of
the columns corresponding to the arcs in the spanning tree is a basis. The converse
direction (which is less important to our analysis) is relegated to an exercise (see
Exercise 14.12).

Not only is there a primal solution associated with any basis but also there is a
dual solution. Hence, corresponding to any spanning tree there is a dual solution.
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The dual solution consists of two types of variables: the y;’s and the z;;’s. These
variables must satisfy the dual feasibility conditions:

Yi — Yi + 25 = Cij, (i,7) € A.
By complementarity, z;; = 0 for each (i, j) in the spanning tree 7. Hence,
Yj — Yi = Cij, (i,5) € T.

Since a spanning tree on m nodes has m — 1 arcs (why?), these equations define
a system of m — 1 equations in m unknowns. But don’t forget that there was a
redundant equation in the primal problem, which we associated with a specific node
called the root node. Removing that equation and then looking at the dual, we see
that there is not really a dual variable associated with the root node. Or equiva-
lently, we can just say that the dual variable for the root node is zero. Making this
assignment, we get m equations in m unknowns. These equations can be solved by
starting at the root node and working down the tree.

For example, let node “g” be the root node in the spanning tree in Figure 14.6.
Starting with it, we compute the dual variables as follows:

Ysg = 0,
across arc (g,e): Ye— Y =19 = y. =19,
across arc (g,b): Yo — Yo =33 = Y =33,
across arc (b,c): Ye—Up =60 — gy, =98,
across arc (f,b): Y —yr =48 = yr= —15,
across arc (f,a): Ya— Y =56 — gy, =41,
across arc (a,d): Yd — Yo =28 — yq =069.

Now that we know the dual variables, the dual slacks for the arcs not in the spanning
tree 7 can be computed using

zig=yitce;—y;, (L)) ET
(which is just the dual feasibility condition solved for z;;). These values are shown
on the nontree arcs in Figure 14.6.

From duality theory, we know that the current tree solution is optimal if all the
flows are nonnegative and if all the dual slacks are nonnegative. The tree solution
shown in Figure 14.6 satisfies the first condition but not the second. That is, it
is primal feasible but not dual feasible. Hence, we can apply the primal simplex
method to move from this solution to an optimal one. We take up this task in the
next section.

3. The Primal Network Simplex Method

Each of the variants of the simplex method presented in earlier chapters of this
book can be applied to network flow problems. It would be overkill to describe
them all here in the context of networks. However, they are all built on two simple
algorithms: the primal simplex method (for problems that are primal feasible) and
the dual simplex method (for problems that are dual feasible). We discuss them both
in detail.
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FIGURE 14.7. The cycle produced by including the entering arc
with the spanning tree. As the flow ¢ on the entering arc increases,
eventually the flow on arc (f,b) becomes zero (when ¢t = 3).
Hence, arc (f,b) is the leaving arc.

We shall describe the primal network simplex method by continuing with our
example. As mentioned above, the tree shown in Figure 14.6 is primal feasible but
not dual feasible. The basic idea that defines the primal simplex method is to pick
a nontree arc that is dual infeasible and let it enter the tree (i.e., become basic) and
then readjust everything so that we still have a tree solution.

The First Iteration. For our first pivot, we let arc (a,c) enter the tree using a
primal pivot. In a primal pivot, we add flow to the entering variable, keeping all
other nontree flows set to zero and adjusting the tree flows appropriately to maintain
flow balance. Given any spanning tree, adding an extra arc must create a cycle
(why?). Hence, the current spanning tree together with the entering arc must contain
a cycle. The flows on the cycle must change to accommodate the increasing flow
on the entering arc. The flows on the other tree arcs remain unchanged. In our
example, the cycle is: “a”, “c”, “b”, “f”. This cycle is shown in Figure 14.7 with
flows adjusted to take into account a flow of ¢ on the entering arc. As ¢ increases,
eventually the flow on arc (f,b) decreases to zero. Hence, arc (f,b) is the leaving arc.
Updating the flows is easy; just take ¢ = 3 and adjust the flows appropriately.

With a little thought, one realizes that the selection rule for the leaving arc in a
primal pivot is as follows:

Leaving arc selection rule:
e The leaving arc must be oriented along the cycle in the re-
verse direction from the entering arc, and
e Among all such arcs, it must have the smallest flow.

Also, the flows on the cycle get updated as follows:

Primal flows update:

e Flows oriented in the same direction as the leaving arc are
decreased by the amount of flow that was on the leaving
arc whereas flows in the opposite direction are increased
by this amount.
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FIGURE 14.8. The two disjoint trees. Primal and dual values that
remained unchanged are shown, whereas those that need to be
updated are shown as question marks.

The next issue is how to update the dual variables. To this end, note that if
we delete the leaving arc from the spanning tree (without concurrently adding the
entering arc), we disconnect it into two disjoint trees. In our example, one tree
contains nodes “a”, “d” and “f” while the second tree contains the other nodes.
Figure 14.8 shows the two disjoint trees. Recalling that the dual variables are calcu-
lated starting with the root node and working up the spanning tree, it is clear that the
dual variables on the subtree containing the root node remain unchanged, whereas
those on the other subtree must change. For the current pivot, the other subtree
consists of nodes “a”, “d”, and “f”. They all get incremented by the same fixed
amount, since the only change is that the arc by which we bridged from the root-
containing tree to this other tree has changed from the leaving arc to the entering
arc. Looking at node “a” and using tildes to denote values after being changed, we
see that

whereas
Zac = Ya + Cac — Ye-
Combining these two equations, we get

Ya = Ya — Zac-

[TP%]

That is, the dual variable at node “a” gets decremented by 2z, = —9. Of course,
all of the dual variables on this subtree get decremented by this same amount. In
general, the dual variable update rule can be stated as follows:
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FIGURE 14.9. The tree solution at the end of the first iteration.

Dual variables update:

e If the entering arc crosses from the root-containing tree to
the non-root-containing tree, then increase all dual vari-
ables on the non-root-containing tree by the dual slack of
the entering arc.

e Otherwise, decrease these dual variables by this amount.

Finally, we must update the dual slacks. The only dual slacks that change are
those that span across the two trees since, for these nodes, either the head or the tail
dual variable changes, while the other does not. Those that span the two subtrees
in the same direction as the entering arc must be decreased by z,., whereas those
that bridge the two trees in the opposite direction must be increased by this amount.
For our example, six nontree arcs, (f,g), (f,b), (f,c), (d,b), (d,e), and (a,e), span in
the same direction as the entering arc. They all must be decreased by —9. That is,
they must be increased by 9. For example, the dual slack on arc (f,c) changes from
—5 to 4. Only one arc, (b,a), spans in the other direction. It must be decreased by
9. The updated solution is shown in Figure 14.9. The general rule for updating the
dual slacks is as follows:

Dual slacks update:

e The dual slacks corresponding to those arcs that bridge in
the same direction as the entering arc get decremented by
the old dual slack on the entering arc, whereas those that
correspond to arcs bridging in the opposite direction get
incremented by this amount.

The Second Iteration. The tree solution shown in Figure 14.9 has only one
remaining infeasibility: zp, = —10. Arc (b,a) must therefore enter the spanning
tree. Adding it, we create a cycle consisting of nodes “a”, “b”, and “c”. The leaving
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FIGURE 14.10. The two disjoint subtrees arising in the second iteration.
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FIGURE 14.11. The tree solution at the end of the second itera-
tion. To get from the spanning tree in Figure 14.9 to here, we let
arc (b,a) enter and arc (b,c) leave.

arc must be pointing in the opposite direction from the entering arc. Here, there is
only one such arc, (b,c). It must be the leaving arc. The leaving arc’s flow decreases
from 3 to 0. The flow on the other two cycle arcs must increase by 3 to preserve
flow balance.

The two subtrees formed by removing the leaving arc are shown in Figure 14.10
The dual variables on the non-root-containing subtree get incremented by the dual
slack on the entering arc z,, = —10. The dual slacks for the spanning arcs also
change by 10 either up or down depending on which way they bridge the two sub-
trees. The resulting tree solution is shown in Figure 14.11.
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FIGURE 14.12. The tree solution at the end of the third iteration.
To get from the spanning tree in Figure 14.11 to here, we let arc
(f,b) enter and arc (f,a) leave. This tree solution is the optimal
solution to the problem.

The Third and Final Iteration. The tree solution shown in Figure 14.11 has
one infeasibility: zz, = —1. Hence, arc (f,b) must enter the spanning tree. The
leaving arc must be (f,a). Leaving the details of updating to the reader, the resulting
tree solution is shown in Figure 14.12. It is both primal and dual feasible—hence
optimal.

4. The Dual Network Simplex Method

In the previous section, we developed simple rules for the primal network sim-
plex method, which is used in situations where the tree solution is primal feasible
but not dual feasible. When a tree solution is dual feasible but not primal feasible,
then the dual network simplex method can be used. We shall define this method
now. Consider the tree solution shown in Figure 14.13. It is dual feasible but not
primal feasible (since x4, < 0). The basic idea that defines the dual simplex method
is to pick a tree arc that is primal infeasible and let it leave the spanning tree (i.e.,
become nonbasic) and then readjust everything to preserve dual feasibility.

The First Iteration. For the first iteration, we need to let arc (d,b) leave the
spanning tree using a dual pivot, which is defined as follows. Removing arc (d,b)
disconnects the spanning tree into two disjoint subtrees. The entering arc must be
one of the arcs that spans across the two subtrees so that it can reconnect them into
a spanning tree. That is, it must be one of

(ae), (ad), (be), or (ge).

See Figure 14.14. To see how to decide which it must be, we need to consider
carefully the impact of each possible choice.



212 14. NETWORK FLOW PROBLEMS

L <O
40 A
73 2 10
6 \A@ 30
6 -5
-8

\ A

1 10 ?
88 33
/5 9 5
f 9 —— P ¢
-15 0

FIGURE 14.13. A tree solution that is dual feasible but not primal feasible.

FIGURE 14.14. The two subtrees for the first pivot of the dual
simplex method.

To this end, let us consider the general situation. As mentioned above, the span-
ning tree with the leaving arc removed consists of two disjoint trees. The entering
arc must reconnect these two trees.

First, consider a reconnecting arc that connects in the same direction as the
leaving arc. When we add flow to this prospective entering arc, we will have to
decrease flow on the leaving arc to maintain flow balance. Therefore, the leaving
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FIGURE 14.15. The tree solution after the first pivot.

arc’s flow, which is currently negative, can’t be raised to zero. That is, the leaving
arc can’t leave. This is no good.

Now suppose that the reconnecting arc connects in the opposite direction. If
it were to be the entering arc, then its dual slack would drop to zero. All other
reconnecting arcs pointing in the same direction would drop by the same amount.
To maintain nonnegativity of all the others, we must pick the one that drops the
least. We can summarize the rule as follows:

Entering arc selection rule:
e The entering arc must bridge the two subtrees in the oppo-
site direction from the leaving arc, and
e Among all such arcs, it must have the smallest dual slack.

In our example, all bridging arcs point in the opposite direction from the leaving
arc. The one with the smallest dual slack is (g,e) whose slack is z,e = 9. This arc
must be the entering arc.

We have now determined both the entering and leaving arcs. Hence, the new
spanning tree is determined and therefore, in principle, all the variables associated
with this new spanning tree can be computed. Furthermore, the rules for determin-
ing the new values by updating from the previous ones are the same as in the primal
network simplex method. The resulting tree solution is shown in Figure 14.15.

The Second Iteration. For the second pivot, there are two choices for the leaving
arc: (g,b) and (d,e). Using the most infeasible, we choose (d,e). We remove this arc
from the spanning tree to produce two subtrees. One of the subtrees consists of just
the node “d” all by itself while the other subtree consists of the rest of the nodes.
Remembering that the reconnecting arc must bridge the two subtrees in the opposite
direction, the only choice is (a,d). So this arc is the entering arc. Making the pivot,
we arrive at the optimal tree solution shown in Figure 14.12.
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5. Putting It All Together

As we saw in Chap. 5, for linear programming the primal and the dual simplex
methods form the foundation on which one can build a few different variants of the
simplex method. The same is true here in the context of network flows.

For example, one can build a two-phased procedure in which one first uses
the dual network simplex method (with costs artificially and temporarily altered to
ensure dual feasibility of an initial tree solution) to find a primal feasible solution
and then uses the primal network simplex method to move from the feasible solution
to an optimal one.

Alternatively, one can use the primal network simplex method (with supplies
temporarily altered to ensure primal feasibility of an initial tree solution) to find
a dual feasible solution and then use the dual network simplex method (with the
original supplies) to move from the dual feasible solution to an optimal one.

Finally, as described for linear programming in Chap. 7, one can define a para-
metric self-dual method in which primal pivots and dual pivots are intermingled as
needed so as to reduce a perturbation parameter ;. from oo to zero.

Since there is nothing new in how one builds the network versions of these
algorithms from the basic primal and dual simplex pivots, we don’t go through
any examples here. Instead, we just mention one final observation about the dual
variables, the y;’s. Namely, they are not needed anywhere in the performance of
a primal or a dual pivot. Hence, their calculation is entirely optional and can be
skipped altogether or simply deferred to the end.

For completeness, we end this section by giving a step-by-step description of
the self-dual network simplex method. The steps are as follows:

(1) Identify a spanning tree—any one will do (see Exercise 14.14). Also iden-
tify a root node.

(2) Compute initial primal flows on the tree arcs by assuming that nontree
arcs have zero flow and the total flow at each node must be balanced. For
this calculation, the computed primal flows may be negative. In this case,
the initial primal solution is not feasible. The calculation is performed
working from leaf nodes inward.

(3) Compute initial dual values by working out from the root node along tree
arcs using the formula

Yj — Yi = Cijs
which is valid on tree arcs, since the dual slacks vanish on these arcs.
(4) Compute initial dual slacks on each nontree arc using the formula

Zij = Yi + Cij — Y-
Again, some of the z;;’s might be nonnegative. This is okay (for now),
but it is important that they satisfy the above equality.
(5) Perturb each primal flow and each dual slack that has a negative initial
value by adding a positive scalar 4 to each such value.

(6) Identify a range pin < 0 < pmax over which the current solution is
optimal (on the first iteration, pyax Will be infinite).
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(7) Check the stopping rule: if iy < 0, then set p = 0 to recover an optimal
solution. While not optimal, perform each of the remaining steps and then
return to recheck this condition.

(8) Select an arc associated with the inequality gy < p (if there are several,
pick one arbitrarily). If this arc is a nontree arc, then the current pivot is a
primal pivot. If, on the other hand, it is a tree arc, then the pivot is a dual
pivot.

(a) If the pivot is a primal pivot, the arc identified above is the entering
arc. Identify the associated leaving arc as follows. First, add the
entering arc to the tree. With this arc added, there must be a cycle
consisting of the entering arc and other tree arcs. The leaving arc is
chosen from those arcs on the cycle that go in the opposite direction
from the entering arc and having the smallest flow among all such
arcs (evaluated at p1 = fiyn)-

(b) If the pivot is a dual pivot, the arc identified above is the leaving arc.
Identify the associated entering arc as follows. First, delete the leav-
ing arc from the tree. This deletion splits the tree into two subtrees.
The entering arc must bridge these two trees in the opposite direction
to the leaving arc, and, among such arcs, it must be the one with the
smallest dual slack (evaluated at p = piyn)-

(9) Update primal flows as follows. Add the entering arc to the tree. This ad-
dition creates a cycle containing both the entering and leaving arcs. Adjust
the flow on the leaving arc to zero, and then adjust the flows on each of
the other cycle arcs as necessary to maintain flow balance.

(10) Update dual variables as follows. Delete the leaving arc from the old
tree. This deletion splits the old tree into two subtrees. Let 7, denote
the subtree containing the tail of the entering arc, and let 7, denote the
subtree containing its head. The dual variables for nodes in 7, remain
unchanged, but the dual variables for nodes in 7, get incremented by the
old dual slack on the entering arc.

(11) Update dual slacks as follows. All dual slacks remain unchanged except
for those associated with nontree arcs that bridge the two subtrees 7,
and 7T,. The dual slacks corresponding to those arcs that bridge in the
same direction as the entering arc get decremented by the old dual slack
on the entering arc, whereas those that correspond to arcs bridging in the
opposite direction get incremented by this amount.

As was said before and should now be clear, there is no need to update the dual
variables from one iteration to the next; that is, step 10 can be skipped.

6. The Integrality Theorem

In this section, we consider network flow problems for which all the supplies
and demands are integers. Such problems are called network flow problems with in-
teger data. As we explained in Sect. 14.2, for network flow problems, basic primal
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solutions are computed without any multiplication or division. The following im-
portant theorem follows immediately from this property:

THEOREM 14.2. Integrality Theorem. For network flow problems with integer
data, every basic feasible solution and, in particular, every basic optimal solution
assigns integer flow to every arc.

This theorem is important because many real-world network flow problems
have integral supplies/demands and require their solutions to be integral too. This
integrality restriction typically occurs when one is shipping indivisible units through
a network. For example, it wouldn’t make sense to ship one third of a car from an
automobile assembly plant to one dealership with the other two thirds going to an-
other dealership.

Problems that are linear programming problems with the additional stipulation
that the optimal solution values must be integers are called integer programming
problems. Generally speaking, these problems are much harder to solve than linear
programming problems (see Chap.23). However, if the problem is a network flow
problem with integer data, it can be solved efficiently using the simplex method
to compute a basic optimal solution, which the integrality theorem tells us will be
integer valued.

6.1. Konig’s Theorem. In addition to its importance in real-world optimiza-
tion problems, the integrality theorem also has many applications to the branch of
mathematics called combinatorics. We illustrate with just one example.

THEOREM 14.3. Konig’s Theorem. Suppose that there are n girls and n boys,
that every girl knows exactly k boys, and that every boy knows exactly k girls. Then
n marriages can be arranged with everybody knowing his or her spouse.

Before proving this theorem it is important to clarify its statement by saying
that the property of “knowing” is symmetric (for example, knowing in the biblical
sense). That is, if a certain girl knows a certain boy, then this boy also knows this
girl.

PROOE. Consider a network with nodes g1, g2, ..., gn,b1,b2,...,b, and an
arc from g; to b; if girl < and boy j know each other. Assign one unit of supply to
each girl node and a unit of demand to each boy node. Assign arbitrary objective
coefficients to create a well-defined network flow problem. The problem is guaran-
teed to be feasible: just put a flow of 1/k on each arc (the polygamists in the group
might prefer this nonintegral solution). By the integrality theorem, the problem has
an integer-valued solution. Clearly, the flow on each arc must be either zero or one.
Also, each girl node is the tail of exactly one arc having a flow of one. This arc
points to her intended mate. (]

Exercises

In solving the following problems, the network pivot tool can be used to check
your arithmetic:

www.princeton.edu/~rvdb/JAVA/network/nettool/netsimp.html
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14.1 Consider the following network flow problem:

Numbers shown above the nodes are supplies (negative values represent
demands) and numbers shown above the arcs are unit shipping costs. The
darkened arcs form a spanning tree.

(a) Compute primal flows for each tree arc.

(b) Compute dual variables for each node.

(c) Compute dual slacks for each nontree arc.

14.2 Consider the tree solution for the following minimum cost network flow
problem:

The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest—coefficient rule in the dual network simplex method,
what is the leaving arc?
(b) What is the entering arc?
(c) After one pivot, what is the new tree solution?
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14.3 Consider the following network flow problem:
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The numbers above the nodes are supplies (negative values represent de-
mands) and numbers shown above the arcs are unit shipping costs. The
darkened arcs form a spanning tree.

(a) Compute primal flows for each tree arc.

(b) Compute dual variables for each node.

(c) Compute dual slacks for each nontree arc.

14.4 Consider the tree solution for the following minimum cost network flow

problem:
% );— —-10 — ‘
0 14 6

The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
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(a) Using the largest—coefficient rule in the primal network simplex
method, what is the entering arc?

(b) What is the leaving arc?

(c) After one pivot, what is the new tree solution?

14.5 Consider the tree solution for the following minimum cost network flow
problem:

15 10\ 14 6
3 -8 3 10

The numbers on the tree arcs represent primal flows while numbers on the
nontree arcs are dual slacks.
(a) Using the largest—coefficient rule in the dual network simplex method,
what is the leaving arc?
(b) What is the entering arc?
(c) After one pivot, what is the new tree solution?

14.6 Solve the following network flow problem starting with the spanning tree
shown.

2 -2
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The numbers displayed next to nodes are supplies(+)/demands(—). Num-
bers on arcs are costs. Missing data should be assumed to be zero. The
bold arcs represent an initial spanning tree.

14.7 Solve Exercise 2.11 using the self-dual network simplex method.

14.8 Using today’s date (MMY'Y) for the seed value, solve ten problems using
the network simplex pivot tool:

www.princeton.edu/~rvdb/JAVA/network/challenge/netsimp.html

14.9 Consider the following tree solution for a minimum cost network flow
problem:

As usual, bold arcs represent arcs on the spanning tree, numbers next to
the bold arcs are primal flows, numbers next to non-bold arcs are dual
slacks, and numbers next to nodes are dual variables.

(a) For what values of  is this tree solution optimal?

(b) What are the entering and leaving arcs?

(c) After one pivot, what is the new tree solution?

(d) For what values of p is the new tree solution optimal?

14.10 Consider the following tree solution for a minimum cost network flow

f% "”HQ T
L %/

(a) For what values of  is this tree solution optimal?

(b) What are the entering and leaving arcs?

(c) After one pivot, what is the new tree solution?

(d) For what values of 1 is the new tree solution optimal?


http://www.princeton.edu/~rvdb/JAVA/network/challenge/netsimp.html
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14.11 Consider the following minimum cost network flow problem

LA
4

As usual, the numbers on the arcs represent the flow costs and numbers
at the nodes represent supplies (demands are shown as negative supplies).
The arcs shown in bold represent a spanning tree. If the solution cor-
responding to this spanning tree is optimal prove it, otherwise find an
optimal solution using this tree as the initial spanning tree.

14.12 Suppose that a square submatrix of A is invertible. Show that the arcs
corresponding to the columns of this submatrix form a spanning tree.

14.13 Show that a spanning tree on m nodes must have exactly m — 1 arcs.

14.14 Define an algorithm that takes as input a network and either finds a span-
ning tree or proves that the network is not connected.

14.15 Give an example of a minimum-cost network flow problem with all arc
costs positive and the following counterintuitive property: if the supply
at a particular source node and the demand at a particular sink node are
simultaneously reduced by one unit, then the optimal cost increases.

14.16 Consider a possibly disconnected network (N, .A). Two nodes 7 and j in
N are said to be connected if there is a path from i to j (recall that paths
can traverse arcs backwards or forwards). We write ¢ ~ j if ¢ and j are
connected.

(a) Show that “~” defines an equivalence relation. That is, it has the
following three properties:
(i) (Reflexivity) foralli € N, i ~ i;
(ii) (Symmetry) for all 7,5 € N, i ~ j implies that j ~ 4;
(iii) (Transitivity) for all 7,7,k € N, i ~ j and j ~ k implies that

i~k
Using the equivalence relation, we can partition N into a collection of
subsets of equivalence classes N1,N3, ..., N}, such that two nodes are

connected if and only if they belong to the same subset. The number & is

called the number of connected components.

(b) Show that the rank of the node-arc incidence matrix A is exactly
m — k (recall that m is the number of rows of A).
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14.17

14.18

14.19
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FIGURE 14.16. The primal network has nodes “a” through “f”.
The corresponding dual network has nodes “A” through “D” (node
“A” is “at infinity”). A primal spanning tree is shown. It con-
sists of five arcs: (a,b), (f,b), (b,e), (e,d), and (c,d). The corre-
sponding dual spanning tree consists of three arcs: (B,A), (A,C),
and (D,A). Primal costs are shown along the primal arcs and sup-
plies/demands are shown at the primal nodes.

One may assume without loss of generality that every node in a minimum
cost network flow problem has at least two arcs associated with it. Why?

The sum of the dual slacks around any cycle is a constant. What is that
constant?

Planar Networks. A network is called planar if the nodes and arcs can be
laid out on the two-dimensional plane in such a manner that no two arcs
cross each other (it is allowed to draw the arcs as curves if necessary). All
of the networks encountered so far in this chapter have been planar. Asso-
ciated with each planar network is a geometrically defined dual network.
The purpose of this problem is to establish the following interesting fact:

A dual network simplex pivot is precisely a primal network sim-

plex method applied to the dual network.

Viewed geometrically, the nodes of a planar graph are called vertices
and the arcs are called edges. Consider a specific connected planar net-
work. If one were to delete the vertices and the edges from the plane,
one would be left with a disjoint collection of subsets of the plane. These
subsets are called faces. Note that there is one unbounded face. It is a
face just like the other bounded ones. An example of a connected planar
network with its faces labeled A through D is shown in Figure 14.16.
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Dual nodes. Associated with each connected planar network is a dual
network defined by interchanging vertices and faces. That is, place a dual
vertex in the center of each primal face. Note: the dual vertex corre-
sponding to the unbounded primal face could be placed anywhere in the
unbounded face but we choose to put it at infinity. In this way, dual edges
(defined next) that have a head or a tail at this node can run off to infinity
in any direction.

Dual arcs. Connect with a dual edge any pair of dual nodes whose
corresponding primal faces share an edge. Each dual edge crosses exactly
one primal edge. The directionality of the dual edge is determined as
follows: first, place a vector along the corresponding primal edge pointing
in the direction of the primal arc, and then rotate it counterclockwise until
it is tangent to the dual edge. The vector now defines the direction for the
dual arc.

Dual spanning tree. Consider a spanning tree on the primal network
and suppose that a primal—-dual tree solution is given. We define a span-
ning tree on the dual network as follows. A dual edge is on the dual
network’s spanning tree if and only if the corresponding primal edge is
not on the primal network’s spanning tree.

Dual flows and dual dual-slacks. The numerical arc data for the dual
network is inherited directly from the primal. That is, flows on the dual
tree arcs are exactly equal to the dual slacks on the associated primal non-
tree arcs. And, the dual slacks on the dual nontree arcs are exactly equal
to the primal flows on the associated primal tree arcs. Having specified
numerical data on the arcs of the dual network, it is fairly straightforward
to determine values for supplies/demands at the nodes and shipping costs
along the arcs that are consistent with these numerical values.

(a) Which of the following networks are planar:

a b c a
a C a C
e b
A
b b d J g

(b) A network is called complete if there is an arc between every pair
of nodes. If a complete network with m nodes is planar, then every
network with m nodes is planar. Prove it.

(c) Show that a nonplanar network must have five or more nodes.

(d) As always, let m denote the number of nodes and let n denote the
number of arcs in a network. Let f denote the number of faces in a
planar network. Show by induction on f that m = n — f + 2.
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(e) Show that the dual spanning tree defined above is in fact a spanning
tree.

(f) Show that a dual pivot for a minimum cost network flow problem
defined on the primal network is precisely the same as a primal pivot
for the corresponding network flow problem on the dual network.

(g) Using the cost and supply/demand information given for the primal
problem in Figure 14.16, write down the primal problem as a linear
programming problem.

(h) Write down the dual linear programming problem that one derives
algebraically from the primal linear programming problem.

(i) Using the spanning tree shown in Figure 14.16, compute the primal
flows, dual variables, and dual slacks for the network flow problem
associated with the primal network.

(j) Write down the flow and slacks for the network flow problem asso-
ciated with the dual network.

(k) Find arc costs and node supplies/demands for the dual network that
are consistent with the flows and slacks just computed.

() Write down the linear programming problem associated with the net-
work flow problem on the dual network.

Notes

The classical reference is Ford and Fulkerson (1962). More recent works include

the books by Christofides (1975), Lawler (1976), Bazaraa et al. (1977),
Kennington and Helgason (1980), Jensen and Barnes (1980), Bertsekas (1991), and
Ahuja et al. (1993).

The two “original” algorithms for solving minimum-cost network flow problems

are the network simplex method developed by Dantzig (1951a) and the primal-dual
method developed by Ford and Fulkerson (1958). The self-dual algorithm described
in this chapter is neither of these. In fact, it resembles the “out-of-kilter” method
described by Ford and Fulkerson (1962).



CHAPTER 15

Applications

In this chapter, we discuss briefly the most important applications of network
flow problems.

1. The Transportation Problem

The network flow problem, when thought of as representing the shipment of
goods along a transportation network, is called the transshipment problem. An im-
portant special case is when the set of nodes N\ can be partitioned into two sets S
and D,

N =8SuUD, SND =0,
such that every arc in A has its tail in S and its head in D. The nodes in S are called
source (or supply) nodes, while those in D are called destination (or demand) nodes.
Such graphs are called bipartite graphs (see Figure 15.1). A network flow problem
on such a bipartite graph is called a transportation problem.

In order for a transportation problem to be feasible, the supply must be nonneg-
ative at every supply node, and the demand must be nonnegative at every demand
node. That is,

b; >0 foriesS,
b; <0 forieD.

When put on paper, a bipartite graph has the annoying property that the arcs
tend to cross each other many times. This makes such a representation inconvenient
for carrying out the steps of the network simplex method. But there is a nice, un-
cluttered, tabular representation of a bipartite graph that one can use when applying
the simplex method. To discover this tabular representation, first suppose that the
graph is laid out as shown in Figure 15.2. Now if we place the supplies and de-
mands on the nodes and the costs at the kinks in the arcs, then we get, for example,
the following simple tabular representation of a transportation problem:

—10 —23 —15
715 6 %
(15.1) 11/ 8 4 3
18 = 9 %
12| % 3 6

(the asterisks represent nonexistent arcs). The iterations of the simplex method can
be written in this tabular format by simply placing the dual variables where the

R.J. Vanderbei, Linear Programming, International Series in Operations Research 225
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_15,
© Springer Science+Business Media New York 2014



226 15. APPLICATIONS

O\

O
z&
O/O

Supply Demand

nodes nodes

FIGURE 15.1. A bipartite graph—the network for a transportation problem.

-10 —23 —15 Demands
Q
5 6
70
8 4 3
11 O—==
9
8O0——m——
3 6
RO———————
Supplies

FIGURE 15.2. The bipartite graph from Figure 15.1 laid out in
a rectangular fashion, with supplies and demands given at the
nodes, and with costs given on the arcs.

supplies and demands are and by placing the primal flows and dual slacks where
the arc costs are. Of course, some notation needs to be introduced to indicate which
cells are part of the current spanning tree. For example, the tree could be indicated
by putting a box around the primal flow values. Here is a (nonoptimal) tree solution

for the data given above:

5 1 4
o7 5 *

(15.2) -3 —4
-8 * *

—2 *
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(the solution to this problem is left as an exercise).

In the case where every supply node is connected to every demand node, the
problem is called the Hitchcock Transportation Problem. In this case, the equations
defining the problem are especially simple. Indeed, if we denote the supplies at the
supply nodes by r;, ¢ € S, and if we denote the demands at the demand nodes by
sj, J € D, then we can write the problem as

minimize E E CijTij

i€S jJED
subject to inj =7 1€8
jED
inj = Sj jE D
€S
(Eijz 0 ’iES,jED.

2. The Assignment Problem

Given a set S of m people, a set D of m tasks, and foreach i € S, j € D acost
¢;; associated with assigning person i to task j, the assignment problem is to assign
each person to one and only one task in such a manner that each task gets covered
by someone and the total cost of the assignments is minimized. If we let

- 1 if person ¢ is assigned task 7,
Y10 otherwise,

then the objective function can be written as

minimize Z Z CijTij-
i€S jED
The constraint that each person is assigned exactly one task can be expressed
simply as
Zmijzl, foralli € S.
JjED
Also, the constraint that every task gets covered by someone is just

lej =1, forall j € D.
€S
Except for the assumed integrality of the decision variables, x;;, the assignment
problem is just a Hitchcock transportation problem in which the supply at every sup-
ply node (person) is one and the demand at every demand node (task) is also one.
This Hitchcock transportation problem therefore is called the LP-relaxation of the
assignment problem. It is easy to see that every feasible solution to the assignment
problem is a feasible solution for its LP-relaxation. Furthermore, every integral fea-
sible solution to the LP-relaxation is a feasible solution to the assignment problem.
Since the network simplex method applied to the LP-relaxation produces an inte-
gral solution, it therefore follows that the method solves not only the LP-relaxation
but also the assignment problem itself. We should note that this is a very special
and important feature of the network simplex method. For example, had we used
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the primal—dual interior-point method to solve the LP-relaxation, there would be
no guarantee that the solution obtained would be integral (unless the problem has a
unique optimal solution, in which case any LP solver would find the same, integral
answer—but typical assignment problems have alternate optimal solutions, and an
interior-point method will report a convex combination of all of them).

3. The Shortest-Path Problem

Roughly speaking, the shortest-path problem is to find, well, the shortest path
from one specific node to another in a network (N, .4). In contrast to earlier usage,
the arcs connecting successive nodes on a path must point in the direction of travel.
Such paths are sometimes referred to as directed paths. To determine a shortest path,
we assume that we are given the length of each arc. To be consistent with earlier
notations, let us assume that the length of arc (4, j) is denoted by ¢;;. Naturally, we
assume that these lengths are nonnegative.

To find the shortest path from one node (say, s) to another (say, ), we will
see that it is necessary to compute the shortest path from many, perhaps all, other
nodes to 7. Hence, we define the shortest-path problem as the problem of finding
the shortest path from every node in A to a specific node » € N. The destination
node 7 is called the root node.

3.1. Network Flow Formulation. The shortest-path problem can be formu-
lated as a network flow problem. Indeed, put a supply of one unit at each nonroot
node, and put the appropriate amount of demand at the root (to meet the total sup-
ply). The cost on each arc is just the length of the arc. Suppose that we’ve solved
this network flow problem. Then the shortest path from a node ¢ to r can be found
by simply following the arcs from ¢ to r on the optimal spanning tree. Also, the
length of the shortest path is y;: — y;.

While the network simplex method can be used to solve the shortest-path prob-
lem, there are faster algorithms designed especially for it. To describe these algo-
rithms, let us denote the distance from ¢ to by v;. These distances (or approxima-
tions thereof) are called labels in the networks literature. Some algorithms compute
these distances systematically in a certain order. These algorithms are called label-
setting algorithms. Other algorithms start with an estimate for these labels and then
iteratively correct the estimates until the optimal values are found. Such algorithms
are called label-correcting algorithms.

Note that if we set y;: to zero in the network flow solution, then the labels are
simply the negative of the optimal dual variables. In the following subsections, we
shall describe simple examples of label-setting and label-correcting algorithms.

3.2. A Label-Correcting Algorithm. To describe a label-correcting
algorithm, we need to identify a system of equations that characterize the shortest-
path distances. First of all, clearly

v = 0.
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What can we say about the labels at other nodes, say, node ¢? Suppose that we select
an arc (7, j) that leaves node i. If we were to travel along this arc and then, from
node j, travel along the shortest path to r, then the distance to the root would be
¢ij + vj. So, from node 4, we should select the arc that minimizes these distances.
This selection will then give the shortest distance from ¢ to r. That is,

(15.3) v; = min{¢;; + v, : (i,7) € A}, TET

The argument we have just made is called the principle of dynamic programming,
and equation (15.3) is called Bellman’s equation. Dynamic programming is a whole
subject of its own—we shall only illustrate some of its basic ideas by our study of
the shortest-path problem. In the dynamic programming literature, the set of v;’s
viewed as a function defined on the nodes is called the value function (hence the
notation).

From Bellman’s equation, it is easy to identify the arcs one would travel on in
a shortest-path route to the root. Indeed, these arcs are given by

T ={(,j) € A:v; = cij + v}

This set of arcs may contain alternate shortest paths to the root, and so the set is not
necessarily a tree. Nonetheless, any path that follows these arcs will get to the root
on a shortest-path route.

3.2.1. Method of Successive Approximation. Bellman’s equation is an implicit
system of equations for the values v;, i € N. Implicit equations such as this arise
frequently and beg to be solved by starting with a guess at the solution, using this
guess in the right-hand side, and computing a new guess by evaluating the right-
hand side. This approach is called the method of successive approximations. To
apply it to the shortest-path problem, we initialize the labels as follows:

MON 0 t=7r
N 'S £

Then the updates are computed using Bellman’s equation:

(k+1) o 0 Z =T
v, = . (k) .o .
min{c;; +v;7 1 (i,5) € A} i FET
3.2.2. Efficiency. The algorithm stops when an update leaves all the v;’s un-

changed. It turns out that the algorithm is guaranteed to stop in no more than m

iterations. To see why, it suffices to note that Ufk) has a very simple description:

it is the length of the shortest path from ¢ to r that has k or fewer arcs in the path.
(It is not hard to convince yourself with an induction on % that this is correct, but
a pedantic proof requires introducing a significant amount of added notation that
we wish to avoid.) Hence, the label-correcting algorithm cannot take more than m
iterations, since every shortest path can visit each node at most once. Since each
iteration involves looking at every arc of the network, it follows that the number
of additions/comparisons needed to solve a shortest-path problem using the label-
correcting algorithm is about nm.
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Initialize:
F=10
_J 0 J=r,
i T s j#Er

while (|F¢| > 0){
j =argmin{vy : k &€ F}
F + Fu{j}
for each i for which (4,j) € Aandi ¢ F {
if (Cij +v; < ’Ui) {
Vi = Cij + Uj
hi=j

FIGURE 15.3. Dijkstra’s shortest-path algorithm.

