

Learning	Visual	Basic	.NET

Jesse	Liberty

Copyright	©	2009	O'Reilly	Media,	Inc.

O'Reilly	Media

Preface
In	July	2000,	Microsoft	announced	the	release	of	its	new	.NET
platform,	which	represented	a	major	change	in	the	way	people
think	about	programming.	.NET	facilitates	object-oriented
Internet	development.	Visual	Basic	.NET	(VB.NET)	is	a
programming	language	that	was	adapted	from	its	predecessor,
Visual	Basic	6,	specifically	for	the	purpose	of	writing
applications	for	the	.NET	platform.	This	new	version	of	the
Visual	Basic	language	is	well	suited	for	developing	distributed
web	applications.

About	This	Book
Learning	Visual	Basic	.NET	is	a	primer	on	the	VB.NET
language,	in	the	context	of	the	.NET	development	environment,
and	also	on	object-oriented	programming.	This	book	focuses	on
the	fundamentals	of	the	VB.NET	programming	language,	both
syntactical	and	semantic.	After	mastering	these	concepts,	you
should	be	ready	to	move	on	to	a	more	advanced	programming
guide	that	will	help	you	create	large-scale	web	and	Windows
applications.	Chapter	19	provides	a	number	of	suggestions	for
your	continued	study	of	VB.NET	and	.NET	development.

Who	This	Book	Is	For
Learning	Visual	Basic	.NET	was	written	for	programmers	with
little	or	no	object-oriented	programming	experience,	as	well	as
for	novice	programmers.	Those	coming	from	another	language
may	have	a	slight	advantage,	but	I've	tried	to	provide	an	on-
ramp	for	beginners	as	well,	by	defining	all	terms,
demonstrating	the	relationships	among	the	various	constructs,
and	reviewing	key	concepts	along	the	way.

How	the	Book	Is	Organized
Chapter	1	introduces	you	to	the	VB.NET	language	and	the
.NET	platform.

Chapter	2	presents	a	simple	application	that	prints	the	words
"Hello	World"	to	a	console	window	and	gives	a	line-by-line
analysis	of	the	code.

Chapter	3	explains	the	principles	behind	and	goals	of	this
programming	methodology,	including	the	three	pillars	of
object-oriented	programming:	encapsulation,	specialization,
and	polymorphism.

Chapter	4	introduces	the	Integrated	Development	Environment
(IDE)	designed	specifically	for	.NET;	using	the	IDE	can	greatly
simplify	how	you	write	applications.

Chapter	5	introduces	the	basic	syntax	and	structure	of	the
VB.NET	language,	including	the	intrinsic	types,	variables,
statements,	and	expressions.

Chapter	6	describes	some	of	the	ways	you	can	change	the
order	in	which	methods	are	called	within	a	program.
Statements	such	as	If,	ElseIf,	and	Select	Case	will	be	considered,
along	with	the	concept	of	loops,	which	are	created	using	such
keywords	as	Do,	Do	While,	and	Loop	While.

Chapter	7	describes	some	of	the	symbols	that	cause	VB.NET	to
take	an	action,	such	as	assigning	a	value	to	a	variable	and
arithmetically	operating	on	values	(adding,	subtracting,	etc.).

Chapter	8	introduces	the	key	concepts	of	programmer-defined
types	(classes)	and	instances	of	those	types	(objects).	Classes
and	objects	are	the	building	blocks	of	object-oriented
programming.

Chapter	9	delves	into	the	specific	programming	instructions
you'll	write	to	define	the	behavior	of	objects.

Chapter	10	introduces	the	debugger	integrated	into	the	Visual
Studio	.NET	Integrated	Development	Environment.

Chapter	11	explores	two	of	the	key	concepts	behind	object-
oriented	programming	and	demonstrates	how	you	might
implement	them	in	your	code.

Chapter	12	introduces	the	structure	or	struct,	a	programmer-
defined	type	similar	to	a	class,	but	with	specific	and	more
limited	functionality.

Chapter	13	explains	how	you	can	define	a	set	of	behaviors	(an
interface)	that	any	number	of	classes	might	implement.

Chapter	14	introduces	the	array,	an	indexed	collection	of
objects,	all	of	the	same	type.	Arrays	are	one	of	the	collection
types	recognized	by	VB.NET.

Chapter	15	describes	some	of	the	other	VB.NET	collections,
including	stacks	and	queues.

Chapter	16	discusses	the	manipulation	of	strings	of	characters,
the	VB.NET	String	class,	and	regular	expression	syntax.

Chapter	17	explains	how	to	handle	errors	and	abnormal
conditions	that	may	arise	in	relation	to	your	programs.

Chapter	18	discusses	how	to	write	code	to	respond	to
programming	occurrences	like	mouse	clicks,	keystrokes,	and
other	events.	The	chapter	also	introduces	some	of	the	basic
concepts	of	application	programming.

Building	serious	commercial	applications	is	beyond	the	scope
of	a	primer	like	Learning	Visual	Basic	.NET.	But	Chapter	19
describes	where	you	might	go	to	learn	more	about	VB.NET	and
.NET	programming,	including	other	books,	web	sites,

newsgroups,	and	so	forth.

Conventions	Used	in	This	Book
The	following	font	conventions	are	used	in	this	book:

Italic

Used	for	pathnames,	filenames,	program	names,	Internet
addresses,	such	as	domain	names	and	URLs,	and	new
terms	where	they	are	defined.

Constant	Width

Used	for	command	lines	and	options	that	should	be	typed
verbatim,	VB.NET	keywords,	and	code	examples.

Constant	Width	Italic	

Used	for	replaceable	items,	such	as	variables	or	optional
elements,	within	syntax	lines	or	code.

Constant	Width	Bold

Used	for	emphasis	within	program	code.

Pay	special	attention	to	notes	set	apart	from	the	text	with	the
following	icons:

Tip
This	is	a	tip.	It	contains	useful	supplementary
information	about	the	topic	at	hand.

Warning
This	is	a	warning.	It	helps	you	solve	and	avoid
annoying	problems.

Support
As	part	of	my	responsibilities	as	author,	I	provide	ongoing
support	for	my	books	through	my	web	site.

http://www.LibertyAssociates.com

On	this	web	site,	you'll	also	find	the	complete	source	code	for
all	the	examples	in	Learning	Visual	Basic	.NET,	as	well	as
access	to	a	book-support	discussion	group	with	a	section	set
aside	for	questions	about	VB.NET.	Before	you	post	a	question,
however,	please	check	the	FAQ	(Frequently	Asked	Questions)
list	and	the	errata	file	on	my	web	site.	If	you	check	these	files
and	still	have	a	question,	then	please	go	ahead	and	post	to	the
discussion	center.

The	most	effective	way	to	get	help	is	to	ask	a	precise	question
or	even	to	create	a	small	program	that	illustrates	your	area	of
concern	or	confusion.	You	may	also	want	to	check	the	various
newsgroups	and	discussion	centers	on	the	Internet.	Microsoft
offers	a	wide	array	of	newsgroups,	and	Developmentor
(http://www.develop.com)	has	wonderful	.NET	email	discussion
lists	as	does	Charles	Carroll	at	http://www.asplists.com.

http://www.LibertyAssociates.com
http://www.develop.com
http://www.asplists.com

We'd	Like	to	Hear	from	You
We	have	tested	and	verified	the	information	in	this	book	to	the
best	of	our	ability,	but	you	may	find	that	features	have	changed
(or	even	that	we	have	made	mistakes!).	Please	let	us	know
about	any	errors	you	find,	as	well	as	your	suggestions	for
future	editions,	by	writing	to:

O'Reilly	&	Associates,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
(800)	998-9938	(in	the	United	States	or	Canada)
(707)	829-0515	(international/local)
(707)	829-0104	(fax)

We	have	a	web	page	for	this	book	where	we	list	examples	and
any	plans	for	future	editions.	You	can	access	this	information
at:

http://www.oreilly.com/catalog/learnvbnet

You	can	also	send	messages	electronically.	To	be	put	on	the
mailing	list	or	request	a	catalog,	send	email	to:

info@oreilly.com

To	comment	on	the	book,	send	email	to:

bookquestions@oreilly.com

For	more	information	about	this	book	and	others,	as	well	as
additional	technical	articles	and	discussion	on	the	VB.NET	and
the	.NET	Framework,	see	the	O'Reilly	&	Associates	web	site:

http://www.oreilly.com

and	the	O'Reilly	.NET	DevCenter:

http://www.oreilly.com/catalog/learnvbnet
mailto:info@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com

http://www.oreillynet.com/dotnet

http://www.ondotnet.com/dotnet/	provides	independent
coverage	of	fundamental,	interoperable,	and	emerging
Microsoft	.NET	programming	and	web	services	technologies.

http://www.oreillynet.com/dotnet
http://www.ondotnet.com/dotnet/

Acknowledgments
To	ensure	that	Learning	Visual	Basic	.NET	is	accurate,
complete,	and	targeted	at	the	needs	and	interests	of
programmers,	I	enlisted	the	help	of	some	of	the	brightest
people	I	know,	including	Dan	Hurwitz,	Seth	Weiss,	and	Sue
Lynch.

John	Osborn	signed	me	to	O'Reilly,	for	which	I	will	forever	be
in	his	debt.	Darren	Kelly,	Claire	Cloutier,	and	Tatiana	Diaz
helped	make	this	book	better	than	what	I'd	written.	Rob
Romano	created	a	number	of	the	illustrations	and	improved	the
others.	Tim	O'Reilly	provided	support	and	resources,	and	I'm
grateful.	A	special	thank	you	to	Val	Quercia,	who	added	great
value	to	this	book,	as	she	has	to	so	many	others.	If	this	book	is
clear	and	understandable,	it	is	due	to	her	vigilance.

Chapter	1.	Visual	Basic	.NET	and	.NET
Programming
Learning	Visual	Basic	.NET	was	written	to	introduce	the	.NET
version	of	the	Visual	Basic	language	specifically,	and	the	.NET
development	platform	more	generally,	to	programmers	with
little	or	no	object-oriented	programming	experience.	Along	the
way,	you	will	learn	a	great	deal	about	writing	high-quality,
industrial-strength	programs	for	.NET.

In	this	brief	introduction,	you	will	learn	the	basics	of	the	Visual
Basic	.NET	language.	You	will	also	learn	some	of	the	concepts
integral	to	object-oriented	programming,	which	has
revolutionized	how	web	and	Windows	applications	are
developed.

The	goal	of	this	book	is	to	go	beyond	the	syntax	of	VB.NET	(the
keywords	and	punctuation	of	the	language)	to	examine	the
semantics	of	.NET	programming	with	VB.NET	(the	meaning
and	structure	of	the	code).	VB.NET	and	the	.NET	Framework
are	built	on	the	concepts	of	object-oriented	design	and
programming,	and	these	concepts	will	be	explained	as	the	book
progresses	to	provide	a	deeper	insight	into	how	.NET	programs
are	organized.

Visual	Basic	and	.NET
Long,	long	ago,	and	far,	far	away,	in	a	little-known	universe	of
primitive	computing,	there	was	a	language	called	Basic,	which
stood	for	Beginner's	All-purpose	Symbolic	Instruction	Code.
Basic	was	designed	to	be	as	simple	and	accessible	as	possible
for	those	unfamiliar	with	programming.

In	1991	Microsoft	unveiled	Visual	Basic	and	changed	the	way
graphical	user	interfaces	were	written.	Visual	Basic	can	lay
claim	to	being	one	of	the	most	popular	programming	languages

ever	invented.

Visual	Basic	.NET	(VB.NET)	is	a	reengineering	of	this
venerable	language,	which	departs	in	significant	ways	from
earlier	versions	of	Visual	Basic.	In	fact,	some	early	adopters	of
VB.NET	started	calling	it	VB.NOT.	VB.NET	has	evolved	into	a
full-fledged	object-oriented	commercial	software	development
package.	Yet	VB.NET	also	retains	some	of	the	inherent
simplicity	of	its	predecessors.

VB.NET	has	a	number	of	features	that	help	it	retain	backwards
compatibility	with	Visual	Basic	6	(VB6).	Other	features	have
been	added	specifically	to	adapt	Visual	Basic	to	object-oriented
programming	and	to	the	.NET	platform.

VB.NET	provides	support	in	the	language	to	find	bugs	early	in
the	development	process.	This	makes	for	code	that	is	easier	to
maintain	and	programs	that	are	more	reliable.	VB.NET	does
not	support	many	features	available	in	other	languages	(e.g.,
pointers)	that	make	for	unsafe	code.

In	the	past,	you	might	have	learned	a	language	like	C	or	Java
without	much	concern	about	the	platform	on	which	you	would
be	programming.	These	cross-platform	languages	were	as
comfortable	on	a	Unix	box	as	they	were	on	a	PC	running
Windows.

VB.NET,	however,	is	a	version	of	the	Visual	Basic	language
written	specifically	for	.NET.	While	.NET	may	become	cross-
platform	some	day	soon—a	Unix	port	is	already	available—for
now,	the	overwhelming	majority	of	.NET	programs	will	be
written	to	run	on	a	machine	running	Windows.

Stepchild	No	Longer

VB.NET	represents	a	significant	step	forward	for	Visual	Basic
programmers.	In	the	past,	VB	has	been	(unfairly)	cast	as	a
second-class	"toy"	language	that	was	not	up	to	the	challenge	of

second-class	"toy"	language	that	was	not	up	to	the	challenge	of
enterprise-level	software	development.

Whatever	the	merits	of	that	accusation	for	VB6	and	its
predecessors,	it	is	manifestly	untrue	for	VB.NET.	The	code
produced	by	Visual	Basic	.NET	is	(nearly)	identical	to	that
produced	by	C#	or	any	other	compiler	designed	for	.NET.
There	is	no	performance	or	size	penalty	to	writing	with	Visual
Basic	.NET.

In	fact,	the	differences	between	Visual	Basic	.NET	and	C#	are
entirely	syntactic.	To	illustrate,	one	language	uses	semicolons,
the	other	does	not;	one	language	uses	brackets,	the	other
parentheses.	The	differences	are	so	simple	and	so
straightforward,	that	converting	a	C#	program	to	Visual	Basic
.NET	is	an	entirely	mechanical	operation,	one	that	can	be
performed	by	a	simple	program—and	such	programs	are
already	available	on	the	Web.

In	fact	it	is	not	far	from	the	truth	to	say	that	at	the	most
fundamental	level	there	is	no	Visual	Basic	.NET	language	and
no	C#	language.	There	is,	rather,	a	single	.NET	language
called	MSIL	(Microsoft	Intermediate	Language).	Both	Visual
Basic	.NET	and	C#	compilers	produce	MSIL	code,	and	the	code
they	produce	is	nearly	identical!	The	real	meat	of	.NET
programming,	whether	in	Visual	Basic	.NET	or	in	C#,	is	the
.NET	platform.

The	.NET	Platform
In	July	2000,	Microsoft	announced	the	.NET	platform,	a
development	framework	that	provides	a	new	way	to	create
Windows	applications.	However,	.NET	goes	beyond	traditional
Windows	programming	to	facilitate	creating	web	applications
quickly	and	easily.	And	VB.NET	is	one	of	the	premier	languages
Microsoft	supports	for	development	in	this	new	and	exciting
.NET	space.

Reports	are	that	Microsoft	is	devoting	80%	of	its	research	and
development	budget	to	.NET	and	its	associated	technologies.
The	results	of	this	commitment	are	impressive.	For	one	thing,
the	scope	of	.NET	is	huge.	The	platform	consists	of	three
separate	product	groups:

	A	set	of	languages,	including	Visual	Basic	.NET	and	C#;	a
set	of	development	tools,	including	Visual	Studio	.NET;	and
powerful	tools	for	building	applications,	including	the
Common	Language	Runtime	(CLR)	a	platform	for
compiling,	debugging,	and	executing	.NET	applications.

A	set	of	.NET	Enterprise	Servers,	formerly	known	as	SQL
Server	2000,	Exchange	2000,	BizTalk	2000,	and	so	on,	that
provide	specialized	functionality	for	relational	data	storage,
email,	B2B	commerce,	etc.

New	.NET-enabled	non-PC	devices,	from	cell	phones	to
game	boxes.

The	VB.NET	language	can	be	used	to	develop	three	types	of
applications	you	can	run	on	your	Windows	computer:

Console	applications	display	no	graphics

Windows	applications	use	the	standard	Windows	interface

Web	applications	can	be	accessed	with	a	browser

This	book	will	focus	primarily	on	the	basics	of	the	VB.NET
language,	mostly	using	simple	console	applications	to	illustrate
language	fundamentals.

The	.NET	Framework
Central	to	the	.NET	platform	is	a	development	environment
known	as	the	.NET	Framework.	The	Framework	specifies	how
.NET	programming	constructs	such	as	intrinsic	types,	classes,
and	interfaces	are	implemented.	You	will	learn	about	these
constructs	in	the	chapters	ahead.

The	.NET	Framework	sits	on	top	of	any	flavor	of	the	Windows
operating	system.	The	most	important	components	of	the
Framework	are	the	Common	Language	Runtime	(CLR),
described	in	the	preceding	section,	and	the	so-called
Framework	Class	Library	(FCL),	which	provides	an	enormous
number	of	predefined	types	or	classes	for	you	to	use	in	your
programs.	You	will	learn	how	to	define	your	own	classes	in
Chapter	8.	Complete	coverage	of	all	the	FCL	classes	is	beyond
the	scope	of	this	book.	For	more	information	on	these	classes,
see	VB.NET	Language	in	a	Nutshell	(Roman,	Petrusha,	and
Lomax,	O'Reilly).

The	VB.NET	Language
The	VB.NET	language	is	disarmingly	simple,	but	VB.NET	is
highly	expressive	when	it	comes	to	implementing	modern
programming	concepts.	VB.NET	includes	all	the	support	for
structured,	component-based,	object-oriented	programming
that	one	expects	of	a	modern	language.

The	goal	of	VB.NET	is	to	provide	a	simple,	safe,	object-
oriented,	Internet-centric,	high-performance	language	for	.NET
development.	VB.NET	is	simple	because	there	are	relatively
few	keywords.	This	makes	it	easy	to	learn	and	easy	to	adapt	to
your	specific	needs.

Tip
Keywords	are	special	words	reserved	by	the	language
and	that	have	a	specific	meaning	within	all	VB.NET
programs.	Keywords	include	If,	While,	For,	and	so	forth.
You'll	learn	about	these	keywords	in	the	coming
chapters.

VB.NET	is	considered	safe	because	it	provides	support	in	the
language	to	find	bugs	early	in	the	development	process.	This
makes	for	code	that	is	easier	to	maintain	and	programs	that	are
more	reliable.

VB.NET	provides	full	support	for	object-oriented	programming.
This	book	will	explain	not	only	how	to	write	object-oriented
programs,	but	will	explain	why	object-oriented	programming
has	become	so	popular.	The	short	answer	is	this:	programs	are
becoming	increasingly	complex,	and	object-oriented
programming	techniques	help	you	manage	that	complexity.

VB.NET	was	developed	for	.NET,	and	.NET	was	designed	for
developing	web	and	web-aware	programs.	The	Internet	is	a
primary	resource	in	most	.NET	applications.

Finally,	VB.NET	was	designed	for	professional	high-

Finally,	VB.NET	was	designed	for	professional	high-
performance	programming.

The	Structure	of	VB.NET	Applications
At	the	most	fundamental	level,	a	VB.NET	application	consists	of
source	code.	Source	code	is	human-readable	text	written	in	a
text	editor.	A	text	editor	is	like	a	word	processor,	but	it	puts	no
special	characters	into	the	file	to	support	formatting,	only	the
text.	A	classic	text	editor	is	Notepad.

Example	1-1	shows	an	example	of	a	very	simple	source	code
file.

Example	1-1.	A	source	code	file

Module	HelloWorld

						'	every	console	app	starts	with	Main

						Sub	Main()

								System.Console.WriteLine("Hello	world!")

						End	Sub

			End	Module

This	program	is	explained	in	detail	in	Chapter	2.	For	now,
observe	that	the	program	itself	is	readable:	it	is	in	normal	text.
The	words	may	be	strange	and	the	layout	unusual,	but	there
are	no	special	characters;	just	the	normal	text	produced	by
your	keyboard.

Once	you	write	your	program	in	an	editor,	you	must	compile	it.
For	that	you	need	a	compiler.	You	will	learn	how	to	use	the
VB.NET	compiler	in	Chapter	2.	Once	compiled,	your	program
must	be	run	and	tested.

While	you	can	perform	all	of	these	tasks	using	Notepad	(or
another	text	editor)	and	various	command-line	tools,	your
programming	life	will	be	much	easier	if	you	use	the	Integrated
Development	Environment	(IDE)	called	Visual	Studio	.NET.
VS.NET	was	designed	with	.NET	development	in	mind	and
greatly	simplifies	the	writing	of	VB.NET	program	code.

The	Development	Environment
The	Visual	Studio	.NET	Integrated	Development	Environment
provides	enormous	advantages	to	the	VB.NET	programmer.
This	book	tacitly	assumes	that	you'll	use	Visual	Studio	.NET	for
your	work.	However,	the	discussion	focuses	more	on	the
language	and	the	platform	than	on	the	tools.

Nonetheless,	Chapter	4	provides	a	good	introduction	to	the	IDE
in	some	detail.	Chapter	10	returns	to	the	IDE	to	examine	the
debugger,	which	will	help	you	find	and	correct	problems	in
your	code.

Chapter	2.	Getting	Started	with	VB.NET
You	can	use	VB.NET	to	create	three	different	types	of
programs:

Web	applications

Windows	applications

Console	applications

The	.NET	platform	is	web-centric.	The	VB.NET	language	was
developed	to	allow	.NET	programmers	to	create	very	large,
powerful,	high-quality	web	applications	quickly	and	easily.	The
.NET	technology	for	creating	web	applications	is	called
ASP.NET.

ASP.NET,	the	next	generation	from	ASP	(Active	Server	Pages),
is	composed	of	two	Microsoft	development	technologies:	Web
Forms	and	Web	Services.	While	the	development	of	fully
realized	web	applications	using	these	technologies	is	beyond
the	scope	of	this	book,	learning	the	basics	of	the	VB.NET
language	will	certainly	get	you	started	in	the	right	direction.
VB.NET	is	generally	acknowledged	to	be	one	of	the	languages
of	choice	for	ASP.NET	development.

Typically,	you'll	create	an	ASP.NET	application	when	you	want
your	program	to	be	available	to	end	users	on	any	platform
(e.g.,	Windows,	Mac,	Unix).	By	serving	your	application	over
the	Web,	end	users	can	access	your	program	with	any	browser.

When	you	want	the	richness	and	power	of	a	native	application
running	directly	on	the	Windows	platform,	alternatively	you
might	create	a	desktop-bound	Windows	application.	The	.NET
tools	for	building	Windows	applications	are	called	Windows
Forms;	a	detailed	analysis	of	this	technology	is	also	beyond	the
scope	of	this	book.

However,	if	you	don't	need	a	Graphical	User	Interface	(GUI)
and	just	want	to	write	a	simple	application	that	talks	to	a
console	window	(i.e.,	what	we	used	to	call	a	DOS	box),	you
might	consider	creating	a	console	application.	This	book	makes
extensive	use	of	console	applications	to	illustrate	the	basics	of
the	VB.NET	language.

Web,	Windows,	and	console	applications	are	described	and
illustrated	in	the	following	pages.

Console	applications

A	console	application	runs	in	a	console	window,	as	shown
in	Figure	2-1.	A	console	window	(or	DOS	box)	provides
simple	text-based	output.

Console	applications	are	very	helpful	when	learning	a
language	because	they	strip	away	the	distraction	of	the
Graphical	User	Interface.	Rather	than	spending	your	time
creating	complex	windowing	applications,	you	can	focus	on
the	details	of	the	language	constructs,	such	as	how	you
create	classes	and	methods,	how	you	branch	based	on
runtime	conditions,	and	how	you	loop.	All	these	topics	will
be	covered	in	detail	in	coming	chapters.

Figure	2-1.	A	console	application

Windows	applications

A	Windows	application	runs	on	a	PC's	desktop.	You	are
already	familiar	with	Windows	applications	such	as
Microsoft	Word	or	Excel.	Windows	applications	are	much
more	complex	than	console	applications	and	can	take
advantage	of	the	full	suite	of	menus,	controls,	and	other

widgets	you've	come	to	expect	in	a	modern	desktop
application.	Figure	2-2	shows	the	output	of	a	simple
windows	application.

Figure	2-2.	A	Windows	application

ASP.NET	applications

An	ASP.NET	application	runs	on	a	web	server	and	delivers
its	functionality	through	a	browser,	typically	over	the	Web.
ASP.NET	technology	facilitates	developing	web
applications	quickly	and	easily.	Figure	2-3	shows	a
message	from	a	simple	ASP.NET	application.

Although	most	commercial	applications	will	be	either
Windows	or	ASP.NET	programs,	console	applications	have
a	tremendous	advantage	in	a	VB.NET	primer.	Windows	and
ASP.NET	applications	bring	a	lot	more	overhead;	there	is
great	complexity	in	managing	the	window	and	all	the
events	associated	with	the	window.	(Events	are	covered	in
Chapter	18.)	Console	applications	keep	things	simple,
allowing	you	to	focus	on	the	features	of	the	language.

Figure	2-3.	An	ASP.NET	application

Tip
This	book	does	not	ever	go	into	all	the	myriad	details
of	building	robust	Windows	and	ASP.NET
applications.	For	complete	coverage	of	these	topics,
please	see	Programming	ASP.NET	and	Programming
.NET	Windows	Applications	both	by	Jesse	Liberty	and
Dan	Hurwitz	(O'Reilly).

What's	in	a	Program?
A	program	consists	of	English-language	instructions	called
source	code.	The	syntax	for	these	instructions	is	strictly
defined	by	the	language.	Source	code	consists	of	a	series	of
statements.	A	statement	is	an	instruction	to	the	complier.	Each
instruction	must	be	formed	correctly,	and	one	task	you'll	face
when	learning	VB.NET	will	be	to	learn	the	correct	syntax	of	the
language.	For	example,	in	VB.NET	every	statement	ends	with	a
carriage	return	or	linefeed.

Each	instruction	has	a	semantic	meaning	that	expresses	what	it
is	you	are	trying	to	accomplish.	Although	you	must	follow	the
syntax,	the	semantics	of	the	language	are	far	more	important	in
developing	effective	object-oriented	programs.	This	book	will
provide	insight	into	both	the	syntax	and	the	semantics	of	good
VB.NET	programs.

You	will	save	the	source	code	you	write	in	a	text	file.	You	can
write	this	source	code	file	using	any	simple	text	editor	(such	as
Notepad),	or	you	can	use	the	Visual	Studio	.NET	Integrated
Development	Environment	(IDE).	Visual	Studio	.NET	is
described	in	Chapter	4.

Once	you	write	your	program,	you	compile	it	using	the	VB.NET
compiler.	The	end	result	of	compiling	the	program	is	an
application.

Your	First	Program:	Hello	World
In	this	chapter,	you	will	create	a	very	simple	application	that
does	nothing	more	than	display	the	words	"Hello	World"	to
your	monitor.	This	basic	console	application	is	the	traditional
first	program	for	learning	any	new	language;	it	demonstrates
some	of	the	basic	elements	of	a	VB.NET	program.

Once	you	write	your	"Hello	World"	program	and	compile	it,	this
chapter	will	provide	a	line-by-line	analysis	of	the	source	code.
This	analysis	gives	something	of	a	preview	of	the	language,	the
fundamentals	of	which	are	described	much	more	fully	in
Chapter	5.

As	explained	earlier,	you	can	create	VB.NET	programs	with	any
text	editor.	You	can,	for	example,	create	each	of	the	three
programs	shown	previously	(in	Figure	2-1,	Figure	2-2,	and
Figure	2-3)	with	Notepad.	To	demonstrate	that	this	is	possible,
you'll	write	your	very	first	VB.NET	program	using	Notepad.

Begin	by	opening	Notepad	and	typing	in	the	program	exactly
as	shown	in	Example	2-1.

Example	2-1.	Hello	World	in	Notepad

Module	HelloWorld

			'	every	console	app	starts	with	Main

			Sub	Main()

						System.Console.WriteLine("Hello	world!")

			End	Sub

End	Module

That	is	the	entire	program.	Save	it	to	your	disk	as	a	file	called	
helloworld.vb.

We'll	examine	this	program	in	some	detail	in	just	a	moment.
First,	however,	it	must	be	compiled.

The	Compiler

Once	you	save	your	program	to	disk,	you	must	compile	the
code	to	create	your	application.	Compiling	your	source	code
means	running	a	compiler	and	passing	in	the	source	code	file.
You	run	the	compiler	by	opening	a	command	prompt	(DOS	box)
and	entering	the	program	name	vbc.	Then	you	"pass	in"	your
source	code	file	by	entering	the	filename	on	the	command	line,
as	in	the	following:
vbc	helloworld.vb

The	job	of	the	compiler	is	to	turn	your	source	code	into	a
working	program.	It	turns	out	to	be	just	slightly	more
complicated	than	that,	because	.NET	uses	an	intermediate
language	called	Microsoft	Intermediate	Language	(MSIL,
sometimes	abbreviated	to	IL).	The	compiler	reads	your	source
code	and	produces	IL.	The	.NET	Just	In	Time	(JIT)	compiler
then	reads	your	IL	code	and	produces	an	executable
application	in	memory.

Microsoft	provides	a	command	window	(through	Visual	Studio
.NET)	with	the	correct	environment	variables	set.	Open	a
command	window	by	selecting	the	following	menu	items	in	this
order:
Start	->	Programs	->	Microsoft	Visual	Studio	.NET

->	Visual	Studio.NET	Tools	->	Visual	Studio	.NET	Command	Prompt

Then	navigate	to	the	directory	in	which	you	created	your	code
file	and	enter	the	following	command:
vbc	helloworld.vb

The	Microsoft	VB.NET	compiler	compiles	your	code;	when	you
display	the	directory	you'll	find	the	compiler	has	produced	an
executable	file	called	helloworld.exe.	Type	helloworld	at	the	command
prompt,	and	your	program	will	execute,	as	shown	in	Figure	2-4.

Figure	2-4.	Compiling	and	running	Hello	World

Presto!	You	are	a	VB.NET	programmer.	That's	it,	close	the
book,	you've	done	it.	Okay,	don't	close	the	book;	there	are
details	to	examine,	but	take	a	moment	to	congratulate	yourself.
Have	a	cookie.

Granted,	the	program	you	created	is	one	of	the	simplest
VB.NET	programs	imaginable,	but	it	is	a	complete	VB.NET
program,	and	it	can	be	used	to	examine	many	of	the	elements
common	to	VB.NET	programs.

Examining	Your	First	Program
The	single	greatest	challenge	when	learning	to	program	is	that
you	must	learn	everything	before	you	can	learn	anything.	Even
this	simple	"Hello	World"	program	uses	many	features	of	the
language	that	will	be	discussed	in	coming	chapters,	including
classes,	namespaces,	statements,	static	methods,	objects,
strings,	inheritance,	blocks,	libraries,	and	even	something
called	polymorphism!

It	is	as	if	you	were	learning	to	drive	a	car.	You	must	learn	to
steer,	accelerate,	brake,	and	understand	the	flow	of	traffic.
Right	now	we're	going	to	get	you	out	on	the	highway	and	just
let	you	steer	for	a	while.	Over	time	you'll	learn	how	to	speed	up
and	slow	down.	Along	the	way	you'll	learn	to	set	the	radio	and
adjust	the	heat	so	that	you'll	be	more	comfortable.	In	no	time
you'll	be	driving,	and	then	won't	your	parents	begin	to	worry.

Line-by-Line	Analysis

Hang	on	tight;	we're	going	to	zip	through	this	quickly	and
come	back	to	the	details	in	subsequent	chapters.	The	first	line
in	the	program	defines	a	programming	unit	known	as	a	module.	In
this	case,	the	module	is	named	HelloWorld:
Module	HelloWorld

You	begin	each	module	definition	using	the	Module	keyword,	as	in
the	preceding	code	line.	Likewise,	you	end	each	module
definition	with	the	line:
End	Module

Within	the	module	definition,	you	write	other	programming
constructs.	For	instance,	you	might	define	what	is	called	an
object.	An	object	is	an	individual	instance	of	a	thing.	Every
object	belongs	to	a	more	general	category	known	as	a	class.

While	a	class	defines	a	type,	each	instance	of	that	type	is	an
object	(much	as	Car	defines	a	type	of	vehicle,	and	your	aging
rust-bucket	is	an	individual	instance	of	Car).

In	VB.NET	there	are	thousands	of	classes.	Classes	are	used	to
define	Windows	controls	(buttons,	list	boxes,	etc.),	as	well	as
types	of	things	(employees,	students,	telephones,	etc.)	in	the
program	you	are	writing.	Some	classes	you	create	yourself;
some	you	obtain	from	the	.NET	Framework.	Each	class	must	be
named.	Classes	are	the	core	of	VB.NET	and	object-oriented
programming.

For	now,	keep	in	mind	that	modules	are	actually	related	to
classes.	Technically,	modules	are	a	holdover	from	the	previous
generation	of	the	VB	language,	VB6.	In	order	to	adapt	VB6	for
object-oriented	programming,	VB.NET	converts	modules	to
classes	for	you.	You'll	learn	about	classes	in	Chapter	3	and
about	modules	and	classes	in	Chapter	8.

Within	the	HelloWorld	module,	you	define	a	method	called
Main().	A	method	is	a	small	block	of	code	that	performs	an
action.	The	Main()	method	is	the	"entry	point"	for	every
VB.NET	console	application;	it	is	where	your	program	begins.
Within	the	HelloWorld	module,	the	Main()	method	is	defined
from	lines	3	through	5.	Notice	the	Sub	keyword	signals	the
beginning	of	the	subroutine	and	the	End	Sub	line	concludes	the
method:
Sub	Main()

				System.Console.WriteLine("Hello	world!")

End	Sub

Typically,	one	method	calls	another.	The	called	method	will	do
work,	and	it	can	return	a	value	to	the	calling	method.	In
VB.NET,	methods	come	in	two	flavors:	a	method	that	returns	a
value	is	called	a	function;	a	method	that	does	not	return	a	value
is	called	a	sub	(for	subroutine).	(Function	and	subroutine	are
old,	non-object-oriented	terms	for	these	kinds	of	methods.)
You'll	see	how	methods	call	one	another	and	return	values	in

Chapter	9.

Main()	is	called	by	the	operating	system	(when	the	program	is
invoked).	Every	method	name	is	followed	by	opening	and
closing	parentheses:
Sub	Main()

As	the	parentheses	imply,	it	is	possible	to	pass	values	into	a
method	so	that	the	method	can	manipulate	or	use	those	values.
These	values	are	called	parameters	or	arguments	to	the
method.	In	this	case,	Main()	has	no	arguments.	(Method
arguments	are	covered	in	Chapter	9.)

Within	Main()	is	a	single	line	of	code:
System.Console.WriteLine("Hello	world!")

WriteLine()	is	a	method	that	is	called	by	the	Main()	method;
more	about	WriteLine()	shortly.	The	Console	is	an	object	that
represents	your	screen.	In	this	case,	each	Console	object
belongs	to	the	Console	class.	In	VB.NET,	classes	can	exist
within	a	more	comprehensive	grouping	known	as	a	namespace.

In	the	HelloWorld	program,	the	Console	class	is	defined	within
the	System	namespace.	The	Console	class	has	a	method,
WriteLine(),	that	displays	a	line	of	text	to	the	screen.	The
complete	identification	for	the	WriteLine()	method	includes
the	class	and	namespace	to	which	it	belongs:
System.Console.WriteLine("Hello	world!")

The	WriteLine()	method	declares	a	single	parameter,	the	text
string	you	want	to	display.	When	you	pass	in	a	string	to	the
method,	the	string	is	an	argument.	In	our	sample	program,	the
string	"Hello	world!"	corresponds	to	the	parameter	the	method
expects;	thus,	the	string	is	displayed	to	the	screen.

If	you	will	be	using	many	objects	from	the	same	namespace,
you	can	save	typing	by	telling	the	compiler	that	many	of	the

objects	you'll	be	referring	to	are	in	that	namespace.	You	do	so
by	adding	an	Imports	declaration	to	the	beginning	of	your
program:
Imports	System

Once	you	add	this	line,	you	can	use	the	Console	class	name
without	explicitly	identifying	its	namespace	(System).	Thus,	if
you	add	the	preceding	Imports	declaration,	you	can	rewrite	the
contents	of	Main()	as	follows:
Console.WriteLine("Hello	world!")

The	compiler	will	check	the	namespace	you	identified	(System),
and	it	will	find	the	Console	class	defined	there.

Since	the	method	(or	sub)	is	defined	within	the	module,	you	do
not	close	the	module	until	you	have	closed	the	method.	Thus,
the	program	ends	with	the	sequence:
End	Sub

End	Module

This	discussion	has	omitted	a	single	line	in	our	program.	Just
before	the	start	of	the	Main()	method	appears	a	comment
(here	in	bold):
'	every	console	app	starts	with	Main

Sub	Main()

				System.Console.WriteLine("Hello	world!")

A	comment	is	just	a	note	to	yourself.	You	insert	comments	to
make	the	code	more	readable	to	programmers.	You	can	place
comments	anywhere	in	your	program	that	you	think	the
explanation	will	be	helpful;	they	have	no	effect	on	the	running
program.

In	VB.NET,	comments	begin	with	a	single	quotation	mark.	The
quote	indicates	that	everything	to	the	right	on	the	same	line	is
a	comment	and	will	be	ignored	by	the	VB.NET	compiler.

Whew!	That	was	a	lot	to	take	in	all	at	once!	Don't	panic;	all	of
the	concepts	introduced	here	are	explained	in	detail	in	later

the	concepts	introduced	here	are	explained	in	detail	in	later
chapters.

Chapter	3.	Object-Oriented	Programming
Windows	and	web	programs	are	enormously	complex.
Programs	present	information	to	users	in	graphically	rich	ways,
offering	complicated	user	interfaces,	complete	with	drop-down
and	pop-up	menus,	buttons,	listboxes,	and	so	forth.	Behind
these	interfaces,	programs	model	complex	business
relationships,	such	as	those	among	customers,	products,
orders,	and	inventory.	You	can	interact	with	such	a	program	in
hundreds,	if	not	thousands	of	different	ways,	and	the	program
must	respond	appropriately	every	time.

To	manage	this	enormous	complexity,	programmers	have
developed	a	technique	called	object-oriented	programming.	It
is	based	on	a	very	simple	premise:	you	manage	complexity	by
modeling	its	essential	aspects.	The	closer	your	program	models
the	problem	you	are	trying	to	solve,	the	easier	it	is	to
understand	(and	thus	to	write	and	to	maintain)	that	program.

Programmers	refer	to	the	problem	you	are	trying	to	solve	and
all	the	information	you	know	that	relates	to	your	problem	as
the	problem	domain.	For	example,	if	you	are	writing	a	program
to	manage	the	inventory	and	sales	of	a	company,	the	problem
domain	would	include	everything	you	know	about	how	the
company	acquires	and	manages	inventory,	makes	sales,
handles	the	income	from	sales,	tracks	sales	figures,	and	so
forth.	The	sales	manager	and	the	stock	room	manager	would
be	problem	domain	experts	who	can	help	you	understand	the
problem	domain.

A	well-designed	object-oriented	program	will	be	filled	with
objects	from	the	problem	domain.	At	the	first	level	of	design,
you'll	think	about	how	these	objects	interact,	and	what	their
state,	capabilities,	and	responsibilities	are.

State

A	programmer	refers	to	the	current	conditions	and	values

A	programmer	refers	to	the	current	conditions	and	values
of	an	object	as	that	object's	state.	For	example,	you	might
have	an	object	representing	a	customer.	The	customer's
state	includes	the	customer's	address,	phone	number,
email,	as	well	as	the	customer's	credit	rating,	recent
purchase	history,	and	so	forth.

Capabilities

The	customer	has	many	capabilities,	but	a	developer	cares
only	about	modeling	those	that	are	relevant	to	the	problem
domain.	Thus	a	customer	object	might	be	able	to	buy	an
item,	return	an	item,	increase	his	credit	rating,	and	so
forth.

Responsibilities

Along	with	capabilities	come	responsibilities.	The	customer
object	is	responsible	for	managing	its	own	address.	In	a
well-designed	program,	no	other	object	needs	to	know	the
details	of	the	customer's	address.	The	address	might	be
stored	as	data	within	the	customer	object,	or	it	might	be
stored	in	a	database,	but	it	is	up	to	the	customer	object	to
know	how	to	retrieve	and	update	his	own	address.

Of	course,	all	of	the	objects	in	your	program	are	just	metaphors
for	the	objects	in	your	problem	domain.

Metaphors

Many	of	the	concepts	used	throughout	this	book,	and	any	book
on	programming,	are	actually	metaphors.	We	get	so	used	to
the	metaphors	we	forget	that	they	are	metaphors.	You	are
used	to	talking	about	a	window	on	your	program,	but	of	course
there	is	no	such	thing;	there	is	just	a	rectangle	with	text	and
images	in	it.	It	looks	like	a	window	into	your	document	so	we
call	it	a	window.	Of	course,	you	don't	actually	have	a	document
either,	just	bits	in	memory.	No	folders,	no	buttons,	these	are

all	just	metaphors.

There	are	many	levels	to	these	metaphors.	When	you	see	a
window	on	the	screen,	the	window	itself	is	just	a	metaphor
enhanced	by	an	image	drawn	on	your	screen.	That	image	is
created	by	lighting	tiny	dots	on	the	screen,	called	pixels.	These
pixels	are	lit	in	response	to	instructions	written	in	your
VB.NET	program.	Each	instruction	is	really	a	metaphor;	the
actual	instructions	read	by	your	computer	are	in	Assembly
language,	low-level	instructions	that	are	fed	to	the	underlying
computer	chip.	These	Assembly	instructions	map	to	a	series	of
1s	and	0s	that	the	chip	understands.	Of	course,	the	1s	and
zeros	are	just	metaphors	for	electricity	in	wires.	When	two
wires	meet,	we	measure	the	amount	of	electricity	and	if	there
is	a	threshold	amount	we	call	it	1,	otherwise	zero.	You	get	the
idea.

Good	metaphors	can	be	very	powerful.	The	art	of	object-
oriented	programming	is	really	the	art	of	conceiving	of	good
metaphors.

Creating	Models
Humans	are	model-builders.	We	create	models	of	the	world	to
manage	complexity	and	to	help	us	understand	problems	were
trying	to	solve.	You	see	models	all	the	time.	Maps	are	models	of
roadways.	Globes	are	models	of	the	Earth.	Chemical	symbols
are	models	of	chemical	interactions.	Atomic	models	are
representations	of	the	interaction	of	subatomic	particles.

Models	are	simplifications.	There	is	little	point	to	a	model	that
is	as	complex	as	the	object	in	the	problem	domain.	If	you	had	a
map	of	the	United	States	that	had	every	rock,	blade	of	grass,
and	bit	of	dirt	in	the	entire	country,	the	map	would	have	to	be
as	big	as	the	country	itself.	Your	road	atlas	of	the	U.S.	eschews
all	sorts	of	irrelevant	detail,	focusing	only	on	those	aspects	of
the	problem	domain	(e.g.,	the	country's	roads)	that	are
important	to	solving	the	problem	(e.g.,	getting	from	place	to

important	to	solving	the	problem	(e.g.,	getting	from	place	to
place).	If	you	want	to	drive	from	Boston	to	New	York	City,	you
don't	care	where	the	trees	are;	you	care	where	the	exits	and
interchanges	are	located.	Therefore,	the	network	of	roads	is
what	appears	on	the	atlas.

Albert	Einstein	once	said:	Things	should	be	made	as	simple	as
possible,	but	not	any	simpler.	A	model	must	be	faithful	to	those
aspects	of	the	problem	domain	that	are	relevant.	For	example,
a	road	map	must	provide	accurate	relative	distances.	The
distance	from	Boston	to	New	York	must	be	proportional	to	the
actual	driving	distance.	If	one	inch	represents	25	miles	at	the
start	of	the	trip,	it	must	represent	25	miles	throughout	the	trip,
or	the	map	will	be	unusable.

A	good	object-oriented	design	is	an	accurate	model	of	the
problem	you	are	trying	to	solve.	Your	design	choices	will
influence	not	only	how	you	solve	the	problem,	but	in	fact	they
will	influence	how	you	think	about	the	problem.	A	good	design,
like	a	good	model,	allows	you	to	examine	the	relevant	details	of
the	problem	without	confusion.

Classes	and	Objects
The	most	important	metaphors	in	object-oriented	programming
are	the	class	and	the	object.

A	class	defines	a	new	type	of	thing.

The	class	defines	the	common	characteristics	of	every	object	of
that	new	type.	For	example,	you	might	define	a	class	Car.
Every	car	will	share	certain	characteristics	(wheels,	brake,
accelerator,	and	so	forth).	Your	car	and	my	car	both	belong	to
the	class	of	Cars;	they	are	of	type	Car.

An	object	is	an	individual	instance	of	a	class.	Each	individual	car
(your	particular	car,	my	particular	car)	is	an	instance	of	the
class	Car,	and	thus	is	an	object.	An	object	is	just	a	thing.

We	perceive	the	world	to	be	composed	of	things.
Look	at	your	computer.	You	do	not	see	various	bits	of	plastic
and	glass	amorphously	merging	with	the	surrounding
environment.	You	naturally	and	inevitably	see	distinct	things:	a
computer,	a	keyboard,	a	monitor,	speakers,	pens,	paper.
Things.

More	importantly,	even	before	you	decide	to	do	it,	you've
categorized	these	things.	You	immediately	classify	the
computer	on	your	desk	as	a	specific	instance	of	a	type	of	thing:
this	computer	is	one	of	the	type	Computer.	This	pen	is	an
instance	of	a	more	general	type	of	thing,	pens.	It	is	so	natural
you	can't	avoid	it,	and	yet	the	process	is	so	subtle,	it's	difficult
to	articulate.	When	I	see	my	dog	Milo,	I	can't	help	also	seeing
him	as	a	dog,	not	just	as	an	individual	entity.	Milo	is	an
instance,	Dog	is	a	class.

The	theory	behind	object-oriented	programming	is	that	for
computer	programs	to	accurately	model	the	world,	the
programs	should	reflect	this	human	tendency	to	think	about
individual	things	and	types	of	things.	In	VB.NET	you	do	that	by
creating	a	class	to	define	a	type	and	creating	an	object	to

creating	a	class	to	define	a	type	and	creating	an	object	to
model	a	thing.

Defining	a	Class
When	you	define	a	class	you	describe	the	characteristics	and
behavior	of	objects	of	that	type.

In	VB.NET,	you	describe	characteristics	with	member	fields,	also
known	as	properties.
Class	Dog

			Private	weight	As	Integer		'	weight	is	an	integer

			Private	name	As	String					'	the	Dog's	name	as	text

Member	fields	are	used	to	hold	each	objects	state.	For
example,	the	state	of	the	Dog	is	defined	by	its	current	weight
and	name.	The	state	of	an	Employee	might	be	defined	by
(among	other	things)	her	current	salary,	management	level,
and	performance	rating.	Chapter	8	includes	a	full	discussion	of
member	fields.

You	define	the	behavior	of	your	new	type	with	methods.	Methods
contain	code	to	perform	an	action.
Class	Dog

			Private	weight	As	Integer		'	weight	is	an	integer

			Private	name	As	String					'	the	Dog's	name	as	text

			Public	Sub	bark()

																		'code	here	to	bark

															End	Sub

Tip
The	keywords	Public	and	Private	are	known	as	access
modifiers,	which	are	used	to	specify	what	classes	can
access	particular	members.	For	instance,	public
members	can	be	called	from	methods	in	any	class,
while	private	members	are	visible	only	to	the	methods
of	the	class	that	defines	the	member.	Thus,	objects	of
any	class	can	call	bark	on	a	Dog,	but	only	methods	of
Dog	have	access	to	the	weight	and	name	of	the	Dog.
Access	modifiers	are	discussed	in	Chapter	8.

A	class	typically	defines	a	number	of	methods	to	do	the	work	of
that	class.	A	Dog	class	might	contain	methods	for	barking,
eating,	napping,	and	so	forth.	An	Employee	class	might	contain

eating,	napping,	and	so	forth.	An	Employee	class	might	contain
methods	for	adjusting	salary,	submitting	annual	reviews,	and
evaluating	performance	objectives.

Methods	can	manipulate	the	state	of	the	object	by	changing	the
values	in	member	fields,	or	a	method	could	interact	with	other
objects	of	its	own	type	or	with	objects	of	other	types.	This
interaction	among	objects	is	crucial	to	object-oriented
programming.

For	example,	a	Dog	method	might	change	the	state	of	the	Dog
(e.g.,	weight),	interact	with	other	Dogs	(e.g.,	bark,	sniff,	etc.),
or	interact	with	People	(e.g.,	beg	for	food).	A	Product	object
might	interact	with	a	Customer	object,	a	Video	object	might
interact	with	an	EditingWindow	object.

Designing	a	good	VB.NET	program	is	not	unlike	forming	a	good
team;	you	look	for	players—or	objects,	in	the	case	of	a	program
—with	different	skills	to	whom	you	can	assign	the	various	tasks
you	must	accomplish.	Those	players	cooperate	with	one
another	to	get	the	job	done.

In	a	good	object-oriented	program,	you	will	design	objects	that
represent	things	in	your	problem	domain.	You	will	then	divide
the	work	of	the	program	among	your	objects,	assigning
responsibility	to	objects	based	on	their	ability.

Class	Relationships
The	heart	of	object-oriented	design	is	establishing	relationships
among	the	classes.	Classes	interact	and	relate	to	one	another
in	various	ways.

The	simplest	interaction	is	when	a	method	in	one	class	is	used
to	call	a	method	in	a	second	class.	For	example,	the	Manager
class	might	have	a	method	that	calls	the	UpdateSalary	method
on	an	object	of	type	Employee.	We	then	say	that	the	Manager
class	and	the	Employee	class	are	associated.	Association
among	classes	simply	means	they	interact.

Some	complicated	types	are	composed	of	other	types.	For
example,	an	automobile	might	be	composed	of	wheels,	engine,
transmission,	and	so	forth.	You	might	model	this	by	creating	a
wheel	class,	an	engine	class	and	a	transmission	class.	You
could	then	create	an	Automobile	class,	and	each	automobile
would	have	four	instances	of	the	wheel	class,	and	one	instance
each	of	the	engine	and	transmission	class.	Another	way	to	view
this	relationship	is	to	say	that	the	Automobile	class	aggregates
the	wheel,	engine,	and	transmission	classes.

This	process	of	aggregation	(or	composition)	allows	you	to
build	very	complex	classes	from	relatively	simple	classes.	The
.NET	Framework	provides	a	String	class	to	handle	text	strings.
You	might	create	your	own	Address	class	out	of	five	text	strings
(address	line	1,	address	line	2,	city,	state,	and	Zip).	You	might
then	create	a	second	class,	Employee,	which	has	as	one	of	its
members	an	instance	of	Address.

The	Three	Pillars	of	Object-Oriented
Programming
Object-oriented	programming	is	built	on	three	sturdy	pillars:
encapsulation,	specialization,	and	polymorphism.

Each	class	should	be	fully	encapsulated;	that	is,	it	should
define	the	state	and	responsibilities	of	that	type.	For	example,
if	you	create	an	Employee	object,	that	Employee	object	should
fully	define	all	there	is	to	know,	from	the	perspective	of	your
program,	about	each	Employee.	You	do	not,	typically,	want	to
have	one	class	that	defines	the	Employee's	work	information,
and	a	second,	unrelated	class	that	defines	the	Employee's
contact	information.	Instead,	you	want	to	encapsulate	all	this
information	inside	the	Employee	class,	perhaps	by	aggregating
the	contact	information	as	a	member	of	the	Employee	class.

Specialization	allows	you	to	establish	hierarchical	relationships
among	your	classes.	For	example,	you	can	define	a	Manager	to
be	a	specialized	type	of	an	Employee	and	an	Employee	to	be	a
specialized	type	of	Person.	This	allows	you	to	leverage	the	state
and	abilities	of	an	Employee	object	in	the	more	specialized
form	of	the	Manager.

Polymorphism	allows	you	to	treat	a	group	of	objects	in	a	similar
way	and	have	the	objects	sort	out	how	to	implement	the
programming	instructions.	For	instance,	suppose	you	have	a
collection	of	Employee	objects,	and	you	want	to	tell	each
Employee	to	give	herself	a	raise.	Employees	get	a	straight	5%
raise,	while	raises	for	Managers	are	determined	by	how	well
they've	fulfilled	their	annual	objectives.	With	polymorphism,
you	can	tell	each	object	in	the	collection	to	give	itself	a	raise,
and	the	right	thing	happens	regardless	of	the	real	type	of	the
object.	That	is,	each	employee	gets	5%,	while	each	manager
gets	the	appropriate	raise	based	on	objectives.

Encapsulation
The	first	pillar	of	object-oriented	programming	is
encapsulation.	The	idea	behind	encapsulation	is	that	you	want
to	keep	each	type	or	class	discreet	and	self-contained.	This
allows	you	to	change	the	implementation	of	one	class	without
affecting	any	other	class.

A	class	that	provides	a	method	that	other	classes	can	use	is
called	a	server.	A	class	that	uses	that	method	is	called	a	client.	The
goal	of	encapsulation	is	that	you	can	change	the	details	of	how
a	server	does	its	work	without	breaking	anything	in	the
implementation	of	the	client.

This	is	accomplished	by	drawing	a	bright	and	shining	line
between	the	public	interface	of	a	class	and	its	private	implementation.	The
public	interface	is	a	contract	issued	by	your	class	that	says,	I
promise	to	be	able	to	do	this	work.	Specifically,	you'll	see	that	a
public	interface	says	call	this	method	with	these	parameters,
and	I'll	do	this	work	and	return	this	value.	A	client	can	rely	on	a
public	interface	not	to	change.	If	the	public	interface	does
change,	then	the	client	must	be	recompiled	and	perhaps
redesigned.

The	private	implementation,	on	the	other	hand,	is,	as	its	name
implies,	private	to	the	server.	The	designer	of	the	server	class
is	free	to	change	how	it	does	the	work	promised	in	the	public
interface,	so	long	as	it	continues	to	fulfill	the	terms	of	its
implicit	contract:	it	must	take	the	given	parameters,	do	the
promised	work	and	return	the	promised	value.

For	example,	you	might	have	a	public	method	that	promises	as
follows:	Give	me	a	dollar	amount	and	a	number	of	years,	and
I'll	return	the	net	present	value.	How	you	compute	that	amount
is	your	business;	if	a	client	supplies	a	dollar	amount	and	a
number	of	years,	you	must	return	the	net	present	value.	You
might	implement	that	initially	by	keeping	a	table	of	values.	You
might	change	that	at	a	later	time	to	compute	the	value	using

might	change	that	at	a	later	time	to	compute	the	value	using
the	appropriate	algebra.	That	is	your	business	and	does	not
affect	the	client.	As	long	as	you	don't	change	the	public
interface	(e.g.,	as	long	as	you	don't	change	the	number	or	type
of	parameters	expected	or	change	the	type	of	the	return	value,)
your	clients	will	not	break	while	you	change	the
implementation.

Specialization
The	second	pillar,	specialization,	is	implemented	in	VB.NET	by
declaring	that	a	new	class	derives	from	an	existing	class.	When
you	do	so,	the	specialized	class	inherits	the	characteristics	of
the	more	general	class.	The	specialized	class	is	called	a	derived
class,	while	the	more	general	class	is	known	as	a	base	class.

The	specialization	relationship	is	referred	to	as	the	is-a
relationship.	A	dog	is	a	mammal,	a	car	is	a	vehicle.	(Dog	would
be	derived	from	the	base	class	Mammal,	Car	from	the	base
class	Vehicle.)

Specialization	allows	you	to	create	a	family	of	objects.	In
Windows	a	button	is	a	control.	A	listbox	is	a	control.	Controls
have	certain	characteristics	(color,	size,	location)	and	certain
abilities	(can	be	drawn,	can	be	selected).	These	characteristics
and	abilities	are	inherited	by	all	of	their	derived	types.	This
allows	for	a	very	powerful	form	of	reuse.	Rather	than	cutting
and	pasting	code	from	one	type	to	another,	the	shared	fields
and	methods	are	inherited	by	the	derived	type.	If	you	change
how	a	shared	ability	is	implemented,	you	do	not	have	to	update
code	in	every	derived	type;	they	inherit	the	changes.

For	example,	a	Manager	is	a	special	type	of	Employee.	The
Manager	adds	new	capabilities	(hiring,	firing,	rewarding,
praising)	and	a	new	state	(annual	objectives,	management
level,	etc.).	The	Manager,	however,	also	inherits	the
characteristics	and	capabilities	common	to	all	Employees.	Thus
a	Manager	has	an	address,	a	name,	an	employee	ID,	and
Managers	can	be	given	raises,	can	be	laid	off,	and	so	forth.
You'll	see	specialization	at	work	in	Chapter	11.

Polymorphism
Polymorphism	,	the	third	pillar	of	object-oriented
programming,	is	closely	related	to	inheritance.	The	prefix	poly
means	many;	morph	means	form.	Thus,	polymorphism	refers	to
the	ability	of	a	single	type	or	class	to	take	many	forms.

The	essence	of	polymorphism	is	this:	at	times	you	will	know
you	have	a	collection	of	a	general	type,	for	example	a	collection
of	Controls.	You	do	not	know	(or	care)	what	the	specific
subtype	each	of	your	controls	is	(one	may	be	a	button,	another
a	listbox,	etc.).	The	important	thing	is	that	you	know	they	all
inherit	shared	abilities	(e.g.,	the	draw	method)	and	that	you
can	treat	them	all	as	controls.	If	you	write	a	programming
instruction	that	tells	each	control	to	draw	itself,	this	is
implemented	properly	on	a	per-control	basis	(i.e.,	buttons	draw
as	buttons,	listboxes	draw	as	listboxes,	etc.).	You	do	not	need
to	know	how	each	subtype	accomplishes	this;	you	only	need	to
know	that	each	type	is	defined	to	be	able	to	draw.

Polymorphism	allows	you	to	treat	a	collection	of	disparate
derived	types	(buttons,	listboxes,	etc.)	as	a	group.	You	treat	the
general	group	of	controls	the	same	way,	and	each	individual
control	does	the	right	thing	according	to	its	specific	type.
Chapter	11	provides	more	concrete	examples.

Object-Oriented	Analysis	and	Design
The	steps	before	programming	anything,	other	than	a	trivial
demonstration	program,	are	analysis	and	design.	Analysis	is
the	process	of	understanding	and	detailing	the	problem	you	are
trying	to	solve.	Design	is	the	actual	planning	of	your	solution.

With	trivial	problems	(e.g.,	computing	the	Fibonacci	series[1]),
you	may	not	need	an	extensive	analysis	period,	but	with
complex	business	problems,	the	analysis	process	can	take
weeks,	or	even	months.	One	powerful	analysis	technique	is	to
create	what	are	called	use-case	scenarios,	in	which	you
describe	in	some	detail	how	the	system	will	be	used.	Among
the	other	considerations	in	the	analysis	period	are	determining
your	success	factors	(how	do	you	know	if	your	program	works)
and	writing	a	specification	of	your	program's	requirements.

Once	you've	analyzed	the	problem,	you	design	the	solution.	Key
to	the	design	process	is	imagining	the	classes	you	will	use	and
their	inter-relationships.	You	might	design	a	simple	program	on
the	fly,	without	this	careful	planning;	but	in	any	serious
business	application,	you	will	want	to	take	some	time	to	think
through	the	issues.

There	are	many	powerful	design	techniques	you	might	use.
One	interesting	controversy	that	has	arisen	recently	is	between
traditional	object-oriented	design	on	the	one	hand[2]	and
eXtreme	programming	on	the	other.[3]

There	are	other	competing	approaches	as	well.	How	much	time
you	put	into	these	topics	will	depend,	in	large	measure,	on	the
complexity	of	the	problems	you	are	trying	to	solve	and	the	size
of	your	development	team.

Tip
My	personal	approach	to	managing	complexity	is	to
keep	team	size	very	small.	I	have	worked	on	large

keep	team	size	very	small.	I	have	worked	on	large
development	teams,	and	over	the	years	I've	come	to
believe	that	the	ideal	size	is	three.	Three	highly
skilled	programmers	can	be	incredibly	productive,
and	with	three	you	don't	need	a	manager.	Three
people	can	have	only	one	conversation	at	a	time.
Three	people	can	never	be	evenly	split	on	a	decision.
One	day	I'll	write	a	book	on	programming	in	teams	of
three,	but	this	isn't	it,	and	so	we'll	stay	focused	on
VB.NET	programming,	rather	than	on	design	debates.

About	the	Examples	in	This	Book

Object-oriented	programming	is	designed	to	help	you	manage
complex	programs.	Unfortunately,	it	is	very	difficult	to	show
complex	problems	and	their	solutions	in	a	primer	on	VB.NET.
The	complexity	of	these	problems	gets	in	the	way	of	what
you're	trying	to	learn	about.

The	examples	in	this	book	will	be	extremely	simple.	The
simplicity	may	hide	some	of	the	motivation	for	the	technique,
but	the	simplicity	makes	the	technique	clearer.	You'll	have	to
take	it	on	faith,	for	now,	that	these	techniques	scale	up	well	to
very	complex	problems.

Most	of	the	chapters	of	this	book	focus	on	the	syntax	of
VB.NET.	You	need	the	syntax	of	the	language	to	be	able	to
write	a	program	at	all,	but	it's	important	to	keep	in	mind	that
the	syntax	of	any	language	is	less	important	than	its
semantics.	The	meaning	of	what	you	are	writing	and	why
you're	writing	it	are	the	real	focus	of	object-oriented
programming	and	thus	of	this	book.

Don't	let	concern	with	syntax	get	in	the	way	of	understanding
the	semantics.	The	compiler	can	help	you	get	the	syntax	right
(if	only	by	complaining	when	you	get	it	wrong),	and	the
documentation	can	remind	you	of	the	syntax,	but
understanding	the	semantics,	the	meaning	of	the	construct,	is

the	hard	part.	Throughout	this	book,	I	work	hard	to	explain	not
only	how	you	do	something,	but	why	and	when	you	do	it.

[1]	The	Fibonacci	series	is	the	values	0,1,1,2,3,5,8,13.	The
series	is	named	for	Fibonacci,	who	in	1202	investigated	how
fast	rabbits	could	breed	in	ideal	circumstances.	The	series
works	by	adding	the	previous	two	numbers	to	get	the	next
(thus	8	is	the	sum	of	5+3).

[2]	See	The	Unified	Modeling	Language	User	Guide,	by	Grady
Booch,	Ivar	Jacobson,	and	James	Rumbaugh	(Addison-Wesley);
The	Unified	Software	Development	Process,	by	Ivar	Jacobson,
Grady	Booch,	and	James	Rumbaugh	(Addison-Wesley);	and	The
Unified	Modeling	Language	Reference	Manual,	by	James
Rumbaugh,	Ivar	Jacobson,	and	Grady	Booch	(Addison-Wesley).

[3]	See	Planning	Extreme	Programming	by	Kent	Beck	and
Martin	Fowler	(Addison-Wesley).

Chapter	4.	Visual	Studio	.NET
In	Chapter	2	you	learned	that	you	can	create	your	VB.NET
applications	using	Notepad.	In	this	chapter,	you'll	learn	why
you	never	will.	Microsoft	developed	Visual	Studio	.NET
(VS.NET)	to	facilitate	the	creation	of	Windows	and	web
applications.	You	will	find	that	this	Integrated	Development
Environment	(IDE)	is	a	very	powerful	tool	that	will	greatly
simplify	your	work.

Visual	Studio	.NET	offers	many	advantages	to	the	.NET
developer.	The	following	features	are	discussed	in	this	chapter:

A	modern	interface	using	a	tabbed	document	metaphor	for
source	code	and	layout	screens,	and	toolbars	and
informational	windows	that	dock	where	you	want	them.

Code	completion,	which	enables	you	to	enter	code	with
fewer	errors	and	much	less	typing.

IntelliSense,	which	pops	up	help	on	every	method	and
function	call	as	you	type.

Dynamic,	context-sensitive	help,	which	allows	you	to	view
topics	and	samples	relevant	to	the	code	you	are	writing	at
the	moment.

Immediate	flagging	of	syntax	errors	(e.g.,	missing
characters,	misplaced	braces,	etc.),	which	allows	you	to	fix
problems	as	they	are	entered.

The	ability	to	compile	and	test	programs	right	in	the	IDE.

A	built-in	task	list	to	keep	track	of	changes	you	need	to
make.

A	Start	Page	that	provides	easy	access	to	new	and	existing
projects.

Customization	capability,	which	allows	you	to	set	user
preferences	for	IDE	appearance	and	behavior.

One	VS.NET	feature	will	be	so	important	to	you,	even	as	a
VB.NET	novice,	that	it	actually	merits	its	own	chapter:	An
integrated	debugger,	which	enables	you	to	step	through	code,
observe	program	runtime	behavior,	and	set	breakpoints,	even
across	multiple	languages.	The	debugger	is	considered	in	detail
in	Chapter	10.

In	addition	to	these	basic	capabilities,	VS.NET	provides	a
number	of	advanced	features	that	will	simplify	the	development
process.	These	features	include:

Convenient	access	to	multiple	design	and	code	windows.

WYSIWYG	(What	You	See	Is	What	You	Get)	visual	design	of
Windows	forms	and	web	forms.

An	HTML	editor,	which	provides	both	Design	and	HTML
views	that	update	each	other	in	real	time.

A	Solution	Explorer,	which	displays	all	the	files	that	make
up	your	solution	(a	collection	of	projects)	in	a	hierarchical
format.

A	Server	Explorer,	which	allows	you	to	log	on	to	servers	to
which	you	have	network	access,	access	the	data	and
services	on	those	servers,	and	perform	a	variety	of	other
chores.

Integrated	support	for	source	control	software.

Many	of	these	advanced	features	are	covered	in	detail	in
Programming	ASP.NET	and	Programming	.NET	Windows
Applications	(both	books	cowritten	by	Jesse	Liberty	and	Dan
Hurwitz,	published	by	O'Reilly).

Robert	Heinlein	said	"TANSTAAFL:	There	ain't	no	such	thing	as

a	free	lunch."[1]	While	Visual	Studio	.NET	can	save	you	a	lot	of
grunt	typing	(and	in	general	greatly	facilitate	and	accelerate
the	development	process),	on	the	negative	side	the
automatically	generated	code	can	obscure	what	is	really
necessary	to	create	good	working	applications.	It	is	sometimes
difficult	to	know	how	Visual	Studio	.NET	accomplishes	its
legerdemain.	Similarly,	the	proliferation	of	mysteriously	named
files	across	your	filesystem	can	be	disconcerting	when	all	you
want	to	do	is	a	simple	housekeeping	chore,	like	rename	a	minor
part	of	the	project.

Since	most	of	the	applications	we'll	build	in	this	book	are
console	applications	designed	to	illustrate	the	basics	of	the
language,	very	little	obscuring	code	will	be	produced.	When
you	go	on	to	create	Windows	and	web	applications,	however,
you'll	want	to	learn	to	sort	through	the	code	Visual	Studio	.NET
generates	in	order	to	focus	on	the	logic	of	your	program.

The	current	chapter	cannot	possibly	teach	you	everything
about	Visual	Studio	.NET;	it	is	far	too	large	and	complex	an
application.	What	this	chapter	does	is	give	you	the	basics	for
getting	started	and	also	point	out	some	of	the	possible	pitfalls.

Tip
Keep	in	mind	that	there's	no	way	to	familiarize	you
with	some	of	these	features	without	wading	into	some
slightly	deeper	waters	of	VB.NET	programming,
which	will	likely	be	a	bit	cloudy	to	you	at	this	stage.
As	you	get	deeper	into	the	book	and	learn	more	about
the	language,	your	understanding	of	VB.NET	will
become	clearer.

Start	Page
The	Start	Page	is	the	first	thing	you	see	when	you	open	Visual
Studio	.NET	(unless	you	configure	it	otherwise).	From	here	you
can	create	new	projects	or	open	a	project	you	worked	on	in	a

previous	session.	You	can	also	find	out	what	is	new	in	.NET,
access	.NET	newsgroups	and	web	sites,	search	for	help	online,
download	useful	code,	or	adjust	Visual	Studio	.NET	to	your
personal	requirements.	Figure	4-1	shows	a	typical	Start	Page.

Figure	4-1.	Start	Page

Along	the	top	of	the	application	window	is	a	set	of	menus	and
buttons.	These	menus	and	buttons	are	context-sensitive	(i.e.,
they	will	change	as	the	current	window	changes).

Along	the	left	side	of	the	window	is	a	series	of	links	to	other
resources,	such	as	new	developments	and	events	in	the	.NET
community,	the	MSDN	online	library,	and	free	sample
applications.

Projects	and	Solutions

A	VB.NET	program	is	built	from	source	files,	text	files
containing	the	code	you	write.	Source	code	files	are	named
with	the	.vb	extension.	The	helloworld.vb	file	you	created	in	Chapter
2	is	a	typical	example.

A	typical	Visual	Studio	.NET	application	can	have	a	number	of

other	files	(e.g.,	assembly	information	files,	references,	icons,
data	connections,	etc.).	VS.NET	organizes	these	files	into	a
container	called	a	project.

Visual	Studio	.NET	provides	two	types	of	containers	for	your
source	code,	folders,	files,	and	related	material:	the	project	and
the	solution.	A	project	is	a	set	of	files	that	work	together	to
create	an	executable	program	(.exe)	or	a	dynamic	link	library
(.dll).	Large,	complex	projects	may	consist	of	multiple	.dll	files
called	modules.

A	solution	is	a	set	of	one	or	more	related	projects.	Each	time
you	create	a	new	project,	Visual	Studio	.NET	will	either	add	it
to	an	existing	solution	or	create	a	new	solution.

Solutions	are	defined	within	a	file	named	for	the	solution	and
have	the	extension	.sln.

Tip
The	.sln	file	contains	metadata,	which	is	basically
information	about	the	data.	The	metadata	describes
the	projects	that	compose	the	solution	and
information	about	building	the	solution.	Visual	Studio
.NET	also	creates	a	file	with	the	same	base	name	as
the	.sln	file,	but	with	the	filename	extension	.sou	(e.g.,	
mySolution.sln	and	mySolution.sou).	The	.sou	file	contains
metadata	used	to	customize	the	IDE.

There	are	a	number	of	ways	to	open	an	existing	solution.	The
simplest	is	to	select	Open	Project	from	the	Start	menu	(which
will	open	a	project	and	its	enclosing	solution).	Alternatively,
you	can	open	a	solution	in	Visual	Studio	.NET	just	by	double-
clicking	the	.sln	file	in	Windows	Explorer.

Typically,	the	build	process	results	in	the	contents	of	a	project
being	compiled	into	an	executable	(.exe)	file	or	a	dynamic	link
library	(.dll)	file.	This	book	focuses	on	creating	executable	files.

Tip
The	metadata	describing	the	project	is	contained	in	a
file	named	after	the	project	with	the	extension
.vbproj.	The	project	file	contains	version	information,
build	settings,	and	references	to	other	source	files	to
include	as	part	of	the	project.

Templates

When	you	create	a	new	project,	you	get	the	New	Project	dialog
box,	shown	in	Figure	4-2.

Figure	4-2.	New	Project	dialog	lets	you	choose	a	project	template

In	the	New	Project	dialog,	you	select	the	project	type	(in	the
lefthand	pane)	and	the	template	(in	the	right).	There	are	a
variety	of	templates	for	each	project	type.	A	template	is	a	file
that	Visual	Studio	.NET	uses	to	set	up	the	initial	state	of	your
project.

For	the	examples	in	this	book,	you'll	always	choose	Visual	Basic
Projects	for	the	project	type,	and	in	most	cases,	you'll	choose
Console	Application	as	the	template.	Specify	the	name	of	the

directory	in	which	your	project	will	be	stored	(any	directory
you	like).	At	this	point,	you	can	also	name	your	project.	For	the
purposes	of	example,	enter	the	name	HelloWorld.

Note
Project	names	can	contain	any	standard	characters,
except	leading	or	trailing	spaces,	Windows	or	DOS
keywords,	and	any	of	the	following	special
characters:
#	%	&	*	|	\	:	"	<	>	?	/

[1]	Robert	A.	Heinlein,	The	Moon	Is	a	Harsh	Mistress	(St.
Martin's	Press).

Inside	the	Integrated	Development	Environment
(IDE)
The	Visual	Studio	.NET	IDE	is	centered	around	an	editor.	An
editor	is	much	like	a	word	processor,	except	that	it	produces
simple	text	(i.e.,	without	formatting,	such	as	bold,	italics,	etc.).
As	you	may	recall,	source	code	files	are	simple	text	files.

The	Visual	Studio	.NET	IDE	also	provides	support	for	building
GUIs,	which	are	integral	to	Windows	and	web	projects.	The
following	pages	introduce	some	of	the	key	features	of	the	IDE.

Layout

The	IDE	is	a	Multiple	Document	Interface	(MDI)	application.
There	is	a	main	window,	and	within	the	main	window	are	a
number	of	smaller	windows.	The	central	window	is	the	text
editing	window.	Figure	4-3	shows	the	basic	layout.

Figure	4-3.	The	IDE

To	the	left	of	the	editing	window	are	a	number	of	tabbed
windows	that	contain	tools	used	when	creating	Windows	and

web	applications.	To	the	right	of	the	editing	window	is	a
window	called	the	Solution	Explorer.	This	window	shows	the
files	in	the	current	project	and	the	solution	to	which	the	project
belongs.

In	the	lower-right	corner	is	the	dynamic	help	window.	In	the
lower-left	corner	are	a	number	of	tabbed	windows,	including
the	task	list.	The	IDE	will	add	tasks	to	this	list	when	your
program	has	errors	that	must	be	fixed,	and	you	can	add	tasks
of	your	own	to	assist	you	in	remembering	what	work	remains	to
be	done.

All	of	these	windows	are	resizable	and	dockable,	and	many
windows	share	space	by	using	tabs.	They	can	be	resized	by
placing	the	mouse	cursor	over	the	edge	you	want	to	move.	The
cursor	will	change	to	a	double	arrow	resizing	cursor,	at	which
point	you	can	drag	the	window	edge	one	way	or	the	other.

The	Visual	Studio	.NET	window	has	a	titlebar	across	the	top,
with	menus	below.	Under	the	menus	are	toolbars	with	buttons
that	duplicate	many	of	the	common	menu	commands.	Nearly
everything	that	can	be	done	through	menus	can	also	be	done
with	context-sensitive	pop-up	menus,	as	described	shortly.

By	default,	the	toolbars	are	docked	along	the	top	of	the
window.	As	with	many	Windows	applications,	they	can	be
undocked	and	moved	to	other	locations,	either	left	free-floating
or	docked	along	other	window	edges.	You	move	the	toolbars	by
grabbing	them	with	the	mouse	and	dragging	them	where	you
want.

Right-clicking	on	the	titlebar	of	a	dockable	window	pops	up	a
menu	with	three	mutually	exclusive	check	items	that	let	you
customize	the	behavior	of	the	window:

Dockable

Specifies	that	the	window	can	be	dragged	and	docked
along	any	side	of	the	Visual	Studio	.NET	window.

along	any	side	of	the	Visual	Studio	.NET	window.

Hide

Makes	the	window	disappear,	temporarily.	To	see	the
window	again—that	is,	to	unhide	it—use	the	View	item	on
the	main	menu.	(The	Pushpin	icon,	described	shortly,	also
affects	this	behavior.)

Floating

Specifies	that	the	window	will	not	dock	when	dragged
against	the	edge	of	the	VS.NET	window.	Then	the	floating
window	can	be	placed	anywhere	on	the	desktop,	even
outside	the	VS.NET	window.

In	the	upper-right	corner	of	the	main	IDE	window	are	two
icons:

Pushpin

This	icon	toggles	the	AutoHide	property	of	the	window.
When	the	pushpin	is	pointing	down,	the	window	is	pinned
in	place—that	is,	AutoHide	is	turned	off.	Moving	the	cursor
off	the	window	will	not	affect	its	visibility.

When	the	pushpin	is	pointing	sideways,	AutoHide	is	turned
on.	Moving	the	cursor	off	the	window	hides	the	window.	To
see	the	window	again,	hover	(or	click)	on	the	tab	that	is
now	visible	along	the	edge	where	the	window	had	been
docked.

X

The	standard	"close	window"	icon.

IntelliSense
Underlying	the	IDE	is	Microsoft's	IntelliSense	technology,
which	puts	help	and	editing	assistance	(including	code
completion)	instantly	at	your	disposal.	IntelliSense	makes
programmers'	lives	much	easier.	It	provides	real-time,	context-
sensitive	help	that	appears	right	under	your	cursor.

For	example,	in	the	Hello	World	code	shown	in	Chapter	2,	you
called	the	WriteLine()	method	for	the	Console	object.	If	you
write	this	code	in	VS.NET,	the	pop-up	help	will	show	you	every
available	method	of	the	Console	object	as	soon	as	you	type	the
dot	(.),	as	shown	in	Figure	4-4.	And	if	you	begin	to	type	a
method—say	you	enter	the	letters	"Wr"—IntelliSense	jumps	to
the	first	method	that	matches	what	you've	typed	so	far.

Figure	4-4.	Pop-up	code	completion

Once	you	enter	the	method	you	want	to	call,	Microsoft's	pop-up
help	shows	you	the	various	versions	of	the	method	and	helps
you	determine	the	parameters	you'll	need,	as	illustrated	in
Figure	4-5.

Figure	4-5.	Pop-up	help

Code	completion	automatically	completes	your	thoughts	for
you,	drastically	reducing	your	typing.	Drop-down	lists	provide

you,	drastically	reducing	your	typing.	Drop-down	lists	provide
all	methods	and	properties	possible	in	the	current	context,
making	them	available	at	a	keystroke	or	mouse	click.

Building	and	Running
You	can	run	your	application	at	any	time	by	selecting	either
Start	or	Start	Without	Debugging	from	the	Debug	menu,	or	you
can	accomplish	the	same	results	by	pressing	either	F5	or
Ctrl+F5,	respectively.	You	can	also	start	the	program	by
clicking	the	Start	icon	(pictured	in	Figure	4-6)	on	the	Standard
toolbar.

Figure	4-6.	The	Start	icon

For	console	applications,	the	advantage	of	running	the
program	with	Ctrl+F5	is	that	Visual	Studio	.NET	will	open	your
application	in	a	console	window,	display	its	results,	and	then
add	a	line	to	press	a	key	when	you	are	ready,	as	shown	in
Figure	4-7.	This	keeps	the	window	open	until	you've	seen	the
results	and	pressed	a	key,	at	which	point	the	window	will	close.

Figure	4-7.	Running	the	application

For	More	Information
This	brief	overview	of	Visual	Studio	.NET	was	intended	to
familiarize	you	with	the	tool.	There	is	a	great	deal	more	to
know	about	this	tool,	but	most	of	it	will	not	be	relevant	to
creating	the	simple	applications	in	this	book.

The	best	way	to	learn	about	the	power	and	scope	of	Visual
Studio	.NET	is	to	use	it	and	to	explore	its	various	nooks	and
crannies.	Try	right-clicking	in	various	places	and	explore	the
context-sensitive	pop-up	menus	as	well.

As	you	make	your	way	through	the	book,	you'll	see	various
helpful	features	of	Visual	Studio	.NET	highlighted.	All	of	these
tips	should	make	programming	in	VB.NET	easier	for	you.	The
application's	online	help	files	(MSDN)	provide	extensive
additional	support.

Chapter	5.	VB.NET	Language	Fundamentals
Chapter	2	demonstrates	a	very	simple	VB.NET	program	that
prints	the	text	string	"Hello	world!"	to	the	console	screen	and
provides	a	line-by-line	analysis	of	that	program.	However,	even
that	very	simple	program	was	complex	enough	that	some	of	the
details	had	to	be	skipped	over.	The	current	chapter	begins	an
in-depth	exploration	of	the	syntax	and	structure	of	the	VB.NET
language.

Types
Every	object	you	create	or	use	in	a	VB.NET	program	must	have
a	specific	type	(e.g.,	you	must	declare	the	object	to	be	an
integer	or	a	string	or	a	Dog	or	a	Button).	The	type	tells	the
compiler	how	big	the	object	is	and	what	it	can	do.

Types	come	in	two	flavors:	those	that	are	built	into	the
language	(intrinsic	types)	and	types	you	create	(classes,
structs,	and	interfaces,	discussed	in	Chapter	8,	Chapter	12,	and
Chapter	13,	respectively).	VB.NET	offers	a	number	of	intrinsic
types,	shown	in	Table	5-1.

Table	5-1.	The	intrinsic	types

Type
Size
(in

bytes)
.NET
type Description

Boolean 1 Boolean True	or	false.

Byte 1 Byte Unsigned	(values	0-255).

Char 2 Char Unicode	characters.

Date
8 DateTime Midnight	1/1/0001	through

11:59:59	12/31/9999.

Decimal 12 Decimal

Fixed-precision	numbers	up	to	28
digits	and	the	position	of	the
decimal	point;	typically	used	in
financial	calculations;	requires	the
suffix	"m"	or	"M."

Double 8 Double

Double-precision	floating-point
numbers;	holds	the	values	from
approximately	+/-5.0	*	10-324	to
approximately	+/-1.8	*	10308	with
15-16	significant	figures.

Integer 4 Int32 Integer	values	between
-2,147,483,648	and	2,147,483,647.

Long 8 Int64
Integers	ranging	from
-9,223,372,036,854,775,808	to
9,223,372,036,854,775,807.

Short 2 Int16 Integer	values	-32,768	to	32,767.

Single 4 Single

Floating-point	numbers;	holds	the
values	from	approximately	+/-1.5	*

Single 4 Single values	from	approximately	+/-1.5	*
10-45	to	approximate	+/-3.4	*	1038
with	7	significant	figures.

String String A	sequence	of	Unicode	characters.

Each	type	has	a	name	(e.g.,	Integer)	and	a	size	(e.g.,	4	bytes).
The	size	tells	you	how	many	bytes	each	object	of	this	type
occupies	in	memory.	An	Integer,	for	example,	is	four	bytes	big.
(User-defined	types	also	have	a	size,	measured	as	the	sum	of	all
their	member	variables.)	Programmers	generally	don't	like	to
waste	memory	if	they	can	avoid	it,	but	with	the	cost	of	memory
these	days,	you	can	afford	to	be	mildly	profligate	if	doing	so
simplifies	your	program.	The	description	field	of	Table	5-1	tells
you	the	minimum	and	maximum	values	you	can	hold	in	objects
of	each	intrinsic	type.

Tip
Each	VB.NET	type	corresponds	to	an	underlying	.NET
type.	Thus,	what	VB.NET	calls	an	Integer,	.NET	calls
an	INT32.	This	is	interesting	only	if	you	care	about
sharing	objects	across	languages.

When	programmers	talk	about	what	an	object	can	do,	they
typically	mean	the	methods	of	the	object.	Intrinsic	types	have
implicit	methods	and	they	can't	do	much.	You	can	use	them	to
add	two	numbers	together,	and	they	can	display	their	values	as
strings.	User-defined	types	can	do	a	lot	more;	their	abilities	are
determined	by	the	methods	you	create,	as	discussed	in	detail	in
Chapter	9.

Objects	of	an	intrinsic	type	are	called	variables.	Variables	are
discussed	in	detail	later	in	this	chapter.

Numeric	Types

Most	of	the	intrinsic	types	are	used	for	working	with	numeric
values:	Byte,	Decimal,	Double,	Integer,	Long,	Short,	and
Single.

The	types	can	be	classified	either	as	those	used	for	integer
values	(whole	numbers)	and	those	used	for	fractional	values
(rational	numbers).	The	Byte,	Integer,	Long,	and	Short	types	all
hold	whole	number	values.[1]	(The	Byte	type	is	not	used	very
often	and	won't	be	discussed	in	this	book.)

Typically	you	decide	which	size	integer	to	use	(Integer,	Long,
or	Short)	based	on	the	magnitude	of	the	value	you	want	to
store.	For	example,	a	Short	can	only	hold	values	from	-32,768
to	32,767,	while	an	Integer	can	hold	values	from
-2,147,483,648	through	2,147,483,647.

That	said,	memory	is	fairly	cheap,	and	programmer	time	is
increasingly	expensive;	most	of	the	time	you'll	simply	declare
your	variables	to	be	of	type	Integer,	unless	there	is	a	good
reason	to	do	otherwise.

Among	the	types	that	hold	fractional	values,	the	Single,
Double,	and	Decimal	types	offer	varying	degrees	of	size	and
precision.	For	most	uses,	Single	will	suffice.	If	you	need	to	hold
a	really	big	fractional	number,	you	might	use	a	Double.	The
Decimal	value	type	was	added	to	the	language	to	support
accounting	applications.	Note	that	the	compiler	assumes	that
any	number	with	a	decimal	point	is	a	Double	unless	you	tell	it
otherwise.	How	you	tell	it	otherwise	is	explained	in	Section	5.2,
later	in	this	chapter.

Non-Numeric	Types:	Boolean,	Char,	Date,	and
String

In	addition	to	the	numeric	types,	the	VB.NET	language	offers
four	other	types:	Boolean,	Char,	Date,	and	String.

A	Boolean	value	is	a	value	that	is	either	true	or	false.[2]	Boolean
values	are	used	frequently	in	VB.NET	programming	as	you'll
see	throughout	this	book.	Virtually	every	comparison	(e.g.,	is
myDog	bigger	than	yourDog?)	results	in	a	Boolean	value.

The	Char	type	is	used	from	time	to	time	when	you	need	to	hold
a	single	character.	The	Char	type	can	represent	a	simple
character	(e.g.,	A),	a	Unicode	character	(\u0041),	or	an	escape
character	enclosed	by	single	quote	marks	('\n').	You'll	see
Chars	used	in	this	book,	and	their	use	will	be	explained	in
context.

The	Date	type	is	used	to	hold	date	and	time	values.	This	type	is
most	useful	when	working	with	a	database	from	which	you
might	extract	date-time	values.

The	String	type	is	used	to	hold	a	series	of	text	characters.
Chapter	16	discusses	the	use	of	Strings	in	detail.

Types	and	Compiler	Errors

When	you	create	a	program	using	VB.NET,	you	can	specify	that
the	type	of	all	variables	must	be	declared	before	they	are	used.
It	is	generally	considered	to	be	good	programming	practice	to
do	so.	You	require	that	variables	must	be	typed	by	including
the	following	line	at	the	top	of	your	source	code	file:
Option	Explicit	On

It	is	also	a	good	idea	to	specify	that	VB.NET	behave	as	a
strongly	typed	language.	This	means	that	the	compiler	will
verify	that	each	declared	type	is	the	proper	type	for	the	object
in	question.	In	order	to	make	VB.NET	behave	as	a	strongly
typed	language,	you	would	also	add	the	following	line	to	the
top	of	your	source	code:
Option	Strict	On

Note
Thus,	by	implication,	most	well-designed	VB.NET
programs	will	begin	with	the	following	two	lines:
Option	Explicit	On

Option	Strict	On

When	VB.NET	is	strictly	typed,	the	compiler	will	complain	if
you	try	to	use	a	type	improperly.	This	compiler	check	provides
important	assistance	when	you're	developing	code.	The
compiler	complains	in	one	of	two	ways:	it	issues	a	warning	or	it
issues	an	error.

Tip
You	are	well	advised	to	treat	warnings	as	errors.	That
is,	you	ought	to	stop	what	you	are	doing	and	figure
out	why	there	is	a	warning	and	fix	the	problem.	Never
ignore	a	compiler	warning.

Programmers	talk	about	design	time,	compile	time,	and	run
time.	Design	time	is	when	you	are	designing	the	program.
Compile	time	is	when	you	compile	the	program,	and	run	time	is
(surprise!)	when	you	run	the	program.

The	earlier	you	unearth	a	bug,	the	better.	It	is	better	(and
cheaper)	to	discover	a	bug	in	your	logic	at	design	time	than
later.	Likewise,	it	is	better	(and	cheaper)	to	find	bugs	in	your
program	at	compile	time	than	at	run	time.	Not	only	is	it	better;
it	is	more	reliable.	A	compile-time	bug	will	fail	every	time	you
run	the	compiler,	but	a	runtime	bug	can	hide.	Runtime	bugs
slip	under	a	crack	in	your	logic	and	lurk	there	(sometimes	for
months),	biding	their	time,	waiting	to	come	out	when	it	will	be
most	expensive	(or	most	embarrassing)	to	you.

It	will	be	a	constant	theme	of	this	book	that	you	want	the
compiler	to	find	bugs.	The	compiler	is	your	friend.	The	more
bugs	the	compiler	finds,	the	fewer	bugs	your	users	will	find.
Using	Option	Strict	On	to	make	VB.NET	strictly	typed	helps	the
compiler	find	bugs	in	your	code.	Here's	how:	suppose	you	tell

the	compiler	that	Milo	is	of	type	Dog.	Sometime	later	you	try	to
use	Milo	to	display	text.	Oops,	Dogs	don't	display	text.	Your
compiler	will	stop	with	an	error:
Dog	does	not	contain	a	definition	for	`showText'

Very	nice.	Now	you	can	figure	out	if	you	used	the	wrong	object
or	you	called	the	wrong	method.

VS.NET	actually	finds	the	error	even	before	the	compiler	does.
When	you	try	to	add	a	method,	IntelliSense	pops	up	a	list	of
valid	methods	to	help	you,	as	shown	in	Figure	5-1.

Figure	5-1.	IntelliSense

When	you	try	to	add	a	method	that	does	not	exist,	it	won't	be	in
the	list.	That	is	a	pretty	good	clue	that	you	are	not	using	the
object	properly.

[1]	Remember,	the	Y2K	problem	was	caused	by	programmers
who	couldn't	imagine	needing	to	reference	a	year	later	than
1999.

[2]	The	Boolean	type	was	named	after	George	Boole	(1815-
1864),	an	English	mathematician	who	published	An
investigation	into	the	Laws	of	Thought,	on	Which	are	founded
the	Mathematical	Theories	of	Logic	and	Probabilities	and	thus
created	the	science	of	Boolean	algebra.

Variables
A	variable	is	an	object	that	can	hold	a	value:
Dim	myVariable	As	Integer	=	15

In	this	example,	myVariable	is	an	object/variable	of	type
Integer.	You	can	assign	values	to	that	object,	and	then	you	can
extract	those	values	later.	You	initialize	a	variable	by	writing	a
definition	and	then	assigning	a	value	to	that	variable.	The
previous	code	line	defines	myVariable	and	initializes	it	with	the
value	15.	The	syntax	for	defining	a	variable	is	as	follows:
access-modifier	

												identifier	As	type	[=	value]

Access	modifiers	are	discussed	in	Chapter	8;	for	now	you'll	use	
Dim.

Tip
The	keyword	Dim	is	short	for	dimension.	This	term
dates	back	to	the	early	days	of	Basic	programming
and	is	essentially	vestigial.

An	identifier	is	just	an	arbitrary	name	for	a	variable,	method,
class,	or	other	element.	In	this	case,	the	variable's	identifier	is
myVariable.	The	keyword	As	signals	that	the	term	that	follows	is
the	type,	in	this	case	Integer.

Specifying	Type	with	a	Character

Rather	than	using	a	word	to	specify	a	variable's	type,	you	can
append	a	single	character	that	corresponds	to	the	type	to	the
variable's	name.

Tip
While	type	characters	were	preserved	in	the	Visual
Basic	.NET	language	for	continuity	with	VB6,	many
developers	feel	they	should	be	avoided	and	that

developers	feel	they	should	be	avoided	and	that
spelling	out	the	type	makes	for	clearer,	easier-to-
maintain	code.

For	example,	rather	than	writing	As	Integer,	you	can	use	the	suffix
%,	which	has	the	same	meaning.	Thus,	the	following	two	lines
are	equivalent:
Dim	myVariable	As	Integer

Dim	myVariable%

Not	every	type	has	a	corresponding	character,	but	you	are	free
to	use	the	corresponding	character	for	those	types	that	do.	The
complete	set	is	shown	in	Table	5-2.

Table	5-2.	Type	characters

Type Type	character Usage

Decimal @ Dim	decimalValue@	=	123.45

Double # Dim	doubleValue#	=	3.14159265358979

Integer % Dim	integerValue%	=	1

Long & Dim	longValue&	=	123456789

Single ! Dim	singleValue!	=	3.1415

String $ Dim	stringValue$	=	"Hello	world!"

Initializing	Variables

You	can	define	variables	without	initializing	them:
Dim	myVariable	As	Integer

You	can	then	assign	a	value	to	myVariable	later	in	your
program:
Dim	myVariable	As	Integer

'some	other	code	here

myVariable	=	15		'assign	15	to	myVariable

You	can	also	change	the	value	of	a	variable	later	in	the
program.	That	is	why	they're	called	variable;	their	values	vary.
Dim	myVariable	As	Integer

'some	other	code	here

myVariable	=	15		'assign	15	to	myVariable

'some	other	code	here

myVariable	=	12		'now	it	is	12

Technically,	a	variable	is	a	named	storage	location	(i.e.,	stored
in	memory)	with	a	type.	After	the	final	line	of	code	in	the
previous	example,	the	value	12	is	being	stored	in	the	named
location	myVariable.

Example	5-1	illustrates	the	use	of	variables.	To	test	this
program,	open	VS.NET	and	create	a	console	application.	Type
in	the	code	as	shown.

Example	5-1.	Using	variables

Module	Module1

			Sub	Main()

						Dim	myInt	As	Integer	=	7

						Console.WriteLine("Initialized	myInt:	{0}",	myInt)

						myInt	=	5

						Console.WriteLine("After	assignment	myInt:	{0}",	myInt)

			End	Sub

End	Module

Output:
Initialized	myInt:	7

After	assignment	myInt:	5

WriteLine()

The	.NET	Framework	provides	a	useful	method	for	displaying
output	on	the	screen	in	console	applications:
System.Console.WriteLine().	How	you	use	this	method	will
become	clearer	as	you	progress	through	the	book,	but	the
fundamentals	are	straightforward.	You	call	the	method,
passing	in	a	string	that	you	want	printed	to	the	console	(the
screen),	as	in	the	Hello	World	application	in	Chapter	2.

You	can	also	pass	in	substitution	parameters.	A	substitution
parameter	is	just	a	place	holder	for	a	value	you	want	to
display.	For	example,	you	might	pass	in	the	substitution
parameter	{0}	and	then	when	you	run	the	program	you'll
substitute	the	value	held	in	the	variable	myVariable,	so	that	its
value	is	displayed	where	the	parameter	{0}	appears	in	the
WriteLine()	statement.

Here's	how	it	works.	You	place	a	number	between	braces:

System.Console.WriteLine("After	assignment,	myVariable:	{0}",	myVariable)

Notice	that	you	follow	the	quoted	string	with	a	comma	and
then	a	variable	name.	The	value	of	the	variable	will	be
substituted	into	the	parameter.	Assuming	myInt	has	the	value
15,	the	statement	shown	previously	causes	the	following	to
display:

After	assignment,	myVariable:	15

If	you	have	more	than	one	parameter,	the	variable	values	will
be	substituted	in	order,	as	in	the	following:

System.Console.WriteLine("After	assignment,	myVariable:	{0}	and

myOtherVariable:	{1}",	myVariable,	myOtherVariable);

Assuming	myVariable	has	the	value	15,	and	myOtherVariable
has	the	value	20,	this	will	cause	the	following	to	display:

has	the	value	20,	this	will	cause	the	following	to	display:

After	assignment,	myVariable:	15	and	myOtherVariable:	20.

You'll	see	a	great	deal	more	about	WriteLine()	in	coming
chapters.

Example	5-1	initializes	the	variable	myInt	to	the	value	7,
displays	that	value,	reassigns	the	variable	with	the	value	5,	and
displays	it	again.

Default	Values

VB.NET	does	not	require	that	you	initialize	your	variables
(though	it	is	a	very	good	idea	to	discipline	yourself	to	do	so).	If
you	do	not	initialize	your	variable,	it	will	be	set	to	a	default
value,	as	shown	in	Table	5-3.

Table	5-3.	Default	values	for	uninitialized	variables

Datatype Default	value

All	numeric	types	(Byte,	Decimal,	Double,	Integer,	Long,	
Short,	Single)

0

Boolean False

Date
01/01/0001	12:00:00	

AM

Object Nothing

String
""	(zero-length	

String
""	(zero-length	

string)

Tip
Object	defaults	to	Nothing.	The	Nothing	keyword	indicates
that	the	variable	is	not	associated	with	any	object.
You	can	assign	Nothing	to	an	object	of	any	type,	and	the
default	value	will	be	assigned	to	that	object.

Constants
Variables	are	a	powerful	tool,	but	there	are	times	when	you
want	to	manipulate	a	defined	value,	one	whose	value	you	want
to	ensure	remains	constant.	A	constant	is	like	a	variable	in	that
it	can	store	a	value.	However,	unlike	with	a	variable,	the	value
of	a	constant	cannot	be	changed	while	the	program	runs.

For	example,	you	might	need	to	work	with	the	Fahrenheit
freezing	and	boiling	points	of	water	in	a	program	simulating	a
chemistry	experiment.	Your	program	will	be	clearer	if	you
name	the	variables	that	store	these	values	FreezingPoint	and
BoilingPoint,	but	you	do	not	want	to	permit	their	values	to	be
changed	while	the	program	is	executing.	The	solution	is	to	use
a	constant.	Constants	come	in	three	flavors:	literals,	symbolic
constants,	and	enumerations.

Literal	Constants

A	literal	constant	is	just	a	value.	For	example,	32	is	a	literal
constant.	It	does	not	have	a	name;	it	is	just	a	literal	value.	And
you	can't	make	the	value	32	represent	any	other	value.	The
value	of	32	is	always	32.	You	can't	assign	a	new	value	to	32;
and	you	can't	make	32	represent	the	value	99	no	matter	how
you	might	try.

When	you	write	an	integer	as	a	literal	constant,	you	are	free
just	to	write	the	number.	The	characters	32	make	up	a	literal
constant	for	the	Integer	value	32,	and	you	can	assign	them
accordingly:
Dim	myValue	As	Integer	=	32		'assign	the	literal	value	32

If	you	want	to	assign	a	different	type,	however,	you	will	want	to
use	the	correct	format.	For	example,	to	designate	the	value	32
as	a	Double	(rather	than	as	an	Integer),	you	will	append	the
character	R,	as	in	the	following:

32R	'	the	double	value	32

The	complete	list	of	literal	formats	is	shown	in	Table	5-4.

Table	5-4.	Literal	formats

Type Literal Example

Boolean True,	False
Dim	booleanValue	As	Boolean	

=	True

Char C
Dim	charValue	As	Char	=	

"J"C

Decimal D
Dim	decimalValue	As	Decimal	

=	3.1415D

Double Any	floating	point	number,	or	R

Dim	doubleValue	As	Double	=	

3.1415

Dim	doubleValue	As	Double	=	

3.1415R

Dim	doubleValue	As	Double	=	

5R

Integer Any	integer	value	in	range,	or	I
Dim	integerValue	As	Integer	

=	100

Dim	integerValue	As	Integer	

=	100I

Long
Any	integer	value	outside	the	range
of	type	Integer	or	L

Dim	longValue	As	Long	=	

5000000000

Dim	longValue	As	Long	=	

100L

Short S
Dim	shortValue	As	Short	=	

Short S
Dim	shortValue	As	Short	=	

100S

Single F Dim	singleValue	As	Single	=	

3.14F

String ""
Dim	stringValue	As	String	=	

"Hello	world!"

Symbolic	Constants

Symbolic	constants	assign	a	name	to	a	constant	value.	You
declare	a	symbolic	constant	using	the	following	syntax:
access-modifier	Const	identifier	As	type	

															=	value;

Access	modifiers	are	discussed	in	Chapter	8;	for	now	you	will
use	public.

The	Const	keyword	is	followed	by	an	identifier	(the	name	of	the
constant),	the	as	keyword,	the	type	of	the	constant	(e.g.,
Integer),	then	the	assignment	operator	(=),	and	the	value	with
which	you'll	initialize	the	constant.	This	is	similar	to	declaring	a
variable,	except	that	you	start	with	the	keyword	Const	and
symbolic	constants	must	be	initialized.	Once	initialized	a
symbolic	constant	cannot	be	altered.	For	example,	in	the
following	declaration,	32	is	a	literal	constant	and	FreezingPoint
is	a	symbolic	constants	of	type	Integer:
Public	Const	FreezingPoint	As	Integer	=	32

Example	5-2	illustrates	the	use	of	symbolic	constants.

Example	5-2.	Symbolic	constants

Module	Module1

			Sub	Main()

						Const	FreezingPoint	As	Integer	=	32	'	degrees	Farenheit

						Const	BoilingPoint	As	Integer	=	212

						System.Console.WriteLine("Freezing	point	of	water:	{0}",	FreezingPoint)

						System.Console.WriteLine("Boiling	point	of	water:	{0}",	BoilingPoint)

	

						'FreezingPoint	=	0

			End	Sub

End	Module

Example	5-2	creates	two	symbolic	integer	constants:
FreezingPoint	and	BoilingPoint.	See	the	sidebar	Naming
Conventions	for	a	discussion	of	how	to	name	symbolic
constants.

Naming	Conventions

Microsoft	has	promulgated	white	papers	on	how	you	should
name	the	variables,	constants,	and	other	objects	in	your
program.	They	define	two	types	of	naming	conventions:	Camel
notation	and	Pascal	notation.

In	Camel	notation,	names	begin	with	a	lowercase	letter.
Multiword	names	(e.g.,	"my	button")	are	written	with	no
spaces	and	no	underscore	and	with	each	word	after	the	first
capitalized.	Thus,	the	correct	name	for	"my	button"	is
myButton.

Pascal	notation	is	just	like	Camel	notation	except	that	the	first
letter	is	also	uppercase	(e.g.,	FreezingPoint).

Microsoft	suggests	that	variables	be	written	with	Camel
notation	and	constants	with	Pascal	notation.	In	later	chapters,
you'll	learn	that	member	variables	and	methods	are	named
using	Camel	notation,	while	classes	are	named	using	Pascal
notation.

These	constants	serve	the	same	purpose	as	using	the	literal
values	32	and	212,	for	the	freezing	and	boiling	points	of	water,

respectively,	in	expressions	that	require	them.	However,
because	the	constants	have	names,	they	convey	far	more
meaning.	Also,	if	you	decide	to	switch	this	program	to	Celsius,
you	can	reinitialize	these	constants	at	compile	time	to	0	and
100,	respectively;	and	all	the	rest	of	the	code	should	continue
to	work.

To	prove	to	yourself	that	the	constant	cannot	be	reassigned,	try
uncommenting	the	third	from	the	last	line	of	the	preceding
program	(it	appears	in	bold),	by	removing	the	quote	mark:
FreezingPoint	=	0

Then	when	you	recompile,	you'll	receive	this	error:
Constant	cannot	be	the	target	of	a	reassignment

Enumerations

Enumerations	provide	a	powerful	alternative	to	literal	or
simple	symbolic	constants.	An	enumeration	is	a	distinct	value
type,	consisting	of	a	set	of	named	constants	(called	the
enumerator	list).

In	Example	5-2,	you	created	two	related	constants:
Const	FreezingPoint	As	Integer	=	32	'	degrees	Farenheit

Const	BoilingPoint	As	Integer	=	212

You	might	want	to	add	a	number	of	other	useful	constants	to
this	list	as	well,	such	as:
Const	LightJacketWeather	As	Integer	=	60

Const	SwimmingWeather	As	Integer	=	72

Const	WickedCold	As	Integer	=	0

Notice,	however,	that	this	process	is	somewhat	cumbersome;
also	this	syntax	shows	no	logical	connection	among	these
various	constants.	VB.NET	provides	an	alternate	construct,	the
enumeration,	which	allows	you	to	group	logically	related
constants,	as	in	the	following:

Enum	Temperatures

			CelsiusMeetsFahrenheit	=	-40

			WickedCold	=	0

			FreezingPoint	=	32

			LightJacketWeather	=	60

			SwimmingWeather	=	72

			BoilingPoint	=	212

End	Enum

Every	enumeration	has	an	underlying	type,	which	can	be	any
integral	type	(Byte,	Integer,	Long,	or	Short).	The	technical
specification	of	an	enumeration	is:
[access	

															modifiers]	Enum	

															identifier	[As	base-type]	

		enumerator-list	[=	constant-expression]

	End	Enum

The	optional	access	modifiers	are	considered	in	Chapter	8.