3.3. A Label-Setting Algorithm. In this section, we describe Dijkstra’s algo-
rithm for solving shortest-path problems. The data structures that are carried from
one iteration to the next are a set F of finished nodes and two arrays indexed by the
nodes of the graph. The first array, v;, j € N, is just the array of labels. The second
array, h;, © € N, indicates the next node to visit from node 4 in a shortest path. As
the algorithm proceeds, the set F contains those nodes for which the shortest path
has already been found. This set starts out empty. Each iteration of the algorithm
adds one node to it. This is why the algorithm is called a label-setting algorithm,
since each iteration sets one label to its optimal value. For finished nodes, the labels
are fixed at their optimal values. For each unfinished node, the label has a temporary
value, which represents the length of the shortest path from that node to the root,
subject to the condition that all intermediate nodes on the path must be finished
nodes. At those nodes for which no such path exists, the temporary label is set to
infinity (or, in practice, a large positive number).

The algorithm is initialized by setting all the labels to infinity except for the
root node, whose label is set to 0. Also, the set of finished nodes is initialized
to the empty set. Then, as long as there remain unfinished nodes, the algorithm
selects an unfinished node j having the smallest temporary label, adds it to the set of
finished nodes, and then updates each unfinished “upstream” neighbor ¢ by setting
its label to ¢;; + v; if this value is smaller than the current value v;. For each
neighbor ¢ whose label gets changed, h; is set to j. The algorithm is summarized in
Figure 15.3.
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4. Upper-Bounded Network Flow Problems

Some real-world network flow problems involve upper bounds on the amount
of flow that an arc can handle. There are modified versions of the network simplex
method that allow one to handle such upper bounds implicitly, but we shall simply
show how to reduce an upper-bounded network flow problem to one without upper
bounds.

Let us consider just one arc, (4, j), in a network flow problem. Suppose that
there is an upper bound of u;; on the amount of flow that this arc can handle. We
can express this bound as an extra constraint:

0 < Lij < Usyj -
Introducing a slack variable, t;;, we can rewrite these bound constraints as

Tij + bij = Uy
Tij, ti; = 0.

If we look at the flow balance constraints and focus our attention on the variables
x;; and t;;, we see that they appear in only three constraints: the flow balance
constraints for nodes ¢ and j and the upper bound constraint,

. _xl_] PPN — _bl
—tij = —bj — uyj
xij +tij = uij'

Note that we have restored a network structure in the sense that each column again
has one +1 and one —1 coefficient. To make a network picture, we need to create
a new node (corresponding to the third row). Let us call this node k. The network
transformation is shown in Figure 15.4.

We can use the above transformation to derive optimality conditions for upper-
bounded network flow problems. Indeed, let us consider an optimal solution to
the transformed problem. Clearly, if z;j is zero, then the corresponding dual slack
Zik, = Y; + ¢;j — Yy 1S nonnegative:

(15.4) Yi + cij —yx = 0.
Furthermore, the back-flow x;, must be at the upper bound rate:

Tjk = Ujj-
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\ Cij 0 /
/ b; —u; b~+u,~]\

y J

ij lij

FIGURE 15.4. Adding a new node, k, to accommodate an arc
(4, 7) having an upper bound u;; on its flow capacity.

Hence, by complementarity, the corresponding dual slack must vanish:

(15.5) Zjk = Yj — Yk = 0.
Combining (15.4) with (15.5), we see that
Yi + Cij = Yj-

On the other hand, if the flow on arc (7, k) is at the capacity value, then the back-flow
on arc (j, k) must vanish. The complementarity conditions then say that

Zik =Yi+¢ij —yYr =0
Zjk = Yj — Yk = 0.
Combining these two statements, we get
yi +cij <y
Finally, if 0 < @;; < u;;, then both slack variables vanish, and this implies that
Yi + Cij = Yj-
These properties can then be summarized as follows:
Tij =0=yi +ci; 2y
(15.6) Tij = Uij == Yi + Cij < Yj
0 < x5 <uy =y +cij = Y-

While upper-bounded network flow problems have important applications, we
admit that our main interest in them is more narrowly focused. It stems from their
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FIGURE 15.5. A cut set C' for a maximum flow problem.

relation to an important theorem called the Max-Flow Min-Cut Theorem. We shall
state and prove this theorem in the next section. The only tool we need to prove this
theorem is the above result giving the complementarity conditions when there are
upper bounds on arcs. So on with the show.

5. The Maximum-Flow Problem

The subject of this section is the class of problems called maximum-flow prob-
lems. These problems form an important topic in the theory of network flows. There
are very efficient algorithms for solving them, and they appear as subproblems in
many algorithms for the general network flow problem. However, our aim is rather
modest. We wish only to expose the reader to one important theorem in this subject,
which is called the Max-Flow Min-Cut Theorem.

Before we can state this theorem we need to set up the situation. Suppose that
we are given a network (N, A), a distinguished node s € N called the source node,
a distinguished node ¢ € N called the sink node, and upper bounds on the arcs of
the network w5, (¢, j) € A. For simplicity, we shall assume that the upper bounds
are all finite (although this is not really necessary). The objective is to “push” as
much flow from s to ¢ as possible.

To solve this problem, we can convert it to an upper-bounded network flow
problem as follows. First, let ¢;; = 0 for all arcs (i,4) € A, and let b; = 0 for every
node ¢ € N. Then add one extra arc (¢, s) connecting the sink node ¢ back to the
source node s, put a negative cost on this arc (say, c;s = —1), and let it have infinite
capacity u;s = 0o. Since the only nonzero cost is actually negative, it follows that
we shall actually make a profit by letting more and more flow circulate through the
network. But the upper bound on the arc capacities limits the amount of flow that it
is possible to push through.

In order to state the Max-Flow Min-Cut Theorem, we must define what
we mean by a cut. A cut, C, is a set of nodes that contains the source node but
does not contain the sink node (see Figure 15.5). The capacity of a cut is defined as
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H(C) = Z Ui -
i€C
Jg¢C
Note that here and elsewhere in this section, the summations are over “original” arcs
that satisfy the indicated set membership conditions. That is, they don’t include the
arc that we added connecting from ¢ back to s. (If it did, the capacity of every cut
would be infinite—which is clearly not our intention.)

Flow balance tells us that the total flow along original arcs connecting the cut
set C' to its complement minus the total flow along original arcs that span these two
sets in the opposite direction must equal the amount of flow on the artificial arc
(t,s). That s,

(15.7) Tre = Y Tij — Y Tij.

ieC igC
J¢C jec

We are now ready to state the Max-Flow Min-Cut Theorem.
THEOREM 15.1. The maximum value of xs equals the minimum value of k(C').

PROOF. The proof follows the usual sort of pattern common in subjects where
there is a sort of duality theory. First of all, we note that it follows from (15.7) that

(15.8) 245 < K(O)

for every feasible flow and every cut set C'. Then all that is required is to exhibit a
feasible flow and a cut set for which this inequality is an equality.

Let x;‘j, (i,7) € A, denote the optimal values of the primal variables, and let y,
i € N, denote the optimal values of the dual variables. Then the complementarity
conditions (15.6) imply that

(15.9) xj; =0 whenever vy +ci; > y;

(15.10) rj; =u;; whenever yi +ci; <yj.
In particular,
yr — 1=yl

(since uys = 00). Put C* = {k : y; < yi}. Clearly, C* is a cut.

Consider an arc having its tail in C'* and its head in the complement of C*. It
follows from the definition of C* that y; < y; < yj. Since ¢;; is zero, we see
from (15.10) that z7; = u;;.

Now consider an original arc having its tail in the complement of C* and its
head in C"* (i.e., bridging the two sets in the opposite direction). It follows then that
y; < y; <y;. Hence, we see from (15.9) that z7; = 0.
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Combining the observations of the last two paragraphs with (15.7), we see that

T = Zu,;j = r(C™).
i€C
J¢C

In light of (15.8), the proof is complete. O

15.1

15.2

15.3

154

Exercises

Solve the transportation problem given in (15.1), using (15.2) for the start-
ing tree solution.

Solve the following linear programming problem:

maximize 7z — 3z + 9x3 + 224

subjectto  x1 + a2 <1
3+ x4 <1

X1 + I3 Z 1

To + x4 > 1

I1, 2, T3, T4 Z 0.

(Note: there are two greater-than-or-equal-to constraints.)

Bob, Carol, David, and Alice are stranded on a desert island. Bob and
David each would like to give their affection to Carol or to Alice. Food
is the currency of trade for this starving foursome. Bob is willing to pay
Carol 7 clams if she will accept his affection. David is even more keen
and is willing to give Carol 9 clams if she will accept it. Both Bob and
David prefer Carol to Alice (sorry Alice). To quantify this preference,
David is willing to pay Alice only 2 clams for his affection. Bob is even
more averse: he says that Alice would have to pay him for it. In fact,
she’d have to pay him 3 clams for his affection. Carol and Alice, being
proper young women, will accept affection from one and only one of the
two guys. Between the two of them they have decided to share the clams
equally between them and hence their objective is simply to maximize
the total number of clams they will receive. Formulate this problem as a
transportation problem. Solve it.

Project Scheduling.This problem deals with the creation of a project sched-
ule; specifically, the project of building a house. The project has been
divided into a set of jobs. The problem is to schedule the time at which
each of these jobs should start and also to predict how long the project
will take. Naturally, the objective is to complete the project as quickly as
possible (time is money!). Over the duration of the project, some of the
jobs can be done concurrently. But, as the following table shows, certain
jobs definitely can’t start until others are completed.
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Duration Must be
Job (weeks) | preceded by
0. Sign contract with buyer 0 -
1. Framing 2 0
2. Roofing 1 1
3. Siding 3 1
4. Windows 2.5 3
5. Plumbing 1.5 3
6. Electrical 2 2.4
7. Inside finishing 4 5,6
8. Outside painting 3 2,4
9. Complete the sale to buyer 0 7,8
One possible schedule is the following:
Job Start time

0. Sign contract with buyer 0

1. Framing 1

2. Roofing 4

3. Siding 6

4. Windows 10

5. Plumbing 9

6. Electrical 13

7. Inside finishing 16

8. Outside painting 14

9. Complete the sale to buyer 21

With this schedule, the project duration is 21 weeks (the difference
between the start times of jobs 9 and 0).

To model the problem as a linear program, introduce the following
decision variables:

t; = the start time of job j.

(a) Write an expression for the objective function, which is to minimize
the project duration.

(b) For each job j, write a constraint for each job i that must precede
7; the constraint should ensure that job j doesn’t start until job ¢ is
finished. These are called precedence constraints.

Continuation. This problem generalizes the specific example of the pre-
vious problem. A project consists of a set of jobs 7. For each job j € J
there is a certain set P; of other jobs that must be completed before job j
can be started. (This is called the set of predecessors of job j.) One of the
jobs, say s, is the starting job; it has no predecessors. Another job, say ¢,
is the final (or terminal) job; it is not the predecessor of any other job. The
time it will take to do job j is denoted d; (the duration of the job).
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The problem is to decide what time each job should begin so that
no job begins before its predecessors are finished, and the duration of the
entire project is minimized. Using the notations introduced above, write
out a complete description of this linear programming problem.

15.6 Continuation. Let x;; denote the dual variable corresponding to the prece-
dence constraint that ensures job j doesn’t start until job ¢ finishes.
(a) Write out the dual to the specific linear program in Problem 15.4.
(b) Write out the dual to the general linear program in Problem 15.5.
(c) Describe how the optimal value of the dual variable x;; can be inter-
preted.

15.7 Continuation. The project scheduling problem can be represented on a
directed graph with arc weights as follows. The nodes of the graph corre-
spond to the jobs. The arcs correspond to the precedence relations. That
is, if job ¢ must be completed before job j, then there is an arc pointing
from node ¢ to node j. The weight on this arc is d;.

(a) Draw the directed graph associated with the example in Problem 15.4,
being sure to label the nodes and write the weights beside the arcs.

(b) Return to the formulation of the dual from Problem 15.6(a). Give
an interpretation of that dual problem in terms of the directed graph
drawn in Part (a).

(c) Explain why there is always an optimal solution to the dual problem
in which each variable z;; is either O or 1.

(d) Write out the complementary slackness condition corresponding to
dual variable xog.

(e) Describe the dual problem in the language of the original project
scheduling model.

15.8 Continuation. Here is an algorithm for computing optimal start times ¢;:
1. List the jobs so that the predecessors of each job come
before it in the list.
2. Putty = 0.
3. Go down the list of jobs and for job j put t; = max{t; +
d; : i is apredecessor of j}.

(a) Apply this algorithm to the specific instance from Problem 15.4.
What are the start times of each of the jobs? What is the project
duration?

(b) Prove that the solution found in Part (a) is optimal by exhibiting a
corresponding dual solution and checking the usual conditions for
optimality (Hint: The complementary slackness conditions may help
you find a dual solution.).

15.9 Currency Arbitrage. Consider the world’s currency market. Given two
currencies, say the Japanese Yen and the US Dollar, there is an exchange
rate between them (currently about 110 Yen to the Dollar). It is always
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true that, if you convert money from one currency to another and then
back, you will end up with less than you started with. That is, the product
of the exchange rates between any pair of countries is always less than
one. However, it sometimes happens that a longer chain of conversions
results in a gain. Such a lucky situation is called an arbitrage. One can
use a linear programming model to find such situations when they exist.

Consider the following table of exchange rates (which is actual data
from the Wall Street Journal on Nov 10, 1996):

param rate:

UsD Yen Mark Franc :=
USsDh . 111.52 1.4987 5.0852
Yen .008966 . .013493 .045593
Mark .6659 73.964 . 3.3823

Franc .1966 21.933 .29507

1

It is not obvious, but the USD— Yen—Mark—USD conversion actually
makes $0.002 on each initial dollar.

To look for arbitrage possibilities, one can make a generalized net-
work model, which is a network flow model with the unusual twist that a
unit of flow that leaves one node arrives at the next node multiplied by a
scale factor—in our example, the currency conversion rate. For us, each
currency is represented by a node. There is an arc from each node to ev-
ery other node. A flow of one unit out of one node becomes a flow of a
different magnitude at the head node. For example, one dollar flowing out
of the USD node arrives at the Franc node as 5.0852 Francs.

Let x;; denote the flow from node (i.e. currency) i to node j. This
flow is measured in the currency of node .

One node is special; it is the home node, say the US Dollars (USD)
node. At all other nodes, there must be flow balance.

(a) Write down the flow balance constraints at the 3 non-home nodes
(Franc, Yen, and Mark).

At the home node, we assume that there is a supply of one unit (to get
things started). Furthermore, at this node, flow balance will not be satis-
fied. Instead one expects a net inflow. If it is possible to make this inflow
greater than one, then an arbitrage has been found. Let f be a variable
that represents this inflow.

(b) Using variable f to represent net inflow to the home node, write a
flow balance equation for the home node.
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Of course, the primal objective is to maximize f.

(c) Using y; to represent the dual variable associated with the primal
constraint for currency ¢, write down the dual linear program. (Re-
gard the primal variable f as a free variable.)

Now consider the general case, which might involve hundreds of curren-
cies worldwide.

(d) Write down the model mathematically using x;; for the flow leaving
node 4 heading for node j (measured in the currency of node 1), 7;;
for the exchange rate when converting from currency ¢ to currency 7,
and f for the net inflow at the home node ¢*.

(e) Write down the dual problem.

(f) Can you give an interpretation for the dual variables? Hint: It might
be helpful to think about the case where 7;; = 1/r;; for all 7, j.

(g) Comment on the conditions under which your model will be un-
bounded and/or infeasible.

Notes

The Hitchcock problem was introduced by Hitchcock (1941). Dijkstra’s algo-
rithm was discovered by Dijkstra (1959).

The Max-Flow Min-Cut Theorem was proved independently by Elias et al.
(1956), by Ford and Fulkerson (1956) and, in the restricted case where the upper
bounds are all integers, by Kotzig (1956). Fulkerson and Dantzig (1955) also proved
the Max-Flow Min-Cut Theorem. Their proof uses duality, which is particularly rel-
evant to this chapter.

The classic references for dynamic programming are the books by Bellman
(1957) and Howard (1960). Further discussion of label-setting and label-correcting
algorithms can be found in the book by Ahuja et al. (1993).



CHAPTER 16

Structural Optimization

This final chapter on network-type problems deals with finding the best design
of a structure to support a specified load at a fixed set of points. The fopology of the
problem is described by a graph where each node represents a joint in the structure
and each arc represents a potential member.! We shall formulate this problem as
a linear programming problem whose solution determines which of the potential
members to include in the structure and how thick each included member must be
to handle the load. The optimization criterion is to find a minimal weight structure.
As we shall see, the problem bears a striking resemblance to the minimum-cost
network flow problem that we studied in Chapter 14.

1. An Example

We begin with an example. Consider the graph shown in Figure 16.1. This
graph represents a structure consisting of five joints and eight possible members
connecting the joints. The five joints and their coordinates are given as follows:

Joint Coordinates
1 (0.0, 0.0)
2 (6.0, 0.0)
3 0.0, 8.0)
4 (6.0, 8.0)
5 (3.0, 12.0)

Since joints are analogous to nodes in a network, we shall denote the set of joints
by A and denote by m the number of joints. Also, since members are analogous to
arcs in network flows, we shall denote the set of them by .A. For the structure shown
in Figure 16.1, the set of members is

A= {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{3,5},{4,5}} .
Note that we enclosed the pairs of endjoints in braces to emphasize that their order
is irrelevant. For example, {2,3} and {3,2} refer to one and the same member
spanning between joints 2 and 3. In network flows, the graphs we considered were
directed graphs. Here, they are undirected. Also, the graphs here are embedded
in a d-dimensional Euclidean space (meaning that every node comes with a set of
coordinates indicating its location in d-dimensional space). No such embedding was

Lcivil engineers refer to beams as members.

R.J. Vanderbei, Linear Programming, International Series in Operations Research 241
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_16,
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bs

by by

FIGURE 16.1. Sample topology for a two-dimensional structure.

imposed before in our study of network flows, even though real-world network flow
problems often possess such an embedding.

Following the standard convention of using braces to denote sets, we ought
to let x(, ;; denote the force exerted by member {i, j} on its endjoints. But the
braces are cumbersome. Hence, we shall write this force simply as x;;, with the
understanding that x;; and z;; denote one and the same variable.

We shall assume that a positive force represents tension in the member (i.e., the
member is pulling “in” on its two endjoints) and that a negative value represents
compression (i.e., the member is pushing “out” on its two endjoints).

If the structure is to be in equilibrium (i.e., not accelerating in some direction),
then forces must be balanced at each joint. Of course, we assume that there may
be a nonzero external load at each joint (this is the analogue of the external sup-
ply/demand in the minimum-cost network flow problem). Hence, for each node ¢,
let b; denote the externally applied load. Note that each b; is a vector whose dimen-
sion equals the dimension of the space in which the structure lies. For our example,
this dimension is 2. In general, we shall denote the spatial dimension by d.

Force balance imposes a number of constraints on the member forces. For
example, the force balance equations for joint 2 can be written as follows:

-1 —0.6 0 b3
$12[ 0]+$23[ 0.8}—’—@4[1]:_{6%}’
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where b3 and b3 denote the components of bo. Note that the three vectors appearing
on the left are unit vectors pointing out from joint 2 along each of the corresponding
members.

2. Incidence Matrices

If, for each joint 7, we let p; denote its position vector, then the unit vectors
pointing along the arcs can be written as follows:

bj —Di .
uijzjila {27.7}6“4'
Ip; — pill
It is important to note that u;; = —u;;, since the first vector points from j towards

1, whereas the second points from i towards j. In terms of these notations, the force
balance equations can be expressed succinctly as

(16.1) > wiwg=-b  i=1,2,...,m.
J:
{i,j}€A
These equations can be written in matrix form as
(16.2) Az = —b

where = denotes the vector consisting of the member forces, b denotes the vector
whose elements are the applied load vectors, and A is a matrix containing the unit
vectors pointing along the appropriate arcs. For our example, we have

al'= [ x2 @3 w4 w23 @aa T T35 Tas
-
(1 0 6 1 b
1 0 1 8 by
bl
-1 - 0 2
2| [ Il :
B 0 6 1 6 el
A=3 -1 -8 [0} {.8] b=
A -6 o] [-1 —6 bl
-8 -1 0 8 b2
5 {7.6} 6 bl
L —.8 -.8| J _b%_

Note that we have written A as a matrix of 2-vectors by putting “inner” brack-
ets around appropriate pairs of entries. These inner brackets could of course be
dropped—they are included simply to show how the constraints match up with
(16.1).

In network flows, an incidence matrix is characterized by the property that every
column of the matrix has exactly two nonzero entries, one +1 and one —1. Here, the
matrix A is characterized by the property that, when viewed as a matrix of d-vectors,
every column has two nonzero entries that are unit vectors pointing in opposite
directions from each other. Generically, matrix A can be written as follows:
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{i,5}
!
. uij
A= 1 —
T

where, for each {7, j} € A,
d

Usj, Ujq € R s

Wij = —Uji,
and

lJwijll = llugill = 1.

By analogy with network flows, the matrix A is called an incidence matrix. This
definition is a strict generalization of the definition we had before, since, for d =
1, the current notion reduces to the network flows notion. Incidence matrices for

network flows enjoy many useful properties. In the following sections, we shall
investigate the extent to which these properties carry over to our generalized notion.

3. Stability

Recall that for network flows, the sum of the rows of the incidence matrix van-
ishes and that if the network is connected, this is the only redundancy. For d > 1,
the situation is similar. Clearly, the sum of the rows vanishes. But is this the only
redundancy? To answer this question, we need to look for nonzero row vectors y”
for which 57 A = 0. The set of all such row vectors is a subspace of the set of all
row vectors. Our aim is to find a basis for this subspace and, in particular, to identify
its dimension. To this end, first write y in component form as y7 = [ yf ---yI ]
where each of the entries y;, ¢ = 1,2,...,m, are d-vectors (transposed to make
them into row vectors). Multiplying this row vector against each column of A, we
see that y” A = 0 if and only if

(16.3) Y wig +y, wji =0, for all {i,j} € A.

There are many choices of y that yield a zero row combination. For example, we
can take any vector v € R and put

Y = v, for every i € N.
Substituting this choice of ¥;’s into the left-hand side of (16.3), we get
yZTu” + y;‘-ruji = vTuij + vTuji = vTuij — vTuij =0.
This set of choices shows that the subspace is at least d-dimensional.
But there are more! They are defined in terms of skew symmetric matrices. A

matrix R is called skew symmetric if RT = —R. A simple but important property
of skew symmetric matrices is that, for every vector &,

(16.4) ¢TRE=0
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(see Exercise 16.1). We shall make use of this property shortly. Now, to give more
choices of y, let R be a d x d skew symmetric matrix and put
y; = Rp;, forevery i € N
(recall that p; denotes the position vector for joint 7). We need to check (16.3).
Substituting this definition of the y’s into the left-hand side in (16.3), we see that
yi wij +yj wji = p] R uij +pj R uy,
= —p; Ruy; — p] Ruy,
= (pj — )" Ruij.
Now substituting in the definition of u;;, we get
(p; — )" R(p; — pi)
Ip; = pill
Finally, by putting £ = p; — p; and using property (16.4) of skew symmetric matri-
ces, we see that the numerator on the right vanishes. Hence, (16.3) holds.
How many redundancies have we found? For d = 2, there are two independent
v-type redundancies and one more R-type. The following two vectors and a matrix
can be taken as a basis for these redundancies

1 0 0 -1
01’ 1)’ 1 0]
For d = 3, there are three independent v-type redundancies and three R-type. Here

are three vectors and three matrices that can be taken as a basis for the space of
redundancies:

(pj —pi)" Ruij =

1 0 0
0|, 1, 0|,
0 0 1
0 -1 0 0 0 —1] 0 0 0
(16.5) 1 0 0], 0 0 0/, 0 0 —1
0 0 0 1 0 0] 0 1 0

In general, there are d + d(d — 1)/2 = d(d + 1)/2 independent redundancies.
There could be more. But just as for network flows, where we showed that there
is one redundancy if and only if the network is connected, further redundancies
represent a defect in the underlying graph structure. In fact, we say that the graph is
stable if the rank of the incidence matrix A is exactly md — d(d + 1)/2, that is, if
and only if the above redundancies account for the entire rank deficiency of A.

4. Conservation Laws

Recall that for network flows, not all choices of supplies/demands yield feasible
flows. For connected networks, it is necessary and sufficient that the total supply
equals the total demand. The situation is similar here. The analogous question is:
which external loads give rise to solutions to (16.2)? We have already identified
several row vectors y” for which y” A = 0. Clearly, in order to have a solution
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to (16.2), it is necessary that y”b = 0 for all these row vectors. In particular for
every v € R?, we see that b must satisfy the following condition:

Z ’UTbZ' =0.

Bringing the sum inside of the product, we get

ol (2; bi> =0.

Since this must hold for every d-vector v, it follows that
> bi=0.

This condition has a simple physical interpretation: the loads, taken in total, must
balance.

What about the choices of y” arising from skew symmetric matrices? We shall
show that these choices impose the conditions necessary to prevent the structure
from spinning around some axis of rotation. To show that this is so, let us first
consider the two-dimensional case. For every 2 x 2 skew symmetric matrix R, the
load vectors b;, i € N, must satisfy

(16.6) > (Rpi)Tb; = 0.

K2

This expression is a sum of terms of the form (Rp)T'b, where p is the position vector
of a point and b is a force applied at this point. We claim that (Rp)”b is precisely
the torque about the origin created by applying force b at location p. To see this
connection between the algebraic expression and its physical interpretation, first
decompose p into the product of its length r times a unit vector v pointing in the
same direction and rewrite the algebraic expression as

(Rp)Tb = r(Rv)Tb.

Now, without loss of generality, we may assume that R is the “basis” matrix for the
space of skew symmetric matrices,

0 -1
r=[071].
This matrix has the additional property that its two columns are unit vectors that are
orthogonal to each other. That is, RTR = I. Hence,

1Ro[|* = [lv]|* = 1.

Furthermore, property (16.4) tells us that Rv is orthogonal to v. Therefore, the
product (Rv)Tb is the length of the projection of b in the direction of Rv, and so
r(Rv)Tb is the distance from the origin (of the coordinate system) to p, which is
called the moment arm, times the component of the force that is orthogonal to the
moment arm in the direction of Rv (see Figure 16.2). This interpretation for each
summand in (16.6) shows that it is exactly the torque around the rotation axis pass-
ing through the origin of the coordinate system caused by the force b; applied to
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FIGURE 16.2. The ith summand in (16.6) is the length of p; times
the length of the projection of b; onto the direction given by Ruv;.
This is precisely the torque around an axis at 0 caused by the force
b; applied at joint :.

joint 2. In d = 2, there is only one rotation around the origin. This fact corresponds
to the fact that the dimension of the space of skew symmetric matrices in two dimen-
sions is 1. Also, stipulating that the total torque about the origin vanishes implies
that the total torque around any point other point also vanishes—see Exercise 16.4.
The situation for d > 2, in particular for d = 3, is slightly more complicated.
Algebraically, the complications arise because the basic skew symmetric matrices
no longer satisfy RT R = I. Physically, the complications stem from the fact that
in two dimensions rotation takes place around a point, whereas in three dimensions
it takes place around an axis. We shall explain how to resolve the complications for
d = 3. The extension to higher dimensions is straightforward (and perhaps not so
important). The basic conclusion that we wish to derive is the same, namely that
for basic skew symmetric matrices, the expression (Rp)b represents the torque
generated by applying a force b at point p. Recall that there are just three basic skew
symmetric matrices, and they are given by (16.5). To be specific, let us just study
the first one:
0-1 0
1 0 0
0 0 O

R =

This matrix can be decomposed into the product of two matrices:

R=UP
where
0-1 0 1 0 O
U=1|1 0 0 and P=1|0 1 0
0 0 1 0 0 O



248 16. STRUCTURAL OPTIMIZATION

X1

FIGURE 16.3. The decomposition of (Rp)?'b into the product of
a moment arm r times the component of b in the direction Uv
shows that it is precisely the torque around the third axis.

The matrix U has the property that R had before, namely,
U'u =1I.

Such matrices are called unitary. The matrix P is a projection matrix. If we let

q = Pp,
v L
- b
lqll
and
= |ql],

then we can rewrite (Rp)”b as
(Rp)Tb = r(Uv)Tb.

Since v is a unit vector and U is unitary, it follows that Uv is a unit vector. Hence,
(Uv)Tb represents the scalar projection of b onto the direction determined by Uw.
Also, it is easy to check that Uwv is orthogonal to v. At this point, we can consult
Figure 16.3 to see that r is the moment arm for the torque around the third coordinate
axis and (Uv)T'b is the component of force in the direction of rotation around this
axis. Therefore, the product is precisely the torque around this axis. As we know,
for d = 3, there are three independent axes of rotation, namely, pitch, roll, and
yaw. These axes correspond to the three basis matrices for the space of 3 x 3 skew
symmetric matrices (the one we have just studied corresponds to the yaw axis).

Finally, we note that (16.6) simply states that the total torque around each axis
of rotation must vanish. This means that the forces cannot be chosen to make the
system spin.



5. MINIMUM-WEIGHT STRUCTURAL DESIGN 249

5. Minimum-Weight Structural Design

For a structure with m nodes, the system of force balance equations (16.2) has
md equations. But, as we now know, if the structure is stable, there are exactly
d(d+1)/2 redundant equations. That is, the rank of A is md — d(d+1)/2. Clearly,
the structure must contain at least this many members. We say that the structure
is a truss if it is stable and has exactly md — d(d + 1)/2 members. In this case,
the force balance equations have a unique solution (assuming, of course, that the
total applied force and the total applied torque around each axis vanish). From an
optimization point of view, trusses are not interesting because they leave nothing to
optimize—one only needs to calculate.

To obtain an interesting optimization problem, we assume that the proposed
structure has more members than the minimum required to form a truss. In this set-
ting, we introduce an optimization criterion to pick that solution (whether a truss or
otherwise) that minimizes the criterion. For us, we shall attempt to minimize total
weight. To keep things simple, we assume that the weight of a member is directly
proportional to its volume and that the constant of proportionality (the density of the
material) is the same for each member. (These assumptions are purely for notational
convenience—a real engineer would certainly include these constants and let them
vary from one member to the next). Hence, it suffices to minimize the total vol-
ume. The volume of one member, say, {4, j}, is its length l;; = ||p; — p;| times its
cross-sectional area. Again, to keep things as simple as possible, we assume that the
cross-sectional area must be proportional to the tension/compression carried by the
member (members carrying big loads must be “fat”—otherwise they might break).
Let’s set the constant of proportionality arbitrarily to one. Then the function that we
should minimize is just the sum over all members of /;;|z;;|. Hence, our optimiza-
tion problem can be written as follows:

minimize Z lij|@i;)
{i,jleA
subject to Z UijTi5 = —by i=1,2,...,m.
J:
{ijteA
This problem is not a linear programming problem: the constraints are linear, but the
objective function involves the absolute value of each variable. We can, however,

convert this problem to a linear programming problem with the following trick. For
each {i,j} € A, write z;; as the difference between two nonnegative variables:

xi a:;] > 0.

R —
Lij = Lj; — Ly i

J 37
Think of x:; as the tension part of z;; and x;; as the compression part. The absolute
value can then be modeled as the sum of these components
— ot -
lzij| = 2 + 235

We allow both components to be positive at the same time, but no minimum-weight
solution will have any member with both components positive, since if there were
such a member, the tension component and the compression component could be
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decreased simultaneously at the same rate without changing the force balance equa-
tions but reducing the weight. This reduction contradicts the minimum-weight as-
sumption.

We can now state the linear programming formulation of the minimum weight
structural design problem as follows:

minimize Z (l”x; +lijz;;)
{17]}€A
subject to Z (UUZ‘Z - uijxl-_j) = —b; 1=1,2,...,m

J:
{ijreA

1:;;, z;;>0 {i,j} € A.

In terms of the incidence matrix, each column must now be written down twice,
once as before and once as the negative of before.

6. Anchors Away

So far we have considered structures that are free floating in the sense that
even though loads are applied at various joints, we have not assumed that any of
the joints are anchored to a large object such as the Earth. This setup is fine for
structures intended for a rocket or a space station, but for Earth-bound applications
it is generally desired to anchor some joints. It is trivial to modify the formulation
we have already given to cover the situation where some of the joints are anchored.
Indeed, the d force balance equations associated with an anchored joint are simply
dropped as constraints, since the Earth supplies whatever counterbalancing force is
needed. Of course, one can consider dropping only some of the d force balance
equations associated with a particular joint. In this case, the physical interpretation
is quite simple. For example, in two dimensions it simply means that the joint is
allowed to roll on a track that is aligned with one of the coordinate directions but is
not allowed to move off the track.

If enough “independent” constraints are dropped (at least three in two dimen-
sions and at least six in three dimensions), then there are no longer any limitations on
the applied loads—the structure will be sufficiently well anchored so that the Earth
will apply whatever forces are needed to prevent the structure from moving. This is
the most typical scenario under which these problems are solved. It makes setting
up the problem much easier, since one no longer needs to worry about supplying
loads that can’t be balanced.

We end this chapter with one realistic example. Suppose the need exists to
design a bracket to support a hanging load at a fixed distance from a wall. This
bracket will be molded out of plastic, which means that the problem of finding an
optimal design belongs to the realm of continuum mechanics. However, we can get
an idea of the optimal shape by modeling the problem discretely (don’t tell anyone).
That is, we define a lattice of joints as shown in Figure 16.4 and introduce a set
of members from which the bracket can be constructed. Each joint has members
connecting it to several nearby joints. Figure 16.5 shows the members connected to
one specific joint. Each joint in the structure has this connection “topology” with,
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FIGURE 16.4. The set of joints used for the discrete approxima-
tion to the bracket design problem. The highlighted joints on the
left are anchored to the wall, and the highlighted joint on the right
must support the hanging load.

FIGURE 16.5. The members connected to a single interior joint.

of course, the understanding that joints close to the boundary do not have any mem-
ber for which the intended connecting joint does not exist. The highlighted joints
on the left side in Figure 16.4 are the anchored joints, and the highlighted joint on
the right side is the joint to which the hanging load is applied (by “hanging,” we
mean that the applied load points downward). The optimal solution is shown in Fig-
ure 16.6. The thickness of each member is drawn in proportion to the square root of
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FIGURE 16.6. The minimum weight bracket.

the tension/compression in the member (since if the structure actually exists in three
dimensions, the diameter of a member would be proportional to the square root of
the cross-sectional area). Also, those members under compression are drawn in dark
gray, whereas those under tension are drawn in light gray. Note that the compres-
sion members appear to cross the tension members at right angles. These curves are
called principle stresses. It is a fundamental result in continuum mechanics that the
principle tension stresses cross the principle compression stresses at right angles.
We have discovered this result using optimization.

Most nonexperts find the solution to this problem to be quite surprising, since
it covers such a large area. Yet it is indeed optimal. Also, one can see that the
continuum solution should be roughly in the shape of a leaf.

Exercises
16.1 Show that a matrix R is skew symmetric if and only if
¢TRE=0, for every vector &.

16.2 Which of the structures shown in Figure 16.7 is stable? (Note: each struc-
ture is shown embedded in a convenient coordinate system.)

16.3 Which of the structures shown in Figure 16.7 is a truss?
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FIGURE 16.7. Structures for Exercises 16.2 and 16.3.

16.4 Assuming that the total applied force vanishes, show that total torque is
translation invariant. That is, for any vector £ € R9,

> (R(pi — €)= > (Rpi)"b;.

16.5 In 3-dimensions there are 5 regular (Platonic) solids. They are shown in
Figure 16.8 and have the following number of vertices and edges:
vertices edges

tetrahedron 4 6
cube 8 12
octahedron 6 12
dodecahedron 20 30

icosahedron 12 30
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FIGURE 16.8. The five regular solids.

If one were to construct pin-jointed wire-frame models of these solids,
which ones would be stable?

Notes

Structural optimization has its roots in Michell (1904). The first paper in which
truss design was formulated as a linear programming problem is Dorn et al. (1964).
A few general references on the subject include Hemp (1973), Rozvany (1989),
Bendsge et al. (1994), and Recski (1989).
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Interior-Point Methods



There is, I believe, in every disposition a
tendency to some particular evil—a natural
defect, which not even the best education
can overcome.—J. Austen



CHAPTER 17

The Central Path

In this chapter, we begin our study of an alternative to the simplex method for
solving linear programming problems. The algorithm we are going to introduce is
called a path-following method. It belongs to a class of methods called interior-point
methods. The path-following method seems to be the simplest and most natural of
all the methods in this class, so in this book we focus primarily on it. Before we
can introduce this method, we must define the path that appears in the name of the
method. This path is called the central path and is the subject of this chapter. Before
discussing the central path, we must lay some groundwork by analyzing a nonlin-
ear problem, called the barrier problem, associated with the linear programming
problem that we wish to solve.

Warning: Nonstandard Notation Ahead

Starting with this chapter, given a lower-case letter denoting a vector quantity,
we shall use the upper-case form of the same letter to denote the diagonal matrix
whose diagonal entries are those of the corresponding vector. For example,

L1 1
T2 T2
xr = . —> X =

Tn Tn

This notation is nonstandard in mathematics at large, but has achieved a certain
amount of acceptance in the interior-point-methods community.

1. The Barrier Problem

In this chapter, we consider the linear programming problem expressed, as
usual, with inequality constraints and nonnegative variables:

maximize Lz

subjectto  Ax<b
x> 0.

The corresponding dual problem is
minimize b7y
subjectto ATy > ¢
y > 0.