Tip
In	a	specification	statement,	anything	in	square
brackets	is	optional.	That	is,	you	can	declare	an	Enum
with	no	access	modifiers	or	base-type,	or	without
assigning	a	value.	Note	that	the	base-type	is	optional,
even	if	Option	Strict	is	On.

For	now,	let's	focus	on	the	rest	of	this	declaration.	An
enumeration	begins	with	the	Enum	keyword,	which	is	followed	by
an	identifier,	such	as:
Enum	Temperatures

The	base-type	is	the	underlying	type	for	the	enumeration.	That
is,	are	you	declaring	constant	Integers	or	constant	Longs?	If
you	leave	out	this	optional	value	(and	often	you	will),	it	defaults
to	Integer,	but	you	are	free	to	use	any	of	the	integral	types
(e.g.,	Long).	For	example,	the	following	fragment	declares	an
enumeration	of	Longs:
Enum	ServingSizes	As	Long

				Small	=	1

				Regular	=	2

				Large	=	3

End	Enum

Notice	that	the	key	portion	of	an	Enum	declaration	is	the
enumerator	list,	which	contains	the	constant	assignments	for
the	enumeration,	each	separated	by	a	newline.	Example	5-3
rewrites	Example	5-2	to	use	an	enumeration.

Example	5-3.	Using	an	enumeration

Module	Module1

			Enum	Temperatures

						WickedCold	=	0

						FreezingPoint	=	32

						LightJacketWeather	=	60

						SwimmingWeather	=	72

						BoilingPoint	=	212

			End	Enum	'Temperatures

			Sub	Main()

						System.Console.WriteLine(

									"Freezing	point	of	water:	{0}",	

									Temperatures.FreezingPoint)

						System.Console.WriteLine(

											"Boiling	point	of	water:	{0}",	

											Temperatures.BoilingPoint)

			End	Sub

End	Module

Output:
Freezing	point	of	water:	FreezingPoint

Boiling	point	of	water:	BoilingPoint

In	Example	5-3,	you	declare	an	enumerated	constant	called
Temperatures.	When	you	want	to	use	any	of	the	values	in	an
enumeration	in	a	program,	the	values	of	the	enumeration	must
be	qualified	by	the	enumeration	name.

You	cannot	just	refer	to	FreezingPoint;	instead,	you	use	the
enumeration	identifier	(Temperatures)	followed	by	the	dot
operator	and	then	the	enumerated	constant	(FreezingPoint).
This	is	called	qualifying	the	identifier	FreezingPoint.	Thus,	to
refer	to	the	FreezingPoint,	you	use	the	full	identifier
Temperatures.FreezingPoint.

Unfortunately,	if	you	pass	the	name	of	a	constant	within	an
enumeration	to	the	WriteLine()	method,	the	name	is	displayed,
not	the	value.	In	order	to	display	the	value	of	an	enumerated

constant,	you	must	cast	the	constant	to	its	underlying	type	(in
this	case,	Integer),	as	shown	in	Example	5-4.

Example	5-4.	Casting	the	enumerated	value

Module	Module1

			Enum	Temperatures

						WickedCold	=	0

						FreezingPoint	=	32

						LightJacketWeather	=	60

						SwimmingWeather	=	72

						BoilingPoint	=	212

			End	Enum	'Temperatures

			Sub	Main()

						System.Console.WriteLine(

										"Freezing	point	of	water:	{0}",	

										CInt(Temperatures.FreezingPoint))

						System.Console.WriteLine(

											"Boiling	point	of	water:	{0}",	

											CInt(Temperatures.BoilingPoint))

			End	Sub

End	Module

When	you	cast	a	value	(in	this	example,	using	the	CInt()
function)	you	tell	the	compiler:	"I	know	that	this	value	is	really
of	the	indicated	type."	In	this	case,	you	are	saying:	"Treat	this
enumerated	constant	as	an	Integer."	Since	the	underlying	type
is	Integer,	this	is	safe	to	do.	See	the	next	section,	Section	5.3.4,
for	more	information	about	the	use	of	CInt()	and	the	other
casting	functions.

In	Example	5-4,	the	values	in	the	two	enumerated	constants,
FreezingPoint	and	BoilingPoint,	are	both	cast	to	type	Integer;
then	those	Integer	values	are	passed	to	WriteLine()	and
displayed.

Each	constant	in	an	enumeration	corresponds	to	a	numerical
value.	In	Example	5-4,	each	enumerated	value	is	an	integer.	If
you	don't	specifically	set	it	otherwise,	the	enumeration	begins
at	0,	and	each	subsequent	value	counts	up	from	the	previous.
Thus,	if	you	create	the	following	enumeration:
Enum	SomeValues

			First

			Second

			Second

			Third	=	20

			Fourth

End	Enum

the	value	of	First	will	be	0,	Second	will	be	1,	Third	will	be	20,
and	Fourth	will	be	21.

Tip
If	Option	Strict	is	set	On,	Enums	are	treated	as	formal
types;	that	is,	they	are	not	just	a	synonym	for	another
type,	they	are	a	type	in	their	own	right.	Therefore	an
explicit	conversion	is	required	to	convert	between	an
Enum	type	and	an	integral	type	(such	as	Integer,
Long,	etc.).

About	Casting

Objects	of	one	type	can	be	converted	into	objects	of	another
type.	This	is	called	casting.	Casting	can	be	either	narrowing	or
widening.	The	way	casting	is	invoked	is	either	explicit	or
implicit.

A	widening	cast	is	one	in	which	the	conversion	is	to	a	type	that
can	accommodate	every	possible	value	in	the	existing	variable
type.	For	example,	an	Integer	can	accommodate	every	possible
value	held	by	a	Short.	Thus,	casting	from	Short	to	Integer	is	a
widening	conversion.

A	narrowing	cast	is	one	in	which	the	conversion	is	to	a	type
that	may	not	be	able	to	accommodate	every	possible	value	in
the	existing	variable	type.	For	example,	a	Short	can
accommodate	only	some	of	the	values	that	an	Integer	variable
might	hold.	Thus,	casting	from	an	Integer	to	a	Short	is	a
narrowing	conversion.

In	VB.NET,	conversions	are	invoked	either	implicitly	or
explicitly.	In	an	implicit	conversion,	the	compiler	makes	the
conversion	with	no	special	action	by	the	developer.	With	an

explicit	conversion,	the	developer	must	use	a	special	function
to	signal	the	cast.	For	example,	in	Example	5-4,	you	use	the
CInt	function	to	explicitly	cast	the	Enumerated	value	to	an
Integer.

The	semantics	of	an	explicit	conversion	are:	"Hey!	Compiler!	I
know	what	I'm	doing."	This	is	sometimes	called	"hitting	it	with
the	big	hammer"	and	can	be	very	useful	or	very	painful,
depending	on	whether	your	thumb	is	in	the	way.

Whether	a	cast	is	implicit	or	explicit	is	affected	by	the	Option
Strict	setting.	If	Option	Strict	is	On	(as	it	always	should	be),
only	widening	casts	can	be	implicit.

The	explicit	cast	functions	follow.	Refer	back	to	Table	5-1	for
information	about	the	ranges	covered	by	the	various	numeric
types.

CBool()

Converts	any	valid	string	(e.g.,	"True")	or	numeric
expression	to	Boolean.	Numeric	nonzero	values	are
converted	to	True,	zero	is	converted	to	False.

CByte()

Converts	numeric	expression	in	range	0	to	255	to	Byte.
Round	any	fractional	part.

CChar()

Returns	the	first	character	of	a	string	as	a	Char.

CDate()

Converts	any	valid	representation	of	a	date	or	time	to	the
Date	type	(e.g.,	"January	1,	2002"	is	converted	to	the
corresponding	Date	type).

CDbl()

Converts	any	expression	that	can	be	evaluated	as	a	number
to	a	Double	if	it	is	in	the	range	of	a	Double.

CDec()

Converts	any	expression	that	can	be	evaluated	as	a	number
to	a	Decimal	if	it	is	in	the	range	of	a	Decimal.

CInt()

Converts	any	expression	that	can	be	evaluated	as	a	number
to	a	Integer	if	it	is	in	the	range	of	a	Integer;	rounds
fractional	part.

CLng()

Converts	any	expression	that	can	be	evaluated	as	a	number
to	a	Long	if	it	is	in	the	range	of	a	Long;	rounds	fractional
part.

CObj()

Converts	any	expression	that	can	be	interpreted	as	an
Object	to	an	Object.

CShort()

Converts	any	expression	that	can	be	evaluated	as	a	number
to	a	Short	if	it	is	in	the	range	of	a	Short.

CStr()

If	Boolean,	converts	to	the	string	"True"	or	"False."	If	the
expression	can	be	interpreted	as	a	date,	returns	a	string
expression	of	the	date.	For	numeric	expressions,	the
returned	string	represents	the	number.

CType()

This	is	a	general	purpose	conversion	function	that	uses	the
syntax:
CType(expression,	typename)

where	expression	is	an	expression	or	a	variable,	and
typename	is	the	datatype	to	convert	to.	The	first	conversion
in	Example	5-4	can	be	rewritten	from:
System.Console.WriteLine(

										"Freezing	point	of	water:	{0}",	

										CInt(Temperatures.FreezingPoint))

to:
System.Console.WriteLine(

										"Freezing	point	of	water:	{0}",	
											CType(Temperatures.FreezingPoint,	Integer))

Strings
It	is	nearly	impossible	to	write	a	VB.NET	program	without
creating	strings.	A	string	object	holds	a	series	of	characters.

You	declare	a	string	variable	using	the	string	keyword	much	as
you	would	create	an	instance	of	any	type:
Dim	myString	As	String

You	specify	a	string	literal	by	enclosing	it	in	double	quotes:
"Hello	World"

It	is	common	to	initialize	a	string	variable	that	contains	a	string
literal:
Dim	myString	As	String	=	"Hello	World"

Strings	are	covered	in	much	greater	detail	in	Chapter	16.

Statements
In	VB.NET,	a	complete	program	instruction	is	called	a
statement.	Programs	consist	of	sequences	of	VB.NET
statements.	Each	statement	should	end	with	a	newline:
Dim	myString	As	String	=	"Hello	World"

You	can	combine	multiple	statements	on	a	single	line	if	you
divide	them	with	a	colon.	The	following	sample	shows	two	code
lines	on	a	single	line,	with	a	colon	marking	the	end	of	the	first:
Dim	myVariable	As	Integer	=	5	:	Dim	myVar2	As	Integer	=	7

Using	the	colon	may	allow	you	to	squeeze	more	than	one
statement	on	a	line.	However,	this	is	generally	considered	to	be
poor	programming	practice	because	it	makes	the	code	harder
to	read	and	thus	harder	to	maintain.

Sometimes	a	single	code	statement	simply	won't	fit	on	a	single
line	in	a	file.	If	your	code	will	not	fit	on	a	single	line,	you	can
use	the	line-continuation	character,	the	underscore	(_),	as	in
this	excerpt	from	Example	5-4:
System.Console.WriteLine(

										"Freezing	point	of	water:	{0}",	

										CInt(Temperatures.FreezingPoint))

Note	that	you	must	use	a	space	before	the	underscore	in	order
to	continue	the	line.	In	the	preceding	snippet,	all	three	lines
are	considered	to	be	a	single	statement	because	you	use	two
continuation	characters,	one	at	the	end	of	each	of	the	first	two
lines.

VB.NET	statements	are	evaluated	in	order.	The	compiler	starts
at	the	beginning	of	a	statement	list	and	makes	its	way	to	the
bottom.	This	would	be	entirely	straightforward,	and	terribly
limiting,	were	it	not	for	branching.	Branching	allows	you	to
change	the	order	in	which	statements	are	evaluated.	Chapter	7

describes	branching	in	detail.

Whitespace
In	the	VB.NET	language,	spaces,	tabs,	and	newlines	are
considered	to	be	"whitespace"	(so	named	because	you	see	only
the	white	of	the	underlying	"page").	Extra	whitespace	is
generally	ignored	in	VB.NET	statements.	Thus,	you	can	write:
Dim	myVariable	As	Integer	=	5

or:
Dim								myVariable									As									Integer					=							5

and	the	compiler	will	treat	the	two	statements	as	identical.

The	exception	to	this	rule	is	that	whitespace	within	a	string	is
treated	as	literal;	it	is	not	ignored.	If	you	write:
System.Console.WriteLine("Hello	World")

each	space	between	"Hello"	and	"World"	is	treated	as	another
character	in	the	string.	(In	this	case,	there	is	only	one	space
character.)

Most	of	the	time	the	use	of	whitespace	is	intuitive.	The	key	is	to
use	whitespace	to	make	the	program	more	readable	to	the
programmer;	the	compiler	is	indifferent.	Problems	arise	only
when	you	do	not	leave	space	between	logical	program	elements
that	require	it.	For	instance,	although	the	expression:
Dim	myVariable	As	Integer	=	5

is	the	same	as:
Dim	myVariable	As	Integer=5

it	is	not	the	same	as:
DimmyVariable	As	Integer	=	5

The	compiler	knows	that	the	whitespace	on	either	side	of	the

assignment	operator	is	extra,	but	the	whitespace	between	the
access	modifier	Dim	and	the	variable	name	myVariable	is	not
extra;	it	is	required.

This	is	not	surprising;	the	whitespace	allows	the	compiler	to	
parse	the	keyword	Dim	rather	than	some	unknown	term
DimmyVariable.	You	are	free	to	add	as	much	or	as	little
whitespace	between	Dim	and	myVariable	as	you	care	to,	but
there	must	be	at	least	one	whitespace	character	(typically	a
space	or	tab).

Chapter	6.	Branching
A	method	is,	essentially,	a	mini-program	within	your	larger
program.	It	is	a	set	of	statements	that	execute	one	after	the
other,	as	in	the	following:
Sub	MyMethod()

End	Sub

Methods	are	executed	from	top	to	bottom.	The	compiler	reads
each	line	of	code	in	turn	and	executes	one	line	after	another.
This	continues	in	sequence	until	the	method	branches.
Branching	means	that	the	current	method	is	interrupted
temporarily	and	a	new	method	or	routine	is	executed;	when
that	new	method	or	routine	finishes,	the	original	method	picks
up	where	it	left	off.	A	method	can	branch	in	either	of	two	ways:
unconditionally	or	conditionally.

As	the	name	implies,	unconditional	branching	happens	every
time	the	program	is	run.	An	unconditional	branch	happens,	for
example,	whenever	the	compiler	encounters	a	new	method	call.
The	compiler	stops	execution	in	the	current	method	and
branches	to	the	newly	called	method.	When	the	newly	called
method	returns	(i.e.,	completes	its	execution),	execution	picks
up	in	the	original	method	on	the	line	just	below	the	line	where
the	new	method	was	called.

Conditional	branching	is	more	complicated.	Methods	can
branch	based	on	the	evaluation	of	certain	conditions	that	occur
at	runtime.	For	instance,	you	might	create	a	branch	that	will
calculate	an	employee's	federal	withholding	tax	only	when	her
earnings	are	greater	than	the	minimum	taxable	by	law.	VB.NET
provides	a	number	of	statements	that	support	conditional
branching,	such	as	If,	ElseIf,	and	Select
Case.	The	use	of	these	statements	is	discussed	later	in	this
chapter.

A	second	way	that	methods	break	out	of	their	mindless	step-by-

step	processing	of	instructions	is	by	looping.	A	loop	causes	the
method	to	repeat	a	set	of	steps	until	some	condition	is	met
(e.g.,	"Keep	asking	for	input	until	the	user	tells	you	to	stop	or
until	you	receive	ten	values").	VB.NET	provides	many
statements	for	looping,	including	Do,	Do	While,	and	Loop	While,	which
are	also	discussed	in	this	chapter.

Unconditional	Branching	Statements
The	simplest	example	of	an	unconditional	branch	is	a	method
call.	When	a	method	call	is	reached,	no	test	is	made	to	evaluate
the	state	of	the	object;	the	program	execution	branches
immediately,	and	unconditionally,	to	the	start	of	the	new
method.

You	call	a	method	by	writing	its	name,	for	example:
UpdateSalary()		'invokes	the	method	UpdateSalary

Note
It	is	also	legal	to	call	a	VB.NET	method	with	the
optional	keyword	Call:
Call	Method1()

However,	if	you	do	use	Call	on	a	function,	the	return
value	is	discarded.	Since	this	represents	a
disadvantage	and	there	is	no	other	advantage	to	this
syntax,	it	won't	be	used	in	this	book.

As	explained	in	the	introduction,	when	the	compiler	encounters
a	method	call,	it	stops	execution	of	the	current	method	and
branches	to	the	new	method.	When	that	new	method	completes
its	execution,	the	compiler	picks	up	where	it	left	off	in	the
original	method.	This	process	is	illustrated	schematically	in
Figure	6-1.

Figure	6-1.	How	branching	works

As	Figure	6-1	suggests,	it	is	actually	quite	common	for	there	to
be	unconditional	branching	several	methods	deep.	In	Figure	6-
1,	execution	begins	in	a	method	called	Main().	Statement1	and
Statement2	execute;	then	the	compiler	sees	a	call	to	Method1(
).	Program	execution	branches	unconditionally	to	the	first	line
of	Method1(),	where	its	first	three	statements	are	executed.	At
the	call	to	Method1A(),	execution	again	branches,	this	time	to
the	start	of	Method1A().

The	four	statements	in	Method1A()	are	executed,	and
Method1A()	returns.	Execution	resumes	on	the	first	statement
after	the	method	call	in	Method1()	(Statement	4).	Execution
continues	until	Method1()	ends,	at	which	time	execution
resumes	back	in	Main()	at	Statement3.	At	the	call	to	Method2(
),	execution	again	branches;	all	the	statements	in	Method2()
execute,	and	then	Main()	resumes	at	Statement4.	When	Main(
)	ends,	the	program	itself	ends.

You	can	see	the	effect	of	method	calls	in	Example	6-1.
Execution	begins	in	Main()	but	branches	to	a	method	named
SomeMethod().	The	WriteLine()	statements	in	each	method
assist	you	in	seeing	where	you	are	in	the	code	as	the	program
executes.

Example	6-1.	Branching	to	a	method

Option	Strict	On

Imports	System

Module	Module1

			Sub	Main()

						Console.WriteLine("In	Main!	Calling	SomeMethod()...")

						SomeMethod()

						Console.WriteLine("Back	in	Main().")

			End	Sub	'Main

	

			Sub	SomeMethod()

						Console.WriteLine("Greetings	from	SomeMethod!")

			End	Sub	'SomeMethod

	

End	Module

Output:
In	Main!	Calling	SomeMethod()...

Greetings	from	SomeMethod!

Back	in	Main().

Program	flow	begins	in	Main()	and	proceeds	until
SomeMethod()	is	invoked.	(Invoking	a	method	is	sometimes
referred	to	as	"calling"	the	method.)	At	that	point,	program
flow	branches	to	the	method.	When	the	method	completes,
program	flow	resumes	at	the	next	line	after	the	call	to	that
method.

Tip
You	can	instead	create	an	unconditional	branch	by
using	one	of	the	unconditional	branch	keywords:	Goto,	
Exit,	Return,	or	Throw.	The	first	three	of	these	are	discussed
later	in	this	chapter,	while	the	final	statement,	throw,	is
discussed	in	Chapter	17.

Methods	and	their	parameters	and	return	values	are	discussed
in	detail	in	Chapter	9.

Conditional	Branching	Statements
While	methods	branch	unconditionally,	often	you	will	want	to
branch	within	a	method	depending	on	a	condition	that	you
evaluate	while	the	program	is	running.	This	is	known	as
conditional	branching.	Conditional	branching	statements	allow
you	to	write	logic	such	as	"If	you	are	over	25	years	old,	then
you	may	rent	a	car."

VB.NET	provides	a	number	of	constructs	that	allow	you	to
write	conditional	branches	into	your	programs;	these
constructs	are	described	in	the	following	sections.

If	Statements

The	simplest	branching	statement	is	If.	An	If	statement	says,	"if
a	particular	condition	is	true,	then	execute	the	statement;
otherwise	skip	it."	(The	condition	is	a	Boolean	expression.	An
expression	is	a	statement	that	evaluates	to	a	value.	A	Boolean
expression	evaluates	to	either	true	or	false.)

The	formal	description	of	an	If	statement	is:
If	

															expression	

															Then

															statements

															End	If

You	are	likely	to	find	this	kind	of	description	of	the	If	statement
in	your	compiler	documentation.	It	shows	you	that	the	If
statement	takes	an	expression	(a	statement	that	returns	a
value)	and	Then	executes	the	statements	until	the	End	If,	but	only
if	the	expression	evaluates	true.

An	alternative	one-line	version	is:
If	

															expression	

															Then	

															statement

Tip
Many	VB.NET	developers	avoid	the	single-line	If
statement	because	it	can	be	confusing	and	thus
difficult	to	maintain.

Example	6-2	illustrates	the	use	of	an	If	statement.

Example	6-2.	Using	the	If	statement

Option	Strict	On

Imports	System

Module	Module1

			Sub	Main()

						Dim	valueOne	As	Integer	=	10

						Dim	valueTwo	As	Integer	=	20

						Dim	valueThree	As	Integer	=	30

						Console.WriteLine("Testing	valueOne	against	valueTwo...")

						If	valueOne	>	valueTwo	Then

									Console.WriteLine(

													"ValueOne:	{0}	larger	than	ValueTwo:	{1}",	

														valueOne,	valueTwo)

						End	If

						Console.WriteLine("Testing	valueThree	against	valueTwo...")

						If	valueThree	>	valueTwo	Then

									Console.WriteLine(

													"ValueThree:	{0}	larger	than	ValueTwo:	{1}",	

														valueThree,	valueTwo)

						End	If

						Console.WriteLine("Testing	is	valueTwo	>	15	(one	line)...")

						If	valueTwo	>	15	Then	Console.WriteLine("Yes	it	is")

			End	Sub	'Main

End	Module

Output:
Testing	valueOne	against	valueTwo...

Testing	valueThree	against	valueTwo...

ValueThree:	30	larger	than	ValueTwo:	20

Testing	is	valueTwo	>	15	(one	line)...

Yes	it	is

In	this	simple	program,	you	declare	three	variables,	valueOne,
valueTwo,	and	valueThree,	with	the	values	10,	20,	and	30,
respectively.	In	the	first	If	statement,	you	test	whether
valueOne	is	greater	than	valueTwo.

If	valueOne	>	valueTwo	Then

			Console.WriteLine(_

							"ValueOne:	{0}	larger	than	ValueTwo:	{1}",	valueOne,	valueTwo)

End	If

Because	valueOne	(10)	is	less	than	valueTwo	(20),	this	If
statement	fails	(the	condition	returns	false),	and	thus	the	body
of	the	If	statement	(the	statements	between	the	If	and	the	End	If)
doesn't	execute.

Tip
The	test	for	greater	than	uses	the	greater	than
operator	(>),	which	is	discussed	in	detail	in	Chapter
7.

You	then	test	whether	valueThree	is	greater	than	valueTwo:
If	valueThree	>	valueTwo	Then

			Console.WriteLine(_

																						"ValueThree:	{0}	larger	than	ValueTwo:	{1}",	valueThree,	valueTwo)

End	If

Since	valueThree	(30)	is	greater	than	valueTwo	(20),	the	test
returns	true,	and	thus	the	statement	executes.	The	statement
in	this	case	is	the	call	to	the	WriteLine()	method,	shown	in
bold.

Finally,	you	use	a	one-line	if	statement	to	test	whether
valueTwo	is	greater	than	15.	Since	this	evaluates	true,	the
statement	that	follows	executes,	and	the	words	"Yes	it	is"	are
displayed.
If	valueTwo	>	15	Then	Console.WriteLine("Yes	it	is")

The	output	reflects	that	the	first	If	statement	fails,	but	the
second	and	third	succeed:
Testing	valueOne	against	valueTwo...

Testing	valueThree	against	valueTwo...

ValueThree:	30	larger	than	ValueTwo:	20

Testing	is	valueTwo	>	15	(one	line)...

Yes	it	is

If	.	.	.	Else	Statements

Often,	you	will	find	that	you	want	to	take	one	set	of	actions
when	the	condition	tests	true	and	a	different	set	of	actions
when	the	condition	tests	false.	This	allows	you	to	write	logic
such	as	"If	you	are	over	25	years	old,	then	you	may	rent	a	car;
otherwise,	you	must	take	the	train."

The	otherwise	portion	of	the	logic	is	executed	in	the	Else
statement.	For	example,	you	can	modify	Example	6-2	to	print
an	appropriate	message	whether	or	not	valueOne	is	greater
than	valueTwo,	as	shown	in	Example	6-3.

Example	6-3.	The	Else	statement

Option	Strict	On

Imports	System

Module	Module1

			Sub	Main()

						Dim	valueOne	As	Integer	=	10

						Dim	valueTwo	As	Integer	=	20

						Dim	valueThree	As	Integer	=	30

						Console.WriteLine("Testing	valueOne	against	valueTwo...")

						If	valueOne	>	valueTwo	Then

									Console.WriteLine(

													"ValueOne:	{0}	larger	than	ValueTwo:	{1}",	valueOne,	valueTwo)

						Else

									Console.WriteLine(

												"Nope,	ValueOne:	{0}	is	NOT	larger	than	valueTwo:	{1}",	_

													valueOne,	valueTwo)

						End	If

			End	Sub	'Main

End	Module

Output:
Testing	valueOne	against	valueTwo...

Nope,	ValueOne:	10	is	NOT	larger	than	valueTwo:	20

Because	the	test	in	the	If	statement	fails	(valueOne	is	not
larger	than	valueTwo),	the	body	of	the	If	statement	is	skipped
and	the	body	of	the	Else	statement	is	executed.	Had	the	test
succeeded,	the	If	statement	body	would	execute	and	the	Else
statement	would	be	skipped.

Nested	If	Statements

It	is	possible,	and	not	uncommon,	to	nest	If	statements	to
handle	complex	conditions.	For	example,	suppose	you	need	to
write	a	program	to	evaluate	the	temperature	and	specifically	to
return	the	following	types	of	information:

If	the	temperature	is	32	degrees	or	lower,	the	program
should	warn	you	about	ice	on	the	road.

If	the	temperature	is	exactly	32	degrees,	the	program
should	tell	you	that	there	may	be	ice	patches.

If	the	temperature	is	higher	than	32	degrees,	the	program
should	assure	you	that	there	is	no	ice.

There	are	many	good	ways	to	write	this	program.	Example	6-4
illustrates	one	approach,	using	nested	If	statements.

Example	6-4.	Nested	If	statements

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	temp	As	Integer	=	32

	

						If	temp	<=	32	Then

									Console.WriteLine("Warning!	Ice	on	road!")

									If	temp	=	32	Then

												Console.WriteLine("Temp	exactly	freezing,	beware	of	water.")

									Else

												Console.WriteLine("Watch	for	black	ice!	Temp:	{0}",	temp)

									End	If	'temp	=	32

						End	If	'temp	<=	32

			End	Sub	'Main

	

End	Module

Output:
Warning!	Ice	on	road!

Temp	exactly	freezing,	beware	of	water.

The	logic	of	Example	6-4	is	that	it	tests	whether	the
temperature	is	less	than	or	equal	to	32.	If	so,	it	prints	a
warning:
If	temp	<=	32	Then

If	temp	<=	32	Then

									Console.WriteLine("Warning!	Ice	on	road!")

The	program	then	uses	a	second	If	statement,	nested	within	the
first,	to	check	whether	the	temp	is	equal	to	32	degrees.	If	so,	it
prints	one	message	("Temp	exactly	freezing,	beware	of
water.");	if	not,	the	temp	must	be	less	than	32	and	an	Else	is
executed,	causing	the	program	to	print	the	next	message
("Watch	for	black	ice	.	.	.").	Because	the	second	If	statement	is
nested	within	the	first	If,	the	logic	of	the	Else	statement	is:
"since	it	has	been	established	that	the	temp	is	less	than	or
equal	to	32,	and	it	isn't	equal	to	32,	it	must	be	less	than	32."

Tip
The	less-than-or-equal-to	operator	is	<=,	as	described
in	Chapter	7.

ElseIf

The	ElseIf	statement	allows	you	to	perform	a	related	sequence	of
Ifs	without	nesting	per	se.	The	logic	of	ElseIf	is	that	if	the	first	If
evaluates	false,	then	evaluate	the	first	ElseIf.	The	first	If/ElseIf
combination	to	evaluate	true	will	have	its	statements	executed
(and	no	others	will	even	be	evaluated).	If	none	of	the
statements	evaluates	true,	the	final	Else	clause	is	executed.
Example	6-5	uses	ElseIf	to	perform	the	same	actions	as	Example
6-4	used	nested	Ifs	for.

Example	6-5.	ElseIf

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	temp	As	Integer	=	-32

	

						If	temp	>	32	Then

									Console.WriteLine("Safe	driving...")

						ElseIf	temp	=	32	Then

									Console.WriteLine("Warning,	32	degrees,	watch	for	ice	and	water")

						ElseIf	temp	>	0	Then

									Console.WriteLine("Watch	for	ice...")

						ElseIf	temp	=	0	Then

									Console.WriteLine("Temperature	=	0")

						Else

						Else

									Console.WriteLine("Temperatures	below	zero,	Wicked	Cold!")

						End	If

			End	Sub	'Main

	

End	Module

Output:
Temperatures	below	zero,	Wicked	Cold!

Select	Case	Statements

Nested	If	statements	and	long	sequences	of	ElseIf	statements
are	hard	to	read,	hard	to	get	right,	and	hard	to	debug.	When
you	have	a	complex	set	of	choices	to	make,	the	Select	Case
statement	is	a	more	powerful	alternative.	The	logic	of	a	Select	Case
statement	is	this:	"pick	a	matching	value	and	act	accordingly."
The	syntax	is	as	follows:
Select	[Case]	testExpression

[Case	

															expressionList

			[statements]]

[Case	Else	

			[else-statements]]

End	Select

It	is	easiest	to	understand	this	construct	in	the	context	of	a
sample	program.	In	Example	6-6	a	value	of	15	is	assigned	to
the	variable	targetInteger.	The	Select	Case	statement	tests	for	the
values	5,	10,	and	15.	If	one	matches,	the	associated	statement
is	executed.

Example	6-6.	Using	Select	Case

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	targetInteger	As	Integer	=	15

	

						Select	Case	targetInteger

									Case	5

												Console.WriteLine("5")

									Case	10

												Console.WriteLine("10")

									Case	15

												Console.WriteLine("15!")

												Console.WriteLine("15!")

									Case	Else

												Console.WriteLine("Value	not	found")

						End	Select

			End	Sub	'Main

	

End	Module

Output:
15!

The	output	shows	that	15	matched,	and	the	associated
statement	was	executed,	displaying	the	value	15.	If	none	of	the
values	matched,	any	statements	following	Case	Else	would	be
executed.

Note	that	Case	also	allows	you	to	check	a	variable	against	a
range	of	values.	You	can	combine	Case	with	the	keywords	Is	and	
To	to	specify	the	ranges,	as	illustrated	in	Example	6-7.	Note	that
the	target	value	(targetInteger)	has	been	changed	to	7.

Example	6-7.	Testing	for	a	range	of	values

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	targetInteger	As	Integer	=	7

	

						Select	Case	targetInteger

									Case	Is	<	10

												Console.WriteLine("Less	than	10")

									Case	10	To	14

												Console.WriteLine("10-14")

									Case	15

												Console.WriteLine("15!")

									Case	Else

												Console.WriteLine("Value	not	found")

						End	Select

			End	Sub	'Main

	

End	Module

Output:
Less	than	10

In	Example	6-7,	the	first	test	examines	whether	targetInteger	is
less	than	10.	You	specify	this	by	combining	Case	with	the	Is

keyword	followed	by	the	less-than	operator	and	the	number	10
to	specify	the	range:
Case	Is	<	10

You	then	use	Case	with	the	To	keyword	to	specify	a	range	of	10
through	14:
Case	10	To	14

The	preceding	Case	will	match	any	value	of	10	through	14
inclusive.	You	are	not	restricted	to	just	testing	for	a	numeric
value.	You	can	also	test	for	string	values.	In	fact,	you	can	test
ranges	of	string	values,	examining	whether	a	target	value	fits
alphabetically	within	the	range,	as	shown	in	Example	6-8.

Example	6-8.	Testing	alphabetic	ranges

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

	

						Dim	target	As	String	=	"Milo"

						Select	Case	target

	

									Case	"Alpha"	To	"Lambda	"

												Console.WriteLine("Alpha	To	Lambda	executed")

									Case	"Lamda"	To	"Zeta"

												Console.WriteLine("Lambda	To	Zeta	executed")

									Case	Else

												Console.WriteLine("Else	executed")

						End	Select

			End	Sub	'Main

	

End	Module

Output:
Lambda	To	Zeta	executed

Example	6-8	tests	whether	the	string	"Milo"	fits	within	the
alphabetic	range	between	the	strings	"Alpha"	and	"Lambda";
then	it	tests	whether	"Milo"	fits	within	the	range	between	the
strings	"Lambda"	and	"Zeta".	Both	ranges	are	inclusive.	Clearly
the	second	range	encompasses	the	string	"Milo"	and	the	output
bears	that	out.

You	can	also	simply	test	whether	one	string	matches	another.
The	following	case	tests	whether	the	string	"Milo"	is	the	same
as	the	string	"Fred":
Dim	target	As	String	=	"Milo"

						

						Select	Case	target

									Case	"Fred"

												Console.WriteLine("Fred")

But	clearly	"Milo"	does	not	equal	"Fred."

You	can	also	combine	a	series	of	tests	in	a	single	Case	statement,
separating	them	by	commas.	Thus	you	could	test	whether
"Milo"	matches	either	of	the	strings	"Fred"	or	"Joe"	and	also
whether	it	falls	within	the	(admittedly	small)	alphabetic	range
that	comes	before	"Alpha"	using	the	following	code:
Dim	target	As	String	=	"Milo"

						

						Select	Case	target

									Case	"Fred",	"Joe",	Is	<	"Alpha"

												Console.WriteLine("Joe	or	Fred	or	<	Alpha")

Clearly	"Milo"	would	not	match	any	of	these	cases,	but
changing	the	target	string	to	"Aardvark"	would	get	you
somewhere.

Iteration	(Looping)	Statements
In	many	situations	you	will	want	to	do	the	same	thing	again
and	again,	perhaps	slightly	changing	a	value	each	time	you
repeat	the	action.	This	is	called	iteration	or	looping.	Typically,
you'll	iterate	(or	loop)	over	a	set	of	items,	taking	the	same
action	on	each.	This	is	the	programming	equivalent	to	an
assembly	line.	On	an	assembly	line,	you	might	take	a	hundred
car	bodies	and	put	a	windshield	on	each	one	as	it	comes	by.	In
an	iterative	program,	you	might	work	your	way	through	a
collection	of	text	boxes	on	a	form,	retrieving	the	value	from
each	in	turn	and	using	those	values	to	update	a	database.

VB.NET	provides	an	extensive	suite	of	iteration	statements,
including	Do,	For,	and	Foreach.	You	can	also	create	a	loop	by	using	a
statement	called	Goto.	The	remainder	of	this	chapter	considers
the	use	of	Goto,	Do,	and	For.	However,	you'll	have	to	wait	until
Chapter	14	to	learn	more	about	Foreach.

Creating	Loops	with	Goto

The	Goto	statement	was	used	previously	as	an	unconditional
branch	in	a	switch	statement.	Its	more	common	usage,	however,
is	to	create	a	loop.	In	fact,	the	Goto	statement	is	the	seed	from
which	all	other	looping	statements	have	been	germinated.
Unfortunately,	it	is	a	semolina	seed,	producer	of	spaghetti	code
and	endless	confusion.

Programs	that	use	Goto	statements	outside	of	switch	blocks	jump
around	a	great	deal.	Goto	can	cause	your	method	to	loop	back
and	forth	in	ways	that	are	difficult	to	follow.

If	you	were	to	try	to	draw	the	flow	of	control	in	a	program	that
makes	extensive	use	of	Goto	statements,	the	resulting	morass	of
intersecting	and	overlapping	lines	might	look	like	a	plate	of
spaghetti—hence	the	term	"spaghetti	code."	Spaghetti	code	is	a

contemptuous	epithet;	no	one	wants	to	write	spaghetti	code.

Most	experienced	programmers	properly	shun	the	Goto
statement,	but	in	the	interest	of	completeness,	here's	how	you
use	it:

1.	 Create	a	label.

2.	 Goto	that	label.

The	label	is	an	identifier	followed	by	a	colon.	You	place	the
label	in	your	code,	and	then	you	use	the	Goto	keyword	to	jump	to
that	label.	The	Goto	command	is	typically	tied	to	an	If	statement,
as	illustrated	in	Example	6-9.

Example	6-9.	Using	Goto

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	counterVariable	As	Integer	=	0

	

repeat:		'	the	label

						Console.WriteLine("counterVariable:	{0}",	counterVariable)

	

						'	increment	the	counter

						counterVariable	+=	1

						If	counterVariable	<	10	Then

									GoTo	repeat	'	the	dastardly	deed

						End	If

			End	Sub	'Main

	

End	Module

Output:
counterVariable:	0

counterVariable:	1

counterVariable:	2

counterVariable:	3

counterVariable:	4

counterVariable:	5

counterVariable:	6

counterVariable:	7

counterVariable:	8

counterVariable:	9

This	code	is	not	terribly	complex;	you've	used	only	a	single	Goto

statement.	However,	with	multiple	such	statements	and	labels
scattered	through	your	code,	tracing	the	flow	of	execution
becomes	very	difficult.

It	was	the	phenomenon	of	spaghetti	code	that	led	to	the
creation	of	alternatives,	such	as	the	Do	loop.

The	Do	Loop

The	semantics	of	a	Do	loop	are	"Do	this	work	while	a	condition	is
true"	or	"Do	this	work	until	a	condition	becomes	true."	You	can
test	the	condition	either	at	the	top	or	at	the	bottom	of	the	loop.
If	you	test	at	the	bottom	of	the	loop,	the	loop	will	execute	at
least	once.	Every	Do	loop	is	bounded	by	the	Loop	keyword,	which
marks	the	end	of	the	methods	to	be	executed	within	the	loop.

The	Do	loop	can	even	be	written	with	no	conditions,	in	which
case	it	will	execute	indefinitely,	until	it	encounters	an	Exit	Do
statement.

Do	loops	come	in	a	number	of	varieties,	some	of	which	require
additional	keywords	such	as	While	and	Until.	The	syntax	for	these
various	Do	loops	follow.	Note	that	in	each	case,	the	Boolean-
expression	can	be	any	expression	that	evaluates	to	a	Boolean
value	of	true	or	false.
Do	While	

															Boolean-expression

															statements

															Loop

															Do	Until	

															Boolean-expression

															statements

															Loop

															Do

															statements

															Loop	

															While	

															Boolean-expression	

															Do

															statements

															Loop	

															Until	

															Boolean-expression

															Do

															statements

															Loop

In	the	first	type	of	Do	loop,	Do	While,	the	statements	in	the	loop
execute	only	while	the	Boolean-expression	returns	true.
Example	6-10	shows	a	Do	While	loop,	which	in	this	case	does	no
more	than	increment	a	counterVariable	from	0	to	10,	printing	a
statement	to	that	effect	to	the	console	for	each	iteration	of	the
loop.

Example	6-10.	Using	Do	While

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	counterVariable	As	Integer	=	0

	

						Do	While	counterVariable	<	10

									Console.WriteLine("counterVariable:	{0}",	counterVariable)

									counterVariable	=	counterVariable	+	1

						Loop	'	While	counterVariable	<	10

	

			End	Sub	'Main

End	Module

Output:
counterVariable:	0

counterVariable:	1

counterVariable:	2

counterVariable:	3

counterVariable:	4

counterVariable:	5

counterVariable:	6

counterVariable:	7

counterVariable:	8

counterVariable:	9

The	second	version	of	Do,	Do	Until,	executes	until	the	boolean-
expression	returns	true,	using	the	following	syntax:
Do	Until	Boolean-expression

															statements

Loop

Example	6-11	modifies	Example	6-10	to	use	Do	Until.

Example	6-11.	Using	Do	Until

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	counterVariable	As	Integer	=	0

	

						Do	Until	counterVariable	=	10

									Console.WriteLine("counterVariable:	{0}",	counterVariable)

									counterVariable	=	counterVariable	+	1

						Loop	'	Until	counterVariable	=	10

	

			End	Sub	'Main

	

End	Module

The	output	from	Example	6-11	is	identical	to	that	of	Example	6-
10.

Tip
Be	very	careful	when	looping	to	a	specific	value.	If
the	value	is	never	reached,	or	skipped	over,	your	loop
can	continue	without	end.

Do	While	and	Do	Until	are	closely	related;	which	you	use	will	depend
on	the	semantics	of	the	problem	you	are	trying	to	solve.	That	is,
use	the	construct	that	represents	how	you	think	about	the
problem.	If	you	are	solving	this	problem:	"keep	winding	the	box
until	the	Jack	pops	up,"	then	use	a	Do	Until	loop.	If	you	are	solving
this	problem:	"As	long	as	the	music	plays,	keep	dancing,"	then
use	a	Do	While	loop.

In	order	to	make	sure	a	Do	While	or	Do	Until	loop	runs	at	least	once,
you	can	test	the	condition	at	the	end	of	the	loop.	The	following
are	the	syntax	lines	to	test	the	condition	at	the	end,	for	Do	While
and	Do	Until,	respectively.	To	distinguish	them	from	the	other
variants,	we'll	call	them	Do	Loop	While	and	Do	Loop	Until.
Do

			statements

Loop	While	boolean-expression	

Do

			statements

Loop	Until	boolean-expression

If	your	counterVariable	were	initialized	to	100,	but	you	wanted
to	make	sure	the	loop	ran	once	anyway,	you	might	use	the	Do	Loop
While	construct,	as	shown	in	Example	6-12.

Example	6-12.	Do	Loop	While

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	counterVariable	As	Integer	=	100

	

						Do

									Console.WriteLine("counterVariable:	{0}",	counterVariable)

									counterVariable	=	counterVariable	+	1

						Loop	While	counterVariable	<	10

	

			End	Sub	'Main

	

End	Module

Output:
counterVariable:	100

The	final	Do	loop	construct	is	a	loop	that	never	ends	because
there	is	no	condition	to	satisfy:
Do

			statements

Loop

The	only	way	to	end	this	construct	is	to	deliberately	break	out
of	the	loop	using	the	Exit	Do	statement,	described	in	the	next
section.

Breaking	out	of	a	Do	Loop

You	can	break	out	of	any	Do	loop	with	the	Exit	Do	statement.	You
must	break	out	of	the	final	Do	construct:
Do

			statements

Loop

because	otherwise	it	will	never	terminate.	You	typically	use	this
construct	when	you	do	not	know	in	advance	what	condition	will
cause	the	loop	to	terminate	(e.g.,	the	termination	can	be	in
response	to	user	action).

By	using	Exit	Do	within	an	If	statement,	as	shown	in	Example	6-
13,	you	can	basically	mimic	the	Do	Loop	While	construct
demonstrated	in	Example	6-12.

Example	6-13.	Using	Exit	Do

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

						Dim	counterVariable	As	Integer	=	0

	

						Do

									Console.WriteLine("counterVariable:	{0}",	counterVariable)

									counterVariable	=	counterVariable	+	1

	

									'	test	whether	we've	counted	to	9,	if	so,	exit	the	loop

									If	counterVariable	>	9	Then

												Exit	Do

									End	If

						Loop

	

			End	Sub	'Main

	

End	Module

Output:
counterVariable:	0

counterVariable:	1

counterVariable:	2

counterVariable:	3

counterVariable:	4

counterVariable:	5

counterVariable:	6

counterVariable:	7

counterVariable:	8

counterVariable:	9

In	Example	6-13,	you	would	loop	indefinitely	if	the	If	loop	did
not	set	up	a	condition	and	provide	an	exit	via	Exit	Do.	However,
as	written,	Example	6-13	exits	the	loop	when	counterVariable
becomes	greater	than	9.	You	typically	would	use	either	the	Do
While	or	Do	Loop	While	construct	to	accomplish	this,	but	there	are

many	ways	to	accomplish	the	same	thing	in	VB.NET.	In	fact,
VB.NET	offers	yet	another	alternative,	the	While	loop,	as
described	in	the	sidebar.

While	Loops

VB.NET	offers	a	While	loop	construct	that	is	closely	related	to
the	Do	While	loop,	albeit	less	popular.	The	syntax	is:

While	Boolean-expression

																		statements

End	While

The	logic	of	this	is	identical	to	the	basic	Do	While	loop,	as
demonstrated	by	the	following	code:

Option	Strict	On

Imports	System

Module	Module1

			

			Sub	Main()

						Dim	counterVariable	As	Integer	=	0

						

						While	counterVariable	<	10

									Console.WriteLine("counterVariable:	{0}",

									counterVariable)	counterVariable	=

									counterVariable	+	1

						End	While

			

			End	Sub	'Main

	

End	Module

Output:
counterVariable:	0

counterVariable:	1

counterVariable:	2

counterVariable:	3

counterVariable:	4

counterVariable:	5

counterVariable:	6

counterVariable:	7

counterVariable:	8

counterVariable:	9

Because	the	While	loop	was	deprecated	in	VB6,	and	because	its
logic	is	identical	to	the	more	common	Do	While	loop,	many
VB.NET	programmers	eschew	the	While	loop	construct.	It	is

included	here	for	completeness.

The	For	Loop

When	you	need	to	iterate	over	a	loop	a	specified	number	of
times,	you	can	use	a	For	loop	with	a	counter	variable.	The	syntax
of	the	For	loop	is:
For	

															variable	

															=	

															expression	

															To	

															expression	[Step

																expression]

			statements

															Next	[variable-list]

The	simplest	and	most	common	use	of	the	For	statement	is	to
create	a	variable	to	count	through	the	iterations	of	the	loop.
For	example,	you	might	create	an	integer	variable	loopCounter
that	you'll	use	to	step	through	a	loop	ten	times,	as	shown	in
Example	6-14.	Note	that	the	Next	keyword	is	used	to	mark	the
end	of	the	For	loop.

Example	6-14.	Using	a	For	loop

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

	

						Dim	loopCounter	As	Integer

						For	loopCounter	=	0	To	9

									Console.WriteLine("loopCounter:	{0}",	loopCounter)

						Next

	

			End	Sub	'Main

	

End	Module

Output:
loopCounter:	0

loopCounter:	1

loopCounter:	2

loopCounter:	3

loopCounter:	4

loopCounter:	5

loopCounter:	6

loopCounter:	7

loopCounter:	8

loopCounter:	9

The	variable	(loopCounter)	can	be	of	any	numeric	type.	For
example,	you	might	initialize	a	Single	rather	than	an	Integer
and	step	up	through	the	loop	from	0.5	to	9,	as	shown	in
Example	6-15.

Example	6-15.	Loop	with	a	Single	counter

Option	Strict	On

Imports	System

Module	Module1

			Sub	Main()

						Dim	loopCounter	As	Single

						For	loopCounter	=	0.5	To	9

									Console.WriteLine("loopCounter:	{0}",	loopCounter)

						Next

			End	Sub	'Main	

End	Module

Output:
loopCounter:	0.5

loopCounter:	1.5

loopCounter:	2.5

loopCounter:	3.5

loopCounter:	4.5

loopCounter:	5.5

loopCounter:	6.5

loopCounter:	7.5

loopCounter:	8.5

The	loop	steps	up	by	one	on	each	iteration	because	that	is	the
default	step	value.	The	next	step	would	be	9.5,	which	would	be
above	the	upper	limit	(9)	you've	set.	Thus,	the	loop	ends	at
loopCounter	8.5.

You	can	override	the	default	step	value	of	1	by	using	the
keyword	Step.	For	example,	you	can	modify	the	step	counter	in
the	previous	example	to	.5,	as	shown	in	Example	6-16.

Example	6-16.	Adjusting	the	step	counter

Option	Strict	On

Imports	System

Module	Module1

			Sub	Main()

						Dim	loopCounter	As	Single

						For	loopCounter	=	0.5	To	9	Step	0.5

									Console.WriteLine("loopCounter:	{0}",	loopCounter)

						Next

			End	Sub	'Main	

End	Module

Output:
loopCounter:	0.5

loopCounter:	1

loopCounter:	1.5

loopCounter:	2

loopCounter:	2.5

loopCounter:	3

loopCounter:	3.5

loopCounter:	4

loopCounter:	4.5

loopCounter:	5

loopCounter:	5.5

loopCounter:	6

loopCounter:	6.5

loopCounter:	7

loopCounter:	7.5

loopCounter:	8

loopCounter:	8.5

loopCounter:	9

Controlling	a	For	Loop	Using	Next

Finally,	you	can	modify	multiple	variables	on	each	Next
statement.	This	allows	you	to	nest	one	For	loop	within	another.
You	might,	for	example,	use	an	outer	and	an	inner	loop	to
iterate	through	the	contents	of	collections,	as	described	in
Chapter	15.	A	simple	example	of	this	technique	is	shown	in
Example	6-17.

Example	6-17.	Multiple	updates	with	one	Next	statement

Option	Strict	On

Imports	System

Module	Module1

			Sub	Main()

						Dim	outer	As	Integer

						Dim	inner	As	Integer

						For	outer	=	3	To	6

									For	inner	=	10	To	12

												Console.WriteLine("{0}		{1}	=	{2}",	_

																outer,	inner,	outer		inner)

						Next	inner,	outer

			End	Sub	'Main	

End	Module

Output:
3		10	=	30

3		11	=	33

3		12	=	36

4		10	=	40

4		11	=	44

4		12	=	48

5		10	=	50

5		11	=	55

5		12	=	60

6		10	=	60

6		11	=	66

6		12	=	72

As	an	alternative	to	updating	both	counters	in	the	same	Next
statement,	you	can	provide	each	nested	For	loop	with	its	own	Next
statement:
For	outer	=	3	To	6

				For	inner	=	10	To	12

							Console.WriteLine("{0}		{1}	=	{2}",	_

											outer,	inner,	outer		inner)

				Next	inner

	Next	outer

When	you	update	a	single	value	in	a	Next	statement,	you	are	free
to	leave	off	the	variable	you	are	updating.	Thus,	the	previous
code	is	identical	to	the	following	code:
For	outer	=	3	To	6

				For	inner	=	10	To	12

							Console.WriteLine("{0}		{1}	=	{2}",	_

											outer,	inner,	outer		inner)

				Next	

	Next

In	both	cases,	the	output	will	be	identical	to	that	of	Example	6-
17.

Tip
VB.NET	programmers	generally	prefer	using
individual	Next	statements	rather	than	combining	Next
statements	on	one	line	because	it	makes	for	code	that
is	easier	to	understand	and	to	maintain.

Chapter	7.	Operators
An	operator	is	a	symbol	(e.g.,	=,	+,	>,	etc.)	that	causes	VB.NET	to
take	an	action.	That	action	might	be	an	assignment	of	a	value
to	a	variable,	the	addition	of	two	values,	or	a	comparison	of	two
values,	etc.

In	the	previous	chapters,	you've	seen	a	number	of	operators	at
work.	For	example,	in	Chapter	5	you	saw	the	assignment
operator	used.	The	single	equal	sign	(=)	is	used	to	assign	a
value	to	a	variable,	in	this	case	the	value	15	to	the	Integer
variable	myVariable:
Dim	myVariable	As	Integer	=	15

In	Chapter	6,	you	saw	more	sophisticated	operators,	such	as
the	greater	than	comparison	operator	(>)	used	to	compare	two
values:
If	valueOne	>	valueTwo	Then

The	preceding	If	statement	compares	valueOne	with	valueTwo;
if	the	former	is	larger	than	the	latter,	the	test	evaluates	true,
and	the	If	statement	executes.

This	chapter	will	consider	many	of	the	operators	used	in
VB.NET	in	some	detail.