R.J. Vanderbei, Linear Programming, International Series in Operations Research 257
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As usual, we add slack variables to convert both problems to equality form:

maximize ¢z

(17.1) subjectto  Ax+w=1>
z,w>0

and
minimize b7y
subjectto ATy —z=¢
y,z> 0.

Given a constrained maximization problem where some of the constraints are
inequalities (such as our primal linear programming problem), one can consider
replacing any inequality constraint with an extra term in the objective function. For
example, in (17.1) we could remove the constraint that a specific variable, say, x;,
is nonnegative by adding to the objective function a term that is negative infinity
when 2 is negative and is zero otherwise. This reformulation doesn’t seem to be
particularly helpful, since this new objective function has an abrupt discontinuity
that, for example, prevents us from using calculus to study it. However, suppose we
replace this discontinuous function with another function that is negative infinity
when z; is negative but is finite for x; positive and approaches negative infinity as
x; approaches zero. In some sense this smooths out the discontinuity and perhaps
improves our ability to apply calculus to its study. The simplest such function is
the logarithm. Hence, for each variable, we introduce a new term in the objective
function that is just a constant times the logarithm of the variable:

maximize ¢’z + p_jlogzy + p), logw;

(17.2) subjectto  Ax +w =b.

This problem, while not equivalent to our original problem, seems not too different
either. In fact, as the parameter ;, which we assume to be positive, gets small, it
appears that (17.2) becomes a better and better stand-in for (17.1). Problem (17.2)
is called the barrier problem associated with (17.1). Note that it is not really one
problem, but rather a whole family of problems indexed by the parameter .. Each of
these problems is a nonlinear programming problem because the objective function
is nonlinear. This nonlinear objective function is called a barrier function or, more
specifically, a logarithmic barrier function.

It is instructive to have in mind a geometric picture of the barrier function. Re-
call that, for problems expressed in standard form, the set of feasible solutions is
a polyhedron with each face being characterized by the property that one of the
variables is zero. Hence, the barrier function is minus infinity on each face of the
polyhedron. Furthermore, it is finite in the interior of the polyhedron, and it ap-
proaches minus infinity as the boundary is approached. Figure 17.1 shows some
level sets for the barrier function for a specific problem and a few different choices
of . Notice that, for each i, the maximum is attained at an interior point, and as
1 gets closer to zero this interior point moves closer to the optimal solution of the
original linear programming problem (which is at the top vertex). Viewed as a func-
tion of p, the set of optimal solutions to the barrier problems forms a path through
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a b
p=00 =1

c | d =0.01
p=0.01 central path

FIGURE 17.1. Parts (a) through (¢) show level sets of the barrier
function for three values of u. For each value of i, four level sets
are shown. The maximum value of the barrier function is attained
inside the innermost level set. The drawing in part (d) shows the
central path.

the interior of the polyhedron of feasible solutions. This path is called the central
path. Our aim is to study this central path. To this end, we need to develop some
machinery, referred to as Lagrange multipliers.

2. Lagrange Multipliers

We wish to discuss briefly the general problem of maximizing a function sub-
ject to one or more equality constraints. Here, the functions are permitted to be
nonlinear, but are assumed to be smooth, say, twice differentiable.

For the moment, suppose that there is a single constraint equation so that the
problem can be formally stated as

maximize  f(z)
subjectto  g(z) = 0.

In this case, the geometry behind the problem is compelling (see Figure 17.2). The
gradient of f, denoted V f, is a vector that points in the direction of most rapid
increase of f. For unconstrained optimization, we would simply set this vector equal
to zero to determine the so-called critical points of f, and the maximum, if it exists,
would have to be included in this set. However, given the constraint, g(z) = 0, it is
no longer correct to look at points where the gradient vanishes. Instead, the gradient
must be orthogonal to the set of feasible solutions {z : g(x) = 0}. Of course, at
each point z in the feasible set, Vg(z), is a vector that is orthogonal to the feasible
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FIGURE 17.2. The concentric rings illustrate a few level sets of
f. Clearly, at the optimal solution, z*, the gradient must be per-
pendicular to the feasible set.

set at this point . Hence, our new requirement for a point z* to be a critical point
is that it is feasible and that V f(«*) be proportional to Vg(x*). Writing this out as
a system of equations, we have

g9(z") =0
Vi(z®) =yVg(z").
Here, y is the proportionality constant. Note that it can be any real number, ei-
ther positive, negative, or zero. This proportionality constant is called a Lagrange

multiplier.
Now consider several constraints:

maximize  f(z)

subjectto  gi(x) =10
g2(z)=0
gm(x) = 0.

In this case, the feasible region is the intersection of m hypersurfaces (see Fig-
ure 17.3). The space orthogonal to the feasible set at a point x is no longer a one-
dimensional set determined by a single gradient, but is instead a higher-dimensional
space (typically m), given by the span of the gradients. Hence, we require that
V f(2z*) lie in this span. This yields the following set of equations for a critical
point:

g(z*) =0
(17.3) V@) = uiVg(a).
i=1

The derivation of these equations has been entirely geometric, but there is also a
simple algebraic formalism that yields the same equations. The idea is to introduce
the so-called Lagrangian function
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V&

FIGURE 17.3. The feasible set is the curve formed by the inter-
section of g; = 0 and go = 0. The point z* is optimal, since the
gradient of f at that point is perpendicular to the feasible set.

L@w):f@)*E:mm@)

and to look for its critical points over both z and y. Since this is now an uncon-
strained optimization problem, the critical points are determined by simply setting
all the first derivatives to zero:

oL of _Zy dg;

=0, j=1,2,...,n,

8$j_6]}j 3 Zaxj
oL

=—g =0, i =1,2,...,m.
yi g ' "

Writing these equations in vector notation, we see that they are exactly the same as
those derived using the geometric approach. These equations are usually referred to
as the first-order optimality conditions.

Determining whether a solution to the first-order optimality conditions is indeed
a global maximum as desired can be difficult. However, if the constraints are all
linear, the first step (which is often sufficient) is to look at the matrix of second
derivatives:

0*f }

This matrix is called the Hessian of f at x. We have

THEOREM 17.1. If the constraints are linear, a critical point x* is a local max-
imum if

(17.4) ETHf(*)E<O0
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for each & # 0 satisfying

(17.5) T'Vgi(z*) =0, i=1,2,...,m.

PROOF. We start with the two-term Taylor series expansion of f about z*:

fla* +€) = f(a*) + Vf(a")TE+ %STHf(x*)ﬁ +o([I€]*)-

The vector £ represents a displacement from the current point *. The only displace-
ments that are relevant are those that lie in the feasible set. Hence, let £ be a direction
vector satisfying (17.5). From (17.3) and (17.5), we see that V f(z*)T¢ = 0, and so

Fa® +€) = f) + S€ HI )6 + ol ).

Employing (17.4) finishes the proof. (]

It is worth remarking that if (17.4) is satisfied not just at =* but at all z, then *
is a unique global maximum.

In the next section, we shall use Lagrange multipliers to study the central path
defined by the barrier problem.

3. Lagrange Multipliers Applied to the Barrier Problem

In this section, we shall use the machinery of Lagrange multipliers to study the
solution to the barrier problem. In particular, we will show that (subject to some
mild assumptions) for each value of the barrier parameter p, there is a unique solu-
tion to the barrier problem. We will also show that as x tends to zero, the solution to
the barrier problem tends to the solution to the original linear programming problem.
In the course of our study, we will stumble naturally upon the central path for the
dual problem. Taken together, the equations defining the primal and the dual central
paths play an important role, and so we will introduce the notion of a primal-dual
central path.

‘We begin by recalling the barrier problem:

maximize ¢’z + pyojlogz; + py; logw;
subjectto Az 4+ w =b.

This is an equality-constrained optimization problem, and so it is a problem to which
we can apply the Lagrange multiplier tools developed in the previous section. The
Lagrangian for this problem is

L(z,w,y) = chJruZlong +u210gwi +yT(b— Az — w).
j i
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Taking derivatives with respect to each variable and setting them to zero, we get the
first-order optimality conditions:

oL 1 .
%j:cﬁr“;j—zi:yiaij =0, 7=12,...,n,
oL 1 '

8 =H— — Y :0, 121727...7m_
w; w;

oL

a%:bi_;aijmj_wi =0, 1=12,...,m.

Writing these equations in matrix form, we get
ATy —pXx—te=c
y=pWle
Ax+w =b.
Here, as warned at the beginning of the chapter, X denotes the diagonal matrix
whose diagonal entries are the components of z, and similarly for W. Also, recall
that we use e to denote the vector of all ones.

Introducing an extra vector defined as z = pX ~'e, we can rewrite the first-
order optimality conditions like this:

Az 4+ w =b.

Aty —z=¢
z=puX"te
y = pWle.

Finally, if we multiply the third equation through by X and the fourth equation by
W, we arrive at a primal-dual symmetric form for writing these equations:

Ar+w=1>

ATy —z=c¢
(17.6) XZe= pe
YWe= pe.

Note that the first equation is the equality constraint that appears in the primal prob-
lem, while the second equation is the equality constraint for the dual problem. Fur-
thermore, writing the third and fourth equations out componentwise,

TjZj = [ j=12,....n
Yiwi = [ 1=1,2,...,m,

we see that they are closely related to our old friend: complementarity. In fact, if
we set 4 to zero, then they are exactly the usual complementarity conditions that
must be satisfied at optimality. For this reason, we call these last two equations the
u-complementarity conditions.

The first-order optimality conditions, as written in (17.6), give us 2n + 2m
equations in 2n + 2m unknowns. If these equations were linear, they could be
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solved using Gaussian elimination, and the entire subject of linear programming
would be no more difficult than solving systems of linear equations. But alas, they
are nonlinear—but just barely. The only nonlinear expressions in these equations
are simple multiplications such as x;z;. This is about the closest to being linear
that one could imagine. Yet, it is this nonlinearity that makes the subject of linear
programming nontrivial.

We must ask both whether a solution to (17.6) exists and if so is it unique. We
address these questions in reverse order.

4. Second-Order Information

To show that the solution, if it is exists, must be unique, we use second-order
information on the barrier function:

17.7) flz,w) = chJruZlogozj +uZlogwi.
j i
The first derivatives are
0
91 —c+2, j=12..,n,
5':cj fﬂj
0
o _m i=1.9. . . .m
8’LUZ' w;
and the pure second derivatives are
O*f 1
— =—= =1,2,...
ax‘? x?? J ) 7 7n’
*f p
—s = —— =1,2,...,m.
awg w?? 7 ) ) 7m

All the mixed second derivatives vanish. Therefore, the Hessian is a diagonal matrix
with strictly negative entries. Hence, by Theorem 17.1, there can be at most one
critical point and, if it exists, it is a global maximum.

5. Existence

So, does a solution to the barrier problem always exist? It might not. Consider,
for example, the following trivial optimization problem on the nonnegative half-line:

maximize 0
subjectto = > 0.

For this problem, the barrier function is

f(x) = plogz,
which doesn’t have a maximum (or, less precisely, the maximum is infinity which
is attained at © = oo). However, such examples are rare. For example, consider
modifying the objective function in this example to make = = 0 the unique optimal
solution: o
maximize —zx
subjectto x> 0.
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In this case, the barrier function is

f(z) = —z + plogz,
which is a function whose maximum is attained at x = p.
In general, we have the following result:

THEOREM 17.2. There exists a solution to the barrier problem if and only if
both the primal and the dual feasible regions have nonempty interior.

PROOF. The “only if” part is trivial and less important to us. Therefore, we only
prove the “if” part. To this end, suppose that both the primal and the dual feasible
regions have nonempty interior. This means that there exists a primal feasible point
(Z,w) with > 0 and @w > 0 and there exists a dual feasible point (7, zZ) withy > 0
and Z > 0.' Now, given any primal feasible point (z,w), consider the expression
zTx + y"w. Replacing the primal and dual slack variables with their definitions,
we can rewrite this expression as follows:

e+ yw=(ATy - C)T.’L‘ + 47 (b — Ax)

=bly—cla.
Solving this equation for the primal objective function ¢’ 2, we get that
doe=—-z2Te—gTw+bTy.

Therefore, the barrier function f defined in equation (17.7) can be written as fol-
lows:

flz,w) = chJruZlogmj +/¢Zlogwi
j i

= Z (—Zjxj + plogxy)
J
+ Z (—yiw; + plogw;)

+ b7y
Note that the last term is just a constant. Also, each summand in the two sums is a
function of just one variable. These functions all have the following general form:
h(§) = —al + plog,  0<§ < oo,

where a > 0. Such functions have a unique maximum (at y/a) and tend to —oo as
¢ tends to co. From these observations, it is easy to see that, for every constant c,
the set
{(z,w) e R™™ : f(z,w) > c}
is bounded.
Put

IRecall that we write & > 0to mean that §; > 0 for all j.
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and let
P={(z,w): Av +w =b,xz > 0,w >0, f(z,w) > f}.

Clearly, Pis nonempty, since it contains (Z,w). From the discussion above, we see
that P is a bounded set.
This set is also closed. To see this, note that it is the intersection of three sets,

{(z,w): Az +w = b}y N {(z,w) : 2 > 0,w >0} N {(z,w) : f(x,w) > f}.

The first two of these sets are obviously closed. The third set is closed because it is
the inverse image of a closed set, [f, o], under a continuous mapping f. Finally,
the intersection of three closed sets is closed.

In Euclidean spaces, a closed bounded set is called compact. A well-known
theorem from real analysis about compact sets is that a continuous function on a
nonempty compact set attains its maximum. This means that there exists a point
in the compact set at which the function hits its maximum. Applying this theorem
to f on P, we see that f does indeed attain its maximum on P, and this implies it
attains its maximum on all of {(z,w) : > 0,w > 0}, since P was by definition
that part of this domain on which f takes large values (bigger than f, anyway). This
completes the proof. ([

We summarize our main result in the following corollary:

COROLLARY 17.3. If a primal feasible set (or, for that matter, its dual) has a
nonempty interior and is bounded, then for each p > 0 there exists a unique solution

(J)M, w;u y;u ZM)
to (17.6).
PROOF. Follows immediately from the previous theorem and Exercise 10.7.

O

The path {(z,,w,, Y, 2,) : 1 > 0} is called the primal-dual central path.
It plays a fundamental role in interior-point methods for linear programming. In
the next chapter, we define the simplest interior-point method. It is an iterative
procedure that at each iteration attempts to move toward a point on the central path
that is closer to optimality than the current point.

Exercises
17.1 Compute and graph the central trajectory for the following problem:

maximize —zi + o

subject to T < 1
—xI1 S -1
Z1, T2 > 0.

Hint: The primal and dual problems are the same—exploit this symmetry.
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17.2 Let 0 be a fixed parameter, 0 < ¢ < 7, and consider the following prob-

lem:
maximize (cosf)x; + (sinf)xs
subject to 1 <1
To < 1
T1,T2 Z 0.

Compute an explicit formula for the central path (x,,,w,,y,, 2,,), and
evaluate lim,,_, z,, and lim,,_,o 2.

17.3 Suppose that {z : Az < b,z > 0} isbounded. Letr € R™ and s € R™ be
vectors with positive elements. By studying an appropriate barrier func-
tion, show that there exists a unique solution to the following nonlinear

system:
Az +w=">
ATy —z=c
XZe=r
YWe=s
z,Y, 2, w > 0.

17.4 Consider the linear programming problem in equality form:
maximize Zj ;T
(17.8) subjectto > ajz;=b
J

xz; >0, i=1,2,...,n,
where each a; is a vector in R™, as is b. Consider the change of variables,

2

sz g

and the associated maximization problem:

maximize > ¢;&7

subjectto >~ a;EF =b

(note that the nonnegativity constraints are no longer needed). Let V' de-
note the set of basic feasible solutions to (17.8), and let /¥ denote the set
of points (£2,€2,...,£2) in R™ for which (&1,&a,...,&,) is a solution
to the first-order optimality conditions for (17.9). Show that V' C W.
What does this say about the possibility of using (17.9) as a vehicle to
solve (17.8)?

(17.9)

Notes

Research into interior-point methods has its roots in the work of Fiacco and
McCormick (1968). Interest in these methods exploded after the appearance of
the seminal paper Karmarkar (1984). Karmarkar’s paper uses clever ideas from
projective geometry. It doesn’t mention anything about central paths, which have
become fundamental to the theory of interior-point methods. The discovery that
Karmarkar’s algorithm has connections with the primal—-dual central path introduced
in this chapter can be traced to Megiddo (1989). The notion of central points can be
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traced to pre-Karmarkar times with the work of Huard (1967). D.A. Bayer and J.C.
Lagarias, in a pair of papers (Bayer and Lagarias 1989a,b), give an in-depth study
of the central path.

Deriving optimality conditions and giving conditions under which they are nec-
essary and sufficient to guarantee optimality is one of the main goals of nonlin-
ear programming. Standard texts on this subject include the books by Luenberger
(1984), Bertsekas (1995), and Nash and Sofer (1996).



CHAPTER 18

A Path-Following Method

In this chapter, we define an interior-point method for linear programming that
is called a path-following method. Recall that for the simplex method we required
a two-phase solution procedure. The path-following method is a one-phase method.
This means that the method can begin from a point that is neither primal nor dual
feasible and it will proceed from there directly to the optimal solution. Hence,
we start with an arbitrary choice of strictly positive values for all the primal and
dual variables, i.e., (x,w,y,z) > 0, and then iteratively update these values as
follows:

(1) Estimate an appropriate value for x (i.e., smaller than the “current” value
but not too small).

(2) Compute step directions (Az, Aw, Ay, Az) pointing approximately at
the point (x,,, w,, y,, z,) on the central path.

(3) Compute a step length parameter 6 such that the new point

I =x+0Ax, 7=1vy+0Ay,
W= w + 0Aw, Z=z+0Az
continues to have strictly positive components.
(4) Replace (x,w,y, z) with the new solution (%, w, 7, Z).
To fully define the path-following method, it suffices to make each of these four

steps precise. Since the second step is in some sense the most fundamental, we start
by describing that one after which we turn our attention to the others.

1. Computing Step Directions

Our aim is to find (Az, Aw, Ay, Az) such that the new point (z + Az, w +
Aw, y+ Ay, z+ Az) lies approximately on the primal—dual central path at the point
(x, Wy, Yy, 24). Recalling the defining equations for this point on the central path,

Az +w=1>

ATy —z2=c¢
XZe = pe
YWe = pe,

we see that the new point (z + Az, w + Aw,y + Ay, z + Az), if it were to lie
exactly on the central path at i, would be defined by

R.J. Vanderbei, Linear Programming, International Series in Operations Research 269
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Alz + Az) + (w4 Aw) = b
AT(y+ Ay) - (2 4+ A2) = ¢
(X +AX)(Z+AZ)e = pe
(Y + AY)(W 4+ AW )e = pe.
Thinking of (x,w,y, z) as data and (Az, Aw, Ay, Az) as unknowns, we rewrite
these equations with the unknowns on the left and the data on the right:
AAz+Aw=b—Ax—w =:p
ATAy —Az=c—-ATy+z2=:0
ZAx 4+ XAz + AXAZe = pe — XZe
WAy +YAw+ AYAWe = pue — YWe.

Note that we have introduced abbreviated notations, p and o, for the first two right-
hand sides. These two vectors represent the primal infeasibility and the dual infea-
sibility, respectively.

Now, just as before, these equations form a system of nonlinear equations (this
time for the “delta” variables). We want to have a linear system, so at this point we
simply drop the nonlinear terms to arrive at the following linear system:

(18.1) AAz +Aw=0p

(18.2) ATAy — Nz =0

(18.3) ZAx 4+ XAz =pe— XZe
(18.4) WAy +YAw = ue — YWe.

This system of equations is a linear system of 2n + 2m equations in 2n + 2m
unknowns. We will show later that this system is nonsingular (under the mild as-
sumption that A has full rank) and therefore that it has a unique solution that defines
the step directions for the path-following method. Chapters 19 and 20 are devoted
to studying methods for efficiently solving systems of this type.

If the business of dropping the nonlinear “delta” terms strikes you as bold, let
us remark that this is the most common approach to solving nonlinear systems of
equations. The method is called Newton’s method. It is described briefly in the next
section.

2. Newton’s Method

Given a function

n) [

FQ 2

F(E) = : ) g = : 3
Fn(6) S\

from RY into RY, a common problem is to find a point £* € RY for which
F(&*) = 0. Such a point is called a root of F. Newton’s method is an iterative
method for solving this problem. One step of the method is defined as follows.
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Given any point ¢ € R, the goal is to find a step direction A& for which F(& +
A&) = 0. Of course, for a nonlinear F' it is not possible to find such a step direction.
Hence, it is approximated by the first two terms of its Taylor’s series expansion,

F(§+ A ~ F(§) + F'(§AE,

where ~ _
R OF . OF
061 0& OEN
OF, 0Fy, . 0OF,
651 852 8£N
!/
FI(§) =
OFny OFy .. OFn
| 961 0% 3%

The approximation is linear in A¢. Hence, equating it to zero gives a linear system
to solve for the step direction:

FI()AE = —F(¢).
Given A¢, Newton’s method updates the current solution ¢ by replacing it with
&4 A&. The process continues until the current solution is approximately a root (i.e.,
F (&) ~ 0). Simple one-dimensional examples given in every elementary calculus
text illustrate that this method works well, when it works, but it can fail if /' is not
well behaved and the initial point is too far from a solution.
Let’s return now to the problem of finding a point on the central path. Letting

S S .

and
Az +w—0b
ATy —2—¢
F(&) = XZe—pe |’
YWe — pe
we see that the set of equations defining (x,,, Wy, Yy, 2,,) is a root of F'. The matrix
of derivatives of F’ is given by

A T 0 0
0 0 AT —JI
FO=170 0 x
OY W 0
Noting that
Az
Aw
A€ = ,
3 Ay

Az
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it is easy to see that the Newton direction coincides with the direction obtained by
solving equations (18.1)—(18.4).

3. Estimating an Appropriate Value for the Barrier Parameter

We need to say how to pick u. If p is chosen to be too large, then the sequence
could converge to the analytic center of the feasible set, which is not our intention.
If, on the other hand, w is chosen to be too small, then the sequence could stray too
far from the central path and the algorithm could jam into the boundary of the fea-
sible set at a place that is suboptimal. The trick is to find a reasonable compromise
between these two extremes. To do this, we first figure out a value that represents,
in some sense, the current value of p and we then choose something smaller than
that, say a fixed fraction of it.

We are given a point (z,w,y, z) that is almost certainly off the central path.
If it were on the central path, then there are several formulas by which we could
recover the corresponding value of p. For example, we could just compute z;x; for
any fixed index j. Or we could compute y;w; for any fixed 7. Or, perverse as it may
seem, we could average all these values:

T T
(18.5) = M
n+m
This formula gives us exactly the value of  whenever it is known that (x, w, y, 2)
lies on the central path. The key point here then is that we will use this formula to
produce an estimate for x4 even when the current solution (x, w, y, z) does not lie on
the central path. Of course, the algorithm needs a value of u that represents a point
closer to optimality than the current solution. Hence, the algorithm takes this “par”
value and reduces it by a certain fraction:
5 2o+ yTw
r= n—+m
where ¢ is a number between zero and one. In practice, one finds that setting § to
approximately 1/10 works quite well, but for the sake of discussion we will always
leave it as a parameter.

4. Choosing the Step Length Parameter

The step directions, which were determined using Newton’s method, were de-
termined under the assumption that the step length parameter § would be equal to
one (i.e., ¢ = x + Aw, etc.). But taking such a step might cause the new solution
to violate the property that every component of all the primal and the dual variables
must remain positive. Hence, we may need to use a smaller value for §. We need to
guarantee, for example, that

x; +0Az; >0, =12 ...,n.
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initialize (z,w,y,z) >0

while (not optimal) {
p=b—Ar —w
oc=c— ATy +z
v = 2T+ yTw

r= 6n +m

solve:
AAx + Aw = p
ATAy — Az = o
ZArx 4+ XAz = pe—XZe

WAy+YAw = pe—YWe
Az;  Aw; Ay _AZJ}) -t Al

0 =r | max;; { — ——,
’ Ly wi Yi Zj
T+ x+ 0Ax, w <+ w+ 0Aw

y < y+ 0Ay, 2+ z+0Az

FIGURE 18.1. The path-following method.

Moving the Az ; term to the other side and then dividing through by 6 and z;, both
of which are positive, we see that § must satisfy
1 Ax j

- > =7 i=1,2,...,n.
0 T J "

Of course, a similar inequality must be satisfied for the w, y, and z variables too.
Putting it all together, the largest value of # would be given by

1 {_ij Aw; Ay _Az]}

— = max y——y — ,

0 i Z; w; Yi Zj
where we have abused notation slightly by using the max;; to denote the maximum
of all the ratios in the indicated set. However, this choice of § will not guarantee
strict inequality, so we introduce a parameter r, which is a number close to but
strictly less than one, and we set!

-1
(18.6) 9—r<max{—AmJ,—A1‘“,—A%,—AZJ}) Al

v Ly Wi Yi Zj

This formula may look messy, and no one should actually do it by hand, but it is
trivial to program a computer to do it. Such a subroutine will be really fast (requiring
only on the order of 2n + 2m operations).

A summary of the algorithm is shown in Figure 18.1. In the next section, we
investigate whether this algorithm actually converges to an optimal solution.

IFor compactness, we use the notation a A b to represent the minimum of the two numbers a and b.
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5. Convergence Analysis

In this section, we investigate the convergence properties of the path-following
algorithm. Recall that the simplex method is a finite algorithm (assuming that steps
are taken to guard against cycling). For interior-point methods, the situation is dif-
ferent. Every solution produced has all variables strictly positive. Yet for a solution
to be optimal generally requires many variables to vanish. This vanishing can only
happen “in the limit.” This raises questions, the most fundamental of which are
these: does the sequence of solutions produced by the path-following method con-
verge? If so, is the limit optimal? How fast is the convergence? In particular, if
we set “optimality tolerances,” how many iterations will it take to achieve these
tolerances? We will address these questions in this section.

In this section, we will need to measure the size of various vectors. There are
many choices. For example, for each 1 < p < oo, we can define the so-called
p-norm of a vector x as

=

lzllp = | D Ly P
i

The limit as p tends to infinity is also well defined, and it simplifies to the so-called
sup-norn:

e = maxa; .

5.1. Measures of Progress. Recall from duality theory that there are three
criteria that must be met in order that a primal—dual solution be optimal:

(1) Primal feasibility,
(2) Dual feasibility, and
(3) Complementarity.

For each of these criteria, we introduce a measure of the extent to which they fail to
be met.

For the primal feasibility criterion, we use the 1-norm of the primal infeasibility
vector

p=0b—Axr —w.
For the dual feasibility criterion, we use the 1-norm of the dual infeasibility vector
o=c— ATy + 2.
For complementarity, we use
Y= 2T+ yTw.
5.2. Progress in One Iteration. For the analysis in the section, we prefer to

modify the algorithm slightly by having it take shorter steps than specified before.
Indeed, we let



5. CONVERGENCE ANALYSIS 275

-1
gzr(max{ Az )Aw 7’% |2u }) a1
1, €5 w; Yi Zj
(18.7) - ! Al
' " max([X Ao, 12 A20)

Note that the only change has been to replace the negative ratios with the absolute
value of the same ratios. Since the maximum of the absolute values can be larger
than the maximum of the ratios themselves, this formula produces a smaller value
for 6. In this section, let x, y, etc., denote quantities from one iteration of the
algorithm, and put a tilde on the same letters to denote the same quantity at the next
iteration of the algorithm. Hence,
T =uz+ 0Ax, J=1y+ 0Ay,
w=w+ 0Aw, Z=z4+0Az
Now let’s compute some of the other quantities. We begin with the primal
infeasibility:
p=b—AT —w
=b— Az —w— 0(AAzx + Aw).
But b — Az — w equals the primal infeasibility p (by definition) and AAz + Aw

also equals p, since this is precisely the first equation in the system that defines the
“delta” variables. Hence,

(18.8) p=(1-0)p.
Similarly,

G=c—ATj+z

=c— ATy 42— 0(AAY — Az)

(18.9) =(1-0)o.
Since 6 is a number between zero and one, it follows that each iteration produces a
decrease in both the primal and the dual infeasibility and that this decrease is better
the closer 6 is to one.

The analysis of the complementarity is a little more complicated (after all, this
is the part of the system where the linearization took place):

y=z:"34+g§"w
= (24 0A2)T (z + 0Az) + (y + 0AY) T (w + 0AW)
=2Te+ yTw
+0(z"Ax + Azl x + yT Aw 4+ Ayt w)
+0*(A2T Az + AyT Aw).
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We need to analyze each of the 6 terms separately. From (18.3), we see that
TAr+ Alr =el (ZAz 4+ XAz)
=eT (ue — ZXe)
=un — 21z,
Similarly, from (18.4), we have
yTAw + AyTw = T (Y Aw + WAY)
= e (pe — YWe)
= pm —yTw.
Finally, (18.1) and (18.2) imply that
AT Az + AyTAw = (ATAy — 0)" Az + Ay” (p— AAx)
=AyTp—oTAz.
Substituting these expressions into the last expression for 7, we get
y=z2le+yTw
+0 (u(n+m) — (z"x +y"w))
+ 62 (AyTp — UTAx) .
At this point, we recognize that 27 x + yTw = ~ and that 1(n + m) = 6v. Hence,
F=1-1-680)v+06* (Ay"p—o"Az).

We must now abandon equalities and work with estimates. Our favorite tool for
estimation is the following inequality:

o w| = > vjw;]
j
<oy w;]
i
< (m?Xle)(Z |w;])

J
= [[vlloc [[w]]1-

This inequality is the trivial case of Holder’s inequality. From Holder’s inequality,
we see that

1Ay pl < [lpll[Ayllee  and |0 Az| < |01 ]| A%
Hence,
<@ =0=08)80)7+6(plhll0Ayllec + o)1 10AZ]) -

Next, we use the specific choice of step length 6 to get a bound on ||#Ay||~ and
l0Az| . Indeed, (18.7) implies that
0

< r < Y
XAzl T [Azy

for all j.
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Hence,
[0AZ|o0 < ||z[oo-

Similarly,
10AY]loo < [Yllsc-

If we now assume that, along the sequence of points x and y visited by the algorithm,
|z||so and ||y||co are bounded by a large real number M, then we can estimate the
new complementarity as

(18.10) 7< (=0 =0)0)y+ Mlpllr + Mol

5.3. Stopping Rule. Let ¢ > 0 be a small positive tolerance, and let M < co
be a large finite tolerance. If ||x|| o gets larger than M, then we stop and declare the
problem primal unbounded. If ||y||~ gets larger than M, then we stop and declare
the problem dual unbounded. Finally, if ||p||1 < €, ||o]|1 < € and v < e, then
we stop and declare the current solution to be optimal (at least within this small
tolerance).

Since v is a measure of complementarity and complementarity is related to the
duality gap, one would expect that a small value of v should translate into a small
duality gap. This turns out to be true. Indeed, from the definitions of v, o, and p,
we can write

v = 2T + yTw
=(o+ ATy — ) e +y"(b— Az —p)
=bTy—cla+ole—ply.
At this point, we use Holder’s inequality to bound some of these terms to get an
estimate on the duality gap:
b7y — | <y + [0 x|+ [yl
<+ lolallzlioe + lollllyllo-

Now, if v, ||o]]1, and ||p||; are all small (and |||/~ and ||y||e are not too big),
then the duality gap will be small. This estimate shows that one shouldn’t expect
the duality gap to get small until the primal and the dual are very nearly feasible.
Actual implementations confirm this expectation.

5.4. Progress Over Several Iterations. Now let p*), c(¥) ~(F) 9(k) etc.,
denote the values of these quantities at the kth iteration. We have the following
result about the overall performance of the algorithm:

THEOREM 18.1. Suppose there is a real number t > 0, a real number M < oo,
and an integer K such that for all k < K,

k) > t,
12l < M,
ly® oo < M.
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Then there exists a constant M < oo such that

1P ™ < (1= 1o,
lo™ ] < (1= )*lo |1,
W < (1=,
forall k < K where
t=t(1-94).

PROOF. From (18.8) and the bound on 0¥ it follows that

6l < (= lp* Dl

IN

< (= 1)* s
Similarly, from (18.9), it follows that
lo®ly < (1 =t)e® D]y <o < (1= 1)* D1

As usual, fy(k) is harder to estimate. From (18.10) and the previous two estimates,
we see that

y® < (111 = 8)y*Y
+ M(1—t)F! (||p<0>H1 n HJ(O)”l)

where M = M ([|p©||; + [|o(®|1). Since an analogous inequality relates ~(*~1)

(k—2)

to y , we can substitute this analogous inequality into (18.11) to get

A < (1) [(1 N v t)H] (1 — 1)k
=1 -2 L -kt [tf + 1} }

Continuing in this manner, we see that

AB) < (1) [(1 — D)y * 4 (1 - t)’“‘ﬂ

IN
IN

A
_
N

kol
2
E
+
_
|
N
ol
L
| —
N
~——
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+
+
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Now we sum the bracketed partial sum of a geometric series to get

N
(1—tf_1l<1_$>k_l+-~4—1_i¥+1 :(1—tﬁ?11_(?i_i>

1—¢ 1—t¢ 1—+¢
1—-—=
1—t

(1-8F —(1—t)F

t—t
Recalling that £ = ¢(1 — ) and dropping the second term in the numerator, we get

(-Df—(-0F _ (-
t—1 - 6t
Putting this all together, we see that

%“S(l—ﬂkcwt+%>-

Denoting the parenthesized expression by M completes the proof. (]

Theorem 18.1 is only a partial convergence result because it depends on the
assumption that the step lengths remain bounded away from zero. To show that the
step lengths do indeed have this property requires that the algorithm be modified
and that the starting point be carefully selected. The details are rather technical and
hence omitted (see the Notes at the end of the chapter for references).

Also, before we leave this topic, note that the primal and dual infeasibilities go
down by a factor of 1 — ¢ at each iteration, whereas the duality gap goes down by a
smaller amount 1 — £. The fact that the duality gap converges more slowly that the
infeasibilities is also readily observed in practice.

Exercises

18.1 Starting from (z,w,y,z) = (e,e,e,e), and using § = 1/10, and r =
9/10, compute (z,w,y, z) after one step of the path-following method
for the problem given in

(a) Exercise 2.3.
(b) Exercise 2.4.
(c) Exercise 2.5.
(d) Exercise 2.10.

18.2 Let {(x,, wyu, Yy, z,) : p > 0} denote the central trajectory. Show that

HILH;O bTyu — CTJ,‘M = o0.

Hint: look at (18.5).

18.3 Consider a linear programming problem whose feasible region is bounded
and has nonempty interior. Use the result of Exercise 18.2 to show that
the dual problem’s feasible set is unbounded.
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18.4 Scale invariance. Consider a linear program and its dual:

max ¢!z min b7y
(P) st Az+w=0 (D) st ATy —z=¢
z,w >0 y,z2>0.

Let R and S be two given diagonal matrices having positive entries along
their diagonals. Consider the scaled reformulation of the original problem
and its dual:

max (Sc)”

T min (Rb)"y
(P) st RAST +w
z,

Rb (D) st SATRy—z=Sc
0 0.

g
vV
|
W
v

)

Let (z¥, w®, y*, 2¥) denote the sequence of solutions generated by the
primal—dual interior-point method applied to (P)-(D). Similarly, let
(%, w*, y*, 2¥) denote the sequence of solutions generated by the primal—
dual interior-point method applied to (P)—(D). Suppose that we have the
following relations among the starting points:

=512 @w’=Ruw’, F°=R"1Y°, z'=252"
Show that these relations then persist. That is, for each £ > 1,
b =871k wh = RwF, gF =R, ZF =82

18.5 Homotopy method. Let Z, y, Z, and w be given componentwise positive
“initial” values for z, y, z, and w, respectively. Let ¢ be a parameter
between 0 and 1. Consider the following nonlinear system:

Az +w=tb+ (1 —t)(AZ 4+ @)
ATy —z=tc+ (1 - t)(ATy - 2)

(18.12) XZe=(1-t)XZe
YWe=(1—-t)YWe
z,y, 2, w > 0.

(a) Use Exercise 17.3 to show that this nonlinear system has a unique
solution for each 0 < ¢ < 1. Denote it by (x(t), y(t), z(t), w(t)).

(b) Show that (z(0), y(0), 2(0), w(0)) = (7,7, %, ®).

(c) Assuming that the limit
(@(1),y(1), 2(1), w(1)) = lim (2 (2), y(2), 2(t), w(t))
exists, show that it solves the standard-form linear programming prob-
lem.

(d) The family of solutions (z(t),y(t), z(t), w(¢)), 0 < ¢ < 1, describes
a curve in “primal—dual” space. Show that the tangent to this curve at
t = 0 coincides with the path-following step direction at (Z, 7, Z, @)
computed with p = 0; that is,



EXERCISES 281

E( )7%( )7%( ):E
where (Ax, Ay, Az, Aw) is the solution to (18.1)—(18.4).

18.6 Higher-order methods. The previous exercise shows that the path-follow-
ing step direction can be thought of as the direction one gets by approxi-
mating a homotopy path with its tangent line:

dx
t) = x(0) + —(0)t.
z(t) ~ 2(0) + —-(0)
By using more terms of the Taylor’s series expansion, one can get a better
approximation:
dx 1d%x 1 drFz
t) = 2(0) + —(0)t + = ——=(0)t* + - - + — —(0)t".

(a) Differentiating the equations in (18.12) twice, derive a linear system
for (d?x/dt?(0), d%y/dt?(0),d?z/dt?(0), d*w/dt*(0)).

(b) Can the same technique be applied to derive linear systems for the
higher-order derivatives?

18.7 Linear Complementarity Problem. Given a k x k matrix M and a k-vector
q, a vector x is said to solve the linear complementarity problem if

—Mx+z q
XZe =0
x,z >0
(note that the first equation can be taken as the definition of 2).
(a) Show that the optimality conditions for linear programming can be
expressed as a linear complementarity problem with

0 —A].

M:[AT 0

(b) The path-following method introduced in this chapter can be ex-
tended to cover linear complementarity problems. The main step in
the derivation is to replace the complementarity condition X Ze = 0
with a p-complementarity condition X Ze = pe and then to use
Newton’s method to derive step directions Ax and Az. Carry out
this procedure and indicate the system of equations that define Ax
and Az.

(c) Give conditions under which the system derived above is guaranteed
to have a unique solution.

(d) Write down the steps of the path-following method for the linear
complementarity problem.

(e) Study the convergence of this algorithm by adapting the analysis
given in Section 18.5.
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18.8 Consider again the L*-regression problem:
minimize ||b — Az||;.

Complete the following steps to derive the step direction vector Az asso-

ciated with the primal—dual affine-scaling method for solving this problem.

(a) Show that the L!-regression problem is equivalent to the following
linear programming problem:

minimize el (t; +t_)
(18.13) subjectto Ax+ty —t_=D>
ty,t- > 0.

(b) Write down the dual of (18.13).

(c) Add slack and/or surplus variables as necessary to reformulate the
dual so that all inequalities are simple nonnegativities of variables.

(d) Identify all primal-dual pairs of complementary variables.

(e) Write down the nonlinear system of equations consisting of: (1) the
primal equality constraints, (2) the dual equality constraints, (3) all
complementarity conditions (using © = 0 since we are looking for
an affine-scaling algorithm).

(f) Apply Newton’s method to the nonlinear system to obtain a linear
system for step directions for all of the primal and dual variables.

(g) We may assume without loss of generality that both the initial primal
solution and the initial dual solution are feasible. Explain why.

(h) The linear system derived above is a 6 x 6 block matrix system. But
it is easy to solve most of it by hand. First eliminate those step di-
rections associated with the nonnegative variables to arrive ata 2 x 2
block matrix system.

(i) Next, solve the 2 x 2 system. Give an explicit formula for Azx.

(j) How does this primal—dual affine-scaling algorithm compare with
the iteratively reweighted least squares algorithm defined in Sec-
tion 12.5?

18.9 (a) Let&;, j =1,2,...,denote a sequence of real numbers between zero
and one. Show that [[;(1 — §;) = 0if 3, §; = oc.
(b) Use the result of part a to prove the following convergence result: if
the sequences [|z*)| o, k = 1,2,..., and [[y*||o, & = 1,2,...,
are bounded and } . %) = ~o, then

lim o], =0
k—00
lim o™, =0
k—o0

lim 'y(k) = 0.

k—o00
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Notes

The path-following algorithm introduced in this chapter has its origins in a pa-
per by Kojima et al. (1989). Their paper assumed an initial feasible solution and
therefore was a true interior-point method. The method given in this chapter does
not assume the initial solution is feasible—it is a one-phase algorithm. The simple
yet beautiful idea of modifying the Kojima—Mizuno—Yoshise primal—-dual algorithm
to make it into a one-phase algorithm is due to Lustig (1990).

Of the thousands of papers on interior-point methods that have appeared in
the last decade, the majority have included convergence proofs for some version
of an interior-point method. Here, we only mention a few of the important pa-
pers. The first polynomial-time algorithm for linear programming was discovered
by Khachian (1979). Khachian’s algorithm is fundamentally different from any al-
gorithm presented in this book. Paradoxically, it proved in practice to be inferior to
the simplex method. N.K. Karmarkar’s pathbreaking paper (Karmarkar 1984) con-
tained a detailed convergence analysis. His claims, based on preliminary testing,
that his algorithm is uniformly substantially faster than the simplex method sparked
a revolution in linear programming. Unfortunately, his claims proved to be exag-
gerated, but nonetheless interior-point methods have been shown to be competitive
with the simplex method and usually superior on very large problems. The con-
vergence proof for a primal—-dual interior-point method was given by Kojima et al.
(1989). Shortly thereafter, Monteiro and Adler (1989) improved on the convergence
analysis. Two recent survey papers, Todd (1995) and Anstreicher (1996), give nice
overviews of the current state of the art. Also, a soon-to-be-published book by
Wright (1996) should prove to be a valuable reference to the reader wishing more
information on convergence properties of these algorithms.

The homotopy method outlined in Exercise 18.5 is described in Nazareth (1986,
1996). Higher-order path-following methods are described (differently) in Carpen-
ter et al. (1993).



CHAPTER 19

The KKT System

The most time-consuming aspect of each iteration of the path-following method
is solving the system of equations that defines the step direction vectors Ax, Ay,
Aw, and Az:

(19.1) AAx+ Aw=0p

(19.2) ATAy — Nz =0

(19.3) ZAx 4+ XAz =pe— XZe
(19.4) WAy +YAw = pe — YWe.

After minor manipulation, these equations can be written in block matrix form as
follows:

-Xz ! —1I Az —pZ e+

A 1 Ay p

(19.5) 7 | = £
I Yyw-1 Aw uW=te —y

This system is called the Karush—Kuhn—Tucker system, or simply the KKT system.
It is a symmetric linear system of 2n + 2m equations in 2n + 2m unknowns. One
could, of course, perform a factorization of this large system and then follow that
with a forward and backward substitution to solve the system. However, it is better
to do part of this calculation “by hand” first and only use a factorization routine to
help solve a smaller system. There are two stages of reductions that one could apply.
After the first stage, the remaining system is called the reduced KKT system, and
after the second stage it is called the system of normal equations. We shall discuss
these two systems in the next two sections.

1. The Reduced KKT System

Equations (19.3) and (19.4) are trivial (in the sense that they only involve diag-
onal matrices), and so it seems sensible to eliminate them right from the start. To
preserve the symmetry that we saw in (19.5), we should solve them for Az and Aw,
respectively:

Az = XY ue — XZe — ZAx)
Aw =Y Y pe —YWe — WAY).
R.J. Vanderbei, Linear Programming, International Series in Operations Research 285
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Substituting these formulas into (19.1) and (19.2), we get the so-called reduced KKT
system:

(19.6) ANz — Y 'WAy=p—puY le+w
(19.7) ATAy+ X 1ZAx =0+ pX te— 2.

Substituting in the definitions of p and ¢ and writing the system in matrix notation,
we get

-Yy-'w A Ayl  [b— Az —pY e
AT X 1Z| Az~ |le— ATy 4+ puXte|”

Note that the reduced KKT matrix is again a symmetric matrix. Also, the right-hand
side displays symmetry between the primal and the dual. To reduce the system any
further, one needs to break the symmetry that we have carefully preserved up to this
point. Nonetheless, we forge ahead.

2. The Normal Equations

For the second stage of reduction, there are two choices: we could either (1)
solve (19.6) for Ay and eliminate it from (19.7) or (2) solve (19.7) for Az and
eliminate it from (19.6). For the moment, let us assume that we follow the latter
approach. In this case, we get from (19.7) that

(19.8) Ar=XZ Ye— ATy +uX"te — AT Ay),
which we use to eliminate Ax from (19.6) to get

(19.9) (YW + AXZ AT Ay = b — Az — pY e
—AXZ He— ATy +puXte).

This last system is a system of m equations in m unknowns. It is called the system
of normal equations in primal form. It is a system of equations involving the matrix
Y 'W + AXZ'AT. The Y~'W term is simply a diagonal matrix, and so the
real meat of this matrix is contained in the AX Z~! AT term.

Given that A is sparse (which is generally the case in real-world linear pro-
grams), one would expect the matrix AX Z ' AT to be likewise sparse. However,
we need to investigate the sparsity of AXZ 1 AT (or lack thereof) more closely.
Note that the (i, j)th element of this matrix is given by

1 AT d Tk
(AXZ A )ij = ;ai}ggaﬂw

That is, the (¢, 7)th element is simply a weighted inner product of rows ¢ and j of
the A matrix. If these rows have disjoint nonzero patterns, then this inner product is
guaranteed to be zero, but otherwise it must be treated as a potential nonzero. This
is bad news if A is generally sparse but has, say, one dense column:
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* k) ok ok ok ok
* * *
S * k) ok ok ok 3k
* *
* * * k) ok ok ok 3k
* *
* * * = k) ok ok ok ok
* *
LS * * ok ok ok ok
* * *
* * k) ko ok ok ok
* *
* *

But don’t forget that we didn’t have to go the primal normal equations route.
Instead, we could have chosen the other alternative of solving (19.6) for Ay,

Ay= YW Hb— Az — pY e — AAz),
and eliminating it from (19.7):
(19.10) (ATYW A+ X' 2)Ax =c— ATy + uX e
+ ATYW (b — Az — pY " te).

The system defined by (19.10) is a system of n equations in n unknowns. It is called
the system of normal equations in dual form. Note that dense columns do not pose
a problem for these equations. Indeed, for the example given above, we now get

* ok ok ok % * ok k k % % x %
* * * % * %
* * [ % *
* * ok %
* * * *
* * * *
* x| x % =
* * ok %
* * | % *
* * * ok *
*| % *
* * * *
* * ok *

While this system is larger than the one before, it is also sparse, and sparsity almost
always is more important than matrix dimensions. In this example, the dense matrix
associated with the primal normal equations requires 65 arithmetic operations to
factor, whereas the larger, sparser matrix associated with the dual normal equations
requires just 60. This is a small difference, but these are small matrices. As the
matrices involved get large, factoring a dense matrix takes on the order of n3 oper-
ations, whereas a very sparse matrix might take only on the order of n operations.
Clearly, as n gets large, the difference between these becomes quite significant.

It would be great if we could say that it is always best to solve the primal normal
equations or the dual normal equations. But as we’ve just seen, dense columns in A
are bad for the primal normal equations and, of course, it follows that dense rows
are bad for the dual normal equations. Even worse, some problems have constraint
matrices A that are overall very sparse but contain some dense rows and some dense
columns. Such problems are sure to run into trouble with either sets of normal equa-
tions. For these reasons, it is best to factor the matrix in the reduced KKT system
directly. Then it is possible to find pivot orders that circumvent the difficulties posed
by both dense columns and dense rows.
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3. Step Direction Decomposition

In the next chapter, we shall discuss factorization techniques for symmetric
matrices (along with other implementation issues). However, before we embark on
that discussion, we end this chapter by taking a closer look at the formulas for the
step direction vectors. To be specific, let us look at Ax. From the primal normal
equations (19.9), we can solve for Ay and then substitute the solution into (19.8) to
get an explicit formula for Ax:

(19.11) Az =(D?> - D?*AT(E™% + AD*AT)"'AD?) (c — ATy + pX e
+ D*AT(E72 + AD?AT) "1 (b — Az — pY e,

where we have denoted by D the positive diagonal matrix defined by

D*=X7""!
and we have denoted by F the positive diagonal matrix defined by
E*=YywW™!

(defining these matrices by their squares is possible, since the squares have positive
diagonal entries). However, using the dual normal equations, we get

(19.12) Az =(ATE*A+ D) (c— ATy + uX'e)
+ (ATE?A+ D) ATE(b — Az — Y e).
These two expressions for Ax look entirely different, but they must be the same,
since we know that Ax is uniquely defined by the reduced KKT system. They are
indeed the same, as can be shown directly by establishing a certain matrix identity.
This is the subject of Exercise 19.1. There are a surprising number of published
research papers on interior-point methods that present supposedly new algorithms
that are in fact identical to existing methods. These papers get published because
the equivalence is not immediately obvious (such as the one we just established).
We can gain further insight into the path-following method by looking more
closely at the primal step direction vector. Formula (19.11) can be rearranged as
follows:
Az =(D* - D*AT(E™* + AD*AT)""AD?) ¢

+p(D* = D*AT(E7* + AD*AT) ' AD?*) X e

—uD?AT(E=2 4+ AD?*AT) 'y e

+ D?AT(E2 + AD?*AT) " (b — Ax)

— D?AT (I — (B2 + AD*AT)'AD?A") y.
For comparison purposes down the road, we prefer to write the Y ~!e that appears in
the second term containing ;z as E~2W ~le. Also, using the result of Exercise 19.2,
we can rewrite the bulk of the last line as follows:

(I —(E?+AD*A") ' AD*A") y = (E* + AD*A")'E™ %y
= (B2 + AD?*AT) tw.
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Putting this all together, we get
Az =(D* — D*AT(E~* 4+ AD*A")"'AD?) ¢
+ 4 (D* = D*AT(E? + AD*AT) ' AD?) X e
—uD?AT(E72 4+ AD*AT)'E2W e
+D2AT(E—2 +AD2AT)_1p
= AZopr + pAZcrr + Apeas,

where
Azopr = (D? — D*AT(E™? + AD*AT)"1AD?) c,
Azerg = (D? — D*AT(E? + AD*A") ' AD?*) X e
— D*AT(E72 + AD?AT)1E2W e,
and

Azpns = D*AT(E72 + AD?AT) 'p.
In Chapter 21, we shall show that these components of Az have important connec-
tions to the step directions that arise in a related interior-point method called the
affine-scaling method. For now, we simply establish some of their properties as
they relate to the path-following method. Our first result is that Axqpr is an ascent
direction.

THEOREM 19.1. ¢T Azgpr > 0.

PROOF. We use the result of Exercise 19.1 (with the roles of F and D switched)

to see that
Azopr = (ATE?*A+ D7?)" e
Hence,
T Azgpr = CT(ATEQA + D_Z)_lc.

We claim that the right-hand side is obviously nonnegative, since the matrix sand-
wiched between ¢ and its transpose is positive semidefinite.! Indeed, the claim
follows from the definition of positive semidefiniteness: a matrix B is positive semi-
definite if €T B¢ > 0 for all vectors £. To see that the matrix in question is in fact
positive semidefinite, we first note that A7 E? A and D~2 are positive semidefinite:

TATE?AE = |EAEIP >0 and "D ?¢ =D '¢[? > 0.
Then we show that the sum of two positive semidefinite matrices is positive semi-
definite and finally that the inverse of a symmetric positive semidefinite matrix is

positive semidefinite. To verify closure under summation, suppose that B(!) and
B®) are positive semidefinite, and then compute

¢M(BW + B = " BWe 4 ¢"BPe¢ > 0.

To verify closure under forming inverses of symmetric positive semidefinite matri-
ces, suppose that B is symmetric and positive semidefinite. Then

I fact, it’s positive definite, but we don’t need this stronger property here.
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B¢ =¢"BT'BBT ¢ = (BT B(BTE) 20,
where the inequality follows from the fact that B is positive semidefinite and B~1¢

is simply any old vector. This completes the proof. O

The theorem just proved justifies our referring to Axgpr as a step-toward-
optimality direction. We next show that Axg,as is in fact a step-toward-feasibility.
In Exercise 19.3, you are asked to find the formulas for the primal slack vector’s
step directions, Awgpr, Awerr, and Awgg,s. It is easy to verify from these formulas
that the pairs (Azopr, Awopr) and (Axcrg, Awerr) preserve the current level of
infeasibility. That is,
AAxopr + Awepr =0
and
AAxcrr + Awerg = 0.

Hence, only the “feasibility” directions can improve the degree of feasibility. In-
deed, it is easy to check that

AAZ g s + AWppas = p.

Finally, we consider Axcg. If the objective function were zero (i.e., ¢ = 0)
and if the current point were feasible, then steps toward optimality and feasibility
would vanish and we would be left with just Azcrg. Since our step directions were
derived in an effort to move toward a point on the central path parametrized by g,
we now see that Axcrr plays the role of a step-toward-centrality.

Exercises

19.1 Sherman—Morrison—Woodbury Formula. Assuming that all the inverses
below exist, show that the following identity is true:

(E7'+ ADATY ' = E - EA(ATEA+ DY) 'ATE.

Use this identity to verify directly the equivalence of the expressions given
for Az in (19.11) and (19.12).

19.2 Assuming that all the inverses exist, show that the following identity holds:
I—(E+ADAT)"'ADA" = (E+ ADA")™'E.
19.3 Show that
Aw = Awopr + pAwer + Awreys,
where
Awgpr = —A (D? — D*AT(E™? + AD*AT)"'AD?) ,
Awer = —A (D?* — D*AT(E~? + AD?*A") " 'AD*) X e
+ AD*AT(E72 + AD?AT)1E2W e,
and
Awpgas = p— AD?AT(E72 + AD?*AT)1p.
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Notes

The KKT system for general inequality constrained optimization problems was
derived by Kuhn and Tucker (1951). It was later discovered that W. Karush had
proven the same result in his 1939 master’s thesis at the University of Chicago
(Karush 1939). John (1948) was also an early contributor to inequality-constrained

optimization. Kuhn’s survey paper (Kuhn 1976) gives a historical account of the
development of the subject.



CHAPTER 20

Implementation Issues for Interior-Point Methods

In this chapter, we discuss implementation issues that arise in connection with
the path-following method.

The most important issue is the efficient solution of the systems of equations
discussed in the previous chapter. As we saw, there are basically three choices,
involving either the reduced KKT matrix,

(20.1) B= { _fT_Q Df}z ]

or one of the two matrices associated with the normal equations:
(20.2) AD?*AT + E2

or

(20.3) ATE?A + D72

(Here, E2=Y 'Wand D 2=X"12)

In the previous chapter, we explained that dense columns/rows are bad for the
normal equations and that therefore one might be better off solving the system in-
volving the reduced KKT matrix. But there is also a reason one might prefer to
work with one of the systems of normal equations. The reason is that these matri-
ces are positive definite. We shall show in the first section that there are important
advantages in working with positive definite matrices. In the second section, we
shall consider the reduced KKT matrix and see to what extent the nice properties
possessed by positive definite matrices carry over to these matrices.

After finishing our investigations into numerical factorization, we shall take up
a few other relevant tasks, such as how one extends the path-following algorithm to
handle problems with bounds and ranges.

1. Factoring Positive Definite Matrices

As we saw in the proof of Theorem 19.1, the matrix (20.2) appearing in the pri-
mal normal equations is positive semidefinite (and so is (20.3), of course). In fact, it
is even better—it’s positive definite. A matrix B is positive definite if €T B¢ > 0 for
all vectors £ # 0. In this section, we will show that, if we restrict our row/column re-
ordering to symmetric reorderings, that is, reorderings where the rows and columns
undergo the same permutation, then there is no danger of encountering a pivot

R.J. Vanderbei, Linear Programming, International Series in Operations Research 293
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_20,
© Springer Science+Business Media New York 2014
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element whose value is zero. Hence, the row/column permutation can be selected
ahead of time based only on the aim of maintaining sparsity.

If we restrict ourselves to symmetric permutations, each pivot element is a diag-
onal element of the matrix. The following result shows that we can start by picking
an arbitrary diagonal element as the first pivot element:

THEOREM 20.1. If B is positive definite, then b;; > 0 for all i.

The proof follows trivially from the definition of positive definiteness:
by = E?Bei > 0.

The next step is to show that after each stage of the elimination process, the remain-
ing uneliminated matrix is positive definite. Let us illustrate by breaking out the
first row/column of the matrix and looking at what the first step of the elimination
process does. Breaking out the first row/column, we write

a bT
B [ o ] |
Here, a is the first diagonal element (a scalar), b is the column below a, and C'is the

matrix consisting of all of B except the first row/column. One step of elimination
(as described in Chapter 8) transforms B into

a HT

The following theorem tells us that the uneliminated part is positive definite:

THEOREM 20.2. If B is positive definite, then so is C' — bb” /a.

PROOF. The fact that B is positive definite implies that

ry[ab"] [z 2 T T
(20.4) [acy ] b o ||y =ax”+2y bx+y' Cy

is positive whenever the scalar = or the vector y is nonzero (or both). Fix a vector
y # 0, and put = — b7y, Using these choices in (20.4), we get

1 1 bb”
0< gyTbbTy — 2gyTbbTy +yToy =47 <C — a) Y.

Since y was an arbitrary nonzero vector, it follows that C—bb” /a is positive definite.
d

Hence, after one step of the elimination, the uneliminated part is positive def-
inite. It follows by induction then that the uneliminated part is positive definite at
every step of the elimination.
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Here’s an example:

2 -1 -1

-1 3-1-1

B = -1 2 -1
-1-1 3 -1
-1 -1 3

At the end of the four steps of the elimination (without permutations), we end up
with

2 —1 -1
5 1
g
-1 5 -5 5
11 1 _1u

1 ? 181 s
“l-3-5-% 1

From this eliminated form, we extract the lower triangular matrix, the diagonal ma-
trix, and the upper triangular matrix to write B as

|
—

2 2 2 -1 ~1

5 5 5 1

-1 3 2 7 1 —3 —3

_ 8 8 8 1
B= -1 3 5 5 75 "5
1.7 1 1 o1

1 ? 181 8 s s
e 1 1

As we saw in Chapter 8, it is convenient to combine the lower triangular matrix with
the diagonal matrix to get a new lower triangular matrix with ones on the diagonal.
But the current lower triangular matrix is exactly the transpose of the upper trian-
gular matrix. Hence, to preserve symmetry, we should combine the diagonal matrix
with both the lower and the upper triangular matrices. Since it only appears once,
we must multiply and divide by it (in the middle of the product). Doing this, we get

1 2 1 -2 -3

1 5 2 2 1

L, T i

b= _g i ; 11 bt
L N S

-3 -z —-s-11 1 1

The lower triangular matrix in this representation is usually denoted by L and the
diagonal matrix by D (not to be confused with the D at the beginning of the chapter).
Hence, this factorization can be summarized as

B=LDLT

and is referred to as an LDLT—factorization. Of course, once a factorization is
found, it is easy to solve systems of equations using forward and backward substi-
tution as discussed in Chapter 8.
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1.1. Stability. We began our discussion of factoring positive definite matrices
with the comment that a symmetric permutation can be chosen purely with the aim
of preserving sparsity, since it is guaranteed that no pivot element will ever vanish.
However, the situation is even better than that—we can show that whenever a pivot
element is small, so is every other nonzero in the uneliminated part of the same
row/column. Before saying why, we need to set down a few technical results.

THEOREM 20.3. If b;; denotes a diagonal element in the uneliminated subma-
trix at some stage of an elimination and b;; denotes the original value of that diag-
onal element, then 0 < b;; < by;.

PROOF. The positivity of b;; follows from the fact the uneliminated submatrix
is positive definite. The fact that it is bounded above by b;; follows from the fact
that each step of the elimination can only decrease diagonal elements, which can be
seen by looking at the first step of the elimination. Using the notation introduced
just after Theorem 20.1,

b?
i — = < i
a

O

THEOREM 20.4. If B is symmetric and positive definite, then |b;;| < \/bib;;
forall i # j.

PROOF. Fix i # j and let £ = re; 4 e;. That is, & is the vector that’s all zero
except for the ¢th and jth position, where it’s 7 and 1, respectively. Then,

0< fTBf = biﬂ’2 -+ 2bij’l” —+ bjj7

for all » € R. This quadratic expression is positive for all values of r if and only if
it is positive at its minimum, and it’s easy to check that it is positive at that point if
and only lf‘blj| < \/biib]‘j. O

These two theorems, together with the fact that the uneliminated submatrix
is symmetric and positive definite, give us bounds on the off-diagonal elements.
Indeed, consider the situation after a number of steps of the elimination. Using bars
to denote matrix elements in the uneliminated submatrix and letting M denote an
upper bound on the diagonal elements before the elimination process began (which,
without loss of generality, could be taken as 1), we see that, if l_)j j < €, then

(20.5) bij < VeM.
This bound is exceedingly important and is special to positive definite matrices.
2. Quasidefinite Matrices

In this section, we shall study factorization techniques for the reduced KKT
matrix (20.1). The reduced KKT matrix is an example of a quasidefinite matrix.
A symmetric matrix is called quasidefinite if it can be written (perhaps after a sym-
metric permutation) as

B {E A}

AT D
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where E and D are positive definite matrices. Quasidefinite matrices inherit some
of the nice properties of positive definite matrices. In particular, one can perform
an arbitrary symmetric permutation of the rows/columns and still be able to form a
factorization of the permuted matrix.

The idea is that, after each step of the elimination, the remaining unelimi-
nated part of the matrix is still quasidefinite. To see why, let’s break out the first
row/column of the matrix and look at the first step of the elimination process. Break-
ing out the first row/column of B, we write

—a —bT fT
B=|-b-C G|,
f GT D

where a is a scalar, b and f are vectors, and C, D, and G are matrices (of the
appropriate dimensions). One step of the elimination process transforms B into
—a _pT fT
bb” bf”
—b|~ (C - T) G+ e
T foT LT
fl 6+ D+

The uneliminated part is

,(C,ﬁ> G+ b
a a
T | fb7 r£T
Gr4 8 py it

Clearly, the lower-left and upper-right blocks are transposes of each other. Also, the
upper-left and lower-right blocks are symmetric, since C' and D are. Therefore, the
whole matrix is symmetric. Theorem 20.2 tells us that C' —bb” /a is positive definite
and D + ffT /a is positive definite, since the sum of a positive definite matrix and
a positive semidefinite matrix is positive definite (see Exercise 20.2). Therefore, the
uneliminated part is indeed quasidefinite.

Of course, had the first pivot element been selected from the submatrix D in-
stead of E, perhaps the story would be different. But it is easy to check that it’s the
same. Hence, no matter which diagonal element is selected to be the first pivot ele-
ment, the resulting uneliminated part is quasidefinite. Now, by induction it follows
that every step of the elimination process involves choosing a pivot element from
the diagonals of a quasidefinite matrix. Since these diagonals come from either a
positive definite submatrix or the negative of such a matrix, it follows that they are
always nonzero (but many of them will be negative). Therefore, just as for positive
definite matrices, an arbitrary symmetric permutation of a quasidefinite matrix can
be factored without any risk of encountering a zero pivot element.
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Here’s an example:

2 3 4 5

1 -1 -2 1

2 -2 2
(20.6) B = 3 3 1
4 -2 1 2

) 1 2 1

(The blocks are easy to pick out, since the negative diagonals must be from —F,
whereas the positive ones are from D.) Let’s eliminate by picking the diagonals in
the order 1, 5, 2,4, 3. No permutations are needed in preparation for the first step of
the elimination. After this step, we have

1 -1 -2 1
2 -2 2
3 -3 1

4 -2 1 6 -2
5 1| 2 -2 2

Now, we move row/column 5 to the pivot position, slide the other rows/columns
down/over, and eliminate to get

1 5 2 3 4
1 -1 1 —2
) 1 2 2 —2
2 2 2
3 1
4 -2 =2 4

Row/column 2 is in the correct position for the third step of the elimination, and
therefore, without further ado, we do the next step in the elimination:

1 5 2 3 4

1 -1 1 —2
S 1 2 2 —2
2 2 —4 2
3 -3 1
4 -2 -2 2/ 1 5

Finally, we interchange rows/columns 3 and 4 and do the last elimination step to get

1 5 2 4 3

-1 1 -2
1 2 2 =2
2 -4 2

-2 -2 2 5 1

_16
=%

W = N Ot =
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From this final matrix, it is easy to extract the LD LT -factorization of the permuta-
tion of B:

1 5 2 4 3
if-1 1 =2 ]
5001 1 2
B=, 2 -2
4| -2 2 1
31 1 —3]
1 5 2 4 3
[ 1 17 -1 1 -1 2
50 -1 1 2 1 1-1
T2 11 —4 1-1
4 2 -1-4 1 5 13
31 1] -2 1

As always, the factorization is computed so that one can solve systems of equations.
Given the factorization, all that is required is a forward substitution, a backward
substitution, a scaling, and two permutations.

2.1. Instability. We have shown that an arbitrary symmetric permutation of
the rows/columns of a quasidefinite matrix can be factored into LDL”. That is,
mathematically none of the pivot elements will be zero. But they can be small, and
their smallness can cause troubles not encountered with positive definite matrices.
To explain, let’s look at an example. Consider the linear programming problem

maximize x1 + o

subjectto x + 2z < 1
201 + a9 < 1
x1, x2 > 0

and its dual

minimize y; + Yo

subjectto  y; + 2y > 1
2+ y2 2 1
Y1, Y2 > 0.

Drawing pictures, it is easy to see that the optimal solution is

Therefore, as the optimal solution is approached, the diagonal elements in X ~'Z
and Y ~'WW approach zero. Therefore, at late stages in the path-following method,
one is faced with the problem of factoring the following reduced KKT matrix:
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1 2 3 4

1| —e 1 2

B= 2 —€9 2 1
3 1 2 & ’

4 2 1 P

where €1, €2, 41, and Jo are small positive numbers. Consider what happens if
we permute the rows/columns so that the original diagonal elements appear in the
following order: 1, 3,4, 2. The permuted matrix is seen to be

1 3 4 2
1 [- 1 2
B= 3 1 & 2
4 2 Sy 1
2 2 1 —e

After the first two steps of the elimination, we have

—€1 1 2
L &+ & 2 2
(20.7) 2 4N 4/q —_4/e
2 €1 (52 + 61) (51+5i1) 1 (51+%)
2 1— e 4

RGN Gt D)

Using exact arithmetic, the uneliminated part simplifies to

52 + 451 1 . 4

1+€161 1+e€161
_ L _ _ 461
1 146101 €2 146101

Here, the diagonal elements are small but not zero and the off-diagonal elements are
close to —3. But on a computer that stores numbers with finite precision, the com-
putation comes out quite differently when the ¢;’s and the J;’s are smaller than the
square root of the machine precision (i.e., about 10~® for double-precision floating-
point numbers). In the elimination process, the parenthesized expressions in (20.7)
are evaluated before the other operations. Hence, in finite precision arithmetic, these
expressions produce

4 4 1 1
0o+ — = — and hHh+—=—,
€1 €1 €1 €1
and so (20.7) becomes
1 3 4 2

1 —€1 1 2

3 T

4 2 0 -3

2 g

2| =3 —4e

which clearly presents a problem for the next step in the elimination process.
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Now let’s consider what happens if the elimination process is applied directly
to B without permuting the rows/columns. Sparing the reader the tedious details,
the end result of the elimination is the following matrix:

—€1 1 2
—€9 2 1
1 4 2 2
(20.8) 1 2 51"‘;"‘5 a+5(2+2)2
2 2 4 1 €1 T en
2 1 ;—Fa (52“1‘54—5—@
ate

As before, in finite precision arithmetic, certain small numbers get lost:

4 4 1 1
0o+ — = — and o+ —=—.
€1 €1 €1 €1
Making these substitutions in (20.8), we see that the final matrix produced by the
elimination process using finite precision arithmetic is

—€1 1 2
—€9 2 1

1 4 2 2

12 S+ o145

2 1 2+2 0

Just as before, the fact that small numbers got lost has resulted in a zero appearing
on the diagonal where a small but nonzero (in this case positive) number belongs.
However, the situation is fundamentally different this time. With the first ordering,
a —3 remained to be eliminated under the zero diagonal element, whereas with the
second ordering, this did not happen. Of course, it didn’t happen in this particular
example because the 0 appeared as the last pivot element, which has no elements
below it to be eliminated. But that is not the general reason why the second ordering
does not produce nonzeros under zero pivot elements. In general, a zero (which
should be a small positive) can appear anywhere in the lower-right block (relative
to the original quasidefinite partitioning). But once the elimination process gets
to this block, the remaining uneliminated part of the matrix is positive definite.
Hence, the estimate in (20.5) can be used to tell us that all the nonzeros below a
zero diagonal are in fact small themselves. A zero appearing on the diagonal only
presents a problem if there are nonzeros below it that need to be eliminated. If there
are none, then the elimination can simply proceed to the next pivot element (see
Exercise 20.1).

Let’s summarize the situation. We showed in the last chapter that the possi-
bility of dense rows/columns makes it unattractive to work strictly with the normal
equations. Yet, although the quasidefinite reduced KKT system can be used, it is
numerically less stable. A compromise solution seems to be suggested. One could
take a structured approach to the reordering heuristic. In the structured approach,
one decides first whether it seems better to begin pivoting with elements from the
upper-left block or from the lower-right block. Once this decision is made, one
should pivot out all the diagonal elements from this block before working on the
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other block, with the exception that pivots involving dense rows/columns be de-
ferred to the end of the elimination process. If no dense columns are identified, this
strategy mimics the normal equations approach. Indeed, after eliminating all the
diagonal elements in the upper-left block, the remaining uneliminated lower-right
block contains exactly the matrix for the system of dual normal equations. Similarly,
had the initial choice been to pivot out all the diagonal elements from the lower-right
block, then the remaining uneliminated upper-left block becomes the matrix for the
system of primal normal equations.

With this structured approach, if no dense rows/columns are identified and de-
ferred, then the elimination process is numerically stable. If, on the other hand,
some dense rows/columns are deferred, then the factorization is less stable. But in
practice, this approach seems to work well. Of course, one could be more careful
and monitor the diagonal elements. If a diagonal element gets small (relative to the
other uneliminated nonzeros in the same row/column), then one could flag it and
then calculate a new ordering in which such pivot elements are deferred to the end
of the elimination process.

3. Problems in General Form

In this section, we describe how to adapt the path-following algorithm to solv-
ing problems presented in the following general form:

T

maximize c'x
(20.9) subjectto a < Ax < b
I < z<u

As in Chapter 9, some of the data elements are allowed to take on infinite values.
However, let us consider first the case where all the components of a, b, [, and u are
finite. Infinities require special treatment, which shall be discussed shortly.

Following the derivation of the path-following method that we introduced in
Chapter 18, the first step is to introduce slack variables as appropriate to replace all
inequality constraints with simple nonnegativity constraints. Hence, we rewrite the
primal problem (20.9) as follows:

T

maximize c¢'x
subjectto Az + f = b
—Arxr +p = —a
x4+t = u
—x + g = -l
fiptg 2

In Chapter 9, we showed that the dual problem is given by

minimize bTv —aTq+uTs—1Th
subjectto AT (v —¢q)—(h—s) = ¢
,U, q? 87 h Z 07
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and the corresponding complementarity conditions are given by

fivi=0 1=1,2,...,m,
piqi =0 1=1,2,...,m,
tjs; =0 7=12,...,n,
gih; =0 j=12,...,n.

The next step in the derivation is to introduce the primal-dual central path,
which we parametrize as usual by a positive real parameter y. Indeed, for each
u > 0, we define the associated central-path point in primal-dual space as the
unique point that simultaneously satisfies the conditions of primal feasibility, dual
feasibility, and p-complementarity. Ignoring nonnegativity (which is enforced sep-
arately), these conditions are

Az + f=b
f+p=b—ua
r+t=u

—r+g=-l

ATy+s—h=c

y+q—v=0
FVe=pe
PQe=pe
TSe=pe
GHe= pe.

Note that we have replaced the primal feasibility condition, —Ax 4+ p = —a, with
the equivalent condition that f + p = b — a, and we have introduced into the dual
problem new variables y defined by y = v — q. The reason for these changes is
to put the system of equations into a form in which A and A” appear as little as
possible (so that solving the system of equations for the step direction will be as
efficient as possible).

The last four equations are the p-complementarity conditions. As usual, each
upper case letter that appears on the left in these equations denotes the diagonal ma-
trix having the components of the corresponding lower-case vector on its diagonal.
The system is a nonlinear system of 5n + 5m equations in 5n + 5m unknowns.
It has a unique solution in the strict interior of the following subset of primal—dual
space:

(20.10) {(z, fip,t,9,9,v,q,8,h) : f,p,t,9,v,q,5,h > 0}.

This fact can be seen by noting that these equations are the first-order optimality
conditions for an associated strictly convex barrier problem.

As p tends to zero, the central path converges to the optimal solution to both the
primal and dual problems. The path-following algorithm is defined as an iterative
process that starts from a point in the strict interior of (20.10), estimates at each
iteration a value of u representing a point on the central path that is in some sense
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closer to the optimal solution than the current point, and then attempts to step toward
this central-path point, making sure that the new point remains in the strict interior
of the set given in (20.10).

Suppose for the moment that we have already decided on the target value for
u. Let (x,...,h) denote the current point in the strict interior of (20.10), and let
(z + Az, ...,h + Ah) denote the point on the central path corresponding to the
target value of p. The defining equations for the point on the central path can be
written as

AAz+Af =b—Azx— f =:p
Af+Ap=b—a—f—p =«

Ar+ At =u—x—t =7
—Ar+Ag=—-l4+x—g =v
ATAy+As—Ah =c—ATy—s+h =0
Ay+Aq—Av = —-y—q+v = f

FVTIAv+ Af = pVlte— f—VIAVAS =: 5
QP 'Ap+Aq = puP~te—q— P 'APAq =: ~,
ST At +As = uyT e —s — T 'ATAs =: v,

HG 'Ag+ Ah = pG~te — h — G"'AGAL =: v,

where we have introduced notations p, . . ., 7y as shorthands for the right-hand side
expressions. This is almost a linear system for the direction vectors (Az, ..., Ah).
The only nonlinearities appear on the right-hand sides of the complementarity equa-
tions (i.e., in f,...,vn). As we saw before, Newton’s method suggests that we
simply drop these nonlinear terms to obtain a linear system for the “delta” variables.