The	Assignment	Operator	(=)
The	assignment	operator	causes	the	operand	on	the	left	side	of
the	operator	to	have	its	value	changed	to	whatever	is	on	the
right	side	of	the	operator.	The	following	expression	assigns	the
value	15	to	myVariable:
Dim	myVariable	As	Integer	=	15

Mathematical	Operators
VB.NET	uses	seven	mathematical	operators:	five	for	standard
calculations	(+,	-,	*,	/,	and	\),	a	sixth	to	return	the	remainder
when	dividing	integers	(Mod),	and	a	seventh	for	exponential
operations	(^).	The	following	sections	consider	the	use	of	these
operators.

Simple	Arithmetical	Operators	(+,	-,	*,	/,	\)

VB.NET	offers	five	operators	for	simple	arithmetic:	the	addition
(+),	subtraction	(-),	and	multiplication	(*)	operators	work	as	you
might	expect.	Adding	two	numbers	returns	their	sum,
subtracting	returns	their	difference,	and	multiplying	returns
their	product.

VB.NET	offers	two	division	operators:	/	and	\.	The	forward
slash	or	right-facing	division	operator	(/)	returns	a	floating-
point	answer.	In	other	words,	this	operator	allows	for	a
fractional	answer;	there	is	no	remainder.	Thus,	if	you	use	this
operator	to	divide	12	by	5	(12/5),	the	answer	is	2.4.	This	answer
is	returned	as	a	Double.	Note	that	if	you	assign	the	returned
value	to	an	integer	variable,	the	decimal	part	is	lopped	off,	and
the	result	will	be	2.	If	Option	Strict	is	turned	On	(as	it	should
be),	you	cannot	assign	the	result	to	an	integer	without
explicitly	casting	because	you	would	lose	the	decimal	portion	of
the	answer.

The	backslash	or	left-facing	division	operator	(\)	performs
integer	division;	that	is,	it	returns	an	integer	value	and
discards	any	remainder.	Thus,	if	you	use	the	integer	division
operator	to	divide	12	by	5	(12\5),	the	return	value	is	truncated	to
the	integer	2,	with	VB.NET	discarding	the	remainder	of	2.
However,	no	cast	is	needed	(even	with	Option	Strict	On)
because	you've	explicitly	asked	for	the	integer	value.	Example
7-1	illustrates	integer	and	fractional	division.

Example	7-1.	Arithmetic	operators

Option	Strict	Off

'	must	be	off	to	allow	implicit	casting	of	quotient	to	an	integer

Imports	System

Module	Module1

			Sub	Main()

						Dim	twelve	As	Integer	=	12

						Dim	five	As	Integer	=	5

						Dim	intAnswer	As	Integer

						Dim	doubleAnswer	As	Double

						Console.WriteLine("{0}	+	{1}	=	{2}",	

										twelve,	five,	twelve	+	five)

						Console.WriteLine("{0}	-	{1}	=	{2}",	

										twelve,	five,	twelve	-	five)

						Console.WriteLine("{0}		{1}	=	{2}",	_

										twelve,	five,	twelve		five)

						'	integer	division

						intAnswer	=	twelve	\	five

						doubleAnswer	=	twelve	\	five

						Console.WriteLine("{0}	\	{1}	=	[integer]	{2}		[double]	{3}",	_

										twelve,	five,	intAnswer,	doubleAnswer)

						'	division.	Assign	result	to	both	an	integer	and	a	double

						'	note,	option	strict	must	be	off!

						intAnswer	=	twelve		five

						doubleAnswer	=	twelve		five

						Console.WriteLine("{0}	/	{1}	=	[integer]	{2}		[double]	{3}",	_

										twelve,	five,	intAnswer,	doubleAnswer)

			End	Sub	'	End	of	the	Main()	method	definition

End	Module

Output:
12	+	5	=	17

12	-	5	=	7

12	*	5	=	60

12	\	5	=	[integer]	2		[double]	2

12	/	5	=	[integer]	2		[double]	2.4

In	Example	7-1,	you	first	declare	two	variables	named	twelve
and	five,	which	are	initialized	to	the	contain	the	numeric	values
12	and	5,	respectively:
Dim	twelve	As	Integer	=	12

Dim	five	As	Integer	=	5

You	then	pass	the	sum,	difference,	and	product	of	seven	and
five	to	the	Console.WriteLine()	method:

Console.WriteLine("{0}	+	{1}	=	{2}",	_

				twelve,	five,	twelve	+	five)

Console.WriteLine("{0}	-	{1}	=	{2}",	

				twelve,	five,	twelve	-	five)

Console.WriteLine("{0}	*	{1}	=	{2}",	

				twelve,	five,	twelve	*	five)

The	results	are	just	as	you	would	expect:
12	+	5	=	17

12	-	5	=	7

12	*	5	=	60

VB.NET	allows	for	two	types	of	division,	standard	(/)	and
integer	(\),	which	produce	floating-point	and	integer	results,
respectively.	In	addition,	the	type	of	the	variable	to	which	you
assign	the	answer	also	affects	the	value	that	is	ultimately
saved.	You	cannot	assign	a	floating-point	answer	to	a	variable
of	type	Integer.	So,	even	if	you	perform	standard	division	and
receive	a	fractional	answer,	if	you	assign	that	answer	to	an
Integer	variable,	the	result	will	be	truncated—just	as	if	you
used	integer	division	(\)	to	begin	with!	This	is	a	bit	confusing.
Let's	consider	some	examples.

First,	you'll	create	two	local	variables,	intAnswer	and
doubleAnswer,	to	hold	two	quotients:
Dim	intAnswer	As	Integer

Dim	doubleAnswer	As	Double

As	the	names	imply,	and	the	declarations	confirm,	intAnswer	is
a	variable	of	type	Integer	(a	whole	number	type)	and
doubleAnswer	is	a	variable	of	type	Double	(a	rational	number
type).	The	type	of	the	variable	affects	whether	it	can	hold	a
fractional	answer—a	Double	can,	an	Integer	can't.

Example	7-1	includes	the	following	equations	for	integer
division:
intAnswer	=	twelve	\	five

doubleAnswer	=	twelve	\	five

The	result	returned	by	integer	division,	using	the	(\)	operator,

is	always	an	integer.	Thus,	it	does	not	matter	whether	you
assign	the	result	of	integer	division	to	a	variable	of	type	Integer
or	to	a	variable	of	type	Double.	This	is	reflected	in	the	output:
12	\	5	=	[integer]	2		[double]	2

Example	7-1	then	uses	the	standard	division	operator	(/),	which
allows	for	fractional	answers:
intAnswer	=	twelve		five

doubleAnswer	=	twelve		five

The	standard	division	operator	returns	a	floating-point	answer,
which	can	be	accommodated	by	a	variable	of	type	Double	(as	in
your	variable	doubleAnswer).	But	assigning	the	result	to	an
Integer	variable	(like	intAnswer)	implicitly	casts	the	result	to
an	Integer,	which	results	in	the	fractional	portion	being
discarded,	as	in	the	following	output:
12	/	5	=	[integer]	2		[double]	2.4

Note
Example	7-1	implicitly	casts	a	Double	to	an	Integer	to
illustrate	that	the	result	is	truncated.	However,	you
would	not	normally	write	code	like	this.	In	fact,	in
order	for	Example	7-1	to	compile	as	written,	we've
had	to	go	against	good	programming	practice	by
setting	Option	Strict	to	Off:
Option	Strict	Off

If	you	do	not	set	Option	Strict	to	Off,	you	will	receive
the	following	compile	error:
Option	Strict	disallows	implicit	conversions	from	'Double'	to	'Integer'

Since	in	actual	practice,	Option	Strict	should	always
be	On,	if	you	need	to	cast,	you	should	do	so	explicitly.
Thus,	you	would	set	Option	Strict	to	On,	and	then
explicitly	cast	the	result	using	one	of	the	cast
functions	described	in	Chapter	5,	as	in	the	following:
intAnswer	=	CInt(twelve	/	five)

The	modulus	Operator	(Mod)	to	Return
Remainders

To	find	the	remainder	in	integer	division,	use	the	modulus
operator	(Mod).	For	example,	the	statement	17	Mod	4	returns	1
(the	remainder	after	integer	division).

The	modulus	operator	turns	out	to	be	more	useful	than	you
might	at	first	imagine.	When	you	perform	modulus	n	on	a
number	that	is	a	multiple	of	n,	the	result	is	zero.	Thus	80	Mod	10	=	0
because	80	is	an	even	multiple	of	10.	This	fact	allows	you	to	set
up	loops	in	which	you	take	an	action	every	nth	time	through
the	loop,	by	testing	a	counter	to	see	if	Modn	is	equal	to	zero,	as
illustrated	in	Example	7-2.

Example	7-2.	Using	the	modulus	operator	(Mod)

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

	

						Dim	counter	As	Integer

	

						'	count	from	1	to	100

						For	counter	=	1	To	100

									'	display	the	value

									Console.Write("{0}	",	counter)

	

									'	every	tenth	value,	display	a	tab	and	the	value

									If	counter	Mod	10	=	0	Then

												Console.WriteLine(vbTab	&	counter)

									End	If

	

						Next	counter

	

			End	Sub	'	End	of	Main()	method	definition

	

End	Module

Output:
1	2	3	4	5	6	7	8	9	10				10

11	12	13	14	15	16	17	18	19	20			20

21	22	23	24	25	26	27	28	29	30			30

31	32	33	34	35	36	37	38	39	40			40

41	42	43	44	45	46	47	48	49	50			50

51	52	53	54	55	56	57	58	59	60			60

61	62	63	64	65	66	67	68	69	70			70

71	72	73	74	75	76	77	78	79	80			80

81	82	83	84	85	86	87	88	89	90			90

91	92	93	94	95	96	97	98	99	100		100

In	Example	7-2,	the	value	of	the	counter	variable	is
incremented	by	one	each	time	through	the	For	loop.	Within	the
loop,	the	value	of	counter	is	compared	with	the	result	of
modulus	10	(counter	Mod	10).	When	this	evaluates	to	zero,	meaning
the	value	of	counter	is	evenly	divisible	by	10,	the	value	is
printed	in	the	righthand	column.

Tip
This	code	uses	the	vbTab	constant	to	represent	a	Tab
character,	as	explained	in	Chapter	16.

The	Exponentiation	Operator	(^)

The	final	arithmetic	operator	is	the	exponentiation	operator	(^),
which	raises	a	number	to	the	power	of	the	exponent.	Example
7-3	raises	the	number	5	to	a	power	of	4.

Example	7-3.	The	exponentiation	operator

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

	

						Dim	value	As	Integer	=	5

						Dim	power	As	Integer	=	4

	

						Console.WriteLine("{0}	to	the	{1}th	power	is	{2}",	_

									value,	power,	value	^	power)

	

			End	Sub	'	End	of	the	Main()	method	definition

	

End	Module

Output:
5	to	the	4th	power	is	625

Relational	Operators
Relational	operators	are	used	to	compare	two	values	and	then
return	a	Boolean	(i.e.,	true	or	false).	The	greater-than	operator
(>),	for	example,	returns	true	if	the	value	on	the	left	of	the
operator	is	greater	than	the	value	on	the	right.	Thus,	5>2
returns	the	value	true,	while	2>5	returns	the	value	false.

The	relational	operators	for	VB.NET	are	shown	in	Table	7-1.
This	table	assumes	two	variables:	bigValue	and	smallValue,	in
which	bigValue	has	been	assigned	the	value	100	and
smallValue	the	value	50.

Table	7-1.	Relational	operators	(assumes	bigValue	=	100	and
smallValue	=	50)

Name Operator Given	this
statement:

The	expression
evaluates	to:

Equals =
bigValue	=	100

bigValue	=	80

True

False

Not	Equals <>
bigValue	<>
100

bigValue	<>	80

False

True

Greater	than > bigValue	>
smallValue True

bigValue	>=

Greater	than	or
equals

>=	or
=>

bigValue	>=
smallValue

smallValue	=>
bigValue

True

False

Less	than < bigValue	<
smallValue False

Less	than	or
equals

<=	or	=
<

smallValue	<=
bigValue

bigValue	=<
smallValue

True

False

Each	of	these	relational	operators	acts	as	you	might	expect.
Notice	that	some	of	the	operators	are	composed	of	two
characters.	For	example,	the	greater	than	or	equal	to	operator
is	created	using	the	greater	than	symbol	(>)	and	the	equal	sign
(=).	Notice	that	you	can	place	these	symbols	in	either	order	(>=
or	=>)	to	form	the	greater	than	or	equal	to	operator.

In	VB.NET,	the	equality	operator	and	the	assignment	operator
are	represented	by	the	same	symbol,	the	equal	sign	(=).	In	the
following	code	line,	the	symbol	is	used	in	each	of	these	ways:
If	myX	=	5	Then	myX	=	7

The	first	use	of	the	=	symbol	is	as	the	equality	operator	("if	myX
is	equal	to	5");	the	second	use	is	as	the	assignment	operator
("set	myX	to	the	value	7").	The	compiler	figures	out	how	the
symbol	is	to	be	interpreted	according	to	the	context.

Logical	Operators	Within	Conditionals
If	statements	(discussed	in	Chapter	6)	test	whether	a	condition
is	true.	Often	you	will	want	to	test	whether	two	conditions	are
both	true,	or	only	one	is	true,	or	neither	is	true.	VB.NET
provides	a	set	of	logical	operators	for	this,	as	shown	in	Table	7-
2.	This	table	assumes	two	variables,	x	and	y,	in	which	x	has	the
value	5,	and	y	has	the	value	7.

Table	7-2.	Logical	operators

Operator Given	this
statement

The
expression
evaluates	to

Logic

And x	=	3	And	y	=

7 False Both	must	be	true	to
evaluate	true.

Or x	=	3	Or	y	=	7 True Either	or	both	must	be
true	to	evaluate	true.

XOr X	=	5	XOr	y	=

7 False
True	only	if	one	(and
only	one)	statement	is
true.

Not Not	x	=	3 True Expression	must	be	false
to	evaluate	true.

The	And	operator	tests	whether	two	statements	are	both	True.

The	first	line	in	Table	7-2	includes	an	example	that	illustrates
the	use	of	the	And	operator:
x	=	3	And	y	=	7

The	entire	expression	evaluates	false	because	one	side	(x	=
3)	is	false.	(Remember	that	x=5	and	y=7.)

With	the	Or	operator,	either	or	both	sides	must	be	true;	the
expression	is	false	only	if	both	sides	are	false.	So,	in	the	case	of
the	example	in	Table	7-2:
x	=	3	Or	y	=	7

the	entire	expression	evaluates	true	because	one	side	(y	=
7)	is	true.

The	XOr	logical	operator	(which	stands	for	eXtreme	Or)	is	used
to	test	if	one	(and	only	one)	of	the	two	statements	is	correct.
Thus,	the	example	from	Table	7-2:
x	=	5	XOr	y	=	7

evaluates	false	because	both	statements	are	true.	(The	XOr
statement	is	false	if	both	statements	are	true,	or	if	both
statements	are	false;	it	is	true	only	if	one,	and	only	one,
statement	is	true.)

With	the	Not	operator,	the	statement	is	true	if	the	expression	is
false,	and	vice	versa.	So,	in	the	accompanying	example:
Not	x	=	3

the	entire	expression	is	true	because	the	tested	expression	(x	=	
3)	is	false.	(The	logic	is:	"it	is	true	that	it	is	not	true	that	x	is
equal	to	3.")

All	of	these	examples	appear	in	context	in	Example	7-4.

Example	7-4.	The	logical	operators

Option	Strict	On

Option	Strict	On

Imports	System

Module	Module1

	

			Sub	Main()

	

						Dim	x	As	Integer	=	5

						Dim	y	As	Integer	=	7

	

						Dim	andValue	As	Boolean

						Dim	orValue	As	Boolean

						Dim	xorValue	As	Boolean

						Dim	notValue	As	Boolean

	

						andValue	=	x	=	3	And	y	=	7

						orValue	=	x	=	3	Or	y	=	7

						xorValue	=	x	=	3	Xor	y	=	7

						notValue	=	Not	x	=	3

	

						Console.WriteLine("x	=	3	And	y	=	7.	{0}",	andValue)

						Console.WriteLine("x	=	3	Or	y	=	7.	{0}",	orValue)

						Console.WriteLine("x	=	3	Xor	y	=	7.	{0}",	xorValue)

						Console.WriteLine("Not	x	=	3.	{0}",	notValue)

	

			End	Sub	'Main

	

End	Module

Output:
x	=	3	And	y	=	7.	False

x	=	3	Or	y	=	7.	True

x	=	3	Xor	y	=	7.	True

Not	x	=	3.	True

Operator	Precedence
The	compiler	must	know	the	order	in	which	to	evaluate	a	series
of	operators.	For	example,	if	I	write:
myVariable	=	5	+	7	*	3

there	are	three	operators	for	the	compiler	to	evaluate	(=,	+,	and	
*).	It	could,	for	example,	operate	left	to	right,	which	would
assign	the	value	5	to	myVariable,	then	add	7	to	the	5	(12)	and
multiply	by	3	(36).	Since	we're	evaluating	from	left	to	right,	the
assignment	has	been	done,	so	the	value	36	is	thrown	away.
This	is	clearly	not	what	is	intended.

The	rules	of	precedence	tell	the	compiler	which	operators	to
evaluate	first.	As	is	the	case	in	algebra,	multiplication	has
higher	precedence	than	addition,	so	5+7*3	is	equal	to	26
rather	than	36.	Both	addition	and	multiplication	have	higher
precedence	than	assignment,	so	the	compiler	will	do	the	math,
and	then	assign	the	result	(26)	to	myVariable	only	after	the
math	is	completed.

In	VB.NET,	parentheses	are	also	used	to	change	the	order	of
precedence	much	as	they	are	in	algebra.	Thus,	you	can	change
the	result	by	writing:
myVariable	=	(5+7)	*	3

Grouping	the	elements	of	the	assignment	in	this	way	causes	the
compiler	to	add	5+7,	multiply	the	result	by	3,	and	then	assign
that	value	(36)	to	myVariable.

Within	a	single	line	of	code,	operators	are	evaluated	in	the
following	order:

Mathematical

Concatenation

Relational/Comparison

Logical

Relational	operators	are	evaluated	left	to	right.	Mathematical
operators	are	evaluated	in	this	order:

Exponentiation	(^)

Division	and	multiplication	(/,	*)

Integer	division	(\)

Modulus	operator	(Mod)

Addition	and	subtraction	(+,-)

The	logical	operators	are	evaluated	in	this	order:

Not

And

Or

XOr

In	some	complex	equations,	you	might	need	to	nest
parentheses	to	ensure	the	proper	order	of	operations.	For
example,	assume	I	want	to	know	how	many	seconds	my	family
wastes	each	morning.	It	turns	out	that	the	adults	spend	20
minutes	over	coffee	each	morning	and	10	minutes	reading	the
newspaper.	The	children	waste	30	minutes	dawdling	and	10
minutes	arguing.

Here's	my	algorithm:
(((minDrinkingCoffee		+	minReadingNewspaper)*	numAdults)	+	

((minDawdling	+	minArguing)		numChildren))		secondsPerMinute.

Although	this	works,	it	is	hard	to	read	and	hard	to	get	right.	It's
much	easier	to	use	interim	variables:

much	easier	to	use	interim	variables:
wastedByEachAdult	=	minDrinkingCoffee		+		minReadingNewspaper

wastedByAllAdults	=		wastedByEachAdult		numAdults

wastedByEachKid	=		minDawdling		+	minArguing

wastedByAllKids	=		wastedByEachKid		numChildren

wastedByFamily	=	wastedByAllAdults	+	wastedByAllKids

totalSeconds	=		wastedByFamily	*	60

The	latter	example	uses	many	more	interim	variables,	but	it	is
far	easier	to	read,	understand,	and	(most	important)	debug.	As
you	step	through	this	program	in	your	debugger,	you	can	see
the	interim	values	and	make	sure	they	are	correct.	See	Chapter
10	for	more	information.

A	more	complete	listing	is	shown	in	Example	7-5.

Example	7-5.	Using	parentheses	and	interim	variables

Option	Strict	On

Imports	System

Module	Module1

			Sub	Main()

						Dim	minDrinkingCoffee	As	Integer	=	5

						Dim	minReadingNewspaper	As	Integer	=	10

						Dim	minArguing	As	Integer	=	15

						Dim	minDawdling	As	Integer	=	20

						Dim	numAdults	As	Integer	=	2

						Dim	numChildren	As	Integer	=	2

						Dim	wastedByEachAdult	As	Integer

						Dim	wastedByAllAdults	As	Integer

						Dim	wastedByEachKid	As	Integer

						Dim	wastedByAllKids	As	Integer

						Dim	wastedByFamily	As	Integer

						Dim	totalSeconds	As	Integer

						wastedByEachAdult	=	minDrinkingCoffee	+	minReadingNewspaper

						wastedByAllAdults	=	wastedByEachAdult	*	numAdults

						wastedByEachKid	=	minDawdling	+	minArguing

						wastedByAllKids	=	wastedByEachKid		numChildren

						wastedByFamily	=	wastedByAllAdults	+	wastedByAllKids

						totalSeconds	=	wastedByFamily		60

						Console.WriteLine("Each	adult	wastes	{0}	minutes",	wastedByEachAdult)

						Console.WriteLine("Each	child	wastes	{0}	mintues",	wastedByEachKid)

						Console.WriteLine("Total	minutes	wasted	by	entire	family:	{0}",	_

															wastedByFamily)

						Console.WriteLine("Total	wasted	seconds:	{0}",	totalSeconds)

			End	Sub	'	End	of	Main()	module	definition	

End	Module

Output:

Each	adult	wastes	15	minutes

Each	child	wasts	35	mintues

Total	minutes	wasted	by	entire	family:	100

Total	wasted	seconds:	6000

Chapter	8.	Classes	and	Objects
Chapter	5	discusses	the	intrinsic	types,	such	as	Integer,	Long,
and	Single,	that	are	built	into	the	VB.NET	language.	As	you
may	recall,	these	simple	types	allow	you	to	hold	and
manipulate	numeric	values	and	strings.	The	true	power	of
VB.NET,	however,	lies	in	its	capacity	to	let	the	programmer
define	new	types	to	suit	particular	problems.	It	is	this	ability	to
create	new	types	that	characterizes	an	object-oriented
language.	You	specify	new	types	in	VB.NET	by	declaring	and
defining	classes.

Particular	instances	of	a	class	are	called	objects.	The	difference
between	a	class	and	an	object	is	the	same	as	the	difference
between	the	concept	of	a	Dog	and	the	particular	dog	who	is
sitting	at	your	feet	as	you	read	this.	You	can't	play	fetch	with
the	definition	of	a	Dog,	only	with	an	instance.

A	Dog	class	describes	what	dogs	are	like:	they	have	weight,
height,	eye	color,	hair	color,	disposition,	and	so	forth.	They	also
have	actions	they	can	take,	such	as	eat,	walk,	bark,	and	sleep.
A	particular	dog	(such	as	my	dog	Milo)	will	have	a	specific
weight	(62	pounds),	height	(22	inches),	eye	color	(black),	hair
color	(yellow),	disposition	(angelic),	and	so	forth.	He	is	capable
of	all	the	actions—methods,	in	programming	parlance—of	any
dog	(though	if	you	knew	him	you	might	imagine	that	eating	is
the	only	method	he	implements).

The	huge	advantage	of	classes	in	object-oriented	programming
is	that	classes	encapsulate	the	characteristics	and	capabilities
of	a	type	in	a	single,	self-contained	unit.	Suppose,	for	instance,
you	want	to	sort	the	contents	of	an	instance	of	a	Windows	list
box	control.	The	list	box	control	is	defined	as	a	class.	One	of
the	properties	of	that	class	is	that	it	knows	how	to	sort	itself.
Sorting	is	encapsulated	within	the	class,	and	the	details	of	how
the	list	box	sorts	itself	are	not	made	visible	to	other	classes.	If
you	want	a	list	box	sorted,	you	just	tell	the	list	box	to	sort	itself,

and	it	takes	care	of	the	details.

So,	you	simply	write	a	method	that	tells	the	list	box	to	sort
itself—and	that's	what	happens.	How	it	sorts	is	of	no	concern;
that	it	does	so	is	all	you	need	to	know.

As	noted	in	Chapter	3,	this	is	called	encapsulation,	which	along
with	polymorphism	and	inheritance,	is	one	of	three	cardinal
principles	of	object-oriented	programming.	Polymorphism	and
inheritance	are	discussed	in	Chapter	11.

An	old	programming	joke	asks,	how	many	object-oriented
programmers	does	it	take	to	change	a	light	bulb?	Answer:
none,	you	just	tell	the	light	bulb	to	change	itself.[1]	This	chapter
explains	the	VB.NET	language	features	that	are	used	to	specify
new	classes.	The	elements	of	a	class—its	behaviors	and	its
state—are	known	collectively	as	its	class	members.

Class	behavior	is	created	by	writing	methods	(sometimes	called
member	functions).	A	method	is	a	small	routine	that	every
object	of	the	class	can	execute.	For	example,	a	Dog	class	might
have	a	bark	method;	a	list	box	class	might	have	a	sort	method.

Class	state	is	maintained	by	fields	(sometimes	called	member
variables).	Fields	can	be	primitive	types	(e.g.,	an	Integer	to
hold	the	age	of	the	dog,	a	set	of	strings	to	hold	the	contents	of
the	list	box),	or	fields	can	be	objects	of	other	classes	(e.g.,	an
Employee	class	may	have	a	field	of	type	Address).

Finally,	classes	may	also	have	properties,	which	act	like
methods	to	the	creator	of	the	class,	but	look	like	fields	to
clients	of	the	class.	A	client	is	any	object	that	interacts	with
instances	of	the	class.

Defining	Classes
When	you	define	a	new	class,	you	define	the	characteristics	of
all	objects	of	that	class,	as	well	as	their	behaviors.	For

example,	if	you	are	creating	your	own	windowing	operating
system,	you	might	want	to	create	screen	widgets	(known	as
controls	in	Windows).	One	control	of	interest	might	be	a	list
box,	a	control	that	is	very	useful	for	presenting	a	list	of	choices
to	the	user	and	enabling	the	user	to	select	from	the	list.

List	boxes	have	a	variety	of	characteristics:	height,	width,
location,	and	text	color,	for	example.	Programmers	have	also
come	to	expect	certain	behaviors	of	list	boxes:	they	can	be
opened,	closed,	sorted,	and	so	on.

Object-oriented	programming	allows	you	to	create	a	new	type,
ListBox,	which	encapsulates	these	characteristics	and
capabilities.

To	define	a	new	type	or	class,	you	first	declare	it	and	then
define	its	methods	and	fields.	You	declare	a	class	using	the	Class
keyword.	The	complete	syntax	is	as	follows:
[attributes]	[access-modifiers]	Class	

												identifier	

[Inherits	

												classname]

			{class-body}

End	Class

Attributes	are	used	to	provide	special	metadata	about	a	class
(that	is,	information	about	the	structure	or	use	of	the	class)	and
are	beyond	the	scope	of	this	book.	You	will	not	need	attributes
for	routine	VB.NET	programming.

Access	modifiers	are	discussed	later	in	this	chapter.	(Typically,
your	classes	will	use	the	keyword	Public	as	an	access	modifier.)

The	identifier	is	the	name	of	the	class	that	you	provide.
Typically,	VB.NET	classes	are	named	with	nouns	(e.g.,	Dog,
Employee,	ListBox).	The	naming	convention	(not	required,	but
strongly	encouraged)	is	to	use	Pascal	notation.	In	Pascal
notation,	you	use	no	underbars	nor	hyphens,	but	if	the	name
has	two	words	(Golden	Retriever)	you	push	the	two	words
together,	each	word	beginning	with	an	uppercase	letter

(GoldenRetriever).

The	optional	Inherits	statement	is	discussed	in	Chapter	11.

The	member	definitions	that	make	up	the	class-body	(a
discussion	of	which	follows)	are	enclosed	by	open	and	closed
curly	braces	({}).
Public	Class	Dog

			Dim	age	As	Integer		'the	dog's	age

			Dim	weight	As	Integer		'the	dog's	weight

			Public	Sub	Bark()

					'....

			End	Sub

End	Class

All	the	things	a	Dog	can	do	are	described	by	methods	within
the	class	definition	of	Dog.	The	dog's	attributes,	or	state,	are
described	by	the	fields	(member	variables),	such	as	age	and
weight.

Instantiating	Objects

To	make	an	actual	instance,	or	object,	of	the	Dog	class,	you
must	declare	the	object,	and	you	must	allocate	memory	for	the
object.	These	two	steps	combined	are	necessary	to	create,	or
instantiate,	the	object.	Here's	how	you	do	it.

First,	you	declare	the	object	by	writing	the	access	modifier	(in
this	case,	Dim),	followed	by	an	identifier	(milo)	for	the	object	or
instance	of	the	class,	the	As	keyword,	and	the	type	or	class
name	(Dog):
Dim	milo	As	Dog		'declare	milo	to	be	an	instance	of	Dog

This	is	not	unlike	the	way	you	create	a	local	variable.	Notice
also	that	(as	with	variables),	by	convention	the	identifier	for	the
object	uses	Camel	notation.	Camel	notation	is	just	like	Pascal
notation	except	that	the	very	first	letter	is	lowercase.	Thus,	a
variable	or	object	name	might	be	myDog,	designatedDriver,	or
plantManager.

The	declaration	alone	doesn't	actually	create	an	instance,
however.	To	create	an	instance	of	a	class,	you	must	also
allocate	memory	for	the	object	using	the	keyword	New.
milo	=	New	Dog()		'allocate	memory	for	milo

You	can	combine	the	declaration	of	the	Dog	type	with	the
memory	allocation	into	a	single	line:
Dim	milo	As	New	Dog()

This	declares	milo	to	be	an	object	of	type	Dog	and	also	creates
a	new	instance	of	Dog.	You'll	see	what	the	parentheses	are	for
later	in	this	chapter	in	the	discussion	of	the	constructor.

In	VB.NET,	everything	happens	within	a	class.	"But	wait,"	I
hear	you	cry,	"we	have	been	creating	modules!"	Yes,	you've
been	writing	code	using	modules,	but	when	you	compile	your
application,	a	class	is	created	for	you	from	that	module.	This	is
VB.NET's	strategy	to	continue	to	use	modules	(as	VB6	did)	but
still	comply	with	the	.NET	approach	that	everything	is	a	class.
(See	the	next	section,	Section	8.1.2,	for	further	explanation).

Given	that	everything	happens	within	a	class,	no	methods	can
run	outside	of	a	class,	not	even	Main().	The	Main()	method	is
the	entry	point	for	your	program;	it	is	called	by	the	operating
system,	and	it	is	where	execution	of	your	program	begins.
Typically,	you'll	create	a	small	module	to	house	Main():
Module	modMain

			Public	Sub	Main()

						...

			End	Sub

End	Module

The	compiler	will	turn	this	module	into	a	class	for	you,	as
explained	in	the	next	section.	However,	it	is	somewhat	more
efficient	for	you	to	declare	the	class	yourself:
Public	Class	Tester

		Public	Sub	Main()

						Dim	testObject	As	New	Tester()

			End	Sub

			'	other	members

End	Class

End	Class

In	the	preceding	code,	you	create	the	Tester	class	explicitly.
Even	though	Tester	was	created	to	house	the	Main()	method,
you've	not	yet	instantiated	any	objects	of	type	Tester.	To	do	so
you	would	write:
Dim	testObject	As	New	Tester()	'make	an	instance	of	Tester

As	you'll	see	later	in	this	chapter,	creating	an	instance	of	the
Tester	class	allows	you	to	call	other	methods	on	the	object
you've	created	(testObject).

One	way	to	understand	the	difference	between	a	class	and	an
instance	(object)	of	that	class	is	to	consider	the	distinction
between	the	type	Integer	and	a	variable	of	type	Integer.

You	can't	assign	a	value	to	a	type:
Integer	=	5		'	error

Instead,	you	assign	a	value	to	an	object	of	that	type—in	this
case,	a	variable	of	type	Integer:
Dim	myInteger	As	Integer

myInteger		=	5	'ok

Similarly,	you	can't	assign	values	to	fields	in	a	class;	you	must
assign	values	to	fields	in	an	object.	Thus,	you	can't	write:
Dog.weight	=	5

This	is	not	meaningful.	It	isn't	true	that	every	Dog's	weight	is	5
pounds.	You	must	instead	write:
milo.weight	=	5

This	says	that	a	particular	Dog's	weight	(milo's	weight)	is	5
pounds.

Modules	Are	Classes

You	can	see	the	relationship	between	modules	and	classes	very
easily.	Begin	by	creating	a	new	VB.NET	console	application
called	ModuleTest,	as	shown	in	Example	8-1.

Example	8-1.	ModuleTest

Module	Module1

	

				Sub	Main()

						Console.WriteLine("Hello	from	Module")

				End	Sub

	

End	Module

Using	VS.NET,	build	this	program	and	run	it.	Building	the
program	saves	an	executable	version	on	disk.	Open	ILDasm,
which	is	the	Intermediate	Language	DISassembler.	ILDasm	is	a
tool	provided	with	the	SDK	that	allows	you	to	look	at	the
Intermediate	Language	code	produced	by	your	program.

You	might	need	to	search	for	ILDasm	on	your	disk.	It	is
typically	found	in:
Program	Files\Microsoft	Visual	Studio	.NET\FrameworkSDK\Bin

Open	ILDasm	and	make	the	following	menu	choice:
File->Open

Navigate	to	your	ModuleTest	directory,	and	then	navigate	into
the	bin	directory.	Double-click	on	the	.exe	file.	Expand	the
project,	and	you'll	find	a	declaration	of	a	class.	Double-click	on
the	class,	and	you'll	see	that	Module1	has	been	declared	to	be
a	class,	as	shown	in	Figure	8-1.

Figure	8-1.	Modules	are	classes

Memory	Allocation:	The	Stack	Versus	the	Heap

Objects	created	within	methods	are	called	local	variables.	They
are	local	to	the	method,	as	opposed	to	belonging	to	the	object,
as	member	variables	do.	The	object	is	created	within	the
method,	used	within	the	method	and	then	destroyed	when	the
method	ends.	Local	objects	are	not	part	of	the	object's	state,
they	are	temporary	value	holders,	useful	only	within	the
particular	method.

Local	variables	of	intrinsic	types	such	as	int	are	created	on	a
portion	of	memory	known	as	the	stack.	The	stack	is	allocated
and	de-allocated	as	methods	are	invoked.	When	you	start	a
method,	all	the	local	variables	are	created	on	the	stack.	When
the	method	ends,	local	variables	are	destroyed.

These	variables	are	referred	to	as	local	because	they	exist	(and
are	visible)	only	during	the	lifetime	of	the	method.	They	are
said	to	have	local	scope.	When	the	method	ends,	the	variable	goes
out	of	scope	and	is	destroyed.

VB.NET	divides	the	world	of	types	into	value	types	and
reference	types.	Value	types	are	created	on	the	stack.	All	the
intrinsic	types	(Integer,	Long,	etc.)	are	value	types,	and	thus
are	created	on	the	stack.

Classes,	on	the	other	hand,	are	reference	types.	Reference
types	are	created	on	an	undifferentiated	block	of	memory
known	as	the	heap.	When	you	declare	an	instance	of	a
reference	type,	what	you	actually	are	declaring	is	a	reference.
A	reference	is	a	variable	that	refers	to	another	object.	The
reference	acts	like	an	alias	for	the	object.

That	is,	when	you	write:
Dim	milo	As	New	Dog()

what	actually	happens	is	that	the	New	operator	creates	a	Dog
object	on	the	heap	and	returns	a	reference	to	it.	That	reference
is	assigned	to	milo.	Thus,	milo	is	a	reference	object	that	refers
to	a	Dog	object	on	the	heap.	It	is	common	to	say	that	milo	is	a
reference	to	a	Dog,	or	even	that	milo	is	a	Dog	object,	but
technically	that	is	incorrect.	milo	is	actually	a	reference	object
that	refers	to	an	(unnamed)	Dog	object	on	the	heap.

The	reference	milo	acts	as	an	alias	for	that	unnamed	object.
For	all	practical	purposes,	however,	you	can	treat	milo	as	if	it
were	the	Dog	object	itself.

The	implication	of	using	references	is	that	you	can	have	more
than	one	reference	to	the	same	object.	To	see	this	difference
between	creating	value	types	and	reference	types,	examine
Example	8-2.	A	complete	analysis	follows	the	output.

Example	8-2.	Creating	value	types	and	reference	types

Option	Strict	On

Imports	System

Public	Module	Module1

			Public	Class	Dog

						Public	weight	As	Integer

			End	Class

			Public	Class	Tester

						Public	Shared	Sub	Main()

									Dim	testObject	As	New	Tester()

									testObject.Run()

						End	Sub

						Public	Sub	Run()

									'	create	an	integer

									Dim	firstInt	As	Integer	=	5

									'	create	a	second	integer

									Dim	secondInt	As	Integer	=	firstInt

									'	display	the	two	integers	

									Console.WriteLine(

													"firstInt:	{0}	secondInt:	{1}",	firstInt,	secondInt)

									'	modify	the	second	integer

									secondInt	=	7

									'	display	the	two	integers

									Console.WriteLine(

												"firstInt:	{0}	secondInt:	{1}",	firstInt,	secondInt)

									'	create	a	dog

									Dim	milo	As	New	Dog()

									'	assign	a	value	to	weight

									milo.weight	=	5

									'	create	a	second	reference	to	the	dog

									Dim	fido	As	Dog	=	milo

									'	display	their	values

									Console.WriteLine(

													"Milo:	{0},	fido:	{1}",	milo.weight,	fido.weight)

									'	assign	a	new	weight	to	the	second	reference

									fido.weight	=	7

									'	display	the	two	values

									Console.WriteLine(

											"Milo:	{0},	fido:	{1}",	milo.weight,	fido.weight)

						End	Sub

			End	Class

End	Module

Output:
firstInt:	5	secondInt:	5

firstInt:	5	secondInt:	7

Milo:	5,	fido:	5

Milo:	7,	fido:	7

In	Example	8-2,	you	create	a	class	named	Tester	within	your
module.	(Remember	that	the	module	itself	will	be	converted	to
a	class	at	compile	time;	that	class	will	contain	the	Tester	class.)

You	must	mark	Main()	with	the	keyword	Shared.	(The	Shared
keyword	is	covered	in	detail	in	Chapter	9.)

Within	Main(),	you	create	an	instance	of	the	Tester	class,	and
you	call	the	Run()	method	on	that	instance:
Public	Shared	Sub	Main()

			Dim	testObject	As	New	Tester()

																		testObject.Run()

End	Sub

Run()	begins	by	creating	an	integer,	firstInt,	and	initializing	it
with	the	value	5.	The	second	integer,	secondInt,	is	then	created
and	initialized	with	the	value	in	firstInt.	Their	values	are
displayed	as	output:
firstInt:	5	secondInt:	5

Because	Integer	is	a	value	type,	a	copy	of	the	value	is	made,
and	secondInt	is	an	independent	second	variable,	as	illustrated
in	Figure	8-2.

Figure	8-2.	secondInt	is	a	copy	of	firstInt

Then	the	program	assigns	a	new	value	to	secondInt:
secondInt	=	7

Because	these	variables	are	value	types,	independent	of	one
another,	the	first	variable	is	unaffected.	Only	the	copy	is
changed,	as	illustrated	in	Figure	8-3.

Figure	8-3.	Only	the	copy	is	changed

When	the	values	are	displayed,	they	are	now	different:

firstInt:	5	secondInt:	7

Your	next	step	is	to	create	a	simple	Dog	class	with	only	one
member:	a	public	variable	weight.

Tip
Generally	you	will	not	make	member	variables	public.
The	weight	field	was	made	public	to	simplify	this
example.	The	use	of	the	Public	keyword	and	other
access	modifiers	are	explained	later	in	this	chapter.

You	instantiate	a	Dog	object	and	save	a	reference	to	that	Dog
object	in	the	reference	milo:
Dim	milo	As	New	Dog()

You	assign	the	value	5	to	milo's	weight	field:
milo.weight	=	5

You	commonly	say	that	you've	set	milo's	weight	to	5,	but
actually	you've	set	the	weight	of	the	unnamed	object	on	the
heap	to	which	milo	refers,	as	shown	in	Figure	8-4.

Figure	8-4.	milo	is	a	reference	to	an	unnamed	Dog	object

Next	you	create	a	second	reference	to	Dog	and	initialize	it	by
setting	it	equal	to	milo.	This	creates	a	new	reference	to	the
same	object	on	the	heap.

Dim	fido	As	Dog	=	milo

Notice	that	this	is	syntactically	similar	to	creating	a	second
Integer	variable	and	initializing	it	with	an	existing	Integer,	as
you	did	before:
Dim	secondInt	As	Integer	=	firstInt

Dim	fido	As	Dog	=	milo

The	difference	is	that	Dog	is	a	reference	type,	so	fido	is	not	a
copy	of	milo;	it	is	a	second	reference	to	the	same	object	to
which	milo	refers.	That	is,	you	now	have	an	object	on	the	heap
with	two	references	to	it,	as	illustrated	in	Figure	8-5.

Figure	8-5.	fido	is	a	second	reference	to	the	Dog	object

When	you	change	the	weight	of	that	object	through	the	fido
reference:
fido.weight	=	7

you	are	changing	the	weight	of	the	same	object	to	which	milo
refers.	This	is	reflected	in	the	output:
Milo:	7,	fido:	7

It	isn't	that	fido	is	changing	milo;	it	is	that	by	changing	the
(unnamed)	object	on	the	heap	to	which	fido	refers,	you	are

simultaneously	changing	the	value	of	milo	because	they	refer
to	the	same	unnamed	object.

Creating	a	Time	Class

Now	consider	a	class	to	keep	track	of	and	display	the	time	of
day.	The	internal	state	of	the	class	must	be	able	to	represent
the	current	year,	month,	date,	hour,	minute,	and	second.	You
probably	would	also	like	the	class	to	display	the	time	in	a
variety	of	formats.

You	might	implement	such	a	class	by	defining	a	single	method
and	six	variables,	as	shown	in	Example	8-3.

Example	8-3.	The	Time	class

Option	Strict	On

Imports	System

Public	Class	Time

			'	Private	variables

			Private	Year	As	Integer

			Private	Month	As	Integer

			Private	Date	As	Integer

			Private	Hour	As	Integer

			Private	Minute	As	Integer

			Private	Second	As	Integer

			'	Public	methods

			Public	Sub	DisplayCurrentTime()

						Console.WriteLine("stub	for	DisplayCurrentTime")

			End	Sub	'DisplayCurrentTime

End	Class	'Time

	

Module	Module1

			Sub	Main()

						Dim	timeObject	As	New	Time()

						timeObject.DisplayCurrentTime()

			End	Sub

	

End	Module

This	code	creates	a	new	user-defined	type:	Time.	The	Time
class	definition	begins	with	the	declaration	of	a	number	of
member	variables:	Year,	Month,	Date,	Hour,	Minute,	and
Second.	The	keyword	Private	indicates	that	these	values	can	only
be	called	only	by	methods	of	this	class.	The	Private	keyword	is	an

access	modifier,	the	use	of	which	is	explained	later	in	this
chapter.

Tip
Many	VB.NET	programmers	prefer	to	put	all	of	the
member	fields	together,	either	at	the	very	top	or	the
very	bottom	of	the	class	declaration,	though	that	is
not	required	by	the	language.

The	only	method	declared	within	the	Time	class	is	the	method
DisplayCurrentTime().	The	DisplayCurrentTime()	method	is
defined	as	a	subprocedure,	or	subroutine;	as	explained	in
Chapter	2,	which	means	it	will	not	return	a	value	to	the	method
that	invokes	it.	For	now,	the	body	of	this	method	has	been
"stubbed	out."

Stubbing	out	a	method	is	a	temporary	measure	you	might	use
when	you	first	write	a	program	to	allow	you	to	think	about	the
overall	structure	without	filling	in	every	detail	when	you	create
a	class.	When	you	stub	out	a	method	body,	you	leave	out	the
internal	logic	and	just	mark	the	method,	as	done	here,	perhaps
with	a	message	to	the	console:
Public	Sub	DisplayCurrentTime()

			Console.WriteLine("stub	for	DisplayCurrentTime")

End	Sub	'DisplayCurrentTime

When	you	create	the	project,	VS.NET	creates	the	module,
named	Module1.	Within	the	module,	you	define	your	Main()
method,	and	within	Main()	you	can	instantiate	a	Time	object:
Module	Module1

			Sub	Main()
						Dim	timeObject	As	New	Time()

Because	timeObject	is	an	instance	of	Time,	Main()	can	make
use	of	the	DisplayCurrentTime()	method	available	with	objects
of	that	type	and	call	it	to	display	the	time:
timeObject.DisplayCurrentTime()

You	invoke	a	method	on	an	object	by	writing	the	name	of	the

You	invoke	a	method	on	an	object	by	writing	the	name	of	the
object	(timeObject),	followed	by	the	dot	operator	(.),	followed
by	the	method	name	and	parameter	list	in	parentheses	(in	this
case,	empty).	You'll	see	how	to	pass	in	values	to	initialize	the
member	variables	in	the	discussion	of	constructors,	later	in	this
chapter.

Access	Modifiers

An	access	modifier	determines	which	class	methods—including
methods	of	other	classes—can	see	and	use	a	member	variable
or	method	within	a	class.	Table	8-1	summarizes	the	VB.NET
access	modifiers.

Table	8-1.	Access	modifiers

Access
modifier Restrictions

Public
No	restrictions.	Members	that	are	marked	Public	are
visible	to	any	method	of	any	class.

Private
The	members	in	class	A	that	are	marked	Private	are
accessible	only	to	methods	of	class	A.

Protected

The	members	in	class	A	that	are	marked	Protected	are
accessible	to	methods	of	class	A	and	also	to	methods
of	classes	derived	from	class	A.	The	Protected	access
modifier	is	used	with	derived	classes,	as	explained	in
Chapter	11.

Friend
The	members	in	class	A	that	are	marked	Friend	are
accessible	to	methods	of	any	class	in	A's	assembly.[2]

accessible	to	methods	of	any	class	in	A's	assembly.[2]

Protected	

Friend

The	members	in	class	A	that	are	marked	Protected	Friend

are	accessible	to	methods	of	class	A,	to	methods	of
classes	derived	from	class	A,	and	also	to	any	class	in
A's	assembly.	This	is	effectively	Protected	or	Friend.
(There	is	no	concept	of	Protected	and	Friend.)

[2]	An	assembly	is	a	collection	of	files	that	appear	to	the
programmer	as	a	single	executable	(.exe)	or	DLL.

The	Time	class	and	its	DisplayCurrentTime()	method	are	both
declared	public	so	that	any	other	class	can	make	use	of	them.	If
DisplayCurrentTime()	had	been	private,	it	would	not	be
possible	to	invoke	DisplayCurrentTime	from	any	method	of	any
class	other	than	methods	of	Time.	In	Example	8-3,
DisplayCurrentTime()	was	invoked	from	a	method	of	Tester
(not	Time),	and	this	was	legal	because	both	the	class	(Time)
and	the	method	(DisplayCurrentTime)	were	marked	public.

Tip
It	is	good	programming	practice	to	explicitly	set	the
accessibility	of	all	methods	and	members	of	your
class.

[1]	Alternate	answer:	"None,	Microsoft	has	changed	the
standard	to	darkness."

Method	Arguments
The	behavior	of	a	class	is	defined	by	the	methods	of	that	class.
To	make	your	methods	as	flexible	as	possible,	you	can	define
parameters:	information	passed	into	the	method	when	the
method	is	invoked.	Thus,	rather	than	having	to	write	one
method	when	you	want	to	sort	your	ListBox	from	A-Z	and	a
second	method	when	you	want	to	sort	it	from	Z-A,	you	define	a
more	general	Sort()	method	and	pass	in	a	parameter
specifying	the	order	of	the	sort.

Methods	can	take	any	number	of	parameters.[3]	The	parameter
list	follows	the	method	name	and	is	encased	in	parentheses.
Each	parameter's	type	is	identified	before	the	name	of	the
parameter.

For	example,	the	following	declaration	defines	a	subprocedure
(thus,	it	returns	no	value)	named	MyMethod()	which	takes	two
parameters,	an	integer	and	a	button:
Sub	MyMethod	(firstParam	As	Integer,	secondParam	As	Button)

		'	...

End	Sub

Within	the	body	of	the	method,	the	parameters	act	as	local
variables,	as	if	you	had	declared	them	in	the	body	of	the
method	and	initialized	them	with	the	values	passed	in.	Example
8-4	illustrates	how	you	pass	values	into	a	method,	in	this	case
values	of	type	Integer	and	Single.

Note
The	compiler	will	mark	your	parameters	as	ByVal,
indicating	that	the	parameter	is	passed	"by	value."
ByVal	firstParam	As	Integer

When	a	parameter	is	passed	by	value,	a	copy	is	made.
This	is	opposed	to	passing	"by	reference."	(The
distinction	is	described	in	Chapter	9.)	The	ByVal

keyword	and	its	implications	are	discussed	in	detail	in
Chapter	9.

Example	8-4.	Passing	parameters

Option	Strict	On

Imports	System

Public	Class	TestClass

			Sub	SomeMethod(

						ByVal	firstParam	As	Integer,	

						ByVal	secondParam	As	Single)

						Console.WriteLine(

									"Here	are	the	parameters	received:	{0},	{1}",	

									firstParam,	secondParam)

			End	Sub

End	Class

Module	Module1

			Sub	Main()

						Dim	howManyPeople	As	Integer	=	5

						Dim	pi	As	Single	=	3.14F

						Dim	tc	As	New	TestClass()

						tc.SomeMethod(howManyPeople,	pi)

			End	Sub

End	Module

Output:
Here	are	the	parameters	received:	5,	3.14

Tip
Note	that,	if	Option	Strict	is	On,	when	you	pass	in	a
Single	with	a	decimal	part	(3.14),	you	must	append
the	letter	F	(3.14F)	to	signal	the	compiler	that	the
value	is	a	Single,	and	not	a	Double.

The	method	SomeMethod()	takes	an	Integer	and	a	Single	and
displays	them	using	Console.WriteLine().	The	parameters,
which	are	named	firstParam	and	secondParam,	are	treated	as
local	variables	within	SomeMethod().

In	the	calling	method	(Main),	two	local	variables
(howManyPeople	and	pi)	are	created	and	initialized.	These

variables	are	passed	as	the	arguments	to	SomeMethod().	The
compiler	maps	howManyPeople	to	firstParam	and	pi	to
secondParam,	based	on	their	relative	positions	in	the
parameter	list.

[3]	The	terms	"argument"	and	"parameter"	are	often	used
interchangeably,	though	some	programmers	insist	on
differentiating	between	the	parameter	declaration	and	the
arguments	passed	in	when	the	method	is	invoked.

Constructors
In	Example	8-3,	notice	that	the	statement	that	creates	the	Time
object	looks	as	though	it	is	invoking	a	method:
Dim	timeObject	As	New	Time();

In	fact,	a	method	is	invoked	whenever	you	instantiate	an
object.	This	method	is	called	a	constructor.	Each	time	you
define	a	class,	you	are	free	to	define	your	own	constructor,	but
if	you	don't,	the	compiler	will	provide	one	for	you	invisibly	and
automatically.The	job	of	a	constructor	is	to	create	the	object
specified	by	a	class	and	to	put	it	into	a	valid	state.	Before	the
constructor	runs,	the	object	is	just	a	blob	of	memory;	after	the
constructor	completes,	the	memory	holds	a	valid	instance	of
the	class.

The	Time	class	of	Example	8-3	does	not	define	a	constructor.
As	noted	earlier,	if	you	do	not	declare	a	constructor,	the
compiler	provides	one	for	you.	The	constructor	provided	by	the
compiler	creates	the	object	but	takes	no	other	action.

Tip
Any	constructor	that	takes	no	arguments	is	called	a	
default

constructor.	It	turns	out	that	the	constructor	provided	by
the	compiler	takes	no	arguments,	and	hence	is	a
default	constructor.	This	terminology	has	caused	a
great	deal	of	confusion.	You	can	create	your	own
default	constructor,	and	if	you	do	not	create	a
constructor	at	all,	the	compiler	will	create	a	default
constructor	for	you,	by	default.

If	you	do	not	explicitly	initialize	your	member	variables,	they
are	initialized	to	innocuous	values	(integers	to	0,	strings	to	the
empty	string,	etc.).	Table	8-2	lists	the	default	values	assigned
to	primitive	types.