Clearly, the main computational burden is to solve the system shown above. It
is important to note that this is a large, sparse, indefinite, linear system. It is also
symmetric if one negates certain rows and rearranges rows and columns appropri-
ately:

[—Frv—1 —I [Av] —f
1 1 As T
-1 I Ah v
I I Aq «
A T Ay | |p
.y AT Ar|  |o
1 I Af 3
QpP~! Ap Yq
I HG™ Ag Yn
i ST | At | s

Because this system is symmetric, we look for symmetric pivots to solve it.
That is, we choose our pivots only from the diagonal elements. It turns out that we
can eliminate Av, Ap, Ag, and At using the nonzero diagonals —FV 1, QP~!,
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HG™!, and ST, respectively, in any order without causing any nondiagonal fill-
in. Indeed, the equations for Av, Ap, Ag, and At are

Av=VF (s - Af)
(20.11) Ap = PQ (v, — Ag)
Ag=GH '(yn — Ah)
At =TS (v, — As),

and after elimination from the system, we get

—TSs™ 1 I As T
~GH™! ~I Ah v
-PQ! I Ag| |a

A T Ayl |p |’
I —I AT Az o
I I VF=Y | Af ¢

where again we have introduced abbreviated notations for the components of the
right-hand side:

F=7-—T8 v,

v=v—GH 'y,
a=a—PQ 'y,
B=B+VF ly;.

Next we use the pivot elements —7'S~!, ~GH !, and —PQ~! to solve for
As, Ah, and Ag, respectively:

As = —ST Y% — Ax)
(20.12) Ah = —HG (0 + Ax)
Ag=—-QP (& — Af).

After eliminating these variables, the system simplifies to

‘A 1 Ay p
AT | D Az | =| o+ST'+—HG D |,
I E Af B+ QP la.
where
D=ST"'+HG!
and

E=VF'+QP "
Finally, we use the pivot element F to solve for A f,

(20.13) Af=E B +QPta— Ay),
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which brings us to the reduced KKT equations:

~-E71] A A —E~Y(f ~14
o { ) H y} p= BB+ QP4)
AT [ D || Az o+ ST~ — HG'p

initialize (x, f,p,t,g9,v,v,q, s, h) such that f,p,t,g,v,q,s,h >0
while (not optimal) {

p=b—Ax—w

o=c—ATy+2

v=frv+plg+tts+g"h

Y

n+m
vp=pV e~ f
vy =nP e —q

ve=pT te—s

p=2a

v = uG e —h

F=u—x—t—TS 1y,
UV=—l4+x—g—GH v,
aG=b—a—f-p-PQ 'y,
B=-y—q+v+VF ly

D=ST"'+HG™!
E=VF'+QpP!

wolve: | EN AT[ Ay _[p-ENB+QP )
: AT D Az o+ ST~ '+ —HG v

compute: A f using (20.13), As, Ah, Aq using (20.12),
and Av, Ap, Ag, At using (20.11)

H:T<maxij{—Afj,—Apia—Ati7_Agj
1 Di ti gjl
Avi  Agi Asi Aha})‘ Al

9

T h;
< x+ 0Ax, y <y + 0Ay, f« f+0Af, v v+ 0Av
p < p+ 0Ap, q <+ q+ 0Aq, t < t+ 0AL, 5 s+ 0As

g < g+ 0Ag, h <+ h+6Ah

FIGURE 20.1. The path-following method—general form.
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Up to this point, none of the eliminations have produced any off-diagonal fill-
in. Also, the matrix for system given in (20.14) is a symmetric quasidefinite matrix.
Hence, the techniques given in Section 19.2 for solving such systems can be used.
The algorithm is summarized in Figure 20.1.

Exercises
20.1 The matrix
2 -2
1 -1
B=|-2 2
-1 2 —1

-1 2
is not positive definite but is positive semidefinite. Find a factorization
B = LDL™, where L is lower triangular with ones on the diagonal and
D is a diagonal matrix with nonnegative diagonal elements. If such a fac-
torization exists for every symmetric positive semidefinite matrix, explain
why. If not, give a counterexample.

20.2 Show that the sum of a positive definite matrix and a positive semidefinite
matrix is positive definite.

20.3 Permute the rows/columns of the matrix B given in (20.6) so that the
diagonal elements from B appear in the order 2, 3,4,5,1. Compute an
LDLT-factorization of this matrix.

20.4 Show that, if B is symmetric and positive semidefinite, then |b;;| <
biibjj for all Z,j

Notes

Most implementations of interior-point methods assume the problem to be for-
mulated with equality constraints. In this formulation, Lustig et al. (1994) give a
good overview of the performance of interior-point algorithms compared with the
simplex method.

The suggestion that it is better to solve equations in the KKT form instead of
normal form was offered independently by a number of researchers (Gill et al. 1992;
Turner 1991; Fourer and Mehrotra 1991; Vanderbei and Carpenter 1993).

The advantages of the primal-dual symmetric formulation were first reported
in Vanderbei (1994). The basic properties of quasidefinite matrices were first given
in Vanderbei (1995).



CHAPTER 21

The Affine-Scaling Method

In the previous chapter, we showed that the step direction for the path-following
method can be decomposed into a linear combination of three directions: a direction
toward optimality, a direction toward feasibility, and a direction toward centrality. It
turns out that these directions, or minor variants of them, arise in all interior-point
methods.

Historically, one of the first interior-point methods to be invented, analyzed,
and implemented was a two-phase method in which Phase I uses only the feasibil-
ity direction and Phase II uses only the optimality direction. This method is called
affine scaling. While it is no longer considered the method of choice for practi-
cal implementations, it remains important because its derivation provides valuable
insight into the nature of the three basic directions mentioned above.

In this chapter, we shall explain the affine-scaling principle and use it to derive
the step toward optimality and step toward feasibility directions. As always, our
main interest lies in problems presented in standard form. But for affine scaling,
it is easier to start by considering problems in equality form. Hence, we begin by
assuming that the linear programming problem is given as

maximize ¢z
(21.1) subjectto  Ax =10
x> 0.

We shall begin with the Phase II algorithm. Hence, we assume that we have a
feasible initial starting point, 2. For the affine-scaling method, it is important that
this starting point lie in the strict interior of the feasible set. That is, we assume that

Az’ =b and 2°>0.

1. The Steepest Ascent Direction

Since the affine-scaling principle is fundamentally geometric, it is useful to
keep a picture in mind. A typical picture for m = 1 and n = 3 is shown in
Figure 21.1. The ultimate goal is, of course, to move from z° to the optimal so-
Iution x*. However, the short-term goal is to move from 20 in some direction Az
that improves the objective function. Such a direction is called an ascent direction.
You probably recall from elementary calculus that the best, i.e., steepest, ascent
direction is given by the gradient of the objective function. However, as we see in
Figure 21.1, there is no reason a priori for the gradient to “lie in” the feasible region.

R.J. Vanderbei, Linear Programming, International Series in Operations Research 309
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_21,
© Springer Science+Business Media New York 2014
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Feasible region

Xy

FIGURE 21.1. A typical feasible region when the problem is in
equality form, m = 1, and n = 3. The lines drawn on the feasible
set represent level sets of the objective function, and x° represents
the starting point for the affine-scaling method.

Hence, the steepest ascent direction will almost surely cause a move to infeasible
points. This is also clear algebraically. Indeed,

A(x® + Az) = Az + AAz = b+ Ac#b

(unless Ac = 0 which is not likely).

To see how to find a better direction, let us first review in what sense the gradient
is the steepest ascent direction. The steepest ascent direction is defined to be the
direction that gives the greatest increase in the objective function subject to the
constraint that the displacement vector has unit length. That is, the steepest ascent
direction is the solution to the following optimization problem:

maximize ¢’ (20 + Ax)

(21.2) subjectto || Az[]? = 1.

We can solve this problem using Lagrange multipliers. Indeed, if we let A denote
the Lagrange multiplier for the constraint, the problem becomes

max (2% + Az) — MAzT Az —1).
Differentiating with respect to Az and setting the derivative to zero, we get
c—2X Az =0,
which implies that

Ar=—cuxe.
X 2)\CO(C
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Then differentiating the Lagrangian with respect to \ and setting that derivative to
zero, we see that

|Az]]* =1 =0,
which implies that

|Az|| = £1.

Hence, the steepest ascent direction points in the direction of either c or its negative.
Since the negative is easily seen not to be an ascent direction at all, it follows that
the steepest ascent direction points in the direction of c.

2. The Projected Gradient Direction

The problem with the steepest ascent direction is that it fails to preserve feasi-
bility. That is, it fails to preserve the equality constraints Az = b. To remedy this
problem, let’s add these constraints to (21.2) so that we get the following optimiza-
tion problem:

maximize (2% + Az)

subject to |Az|? =1

Az + Az) =b.
Again, the method of Lagrange multipliers is the appropriate tool. As before, let A
denote the Lagrange multiplier for the norm constraint, and now introduce a vector
y containing the Lagrange multipliers for the equality constraints. The resulting
unconstrained optimization problem is
Argclzg\xy (2% + Az) = MAzT Az — 1) —yT (A2 + Az) —b).

Differentiating this Lagrangian with respect to Ax, A, and y and setting these deriva-
tives to zero, we get

c—2\Az — ATy =0

|Az|? —1=0

Az + Az) —b=0.
The second equation tells us that the length of Az is one. Since we are interested
in the direction of Ax and are not concerned about its length, we ignore this second
equation. The first equation tells us that Az is proportional to ¢ — ATy, and again,

since we aren’t concerned about lengths, we put A = 1/2 so that the first equation
reduces to

(21.3) Az =c— ATy.
Since Az? = b, the third equation says that
AAx = 0.
Substituting (21.3) into this equation, we get
Ac— AATy =0,

which, assuming that AAT has full rank (as it should), can be solved for y to get
y = (AAT) " Ac.
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Now, substituting this expression into (21.3), we see that
Az =c— AT(AAT) 1 Ac.
It is convenient to let P be the matrix defined by
P=1—-AT(AAT)7'A.
With this definition, Az can be expressed succinctly as
Az = Pec.

We claim that P is the matrix that maps any vector, such as c, to its orthogonal
projection onto the null space of A. To justify this claim, we first need to define some
of the terms we’ve used. The null space of A is defined as {d € R" : Ad = 0}. We
shall denote the null space of A by N(A). A vector ¢ is the orthogonal projection
of c onto N (A) if it lies in the null space,

¢e N(A),
and if the difference between it and ¢ is orthogonal to every other vector in N (A).
That is,
d"(c—¢&) =0, foralld € N(A).
Hence, to show that Pc is the orthogonal projection of ¢ onto the null space of A,
we simply check these two conditions. Checking the first, we see that

APc = Ac — AAT(AAT) " Ac,

which clearly vanishes. To check the second condition, let d be an arbitrary vector
in the null space, and compute

dT(c — Pc) = dT AT(AAT) "1 Ac,
which also vanishes, since d? AT = (Ad)” = 0. The orthogonal projection Pc is
shown in Figure 21.1.

3. The Projected Gradient Direction with Scaling

The orthogonal projection of the gradient gives a good step direction in the
sense that among all feasibility-preserving directions, it gives the largest rate of
increase of ¢’ x per unit step length. This property is nice as long as the current
point 20 is well inside the feasible set. But if it is close to a “wall,” the overall
increase in one step will be small, since even though the rate is large the actual
step length will be small, yielding a small overall increase. In fact, the increase
will become arbitrarily small as the point 2° is taken closer and closer to a “wall.”
Hence, to get a reasonable algorithm, we need to find a formula for computing step
directions that steers away from walls as they get close.

The affine-scaling algorithm achieves this affect as follows: scale the variables
in the problem so that the current feasible solution is far from the walls, compute the
step direction as the projected gradient in the scaled problem, and then translate this
direction back into the original system. The idea of scaling seems too simple to do
any good, and this is true if one tries the most naive scaling—just multiplying every
variable by one large number (such as the reciprocal of the smallest component of
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&s

FIGURE 21.2. The effect of affine scaling on projected gradients.

2%). Such a uniform scaling does not change the picture in any way. For example,
Figure 21.1, which doesn’t show specific scales on the coordinate axes, would not
change at all. Hence, whether distance is measured in miles or in feet, the property
of being close to a wall remains unchanged.

Fortunately, the scaling we have in mind for the affine-scaling algorithm is just
slightly fancier. Indeed, the idea is to scale each variable in such a manner that its
initial value gets mapped to 1. That is, for each 7 = 1,2, ..., n, we introduce new
variables given by

Lj
&= il
J
Of course, this change of variable is trivial to undo:
0
T = xjgj.
In matrix notation, the change of variables can be written as
(21.4) z = X0,

Note that we are employing our usual convention of letting an upper-case letter stand
for a diagonal matrix whose diagonal elements come from the components of the
vector denoted by the corresponding lower-case letter. Clearly, under this change of
variables, the initial solution 2 gets mapped to the vector e of all ones, which is at
least one unit away from each wall. Figure 21.2 shows an example of this scaling
transformation. Note that, unlike the trivial scaling mentioned above, this scaling
changes the way the level sets of the objective cut across the feasible region.
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Making the change of variables given by (21.4) in (21.1), we find that the prob-
lem in the scaled space is

maximize 7 X%¢
subjectto  AXY¢=10
£>0.

Clearly, it is a linear programming problem in standard form with constraint matrix
AX? and vector of objective function coefficients (c? X°)T = XOc. Letting A&
denote the projected gradient of the objective function in this scaled problem, we
see that

A€ = (I - XOAT(AX02AT)*1AX0) X

Ignore step length worries for the moment, and consider moving from the current
solution £Y = e to the following new point in the scaled problem:

¢ =¢"+ Ac

Then transforming this new point back into the original unscaled variables, we get
anew point z! given by

ol = X% = X%+ A¢) = 2% + XOA¢.

Of course, the difference between 2! and ¥ is the step direction in the original

variables. Denoting this difference by Az, we see that
Az = X° (1 - XOAT(AX°2AT)*1AX°) X0
(21.5) = (D - DA"(ADA")"'AD)c,

where
D= X%

The expression for Az given by (21.5) is called the affine-scaling step direction.
Of course, to construct the affine-scaling algorithm out of this formula for a step
direction, one simply needs to choose step lengths in such a manner as to ensure
“strict” feasibility of each iterate.

We end this section by illustrating some of the calculations on the following
trivial example:

maximize 2xq + 3x9 + 2x3
subjectto x; + o+ 2z3 = 3
xy, T2, v3 = 0.
This is precisely the problem shown in Figure 21.2. As in the figure, let us assume
that

N Y (U



3. THE PROJECTED GRADIENT DIRECTION WITH SCALING

For later comparison, we compute the projected gradient (without scaling):
Pc=c— AT(AAT) 1 Ac

- —1

2 1 1 2
=13 ]|-|1 (11 2]]1 [112]]3
2] | 2] 2 2
A
a2
2] |2
ro1

2
| 3

2
| -1

Now, in the scaled coordinate system, the gradient of the objective function is

1 2 2

X% = 3 3|1=12
2 1 9 i

4 2

and the constraint matrix is given by

1
AX?=[1 1 2] 5 1=[13 3]
4
Using these, we compute A¢ as follows:
27 [1] 17\ 2
9 3 3 9
Ac=1 5 |-z ||[1 35 3]z [1 2 3] 3
1 1 1 1
L 2 L 2 2 2
e -1
=3 -]3 3
1 1|7
L 2 L 2
[ _4
7
— 9
= 14
_u
14
Finally, Az is obtained by the inverse scaling:
Az = XOA¢
- _4
1 7
_ 3 9
= 2 14
1
I 11
L 1 —1i
ro_4
7
- 27
= 28
11

L 56
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In the next section, we discuss the convergence properties of the affine-scaling al-
gorithm.

4. Convergence

In the previous section, we derived the affine-scaling step direction Az. To
make an algorithm, we need to introduce an associated step length. If the step
were chosen so that the new point were to lie exactly on the boundary of the fea-
sible region, then the multiplier for Az, which as usual we denote by 6, would be

given by
-1
J T

But as always, we need to shorten the step by introducing a parameter 0 < r < 1

and setting
-1
0=r (max{—Ax] }) .
J €5

With this choice of 6, the iterations of the affine-scaling algorithm are defined by

T+ x+ 0Ax.

It turns out that the analysis of the affine-scaling algorithm is more delicate
than the analysis of the path-following algorithm that we discussed in Chapter 18.
Hence, we simply state without proof the main results.

THEOREM 21.1.

(a) If the problem and its dual are nondegenerate, then for every r < 1, the
sequence generated by the algorithm converges to the optimal solution.

(b) For r < 2/3, the sequence generated by the algorithm converges to an
optimal solution (regardless of degeneracy).

(c) There exists an example and an associated v < 1 for which the algorithm
converges to a nonoptimal solution.

There is only one example currently known for which the affine-scaling algo-
rithm fails by converging to a nonoptimal solution. For this example, the failure
occurs only for all » > 0.995. It is not known whether there are examples of the
algorithm failing for all + > 2/3, although such a worst-case example seems likely
to exist.

Convergence is only the first question. Once convergence is established, the
follow-up question is: how fast? For example, given a fixed tolerance, does the
affine-scaling algorithm produce a solution within this tolerance of optimality in
a number of iterations that is bounded by a polynomial in n? Some variants of
the path-following method have this desirable property, so one would hope that the
affine-scaling method would share it. Unfortunately, while no one has written down
a detailed example yet, there is strong evidence that the affine-scaling method does
not have this property.

To explain the evidence, consider letting the step lengths in the affine-scaling
algorithm be extremely short, even infinitesimally short. In this case, the algorithm
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max

Pc

AL )/

min

FIGURE 21.3. A few continuous paths of the affine-scaling algo-
rithm. At every point, the continuous path is tangent to the step
direction Az.

no longer generates a sequence of points moving toward the optimal solution but
rather makes a smooth curve connecting the starting point to the optimal solution.
If we let the starting point vary, then we get a family of curves filling out the entire
interior of the feasible region and connecting each interior point to the optimal solu-
tion. Figure 21.3 shows an example of a feasible region and some of the continuous
paths. Studying the continuous paths gives information about the discrete step algo-
rithm, since, for each point z, the step direction Az at z is tangent to the continuous
path through x. The important property that the continuous paths illustrate is that
as one gets close to a face of the feasible polytope, the continuous path becomes
tangent to the face (see Exercise 21.1 for an algebraic verification of this statement).
This tangency holds for faces of all dimensions. In particular, it is true for edges.
Hence, if one starts close to an edge, then one gets a step that looks a lot like a
step of the simplex method. Therefore, it is felt that if one were to take a problem
that is bad for the simplex method, such as the Klee—Minty problem, and start the
affine-scaling algorithm in just the right place, then it would mimic the steps of the
simplex method and therefore take 2" iterations to get close to the optimal solution.
This is the idea, but as noted above, no one has carried out the calculations.

5. Feasibility Direction

To derive a Phase I procedure for the affine-scaling algorithm, we consider
a starting point z° that has strictly positive components but does not necessarily
satisfy the equality constraints Ax = b. We then let

p=">b— Az’

denote the vector of infeasibilities. With these definitions under our belt, we intro-
duce the following auxiliary problem involving one extra variable, which we shall
denote by x( (not to be confused with the initial solution vector 2°):
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maximize —xg
subjectto  Ax +xgp=10
x>0, xg > 0.

20
)
is a strictly positive feasible solution to the auxiliary problem. Hence, we can apply
the affine-scaling algorithm to the auxiliary problem. If the optimal solution has
x¢ > 0, then the original problem is infeasible. If, on the other hand, the optimal
solution has = = 0, then the optimal solution to the auxiliary problem provides
a feasible starting solution to the original problem (it may not be a strictly interior
feasible solution, but we shall ignore such technicalities in the present discussion).

Let us now derive a specific formula for the step direction vector in the auxiliary
problem. The vector of objective coefficients is

B

[A p],

and the “current” solution can be denoted as
x
i) ’
Substituting these three objects appropriately into (21.5), we get
Azx | X2 X 2 AT
Azg | x3 x3 pT
X2 AT ] ) -
A
(Lol [™ ] [
X2 0
[T g )]

Exploiting heavily the fact that all the coefficients in the objective vector are zero
except for the last, we can write a fairly simple expression for Ax:

Clearly, the vector

the constraint matrix is

Az = X2AT (AXQAT + x%ppT)_l pxg.

The final simplification comes from applying the Sherman—Morrison—Woodbury
formula (see Exercise 19.1) to the inverted expression above to discover that the
vector (AX2AT + 22pp™)~!p points in the same direction as (AX2AT)~!p. That
is, there is a positive scalar o such that

(AX?A + 23pp") " p = a(AX?AT) ™ p
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(see Exercise 21.3). Since vector lengths are irrelevant, we can define the affine-
scaling feasibility step direction as

(21.6) Az = X2AT (AX2AT) " ).

6. Problems in Standard Form

We return now to problems in standard form:
maximize clx
subjectto Az <D

x> 0.

Introducing slack variables w, we can write the problem equivalently as

T
.. c T
maximize
0 w

@17 subjectto [ A ] [Z) _p
{x > 0.
w

Writing down the affine-scaling step direction for this problem, we get
Az | X? X 2 AT
Aw | w2 w2 1
X2 AT\
([ e ]17])

X? c
[T ) 6]
which simplifies to

2 2 AT
[ ﬁi } _ [ XOC ] - [ Xwé } (AX?AT +W?) " AX2.

Therefore, in particular
Az = X?%c— X2AT(AX?AT + W?)~1AX e,

Note that this formula for Az matches the formula for Azpr given in Section 19.3,
except that the diagonal matrix X2 replaces X Z ! and W?2 replaces WY ~!. These
diagonal matrices are referred to as scaling matrices. Hence, the formula for Ax
given above is often called the affine-scaling step direction with primal scaling,
whereas Axgpr is referred to as the affine-scaling step direction with primal-dual
scaling.

Similar connections can be established between the Phase I step direction de-
rived in this section and Axrpas from Section 19.3. Indeed, from (21.6), we see that
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the feasibility step direction for (21.7) is

Az
Aw

- [ e [0 [ ] [5])
- nfz)

Again, looking just at the formula for Az, we see that

Az = X2AT(AXZAT + W2)7Hb — Az — w),

which coincides with Axpzas except that X2 replaces XZ~! and W?2
replaces WY ~1.

21.1

21.2

21.3

214

Exercises

Step direction becomes tangent to each facet. Let Ax denote the affine-
scaling step direction given by

Az = (X? - X?AT(AX?AT)TAX?) c.

This step direction is clearly a function of z. Fix j. Show that the limit as
x; tends to zero of Az is a vector whose jth component vanishes. That is,

lim Az; = 0.
(L‘j-)O

Dual Estimates. Consider the following function, defined in the interior
of the polytope of feasible solutions {z : Ax = b, > 0} by
y(z) = (AX2AT)"1AX 2.

Consider a partition of the columns of A = [ B N } into a basic part B
and a nonbasic part NV, and, as we did in our study of the simplex method,
partition the n-vectors analogously. Show that

lim y(x) = (BT) teg.
A —0

Let A be an m x n matrix having rank m, and let p be an arbitrary m-
vector. Use the identity proved in Exercise 19.1 to show that there exists
a scalar « such that

(AAT + pp") ' p = a(AAT) ' p.
Hint: Be mindful of which matrices are invertible.
(So-called) Dual Affine-Scaling Method. Compute the affine-scaling step-
direction vector Az for problems in the following form:
T

maximize c¢'x
subjectto Az <b.
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Notes

The affine-scaling algorithm was first suggested by Dikin (1967). He sub-
sequently published a convergence analysis in Dikin (1974). Dikin’s work went
largely unnoticed for many years until several researchers independently rediscov-
ered the affine-scaling algorithm as a simple variant of Karmarkar’s algorithm (Kar-
markar 1984). Of these independent rediscoveries, only two papers offered a con-
vergence analysis: one by Barnes (1986) and the other by Vanderbei et al. (1986). It
is interesting to note that Karmarkar himself was one of the independent rediscov-
erers, but he mistakenly believed that the algorithm enjoyed the same convergence
properties as his algorithm (i.e., that it would get within any fixed tolerance of opti-
mality within a specific number of iterations bounded by a polynomial in n).

Theorem 21.1(a) was proved by Vanderbei et al. (1986). Part (b) of the Theorem
was proved by Tsuchiya and Muramatsu (1992) who also show that the result is
sharp. A sharper sharpness result can be found in Hall and Vanderbei (1993). Part
(c) of the Theorem was established by Mascarenhas (1997).

The first derivation of the affine-scaling feasibility step direction was given by
Vanderbei (1989). The simple derivation given in Section 21.5 is due to M. Meketon.

A recent book by Saigal (1995) contains an extensive treatment of affine-scaling
methods.



CHAPTER 22

The Homogeneous Self-Dual Method

In Chapter 18, we described and analyzed an interior-point method called the
path-following algorithm. This algorithm is essentially what one implements in
practice but as we saw in the section on convergence analysis, it is not easy (and
perhaps not possible) to give a complete proof that the method converges to an
optimal solution. If convergence were completely established, the question would
still remain as to how fast is the convergence. In this chapter, we shall present a
similar algorithm for which a complete convergence analysis can be given.

1. From Standard Form to Self-Dual Form

As always, we are interested in a linear programming problem given in standard
form
T

maximize c¢'x
(22.1) subjectto Az <b
x>0

and its dual
minimize b7y
(22.2) subjectto ATy > ¢
y=>0.
As we shall show, these two problems can be solved by solving the following
problem, which essentially combines the primal and dual problems into one problem:

maximize 0
subject to — ATy + ¢cop < 0,
(22.3) Ax — by < 0,
—Te + bTy < 0,
z, Yy, ¢ = 0.

Note that, beyond combining the primal and dual into one big problem, one new
variable (¢) and one new constraint have been added. Hence, the total number of
variables in (22.3) is n + m + 1 and the total number of constraints is n + m + 1.
Furthermore, the objective function and the right-hand sides all vanish. Problems
with such right-hand sides are called homogeneous. Also, the constraint matrix
for problem (22.3) is skew symmetric. That is, it is equal to the negative of its
transpose. Homogeneous linear programming problems having a skew symmetric
constraint matrix are called self-dual.

R.J. Vanderbei, Linear Programming, International Series in Operations Research 323
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_22,
© Springer Science+Business Media New York 2014



324 22. THE HOMOGENEOUS SELF-DUAL METHOD

In the next section, we shall give an algorithm for the solution of homogeneous
self-dual linear programming problems. But first, let’s note that a solution to (22.3)
in which ¢ > 0 can be converted into solutions for (22.1) and (22.2). Indeed, let
(%, 7, @) be an optimal solution to problem (22.3). Suppose that ¢ > 0. (The algo-
rithm given in the next section will guarantee that this property is satisfied whenever
(22.1) and (22.2) have optimal solutions.") Put

" =z/¢p and y*=y/o.
Then the constraints in (22.3) say that

- ATy* + c S 07
Azx* —-b <0,
—cTg* + bTy* < 0.

*

Also, z* and y* are both nonnegative. Therefore, x* is feasible for (22.1) and y* is
feasible for (22.2). From the weak duality theorem together with the third inequality
above, we get

o =Ty,
Therefore, x* is optimal for the primal problem (22.1) and y* is optimal for the
dual problem (22.2). As we will see later, the case where ¢ = 0 corresponds to
infeasibility of either the primal or the dual problem (or both).

2. Homogeneous Self-Dual Problems

Consider a linear programming problem in standard form

maximize ¢’z

subjectto Az <D
x>0
and its dual
minimize b7y
subject to ATy >c

y=>0.
Such a linear programming problem is called self-dual if m = n, A = —AT, and
b = —c. The reason for the name is that the dual of such a problem is the same as

the primal. To see this, rewrite the constraints as less-thans and then use the defining
properties for self-duality to get

ATy>c¢ & —-ATy< - o Ay<b.
Similarly, writing the objective function as a maximization, we get
minb’y = —max—bly = —maxcly.

Hence, ignoring the (irrelevant) fact that the dual records the negative of the objec-
tive function, the primal and the dual are seen to be the same. A linear programming
problem in which the right-hand side vanishes is called a homogeneous problem.

IThe astute reader might notice that setting all variables to O produces an optimal solution.
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It follows that if a problem is homogeneous and self-dual, then its objective func-
tion must vanish too.

For the remainder of this section, we assume that the problem under consider-
ation is homogeneous and self-dual. Since the case m = n = 1 is trivial (A = 0
in this case), we assume throughout this section that n > 2. Also, since the dual is
the same problem as the primal, we prefer to use the letter z for the primal slacks
(instead of the usual w). Hence, the primal can be written as

maximize 0
22.4) subjectto  Ax+2z=0
z,z> 0.

The following theorem establishes some of the important properties of homo-
geneous self-dual problems.

THEOREM 22.1. For homogeneous self-dual problem (22.4), the following
statements hold:

(1) It has feasible solutions and every feasible solution is optimal.
(2) The set of feasible solutions has empty interior. In fact, if (x, ) is feasible,
then zTx = 0.

PROOF. (1) The trivial solution, (z, z) = (0, 0), is feasible. Since the objective
function is zero, every feasible solution is optimal.

(2) Suppose that (x, z) is feasible for (22.4). The fact that A is skew symmetric
implies that ¢7 A¢ = 0 for every vector & (see Exercise 16.1). In particular, 27 Az =
0. Therefore, multiplying Az + 2 = 0 on the left by 27, we get 0 = 27 Az + 272 =
2T 2. This completes the proof. O

Part (2) of the previous Theorem tells us that homogeneous self-dual problems
do not have central paths.

2.1. Step Directions. As usual, the interior-point method we shall derive will
have the property that the intermediate solutions it produces will be infeasible.
Hence, let

plr,z)=Ax+ 2

denote the infeasibility of a solution (z, z). Also, let

1
wlz, z) = ExTz.
The number p(z, z) measures the degree of noncomplementarity between x and 2.
When x and z are clear from context, we shall simply write p for p(x, z) and u for
pu(w, z).

Step directions (Ax, Az) are chosen to reduce the infeasibility and noncomple-
mentarity of the current solution by a given factor §, 0 < § < 1. Hence, we consider
the nonlinear system that would make the infeasibility and noncomplementarity of
(x 4+ Az, z + Az) be ¢ times that of (z, 2):
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A(x + Az) + (2 + Az) = 0(Az + 2),
(X+AX)(Z+ AZ)e = du(z, z)e.

As usual, this system is nonlinear in the “delta” variables. Dropping the nonlinear
term (appearing only in the second equation), we get the following linear system of
equations for the step directions:

(22.5) AAx 4+ Az = —(1 = 0)p(x, 2),
(22.6) ZAx + XAz =dpu(z,z)e — X Ze.
With these step directions, we pick a step length 6 and step to a new point:
I =ux+0Ax, Z=z+0Az
We denote the new p-vector by p and the new p-value by ji:
p=p@2) and fi= p(z2).
The following theorem establishes some of the properties of these step directions.

THEOREM 22.2. The following relations hold:
() AzTAz =0.
) p=(1—-0+65)p.
3) A= (1—=0465)u.
4) XZe—jie=(1—-0)(XZe— pe) + 2AXAZe.

PROOF. (1) We start by multiplying both sides of (22.5) on the left by Az
(22.7) AzxT ANz + AzTAz = —(1 — §) Az p.

The skew symmetry of A (i.e., A = —AT) implies that AzT AAz = 0 (see Exer-
cise 16.1). Hence, the left-hand side of (22.7) simplifies nicely:

AxT ANz + AxT Az = Azt Az

Substituting the definition of p into the right-hand side of (22.7), we get

—(1=8)AxTp=—(1—-0)AxT (Az + 2).
Next, we use the skew symmetry of A to rewrite Az” Az as follows:

Azt Az = (Az)T Az = 2T AT Az = —2T AAz.
Assembling what we have so far, we see that
(22.8) ArTAz = —(1 = 0)(—2T AAx + 2T Ax).
To proceed, we use (22.5) to replace AAx with —(1 — &)p — Az. Therefore,
— 2T ANz + 2T Az =27 (1 = 8)p+ Az) + 21 Ax

(22.9) =1 -0)z"p+aTAz+ 2T Ax.
Again using the definition of p and the skew symmetry of A, we see that

alp =2t (Ax +2) =272
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The last two terms in (22.9) can be simplified by multiplying both sides of (22.6) on
the left by e’ and then using the definition of 1 to see that

TAr+ T Az =6un — 272 = (6 — 1)z’ 2.
Making these substitutions in (22.9), we get
— 2T AAz +2TAx = (1= 0)a" 2+ (6 — 1)zTz =0.

Hence, from (22.8), we see that Az” Az vanishes as claimed.
(2) From the definitions of Z and Z, we see that

p= Az + 0Az) + (2 + 0Az)
= Az + 2z + 0(AAx + Az)
=(1—-0+469)p.
(3) From the definitions of T and z, we see that
'z = (x+0A2)" (2 + 0Az2)
=2T2 4+ 0T Az + 2T Az) + 02°AzT Az,
From part (1) and (22.6), we then get
'z =aT2+00pun —2'2).

Therefore,

p=—3Tz2=(1-0)u+05u

(4) From the definitions of z and Z together with part (3), we see that
XZe—jie = (X +0AX)(Z +0AZ)e — (1 — 0+ 06) e
=XZe+0(ZAx + XAz) +0*AXAZe — (1 — 0+ 06) pue.

Substituting (22.6) into the second term on the right and recollecting terms, we get
the desired expression. O

2.2. Predictor-Corrector Algorithm. With the preliminaries behind us, we
are now ready to describe an algorithm. We shall be more conservative than we were
in Chapter 18 and define the algorithm in such a way that it keeps the components
of X Ze close to each other. Indeed, for each 0 < 5 < 1, let

NB)={(z,2) >0:||XZe — u(z, 2)e|| < Bu(z,2)}.

Shortly, we will only deal with A/(1/4) and N (1/2) but first let us note generally
that < /' implies that N'(8) C N(8’). Hence, as a function of 3, the N'(8)’s
form an increasing family of sets. Also, A/(0) is precisely the set of points (z, z)
for which X Ze has all equal components.

The algorithm alternates between two types of steps. On the first iteration
and subsequently on every other iteration, the algorithm performs a predictor step.
Before a predictor step, one assumes that

(x,2) e N(1/4).
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Then step directions are computed using § = 0 (i.e., with no centering) and the step
length is calculated so as not to go outside of N'(1/2):

(22.10) 0 = max{t : (x +tAw,z +tAz) € N(1/2)}.

On the even iterations, the algorithm performs a corrector step. Before a corrector
step, one assumes that

(z,2) e N(1/2)

(as is guaranteed by the predictor step’s step length). Then step directions are com-
puted using & = 1 (i.e., pure centering) and the step length parameter € is set to 1.

The following theorem shows that the result of each step satisfies the precondi-
tion for the next step of the algorithm and that i decreases on predictor steps while
it stays the same on corrector steps.

THEOREM 22.3. The following statements are true:

(1) After a predictor step, (z,z) € N(1/2) and i = (1 — 6) .
(2) After a corrector step, (z,z) € N(1/4) and i = p.

PROOF OF PART (1). The formula for i follows from part (3) of Theorem 22.2
by putting § = 0. The fact that (z,z) € N(1/2) is an immediate consequence of
the choice of 6. U

Before proving Part (2) of the Theorem, we need to introduce some notation
and prove a few technical results. Let

p= X71/2Z1/2A1'7
qg= X1/2Z_1/2AZ,

r=p+q
= X" V2Z77V2(ZAx + X Az)
(22.11) = X"1V27272(6pe — X Ze).

The technical results are summarized in the following lemma.
LEMMA 22.4. The following statements are true:
() | PQel| < 3rl*

() If§ =0, then ||7||* = np.
(3) If6 = 1and (x,2) € N(B), then ||r||> < B%u/(1 - B).

PROOF. (1) First note that p” ¢ = Axz” Az = 0 by Theorem 22.2(1). Hence,
Il = llp+al* = p"p+ 20" g+ q"a =Y _ (0} + 45)-

J
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Therefore,
2

Il = > 0} +q})

J

> Z(p? +q2)?
_Z _qj +4pJqJ>
>4Z%

= 4||PQ€||2~

Taking square roots yields the desired inequality.

(2) Putting § = 0 in (22.11), we see that r = — X '/2Z1/2¢. Therefore, ||r||* =
2o =np.

(3) Suppose that (x, z) € N(3). Whenever the norm of a vector is smaller than
some number, the magnitude of each component of the vector must also be smaller
than this number. Hence, |z;z; — p| < Su. It is easy to see that this inequality is
equivalent to

(22.12) (1 =B < wjzy < (1+B)p.
Now putting 6 = 1 in (22.11), we get

J

Therefore, using the lower bound given in (22.12), we get the following upper

bound:
1

rl? < m—a ) (i — )

|| (1 _ ﬂ)/i ; Ve )

Finally, since (z,2) € N(B), we see that the above sum is bounded by 3?12, This
gives the claimed inequality. (]

PROOF OF THEORJEM 22.3(2). Since 6 = 1 in a corrector step, it follows from
Theorem 22.2(4) that X Ze — jie = AXAZe = PQe. Therefore, parts (1) and (3)
of Lemma 22.4 imply that

X Ze — fie]| = || PQe]

1

5Irl?

1 (1/2)2

SLapeeE
21—1/2
1

(22.13) = L.

IN
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We also need to show that (z,2) > 0. For 0 <t < 1, let
x(t) =x +tAx, 2(t)=z+tAz, and pu(t) = p(x(t),2(t)).
Then from part (4) of Theorem 22.2, we have
X(t)Z(t)e — p(t)e = (1 —t)(X Ze — pe) + t2AX AZe.

The right-hand side is the sum of two vectors. Since the length of the sum of two
vectors is less than the sum of the lengths (i.e., by the triangle inequality), it follows
that

(22.14) X () Z(t)e — ut)e| < (1 —1)|[| X Ze — pel| + 2| AX AZe||

(note that we’ve pulled the scalars out of the norms). Now, since (x, z) € N (1/2),
we have || X Ze—pe|| < p/2. Furthermore, from (22.13) we have that || AX AZe|| =
|IPQel|| < u/4. Replacing the norms in (22.14) with these upper bounds, we get
the following bound:

B, ool _ p
(22.15) IX()Z (e~ plt)el) < (1 -k 22 < B
(the second inequality follows from the obvious facts that ? < t and 11/4 < p/2).

Now, consider a specific component j. It follows from (22.15) that

I
2302 (t) = p(t) = =5

Since ¢ = 1, part (3) of Theorem 22.2 tells us that u(t) = p for all ¢. Therefore the
previous inequality can be written as

(22.16) i (t)z(t) > g > 0.

This inequality then implies that =;(¢) > 0 and z;(t) > Oforall 0 < ¢t < 1
(since they could only become negative by passing through 0, which is ruled out by
(22.16)). Putting ¢ = 1, we get that Z; > 0 and z; > 0. Since the component j was
arbitrary, it follows that (Z, Z) > 0. Therefore (z,z) € N'(1/4). O

2.3. Convergence Analysis. The previous theorem showed that the predictor-
corrector algorithm is well defined. The next theorem gives us a lower bound on the
progress made by each predictor step.

THEOREM 22.5. In each predictor step, 0 > ﬁ

PROOF. Using the same notation as in the proof of Theorem 22.3, we have the
inequality:

(22.17) [X(8)Z(t)e — p(t)e] < (1 —t)[| X Ze — pe]
+ 1 |AX AZe|.
This time, however, (z, z) € N (1/4) and § = 0. Hence,

I
[XZe — pe| < 1
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and, from parts (1) and (2) of Lemma 22.4,
1
|AXAZe| = [PQe] < 2|2 = ST
Using these two bounds in (22.17), we get the following bound:
IX(Z(B)e - p(bel < (1 -5 +25-.

Now, fix at < (2y/n)~!. For such a t, we have t?n/2 < 1/8. Therefore, using the
factthat t < 1/2 forn > 2, we get

B p
IX()Z(t)e — plt)ell < (1 - 1)k +
1 [
<(1-—-t)— 1—-1¢)—
<a-nhta-nt
i
=(1-1)=
(-0
_ M)
2
Hence, as in the previous theorem (z(t),2(t)) e N(1/ 2) Since ¢ was an arbitrary
number less than (2,/n) 1, it follows that § > (24/n)~! O

Let (z(®), 2(¥)) denote the solution after the kth iteration and let
p*) = p(@® 2 and  p®) = p(a® ).

The algorithm starts with (90 = 2(0) = ¢, Therefore, ;(*) = 1. Our aim is to
show that (%) and p(*) tend to zero as k tends to infinity. The previous theorem
together with Theorem 22.3 implies that, after an even number of iterations, say 2k,
the following inequality holds:

1 k
Ch) < (1-—2) .
: —< 2\/ﬁ>

Also, since the corrector steps don’t change the value of p, it follows that

M(2k:71) _ ‘u(2k)'
From these two statements, we see that
lim u(k) =0.

k—o0

Now, consider p(k’). It follows from parts (2) and (3) of Theorem 22.2 that the
reduction in infeasibility tracks the reduction in noncomplementarity. Hence,

p8) — (9 ().

Therefore, the fact that 1.(*) tends to zero implies the same for p(*).
In fact, more can be said:

THEOREM 22.6. The limits x* = limg_,oo %) and 2* = limp_, o0 2(F) exist
and (x*,2*) is optimal. Furthermore, the vectors x* and z* are strictly comple—
mentary to each other. That is, for each j, x3z; = 0 but either x; > 0 or z; > 0.
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The proofis fairly technical, and so instead of proving it, we prove the following
theorem, which captures the main idea.

THEOREM 22.7. There exist positive constants ¢y, Ca, . . ., ¢y, such that (z, z) €
N (B) implies that xj + z; > ¢; > 0 foreach j =1,2,... n.

PROOF. Put 1 = p(x, z) and p = p(z,2) = pp®. Let (z*, 2*) be a strictly
complementary feasible solution (the existence of which is guaranteed by Theorem
10.6). We begin by studying the expression z 2* 4+ 27 2*. Since Ax* + z* = 0, we
have that

2Ta* + otz = 2Ta* — o7 Ax*
= (—ATz 4+ )T
By the skew-symmetry of A, we see that —AT2 + 2 = Ax + z = p. And, since
p = pup', we get
T

(22.18) ot 42Tz = pp 0 2

The factor p(0>Tm* is a constant (i.e., it does not depend on x or z). Let us denote it
by M. Since all the terms in the two products on the left in (22.18) are nonnegative,

it follows that each one is bounded by the right-hand side. So if we focus on a
particular index j, we get the following bounds:

(22.19) zjx;f <pM and :rjz; < uM.
Now, we use the assumption that (z, z) € N'(3) to see that
zjzj 2 (1= B)p.

In other words, < z;z;/(1 — [3), and so the inequalities in (22.19) become

-*<M-4and D R vV
25T 25T Tjz; Tjzj.

7=1-8 ~1-5
Since x; and z; are strictly positive, we can divide by them (and the constants) to
get

1-— 1-
Mﬂx; <z; and Mﬂz; < z;
Putting
1- 5 * *
Cj = 7(.93] + Zj)’
we get the desired lower bound on z; + z;. O

2.4. Complexity of the Predictor-Corrector Algorithm. Of course, in prac-
tice we don’t run an infinite number of iterations. Instead, we set a priori a threshold
and stop when £(®) falls below it. The threshold is usually denoted by 2~ where
L is some number. Typically, we want the threshold to be about 10~%, which corre-
sponds to L ~ 26.
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As we saw before, after an even number of iterations, say 2k, the p-value is
bounded by the following inequality:

1 k
(2k) < (11— —— .

Hence, it suffices to pick a k big enough to have

(o) s

Taking logarithms of both sides and solving for k, we see that any

L
k> ——————
—log(1 — m)
will do. Since — log(1 — z) > x, we get

L

20L\/n > ——m———.
("

Therefore, any k > 2L+/n will do. In particular, & = 2L+/n rounded up to the
nearest integer will suffice. Since k represents half the number of iterations, it fol-
lows that it will take at most 4L+/n iterations for the u-value to fall below the
threshold of 2=%. This bound implies that the method is a polynomial algorithm,
since it says that any desired precision can be obtained in a number of iterations that
is bounded above by a polynomial in n (here, 4L+/n is not itself a polynomial but
is bounded above by say a linear function in n for n > 2).

2.5. The KKT System. We end this section on homogeneous self-dual prob-
lems by briefly discussing the KKT system (22.5)—(22.6). Solving this system of
equations is the most time consuming step within each iteration of the predictor-
corrector algorithm. There are several ways in which one can organize the compu-
tation. The approach that most parallels what we have done before is first to solve
(22.6) for Az,

(22.20) Az = XY —=ZAz + Spe — X Ze)
= - X"'"ZAx+opuX e -2,

and then to eliminate it from (22.5) to get the following reduced KKT system:
(A-X"'2)Ax=—(1-8)p+2z—ouX ‘e

In the next section, we apply the algorithm developed in this section to the homoge-
neous self-dual problem given by (22.3).
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3. Back to Standard Form

We return now to the setup in Section 1. Let z, w, and v denote the slack
variables for the constraints in problem (22.3):

maximize 0
subject to — ATy +co+ 2z = 0,
(22.21) Ax —bp +w = 0,
Tz + by + ¢ = 0,
T, Yy, ¢, z, w, Pp > 0.

We say that a feasible solution (Z,9, ¢, Z, W, 1)) is strictly complementary if z; +
Z; > 0 forall 4, 4; + w; > 0 for all 4, and ¢ + 1 > 0. Theorem 10.6 ensures the
existence of such a solution (why?).

The following theorem summarizes and extends the motivating discussion given
in Section 1.

THEOREM 22.8. Suppose that (Z,7, ¢, 2,w,v) is a strictly complementary
feasible (hence, optimal) solution to (22.21).

(1) If > O, then x* = T/¢ is optimal for the primal problem (22.1) and
y* = 7/ ¢ is optimal for its dual (22.2).

(2) If p = 0, then either ¢'z > 0 or b7y < 0.
@) If "z > 0, then the dual problem is infeasible.
(b) IfbTy < 0, then the primal problem is infeasible.

PROOF. Part (1) was proved in Section 1. For part (2), suppose that ¢ = 0. By
strict complementarity, ¢ > 0. Hence, x and ¥ satisfy

ATy >0,
(22.22) Az <0,

by <z,
From the last inequality, we see that it is impossible to have b7 > 0 and ¢’z < 0.
That is, either ¢7'Z > 0 or b7 < 0 (or both). Suppose, without loss of generality,

that ¥z > 0. We will prove by contradiction that the dual problem is infeasible.
To this end, suppose that there exists a vector yo > ( such that

(22.23) AT > ¢,

Since & > 0, we can multiply by it without changing the direction of an inequality.
So multiplying (22.23) on the left by z7, we get

:ETATyO > zle.

Now, the right-hand side is strictly positive. But inequality (22.22) together with the
nonnegativity of 4 implies that the left-hand side is nonpositive:

T ATy = (Az)Ty° <.

This is a contradiction and therefore the dual must be infeasible. O
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3.1. The Reduced KKT System. The right-hand side in the reduced KKT
system involves the vector of infeasibilities. We partition this vector into three parts
as follows:

o AT ¢ x z ATy 4+ cop+ 2
p | = A —b y |+ | w | = Ax —bp+w
vy —cT T 10) P T +bTy+ ¢
The reduced KKT system for (22.3) is given by
X"z —AT c Ax o
(22.24) A Y 'w —b Ay | =1 p |,
—T T /e | | A y

where

—(1=68)o+2—o6uX"1te
—(1=¥8§)p+w—duYle

(=8 +v—du/é

This system is not symmetric. One could use a general purpose equation solver
to solve it, but its special structure would be mostly ignored by such a solver. To
exploit the structure, we solve this system in two stages. We start by using the first
two equations to solve simultaneously for Az and Ay in terms of A¢:

[S1-007 A ] (5] -[5]):

Introducing abbreviating notations, we can write
22.25 = — Ag,
(2229 MR

where the vectors
fo ] { Y }
= and =
f { 1 g 7

are found by solving the following two systems of equations:

| Al ] ]

e A N

Then we use (22.25) to eliminate Ax and Ay from the last equation in (22.24):

e (| [ Jae) - Gaen

We then solve for A¢:

2>
Il

and

Csz — bey +79

AP = .
P r—
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Given A¢, (22.25) determines Az and Ay. Once these vectors are known, (22.20)
is used to compute the step directions for the slack variables:

Az=—-X"1ZAz+o6uX"te—2z
Aw =Y 'WAy +6uY e —w

Ay = =S80+ 5u/9 - 0.

We now see that the reduced KKT system can be solved by solving two sys-
tems of equations for f and g. These two systems both involve the same matrix.
Furthermore, these systems can be formulated as quasidefinite systems by negating
the first equation and then reordering the equations appropriately. For example, the
quasidefinite system for g is

-Y-'w A g | [ —b
b ][22
Therefore, the techniques developed in Chapter 20 can be used to solve these sys-
tems of equations. In particular, to solve the two systems, the quasidefinite matrix
only needs to be factored once. Then the two systems can be solved by doing two
forward and two backward substitutions. Since factorization requires more com-
putation than forward and backward substitutions, one would expect to be able to
solve these two systems in much less time than if they were each being solved from
scratch. In fact, it is often the case that one can solve two systems involving the
same quasidefinite matrix in little more time than is required to solve just one such

system.
The full homogeneous self-dual method is summarized in Figure 22.1.

4. Simplex Method vs. Interior-Point Methods

Finally, we compare the performance of interior-point methods with the sim-
plex method. For this comparison, we have chosen the homogeneous self-dual
method described in this chapter and the self-dual simplex method (see Figure 7.1).
In the interest of efficiency certain liberties have been taken with the implementa-
tions. For example, in the homogeneous self-dual method, (18.6) is used to com-
pute “long” step lengths instead of the more conservative “short” step lengths in
(22.10). The code fragments implementing each of these two algorithms are shown
in Appendix A.

A standard collection of test problems, the so-called NETLIB suite, were used
in the comparison. Problems in this collection are formulated with bounds and
ranges:

minimize '
subjectto b < Ax < b+r
I < z <
However, to keep the algorithms as simple as possible, they were implemented only
for problems in our standard inequality form. Therefore, the problems from the
NETLIB suite were converted to standard form as follows:
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initialize
(x7y’¢7z7w’w) =

while (not optimal) {

on odd iterations
on even iterations

{ !

Aw ==Y 'WAy+éuY e —
AYp=—SANp+6p/p— ¢

(67 67 17 67 67 1)

("2 + Wy + $6)/(n +m + 1)

(n + m) quasidefinite systems:

[

,6: —(1=08)(Az —bp + w) +w — SpuY ~*
=—(1-9)(— ATy+c¢+z)+zf(3pX
’v——(l—é)(bT —clz+ )+ —du/¢
solve the two (n + m) X
-Yy-'w A fy
AT X! {fz}
and
-Y7'w A g
AT XZ || g
T T N
Ap = ¢ fa=b fyt+4
c'gs —bTgy — /0
Az | | o | _
MR
Az=—-X"'"ZAx+o6uX"te—2

w

g [ max{t: (e(1),..., (1) € N1/2)),
L,

T+ 0Ax, z4+ z+0Az

Yy« y+ 0Ay, w 4 w+ 0Aw

¢ — ¢+ 0AP, P =P+ 0AY

=

on odd iterations
on even iterations

FIGURE 22.1. The homogeneous self-dual method.

— maximize —cTz —¢
subjectto —Azx <
Ar <

r <

x =

T

—b+ Al
b+r— Al
u—1

0.

Of course, this transformation is invalid when any of the lower bounds are infinite.
Therefore, such problems have been dropped in our experiment. Also, this trans-
formation introduces significant computational inefficiency but, since it was applied
equally to the problems presented to both methods, the comparison remains valid.
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The results of our experiment are shown in Table 22.1. The most obvious
observation is that the simplex method is generally faster and that, for many prob-
lems, the slower method is not more than 3 or 4 times slower. For problems in this
suite, these results are consistent with results reported in the literature. However, it
must be noted that the problems in this suite range only from small to medium in
size. The largest problem, fit2p, has about 3,000 constraints and about 14,000 vari-
ables. By today’s standards, this problem is considered of medium size. For larger
problems, reports in the literature indicate that interior point methods tend to be
superior although the results are very much dependent on the specific class of prob-
lems. In the remaining chapters of this book we shall consider various extensions
of the linear programming model. We shall see that the simplex method is partic-
ularly well suited for solving integer programming problems studied in Chapter 23
whereas interior point methods are more appropriate for extensions into the qua-
dratic and convex programming problems studied in Chapters 24 and 25. These
considerations are often more important than speed. There are, of course, excep-
tions. For example, the interior-point method is about 900 times faster than the
simplex method on problem fit2p. Such a difference cannot be ignored.

When comparing algorithms it is always tempting to look for ways to improve
the slower method. There are obvious enhancements to the interior-point method
used in this implementation. For example, one could use the same LD L™ factoriza-
tion to compute both the predictor and the corrector directions. When implemented
properly, this enhancement alone can almost halve the times for this method.

Of course, the winning algorithm can also be improved (but, significant overall
improvements such as the one just mentioned for the interior-point method are not at
all obvious). Looking at the table, we note that the interior-point method solved both
fit2p and fit2d in roughly the same amount of time. These two problems are duals of
each other and hence any algorithm that treats the primal and the dual symmetrically
should take about the same time to solve them. Now, look at the simplex method’s
performance on these two problems. There is a factor of 36 difference between
them. The reason is that, even though we have religiously adhered to primal-dual
symmetry in our development of the simplex method, an asymmetry did creep in. To
see it, note that the basic matrix is always a square submatrix of [ A T ] . That is,
it is an m x m matrix. If we apply the algorithm to the dual problem, then the basis
matrix is n X n. Hence, even though the sequence of iterates generated should be
identical with the two problems, the computations involved in each iteration can be
very different if m and n are not about the same. This is the case for the fit2p/fit2d
pair. Of course, one can easily think up schemes to overcome this difficulty. But
even if the performance of the simplex method on fit2p can be brought in line with
its performance on fit2d, it will still be about 25 times slower than the interior-point
on this problem—a difference that remains significant.
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Name Time Name Time
Simplex Interior Simplex Interior
method point method point
25fv47 2min 55.70's 3min 14.82s maros 1min 0.87 s 3min 19.43s
80bau3b 7min 59.57s 2min 34.84s nesm 1 min 40.78 s 6min 21.28 s
adlittle Omin 0.26 s Omin 0.47 s pilot87 * *
afiro Omin 0.03 s Omin0.11s pilotnov * 4min 15.31s
agg Omin 1.09s Omin 4.59 s pilots *  32min48.15s
agg2 Omin 1.64s Omin 21.42s recipe Omin 0.21s Omin 1.04s
agg3 Omin 1.72s Omin 26.52s scl105 Omin 0.28 s Omin 0.37s
bandm Omin 15.87 s Omin 9.01's s¢205 Omin 1.30s Omin 0.84s
beaconfd Omin 0.67 s Omin 6.42s sc50a Omin 0.09 s Omin 0.17 s
blend Omin 0.40's Omin 0.56 s sc50b Omin 0.12s Omin 0.15s
bnll Omin 38.38s 0min 46.09s scagr25 Omin 12.93 s Omin 4.44s
bnl2 3min 54.52s 10min 19.04 s scagr7 Omin 1.16s Omin 1.05s
boeingl Omin 5.56s Omin9.14s scfxml Omin4.44s Omin 7.80s
boeing2 Omin 0.80s Omin 1.72s scfxm2 Omin 14.33s Omin 18.84s
bore3d Omin 1.17 s Omin 3.97 s scfxm3 Omin 28.92s Omin 28.92s
brandy Omin 5.33s Omin 8.44s scorpion Omin 3.38s Omin 2.64s
czprob Omin 50.14s Omin41.77s scrs8 Omin7.15s 0Omin 9.53s
d2q06¢ * lh11min1.93s scsdl Omin 0.86s Omin 3.88s
d6cube 2min 46.71s 13min 44.52s scsd6 Omin 2.89 s Omin 9.31s
degen2 Omin 17.28 s Omin 17.02s scsd8 O min 28.87 s Omin 16.82s
degen3 Smin 55.52s 3min 36.73s sctapl Omin 2.98s Omin 3.08s
dfiool 8h 55min 33.05s ok sctap2 Omin 7.41s Omin 12.03s
€226 Omin4.76s Omin 6.65s sctap3 Omin 11.70s Omin 17.18s
etamacro Omin 17.94s Omin 43.40s seba Omin 27.25s Omin 11.90s
ffffF800 Omin 10.07 s 1min9.15s sharelb Omin 2.07 s Omin 10.90s
finnis Omin 4.76 s Omin 6.17 s share2b Omin 0.47 s Omin 0.71s
fitld Omin 18.15s Omin 11.63s shell Omin 16.12s Omin 29.45s
fitlp 7min 10.86s Omin 16.47s ship041 Omin 3.82s Omin 13.60s
fit2d 1h3min 14.37s 4min 27.66 s ship04s Omin 3.48 s Omin 10.81s
fit2p 36h 31 min 31.80s 2min 35.67 s ship081 Omin 17.83 s 0min 39.06s
forplan Omin 3.99s * ship08s Omin 8.85s Omin 19.64s
ganges Omin 44.27 s Omin 34.89s ship121 Omin 26.55s 1min 8.62s
gfrdpne Omin 11.51s Omin 8.46s ship12s Omin 16.75s Omin 30.33s
greenbea 22min45.49s 43min 4.32s sierra Omin 10.88 s Omin42.89s
growl15 Omin 8.55s Omin 58.26s standata Omin 0.57s Omin 6.60s
grow22 Omin 11.79s 2min 0.53s standmps Omin 2.41s Omin 13.44s
grow7 Omin 3.61s Omin 13.57s stocforl Omin 0.22s Omin 0.92s
israel Omin 1.83 s Omin 2.66 s stocfor2 Omin45.15s Omin 40.43s
kb2 Omin 0.15s Omin 0.34s woodlp Omin 14.155s 7min 18.47s
lotfi Omin 0.81's Omin 3.36s woodw 1min 48.14 s 8min 53.92s
maros-17 * 1h3Iml12.06s

(*) Denotes numerical difficulties
(**) Denotes insufficient memory

TABLE 22.1. Comparison between the self-dual simplex method
and the homogeneous self-dual interior-point method.

Exercises
22.1 When n = 1, the set A'(j3) is a subset of R?. Graph it.

22.2 Suppose there is an algorithm for which one can prove that
k
(k) a

p <1 Fn))
for every k > 1, where f(n) denotes a specific function of n, such as
f(n) = n?, and a is a constant. In terms of @ and f and the “precision”
L, give a (tight) upper bound on the number of iterations that would be
sufficient to guarantee that

u(k) <2 L
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In Section 3 of Chapter 20, we extended the primal-dual path-following
method to treat problems in general form. Extend the homogeneous self-
dual method in the same way.

Long-step variant. Let
M(B)={(z,2z) :min X Ze > (1 — B)u(z,2)}.

(The notation min X Ze denotes the scalar that is the minimum of all the
components of the vector X Ze. Throughout this problem, given any vec-
tor v, the notation min v (max v) will denote the minimum (maximum) of
the components of v.) Fix % < B < 1(say 8 = 0.95). A long-step variant
of the homogeneous self-dual method starts with an initial (x, z) € M(f)
and in every iteration uses

6=2(1-p)
and
0 = max{t: (z + tAz,z + tAz) € M(B)}.

The goal of this exercise is to analyze the complexity of this algorithm by
completing the following steps.

(a) Show that N'(3) € M(B) € M(1) = {(z, z) > 0}.

(b) Show that max(—PQe) < ||r||?/4. Hint: Start by writing

Pidj = Z Piqi
1:piqi <0
and then use the facts that p*q = 0, p; + q; = r;, and that for any
two real numbers a and b, (a + b)? > 4ab (prove this).
Show that if (z,2) € M(3), then ||r||* < nu. Hint: Use (22.11) to
write ||r||? = > i(@izi— 8u)?/xjzj. Expand the numerator, use the
definitions of p and § to simplify, and then use the assumption that
(z,2) € M(B) to take care of the remaining denominator.
(d) Show that if (x, z) € M(), then
)

Bop !
min PQe” — n
Hint: Using the same notation as in the proof of Theorem 22.3, fix
t < min{1, —Bdu/ min PQe}, write
i (t)z(t) — p(t) = (1 = t)(wj2; — p) + t*Az; Az,

and then replace the right-hand side by a lower bound that is
independent of j. From there, follow your nose until you get the
first inequality. The second inequality follows from parts (b) and (c).

(e) As usual letting ;%) denote the ;. value associated with the solution
on the kth iteration of the algorithm, show that

k
k) < (1 — @(1 — 5)) .

n

(c

~

6 > min{1, —
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(f) Give an upper bound on the number of iterations required to get

(g) Show that 6 can be computed by solving n (univariate) quadratic
equations.
(h) A robust implementation of a quadratic equation solver uses the
formula
—b—+b2—4ac
% b >0,
= 2c
—b+vb2—4ac’ b< 0’

for one of the two roots to az? + bxr + ¢ = 0 (a similar formula is
used for the other one). Show that the two expressions on the right
are mathematically equal and suggest a reason to prefer one over the
other in the particular cases indicated.

Notes

The first study of homogeneous self-dual problems appeared in Tucker (1956).
This chapter is based on the papers Mizuno et al. (1993), Ye et al. (1994), and
Xu et al. (1993). The step length formula (22.10) forces the algorithm studied in
this chapter to take much shorter steps than those in Chapter 18. In general, algo-
rithms that are based on steps that confine the iterates to N/ (3) are called short-step
methods. A long-step variant of the algorithm can be obtained by enlarging the set
N(B). Such a variant is the subject of Exercise 22.4. For this method, a worst
case analysis shows that it takes on the order of n steps to achieve a given level of
precision. Xu et al. (1993) describes an efficient implementation of the long-step
variant.

The predictor—corrector method is a standard technique used in the numeri-
cal solution of ordinary differential equations. Mehrotra (1992) (see also Mehrotra
1989) was the first to apply this technique in the context of interior-point methods,
although the related notion of forming power series approximations was suggested
earlier by N.K. Karmarkar and is described in Adler et al. (1989).
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Extensions



It’s hard. But it’s harder to ignore it. — C. Stevens



CHAPTER 23

Integer Programming

Many real-world problems could be modeled as linear programs except that
some or all of the variables are constrained to be integers. Such problems are called
integer programming problems. One might think that these problems wouldn’t be
much harder than linear programming problems. For example, we saw in Chapter 14
that for network flow problems with integer data, the simplex method automatically
produces integer solutions. But that was just luck. In general, one can’t expect to
get integer solutions; in fact, as we shall see in this chapter, integer programming
problems turn out to be generally much harder to crack than linear ones.

There are many important real-world problems that can be formulated as integer
programming problems. The subject is so important that several monographs are
devoted entirely to it. In this chapter, we shall just present a few favorite applications
that can be modeled as integer programming problems and then we will discuss one
technique for solving problems in this class, called branch-and-bound.

1. Scheduling Problems

There are many problems that can be classified as scheduling problems. We
shall consider just two related problems of this type: the equipment scheduling and
crew scheduling problems faced by large airlines. Airlines determine how to route
their planes as follows. First, a number of specific flight legs are defined based on
market demand. A leg is by definition one flight taking off from somewhere at some
time and landing somewhere else (hopefully). For example, a leg could be a flight
from New York directly to Chicago departing at 7:30 A.M. Another might be a flight
from Chicago to San Francisco departing at 1:00 P.M. The important point is that
these legs are defined by market demand, and it is therefore not clear a priori how
to put these legs together in such a way that the available aircraft can cover all of
them. That is, for each airplane, the airline must put together a route that it will fly.
A route, by definition, consists of a sequence of flight legs for which the destination
of one leg is the origin of the next (and, of course, the final destination must be the
origin of the first leg, forming a closed loop).

The airline scheduling problems are generally tackled in two stages. First, rea-
sonable routes are identified that meet various regulatory and temporal constraints
(you can’t leave somewhere before you’ve arrived there—time also must be reserved
for dropping off and taking on passengers). This route-identification problem is by
no means trivial, but it isn’t our main interest here, so we shall simply assume that
a collection of reasonable routes has already been identified. Given the potential

R.J. Vanderbei, Linear Programming, International Series in Operations Research 345
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_23,
© Springer Science+Business Media New York 2014
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routes, the second stage is to select a subset of them with the property that each leg
is covered by exactly one route. If the collection of potential routes is sufficiently
rich, we would expect there to be several feasible solutions. Therefore, as always,
our goal is to pick an optimal one, which in this case we define as one that minimizes
the total cost. To formulate this problem as an integer program, let

)1 if route j is selected,
TiTY 0 otherwise,
0 — 1 if leg ¢ is part of route j,
Y10 otherwise,

and
c¢j = cost of using route j.

With these notations, the equipment scheduling problem is to
n
minimize Z CjT;
j=1
n
subject to Zaijxj: 1 1=1,2,...,m,
j=1

z;€{0,1}  j=1,2...,n.

This model is often called a set-partitioning problem, since the set of legs gets
divided, or partitioned, among the various routes.

The flight crews do not necessarily follow the same aircraft around a route. The
main reason is that the constraints that apply to flight crews differ from those for the
aircraft (for example, flight crews need to sleep occasionally). Hence, the problem
has a different set of potential routes. Also, it is sometimes reasonable to allow
crews to ride as passengers on some legs with the aim of getting in position for a
subsequent flight. With these changes, the crew scheduling problem is

n
minimize E c;jT;
j=1

n
subject to Zaijxj >1 1=1,2,...,m,
j=1

zj € {0,1} j=12,...,n.

This model is often referred to as a set-covering problem, since the crews are as-
signed so as to cover each leg.

2. The Traveling Salesman Problem

Consider a salesman who needs to visit each of n cities, which we shall enu-
merate as 0,1,...,n — 1. His goal is to start from his home city, 0, and make a
tour visiting each of the remaining cities once and only once and then returning to
his home. We assume that the “distance” between each pair of cities, c;;, is known
(distance does not necessarily have to be distance—it could be travel time or, even
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FIGURE 23.1. A feasible tour in a seven-city traveling salesman problem.

better, the cost of travel) and that the salesman wants to make the tour that min-
imizes the total distance. This problem is called the traveling salesman problem.
Figure 23.1 shows an example with seven cities. Clearly, a tour is determined by
listing the cities in the order in which they will be visited. If we let s; denote the ith
city visited, then the tour can be described simply as

50 =0,81,82,...,8,-1.

The total number of possible tours is equal to the number of ways one can permute
the n — 1 cities, i.e., (n — 1)!. Factorials are huge even for small n (for example,
50! = 3.041 x 10%%). Hence, enumeration is out of the question. Our aim is to
formulate this problem as an integer program that can be solved more quickly than
by using enumeration.

It seems reasonable to introduce for each (7, j) a decision variable z;; that will
be equal to one if the tour visits city j immediately after visiting city ¢; otherwise,
it will be equal to zero. In terms of these variables, the objective function is easy to

write:
minimize E E CijLij-
i g

The tricky part is to formulate constraints to guarantee that the set of nonzero x;;’s
corresponds exactly to a bonafide tour. Some of the constraints are fairly obvious.
For example, after the salesman visits city 4, he must go to one and only one city
next. We can write these constraints as

(23.1) oay=1,  i=01,..n-1
J

(we call them the go-fo constraints). Similarly, when the salesman visits a city, he
must have come from one and only one prior city. That is,

(23.2) ay=1,  j=01,..,n-1
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! ®

FIGURE 23.2. Two disjoint subtours in a seven-city traveling
salesman problem.

(by analogy we call these the come-from constraints). If the go-to and the come-
from constraints are sufficient to ensure that the decision variables represent a tour,
the traveling salesman problem would be quite easy to solve because it would just
be an assignment problem, which can be solved efficiently by the simplex method.
But unfortunately, these constraints are not sufficient, since they do not rule out the
possibility of forming disjoint subtours. An example is shown in Figure 23.2.

We need to introduce more constraints to guarantee connectivity of the graph
that the tour represents. To see how to do this, consider a specific tour

S0 =0,51,82,...,8,-1-

Lett; fori = 0,1,...,nbe defined as the number of the stop along the tour at which
city ¢ is visited; i.e., “when” city 1 is visited along the tour. From this definition, we
see thatty =0, t5, =1, t,, = 2, etc. In general,

ts, =1, 1=0,1,...,n—1,
so that we can think of the ¢;’s as being the inverse of the s;’s. For a bonafide tour,
ty =1t +1, if x;; = 1.

Also, each ?; is an integer between 0 and n — 1, inclusive. Hence, ¢; satisfies the
following constraints:

ti+1—n ifz;; =0
> i 1] )
t]_{ t;+1 lf.’L‘ijl
(Note that by subtracting n in the x;; = 0 case, we have effectively made the
condition always hold.) These constraints can be written succinctly as
(23.3) tjzti—kl—n(l—xij), 1>0,7>1,i# ]

Now, these constraints were derived based on conditions that a bonafide tour satis-
fies. It turns out that they also force a solution to be a bonafide tour. That is, they
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rule out subtours. To see this, suppose to the contrary that there exists a solution
to (23.1), (23.2), and (23.3) that consists of at least two subtours. Consider a sub-
tour that does not include city 0. Let » denote the number of legs on this subtour.
Clearly, r > 2. Now, sum (23.3) over all arcs on this subtour. On the left, we get the
sum of the ¢;’s over each city visited by the subtour. On the right, we get the same
sum plus r. Cancelling the sums from the two sides, we get that

0=,

which is a contradiction. Hence, the traveling salesman problem can be formulated
as the following integer programming problem:

minimize E CijTij

i,j
n
subject to Zwijzl, i=0,1,...,n—1,
j=1
n
inj:L j=0,1,...,n—1,
i=1
tjzti+1in(17$ij)ﬂ 1207j21727£]7
to =10,
x;; € {0,1},

t; € {0,1,2,...}.

Note that, for the n-city problem, there are n2 4+ n variables in this formulation.

3. Fixed Costs

The terms in an objective function often represent costs associated with engag-
ing in an activity. Until now, we’ve always assumed that each of these terms is a
linear function such as cx. However, it is sometimes more realistic to assume that
there is a fixed cost for engaging in the activity plus a linear variable cost. That is,
one such term might have the form

o(z) = 0 ifz=0
T K+ ifx > 0.
If we assume that there is an upper bound on the size of x, then it turns out that such
a function can be equivalently modeled using strictly linear functions at the expense
of introducing one integer-valued variable. Indeed, suppose that « is an upper bound
on the x variable. Let y denote a {0, 1}-valued variable that is one when and only
when 2z > 0. Then
c(z) = Ky + cx.
Also, the condition that y is one exactly when x > 0 can be guaranteed by introduc-
ing the following constraints:
r < uy
x>0
y€{0,1}.
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Of course, if the objective function has several terms with associated fixed costs,
then this trick must be used on each of these terms.

4. Nonlinear Objective Functions

Sometimes the terms in the objective function are not linear at all. For example,
one such term could look like the function shown in Figure 23.3. In Chapter 25, we
will discuss efficient algorithms that can be used in the presence of nonlinear objec-
tive functions—at least when they have appropriate convexity/concavity properties.
In this section, we will show how to formulate an integer programming approxi-
mation to a general nonlinear term in the objective function. The first step is to
approximate the nonlinear function by a continuous piecewise linear function.

The second step is to introduce integer variables that allow us to represent the
piecewise linear function using linear relations. To see how to do this, first we
decompose the variable x into a sum,

T=T1+ 22+ + Tk,

where z; denotes how much of the interval [0, z] is contained in the ith linear seg-
ment of the piecewise linear function (see Figure 23.4). Of course, some of the
initial segments will lie entirely within the interval [0, ], one segment will lie par-
tially in and partially out, and then the subsequent segments will lie entirely outside
of the interval. Hence, we need to introduce constraints to guarantee that the initial
x;’s are equal to the length of their respective segments and that after the straddling
segment the subsequent x;’s are all zero. A little thought reveals that the following
constraints do the trick:

LjU)jSJ?jSijj_l jZl,Q,...,]{j

’wozl
U)jE{O,l} i=12...k
z; >0 i=1,2,.... k.

FIGURE 23.3. A nonlinear function and a piecewise linear ap-
proximation to it.
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FIGURE 23.4. A piecewise linear function.

Indeed, it follows from these constraints that w; < w;_; for j = 1,2,..., k. This
inequality implies that once one of the w;’s is zero, then all the subsequent ones
must be zero. If w; = w;j_; = 1, the two-sided inequality on x; reduces to L; <
x; < L;. Thatis, x; = L;. Similarly, if w; = w;j_; = 0, then the two-sided
inequality reduces to x; = 0. The only other case is when w; = O but w;_; = 1. In
this case, the two-sided inequality becomes 0 < x; < L;. Therefore, in all cases,
we get what we want. Now with this decomposition we can write the piecewise
linear function as

K+ cixy +coxg + -+ + crxp.

5. Branch-and-Bound

In the previous sections, we presented a variety of problems that can be formu-
lated as integer programming problems. As it happens, all of them had the property
that the integer variables took just one of two values, namely, zero or one. How-
ever, there are other integer programming problems in which the integer variables
can be any nonnegative integer. Hence, we define the standard integer programming
problem as follows:

maximize ¢’z

subjectto Az <b
x>0
z has integer components.

In this section, we shall present an algorithm for solving these problems. The
algorithm is called branch-and-bound. It involves solving a (potentially) large num-
ber of (related) linear programming problems in its search for an optimal integer
solution. The algorithm starts out with the following wishful approach: first ignore
the constraint that the components of x be integers, solve the resulting linear pro-
gramming problem, and hope that the solution vector has all integer components.
Of course, hopes are almost always unfulfilled, and so a backup strategy is needed.
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X2

10x,+7x,=40

Optimal Solution
4 N to LP-relaxation

z / // X1+X,=5
7
%

NN | 17x,+12x,=68.33

0 / !

0 1 2 3 4 S 6

FIGURE 23.5. An integer programming problem. The dots repre-
sent the feasible integer points, and the shaded region shows the
feasible region for the LP-relaxation.

The simplest strategy would be to round each resulting solution value to its nearest
integer value. Unfortunately, this naive strategy can be quite bad. In fact, the inte-
ger solution so obtained might not even be feasible, which shouldn’t be surprising,
since we know that the solution to a linear programming problem is at a vertex of
the feasible set and so it is quite expected that naive movement will go outside of
the feasible set.

To be concrete, consider the following example:

maximize 17x; + 122

subjectto  10x; + Txo < 40
1 + 2 < 5
Ty, x2 > 0

x1, o  integers.

The linear programming problem obtained by dropping the integrality constraint is
called the LP-relaxation. Since it has fewer constraints, its optimal solution provides
an upper bound ¢ on the the optimal solution (* to the integer programming prob-
lem. Figure 23.5 shows the feasible points for the integer programming problem as
well as the feasible polytope for its LP-relaxation. The solution to the LP-relaxation
is at (z1,22) = (5/3,10/3), and the optimal objective value is 205/3 = 68.33.
Rounding each component of this solution to the nearest integer, we get (2, 3),
which is not even feasible. The feasible integer solution that is closest to the LP-
optimal solution is (1, 3), but we can see from Figure 23.5 that this solution is not
the optimal solution to the integer programming problem. In fact, it is easy to see
from the figure that the optimal integer solution is either (1,4) or (4, 0). To make the
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FIGURE 23.6. The feasible subregions formed by the first branch.

problem interesting, we’ve chosen the objective function to make the more distant
point (4, 0) be the optimal solution.