Table	8-2.	Types	and	their	default	values

Type Default	value

Numeric	(Integer,	Long,	etc.) 0

Boolean false

Char `\0'	(null)

Enum 0

Reference null

Typically,	you'll	want	to	define	your	own	constructor	and
provide	it	with	arguments,	so	that	the	constructor	can	set	the
initial	state	for	your	object.	In	Example	8-3,	you	want	to	pass	in
the	current	year,	month,	date,	and	so	forth,	so	that	the	object	is
created	with	meaningful	data.

You	declare	a	constructor	like	any	other	member	method
except:

The	constructor	is	always	named	New.

Constructors	are	declared	using	the	Sub	keyword	(which
means	there	is	no	return	value).

If	there	are	arguments	to	be	passed,	you	define	an	argument

list	just	as	you	would	for	any	other	method.	Example	8-5
declares	a	constructor	for	the	Time	class	that	accepts	a	single
argument,	an	object	of	type	DateTime.	(DateTime	is	a	type
provided	by	the	.NET	Framework	Class	Library.)

Example	8-5.	Creating	a	constructor

Option	Strict	On

Imports	System

Public	Class	Time

			'	Private	variables

			Private	Year	As	Integer

			Private	Month	As	Integer

			Private	Date	As	Integer

			Private	Hour	As	Integer

			Private	Minute	As	Integer

			Private	Second	As	Integer

			'	Public	methods

			Public	Sub	DisplayCurrentTime()

								System.Console.WriteLine("{0}/{1}/{2}	{3}:{4}:{5}",	

												Month,	Date,	Year,	Hour,	Minute,	Second)

			End	Sub	'DisplayCurrentTime

			'	Constructor

			Public	Sub	New(

ByVal	theYear	As	Integer,	

ByVal	theMonth	As	Integer,	

ByVal	theDate	As	Integer,	

ByVal	theHour	As	Integer,	

ByVal	theMinute	As	Integer,	_

ByVal	theSecond	As	Integer)

						Year	=	theYear

						Month	=	theMonth

						Date	=	theDate

						Hour	=	theHour

						Minute	=	theMinute

						Second	=	theSecond

			End	Sub

End	Class	'Time

Module	Module1

			Sub	Main()

						Dim	timeObject	As	New	Time(2005,	3,	25,	9,	35,	20)

						timeObject.DisplayCurrentTime()

			End	Sub

End	Module

Output:
3/25/2005	9:35:20

In	this	example,	the	constructor	(Sub	New)	takes	a	series	of
integer	values	and	initializes	all	the	member	variables	based	on

integer	values	and	initializes	all	the	member	variables	based	on
these	parameters.	When	the	constructor	finishes,	the	Time
object	exists,	and	the	values	have	been	initialized.	When
DisplayCurrentTime()	is	called	in	Main(),	the	values	are
displayed.

Try	commenting	out	one	of	the	assignments	and	running	the
program	again.	You'll	find	that	each	member	variable	is
initialized	by	the	compiler	to	0.	Integer	member	variables	are
set	to	if	you	don't	otherwise	assign	them.	Remember	that	value
types	(e.g.,	integers)	must	be	initialized;	if	you	don't	tell	the
constructor	what	to	do,	it	will	set	innocuous	values.

Initializers
It	is	possible	to	initialize	the	values	of	member	variables	in	an
initializer,	instead	of	having	to	do	so	in	the	constructor.	You
create	an	initializer	by	assigning	an	initial	value	to	a	class
member:
Private	Second	As	Integer	=	30

Assume	that	the	semantics	of	the	Time	object	are	such	that	no
matter	what	time	is	set,	the	seconds	are	always	initialized	to
30.	You	might	rewrite	your	Time	class	to	use	an	initializer	so
that	the	value	of	Second	is	always	initialized,	as	shown	in
Example	8-6.

Example	8-6.	Using	an	initializer

Option	Strict	On

Imports	System

Public	Class	Time

			'	Private	variables

			Private	Year	As	Integer

			Private	Month	As	Integer

			Private	Date	As	Integer

			Private	Hour	As	Integer

			Private	Minute	As	Integer

			Private	Second	As	Integer	=	30

			'	Public	methods

			Public	Sub	DisplayCurrentTime()

								System.Console.WriteLine("{0}/{1}/{2}	{3}:{4}:{5}",	

												Month,	Date,	Year,	Hour,	Minute,	Second)

			End	Sub	'DisplayCurrentTime

			Public	Sub	New(

			ByVal	theYear	As	Integer,	

			ByVal	theMonth	As	Integer,	

			ByVal	theDate	As	Integer,	

			ByVal	theHour	As	Integer,	

			ByVal	theMinute	As	Integer)

						Year	=	theYear

						Month	=	theMonth

						Date	=	theDate

						Hour	=	theHour

						Minute	=	theMinute

			End	Sub

End	Class	'Time

Module	Module1

			Sub	Main()

						Dim	timeObject	As	New	Time(2005,	3,	25,	9,	35)

						timeObject.DisplayCurrentTime()

			End	Sub

End	Module

Output:
3/25/2005	9:35:30

If	you	do	not	provide	a	specific	initializer,	the	constructor	will
initialize	each	integer	member	variable	to	zero	(0).	In	the	case
shown,	however,	the	Second	member	is	initialized	to	30:
Private	Second	As	Integer	=	30

Copy	Constructors
A	copy	constructor	creates	a	new	object	by	copying	variables
from	an	existing	object	of	the	same	type.	For	example,	you
might	want	to	pass	a	Time	object	to	a	Time	constructor	so	that
the	new	Time	object	has	the	same	values	as	the	old	one.

VB.NET	does	not	provide	a	copy	constructor,	so	if	you	want	one
you	must	provide	it	yourself.	Such	a	constructor	copies	the
elements	from	the	original	object	into	the	new	one:
Public	Sub	New(ByVal	existingObject	As	Time)

			Year	=	existingObject.Year

			Month	=	existingObject.Month

			Date	=	existingObject.Date

			Hour	=	existingObject.Hour

			minute	=	existingObject.Minute

			second	=	existingObject.Second

End	Sub

A	copy	constructor	is	invoked	by	instantiating	an	object	of	type
Time	and	passing	it	the	name	of	the	Time	object	to	be	copied:
Dim	t2	As	New	Time(existingObject)

Here	an	existing	Time	object	(existingObject)	is	passed	as	a
parameter	to	the	copy	constructor	which	will	create	a	new
Time	object	(),	as	shown	in	Example	8-7.

Example	8-7.	Copy	constructor

Option	Strict	On

Imports	System

Public	Class	Time

			'	Private	variables

			Private	Year	As	Integer

			Private	Month	As	Integer

			Private	Date	As	Integer

			Private	Hour	As	Integer

			Private	Minute	As	Integer

			Private	Second	As	Integer	=	30

			'	Public	methods

			Public	Sub	DisplayCurrentTime()

								System.Console.WriteLine("{0}/{1}/{2}	{3}:{4}:{5}",	

												Month,	Date,	Year,	Hour,	Minute,	Second)

			End	Sub	'DisplayCurrentTime

			Public	Sub	New(

			ByVal	theYear	As	Integer,	

			ByVal	theMonth	As	Integer,	

			ByVal	theDate	As	Integer,	

			ByVal	theHour	As	Integer,	

			ByVal	theMinute	As	Integer)

						Year	=	theYear

						Month	=	theMonth

						Date	=	theDate

						Hour	=	theHour

						Minute	=	theMinute

						Second	=	theSecond

			End	Sub

			Public	Sub	New(existingObject	As	Time)

						Year	=	existingObject.Year

						Month	=	existingObject.Month

						Date	=	existingObject.Date

						Hour	=	existingObject.Hour

						Minute	=	existingObject.Minute

						Second	=	existingObject.Second

			End	Sub

End	Class	'Time

Module	Module1

			Sub	Main()

						Dim	timeObject	As	New	Time(2005,	3,	25,	9,	35)

						Dim	t2	As	New	Time(timeObject)

						timeObject.DisplayCurrentTime()

						t2.DisplayCurrentTime()

			End	Sub

End	Module

Output:
3/25/2005	9:35:30

3/25/2005	9:35:30

The	Me	Keyword
The	keyword	Me	refers	to	the	current	instance	of	an	object.	The	
Me	reference	is	a	hidden	reference	to	every	unshared	method	of
a	class;	shared	methods	are	discussed	later	in	this	chapter.
Each	method	can	refer	to	the	other	methods	and	variables	of
that	object	by	way	of	the	Me	reference.

The	Me	reference	is	typically	used	in	any	of	three	ways.	The	first
way	is	to	qualify	instance	members	that	have	the	same	name	as
parameters,	as	in	the	following:
Public	Sub	SomeMethod(ByVal	Hour	As	Integer)

			Me.Hour	=	Hour

End	Sub

In	this	example,	SomeMethod()	takes	a	parameter	(Hour)	with
the	same	name	as	a	member	variable	of	the	class.	The	Me
reference	is	used	to	resolve	the	ambiguity.	While	Me.Hour	refers	to
the	member	variable,	Hour	refers	to	the	parameter.

Tip
The	argument	in	favor	of	this	style,	which	is	often
used	in	constructors,	is	that	you	pick	the	right
variable	name	and	then	use	it	both	for	the	parameter
and	for	the	member	variable.	The	counter-argument
is	that	using	the	same	name	for	both	the	parameter
and	the	member	variable	can	be	confusing.

The	second	use	of	the	Me	reference	is	to	pass	the	current	object
as	a	parameter	to	another	method,	as	in	the	following	code:
Public	Sub	myMethod()

			Dim	someObject	As	New	SomeType()

			someObject.SomeMethod(Me)

End	Sub

In	this	code	snippet,	you	call	a	method	on	an	object,	passing	in
the	Me	reference.	This	allows	the	method	you're	calling	access	to
the	methods	and	properties	of	the	current	object.

The	third	use	of	the	Me	reference	is	with	indexers,	which	are
covered	in	Chapter	14.

You	can	also	use	the	Me	reference	to	make	the	copy	constructor
more	explicit:
Public	Sub	New(ByVal	that	As	Time)

			Me.Year	=	That.Year

			Me.Month	=	That.Month

			Me.Date	=	That.Date

			Me.Hour	=	That.Hour

			Me.Minute	=	That.Minute

			Me.Second	=	That.Second

End	Sub

In	this	snippet,	Me	refers	to	the	current	object	(the	object	whose
constructor	is	running),	and	That	refers	to	the	object	passed	in.

Using	Shared	Members
The	properties	and	methods	of	a	class	can	be	either	instance
members	or	shared	members.	Instance	members	are
associated	with	instances	of	a	type,	while	shared	members	are
associated	with	the	class,	and	not	with	any	particular	instance.
Methods	are	instance	methods	unless	you	explicitly	mark	them
with	the	keyword	Shared.

The	vast	majority	of	methods	will	be	instance	methods.	The
semantics	of	an	instance	method	are	that	you	are	taking	an
action	on	a	specific	object.	From	time	to	time,	however,	it	is
convenient	to	be	able	to	invoke	a	method	without	having	an
instance	of	the	class,	and	for	that	you	will	use	a	shared	method.

You	can	access	a	shared	member	through	the	name	of	the	class
in	which	it	is	declared.	For	example,	suppose	you	have	a	class
named	Button	and	have	instantiated	objects	of	that	class
named	btnUpdate	and	btnDelete.

Suppose	that	the	Button	class	has	an	instance	method	Draw()
and	a	shared	method	GetButtonCount().	The	job	of	Draw()	is
to	draw	the	current	button;	the	job	of	GetButtonCount()	is	to
return	the	number	of	buttons	currently	visible	on	the	form.

You	access	an	instance	method	through	an	instance	of	the	class
—that	is,	through	an	object:
btnUpdate.SomeMethod()

You	can	access	a	shared	method	in	the	same	way:
btnUpdate.GetButtonCount()

You	can	also	access	a	shared	method	through	the	class	name
(rather	than	through	an	instance):
Button.GetButtonCount()

This	allows	you	to	access	the	shared	method	without	having	an

This	allows	you	to	access	the	shared	method	without	having	an
instance	of	the	class.

A	common	use	of	shared	member	variables,	or	fields,	is	to	keep
track	of	the	number	of	instances/objects	that	currently	exist	for
your	class.	In	Example	8-8,	you	create	a	Cat	class.	The	Cat
class	might	be	used	in	a	pet	store	simulation.	For	this	example,
the	Cat	class	has	been	stripped	to	its	absolute	essentials.	An
analysis	follows.

Example	8-8.	Shared	fields

Option	Strict	On

Imports	System

Class	Cat	'

			Private	Shared	instances	As	Integer	=	0

			Private	weight	As	Integer

			Private	name	As	String

	

			Public	Sub	New(ByVal	name	As	String,	ByVal	weight	As	Integer)

						instances	+=	1

						Me.name	=	name

						Me.weight	=	weight

			End	Sub

	

			Public	Shared	Sub	HowManyCats()

						Console.WriteLine("{0}	cats	adopted",	instances)

			End	Sub

	

			Public	Sub	TellWeight()

						Console.WriteLine("{0}	is	{1}	pounds",	_

						name,	weight)

			End	Sub

	

End	Class	'Cat

	

Module	Module1

	

			Sub	Main()

						Cat.HowManyCats()

						Dim	frisky	As	New	Cat("Frisky",	5)

						frisky.TellWeight()

						Cat.HowManyCats()

						Dim	whiskers	As	New	Cat("Whiskers",	7)

						whiskers.TellWeight()		'	instance	method

						whiskers.HowManyCats()	'	shared	method	through	instance

						Cat.HowManyCats()						'	shared	method	through	class	name

			End	Sub

	

End	Module

Output:
0	cats	adopted

Frisky	is	5	pounds

1	cats	adopted

Whiskers	is	7	pounds

2	cats	adopted

2	cats	adopted

The	Cat	class	begins	by	defining	a	shared	member	variable,	
instances,	that	is	initialized	to	0.	This	shared	member	field	will
keep	track	of	the	number	of	Cat	objects	created.	Each	time	the
constructor	(Sub	New)	runs	(creating	a	new	object),	the	instances
field	is	incremented.

The	Cat	class	also	defines	two	instance	fields:	name	and	weight.
These	track	the	name	and	weight	of	each	individual	Cat	object.

The	Cat	class	defines	two	methods:	HowManyCats()	and
TellWeight().	HowManyCats()	is	shared.	The	number	of	cats	is
not	an	attribute	of	any	given	Cat;	it	is	an	attribute	of	the	entire
class.	TellWeight()	is	an	instance	method.	The	name	and
weight	of	each	cat	is	per	instance	(i.e.,	each	Cat	has	its	own
name	and	weight).

The	Main()	method	accesses	the	shared	HowManyCats()
method	directly,	through	the	class:
Cat.HowManyCats()

Main()	then	creates	an	instance	of	Cat	and	accesses	the
instance	method	TellWeight()	through	an	instance	(frisky)	of
Cat:
Dim	frisky	As	New	Cat("Frisky",	5)

frisky.TellWeight()

Each	time	a	new	Cat	is	created,	HowManyCats()	reports	the
increase.

You	access	the	instance	method	through	the	object,	but	you
can	access	the	shared	method	either	through	an	object	or
through	the	class	name:
whiskers.TellWeight()

whiskers.HowManyCats()

Cat.HowManyCats()

Destroying	Objects
Unlike	many	other	programming	languages	(C,	C++,	Pascal,
etc.),	VB.NET	provides	garbage	collection.	Your	objects	are
automatically	destroyed	when	you	are	done	with	them.	You	do
not	need	to	worry	about	cleaning	up	after	your	objects	unless
you	use	unmanaged	resources.	An	unmanaged	resource	is	an
operating	system	feature	outside	of	the	.NET	Framework,	such
as	a	file	handle	or	a	database	connection.	If	you	do	control	an
unmanaged	resource,	you	will	need	to	explicitly	free	that
resource	when	you	are	done	with	it.	Implicit	control	over	this
resource	is	provided	with	a	Finalize()	method,	which	will	be
called	by	the	garbage	collector	when	your	object	is	destroyed:
Protected	Overrides	Sub	Finalize()

				'	release	non-managed	resources

				MyBase.Finalize()

		End	Sub

The	Protected	keyword	is	described	in	Section	8.1.5	earlier	in	this
chapter.	For	a	discussion	of	the	Overrides	keyword,	see	Chapter
13.

It	is	not	legal	to	call	Finalize()	explicitly.	Finalize()	will	be
called	by	the	garbage	collector.	If	you	do	handle	precious
unmanaged	resources	(such	as	file	handles)	that	you	want	to
close	and	dispose	of	as	quickly	as	possible,	you	ought	to
implement	the	IDisposable	interface.	(You	will	learn	more
about	interfaces	in	Chapter	13.)	The	IDisposable	interface
requires	that	you	create	a	method	named	Dispose()	that	will	be
called	by	your	clients.

If	you	provide	a	Dispose()	method,	you	should	stop	the
garbage	collector	from	calling	your	object's	destructor.	To	stop
the	garbage	collector,	you	call	the	shared	method
GC.SuppressFinalize(),	passing	in	the	Me	reference	for	your
object.	Your	Finalize()	method	can	then	call	your	Dispose()
method.	Thus,	you	might	write:
Public	Class	Testing

Public	Class	Testing

			Implements	IDisposable

			Dim	is_disposed	As	Boolean	=	False

			

			Protected	Sub	Dispose(ByVal	disposing	As	Boolean)

						If	Not	is_disposed	Then

									If	disposing	Then

												Console.WriteLine("Not	in	destructor,	OK	to	reference	other	objects")

									End	If

									'	perform	cleanup	for	this	object

									Console.WriteLine("Disposing...")

						End	If

						Me.is_disposed	=	True

			End	Sub

			

			Public	Sub	Dispose()	Implements	IDisposable.Dispose

						Dispose(True)

						'tell	the	GC	not	to	finalize

						GC.SuppressFinalize(Me)

			End	Sub

			

			Protected	Overrides	Sub	Finalize()

						Dispose(False)

						Console.WriteLine("In	destructor.")

			End	Sub

	

End	Class

Chapter	9.	Inside	Methods
In	Chapter	8,	you	saw	that	classes	consist	of	fields	and
methods.	Fields	hold	the	state	of	the	object,	and	methods
define	the	object's	behavior.

In	this	chapter,	you'll	explore	how	methods	work	in	more
detail.	You've	already	seen	how	to	create	methods.	In	this
chapter,	you'll	learn	about	method	overloading,	a	technique
that	allows	you	to	create	more	than	one	method	with	the	same
name.	This	allows	your	clients	to	invoke	the	method	with
different	parameter	types.

This	chapter	also	introduces	properties.	Properties	look	to
clients	of	your	class	like	member	variables,	but	properties	are
implemented	as	methods.	This	allows	you	to	maintain	good
data	hiding,	while	providing	your	clients	with	convenient
access	to	the	state	of	your	class.

Chapter	8	described	the	difference	between	value	types	(i.e.,
primitives	like	Integer,	Long,	etc.,)	and	reference	types	(i.e.,
classes).	This	chapter	explores	the	implications	of	passing
value	types	to	methods	and	shows	how	you	can	pass	value
types	by	reference,	allowing	the	called	method	to	act	on	the
original	object	in	the	calling	method.

Overloading	Methods
Often	you'll	want	to	have	more	than	one	method	with	the	same
name.	The	most	common	example	of	this	is	to	have	more	than
one	constructor.	Having	more	than	one	constructor	with	the
same	name	allows	you	to	create	the	object	with	different
parameters.	For	example,	if	you	were	creating	a	Time	object,
you	might	have	circumstances	where	you	want	to	create	the
Time	object	by	passing	in	the	date,	hours,	minutes,	and
seconds.	Other	times,	you	might	want	to	create	a	Time	object

by	passing	in	an	existing	Time	object.	Still	other	times,	you
might	want	to	pass	in	just	a	date,	without	hours	and	minutes.
Overloading	the	constructor	allows	you	to	provide	these
various	options.

Chapter	8	explained	that	your	constructor	is	automatically
invoked	when	your	object	is	created.	Let's	return	to	the	Time
class	created	in	that	chapter.	It	is	possible	to	create	a	Time
object	by	passing	in	a	DateTime	object	to	the	constructor.

It	would	be	convenient	also	to	allow	the	client	to	create	a	new
Time	object	by	passing	in	year,	month,	date,	hour,	minute,	and
second	values.	Some	clients	might	prefer	one	or	the	other
constructor;	you	can	provide	both	and	the	client	can	decide
which	better	fits	the	situation.

In	order	to	overload	your	constructor,	you	must	make	sure	that
each	constructor	has	a	unique	signature.	The	signature	of	a
method	is	composed	of	its	name	and	its	parameter	list.	Two
methods	differ	in	their	signatures	if	they	have	different	names
or	different	parameter	lists.	Parameter	lists	can	differ	by
having	different	numbers	or	types	of	parameters.
Public	Sub	MyMethod(p1	as	Integer)

Public	Sub	MyMethod(p1	as	Integer,	p2	as	Integer)	'different	number

Public	Sub	MyMethod(p1	as	Integer,	s1	as	String)		'different	types

Public	Sub	SomeMethod(p1	as	Integer)														'different	name

The	previous	four	lines	of	code	show	how	you	might	distinguish
methods	by	signature.

The	first	three	methods	are	all	overloads	of	the	myMethod()
method.	The	first	differs	from	the	second	and	third	in	the
number	of	parameters.	The	second	closely	resembles	the	third
version,	but	the	second	parameter	in	each	is	a	different	type.	In
the	second	method,	the	second	parameter	(p2)	is	an	integer;	in
the	third	method,	the	second	parameter	(s1)	is	a	string.	These
changes	to	the	number	or	type	of	parameters	are	sufficient
changes	in	the	signature	to	allow	the	compiler	to	distinguish
the	methods.

The	fourth	method	differs	from	the	other	three	methods	by
having	a	different	name.	This	is	not	method	overloading,	just
different	methods,	but	it	illustrates	that	two	methods	can	have
the	same	number	and	type	of	parameters	if	they	have	different
names.	Thus,	the	fourth	and	first	have	the	same	parameter	list,
but	their	names	are	different.

A	class	can	have	any	number	of	methods,	as	long	as	each	one's
signature	differs	from	that	of	all	the	others.	Example	9-1
illustrates	a	Time	class	with	two	constructors,	one	that	takes	a
DateTime	object,	and	the	other	that	takes	six	integers.

Example	9-1.	Overloading	a	method

Option	Strict	On

Imports	System

Public	Class	Time

			'	private	member	variables

			Private	Year	As	Integer

			Private	Month	As	Integer

			Private	Date	As	Integer

			Private	Hour	As	Integer

			Private	Minute	As	Integer

			Private	Second	As	Integer

			'	public	accessor	methods

			Public	Sub	DisplayCurrentTime()

						System.Console.WriteLine(

						"{0}/{1}/{2}	{3}:{4}:{5}",	

						Month,	Date,	Year,	Hour,	Minute,	Second)

			End	Sub	'DisplayCurrentTime

			'	constructors

			Public	Sub	New(ByVal	dt	As	System.DateTime)

						Year	=	dt.Year

						Month	=	dt.Month

						Date	=	dt.Date

						Hour	=	dt.Hour

						Minute	=	dt.Minute

						Second	=	dt.Second

			End	Sub	'New

			Public	Sub	New(

			ByVal	Year	As	Integer,	

			ByVal	Month	As	Integer,	

			ByVal	Date	As	Integer,	

			ByVal	Hour	As	Integer,	

			ByVal	Minute	As	Integer,	

			ByVal	Second	As	Integer)

						Me.Year	=	Year

						Me.Month	=	Month

						Me.Date	=	Date

						Me.Hour	=	Hour

						Me.Minute	=	Minute

						Me.Second	=	Second

			End	Sub	'New

End	Class	'Time

Module	Module1

			Sub	Main()

						Dim	currentTime	as	System.DateTime	=	System.DateTime.Now

						Dim	time1	As	New	Time(currentTime)

						time1.DisplayCurrentTime()

						Dim	time2	As	New	Time(2005,	11,	18,	11,	3,	30)

						time2.DisplayCurrentTime()

			End	Sub

End	Module

Output:
5/1/2002	8:53:05

11/18/2005	11:3:30

The	Time	class	in	Example	9-1	has	two	constructors.	If	a
function's	signature	consisted	only	of	the	function	name,	the
compiler	would	not	know	which	constructors	to	call	when
constructing	the	new	Time	objects	time1	and	time2.	However,
because	the	signature	includes	the	function	parameters	and
their	types,	the	compiler	is	able	to	match	the	constructor	call
for	time1	with	the	constructor	whose	signature	requires	a
DateTime	object.
Dim	currentTime	As	New	System.DateTime()

Dim	time1	As	New	Time(currentTime)

time1.DisplayCurrentTime()

Likewise,	the	compiler	is	able	to	associate	the	time2
constructor	call	with	the	constructor	method	whose	signature
specifies	six	integer	arguments.
Dim	time2	As	New	Time(2005,	11,	18,	11,	3,	30)

time2.DisplayCurrentTime()

Tip
When	you	overload	a	method,	you	must	change	the
signature	(i.e.,	the	name,	number,	or	type	of	the
parameters).	You	are	free,	as	well,	to	change	the
return	type,	but	this	is	optional.	Changing	only	the
return	type	does	not	overload	the	method,	and
creating	two	methods	with	the	same	signature	but
differing	return	types	will	generate	a	compile	error.

differing	return	types	will	generate	a	compile	error.

Encapsulating	Data	with	Properties
It	is	generally	desirable	to	designate	the	member	variables	of	a
class	as	private	(using	the	Private	keyword).	This	means	that	only
member	methods	of	that	class	can	access	their	value.	You	make
member	variables	private	to	support	data	hiding,	which	is	part	of
the	encapsulation	of	a	class.

Object-oriented	programmers	are	told	that	member	variables
should	be	private.	That	is	fine,	but	how	do	you	provide	access
to	this	data	to	your	clients?	The	answer	for	VB.NET
programmers	is	properties.

Properties	allow	clients	to	access	class	state	as	if	they	were
accessing	member	fields	directly,	while	actually	implementing
that	access	through	a	class	method.

This	is	ideal.	The	client	wants	direct	access	to	the	state	of	the
object.	The	class	designer,	however,	wants	to	hide	the	internal
state	of	the	class	in	class	fields,	and	provide	indirect	access
through	a	method.	The	property	provides	both:	the	illusion	of
direct	access	for	the	client,	the	reality	of	indirect	access	for	the
class	developer.

By	decoupling	the	class	state	from	the	method	that	accesses
that	state,	the	designer	is	free	to	change	the	internal	state	of
the	object	as	needed.	When	the	Time	class	is	first	created,	the
Hour	value	might	be	stored	as	a	member	variable.	When	the
class	is	redesigned,	the	Hour	value	might	be	computed,	or
retrieved	from	a	database.	If	the	client	had	direct	access	to	the
original	Hour	member	variable,	the	change	to	computing	the
value	would	break	the	client.	By	decoupling	and	forcing	the
client	to	go	through	a	property,	the	Time	class	can	change	how
it	manages	its	internal	state	without	breaking	client	code.

In	short,	properties	provide	the	data	hiding	required	by	good
object-oriented	design.	Example	9-2	creates	a	property	called

Hour,	which	is	then	discussed	in	the	paragraphs	that	follow.

Tip
It	is	a	convention	in	VB.NET	to	give	your	private
member	variables	names	with	a	prefix	to	distinguish
them	from	the	property	name.	For	example,	you
might	prefix	every	member	variable	with	the	letter	m
(for	member),	thus	mMinute	and	mHour.	You	are
then	free	to	use	the	unprefixed	version	(Hour	and
Minute)	for	the	property.	By	convention,	properties
are	named	with	Pascal	case	(first	letters	are
uppercase).

Example	9-2.	Properties

Option	Strict	On

Imports	System

Public	Class	Time

			'	private	member	variables

			Private	mYear	As	Integer

			Private	mMonth	As	Integer

			Private	mDate	As	Integer

			Private	mHour	As	Integer

			Private	mMinute	As	Integer

			Private	mSecond	As	Integer

			Property	Hour()	As	Integer

						Get

									Return	mHour

						End	Get

						Set(ByVal	Value	As	Integer)

									mHour	=	Value

						End	Set

			End	Property

			'	public	accessor	methods

			Public	Sub	DisplayCurrentTime()

						Console.WriteLine(

						"{0}/{1}/{2}	{3}:{4}:{5}",	

						mMonth,	mDate,	mYear,	mHour,	mMinute,	mSecond)

			End	Sub	'DisplayCurrentTime

			'	constructors

			Public	Sub	New(ByVal	dt	As	System.DateTime)

						mYear	=	dt.Year

						mMonth	=	dt.Month

						mDate	=	dt.Date

						mHour	=	dt.Hour

						mMinute	=	dt.Minute

						mSecond	=	dt.Second

			End	Sub	'New

			Public	Sub	New(

			ByVal	mYear	As	Integer,	

			ByVal	mMonth	As	Integer,	

			ByVal	mDate	As	Integer,	

			ByVal	mHour	As	Integer,	

			ByVal	mMinute	As	Integer,	

			ByVal	mSecond	As	Integer)

						Me.mYear	=	mYear

						Me.mMonth	=	mMonth

						Me.mDate	=	mDate

						Me.mHour	=	mHour

						Me.mMinute	=	mMinute

						Me.mSecond	=	mSecond

			End	Sub	'New

End	Class	'Time

Module	Module1

			Sub	Main()

						Dim	currentTime	As	System.DateTime	=	System.DateTime.Now

						Dim	time1	As	New	Time(currentTime)

						time1.DisplayCurrentTime()

						'extract	the	hour	to	a	local	variable

						Dim	theHour	As	Integer	=	time1.Hour

						'display	the	local	variable

						Console.WriteLine("Retrieved	the	hour:	{0}",	

							theHour)

						'add	one	to	the	local	variable

						theHour	+=	1

						'write	the	time	back	to	the	object

						time1.Hour	=	theHour

						'display	the	result

						Console.WriteLine("Updated	the	hour:	{0}",	

							time1.Hour)

			End	Sub

End	Module

Output:
5/1/2002	8:56:59

Retrieved	the	hour:	8

Updated	the	hour:	9

You	create	a	property	with	this	syntax:
Property	Identifier()	As	Type

		Get

				statements

														End	Get

		

		Set(ByVal	Value	As	Type)

					statements

		End	Set

End	Property

If	you	create	the	property	in	VS.NET	however,	the	editor	will
provide	extensive	help	with	the	syntax.	For	example,	once	you
type:
Property	Minute	As	Integer

the	IDE	will	reformat	your	property	as	follows:
Property	Minute()	As	Integer

			Get

			

			End	Get

			Set(ByVal	Value	As	Integer)

			

			End	Set

End	Property

In	Example	9-2,	Hour	is	a	property.	Its	declaration	creates	two
accessors:	Get	and	Set.
Property	Hour()	As	Integer

			Get

						Return	mHour

			End	Get

			Set(ByVal	Value	As	Integer)

mHour	=	Value

			End	Set

End	Property

Each	accessor	has	an	accessor-body	that	does	the	work	of
retrieving	and	setting	the	property	value.	The	property	value
might	be	stored	in	a	database	(in	which	case	the	accessor
would	do	whatever	work	is	needed	to	interact	with	the
database),	or	it	might	just	be	stored	in	a	private	member
variable	(in	this	case,	mHour):
Private	mHour	As	Integer

The	Get	Accessor

The	body	of	the	Get	accessor	is	similar	to	a	class	method	that
returns	an	object	of	the	type	of	the	property.	In	Example	9-2,
the	accessor	for	the	Hour	property	is	similar	to	a	method	that
returns	an	integer.	It	returns	the	value	of	the	private	member
variable	mHour	in	which	the	value	of	the	property	has	been

stored:
Get

			Return	mHour

End	Get

In	this	example,	the	value	of	mHour	is	returned,	but	you	could
just	as	easily	retrieve	an	integer	value	from	a	database	or
compute	it	on	the	fly.

Whenever	you	reference	the	property	(other	than	to	assign	to
it),	the	Get	accessor	is	invoked	to	read	the	value	of	the	property.
For	example,	in	the	following	code	the	value	of	the	Time
object's	Hour	property	is	assigned	to	a	local	variable.	What
actually	happens	is	that	the	Get	accessor	is	called,	which	returns
the	value	of	the	Hour	member	variable,	and	that	value	is
assigned	to	the	local	variable	named	theHour.
Dim	time1	As	New	Time(currentTime)
Dim	theHour	As	Integer	=	time1.Hour

The	Set	Accessor

The	Set	accessor	sets	the	value	of	a	property.	Set	has	an	implicit
parameter,	Value,	that	represents	the	assigned	value.	That	is,
when	you	write:
Minute	=	5

the	compiler	passes	the	value	you	are	assigning	(5)	to	the	Set
statement	as	the	Value	parameter.	You	can	then	set	the	member
variable	to	that	value	using	the	keyword:
mMinute	=	Value

The	advantage	of	this	approach	is	that	the	client	can	interact
with	the	properties	directly,	without	sacrificing	the	data	hiding
and	encapsulation	sacrosanct	in	good	object-oriented	design.

ReadOnly	and	WriteOnly	Properties

At	times	you	may	want	to	create	a	property	that	allows	you	to
retrieve	a	value	but	not	to	set	it.	You	can	mark	your	property	
ReadOnly,	as	in	the	following:
ReadOnly	Property	Hour()	As	Integer

Doing	so	allows	you	(and	forces	you)	to	leave	out	the	Set
statement	in	your	property.	If	you	do	add	a	Set	statement,	the
compiler	will	complain	with	the	message:
Properties	declared	'ReadOnly'	cannot	have	a	'Set'

If	you	leave	out	the	Set	statement	and	then	try	to	assign	to	the
property,	the	compiler	will	complain	with	the	message:
Property	'Hour'	is	'ReadOnly'

In	short,	marking	the	property	ReadOnly	enlists	the	compiler	in
enforcing	that	you	cannot	use	that	property	to	set	a	value.

Similarly,	you	can	mark	a	property	WriteOnly:
WriteOnly	Property	Hour()	As	Integer

Doing	so	will	cause	the	compiler	to	enforce	that	your	property
must	have	a	Set	and	must	not	have	a	Get	statement.	If	you	leave
out	the	Get	or	Set	without	marking	the	property	WriteOnly	or	ReadOnly,
respectively,	you	will	receive	a	compile	error.

You	are	not	permitted	to	combine	ReadOnly	with	WriteOnly,	but	this	is
not	much	of	a	burden.

Passing	by	Value	and	by	Reference
Visual	Basic	.NET	differentiates	between	value	types	and
reference	types.	All	the	intrinsic	types	(Integer,	Long,	etc.),	as
well	as	structs	(described	in	Chapter	12)	are	value	types.
Classes	and	interfaces	(described	in	Chapter	8	and	Chapter	13,
respectively)	are	reference	types.

Passing	Arguments	by	Value

In	many	of	the	method	calls	shown	in	the	previous	chapters,
the	parameters	were	marked	with	the	keyword	ByVal.	This
indicates	that	the	arguments	are	passed	to	the	method	by
value;	that	is,	a	copy	of	the	argument	is	passed	to	the	method.
Examine	the	code	in	Example	9-3.	Try	to	guess	what	the	output
will	be	before	reading	further.

Example	9-3.	Using	the	ByVal	parameter

Option	Strict	On

Imports	System

Public	Class	Tester

			Public	Sub	Run()

						'	declare	a	variable	and	initialize	to	5

						Dim	theVariable	As	Integer	=	5

						'	display	its	value

						Console.WriteLine("In	Run.	theVariable:	{0}",	

						theVariable)

						'	call	a	method	and	pass	in	the	variable

						Doubler(theVariable)

						'	return	and	display	the	value	again

						Console.WriteLine("Back	in	Run.	theVariable:	{0}",	

						theVariable)

			End	Sub

			Public	Sub	Doubler(ByVal	param	As	Integer)

						'	display	the	value	that	was	passed	in

						Console.WriteLine("In	Method1.	Received	param:	{0}",	

						param)

						'Double	the	value

						param	*=	2

						'	Display	the	doubled	value	before	returning

						Console.WriteLine(

						"Updated	param.	Returning	new	value:	{0}",	_

						param)

			End	Sub

End	Class	'Tester

Module	Module1

			Sub	Main()

						Dim	t	As	New	Tester()

						t.Run()

			End	Sub

End	Module

In	Example	9-3,	the	Main()	method	does	nothing	but
instantiate	a	Tester	object	and	call	Run().	In	Run(),	you	create
a	local	variable,	theVariable,	and	initialize	its	value	to	5,	which
you	then	display:
Dim	theVariable	As	Integer	=	5

Console.WriteLine("In	Run.	theVariable:	{0}",	_

theVariable)

You	pass	theVariable	to	the	Doubler()	method,	which	displays
the	value,	doubles	it,	and	then	redisplays	it	before	returning:
Public	Sub	Doubler(ByVal	param	As	Integer)

			Console.WriteLine("In	Method1.	Received	param:	{0}",	

			param)

			param	*=	2

			Console.WriteLine(

			"Updated	param.	Returning	new	value:	{0}",	_

			param)

End	Sub

When	you	return	from	the	call	to	Doubler(),	you	display	the
value	of	theVariable	again.	What	is	the	value	that	is	now
displayed?
Console.WriteLine("Back	in	Run.	theVariable:	{0}",	_

theVariable)

As	shown	in	the	output,	the	value	of	the	variable	that	was
passed	in	to	Doubler()	is,	in	fact,	doubled	in	the	Doubler()
method	but	is	unchanged	in	the	calling	method	(Run):
In	Run.	theVariable:	5

In	Method1.	Received	param:	5

Updated	param.	Returning	new	value:	10

															Back	in	Run.	theVariable:	5

The	value	of	the	parameter	was	passed	by	value,	and	thus	a
copy	was	made	in	the	Doubler()	method.	This	copy	was
doubled,	but	the	original	value	was	unaffected.

Passing	Arguments	by	Reference

Visual	Basic	.NET	also	supports	passing	arguments	by
reference	using	the	ByRef	keyword.	You	can	test	this	by	making
one	tiny	change	to	Example	9-3,	changing	the	parameter	of
Doubler()	from	ByVal	to	ByRef:
Public	Sub	Doubler(ByRef	param	As	Integer)

The	rest	of	the	program	remains	completely	unchanged.	Run
the	program	again	and	compare	the	new	output	with	the
original:
In	Run.	theVariable:	5

In	Method1.	Received	param:	5

Updated	param.	Returning	new	value:	10
Back	in	Run.	theVariable:	10

The	value	of	the	argument	to	the	method	is	now	passed	by
reference.	That	is,	rather	than	a	copy	being	made,	a	reference
to	the	object	itself	is	passed,	as	illustrated	in	Figure	9-1.	The
object	referred	to	by	param	is	now	the	variable	declared	in
Run().	Thus,	when	you	change	it	in	Doubler(),	the	change	is
reflected	back	in	the	Run()	method.

Figure	9-1.	Passing	arguments	by	reference

Passing	Reference	Types	by	Value

In	Chapter	8,	you	saw	how	you	can	create	a	copy	of	a	reference
to	an	object	and	then	have	the	two	references	refer	to	the	same
object.	Similarly,	when	you	pass	a	reference	as	a	parameter,	a
copy	of	the	parameter	is	made,	but	that	is	a	copy	of	a
reference,	and	the	two	references	refer	to	the	same	object.	You
can	see	the	effect	by	modifying	Example	9-3	to	pass	an	object,
rather	than	an	Integer,	by	value.	The	complete	listing	is	shown
in	Example	9-4.	An	analysis	follows	the	output.

Example	9-4.	Passing	a	reference	as	a	parameter

Option	Strict	On

Imports	System

Public	Class	Cat

			Private	mWeight	As	Integer

			Public	Sub	New(ByVal	weight	As	Integer)

						mWeight	=	weight

			End	Sub

			Public	Property	Weight()	As	Integer

						Get

									Return	mWeight

						End	Get

						Set(ByVal	Value	As	Integer)

									mWeight	=	Value

						End	Set

			End	Property

			Public	Overrides	Function	ToString()	As	String

						Return	mWeight.ToString()

			End	Function

End	Class

Public	Class	Tester

			Public	Sub	Run()

						'	declare	a	Cat	and	initialize	to	5

						Dim	theVariable	As	New	Cat(5)

						'	display	its	value

						Console.WriteLine("In	Run.	theVariable:	{0}",	

						theVariable)

						'	call	a	method	and	pass	in	the	variable

						Doubler(theVariable)

						'	return	and	display	the	value	again

						Console.WriteLine("Back	in	Run.	theVariable:	{0}",	

						theVariable)

			End	Sub

			Public	Sub	Doubler(ByVal	param	As	Cat)

						'	display	the	value	that	was	passed	in

						Console.WriteLine("In	Method1.	Received	param:	{0}",	

						param)

						'Double	the	value

						param.Weight	=	param.Weight	*	2

						'	Display	the	doubled	value	before	returning

						Console.WriteLine(

						"Updated	param.	Returning	new	value:	{0}",	_

						param)

			End	Sub

End	Class	'Tester

Module	Module1

			Sub	Main()

						Dim	t	As	New	Tester()

						t.Run()

			End	Sub

End	Module

Output:
In	Run.	theVariable:	5

In	Method1.	Received	param:	5

Updated	param.	Returning	new	value:	10

Back	in	Run.	theVariable:	10

Example	9-4	begins	by	defining	a	very	simple	Cat	class:
Public	Class	Cat

The	class	has	a	single	private	member	variable,	mWeight,	and
a	property	(Weight)	to	get	and	set	the	value	of	that	variable:
Private	mWeight	As	Integer

Public	Property	Weight()	As	Integer

			Get

						Return	mWeight

			End	Get

			Set(ByVal	Value	As	Integer)

						mWeight	=	Value

			End	Set

End	Property

The	constructor	allows	you	to	initialize	a	Cat	object	by	passing
in	an	integer	value	for	its	weight:
Public	Sub	New(ByVal	weight	As	Integer)

			mWeight	=	weight

End	Sub

End	Sub

Finally,	you	override	the	ToString()	method	so	that	when	you
display	the	Cat	object,	its	weight	is	displayed:
Public	Overrides	Function	ToString()	As	String

			Return	mWeight.ToString()

End	Function

Tip
Overriding	methods	is	explaned	in	detail	in	Chapter
13.	For	now,	you	can	use	this	method	as	shown	to
allow	you	to	pass	the	Cat	object	to	WriteLine()	and
have	the	weight	displayed.

Example	9-4	changes	Example	9-3	as	little	as	possible.	The
Run()	method	still	creates	a	local	object	named	theVariable,
but	this	time	it	is	a	Cat	rather	than	an	Integer:
Dim	theVariable	As	New	Cat(5)

The	value	of	theVariable	is	displayed	and	then	passed	to	the
Doubler()	method:
Console.WriteLine("In	Run.	theVariable:	{0}",	_

theVariable)

Doubler(theVariable)

In	Example	9-4,	the	Doubler()	method	is	changed	to	make	the
parameter	be	a	Cat	rather	than	an	Integer.	Note	that	the
parameter	is	marked	ByVal.	The	Cat	reference	will	be	passed	by
value,	and	a	copy	of	the	reference	will	be	made:
Public	Sub	Doubler(ByVal	param	As	Cat)

Within	Doubler(),	the	value	of	the	parameter	is	displayed,
doubled,	and	then	displayed	again:
Console.WriteLine("In	Method1.	Received	param:	{0}

param)

param.Weight	=	param.Weight	*	2

Console.WriteLine(

"Updated	param.	Returning	new	value:	{0}",	

param)

Back	in	Run(),	the	value	of	theVariable	is	displayed:
Console.WriteLine("Back	in	Run.	theVariable:	{0}",	_

theVariable)

This	is	identical	to	Example	9-3	in	which	the	integer	value	of
theVariable	was	unchanged	after	returning	from	Doubler().
This	time,	however,	the	value	is	changed,	even	though	the
object	was	passed	by	value.	The	difference	is	that	integers	are
value	types,	and	classes	are	reference	types.

Chapter	10.	Basic	Debugging
The	debugger	is	your	friend.	There	is	simply	no	more	powerful
tool	than	a	debugger	for	learning	VB.NET	and	for	writing
quality	VB.NET	programs.	The	debugger	will	help	you
understand	what	is	really	going	on	when	your	program	is
running.	It	is	the	x-ray	of	software	development,	allowing	you
to	see	inside	programs	and	diagnose	potential	problems.

Without	a	debugger	you	are	guessing.	With	a	debugger	you	are
seeing.	It	is	as	simple	as	that.	Whatever	time	you	invest	in
learning	to	use	your	debugger	is	time	well	spent.

The	debugger	is	also	a	powerful	tool	for	understanding	code
written	by	others.	By	putting	someone	else's	code	into	the
debugger	and	stepping	through	it,	you	can	see	exactly	how	the
methods	work	and	what	data	they	are	manipulating.

This	book	assumes	you	are	working	with	Visual	Studio	.NET.
The	debugger	we'll	investigate	is	the	debugger	integrated
within	VS.NET,	which	is	a	very	powerful	symbolic	debugger.

The	VS.NET	debugger	provides	a	number	of	windows	for
watching	and	interacting	with	your	program	while	it	executes.
Getting	comfortable	with	the	debugger	can	make	the	difference
between	quickly	finding	bugs	and	struggling	for	hours	or	days.

Setting	a	Breakpoint
To	get	started	with	the	debugger,	return	to	Example	9-1.	To
see	how	this	code	actually	works,	you'll	put	a	breakpoint	on	the
first	line	of	Main().	A	breakpoint	is	an	instruction	to	the
debugger	to	stop	running.	You	set	a	breakpoint	and	then	run
the	program.	The	debugger	will	run	the	program	up	until	the
breakpoint.	Then	you	will	have	the	opportunity	to	examine	the
value	of	your	variables	at	this	point	in	the	execution.	Examining
your	program	as	it	runs	can	help	you	untangle	otherwise

impenetrable	problems.

It	is	common	to	set	multiple	breakpoints.	This	allows	you	to	zip
through	your	program,	examining	the	state	of	your	object	at
selected	locations.

You	can	set	a	breakpoint	in	many	different	ways.	The	easiest	is
to	click	in	the	far-left	margin.	This	causes	a	red	dot	to	appear
in	the	margin	next	to	the	relevant	line	of	code,	which	is	also
highlighted	in	red,	as	shown	(in	black	and	white)	in	Figure	10-
1.	Notice	that	as	you	hover	over	the	breakpoint,	it	tells	you	the
line	on	which	the	breakpoint	appears.

Figure	10-1.	Setting	a	breakpoint

You	are	now	ready	to	run	the	program	to	the	breakpoint.
Again,	there	are	a	number	of	ways	to	do	so.	You	can	click	on
the	Start	button	(see	Figure	4-6);	or	you	can	choose	the	Start
item	from	the	Debug	menu	(or	use	the	keyboard	shortcut	for
the	menu	item,	the	F5	key).	In	any	case,	the	program	will	start

and	will	run	to	the	breakpoint,	as	shown	in	Figure	10-2.

Figure	10-2.	At	the	breakpoint

The	next	statement	to	be	executed	is	highlighted	(in	this	case,
the	initialization	of	the	currentTime	object).	There	are	a
number	of	other	helpful	windows	open	as	well,	which	will	be
examined	in	detail.

To	step	into	the	code,	press	the	F11	function	key	twice.	With
the	first	keypress,	the	currentTime	object	is	initialized.	The
second	keypress	moves	you	to	the	next	line	in	the	code,	which
initializes	a	second	Time	object	called	time1.	(This	line	is	also
called	the	Time	constructor.)

Note
F11	and	F10	are	the	step	commands.	The	difference
is	that	F10	will	step	over	method	calls,	while	F11	will
step	into	them.
The	methods	are	executed	with	F10;	you	just	don't
see	each	step	in	the	debugger.	The	highlighting

see	each	step	in	the	debugger.	The	highlighting
jumps	to	the	next	statement	past	the	method	call.
If	you	use	F11	to	step	into	a	method	you	meant	to
step	over,	Shift-F11	will	step	you	out.	The	method	you
stepped	into	will	run	to	completion,	and	you'll	break
on	the	first	line	back	in	the	calling	method.

Press	the	key	seven	more	times	to	initialize	each	of	the
member	variables.	You	can	see	their	values	being	set	in	the	so-
called	Autos	window,	in	the	lower-left	corner	of	the	debugger,
as	shown	in	Figure	10-3	.

Figure	10-3.	The	Autos	window	close	up

Using	the	Debug	Menu	to	Set	Your	Breakpoint

Rather	than	clicking	in	the	margin	to	set	your	breakpoint,	you
can	use	the	New	Breakpoint	item	on	the	Debug	menu	(or	use
the	keyboard	shortcut	for	the	menu	item,	Control-B).	This
brings	up	the	New	Breakpoint	dialog	box,	as	shown	in	Figure
10-4.

Figure	10-4.	The	New	Breakpoint	dialog

The	New	Breakpoint	dialog	allows	you	far	greater	control	over
your	breakpoint.	You	can	set	it	to	break	only	when	a	specific
condition	is	hit	(e.g.,	when	counter	>	10).

You	can	also	set	the	hit	count	to	designate	that	you	want	the
debugger	to	break	in	only	when	the	line	has	been	hit	a
specified	number	of	times	(or	a	multiple	of	a	specific	number,
etc.),	as	shown	in	Figure	10-5.

Figure	10-5.	Breakpoint	hit	count

This	can	be	very	useful	when	you	are	in	a	loop	(as	described	in
Chapter	6).	Rather	than	breaking	each	time	through	a	loop	of
100	iterations,	you	can	choose	the	conditions	under	which	to
break.

You	can	also	examine	and	manipulate	all	the	breakpoints
together	in	the	Breakpoints	window,	as	shown	in	Figure	10-6.

Figure	10-6.	The	Breakpoints	window

Examining	Values:	The	Autos	and	Locals
Windows

Look	at	the	bottom	lefthand	windows,	where	your	variables	are
displayed.	These	variables	are	organized	in	a	tabbed	set	of
windows	named	Autos	and	Locals.	You've	already	had	a	sneak
peek	at	the	Autos	window,	back	in	Figure	10-3.

Tip
The	debugger	will	stack	the	Autos	and	Locals
windows	together	with	tabs	as	shown	in	Figure	10-7.
You	are	free	to	separate	these	windows	or	to	move
them	to	be	tabbed	with	other	windows.	You	can
simply	drag	and	drop	the	windows	where	you	want
them.	When	you	drop	one	window	on	another,	the	two
windows	are	tabbed	together.

The	Autos	and	Locals	windows	can	be	used	to	display	the
current	value	of	each	variable	(and	parameter)	in	your
program.	The	Autos	window	shows	variables	used	in	the
current	statement	and	the	previous	statement.	(The	current
statement	is	the	statement	at	the	current	execution	location,
which	is	highlighted	automatically	in	the	debugger—thus	the
window's	name.)	The	Locals	window	displays	all	objects
currently	in	scope	(that	is,	in	the	current	method),	also
allowing	you	to	see	the	object's	member	fields	and	variables.

Figure	10-7	shows	the	Locals	tab	selected	to	display	the	Locals
window.	The	Locals	window	is	showing	you	that	the	local
variable	currentTime	has	been	set	to	the	current	date.	(Since
the	value	of	currentTime	has	just	been	set,	it	will	appear	in
red.)	The	window	also	shows	you	the	two	objects	time1	and
time2.

Figure	10-7.	The	Locals	window	on	top

Notice	the	plus	sign	(+)	next	to	the	time1	object.	This	object	is
of	type	System.Time,	which	turns	out	to	be	a	type	with	many
member	variables.	Expanding	the	plus	sign	reveals	the	state	of
this	object,	as	shown	in	Figure	10-8.

Figure	10-8.	Expanding	the	object	reveals	its	member	variables

Explore	the	Locals	and	Autos	windows	as	you	step	through	the
program.	When	you	want	to	stop,	choose	the	Stop	debugging
item	from	the	Debug	menu	to	stop	processing	and	return	to	the
editor.

Set	Your	Watch

In	a	program	with	many	local	variables,	it	can	be	difficult	to
keep	track	of	the	particular	variables	you	want	to	keep	an	eye
on.	You	can	track	variables	and	objects	in	the	Watch	window.
You	can	have	up	to	four	Watch	windows	at	a	time.	Watch
windows	are	like	by-invitation	versions	of	the	Locals	window;
they	will	list	the	objects	you	ask	the	debugger	to	keep	an	eye
on,	and	you	can	see	their	values	change	as	you	step	through
the	program,	as	illustrated	in	Figure	10-9.

Figure	10-9.	A	Watch	window

The	Watch	windows	are	usually	tabbed	with	the	Locals
window.	You	might	create	more	than	one	Watch	window	to
organize	the	variables	you	keep	an	eye	on.

You	can	add	a	watch	by	right-clicking	on	a	variable	and
choosing	Add	Watch.	You	might	instead	choose	Add
QuickWatch,	which	opens	a	dialog	box	with	watch	information
about	a	single	object,	as	shown	in	Figure	10-10.

Figure	10-10.	QuickWatch

From	within	the	QuickWatch	window,	you	can	enter	any
expression	and	evaluate	it.	For	example,	suppose	you	had
integer	variables	named	varOne	and	varTwo:
Dim	varOne	As	Integer	=	5

Dim	varTwo	As	Integer	=	7

If	you	want	to	know	the	impact	of	multiplying	them,	you	can
just	enter:
varOne	*	varTwo

into	the	Expression	window	and	click	Recalculate.	The	value	is
shown	in	the	Current	value	window,	as	in	Figure	10-11.

Figure	10-11.	QuickWatch	recalculation

The	Call	Stack
As	you	step	in	and	out	of	methods,	the	Call	Stack	window	will
keep	track	of	the	order	and	hierarchy	of	method	calls.	If	you
look	back	at	Figure	10-2,	you'll	see	the	Call	Stack	window	in
the	lower	righthand	corner	of	the	application.	Figure	10-12
shows	a	close-up	picture	of	the	Call	Stack	window.	You	can	see
that	the	Time	constructor	was	called	by	the	Run()	method,
while	the	Run()	method	was	in	turn	called	by	Main().

Figure	10-12.	The	call	stack

In	this	case,	if	you	double-click	on	the	second	line	in	the	Call
Stack	window,	the	debugger	will	show	you	the	line	in	Run()
that	called	the	Time	constructor,	as	shown	in	Figure	10-13.

Figure	10-13.	Tracing	the	call	stack

Chapter	11.	Inheritance	and	Polymorphism
In	Chapter	8,	you	learned	how	to	create	new	types	by	declaring
classes,	and	in	Chapter	3,	you	saw	a	discussion	of	the	principle
object	relationships	of	association,	aggregation,	and
specialization.	This	chapter	focuses	on	specialization,	which	is
implemented	in	VB.NET	through	inheritance.	This	chapter	also
explains	how	instances	of	more	specialized	classes	can	be
treated	as	if	they	were	instances	of	more	general	classes,	a
process	known	as	polymorphism.	This	chapter	ends	with	a
consideration	of	not	inheritable	classes,	which	cannot	be
specialized,	and	a	discussion	of	the	root	of	all	classes,	the
Object	class.

Specialization	and	Generalization
Classes	and	their	instances	(objects)	do	not	exist	in	a	vacuum
but	rather	in	a	network	of	interdependencies	and	relationships,
just	as	we,	as	social	animals,	live	in	a	world	of	relationships	and
categories.	One	of	the	most	important	relationships	among
objects	in	the	real	world	is	specialization,	which	can	be
described	as	an	is-a	relationship.	When	we	say	that	a	Dog	is-a
mammal,	we	mean	that	the	dog	is	a	specialized	kind	of
mammal.	It	has	all	the	characteristics	of	any	mammal	(it	bears
live	young,	nurses	with	milk,	has	hair),	but	it	specializes	these
characteristics	to	the	familiar	characteristics	of	canine
domesticus.	A	Cat	is	also	a	mammal.	As	such	we	expect	it	to
share	certain	characteristics	with	the	dog	that	are	generalized
in	Mammal,	but	to	differ	in	those	characteristics	that	are
specialized	in	Cat.

The	specialization	and	generalization	relationships	are	both
reciprocal	and	hierarchical.	They	are	reciprocal	because
specialization	is	the	obverse	side	of	the	generalization	coin.
Thus,	Dog	and	Cat	specialize	Mammal,	and	Mammal
generalizes	from	Dog	and	Cat.

These	relationships	are	hierarchical	because	they	create	a
relationship	tree,	with	specialized	types	branching	off	from
more	generalized	types.	As	you	move	up	the	hierarchy	you
achieve	greater	generalization.	You	move	up	toward	Mammal
to	generalize	that	Dogs	and	Cats	and	Horses	all	bear	live
young.	As	you	move	down	the	hierarchy,	you	specialize.	Thus,
the	Cat	specializes	Mammal	in	having	claws	(a	characteristic)
and	purring	(a	behavior).

Similarly,	when	you	say	that	ListBox	and	Button	are	Windows,
you	indicate	that	you	expect	to	find	characteristics	and
behaviors	of	Windows	in	both	of	these	types.	In	other	words,
Window	generalizes	the	shared	characteristics	of	both	ListBox
and	Button,	while	each	specializes	its	own	particular
characteristics	and	behaviors.

The	Unified	Modeling	Language	(UML)	is	a	standardized
"language"	for	describing	an	object-oriented	system.	In	the
UML,	classes	are	represented	as	boxes.	The	name	of	the	class
appears	at	the	top	of	the	box,	and	(optionally)	methods	and
members	can	be	listed	in	the	sections	within	the	box.

In	the	UML,	you	model	specialization	relationships	as	shown	in
Figure	11-1.	Note	that	the	arrow	points	from	the	more
specialized	class	up	to	the	more	general	class.	In	the	figure,	the
more	specialized	Button	and	ListBox	classes	point	up	to	the
more	general	Window	class.

Figure	11-1.	An	is-a	relationship

It	is	not	uncommon	for	two	classes	share	functionality.	When
this	occurs,	you	can	factor	out	these	commonalities	into	a	shared

base	class,	which	is	more	general	than	the	more	specialized
classes.	This	provides	you	with	greater	reuse	of	common	code,
and	with	code	that	is	easier	to	maintain.

For	example,	suppose	you	started	out	creating	a	series	of
objects	as	illustrated	in	Figure	11-2.

Figure	11-2.	Objects	deriving	from	Window

After	working	with	RadioButtons,	CheckBoxes,	and	Command
buttons	for	a	while,	you	realize	that	they	share	certain
characteristics	and	behaviors	that	are	more	specialized	than
Window	but	more	general	than	any	of	the	three.	You	might
factor	these	common	traits	and	behaviors	into	a	common	base
class,	Button,	and	rearrange	your	inheritance	hierarchy	as
shown	in	Figure	11-3.	This	is	an	example	of	how	generalization
is	used	in	object-oriented	development.

Figure	11-3.	Factoring	a	Button	class

The	UML	diagram	in	Figure	11-3	depicts	the	relationship
among	the	factored	classes	and	shows	that	both	ListBox	and
Button	derive	from	Window,	and	that	Button	is	in	turn
specialized	into	CheckBox	and	Command.	Finally,	RadioButton
derives	from	CheckBox.	You	can	thus	say	that	RadioButton	is	a
CheckBox,	which	in	turn	is	a	Button,	and	that	Buttons	are
Windows.

This	is	not	the	only,	or	even	necessarily	the	best,	organization
for	these	objects,	but	it	is	a	reasonable	starting	point	for
understanding	how	these	types	(classes)	relate	to	one	another.

Tip
Actually,	although	this	might	reflect	how	some	widget
hierarchies	are	organized,	I	am	very	skeptical	of	any
system	in	which	the	model	does	not	reflect	how	I
perceive	reality,	and	when	I	find	myself	saying	that	a
RadioButton	is	a	CheckBox,	I	have	to	think	long	and
hard	about	whether	that	makes	sense.	I	suppose	a
RadioButton	is	a	kind	of	checkbox.	It	is	a	checkbox
that	supports	the	idiom	of	mutually	exclusive	choices.
That	said,	it	is	a	bit	of	a	stretch	and	might	be	a	sign	of
a	shaky	design.

Inheritance
In	VB.NET,	the	specialization	relationship	is	implemented	using
a	principle	called	inheritance.	This	is	not	the	only	way	to
implement	specialization,	but	it	is	the	most	common	and	most
natural	way	to	implement	this	relationship.

Saying	that	ListBox	inherits	from	(or	derives	from)	Window
indicates	that	it	specializes	Window.	Window	is	referred	to	as
the	base	class,	and	ListBox	is	referred	to	as	the	derived	class.
That	is,	ListBox	derives	its	characteristics	and	behaviors	from
Window	and	then	specializes	to	its	own	particular	needs.

Implementing	Inheritance

In	VB.NET,	you	create	a	derived	class	by	adding	the	Inherits
keyword	after	the	name	of	the	derived	class,	followed	by	the
name	of	the	base	class:
Public	Class	ListBox

			Inherits	Window

Or	you	might	combine	these	two	lines	onto	one	as	follows:
Public	Class	ListBox	:	Inherits	Window

This	code	declares	a	new	class,	ListBox,	that	derives	from
Window.	You	can	read	the	Inherits	keyword	as	"derives	from."

The	derived	class	inherits	all	the	members	of	the	base	class,
both	member	variables	and	methods.	These	members	can	be
treated	just	as	if	they	were	created	in	the	derived	class,	as
shown	in	Example	11-1.

Example	11-1.	Deriving	a	new	class

Option	Strict	On

Imports	System

Public	Class	Window

	

				'	constructor	takes	two	integers	to

				'	constructor	takes	two	integers	to

				'	fix	location	on	the	console

				Public	Sub	New(ByVal	top	As	Integer,	ByVal	left	As	Integer)

								Me.top	=	top

								Me.left	=	left

				End	Sub	'New

	

				'	simulates	drawing	the	window

				Public	Sub	DrawWindow()

								Console.WriteLine("Drawing	Window	at	{0},	{1}",	top,	left)

				End	Sub	'DrawWindow

	

				'	these	members	are	private	and	thus	invisible

				'	to	derived	class	methods;	we'll	examine	this

				'	later	in	the	chapter

				Private	top	As	Integer

				Private	left	As	Integer

End	Class	'Window

	

'	ListBox	derives	from	Window

Public	Class	ListBox

				Inherits	Window

	

				'	constructor	adds	a	parameter

				Public	Sub	New(ByVal	top	As	Integer,	ByVal	left	As	Integer,	ByVal	theContents	As

								MyBase.New(top,	left)	'	call	base	constructor

								mListBoxContents	=	theContents

				End	Sub	'New

	

				'	a	shadow	version	(note	keyword)	because	in	the

				'	derived	method	we	change	the	behavior

				Public	Shadows	Sub	DrawWindow()

								MyBase.DrawWindow()	'	invoke	the	base	method

								Console.WriteLine("Writing	string	to	the	listbox:	{0}",	mListBoxContents)

				End	Sub	'DrawWindow

				Private	mListBoxContents	As	String	'	new	member	variable

End	Class	'ListBox

	

Module	Module1

	

				Sub	Main()

								'	create	a	base	instance

								Dim	w	As	New	Window(5,	10)

								w.DrawWindow()

	

								'	create	a	derived	instance

								Dim	lb	As	New	ListBox(20,	30,	"Hello	world")

								lb.DrawWindow()

				End	Sub

	

End	Module

Output:
Drawing	Window	at	5,	10

Drawing	Window	at	20,	30

Writing	string	to	the	listbox:	Hello	world

Example	11-1	starts	with	the	declaration	of	the	base	class
Window.	This	class	implements	a	constructor	and	a	simple

DrawWindow()	method.	There	are	two	private	member
variables,	top	and	left.	The	program	is	analyzed	in	detail	in	the
following	sections.

Calling	Base	Class	Constructors

In	Example	11-1,	the	new	class	ListBox	derives	from	Window
and	has	its	own	constructor,	which	takes	three	parameters	(top,	
left,	and	theContents).	The	ListBox	constructor	invokes	the
constructor	of	its	parent	by	calling	MyBase.New	and	passing	in
the	parameters	(using	the	ByVal	keyword,	as	described	in
Chapter	9):
Public	Sub	New(

			ByVal	top	As	Integer,	

			ByVal	left	As	Integer,	_

			ByVal	theContents	As	String)

			MyBase.New(top,	left)	'	call	base	constructor
								mListBoxContents	=	theContents

End	Sub	'New

Because	classes	cannot	inherit	constructors,	a	derived	class
must	implement	its	own	constructor	and	can	make	use	of	the
constructor	of	its	base	class	only	by	calling	it	explicitly.

If	the	base	class	has	an	accessible	default	constructor,	the
derived	constructor	is	not	required	to	invoke	the	base
constructor	explicitly;	instead,	the	default	constructor	is	called
implicitly.	However,	if	the	base	class	does	not	have	a	default
constructor,	every	derived	constructor	must	explicitly	invoke
one	of	the	base	class	constructors	using	the	MyBase	keyword.	The
keyword	MyBase	identifies	the	base	class	for	the	current	object.

Tip
As	discussed	in	Chapter	8,	if	you	do	not	declare	a
constructor	of	any	kind,	the	compiler	will	create	a
default	constructor	for	you.	Whether	you	write	it
yourself	or	you	use	the	one	provided	"by	default"	by
the	compiler,	a	default	constructor	is	one	that	takes
no	parameters.	Note,	however,	that	once	you	do

create	a	constructor	of	any	kind	(with	or	without
parameters),	the	compiler	does	not	create	a	default
constructor	for	you.

Shadowing	Base	Methods

Also	notice	in	Example	11-1	that	ListBox	implements	a	new
version	of	DrawWindow():
Public	Shadows	Sub	DrawWindow()

The	keyword	Shadows	here	indicates	that	the	programmer	is
intentionally	creating	a	new	version	of	this	method	in	the
derived	class.

In	Example	11-1,	the	DrawWindow()	method	of	ListBox	hides
and	replaces	the	base	class	method.	When	you	call
DrawWindow()	on	an	object	of	type	ListBox,	it	is
ListBox.DrawWindow()	that	will	be	invoked,	not
Window.DrawWindow().	Note,	however,	that
ListBox.DrawWindow()	can	invoke	the	DrawWindow()	method
of	its	base	class	with	the	code:
MyBase.DrawWindow()	'invoke	the	base	method

Controlling	Access

The	visibility	of	a	class	and	its	members	can	be	restricted
through	the	use	of	access	modifiers,	such	as	Public,	Private,	and	
Protected.	(See	Chapter	8	for	a	discussion	of	access	modifiers.)

As	you've	seen,	Public	allows	a	member	to	be	accessed	by	the
member	methods	of	other	classes,	while	Private	indicates	that
the	member	is	visible	only	to	member	methods	of	its	own	class.
The	Protected	keyword	extends	visibility	to	methods	of	derived
classes.

Classes	as	well	as	their	members	can	be	designated	with	any	of
these	accessibility	levels.	If	a	class	member	has	a	different

these	accessibility	levels.	If	a	class	member	has	a	different
access	designation	than	the	class,	the	more	restricted	access
applies.	Thus,	if	you	define	a	class,	someClass,	as	follows:
Public	Class	someClass

{

			'...

			Protected	myValue	As	Integer

}

the	accessibility	for	myValue	is	protected	even	though	the	class
itself	is	public.	A	public	class	is	one	that	is	visible	to	any	other
class	that	wishes	to	interact	with	it.

Polymorphism
There	are	two	powerful	aspects	to	inheritance.	One	is	code
reuse.	When	you	create	a	ListBox	class,	you're	able	to	reuse
some	of	the	logic	in	the	base	(Window)	class.

What	is	arguably	more	powerful,	however,	is	the	second	aspect
of	inheritance:	polymorphism.	Poly	means	many	and	morph
means	form.	Thus,	polymorphism	refers	to	being	able	to	use
many	forms	of	a	type	without	regard	to	the	details.

When	the	phone	company	sends	your	phone	a	ring	signal,	it
does	not	know	what	type	of	phone	is	on	the	other	end	of	the
line.	You	might	have	an	old-fashioned	Western	Electric	phone
that	energizes	a	motor	to	ring	a	bell,	or	you	might	have	an
electronic	phone	that	plays	digital	music.

As	far	as	the	phone	company	is	concerned,	it	knows	only	about
the	"base	type"	phone	and	expects	that	any	"instance"	of	this
type	knows	how	to	ring.	When	the	phone	company	tells	your
phone	to	ring,	it	simply	expects	the	phone	to	"do	the	right
thing."	Thus,	the	phone	company	treats	your	phone
polymorphically.

Creating	Polymorphic	Types

Because	a	ListBox	is-a	Window	and	a	Button	is-a	Window,	you
expect	to	be	able	to	use	either	of	these	types	in	situations	that
call	for	a	Window.	For	example,	a	form	might	want	to	keep	a
collection	of	all	the	instances	of	Window	it	manages	so	that
when	the	form	is	opened,	it	can	tell	each	of	its	Windows	to
draw	itself.	For	this	operation,	the	form	does	not	want	to	know
which	elements	are	listboxes	and	which	are	buttons;	it	just
wants	to	tick	through	its	collection	and	tell	each	to	"draw."	In
short,	the	form	wants	to	treat	all	its	Window	objects
polymorphically.

Creating	Polymorphic	Methods

To	create	a	method	that	supports	polymorphism,	you	need	only
mark	it	as	virtual	in	its	base	class.	For	example,	to	indicate	that
the	method	DrawWindow()	of	class	Window	in	Example	11-1	is
polymorphic,	simply	add	the	keyword	Overridable	to	its
declaration,	as	follows:
Public	Overridable	Sub	DrawWindow()

Now	each	derived	class	is	free	to	implement	its	own	version	of
DrawWindow()	and	the	method	will	be	invoked
polymorphically.	To	do	so,	you	simply	override	the	base	class
virtual	method	by	using	the	keyword	Overrides	in	the	derived	class
method	definition,	and	then	add	the	new	code	for	that
overridden	method.

In	the	following	excerpt	from	Example	11-2	(which	appears
later	in	this	section),	ListBox	derives	from	Window	and
implements	its	own	version	of	DrawWindow():
Public	Overrides	Sub	DrawWindow()

				MyBase.DrawWindow()	'	invoke	the	base	method

				Console.WriteLine(_

						"Writing	string	to	the	listbox:	{0}",	listBoxContents)

End	Sub	'DrawWindow

The	keyword	Overrides	tells	the	compiler	that	this	class	has
intentionally	overridden	how	DrawWindow()	works.	Similarly,
you'll	override	this	method	in	another	class,	Button,	also
derived	from	Window.

In	the	body	of	Example	11-2,	you'll	create	three	objects:	a
Window,	a	ListBox,	and	a	Button.	You'll	then	call	DrawWindow(
)	on	each:
Dim	win	As	New	Window(1,	2)

Dim	lb	As	New	ListBox(3,	4,	"Stand	alone	list	box")

Dim	b	As	New	Button(5,	6)

win.DrawWindow()

lb.DrawWindow()

b.DrawWindow()

This	works	much	as	you	might	expect.	The	correct

This	works	much	as	you	might	expect.	The	correct
DrawWindow()	method	is	called	for	each.	So	far,	nothing
polymorphic	has	been	done.

The	real	magic	starts	when	you	create	an	array	of	Window
objects.

Note
Example	11-2	uses	an	array,	which	is	a	collection	of
objects,	all	of	the	same	type.	You	create	an	array	by
indicating	the	type	of	objects	to	hold	and	then
allocating	space	for	a	given	number	of	those	objects.
For	example,	the	following	code	declares	winArray	to
be	an	array	of	three	Window	objects:
Dim	winArray(3)	As	Window

You	access	the	members	of	the	array	with
parentheses.	The	first	element	is	accessed	with
winArray(0),	the	second	with	winArray(1),	and	so
forth.	Arrays	are	explained	in	detail	in	Chapter	14.

Because	a	ListBox	is-a	Window,	you	are	free	to	place	a	ListBox
into	an	array	of	Windows.	You	can	also	place	a	Button	into	an
array	of	Window	objects	because	a	Button	is	also	a	Window:
Dim	winArray(3)	As	Window

winArray(0)	=	New	Window(1,	2)

winArray(1)	=	New	ListBox(3,	4,	"List	box	in	array")

winArray(2)	=	New	Button(5,	6)

The	first	line	of	code	declares	an	array	named	winArray	that
will	hold	three	Window	objects.	The	next	three	lines	add	new
Window	objects	to	the	array.	The	first	adds	a	Window.	The
second	adds	a	ListBox	(which	is	a	Window	because	ListBox
derives	from	Window),	and	the	third	adds	a	Button	(Button	also
derives	from	Window).

What	happens	when	you	call	DrawWindow()	on	each	of	these
objects?
Dim	offSet	As	Integer

For	offSet	=	0	To	2

For	offSet	=	0	To	2

				winArray(offSet).DrawWindow()

Next	offSet

This	code	calls	DrawWindow()	on	each	element	in	the	array	in
turn.	The	value	offSet	is	initialized	to	zero	and	is	incremented
each	time	through	the	loop.	The	value	of	offSet	is	used	as	an
index	into	the	array.

All	the	compiler	knows	is	that	it	has	three	Window	objects	and
that	you've	called	DrawWindow()	on	each.	If	you	had	not
marked	DrawWindow()	as	virtual,	Window's	original
DrawWindow()	method	would	be	called	three	times.

However,	because	you	did	mark	DrawWindow()	as	virtual,	and
because	the	derived	classes	override	that	method,	when	you
call	DrawWindow()	on	the	array,	the	right	thing	happens	for
each	object	in	the	array.	Specifically,	the	compiler	determines
the	runtime	type	of	the	actual	objects	(a	Window,	a	ListBox,
and	a	Button)	and	calls	the	right	method	on	each.	This	is	the
essence	of	polymorphism.

Tip
The	runtime	type	of	an	object	is	the	actual	(derived)
type.	At	compile	time	you	do	not	have	to	decide	what
kind	of	objects	will	be	added	to	your	collection,	so
long	as	they	all	derive	from	the	declared	type	(in	this
case	Window).	At	runtime	the	actual	type	is
discovered	and	the	right	method	is	called.	This	allows
you	to	pick	the	actual	type	of	objects	to	add	to	the
collection	while	the	program	is	running.

The	complete	code	for	this	example	is	shown	in	Example	11-2.

Example	11-2.	Virtual	methods

Option	Strict	On

Imports	System

Public	Class	Window

	

				'	constructor	takes	two	integers	to

				'	fix	location	on	the	console

				Public	Sub	New(ByVal	top	As	Integer,	ByVal	left	As	Integer)

								Me.top	=	top

								Me.top	=	top

								Me.left	=	left

				End	Sub	'New

	

				'	simulates	drawing	the	window

				Public	Overridable	Sub	DrawWindow()

								Console.WriteLine("Window:	drawing	Window	at	{0},	{1}",	top,	left)

				End	Sub	'DrawWindow

	

				'	these	members	are	protected	and	thus	visible

				'	to	derived	class	methods.	We'll	examine	this

				'	later	in	the	chapter

				Protected	top	As	Integer

				Protected	left	As	Integer

End	Class	'Window

	

'	ListBox	derives	from	Window

Public	Class	ListBox

				Inherits	Window

	

				'	constructor	adds	a	parameter

				Public	Sub	New(ByVal	top	As	Integer,	ByVal	left	As	Integer,	ByVal	contents	As	String)

								MyBase.New(top,	left)	'	call	base	constructor

	

								listBoxContents	=	contents

				End	Sub	'New

	

				'	an	overridden	version	(note	keyword)	because	in	the

				'	derived	method	we	change	the	behavior

				Public	Overrides	Sub	DrawWindow()

								MyBase.DrawWindow()	'	invoke	the	base	method

								Console.WriteLine(_

									"Writing	string	to	the	listbox:	{0}",	listBoxContents)

				End	Sub	'DrawWindow

	

				Private	listBoxContents	As	String	'	new	member	variable

End	Class	'ListBox

	

Public	Class	Button

				Inherits	Window

	

				Public	Sub	New(ByVal	top	As	Integer,	ByVal	left	As	Integer)

								MyBase.New(top,	left)

				End	Sub	'New

	

				'	an	overridden	version	(note	keyword)	because	in	the

				'	derived	method	we	change	the	behavior

				Public	Overrides	Sub	DrawWindow()

								Console.WriteLine(_

										"Drawing	a	button	at	{0},	{1}"	+	ControlChars.Lf,	top,	Left)

				End	Sub	'DrawWindow

End	Class	'Button

	

Public	Class	Tester

	

				Shared	Sub	Main()

								Dim	win	As	New	Window(1,	2)

								Dim	lb	As	New	ListBox(3,	4,	"Stand	alone	list	box")

								Dim	b	As	New	Button(5,	6)

								win.DrawWindow()

								lb.DrawWindow()

								b.DrawWindow()

								Dim	winArray(3)	As	Window

								winArray(0)	=	New	Window(1,	2)

								winArray(1)	=	New	ListBox(3,	4,	"List	box	in	array")

								winArray(1)	=	New	ListBox(3,	4,	"List	box	in	array")

								winArray(2)	=	New	Button(5,	6)

	

								Dim	i	As	Integer

								For	i	=	0	To	2

												winArray(i).DrawWindow()

								Next	i

				End	Sub	'Main

End	Class	'Tester

Output:
Window:	drawing	Window	at	1,	2

Window:	drawing	Window	at	3,	4

Writing	string	to	the	listbox:	Stand	alone	list	box

Drawing	a	button	at	5,	6

Window:	drawing	Window	at	1,	2

Window:	drawing	Window	at	3,	4

Writing	string	to	the	listbox:	List	box	in	array

Drawing	a	button	at	5,	6

Note	that	throughout	this	example,	the	overridden	methods	are
marked	with	the	keyword	Overrides:
Public	Overrides	Sub	DrawWindow()

The	compiler	now	knows	to	use	the	overridden	method	when
treating	these	objects	polymorphically.	The	compiler	is
responsible	for	tracking	the	real	type	of	the	object	and	for
handling	the	"late	binding"	so	that	it	is	ListBox.DrawWindow()
that	is	called	when	the	Window	reference	really	points	to	a
ListBox	object.

Versioning	with	Overridable	and	Overrides

In	VB.NET,	the	programmer's	decision	to	override	a	virtual
method	is	made	explicit	with	the	Overrides	keyword.	This	helps
you	release	new	versions	of	your	code;	changes	to	the	base
class	will	not	break	existing	code	in	the	derived	classes.	The
requirement	to	use	the	Overrides	keyword	helps	prevent	that
problem.

Here's	how:	assume	for	a	moment	that	the	Window	base	class
of	the	previous	example	was	written	by	Company	A.	Suppose
also	that	the	ListBox	and	RadioButton	classes	were	written	by
programmers	from	Company	B	using	a	purchased	copy	of	the

programmers	from	Company	B	using	a	purchased	copy	of	the
Company	A	Window	class	as	a	base.	The	programmers	in
Company	B	have	little	or	no	control	over	the	design	of	the
Window	class,	including	future	changes	that	Company	A	might
choose	to	make.

Now	suppose	that	one	of	the	programmers	for	Company	B
decides	to	add	a	Sort()	method	to	ListBox:
Public	Class	ListBox

		Inherits	Window

			Public	Overridable	Sub	Sort()

					'...

			End	Sub

This	presents	no	problems	until	Company	A,	the	author	of
Window,	releases	Version	2	of	its	Window	class,	and	it	turns
out	that	the	programmers	in	Company	A	have	also	added	a
Sort()	method	to	their	public	class	Window:
Public	Class	Window

			Public	Overridable	Sub	Sort()

					'...

			End	Sub

In	other	object-oriented	languages	(such	as	C++),	the	new
overridable	Sort()	method	in	Window	would	now	act	as	a	base
method	for	the	overridable	Sort()	method	in	ListBox.	The
compiler	would	call	the	Sort()	method	in	ListBox	when	you
intend	to	call	the	Sort()	in	Window.	In	Java,	if	the	Sort()	in
Window	had	a	different	return	type,	the	class	loader	would
consider	the	Sort()	in	ListBox	to	be	an	invalid	override	and
would	fail	to	load.

VB.NET	prevents	this	confusion.	In	VB.NET,	an	overridable
function	is	always	considered	to	be	the	root	of	dispatch;	that	is,
once	VB.NET	finds	an	overridable	method,	it	looks	no	further
up	the	inheritance	hierarchy.	If	a	new	overridable	Sort()
function	is	introduced	into	Window,	the	runtime	behavior	of
ListBox	is	unchanged.

When	ListBox	is	compiled	again,	however,	the	compiler
generates	a	warning:

generates	a	warning:
Module1.vb(31)	:	warning	BC40005:	sub	'Sort'	shadows	an

overridable	method	in	a	base	class.	To	override	the

base	method,	this	method	must	be	declared	'Overrides'.

To	remove	the	warning,	the	programmer	must	indicate	what	he
intends.	He	can	mark	the	ListBox	Sort()	method	Shadows,	to
indicate	that	it	is	not	an	override	of	the	method	in	Window:
Public	Class	ListBox

				

				Inherits	Window

				Public	Shadows	Sub	Sort()

								'...

				End	Sub	'Sort

This	action	removes	the	warning.	If,	on	the	other	hand,	the
programmer	does	want	to	override	the	method	in	Window,	he
need	only	use	the	Overrides	keyword	to	make	that	intention
explicit:
Public	Class	ListBox

				

				Inherits	Window

				Public	Overrides	Sub	Sort()

								'...

				End	Sub	'Sort

Abstract	Classes
Each	type	of	Window	has	a	different	shape	and	appearance.
Drop-down	listboxes	look	very	different	from	buttons.	Clearly,
every	subclass	of	Window	should	implement	its	own
DrawWindow()	method—but	so	far,	nothing	in	the	Window
class	enforces	that	they	must	do	so.	To	require	subclasses	to
implement	a	method	of	their	base,	you	need	to	designate	that
method	as	abstract.

An	abstract	method	has	no	implementation.	It	creates	a	method
name	and	signature	that	must	be	implemented	in	all	derived
classes.	Furthermore,	making	one	or	more	methods	of	any
class	abstract	has	the	side	effect	of	making	the	class	abstract.

Abstract	classes	establish	a	base	for	derived	classes,	but	it	is
not	legal	to	instantiate	an	object	of	an	abstract	class.	Once	you
declare	a	method	to	be	abstract,	you	prohibit	the	creation	of
any	instances	of	that	class.

The	Idea	Behind	Abstraction

Abstract	(MustInherit)	classes	should	not	just	be	an
implementation	trick;	they	should	represent	the	idea	of	an
abstraction	that	establishes	a	"contract"	for	all	derived
classes.	In	other	words,	abstract	classes	mandate	the	public
methods	of	the	classes	that	will	implement	the	abstraction.

The	idea	of	an	abstract	Window	class	ought	to	lay	out	the
common	characteristics	and	behaviors	of	all	windows,	even
though	you	never	intend	to	instantiate	the	abstraction	Window
itself.

The	idea	of	an	abstract	class	is	implied	in	the	word	"abstract."
It	serves	to	implement	the	abstraction	"Window"	that	will	be
manifest	in	the	various	concrete	instances	of	Window,	such	as

browser	window,	frame,	button,	listbox,	drop-down,	and	so
forth.	The	abstract	class	establishes	what	a	Window	is,	even
though	we	never	intend	to	create	a	"Window"	per	se.	An
alternative	to	using	MustInherit	is	to	define	an	interface,	as
described	in	Chapter	13.

Thus,	if	you	were	to	designate	DrawWindow()	as	an	abstract
method	in	the	Window	class,	the	Window	class	would	thus
become	abstract.	Then	you	could	derive	from	Window,	but	you
could	not	create	any	Window	objects/instances.	If	the	Window
class	is	an	abstraction,	there	is	no	such	thing	as	a	simple
Window	object;	only	objects	derived	from	Window.

Making	Window.DrawWindow()	abstract	means	that	each	class
derived	from	Window	would	have	to	implement	its	own
DrawWindow()	method.	If	the	derived	class	failed	to
implement	the	abstract	method,	that	derived	class	would	also
be	abstract,	and	again	no	instances	would	be	possible.

Designating	a	method	as	abstract	is	accomplished	by	placing
the	MustOverride	keyword	at	the	beginning	of	the	method	definition,
as	follows:
MustOverride	Public	Sub	DrawWindow()

If	one	or	more	methods	of	the	derived	class	are	abstract
(MustOverride),	the	base	class	definition	must	be	marked	MustInherit,
as	in	the	following:
MustInherit	Public	Class	Window

Example	11-3	illustrates	the	creation	of	an	abstract	Window
class	and	an	abstract	DrawWindow()	method.

Example	11-3.	An	abstract	class	and	method

Option	Strict	On

Imports	System

MustInherit	Public	Class	Window

			

			'	constructor	takes	two	integers	to

			'	fix	location	on	the	console

			'	fix	location	on	the	console

			Public	Sub	New(top	As	Integer,	left	As	Integer)

						Me.top	=	top

						Me.left	=	left

			End	Sub	'New

			

			

			'	simulates	drawing	the	window

			'	notice:	no	implementation

			Public	MustOverride	Sub	DrawWindow()

			

			Protected	top	As	Integer

			Protected	left	As	Integer

End	Class	'Window

	

'	ListBox	derives	from	Window

Public	Class	ListBox

			Inherits	Window

			

			'	constructor	adds	a	parameter

			Public	Sub	New(top	As	Integer,	left	As	Integer,	contents	As	String)

						MyBase.New(top,	left)	'	call	base	constructor

						

						listBoxContents	=	contents

			End	Sub	'New

			

			

			'	an	overridden	version	implementing	the

			'	abstract	method

			Public	Overrides	Sub	DrawWindow()

						

						Console.WriteLine("Writing	string	to	the	listbox:	{0}",	listBoxContents)

			End	Sub	'DrawWindow

			

			Private	listBoxContents	As	String	'	new	member	variable

End	Class	'ListBox

	

Public	Class	Button

			Inherits	Window

			

			Public	Sub	New(top	As	Integer,	left	As	Integer)

						MyBase.New(top,	left)

			End	Sub	'New

			

			

			'	implement	the	abstract	method

			Public	Overrides	Sub	DrawWindow()

						Console.WriteLine("Drawing	a	button	at	{0},	{1}"	+	ControlChars.Lf,	top,	left)

			End	Sub	'DrawWindow

End	Class	'Button

	

Public	Class	Tester

			

			Shared	Sub	Main()

						Dim	winArray(3)	As	Window

						winArray(0)	=	New	ListBox(1,	2,	"First	List	Box")

						winArray(1)	=	New	ListBox(3,	4,	"Second	List	Box")

						winArray(2)	=	New	Button(5,	6)

						

						Dim	i	As	Integer

						For	i	=	0	To	2

									winArray(i).DrawWindow()

						Next	i

			End	Sub	'Main

	

	

End	Class	'Tester

Output:
Writing	string	to	the	listbox:	First	List	Box

Writing	string	to	the	listbox:	Second	List	Box

Drawing	a	button	at	5,	6

In	Example	11-3,	the	Window	class	has	been	declared	MustInherit
and	therefore	cannot	be	instantiated.	If	you	replace	the	first
array	member:
winArray(0)	=	New	ListBox(1,	2,	"First	List	Box")

with	this	code:
winArray(0)	=	New	Window(1,	2)

the	program	will	generate	the	following	error:
C:\...Module1.vb(63):	'New'	cannot	be	used	on	class	'DebuggingVB.Window'	because	it

contains	a	'MustOverride'	member	that	has	not	been	overridden.

You	can	instantiate	the	ListBox	and	Button	objects	because
these	classes	override	the	MustOverride	method,	thus	making	the
classes	concrete	(i.e.,	not	abstract).

NotInheritable	Classes
The	opposite	side	of	the	design	coin	from	abstract	is	not
inheritable.	Although	an	abstract	class	is	intended	to	be
derived	from	and	to	provide	a	template	for	its	subclasses	to
follow,	a	not-inheritable	class	does	not	allow	classes	to	derive
from	it	at	all.	The	NotInheritable	keyword	placed	before	the	class
declaration	precludes	derivation.	Classes	are	most	often
marked	not-inheritable	to	prevent	accidental	inheritance.

If	the	declaration	of	Window	in	Example	11-3	is	changed	from	
MustInherit	to	NotInheritable	(eliminating	the	MustOverride	keyword	from
the	DrawWindow()	declaration	as	well),	the	program	will	fail	to
compile.	If	you	try	to	build	this	project,	the	compiler	will	return
the	following	error	message:
C:\...Module1.vb(13):	'NotInheritable'	classes	cannot	have	members	declared

'MustOverride'.

Microsoft	recommends	using	NotInheritable	"when	it	will	not	be
necessary	to	create	derived	classes"[1]	and	also	when	your
class	consists	of	nothing	but	shared	methods	and	properties.

[1]	Visual	Studio	.NET	Combined	Collection:	Base	Class	Usage
Guidelines.

The	Root	of	All	Classes:	Object
All	VB.NET	classes,	of	any	type,	are	treated	as	if	they
ultimately	derive	from	a	single	class,	Object.	Object	is	the	base
class	for	all	other	classes.

A	base	class	is	the	immediate	"parent"	of	a	derived	class.	A
derived	class	can	be	the	base	to	further	derived	classes,
creating	an	inheritance	"tree"	or	hierarchy.	A	root	class	is	the
topmost	class	in	an	inheritance	hierarchy.	In	VB.NET,	the	root
class	is	Object.	The	nomenclature	is	a	bit	confusing	until	you
imagine	an	upside-down	tree,	with	the	root	on	top	and	the
derived	classes	below.	Thus,	the	base	class	is	considered	to	be
"above"	the	derived	class.

Object	provides	a	number	of	methods	that	subclasses	can	and
do	override.	These	include	Equals(),	which	determines	if	two
objects	are	the	same,	GetType(),	which	returns	the	type	of	the
object	and	ToString(),	which	returns	a	string	to	represent	the
current	object.	Specifically,	ToString()	returns	a	string	with
the	name	of	the	class	to	which	the	object	belongs.	Table	11-1
summarizes	the	methods	of	Object.

Table	11-1.	The	Object	class

Method What	It	Does

Equals() Evaluates	whether	two	objects	are	equivalent.

GetHashCode()
Allows	objects	to	provide	their	own	hash	function
for	use	in	collections	(see	Chapter	15).

GetType() Provides	access	to	the	type	object.

GetType() Provides	access	to	the	type	object.

ToString() Provides	a	string	representation	of	the	object.

Finalize()
Cleans	up	nonmemory	resources;	implemented	by
a	destructor.

MemberwiseClone(

)

Creates	copies	of	the	object;	should	never	be
implemented	by	your	type.

ReferenceEquals(

)

Evaluates	whether	two	objects	refer	to	the	same
instance.

In	Example	11-4,	the	Dog	class	overrides	the	ToString()
method	inherited	from	Object,	to	return	the	weight	of	the	Dog.
This	example	also	takes	advantage	of	the	startling	fact	that
intrinsic	types	(Integer,	Long,	etc.)	can	also	be	treated	as	if
they	derive	from	Object,	and	thus	you	can	call	ToString()	on	an
integer	variable!	Calling	ToString()	on	an	intrinsic	type	returns
a	string	representation	of	the	variable's	value.

Example	11-4.	Overriding	ToString

Option	Strict	On

Imports	System

Public	Class	Dog

				Private	weight	As	Integer

	

				'	constructor

				Public	Sub	New(ByVal	weight	As	Integer)

								Me.weight	=	weight

				End	Sub	'New

	

				'	override	Object.ToString

				Public	Overrides	Function	ToString()	As	String

								Return	weight.ToString()

				End	Function	'ToString

End	Class	'Dog

	

	

Public	Class	Tester

	

				Shared	Sub	Main()

								Dim	i	As	Integer	=	5

								Console.WriteLine("The	value	of	i	is:	{0}",	i.ToString())

	

								Dim	milo	As	New	Dog(62)

								Console.WriteLine("My	dog	Milo	weighs	{0}	pounds",	milo.ToString())

				End	Sub	'Main

End	Class	'Tester

Output:
The	value	of	i	is:	5

My	dog	Milo	weighs	62	pounds

The	documentation	for	Object.ToString()	reveals	its	signature:
Overridable	Public	Function	ToString()	As	String

It	is	an	overridable	public	method	that	returns	a	string	and	that
takes	no	parameters.	All	the	built-in	types,	such	as	Integer,
derive	from	Object	and	so	can	invoke	Object's	methods.

Tip
The	Console	class's	Write()	and	WriteLine()	methods
call	ToString()	for	you	on	objects	that	you	pass	in	for
display.

Example	11-4	overrides	the	Overridable	ToString()	function	for
Dog,	so	that	calling	ToString()	on	a	Dog	object	will	return	a
reasonable	value.	If	you	comment	out	the	overridden	function,
the	base	method	will	be	invoked.	The	base	class	default
behavior	is	to	return	a	string	with	the	name	of	the	class	itself.
Thus,	the	output	would	be	changed	to	the	meaningless:
My	dog	Milo	weighs	Dog	pounds

Tip
Classes	do	not	need	to	declare	explicitly	that	they
derive	from	Object;	the	inheritance	is	implicit.

Boxing	and	Unboxing	Types
Boxing	and	unboxing	are	the	processes	that	enable	value	types
(e.g.,	integers)	to	be	treated	as	reference	types	(objects).	The
value	is	"boxed"	inside	an	Object	and	subsequently	"unboxed"
back	to	a	value	type.	It	is	this	process	that	allowed	us	to	call
the	ToString()	method	on	the	integer	in	Example	11-4.	(You
will	see	additional	uses	for	boxing	and	unboxing	in	Chapter
15.)

Boxing	Is	Implicit

Boxing	is	an	implicit	conversion	of	a	value	type	to	the	type
Object.	Boxing	a	value	allocates	an	instance	of	Object	and
copies	the	value	into	the	new	object	instance,	as	shown	in
Figure	11-4.

Figure	11-4.	Boxing	value	types

Boxing	is	implicit	when	you	provide	a	value	type	where	a
reference	is	expected.	The	compiler	notices	that	you've
provided	a	value	type	and	silently	boxes	it	within	an	object.	You
can,	of	course,	explicitly	cast	the	value	type	to	a	reference
type,	as	in	the	following:
Dim	myIntegerValue	As	Integer	=	5

Dim	myObject	as	Object	=	myIntegerValue	'	explicitly	cast	to	object

myObject.ToString()

This	is	not	necessary,	however,	as	the	compiler	will	box	the
value	for	you,	silently	and	with	no	action	on	your	part:

value	for	you,	silently	and	with	no	action	on	your	part:
Dim	myIntegerValue	As	Integer	=	5

myIntegerValue.ToString()	'	boxed	for	you

Unboxing	Must	Be	Explicit

To	return	the	boxed	object	back	to	a	value	type,	you	must
explicitly	unbox	it	if	Option	Strict	is	On	(as	it	should	be).	You
will	typically	unbox	by	using	the	DirectCast()	function	or	the
CType()	function.	Figure	11-5	illustrates	unboxing.

Figure	11-5.	Unboxing

Boxing	and	unboxing	are	illustrated	in	Example	11-5.

Example	11-5.	Boxing	and	unboxing

Option	Strict	On

Imports	System

Public	Class	UnboxingTest

				Public	Shared	Sub	Main()

								Dim	myIntegerVariable	As	Integer	=	123

								'	Boxing

								Dim	myObjectVariable	As	Object	=	myIntegerVariable

								Console.WriteLine("myObjectVariable:	{0}",	

														myObjectVariable.ToString())

								'	unboxing	(must	be	explicit)

								Dim	anotherIntegerVariable	As	Integer	=		

													DirectCast(myObjectVariable,	Integer)

								Console.WriteLine("anotherIntegerVariable:	{0}",	_

													anotherIntegerVariable)

				End	Sub

End	Class

Output:
myObjectVariable:	123

anotherIntegerVariable:	123

Example	11-5	creates	an	integer	myIntegerVariable	and
implicitly	boxes	it	when	it	is	assigned	to	the	object
myObjectVariable;	then,	to	exercise	the	newly	boxed	object,	its
value	is	displayed	by	calling	toString().

The	object	is	then	explicitly	unboxed	and	assigned	to	a	new
integer	variable,	anotherIntegerVariable,	whose	value	is
displayed	to	show	that	the	value	has	been	preserved.

Typically,	you	will	wrap	an	unbox	operation	in	a	Try	block,	as
explained	in	Chapter	16.	If	the	object	being	unboxed	is	null	or
is	a	reference	to	an	object	of	a	different	type,	an
InvalidCastException	error	occurs.

As	an	alternative,	you	can	use	the	TypeOf()	function,	as
follows:
'	unboxing	(must	be	explicit)

If	TypeOf	(myObjectVariable)	Is	Integer	Then

			Dim	anotherIntegerVariable	As	Integer	=	_

							DirectCast(myObjectVariable,	Integer)

			Console.WriteLine("anotherIntegerVariable:	{0}",	_

							anotherIntegerVariable)

End	If

Chapter	12.	Structures
So	far,	the	only	user-defined	type	you've	seen	is	the	class.	The
class,	as	you	know,	defines	a	new	type.	Instances	of	a	class	are
called	objects.	Classes	are	reference	types;	when	you	create	a
new	instance	of	a	class	you	get	back	a	reference	to	the	newly
created	object	on	the	heap.	(Creating	classes	is	discussed	in
Chapter	8.)

A	second	type	of	user-defined	type	is	a	structure.	Structures
are	designed	to	be	lightweight	alternatives	to	classes.	In	this
case,	the	term	lightweight	means	that	structures	use	fewer
resources	(i.e.,	less	memory)	than	classes,	but	they	offer	less
functionality.

Structures	are	similar	to	classes	in	that	they	can	contain
constructors,	properties,	methods,	fields,	operators,	nested
types,	and	indexers.	(See	Chapter	14	for	more	on	indexers.)
There	are,	however,	significant	differences	between	classes
and	structures.

For	example,	structures	don't	support	inheritance	or
destructors	(in	a	sense,	de-structure-ors).	More	important,
while	a	class	is	a	reference	type,	a	structure	is	a	value	type.

The	consensus	view	is	that	you	ought	to	use	structures	only	for
types	that	are	small,	simple,	and	similar	in	their	behavior	and
characteristics	to	built-in	types.	For	example,	if	you	were
creating	a	class	to	represent	a	point	on	the	screen	(x,y
coordinates),	you	might	consider	using	a	structure	rather	than
a	class.

In	this	chapter,	you	will	learn	how	to	define	and	work	with
structures	and	how	to	use	constructors	(or	con-structure-ors,	to
be	precise)	to	initialize	their	values.

Tip
It	is	entirely	possible	to	create	robust	commercial

It	is	entirely	possible	to	create	robust	commercial
applications	without	structures.	You	can	skip	this
chapter	and	come	back	to	it	when	you	actually	need
structures.

Defining	a	Structure
The	syntax	for	declaring	a	structure	is	almost	identical	to	that
for	a	class:
[attributes]	[access-modifiers]	Structure	

												identifier	

[Implements	

												interface-list]

		

		structure-members	

												End	Structure

Attributes	are	not	discussed	in	this	book.	Access	modifiers
(Public,	Private,	etc.)	work	just	as	they	do	with	classes.	(See
Chapter	8	for	a	discussion	of	access	modifiers.)	The	keyword	
Structure	is	followed	by	an	identifier	(the	name	of	the	structure).
The	optional	interface-list	is	explained	in	Chapter	14.	Within
the	body	of	the	structure,	you	define	fields	and	methods,	also
called	the	structure	members,	just	as	you	do	in	a	class.

Example	12-1	defines	a	structure	named	Location	to	hold	the
x,y	coordinates	of	an	object	displayed	on	the	screen.	To	create
this	application,	open	a	console	application	in	Visual	Studio
.NET	and	name	it	StructureDemonstration.

Example	12-1.	Creating	a	structure	for	x,y	coordinate	location

Option	Strict	On

Imports	System

Namespace	StructureDemonstration

	

				'	declare	a	structure	named	Location

				Public	Structure	Location

								'	the	Structure	has	private	data

								Private	myXVal	As	Integer

								Private	myYVal	As	Integer

	

								'	constructor

	

								Public	Sub	New(_

											ByVal	xCoordinate	As	Integer,	ByVal	yCoordinate	As	Integer)

												myXVal	=	xCoordinate

												myXVal	=	xCoordinate

												myYVal	=	yCoordinate

								End	Sub	'New

	

								'	property

								Public	Property	XVal()	As	Integer

												Get

																Return	myXVal

												End	Get

												Set(ByVal	Value	As	Integer)

																myXVal	=	Value

												End	Set

								End	Property

	

								Public	Property	YVal()	As	Integer

												Get

																Return	myYVal

												End	Get

												Set(ByVal	Value	As	Integer)

																myYVal	=	Value

												End	Set

								End	Property

	

								'	Display	the	structure	as	a	String

								Public	Overrides	Function	ToString()	As	String

												Return	[String].Format("{0},	{1}",	xVal,	yVal)

								End	Function	'ToString

				End	Structure	'Location

	

				Class	Tester

								Public	Sub	Run()

												'	create	an	instance	of	the	structure

												Dim	loc1	As	New	Location(200,	300)

	

												'	display	the	values	in	the	structure

												Console.WriteLine("Loc1	location:	{0}",	loc1)

	

												'	invoke	the	default	constructor

												Dim	loc2	As	New	Location()

												Console.WriteLine("Loc2	location:	{0}",	loc2)

	

												'	pass	the	structure	to	a	method

												myFunc(loc1)

	

												'	redisplay	the	values	in	the	structure

												Console.WriteLine("Loc1	location:	{0}",	loc1)

								End	Sub	'Run

	

								'	method	takes	a	structure	as	a	parameter

								Public	Sub	myFunc(ByVal	loc	As	Location)

												'	modify	the	values	through	the	properties

												loc.XVal	=	50

												loc.YVal	=	100

												Console.WriteLine("Loc1	location:	{0}",	loc)

								End	Sub	'myFunc

	

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

	

				End	Class	'Tester

End	Namespace	'StructureDemonstration

Output:
Loc1	location:	200,	300

Loc2	location:	0,	0

Loc1	location:	50,	100

Loc1	location:	200,	300

The	Location	structure	is	defined	as	public,	much	as	you	might
define	a	class.
Public	Structure	Location

				'	the	Structure	has	private	data

				Private	myXVal	As	Integer

				Private	myYVal	As	Integer

Like	with	a	class,	you	can	define	a	constructor	and	properties
for	the	structure.	For	example,	you	might	create	integer
member	fields	myXVal	and	myYVal,	and	then	provide	public
properties	for	them	named	XVal	and	YVal	(see	Chapter	9):
Public	Sub	New(_

		ByVal	xCoordinate	As	Integer,	ByVal	yCoordinate	As	Integer)

				myXVal	=	xCoordinate

				myYVal	=	yCoordinate

End	Sub	'New

Public	Property	XVal()	As	Integer

				Get

								Return	myXVal

				End	Get

				Set(ByVal	Value	As	Integer)

								myXVal	=	Value

				End	Set

End	Property

	

Public	Property	YVal()	As	Integer

				Get

								Return	myYVal

				End	Get

				Set(ByVal	Value	As	Integer)

								myYVal	=	Value

				End	Set

End	Property

Note	that	there	is	one	significant	difference	in	the	way	you
create	constructors	and	properties	for	structures	and	the	way
you	do	it	for	classes:	in	a	structure,	you	are	not	permitted	to
create	a	custom	default	constructor.	That	is,	you	cannot	write	a
constructor	with	no	parameters.	Thus	the	following	code	would
not	compile:
'	won't	compile	-	no	custom	default

'	constructors	for	structures

'	constructors	for	structures

Public	Sub	New()

			xVal	=	5

			yVal	=	10

End	Sub	'New

Instead,	the	compiler	creates	a	default	constructor	for	you
(whether	or	not	you	create	other	constructors),	and	that
default	constructor	initializes	all	the	member	values	to	their
default	values	(e.g.,	integers	are	initialized	to	zero).