Of course, we can solve only very small problems by the graphical method: to
solve larger problems, an algorithm is required, which we now describe. Consider
variable z; in the optimal solution to the LP-relaxation. Its value is 5/3. In the
optimal solution to the integer programming problem, it will be an integer. Hence,
it will satisfy either ;1 < 1 or z; > 2. We consider these two cases separately.
Let P; denote the linear programming problem obtained by adding the constraint
21 < 1 to the LP-relaxation, and let P denote the problem obtained by including
the other possibility, ;1 > 2. The feasible regions for P; and P, are shown in
Figure 23.6. Let us study P, first. It is clear from Figure 23.6 that the optimal
solution is at (z1,x2) = (1,4) with an objective value of 65. Our algorithm has
found its first feasible solution to the integer programming problem. We record this
solution as the best-so-far. Of course, better ones may (in this case, will) come
along later.

Now let’s consider P». Looking at Figure 23.6 and doing a small amount of
calculation, we see that the optimal solution is at (x1, z2) = (2,20/7). In this case,
the objective function value is 478 /7 = 68.29. Now if this value had turned out to
be less than the best-so-far value, then we’d be done, since any integer solution that
lies within the feasible region for P, would have a smaller value yet. But this is not
the case, and so we must continue our systematic search. Since xo = 20/7 = 2.86,
we divide P, into two subproblems, one in which the constraint x5 < 2 is added
and one with xo > 3 added.

Before considering these two new cases, note that we are starting to develop a
tree of linear programming subproblems. This tree is called the enumeration tree.
The tree as far as we have investigated is shown in Figure 23.7. The double box
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Py: x1=1.67, x,=3.33

(=68.33
X Sl/ \Y122
Pz x =1, x,=4 P, : x1=2, x,=2.86
=65 {=68.29

<2 / \xzz3

FIGURE 23.7. The beginnings of the enumeration tree.
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FIGURE 23.8. The refinement of P, to Ps.

around P, indicates that that part of the tree is done: i.e., there are no branches
emanating from P;—it is a leaf node. The two empty boxes below P, indicate two
subproblems that have yet to be studied. Let’s proceed by looking at the left branch,
which corresponds to adding the constraint 2 < 2 to what we had before. We de-
note this subproblem by Ps. Its feasible region is shown in Figure 23.8, from which
we see that the optimal solution is at (2.6, 2). The associated optimal objective value
is 68.2. Again, the solution is fractional. Hence, the process of subdividing must
continue. This time we subdivide based on the values of z;. Indeed, we consider
two cases: either 1 < 2 or x1 > 3.
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Po: x1=1.67, x2=3.33

£=68.33
x,<1 / x,22
P12 x1=1, x2=4 P2: x1=2, x2:2.86
£=65 {=68.29

x,<2 / \ x,>3

P3: x1:2,6, x2:2
(=68.2

x,<2 / \ x,.>3

FIGURE 23.9. The enumeration tree after solving Ps.

Figure 23.9 shows the enumeration tree as it now stands. At this juncture, there
are three directions in which we could proceed. We could either study the other
branch under P» or work on one of the two branches sitting under Ps. If we were
to systematically solve all the problems on a given level of the tree before going
deeper, we would be performing what is referred to as a breadth-first search. On
the other hand, going deep before going wide is called a depth-first search. For
reasons that we shall explain later, it turns out to be better to do a depth-first search.
And, to be specific, let us always choose the left branch before the right branch (in
practice, there are much better rules that one can employ here). So our next linear
programming problem is the one that we get by adding the constraint that x; < 2 to
the constraints that defined P5. Let us call this new problem Py. Its feasible region
is shown in Figure 23.10. It is easy to see that the optimal solution to this problem
is (2,2), with an objective value of 58. This solution is an integer solution, so it is
feasible for the integer programming problem. But it is not better than our best-so-
far. Nonetheless, we do not need to consider any further subproblems below this
one in the enumeration tree.

Since problem Py is a leaf in the enumeration tree, we need to work back up
the tree looking for the first node that has an unsolved problem sitting under it. For
the case at hand, the unsolved problem is on the right branch underneath Ps. Let
us call this problem Ps. It too is depicted in Figure 23.10. The optimal solution
is (3,1.43), with an optimal objective function value of 68.14. Since this objective
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FIGURE 23.10. The refinement of Ps to P;.

function value is larger than the value of the best-so-far integer solution, we must
further investigate by dividing into two possibilities, either xo < 1 or zo > 2. At
this point, the enumeration tree looks like that shown in Figure 23.11.

Let Pgs denote the linear programming problem that we get on the left branch
under Ps. Its feasible region is shown in Figure 23.12. The optimal solution is
(3.3,1), and the associated objective value is 68.1. Again, the solution is fractional
and has a higher objective value than the best-so-far integer solution. Hence, it must
be subdivided based on ;1 < 3 as opposed to x1 > 4. Denoting these two problems
by P; and P, their feasible regions are as depicted in Figure 23.13. The solution to
P; is (3,1), and the objective value is 63. This is an integer solution, but it is not
better than the best-so-far. Nonetheless, the node becomes a leaf, since the solution
is integral. Hence, we move on to Ps. The solution to this problem is also integral,
(4,0). Also, the objective value associated with this solution is 68, which is a new
record for feasible integer solutions. Hence, this solution becomes our best-so-far.
The enumeration tree at this point is shown in Figure 23.14.

Now we need to go back and solve the problems under P; and P, (and any
subproblems thereof). It turns out that both these subproblems are infeasible, and so
no more subdivisions are needed. The enumeration tree is now completely fathomed
and is shown in Figure 23.15. We can now assert that the optimal solution to the
original integer programming problem was found in problem Pgs. The solution is
(x1,22) = (4,0), and the associated objective function value is 68.

There are three reasons why depth-first search is generally the preferred order
in which to fathom the enumeration tree. The first is based on the observation that
most integer solutions lie deep in the tree. There are two advantages to finding
integer feasible solutions early. The first is simply the fact that it is better to have
a feasible solution than nothing in case one wishes to abort the solution process
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P x,=1.67, x,=3.33
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FIGURE 23.11. The enumeration tree after solving Ps. The dou-
ble box around P, indicates that it is a leaf in the tree.

early. But more importantly, identifying an feasible integer solution can result in
subsequent nodes of the enumeration tree being made into leaves simply because
the optimal objective function associated with that node is lower than the best-so-
far integer solution. Making such nodes into leaves is called pruning the tree and
can account for tremendous gains in efficiency.

A second reason to favor depth-first search is the simple fact that it is very easy
to code the algorithm as a recursively defined function. This may seem trite, but one
shouldn’t underestimate the value of code simplicity when implementing algorithms
that are otherwise quite sophisticated, such as the one we are currently describing.

The third reason to favor depth-first search is perhaps the most important. It
is based on the observation that as one moves deeper in the enumeration tree, each
subsequent linear programming problem is obtained from the preceding one by sim-
ply adding (or refining) an upper/lower bound on one specific variable. To see why
this is an advantage, consider for example problem P», which is a refinement of F.
The optimal dictionary for problem F is recorded as
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FIGURE 23.12. The refinement of P5 to Fg.
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FIGURE 23.13. The refinement of Py to P; and Fks.

_ 205 _ 5 1

¢ = % w1 W2
_ 5 1, 7

T = 3 — 3W1 +  zw2
_ 10 1 10

Ty = 3 + §w1 — ?IUQ.

Problem P is obtained from Py by adding the constraint that 1 > 2. Introducing a
variable, g1, to stand for the difference between x1 and this lower bound and using
the dictionary above to write x; in terms of the nonbasic variables, we get
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Py x,=1.67, x,=3.33

{=68.33
xlﬁl/ x122
Py x=1, x,=4 Py: x,=2, x,=2.86
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FIGURE 23.14. The enumeration tree after solving Py, Py, and Ps.

2 L1 + !

=21 —2=—-— -w; + -ws.

g1 1 3 3T g2

Therefore, we can use the following dictionary as a starting point for the solution of

PQI

205 _ 5 1
(=73 —3wi— 3w
_ 5 _1 7

x1 3~ 3W1+ 3W2

10 10

To= J +
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Py x;=1.67, x,=3.33
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FIGURE 23.15. The complete enumeration tree.

This dictionary is dual feasible but primal infeasible. Therefore, the dual simplex
method is likely to find a new optimal solution in very few iterations. According
to the dual simplex method, variable g; is the leaving variable and ws is the corre-
sponding entering variable. Making the pivot, we get the following dictionary:

(= Fu
Ty 2 + 0
R
wy= 14 twi+ g
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This dictionary is optimal for P». In general, the dual simplex method will take
more than one iteration to reoptimize, but nonetheless, one does expect it to get to a
new optimal solution quickly.

We end this chapter by remarking that many real problems have the property
that some variables must be integers but others can be real valued. Such problems
are called mixed integer programming problems. It should be easy to see how to
modify the branch-and-bound technique to handle such problems as well.

Exercises

23.1 Knapsack Problem. Consider a picnicker who will be carrying a knapsack
that holds a maximum amount b of “stuff.” Suppose that our picnicker
must decide what to take and what to leave behind. The jth thing that
might be taken occupies a; units of space in the knapsack and will bring
c¢; amount of “enjoyment.” The knapsack problem then is to maximize
enjoyment subject to the constraint that the stuff brought must fit into the
knapsack:

n

maximize g C;jT;
j=1

subject to Zajxj <b
j=1
r; € {0,1} j=12,...,n

This apparently simple problem has proved difficult for general-purpose
branch-and-bound algorithms. To see why, analyze the special case in
which each thing contributes the same amount of enjoyment, i.e., ¢; = ¢
for all j, and takes up exactly two units of space, i.e., a; = 2 for all j.
Suppose also that the knapsack holds n units of stuff.

(a) What is the optimal solution when 7 is even? when n is odd?
(b) How many subproblems must the branch-and-bound algorithm con-

sider when n is odd?

23.2 Vehicle Routing. Consider the dispatching of delivery vehicles (for exam-
ple, mail trucks, fuel-oil trucks, newspaper delivery trucks, etc.). Typi-
cally, there is a fleet of vehicles that must be routed to deliver goods from
a depot to a given set of n drop-points. Given a set of feasible deliv-
ery routes and the cost associated with each one, explain how to formu-
late the problem of minimizing the total delivery cost as a set-partitioning
problem.

23.3 Explain how to modify the integer programming reformulation of contin-
uous piecewise linear functions so that it covers piecewise linear functions
having discontinuities at the junctions of the linear segments. Can fixed
costs be handled with this approach?
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Notes

Standard references for integer programming include the classic text by
Garfinkel and Nemhauser (1972) and the more recent text by Nemhauser and Wolsey
(1988). Bill Cook’s recent book Cook (2012) on the traveling salesman prob-
lem gives an entertaining historical and mathematical perspective on this particular
application of integer programming.



CHAPTER 24

Quadratic Programming

In Chapter 23, we studied a generalization of the linear programming problem
in which variables were constrained to take on integer values. In this chapter, we
consider a generalization of a different kind. Namely, we shall study the class of
problems that would be linear programs except that the objective function is permit-
ted to include terms involving products of pairs of variables. Such terms are called
quadratic terms, and the problems we shall study are called quadratic programming
problems.

We have two reasons for being interested in quadratic programming problems.
First, on the practical side, there are many real-world optimization problems that
fall into this category. This is so because most real-world applications have an ele-
ment of uncertainty to them and that uncertainty is modeled by including a sum of
squares deviation, i.e. variance, as a measure of the robustness of the solution. It
is often possible to arrange it so that these quadratic robustness terms appear only
in the objective function. The quadratic version of the portfolio selection prob-
lem studied in Chapter 13 is one such example—there are many others. The sec-
ond reason for our interest in quadratic programming problems is that they form a
bridge to the much broader subject of convex programming that we shall take up in
Chapter 25.

We begin this chapter with a quadratic variant of the portfolio selection problem.

1. The Markowitz Model

Harry Markowitz received the 1990 Nobel Prize in Economics for his port-
folio optimization model in which the tradeoff between risk and reward is explic-
itly treated. We shall briefly describe this model in its simplest form. We start by
reintroducing the basic framework of the problem. Those who have read Chap-
ter 13 will note that the first few paragraphs here are a repeat of what was written
there.

Given a collection of potential investments (indexed, say, from 1 to n), let
R; denote the return in the next time period on investment j, j = 1,...,n. In
general, R; is a random variable, although some investments may be essentially
deterministic.

A portfolio is determined by specifying what fraction of one’s assets to put into
each investment. That is, a portfolio is a collection of nonnegative numbers x;,

R.J. Vanderbei, Linear Programming, International Series in Operations Research 363
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_24,
© Springer Science+Business Media New York 2014
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j =1,...,n, that sum to one. The return (on each dollar) one would obtain using a
given portfolio is given by
R = Z T ] Rj .
J

The reward associated with such a portfolio is defined as the expected return:

J

If reward alone were the issue, the problem would be trivial: simply put everything
in the investment with the highest expected return. But unfortunately, investments
with high reward typically also carry a high level of risk. That is, even though they
are expected to do very well in the long run, they also tend to be erratic in the short
term. Markowitz defined the risk associated with an investment to be the variance
of the return:

Var(R) = E(R — ER)?

=E (> z;(R; —ER))
i
2

=E ij]'?j 5
J

where Rj = R; — ER;. One would like to maximize the reward while at the same
time not incur excessive risk. In the Markowitz model, one forms a linear combina-
tion of the mean and the variance (parametrized here by 1) and minimizes that:

2
minimize — z 2;ER; 4+ pE Z xjf%j
J J

(24.1)
subject to Z ;=1

Here, as in Chapter 13, w is a positive parameter that represents the importance of
risk relative to reward: high values of p tend to minimize risk at the expense of
reward, whereas low values put more weight on reward.

Again, as in Chapter 13, whenever there are individual investments that are
negatively correlated, i.e. one is likely to go up exactly on those days where the
other is likely to go down, it is wise to buy some of each. This is called hedg-
ing. In statistics, the so-called covariance matrix is the key to identifying nega-
tive correlations. And, the covariance matrix is what appears in the Markowitz
model. To see it, let us expand the square in our expression for the variance of the
portfolio:
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2
E ZIjRj =E (ZIZR1> Z:EjRj
J i J
=K Z Z l‘il’jRiRj
J

)

(]
= szﬂjcﬁﬁ
(]

where

is the covariance matrix. Hence, problem (24.1) can be rewritten as

minimize —E rjacj—i—ug g z;2;C4
J g

(24.2) subject to Z ;=1

J
x; >0 i=12...n,
where we have introduced r; = IER; for the mean return on investment j.

Solving problem (24.2) requires an estimate of the mean return for each of
the investments as well as an estimate of the covariance matrix. However, these
quantities are not known theoretically but instead must be estimated by looking at
historical data. For example, Table 24.1 shows annual returns from 1973 to 1994 for
eight different possible investments: U.S. 3-Month T-Bills, U.S. Government Long
Bonds, S&P 500, Wilshire 5000 (a collection of small company stocks), NASDAQ
Composite, Lehman Brothers Corporate Bonds Index, EAFE (a securities index for
Europe, Asia, and the Far East), and Gold. Let R (t) denote the return on investment
jinyear 1972 4-t. One way to estimate the mean [E?; is simply to take the average
of the historical returns:

T
1
rj=ER; = > R;(t).
t=1

There are two drawbacks to this simple formula. First, whatever happened in 1973
certainly has less bearing on the future than what happened in 1994. Hence, giving
all the past returns equal weight puts too much emphasis on the distant past at the
expense of the recent past. A better estimate is obtained by using a discounted sum:

T _
ER _ Zt:lpT tRJ(t)
7 T -t
thlp

Here, p is a discount factor. Putting p = 0.9 gives a weighted average that puts more
weight on the most recent years. To see the effect of discounting the past, consider
the Gold investment. The unweighted average return is 1.129, whereas the weighted
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Year usS usS S&P  Wilshire NASDAQ Lehman EAFE  Gold

3-Month Gov. 500 5000  Composite Bros.

T-Bills Long Corp.

Bonds Bonds
1973 1.075  0.942 0.852 0.815 0.698 1.023  0.851 1.677
1974 1.084 1.020 0.735 0.716 0.662 1.002  0.768 1.722
1975 1.061 1.056  1.371 1.385 1.318 1.123 1.354  0.760
1976 1.052 1.175  1.236 1.266 1.280 1.156  1.025 0.960
1977 1.055 1.002  0.926 0.974 1.093 1.030 1.181  1.200
1978 1.077 0982 1.064 1.093 1.146 1.012  1.326 1.295
1979 1.109 0978 1.184 1.256 1.307 1.023 1.048 2212
1980 1.127 0947 1323 1.337 1.367 1.031 1.226  1.296
1981 1.156 1.003  0.949 0.963 0.990 1.073 0977 0.688
1982 1.117 1.465 1215 1.187 1.213 1.311 0.981 1.084
1983 1.092 0985 1.224 1.235 1.217 1.080 1237 0.872
1984 1.103 1.159  1.061 1.030 0.903 1.150  1.074 0.825
1985 1.080 1.366 1316 1.326 1.333 1.213 1.562  1.006
1986 1.063 1.309 1.186 1.161 1.086 1.156  1.694 1.216
1987 1.061 0925  1.052 1.023 0.959 1.023 1.246  1.244
1988 1.071 1.086 1.165 1.179 1.165 1.076 1283  0.861
1989 1.087 1.212 1316 1.292 1.204 1.142  1.105 0.977
1990 1.080 1.054  0.968 0.938 0.830 1.083  0.766  0.922
1991 1.057 1.193  1.304 1.342 1.594 1.161 1.121  0.958
1992 1.036 1.079  1.076 1.090 1.174 1.076  0.878 0.926
1993 1.031 1.217  1.100 1.113 1.162 1.110 1326  1.146
1994 1.045  0.889 1.012 0.999 0.968 0.965 1.078  0.990

TABLE 24.1. Returns per dollar for each of eight investments over
several years. That is, $1 invested in US 3-Month T-Bills on
January 1, 1973, was worth $1.075 on December 31, 1973.

average is 1.053. Most experts in 1995 felt that a 5.3 % return represented a more
realistic expectation than a 12.9 % return. In the results that follow, all expectations
are estimated by computing weighted averages using p = 0.9.

The second issue concerns the estimation of means (not variances). An invest-
ment that returns 1.1 one year and 0.9 the next has an (unweighted) average return
of 1, that is, no gain or loss. However, one dollar invested will actually be worth
(1.1)(0.9) = 0.99 at the end of the second year. While a 1 % error is fairly small,
consider what happens if the return is 2.0 one year and then 0.5 the next. Clearly,
the value of one dollar at the end of the 2 years is (2.0)(0.5) = 1, but the average
of the two returns is (2.0 + 0.5)/2 = 1.25. There is a very significant difference
between an investment that is flat and one that yields a 25 % return in 2 years. This
is obviously an effect for which a correction is required. We need to average 2.0 and
0.5 in such a way that they cancel out—and this cancellation must work not only for
2.0 and 0.5 but for every positive number and its reciprocal. The trick is to average
the logarithm of the returns (and then exponentiate the average). The logarithm has
the correct effect of cancelling a return  and its reciprocal:

1
logr + log — = 0.
r
Hence, we estimate means from Table 24.1 using

S pTtlog R;(t)
Zf:l prt

ER; = exp
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w | Gold US Lehman  NASDAQ S&P  EAFE | Mean Std.
3-Month Bros.  Composite 500 dev.

T-Bills Corp.

Bonds
0.0 1.000 | 1.122 0.227
0.1 0.603 0397 | 1.121  0.147
1.0 0.876  0.124 | 1.120 0.133
2.0 0.036 0.322 0.549  0.092 | 1.108  0.102
4.0 0.487 0.189 0.261  0.062 | 1.089 0.057
8.0 0.713 0.123 0.117  0.047 | 1.079 0.037
1024.0 | 0.008 0.933 0.022 0.016 0.022 | 1.070 0.028

TABLE 24.2. Optimal portfolios for several choices of .

This estimate for Gold gives an estimate of its return at 2.9 %, which is much more
in line with the beliefs of experts (at least in 1995).

Table 24.2 shows the optimal portfolios for several choices of p. The corre-
sponding optimal values for the mean and standard deviation (which is defined as
the square root of the variance) are plotted in Figure 24.1. Letting p vary con-
tinuously generates a curve of optimal solutions. This curve is called the efficient
frontier. Any portfolio that produces a mean—variance combination that does not
lie on the efficient frontier can be improved either by increasing its mean without
changing the variance or by decreasing the variance without changing the mean.
Hence, one should only invest in portfolios that lie on the efficient frontier.

Of course, the optimal portfolios shown in Table 24.2 were obtained by solv-
ing (24.1). The rest of this chapter is devoted to describing an algorithm for solving
quadratic programs such as this one.

2. The Dual

We have seen that duality plays a fundamental role in our understanding and
derivation of algorithms for linear programming problems. The same is true for
quadratic programming. Hence, our first goal is to figure out what the dual of a
quadratic programming problem should be.

Quadratic programming problems are usually formulated as minimizations.
Therefore, we shall consider problems given in the following form:

minimize ¢’z + %xTQa:
(24.3) subjectto  Ax>1b
x> 0.

Of course, we may (and do) assume that the matrix Q) is symmetric (see Exer-
cise 24.2). Note that we have also changed the sense of the inequality constraints
from our usual less-than to greater-than. This change is not particularly important—
its only purpose is to maintain a certain level of parallelism with past formulations
(that is, minimizations have always gone hand-in-hand with greater-than constraints,
while maximizations have been associated with less-than constraints).

In Chapter 5, we derived the dual problem by looking for tight bounds on the
optimal solution to the primal problem. This approach could be followed here, but
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FIGURE 24.1. The efficient frontier.

it seems less compelling in the context of quadratic programming. A more direct
approach stems from the connection between duality and the first-order optimality
conditions for the barrier problem that we examined in Chapter 17. Indeed, let us
start by writing down the barrier problem associated with (24.3). To this end, we
introduce a nonnegative vector w of surplus variables and then subtract a barrier
term for each nonnegative variable to get the following barrier problem:

minimize ¢’z + 127Qx — pilogzy —p)2, logw;
subjectto  Ax —w =b.

Next, we introduce the Lagrangian:
1
flz,w,y) =cla+ §xTQ:c — uZlong — ;LZlogwi
j i

+yT'(b— Az +w).

The first-order optimality conditions for the barrier problem are obtained by
differentiating the Lagrangian with respect to each of its variables and setting these
derivatives to zero. In vector notation, setting to zero the derivative with respect to
the x variables gives

c+Qr—pXte—ATy=0.
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Similarly, setting to zero the derivatives with respect to the w and y variables gives

—uWlte+y=0
b— Az +w =0,

respectively. As we did in our study of linear programming problems, we now
introduce a new vector z given by

2z =pX e
With this definition, the first-order optimality conditions can be summarized as

ATy+2-Qr=c

Arx —w=1>
XZe = pe
YWe = pe.

From the last two conditions, we see that the dual problem involves an n-vector
of variables z that are complementary to the primal variables x and an m-vector of
variables y that are complementary to the primal slack variables w. Because of these
complementarity conditions, we expect that the variables y and z are constrained to
be nonnegative in the dual problem. Also, to establish the proper connection be-
tween the first-order optimality conditions and the dual problem, we must recognize
the first condition as a dual constraint. Hence, the constraints for the dual prob-
lem are

ATy+2-Qr=c
y,z > 0.

It is interesting to note that the dual constraints involve an n-vector = that seems as
if it should belong to the primal problem. This may seem odd, but when understood
properly it turns out to be entirely harmless. The correct interpretation is that the
variable x appearing in the dual has, in principle, no connection to the variable z
appearing in the primal (except that, as we shall soon see, at optimality they will be
equal).

The barrier problem has helped us write down the dual constraints, but it does
not shed any light on the dual objective function. To see what the dual objective
function should be, we look at what it needs to be for the weak duality theorem to
hold true. In the weak duality theorem, we assume that we have a primal feasible
solution (z,w) and a dual feasible solution (x,y, z). We then follow the obvious
chains of equalities:

y (Az) =y"(b+w) =b"y+y"w

and

(AT =(c—2+Qu)Te =c'e — 2To + 27 Qu.
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Now, since y7'(Az) = (ATy)Tx, we see that
0<yTw+z:2Te=clz+27Qx—bTy

= (cTz + %I’TQ:U) — (bTy — %(ETQLL)

From this inequality, we see that the dual objective function is b”y — J27 Q.
Hence, the dual problem can be stated now as

maximize b7y — %xTQx
subjectto ATy +:z—Qr=c
y,z22> 0.

For linear programming, the fundamental connection between the primal and dual
problems is summarized in the Complementary Slackness Theorem. In the next
section, we shall derive a version of this theorem for quadratic programming.

3. Convexity and Complexity

In linear programming, the dual problem is important because it provides a cer-
tificate of optimality as manifest in the Complementary Slackness Theorem. Under
certain conditions, the same is true here. Let us start by deriving the analogue of
the Complementary Slackness Theorem. The derivation begins with a reiteration of
the derivation of the Weak Duality Theorem. Indeed, let (x,w) denote a feasible
solution to the primal problem and let (Z, y, z) denote a feasible solution to the dual
problem (we have put a bar on the dual x to distinguish it from the one appearing in
the primal). The chain of equalities that form the backbone of the proof of the Weak
Duality Theorem are, as always, obtained by writing y” Az two ways, namely,

y'(Az) = (ATy) Tz,
and then producing the obvious substitutions
y"(Az) = y" (b +w) = bTy +y"w
and
AT)Tz =(c—24+Qx)Te =cTo — 1o+ 27 Qu.
Comparing the ends of these two chains and using the fact that both 7w and 27z
are nonnegative, we see that

(24.4) 0<yTw+zle=clz+z7Qr —bvTy.

So far, so good.

Now, what about the Complementary Slackness Theorem? In the present con-
text, we expect this theorem to say roughly the following: given a solution (z*, w*)
that is feasible for the primal and a solution (z*, y*, z*) that is feasible for the dual,
if these solutions make inequality (24.4) into an equality, then the primal solution is
optimal for the primal problem and the dual solution is optimal for the dual problem.

Let’s try to prove this. Let (z, w) be an arbitrary primal feasible solution. Weak
duality applied to (x,w) on the primal side and (z*,y*, 2*) on the dual side says
that

o+ 2T Qu—bTy* > 0.
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But for the specific primal feasible solution (z*, w*), this inequality is an equality:
o+ 2T Qu* — bIy* = 0.
Combining these, we get
o+ a:*TQx* <cle+ x*TQ:U.
This is close to what we want, but not quite it. Recall that our aim is to show that
the primal objective function evaluated at z* is no larger than its value at x. That is,

1 1
e + §:c*TQx* <cToe+ ixTQQ:

It is easy to get from the one to the other. Starting from the desired left-hand side,
we compute as follows:

1 1
cTa* + ix*TQ:v* =T 42T Qur — im*TQ:c*

1
<Tr+2"Qx — ix*TQx*

1 1 1
=clz+ imTQx — §:rTQ:v + 2T Qu — ix*TQx*
1 1
=cle+ ixTQx - 5(96 —297Q(x — x*).

The last step in the derivation is to drop the subtracted term on the right-hand side of
the last expression. We can do this if the quantity being subtracted is nonnegative.
But is it? In general, the answer is no. For example, if ) were the negative of the
identity matrix, then the expression (z — 2*)TQ(x — *) would be negative rather
than nonnegative.

So it is here that we must impose a restriction on the class of quadratic pro-
gramming problems that we study. The correct assumption is that @) is positive
semidefinite. Recall from Chapter 19 that a matrix Q) is positive semidefinite it

eTQe>0  forall £ € R™.

With this assumption, we can finish the chain of inequalities and conclude that
1 1
e + ix*TQx* <cTox+ ixTQx.

Since = was an arbitrary primal feasible point, it follows that 2* (together with w™)
is optimal for the primal problem. A similar analysis shows that y* (together with
x* and z*) is optimal for the dual problem (see Exercise 24.4).

A quadratic programming problem of the form (24.3) in which the matrix @
is positive semidefinite is called a convex quadratic programming problem. The
discussion given above can be summarized in the following theorem:

THEOREM 24.1. For convex quadratic programming problems, given a solution
(z*,w*) that is feasible for the primal and a solution (z*,y*, z*) that is feasible for
the dual, if these solutions make inequality (24.4) into an equality, then the primal
solution is optimal for the primal problem and the dual solution is optimal for the
dual problem.
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/ii N
P

FIGURE 24.2. The objective function for (24.5) in the case where
n=2.

X1

To see how bad things are when () is not positive semidefinite, consider the
following example:

minimize >, z;(1 —x;) + > ¢j;

24, . :
(245 subjectto 0 <x; <1, J=12,....,n.

We assume that the coefficients, ¢;, j = 1,2,...,n, are small. To be precise, we
assume that

;| <1,  j=1,2,...,n

Let f(x) denote the value of the objective function at point x. Setting the gradient
to zero,

Viz)=e—-2r+c=0,
we see that there is one interior critical point. It is given by
z=(e+c)/2

(the assumption that c is small guarantees that this x lies in the interior of the feasible
set: 0 < = < 1). However, this critical point is a local maximum, since the ma-
trix of second derivatives is —21. The algebraic details are tedious, but if we look
at Figure 24.2, it is easy to be convinced that every vertex of the feasible set is a
local minimum. While this particular problem is easy to solve explicitly, it does
indicate the essential difficulty associated with nonconvex quadratic programming
problems—namely, for such problems one may need to check every vertex individ-
ually, and there may be an exponential number of such vertices.

The situation for convex quadratic programming problems is much better, since
they inherit most of the properties that made linear programs efficiently solvable.
Indeed, in the next section, we derive an interior-point method for quadratic pro-
gramming problems.
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4. Solution via Interior-Point Methods

In this section, we derive an interior-point method for quadratic programming
problems. We start from the first-order optimality conditions, which we saw in the
last section are given by

ATy +2—Qz=c

Ar —w=>
XZe = pe
YWe = pe.

Following the derivation given in Chapter 18, we replace (z,w,y,z) with
(z + Az, w + Aw,y + Ay, z + Az) to get the following nonlinear system in
(Az, Aw, Ay, Az):
ATAy+Az—QAz=c— ATy —24+Qr=:0
AAx — Aw=b— Az +w =:p
ZAx + XAz+ AXAZe=pe— XZe
WAy +YAw+ AYAWe = pue — YWe.
Next, we drop the nonlinear terms to get the following linear system for the step
directions (Az, Aw, Ay, Az):
ATAy+ Az —QAz =0
AAx — Aw =p
ZAx + XAz =pe— XZe
WAy +YAw = pe — YWe.
Following the reductions of Chapter 19, we use the last two equations to solve for
Az and Aw to get
Az = X" pe— XZe — ZAx)
Aw =Y Y (pe — YWe - WAYy).
We then use these expressions to eliminate Az and Aw from the remaining two

equations in the system. After elimination, we arrive at the following reduced KKT
system:

(24.6) ATAy — (X 'Z+Q)Ax =0 —pX e+ 2
(24.7) AAz + Y 'WAYy = p+ puY e —w.

Substituting in the definitions of p and ¢ and writing the system in matrix
notation, we get

—(X"'Z+Q) AT Az| _ c— ATy —puX—le+Qu
A YW | Ay b— Ax + uY le '

A summary of the algorithm is shown in Figure 24.3. It should be clear that
the quadratic term in the objective function plays a fairly small role. In fact, the
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initialize (z,w,y,z) >0

while (not optimal) {
p=b—Ar+w
c=c— ATy — 2+ Qx
v = 2To+ yTw
p=o—"
n—+m
solve:

—(X"1Z+Q) AT Ax
A Yy-iw {Ay}
Az =X"Yue— XZe — ZAx)
Aw =Y Ype - YWe - WAYy)
AJ}]‘ Awl Ayl AZj }) -t Al

Je—ATy —uX—lte+Qx
o b— Az + uY le ‘

0 =r | max;; ¢ — , ,——,
Ly Wi Yi Zj
T+ x+ 0Ax, w4+ w+ 0Aw

Yy y+ 0Ay, 2+ z+0Az

FIGURE 24.3. The path-following method for quadratic program-
ming problems.

convergence analysis given in Chapter 18 can be easily adapted to yield analogous
results for quadratic programming problems (see Exercise 24.6).

5. Practical Considerations

For practical implementations of interior-point algorithms, we saw in Chap-
ter 19 that the difficulties created by dense rows/columns suggest that we solve the
reduced KKT system using an equation solver that can handle symmetric indefinite
systems (such as those described in Chapter 20). Quadratic programming problems
give us even more reason to prefer the reduced KKT system. To see why, let us
reduce the system further to get a feel for the normal equations for quadratic pro-
gramming.

If we use (24.6) to solve for Az and then eliminate it from (24.7), we get

Ar=—(X"1Z+Q)™* (c— ATy 4+ Qe — pX e — ATAy)
and the associated system of normal equations (in primal form):
(AXT'Z+ Q) TAT + Y 'W) Ay =b— Az + puY e
+AX1Z4+ Q)7 (c — ATy + Qo — ,qule) .
As we saw in Chapter 19, the most significant disadvantage of the normal equations
is that they could involve a dense matrix even when the original constraint matrix

is sparse. For quadratic programming, this disadvantage is even more pronounced.
Now the matrix of normal equations has the nonzero pattern of A(D + Q)1 A7T,
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where D is a diagonal matrix. If () is a diagonal matrix, then this matrix appearing
between A and A7 is diagonal, and the system has the same structure as we saw for
linear programming. But if () is not a diagonal matrix, then all hope for any sparsity
in A(D + Q) AT is lost.

Fortunately, however, the dual form of the normal equations is likely to retain
some sparsity. Indeed, to derive the dual form, we use (24.7) to solve for Ay and
then eliminate it from (24.6). The result is

Ay=YW! (b— Az + pY le — AAz)
and
~ (X' Z+Q+ATYW ' A) Az =c— ATy + Qz — pX e
—ATYW ! (b— Az 4 pY e).

Now the matrix has a nonzero pattern of A” A+ Q. This pattern is much more likely
to be sparse than the pattern we had above.

As mentioned earlier, there is significantly less risk of fill-in if () is diagonal.
A quadratic programming problem for which @) is diagonal is called a separable
quadratic programming problem. It turns out that every nonseparable quadratic pro-
gramming problem can be replaced by an equivalent separable version, and some-
times this replacement results in a problem that can be solved dramatically faster
than the original nonseparable problem. The trick reveals itself when we remind
ourselves that the problems we are studying are convex quadratic programs, and so
we ask the question: how do we know that the matrix () is positive semidefinite? Or,
more to the point, how does the creator of the model know that () is positive semi-
definite? There are many equivalent characterizations of positive semidefiniteness,
but the one that is easiest to check is the one that says that () is positive semidefinite
if and only if it can be factored as follows:

Q=FT'DF.

Here F'is a k x n matrix and D is a k X k diagonal matrix having all nonnegative
diagonal entries. In fact, the model creator often started with F' and D and then
formed () by multiplying. In these cases, the matrix F' will generally be less dense
than ). And if k is substantially less than n, then the following substitution is almost
guaranteed to dramatically improve the solution time. Introduce new variables y by
setting

y = Fuz.
With this definition, the nonseparable quadratic programming problem (24.3) can
be replaced by the following equivalent separable one:
minimize ¢’z + %yTDy
subject to Ax >0
Fr—y=0
x> 0.
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The cost of separation is the addition of k new constraints. As we said before, if k
is small and/or F' is sparse, then we can expect this formulation to be solved more
efficiently.

To illustrate this trick, let us return to the Markowitz model. Recall that the
quadratic terms in this model come from the variance of the portfolio’s return, which
is given by

Var(R) = E(Z l‘jRj)2

Here,

fort =1,2,...,T, and

If we introduce the variables,

y(t) = aR;(t),  t=1,2,....T,
J

then we get the following separable version of the Markowitz model:

T
maximize Z z;ER; — luZp(t)y(t)Q
; t=1

J
subject to Z z;=1
J .
y(t)zzjijj(t)7 t:1,2,...,T,
z; >0 i=12...,n.
Using specific data involving 500 possible investments and 20 historical time peri-
ods, the separable version solves 60 times faster than the nonseparable version using
a QP-solver called LOQO.

Exercises

24.1 Show that the gradient of the function

flz) = §xTQa:

is given by
Vf(z) = Q.
24.2 Suppose that () is an n X n matrix that is not necessarily symmetric. Let
Q = 3(Q + QT). Show that



(a)
(b)
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2T Qx = 27 Qu, for every x € R", and
@ is symmetric.

24.3 Penalty Methods.

(a)

(b)

©

Consider the following problem:
minimize %xTQx
subjectto  Ax = b,

where () is symmetric, positive semidefinite, and invertible (these
last two conditions are equivalent to saying that () is positive def-
inite). By solving the first-order optimality conditions, give an ex-
plicit formula for the solution to this problem.

Each equality constraint in the above problem can be replaced by a
penalty term added to the objective function. Penalty terms should be
small when the associated constraint is satisfied and become rapidly
larger as it becomes more and more violated. One choice of penalty
function is the quadratic function. The quadratic penalty problem is
defined as follows:

1
minimize §xTQx + %(b — Az)T (b — Ax),

where )\ is a large real-valued parameter. Derive an explicit formula
for the solution to this problem.

Show that, in the limit as A tends to infinity, the solution to the
quadratic penalty problem converges to the solution to the original
problem.

24.4 Consider a convex quadratic programming problem. Suppose that (z*, w*)
is a feasible solution for the primal and that (z*,y*,2*) is a feasible
solution for the dual. Suppose further that these solutions make inequal-
ity (24.4) into an equality. Show that the dual solution is optimal for the
dual problem.

24.5 Areal-valued function f defined on R" is called convex if, for every z, y €
R™, and for every 0 < ¢t < 1,

[tz + (1 =t)y) <tf(z) + (1 —1)f(y).

Show that the function

1
flx)=c"z+ §$TQ$, r e R"™,

is convex if () is positive semidefinite.

24.6 Extend the convergence analysis given in Chapter 18 so that it applies to
convex quadratic programming problems, and identify in particular any
steps that depend on @) being positive semidefinite.
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24.7 Consider the quadratic programming problem given in the following form:
minimize ¢’z + 127 Qux
subjectto Az > b,
(i.e., without assuming nonnegativity of the x vector). Show that the

formulas for the step directions Az and Ay are given by the following
reduced KKT system:

(24.8) -Q AT Az | c— ATy +Qx
’ A WwWy-! Ay | | b=—Az+pY e |-

Notes

The portfolio optimization model presented in Section 24.1 was first introduced
by Markowitz (1959). He received the 1990 Nobel Prize in Economics for this work.

Quadratic programming is the simplest class of problems from the subject
called nonlinear programming. Two excellent recent texts that cover nonlinear pro-
gramming are those by Bertsekas (1995) and Nash and Sofer (1996). The first paper
that extended the path-following method to quadratic programming was Monteiro
and Adler (1989). The presentation given here follows Vanderbei (1999).



CHAPTER 25

Convex Programming

In the last chapter, we saw that small modifications to the primal-dual
interior-point algorithm allow it to be applied to quadratic programming problems
as long as the quadratic objective function is convex. In this chapter, we shall go
further and allow the objective function to be a general (smooth) convex function.
In addition, we shall allow the feasible region to be any convex set given by a finite
collection of convex inequalities.

1. Differentiable Functions and Taylor Approximations

In this chapter, all nonlinear functions will be assumed to be twice differen-
tiable, and the second derivatives will be assumed continuous. We begin by reiter-
ating a few definitions and results that were briefly touched on in Chapter 17. First
of all, given a real-valued function f defined on a domain in R", the vector

%(w)
Vi@ = |
2L ()
is called the gradient of f at x. The matrix
@) aofn@ - gl
i = | Fn®) O @
k(@) Fihs@) - Fh@)

is called the Hessian of f at x. In dimensions greater than one, the gradient and the
Hessian are the analogues of the first and second derivatives of a function in one
dimension. In particular, they appear in the three-term Taylor series expansion of f
about the point x:

f(z+ Az) = f(z) + Vf(z)" Az + %AxTHf(x)Ax + 7. (Ax).

The last term is called the remainder term. The value of this expansion lies in the
fact that this remainder is small when Az is small. To be precise, the remainder has
the following property:

R.J. Vanderbei, Linear Programming, International Series in Operations Research 379
& Management Science 196, DOI 10.1007/978-1-4614-7630-6_25,
© Springer Science+Business Media New York 2014
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75 (AT)

arso Az

This result follows immediately from the one-dimensional three-term Taylor series
expansion applied to g(¢) = f(x + tAxz) and the chain rule (see Exercise 25.8).

=0.

2. Convex and Concave Functions

There are several equivalent definitions of convexity of a function. The defini-
tion that is most expedient for our purposes is the multidimensional generalization
of the statement that a function is convex if its second derivative is nonnegative.
Hence, we say that a real-valued function defined on a domain in R" is convex if
its Hessian is positive semidefinite everywhere in its domain. A function is called
concave if its negation is convex.

3. Problem Formulation

We shall study convex optimization problems posed in the following form:

minimize  ¢(z)
subjectto  a;(x) > b;, 1=1,2,...,m.

Here, the real-valued function ¢(+) is assumed to be convex, and the m real-valued
functions a;(+) are assumed to be concave. This formulation is the natural exten-
sion of the convex quadratic programming problem studied in the previous chapter,
except that we have omitted the nonnegativity constraints on the variables. This
omission is only a matter of convenience since, if a given problem involves non-
negative variables, the assertion of their nonnegativity can be incorporated as part
of the m nonlinear inequality constraints. Also note that once we allow for general
concave inequality constraints, we can take the right-hand sides to be zero by sim-
ply incorporating appropriate shifts into the nonlinear constraint functions. Hence,
many texts on convex optimization prefer to formulate the constraints in the form
a;(x) > 0. We have left the constants b; on the right-hand side for later comparisons
with the quadratic programming problem of the previous chapter. Finally, note that
many convex and concave functions become infinite in places and therefore have a
natural domain that is a strict subset of IR™. This issue is important to address when
solving practical problems, but since this chapter is just an introduction to convex
optimization, we shall assume that all functions are finite on all of R".

At times it will be convenient to use vector notation to consolidate the m con-
straints into a single inequality. Hence, we sometimes express the problem as

minimize  ¢(z)
subjectto  A(x) > b,
where A(-) is a function from R” into R™ and b is a vector in R™. As usual, we let
w denote the slack variables that convert the inequality constraints to equalities:
minimize  ¢(z)
subjectto  A(z) —w=1"b
w > 0.
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4. Solution via Interior-Point Methods

In this section, we derive an interior-point method for convex programming
problems. We start by introducing the associated barrier problem:

minimize  c¢(x) —p ), logw;
subjectto  a;(z) — w; = by, 1=1,2,..

*

The Lagrangian for this problem is given by
L(z,w,y) = ZlogwﬂrZyz i — a;i(7) + w;).

Equating to zero the derivative of L with respect to each of its variables, we get the
following set of first-order optimality conditions:

oL 8az
i =0, 1 =1,2,...,n,
dz; axj Zyaﬂcj ’ !
oL
:_7+yl :0’ i:1,2,...,m7
3w,~ w;
L
gyi:bi*ai(f)JFwi =0, i=12,...,m.

The next step is to multiply the ith equation in the middle set by w; and then replace
x with z + Az, y by y + Ay, and w by w + Aw to get the following system:

Jdc da
A .+ Ay, Az)=0, =12 .n,
ax]( T+ Azx) — zzj(y—i— y)aj(:v—i— ) j n
—p+ (wi + Aw;)(yi + Ay;) =0,  i=1,2,....m,
bi — a;i(x + Az) + w; + Aw; =0, i1=1,2,...,m.

Now we view this set of equations as a nonlinear system in the “delta” variables
and linearize it by replacing each nonlinear function with its two-term Taylor series
approximation. For example, Oc/0z;(x + Ax) gets replaced with

dc dc 0?c

Similarly, da;/0z;(x + Ax) gets replaced with

Oa;
O0x;

ﬁai 32 Q;

O0x; 9z, O F —~ D0y,

(x4 Az) ~
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Writing the resulting linear system with the delta-variable terms on the left and
everything else on the right, we get

8@1 dc da;
A Yi= 75— i
;( 8acc9xk Zyaxa ) x”Z oz, 2=""oa,

yiAwi + wiAyi = [ — Wil

Z aai A(Ek — AU)Z = bZ — a; + w;.
6$k

(Note that we have omitted the indication that the functions ¢, a;, and their deriva-
tives are to be evaluated at x.)

As usual, the next step is to solve the middle set of equations for the Aw;’s and
then to eliminate them from the system. The reduced system then becomes

8a1 dc da;
Z};( axaxk Zyaxa )MHZ Y oy 2o,
i 1
;awk

‘:bi*ai‘i’*a

i
and the equations for the Aw;’s are

Awi:—%Ayi—&—ﬁ—wi, i=12,....m
At this point it is convenient to put the equations into matrix form. If we generalize
our familiar gradient notation by letting V A(x) denote the m x n matrix whose
(4, j)th entry is da,;/0x;(x), then we can write the above system succinctly as fol-
lows:
(25.1)
—Hc(x)+ >, yiHai(x) VAx)T Az | [ Ve(z) — VA(z)Ty
VA(z) wy -t } { Ay } n [ b— A(x) +pY te

Now that we have step directions, the algorithm is easy to describe—just com-
pute step lengths that preserve strict positivity of the w;’s and the y;’s, step to a new
point, and iterate.

5. Successive Quadratic Approximations

It is instructive to notice the similarity between the system given above and the
analogous system for the quadratic programming problem posed in the analogous
form (see Exercise 24.7). Indeed, a careful matching of terms reveals that the step
directions derived here are exactly those that would be obtained if one were to form
a certain quadratic approximation at the beginning of each iteration of the interior-
point algorithm. Hence, the interior-point method can be thought of as a successive
quadratic programming algorithm. In order to write this quadratic approximation
neatly, let  and 4 denote the current primal and dual variables, respectively. Then
the quadratic approximation can be written as
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=

minimize  ¢(Z) + Ve(Z)T (2 — %) +5(x —2)THe(Z)(z — 7)

—5(z —2)" (3, yiHai(7)) (z — 7)
subjectto  A(z) + VA(Z)(x — ) > b.

= N

To verify the equivalence, we first observe that this problem is a quadratic program
whose linear objective coefficients are given by

Ve(z) — He(2)z + (Z yiHai(x)> I,
i
whose quadratic objective coefficients are given by
He(z) = > yiHai(z),

and whose right-hand side vector is given by
b— A(z)+ VA(Z)z.

Substituting these expressions into the appropriate places in (24.8), we get (25.1).

Looking at the quadratic terms in the objective of the quadratic programming
approximation, we see that the objective is convex, since we assumed at that start
that c is convex, each a; is concave, and the dual variables multiplying the Hessians
of the constraint functions are all strictly positive.

6. Merit Functions

It is perhaps a little late to bring this up, but here’s a small piece of advice:
always test your knowledge on the simplest possible example. With that in mind,
consider the following trivial convex optimization problem:

minimize v/1 + 22.

This problem has no constraints. Looking at the graph of the objective function,
which looks like a smoothed out version of |x|, we see that the optimal solution is
x* = 0. What could be easier! There are no y;’s nor any w;’s and equation (25.1)
becomes just
—Hc(z)Az = Ve(z),
where ¢(x) = /1 4 22. Taking the first and second derivatives, we get
Ve() = ——— and Hea)= ——
c(r) = ——= an c(x) = ——=75-
Vita? (1+22)72
Substituting these expressions into the equation for Az and simplifying, we get that
Az = —z(1 + 2?).

Since there are no nonnegative variables that need to be kept positive, we can take
unshortened steps. Hence, letting 2:(*) denote our current point and z(**1) denote
the next point, we have that

D = 20 L Ag = —(2(0))3,



384 25. CONVEX PROGRAMMING

That is, the algorithm says to start at any point 2(?) and then replace this point with
the negative of its cube, replace that with the negative of its cube, and so on.

The question is: does this sequence converge to zero? It is easy to see that
the answer is yes if [#(%)| < 1 but no otherwise. For example, if we start with
2(9) = 1/2, then the sequence of iterates is

k (k)
0 0.50000000
1 —0.12500000
2 0.00195313
3 —0.00000001

If, on the other hand, we start at 2(0)

sequence:

= 2, then we get the following wildly divergent

L 2 (k)
0 2
1
2

-8
512
3 —134,217,728

Here is what goes wrong in this example. For problems without constraints, our
algorithm has an especially simple description:

From the current point, use the first three terms of a Taylor
series expansion to make a quadratic approximation to the ob-
jective function. The next point is the minimum of this quadratic
approximation function.

Figure 25.1 shows a graph of the objective function together with the quadratic
approximation at z(9) = 2. It is easy to see that the next iterate is at —8. Also, the
further from zero that one starts, the more the function looks like a straight line and
hence the further the minimum will be to the other side.

How do we remedy this nonconvergence? The key insight is the observation
that the steps are always in the correct direction (i.e, a descent direction) but they
are too long—we need to shorten them. A standard technique for shortening steps
in situations like this is to introduce a function called a merit function and to shorten
steps as needed to ensure that this merit function is always monotonically decreas-
ing. For the example above, and in fact for any unconstrained optimization problem,
we can use the objective function itself as the merit function. But, for problems with
constraints, one needs to use something a little different from just the objective func-
tion. For example, one can use the logarithmic barrier function plus a constant times
the square of the Euclidean norm of the infeasibility vector:

Wi, w) = e(x) = Y log(wi) + Blb = Alz) + ]

Here, (3 is a positive real number. One can show that for 3 sufficiently large the step
directions are always descent directions for this merit function.
A summary of the algorithm is shown in Figure 25.2.
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14 T T T
sgrt(x**2 + 1) ————

12 + Sqrt(5)+2* (x-2)/sqri(5)+(x-2)*2/(2*sqrt(5)**3) - A

-10 -5 0 5 10

FIGURE 25.1. The function ¢(z) = /1 + z? and its quadratic
approximation at x = 2.

7. Parting Words

A story is never over, but every book must have an end. So, we stop here
mindful of the fact that there are many interesting things left unsaid and topics un-
explored. We hope we have motivated the reader to pursue the story further without
our assistance—by reading other books and/or research papers and even perhaps
making his or her own contributions. Cheers.

Exercises

25.1 Piecewise Linear Approximation. Given real numbers b; < by < -+ <
b, let f be a continuous function on R that is linear on each interval
[bi,bit1], @ = 0,1,...,k (for convenience we let by = —oo and by 1 =
00). Such a function is called piecewise linear and the numbers b; are
called breakpoints. Piecewise linear functions are often used to approxi-
mate (continuous) nonlinear functions. The purpose of this exercise is to
show how and why.

(a) Every piecewise linear function can be written as a sum of a constant
plus a linear term plus a sum of absolute value terms:

k
f(z) =d+aoz + Zai|m — byl
i=1
Let ¢; denote the slope of f on the interval [b;,b;11]. Derive an
explicit expression for each of the a;’s (including ap) in terms of
the ¢;’s.
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initialize (z, w, y) so that (w,y) > 0

while (not optimal) {
set up QP subproblem:
A=VA(x)
b=b—A(z) + VA(z)z
c=Ve(z) — He(x)r + (3, yiHai(x)) x
Q= He(z) — 3 yillai(x)

p=b—Ax+w
c=c— ATy +Qx
v=y"w

=9
. n+m
solve:

-Q AT Azr] [ c—ATy+Qx
A YW |Ay| — |b— Az —uY e
Aw =Y Y pe—YWe - WAy)

Az Aw; Ay )\
9:r<maxij{—x],—w,— y}) Al

€5 Wy Yi
do {
"V =z + Az,
w™ = w4+ 0Aw
Y =y + 04y
0+ 6/2

twhile (U (2", w"¥) > U(z, w) )

FIGURE 25.2. The path-following method for convex program-
ming problems.

(b) In terms of the ¢;’s, give necessary and sufficient conditions for f to
be convex.

(c) In terms of the a;’s, give necessary and sufficient conditions for f to
be convex.

(d) Assuming that f is convex and is a term in the objective function
for a linearly constrained optimization problem, derive an equivalent
linear programming formulation involving at most k extra variables
and constraints.

(e) Repeat the first four parts of this problem using max(z — b;,0) in
place of |z — b;].

25.2 Let f be the function of 2 real variables defined by
fla,y) = a® — 22y +y*.

Show that f is convex.
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25.3 A function f of 2 real variables is called a monomial if it has the form
flzy) =a™y"

for some nonnegative integers m and n. Which monomials are convex?

25.4 Let ¢ be a convex function of a single real variable. Let f be a function
defined on R"™ by the formula

fla) = ¢(a"z +0),

where a is an n-vector and b is a scalar. Show that f is convex.

25.5 Which of the following functions are convex (assume that the domain of

the function is all of R™ unless specified otherwise)?

(a) 422 — 12zy + 9y?

(b) 2% + 22y + y?

(©) 2%y

(@) a? —y?

(e) e*7¥

M e’

2
(@) % on{(z,y):y >0}

25.6 Given a symmetric square matrix A, the quadratic form 27 Az = El j
a;jx;x; generalizes the notion of the square of a variable. The generaliza-
tion of the notion of the fourth power of a variable is an expression of the
form

f(z) = Z AijklTiT; Tl
1,4,k 1
The four-dimensional array of numbers A = {aijkl 1 <i<n 1<
j<n,1<k<n,1<1<n}iscalled a4-tensor. As with quadratic
expressions, we may assume that A is symmetric:

ikl = Qjkli = = Qlkij
(i.e., given 4, j, k, [, all 4! = 24 premutations must give the same value for
the tensor).
(a) Give conditions on the 4-tensor A to guarantee that f is convex.
(b) Suppose that some variables, say y;’s, are related to some other vari-
ables, say x;’s, in a linear fashion:

Yi = Z fijifj~
J

Express > .y} in terms of the z;’s. In particular, give an explicit
expression for the 4-tensor and show that it satisfies the conditions
derived in part (a).

25.7 Consider the problem

minimize  axi + To

subjectto /€2 + 2% < .
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where —1 < a < 1.

(a) Graph the feasible set: {(xl, To) 1 /€2 + a2 < 332}. Is the problem
convex?

(b) Following the steps in the middle of p. 391 of the text, write down the
first-order optimality conditions for the barrier problem associated
with barrier parameter p > 0.

(c) Solve explicitly the first-order optimality conditions. Let (x1(p),
x2(p)) denote the solution.

(d) Graph the central path, (21 (u), 22(1)), as p varies from 0 to oc.

25.8 Multidimensional Taylor’s series expansion. Given a function g¢(t)
defined for real values of ¢, the three-term Taylor’s series expansion with
remainder is

1
gt + At) = g(t) + g/ () At + 5g"(t)At2 + ri(At).
The remainder term satisfies

Let f be a smooth function defined on R™. Apply the three-term Taylor’s
series expansion to g(t) = f(z + tAx) to show that

f(z+Az) = f(z) + Vf(z) Az + %AxTHf(x)Ax + ry(Ax).

25.9 Consider the following convex programming problem:
minimize o
subjectto % 4+ 23 < 1.
(a) Find the quadratic subproblem if the current primal solution is
(Z1,%2) = (1/2,—2/3) and the current dual solution is § = 2.
(b) Show that for arbitrary current primal and dual solutions, the feasi-
ble set for the convex programming problem is contained within the
feasible set for the quadratic approximation.

Notes

Interior-point methods for nonlinear programming can be traced back to the
pioneering work of Fiacco and McCormick (1968). For more on interior-point meth-
ods for convex programming, see Nesterov and Nemirovsky (1993) or den Hertog
(1994).

The fact that the step directions are descent directions for the merit function ¥
is proved in Vanderbei and Shanno (1999).
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Chapter 3
Degeneracy
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CZ 6:61—41’2
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w3:1 — X2.
CZ 61‘1—4I2
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w1 =0+ € +921 +4 2o
wy =0 + e -4z — 219
w3:1 +63 — I2.
CZ 1.562 — 15w2+ To
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APPENDIX A

Source Listings

The algorithms presented in this book have all been implemented and are pub-
licly available from the author’s web site:

http://www.princeton.edu/~rvdb/LPbook/

There are two variants of the simplex method: the two-phase method as shown
in Figure 6.1 and the self-dual method as shown in Figure 7.1. The simplex codes
require software for efficiently solving basis systems. There are two options: the eta-
matrix approach described in Section 8.3 and the refactorization approach described
in Section 8.5. Each of these “engines” can be used with either simplex method.
Hence, there are in total four possible simplex codes that one can experiment with.

There are three variants of interior-point methods: the path-following method
as shown in Figure 18.1, the homogeneous self-dual method shown in Figure 22.1
(modified to take long steps), and the long-step homogeneous self-dual method de-
scribed in Exercise 22.4 of Chapter 22.

The source code that implements the algorithms mentioned above share as
much common code as possible. For example, they all share the same input and
output routines (the input routine, by itself, is a substantial piece of code). They
also share code for the common linear algebra functions. Therefore, the difference
between two methods is limited primarily to the specific function that implements
the method itself.

The total number of lines of code used to implement all of the algorithms is
about 9,000. That is too many lines to reproduce all of the code here. But the
routines that actually lay out the particular algorithms are fairly short, only about
300 lines each. The relevant part of the self-dual simplex method is shown starting
on the next page. It is followed by a listing of the relevant part of the homogeneous
self-dual method.
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A. SOURCE LISTINGS

1. The Self-Dual Simplex Method

[k kR kR Rk kR Rk Rk R

Main loop *

R Y

for (iter=0; iter<MAX_ITER; iter++) {

[ ke ek ek ke ek ok ok
%+ STEP 1: Find mu *
ke ke ko

mu = -HUGE_VAL;
col_in = -1;
for (j= j<n; j++) {
if (zbar N[j] > EPS2) {
if ((mu < -z_N[j]l/zbar _N[j] ) {
mu = -z_N[j]/zbar N[j];
col_in = j;

}
col_out = -1;
for (i=0; i<m; i++) {
if (xbar B[i] > EPS2) {
(

if (mu < -x_B[i]/xbar B[i] ) {
mu = -x B[i]/xbar B[i];
col_out = i;
col_in = -1;
}
}
}
if ( mu <= EPS3 ) /% OPTIMAL x/
status = 0;
break;

if ( col_out >= 0 ) {

2N

* -1 T *
* STEP 2: Compute dz = -(B N) e *
* N i *
* where i = col_out *

Y

vec[0] = -1.0;
ivec[0] = col_out;
nvec = 1;

btsolve( m, vec, ivec, &nvec );

Nt_times_z( N, at, iat, kat, basicflag, vec, ivec, nvec,
dz_N, idz N, &ndz N );

ek ok ko ko ok ok ek
+ STEP 3: Ratio test to find entering column *
A |

col_in = ratio test( dz N, idz_N, ndz N, z N, zbar N, mu );
if (col_in == -1) { /+ INFEASIBLE */

status =
break;

[ e o ko o e

* -1 *
* STEP 4: Compute dx =B N e *
* B 5 *
* *

Y

j = nonbasics[col_in];



for

}

ndx B

1. THE SELF-DUAL SIMPLEX METHOD

(i=0, k=kaljl; k<kalj+1]; i++, k++) {
dx_BI[i] = alk];

idx B[i] = ialk];

- i;

bsolve( m, dx B, idx B, &ndx B );

—

else {

[ ek ko ok

*

-1

* STEP 2: Compute dx =B N e

*

B 3

*

*

*

S o e/

j =
for

}

ndx B

nonbasics [col_in];

(i=0, k=kaljl; k<kalj+1]; i++, k++) {
dx B[i] = alk];

idx B[i] = ialk];

- i;

bsolve( m, dx B, idx B, &ndx B );

[ Kk ko ko ok ok k ok ko ko ko ko ok ok ok ok ko ko ok ko ok kR ok Kk ok Kk ko
* STEP 3: Ratio test to find leaving column
e ok ko ok ok ko ko ok ok ok ok ok ok ko ok Kk ok ok ok ok ok ok Kok ko ko ko Kk ko ke ko /

col_out = ratio_test( dx_B, idx B, ndx B, x_B, xbar B, mu );

if

}

(col_out ==
status = 1;

-1 | /+ UNBOUNDED =/

break;

*

2N

*

-1 T

* STEP 4: Compute dz = -(B N) e

*

*

N i

*

*

*

*

Y |

vec [0]

-1.0;

ivec[0] = col_out;
nvec

= 1;

btsolve( m, vec, ivec, &nvec );

Nt_times_z( N, at, iat, kat, basicflag, vec, ivec, nvec,

}

dz_N, idz_N, &ndz_N );

[k ko kR ko

*
* STEP 5: Put t = x /dx *
* i i *
* o *
* t = x /dx *
* i i *
* s = z /dz *
" i *
* o *
* s = z /dz *
N i *
ek Kk ko ok ok ok ko ko Kk ko Kk ko ko ko ko K ok ko Kk ko Kk ko ko ko

for (k=0; k<ndx B; k++) if (idx B[k] == col_out) break;
t = x_B[col_out]/dx BI[k];
tbar = xbar B[col out]/dx BI[k];
for (k=0; k<ndz_N; k++) if (idz_N[k] == col_in) break;
s = z_N[col_in]/dz_NI[k];
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sbar = zbar N[col_in]/dz NI[k];

[k ko Rk ko kR Rk Rk

for (k=0; k<ndz N; k++) {
j = idz N[k];
z N[j] -= s «dz_NI[k] ;
zbar N[j] -= sbarxdz_ NI[k];
}
z_N[col_in] = s;
zbar N[col_in] = sbar;
for (k=0; k<ndx_B; k++) {
i = idx BI[k];
x_B[i] -= t *dx_BI[k];
xbar_B[i] -= tbarsdx_BI[k];
}
x_B[col_out] = t;
xbar B[col_out] = tbar;

* *
«+ STEP 7: Set z =2z - s dz z z - s dz *
* N N N N N N *
* _ _ *
* z =58 z s *
* i i *
* _ _ _ *
* X =X - tdx X x -t dx *
* B B B B B B *
* _ _ *
* X =t x t *
* J j *
Kok ok ok k ok k ok ko k ok ok ko k kR kK Kk kR Kk ok kR ok k ok ok k ok ok kA K kkk Ak kk ok kkkkkk k[

2 A

* STEP 8: Update basis

*

Y

i= basics[col_out];
j = nonbasics[col_in];
basics[col_out] = 3;
nonbasics[col_in] = i;
basicflag[i] = -col_in-1;
basicflag[j] = col_out;

[k ko ko ko ko ok ok ok ok ko ko Kk o ko ok ok ok ok K ok ok ok Kk ko Kk ko ko ko ok
*+ STEP 9: Refactor basis and print statistics *
kK ko ko ko ko Kk ko Rk o ko ko ko ok K ok ko Kk ko Kk ko ko ko

from_scratch = refactor( m, ka, ia,

if (from_ scratch) {
primal_ obj
printf ("%8d %14 .7e %$9.2e \n",
fflush(stdout) ;

sdotprod(c,x B,basics,m)
iter, primal obj, mu );

basics, col_out, v );

+ £;



2. THE HOMOGENEOUS SELF-DUAL METHOD

2. The Homogeneous Self-Dual Method

/e kK ko ok ok ok ok ok ok Kk ok Kk ko Kk ok Kk ok ko ko Kk kK k ok ok ko
* Main loop *
Hok kK Kk kR ok kR k ok ok ok ok k ok ok ok Kk k ok ok Kk k ok ok kk ok kk ok ok kA Kk ok ok Ak kk ok kkk ok kkk ko k

for (iter=0; iter<MAX ITER; iter++)
[k ko ko ko ko ko ko ko ko ko ko ko

* STEP 1: Compute mu and centering parameter delta.
o ko ko ko ok ok ok ok ko ko ko ko ko Kk ko ke ko bk Rk ko Kk Rk ko kR ke ko /

mu = (dotprod(z,x,n)+dotprod(w,y,m)+phixpsi) / (n+m+1);
if (iter%2 == 0) {

delta = 0.0;
} else {

delta = 1.0;

}

[/ 3k ok ok ko ok ok ko ok ok Kk ko Kk ok ok ok ok ok ok ok ko o ko Kk ko ko ko
* STEP 1: Compute primal and dual objective function values.
Kok Kk ko k ok ok kK k ok kA Kk ok ok Ak k ok kR kk ok kR kkk kR ok ok kA Kk ok ok Ak k kA k ko k ko

primal_obj = dotprod(c,x,n);
dual_obj = dotprod (b,y,m) ;

/K ke ko ko ok ok ko ok ok ko ok ok ok ok ok ko ko ko ko ko Kok ok kR ke kR ke Rk ko
* STEP 2: Check stopping rule.
e ok ok ok ok ok ok ok ok ok ko ok ok ok ok ko ko Kk ok ok ko ok ok ok K ok ko Kk ko Kk ko ke ko

if (mu < EPS ) {
if ( phi > EPS ) {

status = 0;
break; /* OPTIMAL x/
}
else
if ( dual_obj < 0.0) {
status = 2;
break; /% PRIMAL INFEASIBLE */

}
else
if ( primal_obj > 0.0) {
status = 4;
break; /+ DUAL INFEASIBLE «/
}
else
{
status = 7;
break;

~

+* NUMERICAL TROUBLE */

}

[/ 3k ko ok ko ok ok ko ok ok ko Kk ok Kk ok Kk ok K ok kK ko kK kK ok
* STEP 3: Compute infeasibilities.
Kok ok ok ko ok ok ok kK ok ok kK Kk ok ok k ok ok kR ok k kR kk ok ok kk ok ok Ak k ok ok Ak kk ok k ko k ko

smx (m,n, A, kA, iR, x, rho) ;
for (i=0; i<m; i++) {

rho[i] = rho[i] - b[i]l*phi + w[i];
}

normr = sqgrt( dotprod(rho,rho,m) )/phi;
for (i=0; i<m; i++)

rho[i] = -(1-delta)srhol[i] + w[i] - deltasmu/y[i];
}

smx (n,m,At, kAt, iAt,y, sigma) ;
for (3=0; j<n; j++) {

sigma[j] = -sigmal(j] + c[jl+phi + z[j];
norms = sqgrt( dotprod(sigma,sigma,n) )/phi;
for (j=0; j<n; j++)
sigma[j] = -(1-delta)sxsigmalj] + z[j] - deltasmu/x[j];

393
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gamma = - (1-delta)(dual_obj - primal _obj + psi) + psi - deltasmu/phi;

[/ 3k ko ok ko ok ok ko ok ok Kk ko Kk ok ok ok ok ok ok ok Kk ok ko Kk ko ko
+ Print statistics.
Kok ko k ok ko k ok k kA k ok ok kA Kk ok kA Ak ok ok Ak ok ok kkk ok kA kkk kA kkkk Ak k ko k ko kkk )

printf ("%8d %14.7e %8.1le %$14.7e %8.le %8.le \n",
iter, primal_obj/phi+f, normr,
dual_obj/phi+f, norms, mu );

fflush(stdout) ;

/K ek ko ko ok ok ko ko Kk ok ko ok ok ok ok ko ok ok ko ok ok ok ok ok ok ok ok ok ko ko
*+ STEP 4: Compute step directions.
ek ko ok ok ok ok ok ok ko Rk ok ko ko Kk o ko ok ok ok ok K ok ok ok ko ko Kk ko ko ko

for
for

j<n; j++) { D[3] = z[31/x[31; }
i<m; i++) { E[i] = wlil/y[il; }

ldltfac(n, m, kAt, iAt, At, E, D, kA, iA, A, Vv);

for (j=0; J<n; J++) { £x[j] = -sigmaljl; }
for (i=0; i<m; i++) { fy[i]l = rholil; }

forwardbackward (E, D, fy, fx);

for (3=0; j<n; j++) { gx[3] = -cljl; }
for (i=0; i<m; i++) { gylil = -b[il; }

forwardbackward (E, D, gy, gx);

dphi = (dotprod(c, fx,n)-dotprod (b, fy, m) +gamma) /
(dotprod (c,gx,n) -dotprod (b, gy, m) -psi/phi) ;

for (j=0; j<n; j++) { dx[j] = £xI[j] - gx[jlxdphi; }
for (i=0; i<m; i++) { dy[i]l = fyl[i]l - gyl[ilsdphi; }
for (j=0; j<n; j++) { dzl[j] = deltasmu/x[j] - z[j] - DI[jl=dx[jl; }
for (i=0; i<m; i++) { dwl[i] = deltasmu/y[i] - w[i] - E[i]lxdy[il; }

dpsi = deltasmu/phi - psi - (psi/phi)+dphi;

ke ek ok ok ok koo
*+ STEP 5: Compute step length (long steps).
Sk koo kAR AR AR AR R AR R AR AR Ak k]

theta = 0.0;
for (3=0; j<n; j++) {
if (theta < -dx[j1/x[j1) { theta = -dx[j1/x[j1; }
if (theta < -dz[jl1/z[j]) { theta = -dz[j1/z[3j]; }
}
for (i=0; i<m; i++) {
if (theta < -dyl[il/y[il) { theta = -dy[il/y[il; }
if (theta < -dw([i]/w([i]) { theta = -dwl[i]l/w[il; }
}

theta = MIN( 0.95/theta, 1.0 );

[/ ek ko ko ok ko ok Kk ko Kk ok ok ok ok ok ok ko ko Kk Kk ok ko
+ STEP 6: Step to new point
R R I S T T T T T T !

for (j=0; j<n; j++) {
x[j] = x[j] + thetaxdx[jl;
z[j] = z[j] + thetaxdz[j];
}
for (i=0; i<m; i++) {
v[i]l = y[i] + thetaxdyl[il;
w[i] = w[i] + thetaxdwl[i];
}
phi = phi + thetaxdphi;
psi = psi + thetaxdpsi;



Answers to Selected Exercises

1.3: See Exercise 2.19.

2.1: (I1,$27$3,I4) = (2707 ].,0), C =17

2.2: ( ) (30)’422

2.3: (11 x27m3) =(0,0.5,1.5),( = -3

2.4: (xl,x27.’173 = (0, 1,0), C =-3

2.5: (.131,.132) ( ,1), C =5.

2.6: Infeasible.

2.7: Unbounded.

2.8: (.’El,irg) = ( ,8), C = 28.

2.9: (z1,29,23) = (1.5,2.5,0), ¢ = 10.5.

2.10: (xl,l‘g,l‘g,l‘4) = (0,0,0, 1), C =

2.11: (w12,213, T14, T23, Tog, T34) = (1, 0 ,0,1,0, 1) ¢=0.
7.1: (1) 2* = (2,4,0,0,0,0,8), & = 14. (2) 2* unchanged, £* = 12.2. (3)

z* =1(0,8,0,0,0,10,10), £* = 16.

7.2: Acy € (—00,1.2], Acg € [-1.2,00), Acg € [-1,9], Acy € (—00,2.8].

9.1: ($1,$2) = (0,5)

9.2: (.131, T2,L3,T4,T5,T6, L7, 378) = (O, 6, 1, 15, 2, 1, 0, 0)

10.5: The fundamental theorem was proved only for problems in standard form.
The LP here can be reduced to standard form.

11.1: A should hide a or b with probabilities b/(a+b) and a/(a +b), respectively.
B should hide a or b with equal probability.

11.3:
2 —4
-3 6

12.1: Slope = 2/7, intercept = 1.

12.2: Slope = 1/2, intercept = 0.

12.7: (2) 340. (3) «* is chosen so that the number of months in which extra work-
ers will be used is equal to the number of months in the cycle (12) times the
inhouse employee cost ($17.50) divided by the outhouse employee cost ($25)
rounded down to the nearest integer.

12.8: Using L', g = 8.951. With L2, g = 8.924.

R.J. Vanderbei, Linear Programming, International Series in Operations Research 395
& Management Science 196, DOI 10.1007/978-1-4614-7630-6,
© Springer Science+Business Media New York 2014



396 ANSWERS TO SELECTED EXERCISES

13.1:
| Bonds  Materials  Energy  Financial
5.0000- 0.0000 1.0000  0.0000 0.0000
1.9919-5.0000 | 0.0000 0.9964  0.0036 0.0000
1.3826-1.9919 | 0.0000 0.9335  0.0207 0.0458
0.7744-1.3826 | 0.0000 0.9310  0.0213 0.0477
0.5962-0.7744 | 0.0000 0.7643  0.0666 0.1691
0.4993-0.5962 | 0.6371 0.2764  0.0023 0.0842
0.4659-0.4933 | 0.6411 0.2733  0.0019 0.0836
0.4548-0.4659 | 0.7065 0.2060  0.0000 0.0875
0.4395-0.4548 | 0.7148 0.1966  0.0000 0.0886
0.2606-0.4395 | 0.8136 0.0952  0.0000 0.0912
0.0810-0.2606 | 0.8148 0.0939  0.0000 0.0913
0.0000-0.0810 | 0.8489 0.0590  0.0000 0.0922
13.1:
| Hair  Cosmetics  Cash
35— 1.0 0.0 0.0
1.0-3.5 0.7 0.3 0.0
0.5-1.0 0.5 0.5 0.0
0.0-0.5 0.0 0.0 1.0

14.6: The optimal spanning tree consists of the following arcs:

{(a,0),(b;c),(c, f), (f,9),(d,9),(d,e), (g, h)}.
The solution is not unique.
17z = (14+2u+/1+4u2) /2,
o = (1—2u+4/1+4u2)/2
— 2/ (7(1 o)+ 1+ 4,3) .
17.2: Let ¢ = cosf. If ¢ # 0, then 1 = (cf 20+ \/m) /2¢c, else
x1 = 1/2. Formula for x5 is the same except that cos 0 is replaced by sin 6.

17.3: max{c’x + >ojrilogzy + 37, silogw; : Az < b,x > 0}.
18.1: Using d = 1/10 and r = 9/10:

() = = (545,302,644)/680, y = (986,1049)/680,
w = (131,68)/680, z = (572,815,473)/630.
Q) = (3107,5114,4763) /4250, y = (4016,425)/4250,
w = (2783,6374)/4250,
z = (3692,1685,2036)/4250.
(3) = = (443,296)/290, y = (263,275,347)/290,
w = (209,197,125)/290, =z = (29,176)/290.
@) =z = (9,12,8,14)/10, y = (18)/10,
w = (1)/10, z = (9,6,11,5)/10.
20.1:
1 2
1 1
L=|-1 1 ., D= 0
-1 1 1
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20.3:
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