The	Run()	method	creates	an	instance	of	the	Location
structure	named	loc1,	passing	in	the	initial	x,y	coordinates	of
200,300.
Dim	loc1	As	New	Location(200,	300)

Loc1	is	then	passed	to	WriteLine()	to	display	the	x,y	values:
Console.WriteLine("Loc1	location:	{0}",	loc)

As	always,	when	you	pass	an	object	(in	this	case	loc1)	to
Console.WriteLine(),	WriteLine()	automatically	invokes	the
virtual	method	ToString()	on	the	object.	Thus,
Location.ToString()	is	invoked,	which	displays	the	x	and	y
coordinates	of	the	loc1	object:
Loc1	location:	200,	300

Before	modifying	the	values	in	loc1,	the	example	creates	a
second	instance	of	the	Location	structure,	named	loc2,	and
displays	its	values.
Dim	loc2	As	New	Location()

Console.WriteLine("Loc2	location:	{0}",	loc2)

The	creation	of	loc2	invokes	the	default	constructor	(note	that
no	parameters	are	passed	in).	The	output	shows	that	the
compiler-provided	default	constructor	initialized	the	member
variables	to	default	values.
Loc2	location:	0,	0

Notice	that	you	have	not	provided	a	default	constructor;
instead	one	has	been	provided	for	you	by	the	compiler.

instead	one	has	been	provided	for	you	by	the	compiler.

You	next	pass	your	first	structure,	loc1,	(whose	values	are
200,300)	to	a	method,	myFunc().	In	that	method,	the
parameter	is	a	Location	object	named	loc.	Within	the	myFunc()
method,	the	XVal	property	is	used	to	set	the	x	coordinate	to	50,
and	the	YVal	property	is	used	to	set	the	y	coordinate	to	100;
then	the	new	value	is	displayed	using	WriteLine():
Public	Sub	myFunc(ByVal	loc	As	Location)

				'	modify	the	values	through	the	properties

				loc.XVal	=	50

				loc.YVal	=	100

				Console.WriteLine("Loc1	location:	{0}",	loc)

End	Sub	'myFunc

As	expected,	the	results	show	the	modification:
Loc1	location:	50,	100

When	you	return	to	the	calling	method	(Run()),	the	values	of
loc1	are	displayed,	and	they	are	unchanged	from	before	the
call	to	myFunc():
Loc1	location:	200,	300

When	you	passed	loc1	to	myFunc(),	the	structure	was	passed
by	value	(structures,	like	the	intrinsic	types,	are	value	types).	A
copy	was	made,	and	it	was	on	that	copy	that	you	changed	the
values	to	50	and	100.	The	original	Location	structure	(loc1)
was	unaffected	by	the	changes	made	within	myFunc().

No	Inheritance

Unlike	classes,	structures	do	not	support	inheritance	Structs
implicitly	derive	from	Object	(as	do	all	types	in	VB.NET,
including	the	built-in	types)	but	cannot	inherit	from	any	other
class	or	structure.	Structs	are	also	implicitly	not-inheritable
(that	is,	no	class	or	structure	can	derive	from	a	structure).	See
Chapter	11	for	a	discussion	of	inheritance	and	not-inheritable
classes.

No	Initialization

You	cannot	initialize	fields	in	a	structure.	Thus,	it	is	illegal	to
write:
Private	xVal	As	Integer	=	50

Private	yVal	As	Integer	=	100

though	this	kind	of	initialization	is	perfectly	legal	in	a	class.
You	must	instead	set	the	value	of	your	member	fields	in	the
body	of	the	constructor.	As	noted	earlier,	the	default
constructor	(provided	by	the	compiler)	will	set	all	the	member
variables	to	their	default	value.

Public	Member	Data?

Structs	are	designed	to	be	simple	and	lightweight.	While
private	member	data	promotes	data	hiding	and	encapsulation,
some	programmers	feel	it	is	overkill	for	structures.	They	make
the	member	data	public,	thus	simplifying	the	implementation	of
the	structure.	Other	programmers	feel	that	properties	provide
a	clean	and	simple	interface,	and	that	good	programming
practice	demands	data	hiding	even	with	simple	lightweight
objects.	Which	you	choose	is	a	matter	of	design	philosophy;	the
language	will	support	either	approach.

Chapter	13.	Interfaces
At	times	a	designer	does	not	want	to	create	a	new	type.	Rather,
the	designer	wants	to	describe	a	set	of	behaviors	that	any
number	of	types	might	implement.	For	example,	a	designer
might	want	to	describe	what	it	means	to	be	storable	(i.e.,
capable	of	being	written	to	disk	or	to	a	database)	or	printable.

Such	a	description	is	called	an	interface.	An	interface	is	a
contract:	the	designer	of	the	interface	says	"if	you	want	to
provide	this	capability,	you	must	implement	these	methods."
The	implementer	of	the	interface	agrees	to	the	contract	and
implements	the	required	methods.

When	a	class	implements	an	interface,	it	tells	any	potential
client	"I	guarantee	I'll	support	the	methods,	properties,	events,
and	indexers	of	the	named	interface."	The	interface	details	the
return	type	from	each	method	and	the	parameters	to	the
methods.

Tip
See	Chapter	9	for	information	about	methods	and
properties;	see	Chapter	18	for	information	about
events;	and	see	Chapter	14	for	coverage	of	indexers.

When	specifying	interfaces,	it	is	easy	to	get	confused	about
who	is	responsible	for	what.	There	are	three	concepts	to	keep
clear:

The	interface

This	is	the	contract.	By	convention,	interface	names	begin
with	a	capital	I;	thus,	your	interface	might	have	a	name	like
IPrintable.	The	IPrintable	interface	might	describe	a	Print(
)	method.

The	implementing	class

This	is	the	class	that	agrees	to	the	contract	described	by
the	interface.	For	example,	Document	might	be	a	class	that
implements	IPrintable	and	thus	implements	the	Print()
method.

The	client	class

This	is	a	class	that	calls	methods	from	the	implementing
class.	For	example,	you	might	have	an	Editor	class	that
calls	the	Document	class's	Print()	method.

Interfaces	Versus	Abstract	Base	Classes

Programmers	learning	VB.NET	often	ask	about	the	difference
between	an	interface	and	an	abstract	(MustInherit)	base	class.	The
key	difference	is	subtle:	an	abstract	base	class	serves	as	the
base	class	for	a	family	of	derived	classes,	while	an	interface	is
meant	to	be	mixed	in	with	other	inheritance	trees.

Inheriting	from	an	abstract	class	implements	the	is-a
relationship,	introduced	in	Chapter	11.	Implementing	an
interface	defines	a	different	relationship,	one	we've	not	seen
until	now:	the	implements	relationship.	These	two
relationships	are	subtly	different.	A	car	is	a	vehicle,	but	it
might	implement	the	CanBeBoughtWithABigLoan	capability
(as	can	a	house,	for	example).

Interfaces	are	a	critical	addition	to	any	framework,	and	they
are	used	extensively	throughout	.NET.	For	example,	the
collection	classes	(array	lists,	stacks,	and	queues)	are	defined,
in	large	measure,	by	the	interfaces	they	implement.	(The
collection	classes	are	explained	in	detail	in	Chapter	15).

In	this	chapter,	you	will	learn	how	to	create,	implement,	and
use	interfaces.	You'll	learn	how	one	class	can	implement
multiple	interfaces.	You	will	also	learn	how	to	make	new
interfaces	by	combining	existing	interfaces	or	by	extending

interfaces	by	combining	existing	interfaces	or	by	extending
(deriving	from)	an	existing	interface.	Finally,	you	will	learn	how
to	test	whether	a	class	has	implemented	an	interface.

Defining	an	Interface
The	syntax	for	defining	an	interface	is	very	similar	to	the
syntax	for	defining	a	class	or	a	structure:
[attributes]	[access-modifier]	Interface	

												identifier

													

[interface-bases]

interface-body

												End	Interface

The	optional	attributes	are	not	discussed	in	this	book.	Access
modifiers	(Public,	Private,	etc.)	work	just	as	they	do	with	classes.
(See	Chapter	8	for	more	about	access	modifiers.)	The	Interface
keyword	is	followed	by	an	identifier	(the	interface	name).	It	is
common	(but	not	required)	to	begin	the	name	of	your	interface
with	a	capital	I.	Thus,	IStorable,	ICloneable,	IAndThou,	etc.	The
optional	list	of	interface-bases	is	discussed	in	Section	13.5,
later	in	this	chapter.

The	body	of	the	interface	is	terminated	with	the	keywords	End
Interface.

Suppose	you	want	to	create	an	interface	to	define	the	contract
for	data	being	stored	to	a	database	or	file.	Your	interface	will
define	the	methods	and	properties	a	class	will	need	to
implement	in	order	to	be	stored.	You	decide	to	call	this
interface	IStorable.

In	this	interface,	you	might	specify	two	methods,	Read()	and
Write(),	and	a	property,	Status,	which	appear	in	the	interface
body:
Interface	IStorable

			Sub	Read()

			Sub	Write(object)

			Property	Status()	As	Integer

End	Interface

Note	that	when	declaring	the	methods	of	the	interface,	you
provide	a	prototype:
Sub	Read()

but	no	implementation	and	no	End	Function,	End	Sub,	or	End	Property
statement.	Notice	also	that	the	IStorable	method	declarations
do	not	include	access	modifiers	(e.g.,	Public,	Private,	Protected,	Friend).
In	fact,	providing	an	access	modifier	generates	a	compile	error.
Interface	methods	are	implicitly	public	because	an	interface	is
a	contract	meant	to	be	used	by	other	classes.

Implementing	an	Interface
Suppose	you	are	the	author	of	a	Document	class,	which
specifies	that	Document	objects	can	be	stored	in	a	database.
You	decide	to	have	Document	implement	the	IStorable
interface.	It	isn't	required	that	you	do	so,	but	by	implementing
the	IStorable	interface	you	signal	to	potential	clients	that	the
Document	class	can	be	used	just	like	any	other	IStorable
object.	This	will,	for	example,	allow	your	clients	to	add	your
Document	objects	to	a	collection	of	IStorable	objects,	and	to
otherwise	interact	with	your	Document	in	this	very	general	and
well-understood	way.

To	implement	the	IStorable	interface,	you	must	do	two	things:

1.	 Declare	that	a	particular	class	implements	the	interface,
using	the	Implements	keyword.	The	following	code	declares	that
the	Document	class	implements	IStorable:
Public	Class	Document

Implements	IStorable

2.	 Implement	each	of	the	interface	methods,	events,
properties,	and	so	forth,	and	explicitly	mark	each	member
as	implementing	the	corresponding	interface	member.	The
following	code	would	implement	the	IStorable	interface's
Read()	method:
Public	Sub	Read()	Implements	IStorable.Read

				Console.WriteLine("Implementing	the	Read	Method	for	IStorable")

End	Sub	'Read

Visual	Studio	.NET	will	assist	you	in	this	effort	through
IntelliSense.	When	you	enter	the	keyword	Implements,	IntelliSense
prompts	you	with	the	various	interfaces,	as	shown	in	Figure	13-
1.

Figure	13-1.	IntelliSense	helps	with	Implements

Once	you	enter	the	name	of	the	interface,	IntelliSense	can	help
you	identify	which	member	you	are	implementing,	as	shown	in
Figure	13-2.

Figure	13-2.	Choosing	a	method	from	an	interface

Your	definition	of	this	class	might	look	like	this:
Public	Class	Document

			Implements	IStorable

			

			Public	Sub	Read()	Implements	IStorable.Read

			'...

			End	Sub	'Read

			

			Public	Sub	Write(ByVal	o	As	Object)	Implements	IStorable.Write

							'...

			End	Sub	'Write

			

			Public	Property	Status()	As	Integer	Implements	IStorable.Status

			'...

			End	Property

End	Class	'Document

It	is	now	your	responsibility,	as	the	author	of	the	Document
class,	to	provide	a	meaningful	implementation	of	the	IStorable
methods	and	property.	Having	designated	Document	as
implementing	IStorable,	you	must	implement	all	the	IStorable
members,	or	you	will	generate	an	error	when	you	compile.
Defining	and	implementing	the	IStorable	interface	is	illustrated
in	Example	13-1.

Example	13-1.	Document	class	implementing	IStorable

Option	Strict	On

Imports	System

Namespace	InterfaceDemo

				'	define	the	interface

																			Interface	IStorable

																							Sub	Read()

																							Sub	Write(ByVal	obj	As	Object)

																							Property	Status()	As	Integer

																			End	Interface	'IStorable

				'	create	a	class	that	implements	the	IStorable	interface

				Public	Class	Document

								Implements	IStorable

								Public	Sub	New(ByVal	s	As	String)

												Console.WriteLine("Creating	document	with:	{0}",	s)

								End	Sub	'New

								'	implement	the	Read	method

																							Public	Sub	Read()	Implements	IStorable.Read

																											Console.WriteLine("Implementing	the	Read	Method	for	IStorable")

																							End	Sub	'Read

															

																							'	implement	the	Write	method

																							Public	Sub	Write(ByVal	o	As	Object)	Implements	IStorable.Write

																											Console.WriteLine(_

																														"Implementing	the	Write	Method	for	IStorable")

																							End	Sub	'Write

															

																							'	implement	the	property

																							Public	Property	Status()	As	Integer	Implements	IStorable.Status

																											Get

																															Return	myStatus

																											End	Get

																											Set(ByVal	Value	As	Integer)

																															myStatus	=	Value

																											End	Set

																							End	Property

								'	store	the	value	for	the	property

								Private	myStatus	As	Integer	=	0

				End	Class	'Document

				Class	Tester

								Public	Sub	Run()

												Dim	doc	As	New	Document("Test	Document")

												doc.Status	=	-1

												doc.Read()

												Console.WriteLine("Document	Status:	{0}",	doc.Status)

								End	Sub	'Run

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'InterfaceDemo

Output:
Creating	document	with:	Test	Document

Implementing	the	Read	Method	for	IStorable

Document	Status:	-1

Example	13-1	defines	a	simple	interface,	IStorable,	with	two
methods,	Read()	and	Write(),	and	a	property,	Status,	of	type

integer:
'	define	the	interface

				Interface	IStorable

								Sub	Read()

								Sub	Write(ByVal	obj	As	Object)

								Property	Status()	As	Integer

				End	Interface	'IStorable

Notice	that	the	IStorable	method	declarations	for	Read()	and
Write()	do	not	include	access	modifiers,	as	was	explained
earlier,	because	interface	methods	need	to	be	public	so	that
they	can	be	used	by	other	classes.

Once	you've	defined	the	IStorable	interface,	you	can	define
classes	that	implement	the	interface.	Keep	in	mind	that	you
cannot	create	an	instance	of	an	interface;	instead	you
instantiate	a	class	that	implements	the	interface.

The	class	implementing	the	interface	must	fulfill	the	contract
exactly	and	completely.	Thus,	your	Document	class	must
provide	both	a	Read()	and	a	Write()	method	and	the	Status
property.
'	create	a	class	which	implements	the	IStorable	interface

				Public	Class	Document

								Implements	IStorable

								Public	Sub	New(ByVal	s	As	String)

												Console.WriteLine("Creating	document	with:	{0}",	s)

								End	Sub	'New

								

								'	implement	the	Read	method

								Public	Sub	Read()	Implements	IStorable.Read

												Console.WriteLine("Implementing	the	Read	Method	for	IStorable")

								End	Sub	'Read

								

								'	implement	the	Write	method

								Public	Sub	Write(ByVal	o	As	Object)	Implements	IStorable.Write

												Console.WriteLine(_

															"Implementing	the	Write	Method	for	IStorable")

								End	Sub	'Write

								

								'	implement	the	property

								Public	Property	Status()	As	Integer	Implements	IStorable.Status

												Get

																Return	myStatus

												End	Get

												Set(ByVal	Value	As	Integer)

																myStatus	=	Value

												End	Set

								End	Property

								

								'	store	the	value	for	the	property

								'	store	the	value	for	the	property

								Private	myStatus	As	Integer	=	0

				End	Class	'Document

How	your	Document	class	fulfills	the	requirements	of	the
interface,	however,	is	entirely	up	to	you.	Although	IStorable
dictates	that	Document	must	have	a	Status	property,	it	does
not	know	or	care	whether	Document	stores	the	actual	status	as
a	member	variable	or	looks	it	up	in	a	database.	Example	13-1
implements	the	Status	property	by	returning	(or	setting)	the
value	of	a	private	member	variable,	status.

Implementing	More	Than	One	Interface
Classes	can	derive	from	only	one	class	(and	if	you	don't
explicitly	derive	from	a	class,	then	you	implicitly	derive	from
Object).	Classes	can	implement	any	number	of	interfaces.
When	you	design	your	class,	you	can	choose	not	to	implement
any	interfaces,	you	can	implement	a	single	interface,	or	you
can	implement	two	or	more	interfaces.	For	example,	in	addition
to	IStorable,	you	might	have	a	second	interface,	ICompressible,
for	files	that	can	be	compressed	to	save	disk	space.	If	your
Document	class	can	be	stored	and	it	also	can	be	compressed,
you	might	choose	to	have	Document	implement	both	the
IStorable	and	ICompressible	interfaces.

Tip
Both	IStorable	and	ICompressible	are	interfaces
created	for	this	book	and	are	not	part	of	the	standard
.NET	Framework.

Example	13-2	shows	the	complete	listing	of	the	new
ICompressible	interface	and	demonstrates	how	you	modify	the
Document	class	to	implement	the	two	interfaces.

Example	13-2.	IStorable	and	ICompressible,	implemented	by
Document

Option	Strict	On

Imports	System

Namespace	InterfaceDemo

	

				Interface	IStorable

								Sub	Read()

								Sub	Write(ByVal	obj	As	Object)

								Property	Status()	As	Integer

				End	Interface	'IStorable

	

				'	here's	the	new	interface

				Interface	ICompressible

								Sub	Compress()

								Sub	Decompress()

				End	Interface	'ICompressible

	

'	Document	implements	both	interfaces

				Public	Class	Document

								Implements	ICompressible,	IStorable

								Implements	ICompressible,	IStorable

	

								'	the	document	constructor

								Public	Sub	New(ByVal	s	As	String)

												Console.WriteLine("Creating	document	with:	{0}",	s)

								End	Sub	'New

	

								'	implement	IStorable

								Public	Sub	Read()	Implements	IStorable.Read

												Console.WriteLine("Implementing	the	Read	Method	for	IStorable")

								End	Sub	'Read

	

								Public	Sub	Write(ByVal	o	As	Object)	Implements	IStorable.Write

												Console.WriteLine(_

														"Implementing	the	Write	Method	for	IStorable")

								End	Sub	'Write

	

			Public	Property	Status()	As	Integer	Implements	IStorable.Status

												Get

																Return	myStatus

												End	Get

												Set(ByVal	Value	As	Integer)

																myStatus	=	Value

												End	Set

								End	Property

	

								'	implement	ICompressible

								Public	Sub	Compress()	Implements	ICompressible.Compress

												Console.WriteLine("Implementing	Compress")

								End	Sub	'Compress

	

								Public	Sub	Decompress()	Implements	ICompressible.Decompress

												Console.WriteLine("Implementing	Decompress")

								End	Sub	'Decompress

	

								'	hold	the	data	for	IStorable's	Status	property

								Private	myStatus	As	Integer	=	0

				End	Class	'Document

	

				Class	Tester

	

								Public	Sub	Run()

												Dim	doc	As	New	Document("Test	Document")

												doc.Status	=	-1

												doc.Read()

												doc.Compress()

												Console.WriteLine("Document	Status:	{0}",	doc.Status)

								End	Sub	'Run

	

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'InterfaceDemo

Output:
Creating	document	with:	Test	Document

Implementing	the	Read	Method	for	IStorable

Implementing	Compress

Document	Status:	-1

As	Example	13-2	shows,	you	declare	the	fact	that	your
Document	class	will	implement	two	interfaces	by	changing	the
declaration	(in	the	list	of	interface	bases)	to	indicate	that	both
interfaces	are	implemented,	separating	the	two	interfaces	with
commas:
Public	Class	Document

				Implements	ICompressible,	IStorable

After	you've	done	this,	the	Document	class	must	also
implement	the	methods	specified	by	the	ICompressible
interface.	ICompressible	has	only	two	methods,	Compress()
and	Uncompress(),	which	are	specified	as:
Interface	ICompressible

								Sub	Compress()

								Sub	Decompress()

End	Interface	'ICompressible

In	this	simplified	example,	Document	implements	these	two
methods	as	follows,	printing	notification	messages	to	the
console:
Public	Sub	Compress()	Implements	ICompressible.Compress

					Console.WriteLine("Implementing	Compress")

	End	Sub	'Compress

	

	Public	Sub	Decompress()	Implements	ICompressible.Decompress

					Console.WriteLine("Implementing	Decompress")

End	Sub	'Decompress

Casting	to	an	Interface
You	can	access	the	members	(i.e.,	methods	and	properties)	of
an	interface	through	the	object	of	any	class	that	implements
the	interface.	Thus,	you	can	access	the	methods	and	properties
of	IStorable	through	the	Document	object,	as	if	they	were
members	of	the	Document	class:
Dim	doc	As	New	Document("Test	Document")

doc.Status	=	-1

doc.Read()

Alternatively,	you	can	create	an	instance	of	the	interface	and
then	use	that	interface	to	access	the	methods:
Dim	isDoc	As	IStorable	=	doc

isDoc.status	=	0

isDoc.Read()

In	Chapter	15,	you'll	learn	that	at	times	you	may	create
collections	of	objects	that	implement	a	given	interface	(e.g.,	a
collection	of	storable	objects).	You	can	manipulate	them
without	knowing	their	real	type—so	long	as	they	implement
IStorable.	For	instance,	you	won't	know	that	you	have	a
Document	object;	rather	you'll	know	only	that	the	object	in
question	implements	IStorable.	You	can	create	a	variable	of
type	IStorable	and	cast	your	Document	to	that	type.	You	can
then	access	the	IStorable	methods	through	the	IStorable
variable.

When	you	cast	you	say	to	the	compiler,	"trust	me,	I	know	this
object	is	really	of	this	type."	In	this	case	you	are	saying	"trust
me,	I	know	this	document	really	implements	IStorable,	so	you
can	treat	it	as	an	IStorable."

As	stated	earlier,	you	cannot	instantiate	an	interface	directly—
that	is,	you	cannot	write:
IStorable	isDoc	As	New	IStorable()

You	can,	however,	create	an	instance	of	the	implementing	class

You	can,	however,	create	an	instance	of	the	implementing	class
and	then	create	an	instance	of	the	interface:
Dim	isDoc	As	IStorable	=	doc

(isDoc	is	a	reference	to	an	IStorable	object.)	This	is	considered	a
widening	conversion	(from	Document	to	the	IStorable
interface),	and	so	the	compiler	makes	it	work	with	no	need	for
an	explicit	cast.

In	general,	it	is	a	better	design	decision	to	access	the	interface
methods	through	an	interface	reference.	Thus,	it	was	better	to
use	isDoc.Read(),	than	doc.Read(),	in	the	previous	example.
Access	through	an	interface	allows	you	to	treat	the	interface
polymorphically.	In	other	words,	you	can	have	two	or	more
classes	implement	the	interface,	and	then	by	accessing	these
classes	only	through	the	interface,	you	can	ignore	their	real
runtime	type	and	treat	them	simply	as	instances	of	the
interface.	You'll	see	the	power	of	this	technique	in	Chapter	15.

There	may	be	instances	in	which	you	do	not	know	in	advance
(at	compile	time)	that	an	object	supports	a	particular	interface.
For	instance,	given	a	collection	of	objects,	you	might	not	know
whether	each	object	in	the	collection	implements	IStorable,
ICompressible,	or	both.

You	can	find	out	what	interfaces	are	implemented	by	a
particular	object	by	casting	blindly	and	then	catching	the
exceptions	that	arise	when	you've	tried	to	cast	the	object	to	an
interface	it	hasn't	implemented.	The	code	to	cast	Document	to
ICompressible	might	be:
Dim	icDoc	As	ICompressible	=	doc

icDoc.Compress()

If	it	turns	out	that	Document	implements	only	the	IStorable
interface	but	not	the	ICompressible	interface:
Public	Class	Document

				Implements	IStorable

the	cast	to	ICompressible	will	fail	if	Option	Strict	is	On.	If	you

the	cast	to	ICompressible	will	fail	if	Option	Strict	is	On.	If	you
turn	Option	Strict	Off,	the	code	will	compile,	but	at	runtime,
because	of	the	illegal	cast,	the	program	will	throw	an
exception:
System.InvalidCastException:	Specified	cast	is	not	valid.

Tip
Exceptions	are	used	to	report	errors	and	are	covered
in	detail	in	Chapter	17.

You	could	then	catch	the	exception	and	take	corrective	action,
but	this	approach	is	ugly	and	evil,	and	you	should	not	do	things
this	way.	This	is	like	testing	whether	a	gun	is	loaded	by	firing
it;	it's	dangerous	and	it	annoys	the	neighbors.

Rather	than	firing	blindly,	you	would	like	to	be	able	to	ask	the
object	if	it	implements	an	interface,	in	order	to	then	invoke	the
appropriate	methods.	VB.NET	provides	the	is	operator	to	help
you	ask	the	object	if	it	implements	an	interface.

The	Is	Operator

The	Is	operator	lets	you	query	whether	an	object	implements	an
interface.	You	use	the	Is	operator	with	the	TypeOf	keyword,	as
follows:
TypeOf	

															expression	

															Is	

															type

The	Is	operator	evaluates	true	if	the	expression	(which	must	be	a
reference	type,	e.g.,	an	instance	of	a	class)	can	be	safely	cast	to
type	(e.g.,	an	interface)	without	throwing	an	exception.

Example	13-3	illustrates	the	use	of	the	Is	operator	to	test
whether	a	Document	object	implements	the	IStorable	and
ICompressible	interfaces.

Example	13-3.	The	Is	operator

Option	Strict	On

Imports	System

Namespace	InterfaceDemo

	

				Interface	IStorable

								Sub	Read()

								Sub	Write(ByVal	obj	As	Object)

	

								Property	Status()	As	Integer

				End	Interface	'IStorable

	

				'	here's	the	new	interface

				Interface	ICompressible

								Sub	Compress()

								Sub	Decompress()

				End	Interface	'ICompressible

	

				'	Document	implements	both	interfaces

				Public	Class	Document

								Implements	IStorable

	

								'	the	document	constructor

								Public	Sub	New(ByVal	s	As	String)

												Console.WriteLine("Creating	document	with:	{0}",	s)

								End	Sub	'New

	

								'	implement	IStorable

								Public	Sub	Read()	Implements	IStorable.Read

												Console.WriteLine("Implementing	the	Read	Method	for	IStorable")

								End	Sub	'Read

	

								Public	Sub	Write(ByVal	o	As	Object)	Implements	IStorable.Write

												Console.WriteLine(_

														"Implementing	the	Write	Method	for	IStorable")

								End	Sub	'Write

	

								Public	Property	Status()	As	Integer	Implements	IStorable.Status

												Get

																Return	Status

												End	Get

												Set(ByVal	Value	As	Integer)

																Status	=	Value

												End	Set

								End	Property

								'	hold	the	data	for	IStorable's	Status	property

								Private	myStatus	As	Integer	=	0

				End	Class	'Document

	

				Class	Tester

								Public	Sub	Run()

												Dim	doc	As	New	Document("Test	Document")

	

												'	only	cast	if	it	is	safe

												If	TypeOf	doc	Is	IStorable	Then

																Dim	isDoc	As	IStorable	=	doc

																isDoc.Read()

												Else

																Console.WriteLine("Could	not	cast	to	IStorable")

												End	If

	

												'	this	test	will	fail

												If	TypeOf	doc	Is	ICompressible	Then

																Dim	icDoc	As	ICompressible	=	doc

																icDoc.Compress()

												Else

												Else

																Console.WriteLine("Could	not	cast	to	ICompressible")

												End	If

								End	Sub	'Run

	

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

	

				End	Class	'Tester

End	Namespace	'InterfaceDemo

Output:
Creating	document	with:	Test	Document

Implementing	the	Read	Method	for	IStorable

Could	not	cast	to	ICompressible

In	Example	13-3,	the	Document	class	implements	only
IStorable:
Public	Class	Document

				Implements	IStorable

In	the	Run()	method	of	the	Tester	class,	you	create	an	instance
of	Document:
Dim	doc	As	New	Document("Test	Document")

and	you	test	whether	that	instance	is	an	IStorable	(that	is,	does
it	implement	the	IStorable	interface?):
If	TypeOf	doc	Is	IStorable	Then

If	so,	you	create	an	instance	of	the	IStorable	interface	and	call
an	interface	method	(isDoc.Read):
Dim	isDoc	As	IStorable	=	doc

isDoc.Read()

You	then	repeat	the	test	with	ICompressible,	and	if	the	test
fails,	you	print	an	error	message:
If	TypeOf	doc	Is	ICompressible	Then

				Dim	icDoc	As	ICompressible	=	CType(doc,	ICompressible)

				icDoc.Compress()

Else

				Console.WriteLine("Could	not	cast	to	ICompressible")

End	If

The	output	shows	that	the	first	test	(IStorable)	succeeds	(as
expected)	and	the	second	test,	of	ICompressible	fails,	also	as
expected.
Implementing	the	Read	Method	for	IStorable

Could	not	cast	to	ICompressible

Extending	Interfaces
It	is	possible	to	extend	an	existing	interface	to	add	new
methods	or	members,	or	to	modify	how	existing	members	work.
For	example,	you	might	extend	ICompressible	with	a	new
interface,	ICompressible2,	which	extends	the	original	interface
with	methods	to	keep	track	of	the	bytes

saved.

The	following	code	creates	a	new	interface	named
ILoggedCompressible	that	is	identical	to	ICompressible	except
that	it	adds	the	method	LogSavedBytes():
Interface	ICompressible2

	

				Inherits	ICompressible

	

				Sub	LogSavedBytes()

	

End	Interface	'ICompressible2

Tip
Notice	that	your	new	interface	(ICompressible2)
inherits	from	the	base	interface	(ICompressible).
Classes	can	inherit	only	from	a	single	class,	but
interfaces	can	inherit	from	more	than	one	interface,
as	shown	later	in	this	chapter.

Classes	are	now	free	to	implement	either	ICompressible	or
ICompressible2,	depending	on	whether	they	need	the
additional	functionality.	If	a	class	does	implement
ICompressible2,	it	must	implement	all	the	methods	of	both
ICompressible2	and	also	ICompressible.	Objects	of	that	type
can	be	cast	either	to	ICompressible2	or	to	ICompressible.

In	Example	13-4,	you'll	extend	ICompressible	to	create

ICompressible2.	You'll	then	cast	the	Document	first	to	be	of
type	IStorable,	then	to	be	of	type	ICompressible2.	Finally,
you'll	cast	the	Document	object	to	ICompressible.	This	last	cast
is	safe	because	any	object	that	implements	ICompressible2
must	also	have	implemented	ICompressible	(the	former	is	a
superset	of	the	latter).	This	is	the	same	logic	that	says	you	can
cast	any	object	of	a	derived	type	to	an	object	of	a	base	type
(that	is,	if	Student	derives	from	Human,	then	all	Students	are
Human,	even	though	not	all	Humans	are	Students).

Example	13-4.	Extending	interfaces

Option	Strict	On	Imports	System

	

Namespace	InterfaceDemo

	

	

	

				Interface	IStorable

	

								Sub	Read()

	

								Sub	Write(ByVal	obj	As	Object)	Property	Status()	As	Integer	End	Interface

'IStorable

	

	

	

				'	the	Compressible	interface	is	now	the	'	base	for	ICompressible2

	

				Interface	ICompressible

	

								Sub	Compress()

	

								Sub	Decompress()

	

				End	Interface	'ICompressible

	

	

	

				'	extend	ICompressible	to	log	the	bytes	saved	Interface	ICompressible2

				'	extend	ICompressible	to	log	the	bytes	saved	Interface	ICompressible2

	

								Inherits	ICompressible

	

				Sub	LogSavedBytes()

	

			End	Interface	'ICompressible2

	

	

	

								'	Document	implements	both	interfaces	Public	Class	Document

	

								Implements	ICompressible2,	IStorable	'	the	document	constructor

	

						Public	Sub	New(s	As	String)

	

								Console.WriteLine("Creating	document	with:	{0}",	s)	End	Sub	'New

	

	

	

				'	implement	IStorable

	

								Public	Sub	Read()	Implements	IStorable.Read	Console.WriteLine("Implementing	the

Read	Method	for	IStorable")	End	Sub	'Read

	

	

	

								Public	Sub	Write(ByVal	o	As	Object)	Implements	IStorable.Write	Console.WriteLine(

_

	

																		"Implementing	the	Write	Method	for	IStorable")	End	Sub	'Write

	

	

	

								Public	Property	Status()	As	Integer	Implements	IStorable.Status	Get

	

																Return	myStatus

	

												End	Get

	

	

												Set(ByVal	Value	As	Integer)	myStatus	=	Value

	

												End	Set

	

								End	Property

	

	

	

								'	implement	ICompressible

	

								Public	Sub	Compress()	Implements	ICompressible.Compress

Console.WriteLine("Implementing	Compress")	End	Sub	'Compress

	

	

	

								Public	Sub	Decompress()	Implements	ICompressible.Decompress

Console.WriteLine("Implementing	Decompress")	End	Sub	'Decompress

	

	

	

								'	implement	ICompressible2

	

								Public	Sub	LogSavedBytes()	Implements	ICompressible2.LogSavedBytes

Console.WriteLine("Implementing	LogSavedBytes")	End	Sub	'LogSavedBytes

	

	

	

								'	hold	the	data	for	IStorable's	Status	property	Private	myStatus	As	Integer	=	0

	

				End	Class	'Document

	

	

	

				Class	Tester

	

	

	

								Public	Sub	Run()

	

												Dim	doc	As	New	Document("Test	Document")

	

	

												If	TypeOf	doc	Is	IStorable	Then	Dim	isDoc	As	IStorable	=	doc	isDoc.Read()

	

												Else

	

																Console.WriteLine("Could	not	cast	to	IStorable")	End	If

	

	

	

												If	TypeOf	doc	Is	ICompressible2	Then	Dim	ilDoc	As	ICompressible2	=	doc

Console.Write("Calling	both	ICompressible	and	")	Console.WriteLine("ICompressible2

methods...")	ilDoc.Compress()

	

																ilDoc.LogSavedBytes()	Else

	

																Console.WriteLine("Could	not	cast	to	ICompressible2")	End	If

	

	

	

												If	TypeOf	doc	Is	ICompressible	Then	Dim	icDoc	As	ICompressible	=	doc	'

	

																Console.WriteLine(_

	

																			"Treating	the	object	as	Compressible...	")	icDoc.Compress()

	

												Else

	

																Console.WriteLine("Could	not	cast	to	ICompressible")	End	If

	

								End	Sub	'Run

	

	

	

								Shared	Sub	Main()

	

												Dim	t	As	New	Tester()

	

												t.Run()

	

	

								End	Sub	'Main

	

				End	Class	'Tester

	

End	Namespace	'InterfaceDemo

Output:
Creating	document	with:	Test	Document

	

Implementing	the	Read	Method	for	IStorable

	

Calling	both	ICompressible	and	ICompressible2	methods...

	

Implementing	Compress

	

Implementing	LogSavedBytes

	

	

	

Treating	the	object	as	Compressible...

	

Implementing	Compress

Example	13-4	starts	by	creating	the	ICompressible2

interface:
Interface	ICompressible2

	

				Inherits	ICompressible

	

				Sub	LogSavedBytes()

	

End	Interface	'ICompressible2

Notice	that	the	syntax	for	extending	an	interface	is	the	same	as
that	for	deriving	from	a	class.	This	extended	interface	explicitly
defines	only	one	method,	LogSavedBytes();	but	of	course	any

defines	only	one	method,	LogSavedBytes();	but	of	course	any
class	implementing	this	interface	must	also	implement	the	base
interface	(ICompressible)	and	all	its	members.

You	define	the	Document	class	to	implement	both	IStorable
and	ICompressible2:
Public	Class	Document	Implements	ICompressible2,	IStorable

You	are	now	free	to	cast	the	Document	object	to	IStorable,
ICompressible2,	or	to	ICompressible:
If	TypeOf	doc	Is	IStorable	Then	Dim	ilDoc	As	IStorable	=	doc

	

	

	

If	TypeOf	doc	Is	ICompressible	Then	Dim	icDoc	As	ICompressible	=	doc

	

If	TypeOf	doc	Is	ICompressible2	Then	Dim	ic2Doc	As	ICompressible2	=	doc

If	you	take	a	look	back	at	the	output,	you'll	see	that	all	three	of
these	casts	succeed.

Combining	Interfaces
You	can	also	create	new	interfaces	by	combining	existing
interfaces	and	optionally	adding	new	methods	or	properties.
For	example,	you	might	decide	to	combine	the	definitions	of
IStorable	and	ICompressible2	into	a	new	interface	called
IStorableCompressible.	This	interface	would	combine	the
methods	of	each	of	the	other	two	interfaces	but	would	also	add
a	new	method,	LogOriginalSize(),	to	store	the	original	size	of
the	pre-compressed	item:
Interface	IStorableCompressible

Inherits	IStorable,	ICompressible2

					Sub	LogOriginalSize()

End	Interface

Having	created	this	interface,	you	can	now	modify	Document	to
implement	IStorableCompressible:
Public	Class	Document

				Implements	IStorableCompressible

You	are	now	free	to	cast	the	Document	object	to	any	of	the	four
interfaces	you've	created	so	far:
If	TypeOf	doc	Is	IStorable	Then

						Dim	isDoc	As	IStorable	=	doc

	

If	TypeOf	doc	Is	ICompressible	Then

				Dim	icDoc	As	ICompressible	=	doc

	

If	TypeOf	doc	Is	ICompressible2	Then

				Dim	ic2Doc	As	ICompressible2	=	doc

	

If	TypeOf	doc	is	IStorableCompressible	Then

			Dim	iscDoc	as	IStorableCompressible	=	doc

When	you	cast	to	the	new,	combined	interface,	you	can	invoke
any	of	the	methods	of	any	of	the	interfaces	it	extends	or
combines.	The	following	code	invokes	four	methods	on	iscDoc
(the	IStorableCompressible	object).	Only	one	of	these	methods
is	defined	in	IStorableCompressible,	but	all	four	are	methods
defined	by	interfaces	that	IStorableCompressible	extends	or
combines.

isDoc.Read()

icDoc.Compress()

ic2Doc.LogSavedBytes()

iscDoc.LogOriginalSize()

Overriding	Interface	Implementations
An	implementing	class	is	free	to	mark	any	or	all	of	the	methods
that	implement	the	interface	as	overridable.	Derived	classes
can	then	override	or	provide	new	implementations.	For
example,	a	Document	class	might	implement	the	IStorable
interface	and	mark	the	Read()	and	Write()	methods	as
overridable.	The	Document	might	Read()	and	Write()	its
contents	to	a	File	type.	The	developer	might	later	derive	new
types	from	Document,	such	as	perhaps	a	Note	or
EmailMessage	type.	While	the	Document	class	implements
Read()	and	Write	to	save	to	a	File,	the	Note	class	might
implement	Read()	and	Write()	to	read	from	and	write	to	a
database.

Example	13-5	strips	down	the	complexity	of	the	previous
examples	and	illustrates	overriding	an	interface
implementation.	In	this	example,	you'll	derive	a	new	class
named	Note	from	the	Document	class.

Document	implements	the	IStorable-required	Read()	method
as	an	overridable	method,	and	Note	overrides	that
implementation.

Tip
Notice	that	Document	does	not	mark	Write()	as
overridable.	You'll	see	the	implications	of	this
decision	in	the	analysis	section	that	follows	the
output.

The	complete	listing	is	shown	in	Example	13-5	and	analyzed	in
detail	following.

Example	13-5.	Overriding	an	interface	implementation

Option	Strict	On

Imports	System

Imports	Microsoft.VisualBasic

Namespace	OverridingInterfaces

				Interface	IStorable

								Sub	Read()

								Sub	Write()

				End	Interface

				'	Simplify	Document	to	implement	only	IStorable

				Public	Class	Document	:	Implements	IStorable

								'	the	document	constructor

								Public	Sub	New(ByVal	s	As	String)

												Console.WriteLine("Creating	document	with:	{0}",	s)

								End	Sub

								'	Make	read	virtual

																							Public	Overridable	Sub	Read()	Implements	IStorable.Read

																											Console.WriteLine("Document	Virtual	Read	Method	for	IStorable")

																							End	Sub

															

																							'	NB:	Not	virtual!

																							Public	Sub	Write()	Implements	IStorable.Write

																											Console.WriteLine("Document	Write	Method	for	IStorable")

								End	Sub

				End	Class

				'	Derive	from	Document

				Public	Class	Note	:	Inherits	Document

								Public	Sub	New(ByVal	s	As	String)

												MyBase.New(s)

												Console.WriteLine("Creating	note	with:	{0}",	s)

								End	Sub

								'	override	the	Read	method

																							Public	Overrides	Sub	Read()

															

																											Console.WriteLine("Overriding	the	Read	method	for	Note!")

																							End	Sub

															

																							'	implement	my	own	Write	method

																							Public	Shadows	Sub	Write()

																											Console.WriteLine("Implementing	the	Write	method	for	Note!")

								End	Sub

				End	Class

				Class	Tester

								Public	Sub	Run()

												'	Create	a	Document	object

												Dim	theNote	As	Document	=	New	Note("Test	Note")

												'	cast	the	Document	to	IStorable

												If	TypeOf	theNote	Is	IStorable	Then

																Dim	isNote	As	IStorable	=	theNote

																isNote.Read()

																isNote.Write()

												End	If

												Console.WriteLine(vbCrLf)

												'	direct	call	to	the	methods

												theNote.Read()

												theNote.Write()

												Console.WriteLine(vbCrLf)

												'	create	a	note	object

												Dim	note2	As	New	Note("Second	Test")

												'	Cast	the	note	to	IStorable

												If	TypeOf	note2	Is	IStorable	Then

																Dim	isNote2	As	IStorable	=	note2

																isNote2.Read()

																isNote2.Write()

												End	If

												Console.WriteLine(vbCrLf)

												'	directly	call	the	methods

												note2.Read()

												note2.Write()

								End	Sub

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub

				End	Class

End	Namespace

Output:
Creating	document	with:	Test	Note

Creating	note	with:	Test	Note

Overriding	the	Read	method	for	Note!

Document	Write	Method	for	IStorable

Overriding	the	Read	method	for	Note!

Document	Write	Method	for	IStorable

Creating	document	with:	Second	Test

Creating	note	with:	Second	Test

Overriding	the	Read	method	for	Note!

Document	Write	Method	for	IStorable

Overriding	the	Read	method	for	Note!

Implementing	the	Write	method	for	Note!

In	Example	13-5,	the	IStorable	interface	is	simplified	for
clarity's	sake:
Interface	IStorable

				Sub	Read()

				Sub	Write()

End	Interface

The	Document	class	implements	the	IStorable	interface:
Public	Class	Document	:	Implements	IStorable

The	designer	of	Document	has	opted	to	make	the	Read()
method	overridable	but	not	to	make	the	Write()	method

method	overridable	but	not	to	make	the	Write()	method
overridable:
Public	Overridable	Sub	Read()	Implements	IStorable.Read

Public	Sub	Write()	Implements	IStorable.Write

Tip
In	a	real-world	application,	you	would	almost
certainly	mark	both	as	overridable,	but	I've
differentiated	them	to	demonstrate	that	the	developer
is	free	to	pick	and	choose	which	methods	can	be
overridden.

The	new	class,	Note,	derives	from	Document:
Public	Class	Note	:	Inherits	Document

It	is	not	necessary	for	Note	to	override	Read()	(it	may	shadow
it	instead),	but	it	is	free	to	do	so	and	has	done	so	here:
Public	Overrides	Sub	Read()

To	illustrate	the	implications	of	marking	an	implementing
method	as	overridable,	the	Run()	method	calls	the	the	Read()
and	Write()	methods	in	four	ways:

Through	the	base	class	reference	to	a	derived	object

Through	an	interface	created	from	the	base	class	reference
to	the	derived	object

Through	a	derived	object

Through	an	interface	created	from	the	derived	object

As	you'll	see,	the	base	class	reference	and	the	derived	class
reference	act	just	as	they	always	have:	overridable	methods	are
implemented	polymorphically	and	nonoverridable	methods	are
not.	The	interfaces	created	from	these	references	work	just	like
the	references	themselves:	overridable	implementations	of	the
interface	methods	are	polymorphic,	and	nonoverridable
methods	are	not.

methods	are	not.

The	one	surprising	aspect	is	this:	when	you	call	the
nonpolymorphic	Write()	method	on	the	IStorable	interface	cast
from	the	derived	Note,	you	actually	get	the	Document's	Write()
method.	This	is	because	Write()	is	implemented	in	the	base
class	and	is	not	overridable.

To	accomplish	the	first	two	calls,	a	Document	(base	class)
reference	is	created,	and	the	address	of	a	new	Note	(derived)
object	created	on	the	heap	is	assigned	to	the	Document
reference:
Dim	theNote	As	Document	=	New	Note("Test	Note")

An	interface	reference	is	created	and	the	Note	is	cast	to	the
IStorable	interface:
If	TypeOf	theNote	Is	IStorable	Then

				Dim	isNote	As	IStorable	=	theNote

You	then	invoke	the	Read()	and	Write()	methods	through	that
interface.	The	output	reveals	that	the	Read()	method	is
responded	to	polymorphically	and	the	Write()	method	is	not,
just	as	you	would	expect:
Overriding	the	Read	method	for	Note!

Document	Write	Method	for	IStorable

The	Read()	and	Write()	methods	are	then	called	directly	on
the	derived	object	itself:
theNote.Read()

theNote.Write()

and	once	again	you	see	the	polymorphic	implementation	has
worked:
Overriding	the	Read	method	for	Note!

Document	Write	Method	for	IStorable

In	both	cases,	the	Read()	method	of	Note	was	called,	but	the
Write()	method	of	Document	was	called.

To	prove	to	yourself	that	this	is	a	result	of	the	overriding
method,	you	next	create	a	second	Note	object,	this	time
assigning	its	address	to	a	reference	to	a	Note.	This	will	be	used
to	illustrate	the	final	cases	(i.e.,	a	call	through	a	derived	object
and	a	call	through	an	interface	created	from	the	derived
object):
Dim	note2	As	New	Note("Second	Test")

Once	again,	when	you	cast	to	a	reference,	the	overridden	Read(
)	method	is	called.	When,	however,	methods	are	called	directly
on	the	Note	object:
note2.Read()

note2.Write()

the	output	reflects	that	you've	called	a	Note	and	not	an
overridden	Document:
Overriding	the	Read	method	for	Note!

Implementing	the	Write	method	for	Note!

Chapter	14.	Arrays
Most	of	the	examples	in	previous	chapters	have	dealt	with	one
object	at	a	time.	In	many	applications,	however,	you	will	want
to	work	with	a	collection	of	objects	all	at	the	same	time.	The
simplest	collection	in	VB.NET	is	the	array,	which	this	chapter
covers	in	detail.	More	complicated	collection	classes,	such	as
Stack	and	Queue,	are	covered	in	the	next	chapter.

In	this	chapter,	you	will	learn	to	work	with	three	types	of
arrays:	one-dimensional	arrays,	multidimensional	rectangular
arrays,	and	multidimensional	jagged	arrays.

To	picture	a	one-dimensional	array,	imagine	a	series	of
mailboxes,	all	lined	up	one	after	the	other.	Each	mailbox	can
hold	exactly	one	object	(one	letter,	one	box,	etc.).	It	turns	out
that	all	the	mailboxes	must	hold	the	same	kind	of	object;	you
declare	the	type	of	object	the	mailboxes	will	hold	when	you
declare	the	array.

A	multidimensional	array	allows	you	to	create	rows	of
mailboxes,	one	above	the	other.	If	all	the	rows	are	the	same
length,	you	have	a	rectangular	array.	If	each	row	of	mailboxes
is	a	different	length,	you	have	a	jagged	array.

You	can	think	of	a	multidimensional	array	as	being	like	a	grid
of	rows	and	columns	in	which	each	slot	(mailbox)	contains
information.	For	example,	each	column	might	contain
information	pertinent	to	an	employee.	Each	row	would	contain
all	the	information	for	a	single	employee.

Most	often	you	will	deal	with	one-dimensional	arrays,	and	if
you	do	create	multidimensional	arrays,	they	will	be	two-
dimensional—but	larger	multidimensional	arrays	(3-D,	4-D,
etc.)	are	also	possible.

A	jagged	array	is	a	type	of	two-dimensional	array	in	which	each

row	can	have	a	different	number	of	columns.	A	jagged	array	is
less	of	a	grid,	and	more	of	an	array	of	arrays—that	is,	an	array
in	which	the	elements	are	arrays.	This	allows	you	to	group	a
few	arrays	of	varying	sizes	into	a	single	array.	For	example,
you	might	have	an	array	of	ten	buttons,	and	a	second	array	of
five	listboxes,	and	a	third	array	of	seven	checkboxes.	You	can
group	all	three	into	a	jagged	array	of	controls.

The	current	chapter	also	introduces	the	concept	of	indexers,	a
feature	of	VB.NET	that	makes	it	possible	to	create	your	own
classes	that	can	be	treated	like	arrays.

Arrays
An	array	is	an	indexed	collection	of	objects,	all	of	the	same	type
(e.g.,	all	integers,	all	strings,	etc.).	When	you	declare	an	array,
you	are	actually	creating	an	instance	of	the	Array	class	in	the
System	namespace	(System.Array).	The	System.Array	class	is
discussed	in	detail	later	in	this	chapter.

Declaring	Arrays

In	order	to	declare	an	array,	you	must	use	a	constructor,	but
you	are	free	to	use	it	in	a	variety	of	ways.	For	example,	you	can
use	either	an	implicit	or	an	explicit	constructor,	as	in	the
following:
Dim	myIntArray()	As	Integer		'	implicit	constructor

Dim	myIntArray	As	Integer	=	New	Integer()	{}	'	explicit	constructor

which	you	use	is	a	matter	of	personal	style.

In	all	of	these	examples,	the	parentheses	tell	the	VB.NET
compiler	that	you	are	declaring	an	array,	and	the	type	specifies
the	type	of	the	elements	it	will	contain.	In	all	of	the	arrays	we
have	declared	so	far,	myIntArray	is	an	array	of	Integers.

It	is	important	to	distinguish	between	the	array	itself	(which	is
a	collection	of	elements)	and	the	component	elements	within

a	collection	of	elements)	and	the	component	elements	within
the	array.	myIntArray	is	the	array;	its	elements	are	the	integers
it	holds.

Tip
While	VB.NET	arrays	are	reference	types,	created	on
the	heap,	the	elements	of	an	array	are	allocated
based	on	their	type.	Thus,	myIntArray	is	a	reference
type	allocated	on	the	heap;	and	the	integer	elements
in	myIntArray	are	value	types,	allocated	on	the	stack.
(While	you	can	box	a	value	type	so	that	it	can	be
treated	like	a	reference	type,	as	explained	in	Chapter
11,	it	is	not	necessary	or	desirable	to	box	the	integers
in	an	array.)	By	contrast,	an	array	that	contains
reference	types,	such	as	Employee	or	Button,	will
contain	nothing	but	references	to	the	elements,	which
are	themselves	created	on	the	heap.

The	Size	of	the	Array

Arrays	are	zero-based,[1]	which	means	that	the	index	of	the
first	element	is	always	zero,	as	in	myArray(0).

The	second	element	is	element	1.	Index	3	indicates	the	element
that	is	offset	from	the	beginning	of	the	array	by	3	elements—
that	is,	the	fourth	element	in	the	array.	You	access	element	3
by	writing:
myArray(3)	'	return	the	4th	element	(at	offset	3)

You	declare	the	initial	size	of	the	array	(that	is,	how	many
elements	it	will	hold)	by	specifying	the	upper	bounds	of	the
array.	The	following	declarations	both	specify	an	array	with
seven	elements;	the	first	uses	an	implicit	constructor	for	this
purpose,	the	second	an	explicit	constructor:
Dim	myIntArray(6)	As	Integer		'	implicit	constructor,	7	members

Dim	myIntArray	As	Integer	=	New	Integer(6)	{}'	explicit,	7	members

Note	that	these	arrays	have	seven	elements	(not	six)	because

Note	that	these	arrays	have	seven	elements	(not	six)	because
with	an	upper	bound	of	6,	the	element	indices	are	0,1,2,3,4,5,6
for	a	total	of	7	elements.

The	ReDim	Keyword

You	can	change	the	size	of	an	array	at	any	time	using	the	ReDim
keyword.	Changing	the	size	is	commonly	referred	to	as
redimensioning	the	array.[2]

There	are	two	ways	to	redimension	an	array.	If	you	use	the	
Preserve	keyword,	the	data	in	the	array	is	preserved;	otherwise,
all	the	data	in	the	array	is	lost	when	it	is	resized	using	ReDim.

You	can	resize	an	array	named	myArray	from	its	current	size	to
50	by	writing:
ReDim	myArray(50)

You	can	make	the	same	change	to	myArray,	but	preserve	the
existing	data	in	the	array	by	writing:
ReDim	Preserve	myArray(50)

At	times,	you	will	not	want	to	resize	an	array	to	a	particular
size	but	rather	to	expand	the	array	by	a	particular	increment.
For	example,	if	you	are	adding	items	to	an	array,	and	you	find
you're	about	to	run	out	of	room,	you	might	add	50	to	the
current	size	of	the	array.	You	can	use	the	UBound	property	of
the	array	which	returns	the	current	upper	bound	of	the	array.
The	following	line	resizes	myArray	to	50	elements	larger	than
its	current	size:
ReDim	Preserve	myArray(myArray(UBound)	+	50)

Understanding	Default	Values

When	you	create	an	array	of	value	types,	each	element	initially
contains	the	default	value	for	the	type	stored	in	the	array.	(See
Table	8-2.)	The	following	declaration	creates	an	array

(myIntArray)	of	six	integers,	each	of	whose	value	is	initialized
to	0,	the	default	value	for	Integer	types:
'six	Integers	with	default	values

Dim	myIntArray	As	Integer	=	New	Integer(6)	{}

With	an	array	of	reference	types,	the	elements	are	not
initialized	to	their	default	values.	Instead,	they	are	initialized	to
Nothing.	If	you	attempt	to	access	any	of	the	elements	in	an
array	of	reference	types	before	you	have	specifically	initialized
them,	you	will	generate	an	exception	(exceptions	are	covered
in	Chapter	17).

Assume	you	have	created	a	Button	class.	You	declare	an	array
of	Button	objects	(thus	reference	types)	with	the	following
statement:
Button()	myButtonArray

and	you	instantiate	the	actual	array,	to	hold	three	Buttons,	like
this:
myButtonArray	=	New	Button(3)	{}

Note	that	you	can	combine	the	two	steps	and	write:
Button	myButtonArray	=	New	Button(3)	{}

In	either	case,	unlike	with	the	earlier	integer	example,	this
statement	does	not	create	an	array	with	references	to	four
Button	objects.	Since	Button	objects	are	reference	types,	this
creates	the	array	myButtonArray	with	four	null	references.	To
use	this	array,	you	must	first	construct	and	assign	a	Button
object	for	each	reference	in	the	array.	This	is	called	populating
the	array.	You	can	construct	the	objects	in	a	loop	that	adds
them	one	by	one	to	the	array.	Example	14-1	illustrates	creating
an	array	of	value	types	(integers)	and	of	reference	types
(Employee	objects).

Example	14-1.	Creating	an	array

Option	Strict	On

Option	Strict	On

Imports	System

	

'	a	simple	class	to	store	in	the	array

Public	Class	Employee

				Private	empID	As	Integer

				'	constructor

				Public	Sub	New(ByVal	empID	As	Integer)

								Me.empID	=	empID

				End	Sub

End	Class

	

Class	Tester

				Public	Sub	Run()

								Dim	intArray	As	Integer()

								Dim	empArray	As	Employee()

								intArray	=	New	Integer(5)	{}

								empArray	=	New	Employee(3)	{}

								'	populate	the	array

								Dim	i	As	Integer

								'	for	indices	0	through	3

								For	i	=	0	To	empArray.Length	-	1

												empArray(i)	=	New	Employee(i	+	5)

												i	=	i	+	1

								Next

				End	Sub

	

				Shared	Sub	Main()

								Dim	t	As	New	Tester()

								t.Run()

				End	Sub

End	Class

Example	14-1	begins	by	creating	a	simple	Employee	class	to
add	to	the	array.	When	Run()	begins,	two	arrays	are	declared,
one	of	type	Integer,	the	other	of	type	Employee:
Dim	intArray	As	Integer()

Dim	empArray	As	Employee()

The	Integer	array	is	populated	with	Integers	set	to	zero.	The
Employee	array	is	initialized	with	null	references.

Tip
empArray	does	not	have	Employee	objects	whose
member	fields	are	set	to	null;	it	does	not	have
Employee	objects	at	all.	What	is	in	the	cubby	holes	of
the	array	is	just	nulls.	Nothing.	Nada.	When	you
create	the	Employee	objects,	you	can	then	store	them
in	the	array.

You	must	populate	the	Employee	array	before	you	can	refer	to

You	must	populate	the	Employee	array	before	you	can	refer	to
its	elements:
For	i	=	0	To	empArray.Length	-	1

				empArray(i)	=	New	Employee(i	+	5)

				i	=	i	+	1

Next

The	exercise	has	no	output.	You've	added	the	elements	to	the
array,	but	how	do	you	use	them?	How	do	you	refer	to	them?

Accessing	Array	Elements

You	access	a	particular	element	within	an	array	using
parentheses	and	a	numeric	value	known	as	an	index,	or	offset.
You	access	element	3	by	writing:

myArray(3)	'	return	the	4
th
	element	(at	offset	3)

Because	arrays	are	objects,	they	have	properties.	One	of	the
more	useful	properties	of	the	Array	class	is	Length,	which	tells
you	how	many	objects	are	in	an	array.	Array	objects	can	be
indexed	from	0	to	Length-1.	That	is,	if	five	elements	are	in	an
array,	their	indices	are	0,1,2,3,4.

In	Example	14-2,	you	create	an	array	of	Employees	and	an
array	of	integers,	populate	the	Employee	array,	and	then	you
print	the	values	in	each	array.

Example	14-2.	Accessing	two	simple	arrays

Option	Strict	On

Imports	System

Namespace	ArrayDemo

	

				'	a	simple	class	to	store	in	the	array

				Public	Class	Employee

								Private	empID	As	Integer

	

								'	constructor

								Public	Sub	New(ByVal	empID	As	Integer)

												Me.empID	=	empID

								End	Sub	'New

	

								Public	Overrides	Function	ToString()	As	String

												Return	empID.ToString()

								End	Function	'ToString

				End	Class	'Employee

				End	Class	'Employee

	

				Class	Tester

	

								Public	Sub	Run()

												Dim	intArray()	As	Integer

												Dim	empArray()	As	Employee

												intArray	=	New	Integer(5)	{}

												empArray	=	New	Employee(3)	{}

	

												'	populate	the	array

												Dim	i	As	Integer

												For	i	=	0	To	empArray.Length	-	1

																empArray(i)	=	New	Employee(i	+	5)

												Next	i

	

												Console.WriteLine("The	Integer	array...")

												For	i	=	0	To	intArray.Length	-	1

																Console.WriteLine(intArray(i).ToString())

												Next	i

												Console.WriteLine(ControlChars.Lf	+	"The	employee	array...")

												For	i	=	0	To	empArray.Length	-	1

																Console.WriteLine(empArray(i).ToString())

												Next	i

								End	Sub	'Run

	

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ArrayDemo

Output:
The	Integer	array...

0

0

0

0

0

The	employee	array...

5

6

7

Example	14-2	starts	with	the	definition	of	an	Employee	class
that	implements	a	constructor	that	takes	a	single	integer
parameter.	The	ToString()	method	inherited	from	Object	is
overridden	to	print	the	value	of	the	Employee	object's
employee	ID.

The	Run()	method	declares	and	then	instantiates	a	pair	of
arrays.	The	Integer	array	is	automatically	filled	with	Integers
whose	value	is	set	to	zero.	The	Employee	array	contents	must
be	constructed	by	hand	(or	will	contain	values	set	to	Nothing).

be	constructed	by	hand	(or	will	contain	values	set	to	Nothing).

To	populate	the	array	by	hand,	you	construct	each	Employee
object	in	turn,	adding	them	to	the	Array	as	they	are	created:
Dim	i	As	Integer

For	i	=	0	To	empArray.Length	-	1

				empArray(i)	=	New	Employee(i	+	5)

Next	i

In	this	For	loop,	each	Employee	is	created	with	a	value	equal	to
five	more	than	its	index	in	the	array.	These	are	arbitrary	values
used	here	to	illustrate	how	to	add	Employee	objects	to	the
array.

Finally,	the	contents	of	the	arrays	are	printed	to	ensure	that
they	are	filled	as	intended.	The	five	Integers	print	their	value
first,	followed	by	the	three	Employee	objects.

Tip
If	you	comment	out	the	code	in	which	the	Employee
objects	are	created,	you'll	generate	an	exception
when	you	try	to	display	the	contents	of	the	Employee
array.	This	demonstrates	that	arrays	of	reference
types	are	initialized	with	Nothing	references.
Unhandled	Exception:	System.NullReferenceException:	Object

reference	not	set	to	an	instance	of	an	object.	at

InterfaceDemo.ArrayDemo.Tester.Run()	in	C:\...\InterfaceDemo\

Module1.vb:line	40	at	InterfaceDemo.ArrayDemo.Tester.Main()

in	C:\...InterfaceDemo\Module1.vb:line	47

The	For	Each	Statement

The	For	Each	looping	statement	allows	you	to	iterate	through	all
the	items	in	an	array	(or	other	collection),	examining	each	item
in	turn.	The	syntax	for	the	For	Each	statement	is:
For	Each	

															identifier	

															In	

															collection

															statement

															Next

The	For	Each	statement	creates	a	new	object	that	will	hold	a
reference	to	each	of	the	objects	in	the	collection,	in	turn,	as
you	loop	through	the	collection.	For	example,	you	might	write:
Dim	intValue	As	Integer

For	Each	intValue	In	intArray

Each	time	through	the	loop,	the	next	member	of	intArray	will
be	assigned	to	the	integer	variable	intValue.	You	can	then	use
that	object	to	display	the	value,	as	in:
Console.WriteLine(intValue.ToString())

Similarly,	you	might	iterate	through	the	Employee	array:
Dim	e	As	Employee

For	Each	e	In	empArray

				Console.WriteLine(e)

Next

In	the	case	shown	here,	e	is	an	object	of	type	Employee.	For
each	turn	through	the	loop,	e	will	refer	to	the	next	Employee	in
the	array.

Example	14-3	rewrites	the	Run()	method	of	Example	14-2	to
use	a	For	Each	loop	but	is	otherwise	unchanged.

Example	14-3.	Using	a	For	Each	loop

Option	Strict	On

Imports	System

Public	Sub	Run()

				Dim	intArray()	As	Integer

				Dim	empArray()	As	Employee

				intArray	=	New	Integer(5)	{}

				empArray	=	New	Employee(3)	{}

	

				'	populate	the	array

				Dim	i	As	Integer

				For	i	=	0	To	empArray.Length	-	1

								empArray(i)	=	New	Employee(i	+	5)

				Next	i

	

				Console.WriteLine("The	Integer	array...")

				Dim	intValue	As	Integer

				For	Each	intValue	In	intArray

								Console.WriteLine(intValue.ToString())

				Next

	

Console.WriteLine("The	employee	array...")

				Dim	e	As	Employee

				For	Each	e	In	empArray

				For	Each	e	In	empArray

								Console.WriteLine(e)

				Next

End	Sub	'Run

Output:
The	Integer	array...

0

0

0

0

0

The	employee	array...

5

6

7

The	output	for	Example	14-3	is	identical	to	Example	14-2.
However,	rather	than	creating	a	For	statement	that	measures
the	size	of	the	array	and	uses	a	temporary	counting	variable	as
an	index	into	the	array:
For	i	=	0	To	empArray.Length	-	1

				Console.WriteLine(empArray(i).ToString())

Next	i

you	now	iterate	over	the	array	with	the	For	Each	loop,	which
automatically	extracts	the	next	item	from	within	the	array	and
assigns	it	to	a	temporary	object	you've	created	in	the	head	of
the	statement.	In	the	following	case,	the	temporary	object	is	of
type	Employee	(it	is	a	reference	to	an	Employee	object)	and	is
named	e:
Dim	e	As	Employee

For	Each	e	In	empArray

				Console.WriteLine(e)

Next

Since	the	object	extracted	from	the	array	is	of	the	appropriate
type	(i.e.,	e	is	a	reference	to	an	Employee),	you	can	call	any
public	method	of	Employee.

Initializing	Array	Elements

Rather	than	assigning	elements	to	the	array	as	we	have	done
so	far,	it	is	possible	to	initialize	the	contents	of	an	array	at	the

time	it	is	instantiated.	You	do	so	by	providing	a	list	of	values
delimited	by	curly	braces	({}).	VB.NET	provides	two	different
syntaxes	to	accomplish	the	same	task:
Dim	myIntArray1()	As	Integer	=	{	2,	4,	5,	8,	10}

Dim	myIntArray2()	As	Integer		=	New	Integer(4)	{	2,	4,	6,	8,	10	}

There	is	no	practical	difference	between	these	two	statements,
and	most	programmers	will	use	the	shorter	syntax	because	we
are,	by	nature,	lazy.	We	are	so	lazy,	we'll	work	all	day	to	save	a
few	minutes	doing	a	task—which	isn't	so	crazy	if	we're	going	to
do	that	task	hundreds	of	times!	Example	14-4	again	rewrites
the	Run()	method	of	Example	14-2,	this	time	demonstrating
initialization	of	both	arrays.

Example	14-4.	Initializing	array	elements

Option	Strict	On

Imports	System

Public	Sub	Run()

				Dim	intArray	As	Integer()	=	{2,	4,	6,	8,	10}

				Dim	empArray	As	Employee()	=	_

						{New	Employee(5),	New	Employee(7),	New	Employee(9)}

	

				Console.WriteLine("The	Integer	array...")

				Dim	theInt	As	Integer

				For	Each	theInt	In	intArray

								Console.WriteLine(theInt.ToString())

				Next	theInt

	

				Console.WriteLine("The	employee	array...")

				Dim	e	As	Employee

				For	Each	e	In	empArray

								Console.WriteLine(e.ToString())

				Next	e

End	Sub	'Run

Output:
The	Integer	array...

2

4

6

8

10

The	employee	array...

5

7

9

The	ParamArray	Keyword

What	do	you	do	if	you	need	to	pass	parameters	to	a	method	but
you	don't	know	how	many	parameters	you'll	want	to	pass?	It	is
possible	that	the	decision	on	how	many	parameters	you'll	pass
in	won't	be	made	until	runtime.

VB.NET	provides	the	ParamArray	keyword	to	allow	you	to	pass	in	a
variable	number	of	parameters.	As	far	as	the	client	(the	calling
method)	is	concerned,	you	pass	in	a	variable	number	of
parameters.	As	far	as	the	implementing	method	is	concerned,	it
has	been	passed	an	array,	and	so	it	can	just	iterate	through	the
array	to	find	each	parameter!

For	example,	you	can	create	a	method	called	DisplayVals()
that	takes	integers	as	parameters	and	displays	them	to	the
console:
Public	Sub	DisplayVals(ByVal	ParamArray	intVals()	As	Integer)

				Dim	i	As	Integer

				For	Each	i	In	intVals

								Console.WriteLine("DisplayVals	{0}",	i)

				Next	i

End	Sub	'DisplayVals

The	ParamArray	keyword	indicates	that	you	can	pass	in	any	number
of	integers,	and	the	method	will	treat	them	as	if	you	had	passed
in	an	array	of	integers.	Thus	you	can	call	this	method	from
Run()	with:
DisplayVals(5,	6,	7,	8)

And	the	DisplayVals()	method	will	treat	this	exactly	as	if	you
had	written:
Dim	explicitArray()	As	Integer	=	{5,	6,	7,	8}

DisplayVals(explicitArray)

And	in	fact,	you	are	free	to	create	such	an	array	and	send	it	in
as	the	parameter,	as	demonstrated	in	Example	14-5.

Example	14-5.	The	ParamArray	keyword

Option	Strict	On

Imports	System

Namespace	ArrayDemo

				Class	Tester

								Public	Sub	Run()

												Dim	a	As	Integer	=	5

												Dim	b	As	Integer	=	6

												Dim	c	As	Integer	=	7

												Console.WriteLine("Calling	with	three	Integers")

												DisplayVals(a,	b,	c)

												Console.WriteLine("Calling	with	four	Integers")

												DisplayVals(5,	6,	7,	8)

												Console.WriteLine("calling	with	an	array	of	four	Integers")

												Dim	explicitArray()	As	Integer	=	{5,	6,	7,	8}

												DisplayVals(explicitArray)

								End	Sub	'Run

								'	takes	a	variable	number	of	Integers

								Public	Sub	DisplayVals(ByVal	ParamArray	intVals()	As	Integer)

												Dim	i	As	Integer

												For	Each	i	In	intVals

																Console.WriteLine("DisplayVals	{0}",	i)

												Next	i

								End	Sub	'DisplayVals

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ArrayDemo

Output:
Calling	with	three	Integers

DisplayVals	5

DisplayVals	6

DisplayVals	7

Calling	with	four	Integers

DisplayVals	5

DisplayVals	6

DisplayVals	7

DisplayVals	8

calling	with	an	array	of	four	Integers

DisplayVals	5

DisplayVals	6

DisplayVals	7

DisplayVals	8

In	Example	14-5,	the	first	time	you	call	DisplayVals()	you	pass
in	three	integer	variables:
Dim	a	As	Integer	=	5

Dim	b	As	Integer	=	6

Dim	c	As	Integer	=	7

Dim	c	As	Integer	=	7

DisplayVals(a,	b,	c)

The	second	time	you	call	DisplayVals()	you	use	four	literal
constants:
DisplayVals(5,6,7,8)

In	both	cases,	DisplayVals()	treats	the	parameters	as	if	they
were	declared	in	an	array.	In	the	final	invocation,	you	explicitly
create	an	array	and	pass	that	as	the	parameter	to	the	method:
Dim	explicitArray()	As	Integer	=	{5,	6,	7,	8

DisplayVals(explicitArray)

[1]	It	is	possible	to	create	arrays	that	are	not	zero-based,	but
only	with	multidimensional	arrays,	and	it	is	rarely	a	good	idea.
To	do	so	you	must	use	the	CreateInstance()	method	of	the
Array	class,	and	the	resulting	arrays	are	not	compliant	with	the
Common	Language	Specification.

[2]	Redimensioning	is	a	terribly	misleading	term.	It	suggests
you	are	changing	the	dimensions	of	the	array	(which	is
described	later	in	this	chapter);	in	fact	you	are	changing	the
array's	size.	Redimensioning	should	more	properly	be	called
resizing	the	array,	but	the	terminology	was	established	early	in
the	history	of	Visual	Basic,	and	it's	too	late	now;	we're	stuck
with	the	term	redimensioning.

Multidimensional	Arrays
Arrays	can	be	thought	of	as	long	rows	of	slots	into	which	values
can	be	placed.	Once	you	have	a	picture	of	a	row	of	slots,
imagine	ten	rows,	one	on	top	of	another.	This	is	the	classic	two-
dimensional	array	of	rows	and	columns.	The	rows	run	across
the	array,	and	the	columns	run	up	and	down	the	array,	as
illustrated	in	Figure	14-1.

Figure	14-1.	Rows	and	columns	create	a	multidimensional	array

A	third	dimension	is	possible	but	somewhat	harder	to	picture.
Imagine	making	your	arrays	three-dimensional,	with	new	rows
stacked	atop	the	old	two-dimensional	array.	OK,	now	imagine
four	dimensions.	Now	imagine	ten.

Those	of	you	who	are	not	string-theory	physicists	have
probably	given	up,	as	have	I.	Multidimensional	arrays	are
useful,	however,	even	if	you	can't	quite	picture	what	they
would	look	like.	You	might,	for	example,	use	a	four-dimensional
array	to	track	movement	in	three	dimensions	(x,y,z)	over	time.

VB.NET	supports	two	types	of	multidimensional	arrays:
rectangular	and	jagged.	In	a	rectangular	array,	every	row	is
the	same	length.	In	a	jagged	array,	however,	each	row	can	be	a
different	length.	In	fact,	you	can	think	of	each	row	in	a	jagged
array	as	an	array	unto	itself.	Thus,	a	jagged	array	is	actually	an
array	of	arrays.

Rectangular	Arrays

A	rectangular	array	is	an	array	of	two	(or	more)	dimensions.	In	the
classic	two-dimensional	array,	the	first	dimension	is	the
number	of	rows,	and	the	second	dimension	is	the	number	of
columns.

To	declare	and	instantiate	a	two-dimensional	rectangular	array
named	rectangularArray	that	contains	two	rows	and	three
columns	of	integers,	you	could	use	either	of	the	following
syntax	lines:
Dim	rectangularArray	(,)	As	Integer

Dim	rectangularArray	As	Integer(,)

Either	line	will	create	an	empty	two-dimensional	array.

In	Example	14-6,	you	create	a	two-dimensional	array	of
integers,	and	you	populate	the	array	using	two	For	loops.	The
outer	For	loop	iterates	once	for	each	row,	the	inner	For	loop
iterates	once	for	each	column	in	each	row:
Dim	i	As	Integer

For	i	=	0	To	rows	-	1

				Dim	j	As	Integer

				For	j	=	0	To	columns	-	1

								rectangularArray(i,	j)	=	i	+	j

				Next	j

Next	i

You	then	use	a	second	set	of	For	loops	to	display	the	contents	of
the	array:
For	i	=	0	To	rows	-	1

				Dim	j	As	Integer

				For	j	=	0	To	columns	-	1

								Console.WriteLine(

										"rectangularArray[{0},{1}]	=	{2}",	

										i,	j,	rectangularArray(i,	j))

				Next	j

Next	i

Tip
Note	that	for	the	second	loop,	you	do	not	redeclare
the	variable	i,	because	it	was	declared	earlier.	You

do,	however,	redeclare	j,	because	the	first	instance	of
j	was	declared	within	the	scope	of	the	earlier	for	loop,
and	so	is	not	visible	here.

The	complete	listing	is	shown	in	Example	14-6,	followed	by	the
output.

Example	14-6.	Rectangular	array

Option	Strict	On

Imports	System

Namespace	ArrayDemo

				Class	Tester

								Public	Sub	Run()

												Const	rowsUB	As	Integer	=	4

												Const	columnsUB	As	Integer	=	3

												'	declare	a	4x3	Integer	array

												Dim	rectangularArray(rowsUB,	columnsUB)	As	Integer

												'	populate	the	array

												Dim	i	As	Integer

												For	i	=	0	To	rowsUB	-	1

																Dim	j	As	Integer

																For	j	=	0	To	columnsUB	-	1

																				rectangularArray(i,	j)	=	i	+	j

																Next	j

												Next	i

												'	report	the	contents	of	the	array

												For	i	=	0	To	rowsUB	-	1

																Dim	j	As	Integer

																For	j	=	0	To	columnsUB	-	1

																				Console.WriteLine(

																						"rectangularArray[{0},{1}]	=	{2}",	

																						i,	j,	rectangularArray(i,	j))

																Next	j

												Next	i

								End	Sub	'Run

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ArrayDemo

Output:
rectangularArray[0,0]	=	0

rectangularArray[0,1]	=	1

rectangularArray[0,2]	=	2

rectangularArray[1,0]	=	1

rectangularArray[1,1]	=	2

rectangularArray[1,2]	=	3

rectangularArray[2,0]	=	2

rectangularArray[2,1]	=	3

rectangularArray[2,2]	=	4

rectangularArray[3,0]	=	3

rectangularArray[3,1]	=	4

rectangularArray[3,2]	=	5

In	Example	14-6,	you	declare	a	pair	of	constant	values	to	be
used	to	specify	the	upper	bound	of	the	rows	(rowsUB)	and	the
upper	bound	of	the	columns	(columnsUB)	in	the	two-
dimensional	array:
Const	rowsUB	As	Integer	=	4

Const	columnsUB	As	Integer	=	3

Creating	these	constants	allows	you	to	refer	to	these	values	by
number	throughout	the	program;	if	you	decide	later	to	change
the	value	of	either,	you	only	have	to	make	the	change	in	one
location	in	your	code.

You	use	these	upper	bounds	to	declare	the	array:
Dim	rectangularArray(rowsUB,	columnsUB)	As	Integer

Notice	the	syntax.	The	parentheses	indicate	that	the	type	is	an
array,	and	the	comma	indicates	the	array	has	two	dimensions;
two	commas	indicate	three	dimensions,	and	so	on.

Just	as	you	can	initialize	a	one-dimensional	array	using
bracketed	lists	of	values,	you	can	initialize	a	two-dimensional
array	using	similar	syntax:
Dim	rectangularArray(,)	As	Integer	=	_

			{	{2,	1},{2,	2},	{3,	1},	{3,	2}	}

The	outer	braces	mark	the	entire	array	initialization;	the	inner
braces	mark	each	of	the	elements	in	the	second	dimension.
Since	this	is	a	4x3	array	(four	rows	by	three	columns),	you	have
four	sets	of	3	initialized	values	(12	in	all).	Example	14-7
rewrites	the	Run()	method	from	Example	14-6	to	use
initialization.

Example	14-7.	Initializing	a	two-dimensional	array

Public	Sub	Run()

												Const	rowsUB	As	Integer	=	4

												Const	columnsUB	As	Integer	=	3

												'	define	and	initialize	the	array

												Dim	rectangularArray	As	Integer(,)	=	_

												{{0,	1,	2},	{3,	4,	5},	{6,	7,	8},	{9,	10,	11}}

												'	report	the	contents	of	the	array

												Dim	i	As	Integer

												For	i	=	0	To	rowsUB	-	1

																Dim	j	As	Integer

																For	j	=	0	To	columnsUB	-	1

																				Console.WriteLine(

																					"rectangularArray[{0},{1}]	=	{2}",	

																					i,	j,	rectangularArray(i,	j))

																Next	j

												Next	i

								End	Sub	'Run

Output:
rectangularArray[0,0]	=	0

rectangularArray[0,1]	=	1

rectangularArray[0,2]	=	2

rectangularArray[1,0]	=	3

rectangularArray[1,1]	=	4

rectangularArray[1,2]	=	5

rectangularArray[2,0]	=	6

rectangularArray[2,1]	=	7

rectangularArray[2,2]	=	8

rectangularArray[3,0]	=	9

rectangularArray[3,1]	=	10

rectangularArray[3,2]	=	11

As	the	output	illustrates,	the	VB.NET	compiler	understands	the
syntax	of	your	initialization;	the	objects	are	accessed	with	the
appropriate	offsets.

You	might	guess	that	this	is	a	12-element	array,	and	that	you
can	just	as	easily	access	an	element	at	rectangularArray(0,3)	as
at	rectangularArray(1,0),	but	if	you	try,	you	will	run	right	into
an	exception:
Unhandled	Exception:	System.IndexOutOfRangeException:

Index	was	outside	the	bounds	of	the	array.

			at	DebuggingVB.ArrayDemo.Tester.Run()	in	...Module1.vb:line	13

			at	DebuggingVB.ArrayDemo.Tester.Main()	in	...Module1.vb:line	29

The	specification	rectangularArray(0,3)	addresses	the	array
element	at	row	1	in	column	4	(offset	0,3).	Since	the	array	has
been	defined	as	having	four	rows	and	three	columns,	this
position	does	not	exist	in	the	array.	VB.NET	arrays	are	smart

and	they	keep	track	of	their	bounds.	When	you	define	a	4x3
array,	you	must	treat	it	as	such,	and	not	as	a	3x4	or	a	12x1
array.

Had	you	written	the	initialization	as:
Dim	rectangularArray	As	Integer(,)	=	_

{	{0,1,2,3},	{4,5,6,7},	{8,9,10,11}	}

you	would	instead	have	implied	a	3x4	array,	and
rectangularArray(0,3)	would	be	valid.

Jagged	Arrays

A	jagged	array	is	an	array	of	arrays.	Specifically,	a	jagged	array	is	a
type	of	multidimensional	array	in	which	each	row	can	be	a
different	size	from	all	the	other	rows.	Thus,	a	graphical
representation	of	the	array	has	a	"jagged"	appearance,	as	in
Figure	14-2.

Figure	14-2.	Jagged	array

You	can	think	of	each	row	in	a	jagged	array	as	an	array	unto
itself—a	one-dimensional	array.	Thus,	technically	speaking,	a
jagged	array	is	an	array	of	arrays.	When	you	create	a	jagged
array,	you	declare	the	number	of	rows	in	your	array.	Each	row
will	hold	a	one-dimensional	array,	and	each	row	can	be	of	any
length.	To	declare	a	jagged	array,	you	use	the	following	syntax,
where	the	number	of	pairs	of	parentheses	indicates	the	number
of	dimensions	of	the	array:

Dim	identifier()()	As	type

For	example,	you	declare	a	two-dimensional	jagged	array	of
integers	named	myJaggedArray	as	follows:
Dim	myJaggedArray()()	As	Integer

You	address	the	elements	in	the	array	as	follows.	The	array
name	followed	by	the	offset	into	the	array	of	arrays	(the	row),
followed	by	the	offset	into	the	chosen	array	(the	column	within
the	chosen	row).	That	is,	to	access	the	fifth	element	of	the	third
array,	you	write:
myJaggedArray(2)(4)

Remember	that	all	arrays	are	zero-based.	The	third	element	is
at	offset	2,	and	the	fifth	element	is	at	offset	4.

Example	14-8	creates	a	jagged	array	named	myJaggedArray,
initializes	its	elements,	and	then	prints	their	content.	To	save
space,	the	program	takes	advantage	of	the	fact	that	integer
array	elements	are	automatically	initialized	to	zero,	and	it
initializes	the	values	of	only	some	of	the	elements.

Example	14-8.	Jagged	array

Option	Strict	On

Imports	System

Namespace	JaggedArray

				Public	Class	Tester

								Public	Sub	Run()

												Const	rowsUB	As	Integer	=	3		'	upper	bounds

												Const	rowZero	As	Integer	=	5

												Const	rowOne	As	Integer	=	2

												Const	rowTwo	As	Integer	=	3

												Const	rowThree	As	Integer	=	5

												Dim	i	As	Integer

												'	declare	the	jagged	array	as	4	rows	high

												Dim	jaggedArray(rowsUB)()	As	Integer

												'	declare	the	rows	of	various	lengths

												ReDim	jaggedArray(0)(rowZero)

												ReDim	jaggedArray(1)(rowOne)

												ReDim	jaggedArray(2)(rowTwo)

												ReDim	jaggedArray(3)(rowThree)

												'	Fill	some	(but	not	all)	elements	of	the	rows											

												jaggedArray(0)(3)	=	15

												jaggedArray(1)(1)	=	12

												jaggedArray(2)(1)	=	9

												jaggedArray(2)(2)	=	99

												jaggedArray(3)(0)	=	10

												jaggedArray(3)(1)	=	11

												jaggedArray(3)(2)	=	12

												jaggedArray(3)(3)	=	13

												jaggedArray(3)(4)	=	14

												For	i	=	0	To	rowZero

																Console.WriteLine("jaggedArray(0)({0})	=	{1}",	_

																				i,	jaggedArray(0)(i))

												Next

												For	i	=	0	To	rowOne

																Console.WriteLine("jaggedArray(1)({0})	=	{1}",	

																				i,	jaggedArray(1)(i))

												Next

												For	i	=	0	To	rowTwo

																Console.WriteLine("jaggedArray(2)({0})	=	{1}",	

																				i,	jaggedArray(2)(i))

												Next

												For	i	=	0	To	rowThree

																Console.WriteLine("jaggedArray(3)({0})	=	{1}",	_

																				i,	jaggedArray(3)(i))

												Next

								End	Sub

								Public	Shared	Sub	Main()

												Dim	t	As	Tester	=	New	Tester()

												t.Run()

								End	Sub

				End	Class

End	Namespace

Output:
jaggedArray(0)(0)	=	0

jaggedArray(0)(1)	=	0

jaggedArray(0)(2)	=	0

jaggedArray(0)(3)	=	15

jaggedArray(0)(4)	=	0

jaggedArray(0)(5)	=	0

jaggedArray(1)(0)	=	0

jaggedArray(1)(1)	=	12

jaggedArray(1)(2)	=	0

jaggedArray(2)(0)	=	0

jaggedArray(2)(1)	=	9

jaggedArray(2)(2)	=	99

jaggedArray(2)(3)	=	0

jaggedArray(3)(0)	=	10

jaggedArray(3)(1)	=	11

jaggedArray(3)(2)	=	12

jaggedArray(3)(3)	=	13

jaggedArray(3)(4)	=	14

jaggedArray(3)(5)	=	0

Example	14-8	creates	a	jagged	array	with	four	rows:

Dim	jaggedArray(rowsUB)()	As	Integer

Notice	that	the	size	of	the	second	dimension	is	not	specified.
The	columns	in	a	jagged	array	vary	by	row;	thus	they	are	set	by
creating	a	new	array	for	each	row.	Each	of	these	arrays	can
have	a	different	size:
ReDim	jaggedArray(0)(rowZero)

ReDim	jaggedArray(1)(rowOne)

ReDim	jaggedArray(2)(rowTwo)

ReDim	jaggedArray(3)(rowThree)

If	you	look	back	at	the	values	of	the	constants	(rowZero
through	rowThree),	you'll	be	able	to	figure	out	that	there	are
15	slots	in	this	array.

Notice	that	you	use	the	ReDim	keyword	(discussed	earlier)	to
dimension	the	internal	arrays.	Here	it	is	being	used	to	resize
the	internal	arrays	from	their	initial	size	of	zero	to	the	size	you
designate.

Once	an	array	size	is	specified	for	each	row,	you	need	only
populate	the	various	members	of	each	array	(row)	and	then
print	out	their	contents	to	ensure	that	all	went	as	expected.

Notice	that	when	you	accessed	the	members	of	the	rectangular
array,	you	put	the	indexes	all	within	one	set	of	square	brackets:
rectangularArray(i,j)

while	with	a	jagged	array	you	need	a	pair	of	brackets:
jaggedArray(3)(i)

You	can	keep	this	straight	by	thinking	of	the	first	as	a	single
array	of	more	than	one	dimension	and	the	jagged	array	as	an
array	of	arrays.

System.Array
VB.NET	implements	arrays	with	the	class	System.Array.	The
Array	class	has	a	number	of	useful	methods.	Table	14-1	shows
a	few	of	the	more	important	methods	and	properties	of	the
System.Array	class.

Table	14-1.	Useful	methods	and	properties	of	System.Array

Method	or
Property Description

Clear()
Public	shared	method	that	sets	a	range	of
elements	in	the	array	to	zero	or	to	a	null
reference

Copy() Overloaded	public	shared	method	that	copies	a
section	of	one	array	to	another	array

IndexOf()
Overloaded	public	shared	method	that	returns
the	index	(offset)	of	the	first	instance	of	a	value
in	a	one-dimensional	array

LastIndexOf(
)

Overloaded	public	shared	method	that	returns
the	index	of	the	last	instance	of	a	value	in	a	one-
dimensional	array

Reverse()
Overloaded	public	shared	method	that	reverses
the	order	of	the	elements	in	a	one-dimensional
array

Sort() Overloaded	public	shared	method	that	sorts	the
values	in	a	one-dimensional	array

IsFixedSize Public	property	that	returns	a	value	indicating
whether	the	array	has	a	fixed	size

Length Public	property	that	returns	the	length	of	the
array

Rank Public	property	that	returns	the	number	of
dimensions	of	the	array

The	Array	class's	shared	methods,	Reverse()	and	Sort(),	make
manipulation	of	the	objects	within	the	array	very	easy.	Note,
however,	that	to	reverse	or	sort	the	elements	of	the	array,	they
must	be	of	a	type	that	implements	the	IComparable	interface,
described	in	Chapter	13.	The	.NET	Framework	includes	the
String	class,	which	does	implement	this	interface,	so	we'll
demonstrate	both	Reverse()	and	Sort()	with	Strings.	The
complete	listing	is	shown	in	Example	14-9,	followed	by	the
output	and	analysis.

Example	14-9.	Sort()	and	Reverse()	methods	of	Array

Option	Strict	On

Imports	System

Namespace	ReverseAndSort

				Class	Tester

	

								Public	Shared	Sub	DisplayArray(ByVal	theArray()	As	Object)

	

												Dim	obj	As	Object

												For	Each	obj	In	theArray

																Console.WriteLine("Value:	{0}",	obj)

												Next	obj

												Console.WriteLine(ControlChars.Lf)

												Console.WriteLine(ControlChars.Lf)

								End	Sub	'DisplayArray

	

								Public	Sub	Run()

												Dim	myArray	As	[String]()	=	{"Who",	"is",	"John",	"Galt"}

	

												Console.WriteLine("Display	myArray...")

												DisplayArray(myArray)

	

												Console.WriteLine("Reverse	and	display	myArray...")

												Array.Reverse(myArray)

												DisplayArray(myArray)

	

												Dim	myOtherArray	As	[String]()	=	_

														{"We",	"Hold",	"These",	"Truths",	"To",	"Be",	"Self",	"Evident"}

	

												Console.WriteLine("Display	myOtherArray...")

												DisplayArray(myOtherArray)

	

												Console.WriteLine("Sort	and	display	myOtherArray...")

												Array.Sort(myOtherArray)

												DisplayArray(myOtherArray)

								End	Sub	'Run

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ReverseAndSort

Output:
Display	myArray...

Value:	Who

Value:	is

Value:	John

Value:	Galt

Reverse	and	display	myArray...

Value:	Galt

Value:	John

Value:	is

Value:	Who

Display	myOtherArray...

Value:	We

Value:	Hold

Value:	These

Value:	Truths

Value:	To

Value:	Be

Value:	Self

Value:	Evident

Sort	and	display	myOtherArray...

Value:	Be

Value:	Evident

Value:	Hold

Value:	Self

Value:	These

Value:	To

Value:	Truths

Value:	We

Example	14-9	begins	by	creating	myArray,	an	array	of	strings,
containing	the	words:
"Who",	"is",	"John",	"Galt"

This	array	is	displayed	and	then	passed	to	the	Array.Reverse()
method,	where	it	is	displayed	again	to	see	that	the	array	itself
has	been	reversed:
Value:	Galt

Value:	John

Value:	is

Value:	Who

Similarly,	the	example	creates	a	second	array,	myOtherArray,
containing	the	words:
"We",	"Hold",	"These",	"Truths",

"To",	"Be",	"Self",	"Evident",

which	is	passed	to	the	Array.Sort()	method.	Then	Array.Sort()
happily	sorts	them	alphabetically:
Value:	Be

Value:	Evident

Value:	Hold

Value:	Self

Value:	These

Value:	To

Value:	Truths

Value:	We

The	method	to	display	the	strings	has	been	made	somewhat
generic	by	declaring	the	type	passed	in	to	be	an	array	of
objects:
Public	Shared	Sub	DisplayArray(ByVal	theArray()	As	Object)

The	DisplayArray()	method	iterates	through	the	array	of
objects,	passing	each	to	WriteLine().	Since	WriteLine()	calls
ToString()	on	objects,	and	since	every	object	(including	String)
supports	ToString(),	declaring	the	temporary	variable	obj	to	be
of	type	Object	works	very	well.	Using	objects	has	the
advantage	that	you	can	reuse	your	DisplayArray()	method	with

arrays	of	other	types	of	objects,	once	you	know	how	to
implement	the	IComparable	interface	(shown	in	the	next
chapter).

Indexers	and	the	Default	Property
Some	classes	contain	their	own	internal	collection.	For
example,	you	might	write	your	own	School	class	that	would
contain,	as	a	private	member	variable,	a	collection	of	the
Students	enrolled	in	the	school.	You	might	then	want	to	access
the	School	class	as	if	it	were	an	array	of	Students.	To	do	so,
you	would	use	the	default	property,	which	will	allow	you	to
write:
Dim	joe	As	Student	=	mySchool(5)

accessing	the	sixth	element	in	mySchool's	internal	collection!

As	another	example,	suppose	you	create	a	listbox	control
named	myListBox	that	contains	a	list	of	strings	stored	in	a	one-
dimensional	array,	a	private	member	variable	named
myStrings.	A	listbox	control	contains	member	properties	and
methods	in	addition	to	its	array	of	strings.	However,	it	would
be	convenient	to	be	able	to	access	the	listbox	array	with	an
index,	just	as	if	the	listbox	were	an	array.	For	example,	such	a
property	would	permit	statements	like	the	following:
Dim	theFirstString	As	String	=	myListBox(0)

You	implement	this	with	the	default	property.	Each	class	can
have	one	default	property,	designated	with	the	Default	keyword.
It	is	common	to	use	the	property	name	Item	for	the	default
property,	but	that	is	not	required.

You	can	retrieve	the	default	property	with	or	without	the
property	name.	The	following	two	code	lines	both	retrieve	the
default	property	(which	in	this	case,	is	called	Item);	the	first
uses	the	name,	the	second	doesn't:
Dim	theFirstString	As	String	=	myListBox.Item(0)

Dim	theFirstString	As	String	=	myListBox(0)

In	either	case,	the	default	property	is	acting	as	an	indexer,	a

property	used	to	index	into	the	class	as	if	it	were	a	collection.

Example	14-10	declares	a	listbox	control	class	that	contains	a
simple	array	(myStrings)	and	a	default	property	(Item)	that
acts	as	an	indexer	for	accessing	its	contents.	To	keep	the
example	simple,	you'll	strip	the	listbox	control	down	to	the	few
features.

The	listing	ignores	everything	having	to	do	with	being	a	user
control	and	focuses	only	on	the	list	of	strings	the	listbox
maintains	and	methods	for	manipulating	them.	In	a	real
application,	of	course,	these	are	a	small	fraction	of	the	total
methods	of	a	listbox,	whose	principal	job	is	to	display	the
strings	and	enable	user	choice.

Example	14-10.	Indexer

Option	Strict	On

Imports	System

	

Namespace	Indexers

				'	a	simplified	ListBox	control

				Public	Class	ListBoxTest

								Private	strings(255)	As	String

								Private	ctr	As	Integer	=	0

	

								'	initialize	the	list	box	with	strings

								Public	Sub	New(ByVal	ParamArray	initialStrings()	As	String)

												Dim	s	As	String

	

												'	copy	the	strings	passed	in	to	the	constructor

												For	Each	s	In	initialStrings

																strings(ctr)	=	s

																ctr	+=	1

												Next

								End	Sub

	

								'	add	a	single	string	to	the	end	of	the	list	box

								Public	Sub	Add(ByVal	theString	As	String)

												If	ctr	>=	Strings.Length	Then

																'	handle	bad	index

												Else

																Strings(ctr)	=	theString

																ctr	+=	1

												End	If

								End	Sub

	

								'	allow	array-like	access

								Default	Public	Property	Item(ByVal	index	As	Integer)	As	String

												Get

																If	index	<	0	Or	index	>=	strings.Length	Then

																				'	handle	bad	index

																Else

																				Return	strings(index)

																				Return	strings(index)

																End	If

												End	Get

												Set(ByVal	Value	As	String)

																If	index	>=	ctr	Then

																				'	handle	error

																Else

																				strings(index)	=	Value

																End	If

												End	Set

								End	Property

	

								'	publish	how	many	strings	you	hold

								Public	Function	Count()	As	Integer

												Return	ctr

								End	Function

				End	Class

	

				Public	Class	Tester

								Public	Sub	Run()

												'	create	a	new	list	box	and	initialize

												Dim	lbt	As	New	ListBoxTest("Hello",	"World")

												Dim	i	As	Integer

	

												Console.WriteLine("After	creation...")

												For	i	=	0	To	lbt.Count	-	1

																Console.WriteLine("lbt({0}):	{1}",	i,	lbt(i))

												Next

	

												'	add	a	few	strings

												lbt.Add("Who")

												lbt.Add("Is")

												lbt.Add("John")

												lbt.Add("Galt")

	

												Console.WriteLine("After	adding	strings...")

												For	i	=	0	To	lbt.Count	-	1

																Console.WriteLine("lbt({0}):	{1}",	i,	lbt(i))

												Next

	

												'	test	the	access

												Dim	subst	As	String	=	"Universe"

												lbt(1)	=	subst

	

												'	access	all	the	strings

												Console.WriteLine("After	editing	strings...")

												For	i	=	0	To	lbt.Count	-	1

																Console.WriteLine("lbt({0}):	{1}",	i,	lbt(i))

												Next

								End	Sub

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub

				End	Class

End	Namespace

Output:
After	creation...

lbt(0):	Hello

lbt(1):	World

After	adding	strings...

lbt(0):	Hello

lbt(1):	World

lbt(2):	Who

lbt(3):	Is

lbt(4):	John

lbt(5):	Galt

After	editing	strings...

lbt(0):	Hello

lbt(1):	Universe

lbt(2):	Who

lbt(3):	Is

lbt(4):	John

lbt(5):	Galt

Example	14-10	begins	by	creating	two	private	member
variables,	strings	and	ctr:
Private	strings(255)	As	String

Private	ctr	As	Integer	=	0

In	this	program,	the	listbox	maintains	a	simple	array	of	strings,
named	(appropriately)	strings.	The	member	variable	ctr	keeps
track	of	how	many	strings	are	added	to	the	array.

The	constructor	initializes	the	array	with	the	strings	passed	in
as	parameters.	Because	you	cannot	know	how	many	strings	will
be	added,	you	use	the	keyword	ParamArray,	as	described	earlier	in
this	chapter.
Public	Sub	New(ByVal	ParamArray	initialStrings()	As	String)

				Dim	s	As	String

				

				'	copy	the	strings	passed	in	to	the	constructor

				For	Each	s	In	initialStrings

								strings(ctr)	=	s

								ctr	+=	1

				Next

End	Sub

Our	focus	is	on	the	default	property,	Item,	created	using	the
following	code:
Default	Public	Property	Item(ByVal	index	As	Integer)	As	String

In	Example	14-10,	the	Get()	method	endeavors	to	implement
rudimentary	bounds	checking,	and	assuming	the	index
requested	is	acceptable,	it	returns	the	value	requested:

Get

				If	index	<	0	Or	index	>=	strings.Length	Then

								'	handle	bad	index

				Else

								Return	strings(index)

				End	If

End	Get

The	Set()	method	checks	to	make	sure	that	the	index	you	are
setting	already	has	a	value	in	the	list	box.	If	not,	it	treats	the
set	as	an	error;	note	that	new	elements	can	only	be	added
using	Add	with	this	approach.	The	Set()	accessor	takes
advantage	of	the	implicit	parameter	value	that	represents
whatever	is	assigned	to	the	property.
Set(ByVal	Value	As	String)

				If	index	>=	ctr	Then

								'	handle	error

				Else

								strings(index)	=	Value

				End	If

End	Set

Thus,	if	you	write:
lbt(5)	=	"Hello	World"

the	compiler	will	call	the	default	property	Item's	Set()	method
on	your	object	and	pass	in	the	string	"Hello	World"	as	an
implicit	parameter-named	value.

Default	Properties	and	Assignment

In	Example	14-10,	you	cannot	assign	to	an	index	that	does	not
have	a	value.	Thus,	if	you	write:
lbt(10)	=	"wow!"

you	trigger	the	error	handler	in	the	Set()	method,	which	would
note	that	the	index	you've	passed	in	(10)	is	larger	than	the
counter	(6).

Of	course,	you	can	use	the	Set()	method	for	assignment;	you
simply	have	to	handle	the	indexes	you	receive.	To	do	so,	you
might	change	the	Set()	method	to	check	the	Length	property
of	the	buffer	rather	than	the	current	value	of	the	counter	(ctr).

of	the	buffer	rather	than	the	current	value	of	the	counter	(ctr).
If	a	value	was	entered	for	an	index	that	did	not	yet	have	a
value,	you	would	update	ctr:
Set(ByVal	Value	As	String)

				If	index	>=	strings.Length	Then

								'	handle	error

				Else

								strings(index)	=	Value

								if	ctr	<	index	+	1	then

										ctr	=	index	+	1

								end	if

				End	If

End	Set

This	allows	you	to	create	a	"sparse"	array	in	which	you	can
assign	to	offset	10	without	ever	having	assigned	to	offset	9.
Thus,	if	you	were	to	write:
lbt(10)	=	"wow!"

the	output	would	be:
lbt(0):	Hello

lbt(1):	Universe

lbt(2):	Who

lbt(3):	Is

lbt(4):	John

lbt(5):	Galt

lbt(6):

lbt(7):

lbt(8):

lbt(9):

lbt(10):	wow!

In	the	Run()	method	of	Example	14-10,	you	create	an	instance
of	the	ListBoxTest	class	named	lbt	and	pass	in	two	strings	as
parameters:
Dim	lbt	As	New	ListBoxTest("Hello",	"World")

You	then	call	Add()	to	add	four	more	strings:
lbt.Add("Who")

lbt.Add("Is")

lbt.Add("John")

lbt.Add("Galt")

Finally,	you	modify	the	second	value	(at	index	1):
Dim	subst	As	String	=	"Universe"

lbt(1)	=	subst

lbt(1)	=	subst

At	each	step,	you	display	each	value	in	a	loop:
For	i	=	0	To	lbt.Count	-	1

				Console.WriteLine("lbt({0}):	{1}",	i,	lbt(i))

Next

Indexing	on	Other	Values

VB.NET	does	not	require	that	you	always	use	an	integer	value
as	the	index	to	a	collection.	When	you	create	a	custom
collection	class	and	create	your	indexer,	you	are	free	to
overload	the	default	property	so	that	a	given	collection	can	be
indexed—for	example,	by	an	integer	value	or	by	a	string	value,
depending	on	the	needs	of	the	client.

In	the	case	of	your	listbox,	you	might	want	to	be	able	to	index
into	the	listbox	based	on	a	string.	Example	14-11	illustrates	a
string	index.	Example	14-11	is	identical	to	Example	14-10
except	for	the	addition	of	an	overloaded	default	property,
which	can	match	a	string,	and	findString(),	a	helper	method
created	to	support	that	index.	The	indexer	calls	findString()	to
return	a	record	based	on	the	value	of	the	string	provided.

Notice	that	the	overloaded	indexer	of	Example	14-11	and	the
indexer	from	Example	14-10	are	able	to	coexist.	The	complete
listing	is	shown,	followed	by	the	output	and	then	a	detailed
analysis.

Example	14-11.	String	indexer

Option	Strict	On

Imports	System

Namespace	Indexers

				'	a	simplified	ListBox	control

				Public	Class	ListBoxTest

								Private	strings(255)	As	String

								Private	ctr	As	Integer	=	0

								'	initialize	the	list	box	with	strings

								Public	Sub	New(ByVal	ParamArray	initialStrings()	As	String)

												Dim	s	As	String

												'	copy	the	strings	passed	in	to	the	constructor

												For	Each	s	In	initialStrings

																strings(ctr)	=	s

																ctr	+=	1

												Next

								End	Sub

								'	add	a	single	string	to	the	end	of	the	list	box

								Public	Sub	Add(ByVal	theString	As	String)

												If	ctr	>=	strings.Length	Then

																'	handle	bad	index

												Else

																strings(ctr)	=	theString

																ctr	+=	1

												End	If

								End	Sub

								'	allow	array-like	access

								Default	Public	Property	Item(

											ByVal	index	As	Integer)	As	String

												Get

																If	index	<	0	Or	index	>=	strings.Length	Then

																				'	handle	bad	index

																Else

																				Return	strings(index)

																End	If

												End	Get

												Set(ByVal	Value	As	String)

																If	index	>=	ctr	Then

																				'	handle	error

																Else

																				strings(index)	=	Value

																End	If

												End	Set

								End	Property

								'	index	on	string

								Default	Public	Property	Item(

											ByVal	index	As	String)	As	String

												Get

																If	index.Length	=	0	Then

																				'	handle	bad	index

																Else

																				Return	strings(findString(index))

																End	If

												End	Get

												Set(ByVal	Value	As	String)

																strings(findString(index))	=	Value

												End	Set

								End	Property

								'	helper	method,	given	a	string	find

								'	first	matching	record	that	starts	with	the	target

								Private	Function	findString(_

											ByVal	searchString	As	String)	As	Integer

												Dim	i	As	Integer

												For	i	=	0	To	strings.Length	-	1

																If	strings(i).StartsWith(searchString)	Then

																				Return	i

																End	If

												Next

												Return	-1

								End	Function

								'	publish	how	many	strings	you	hold

								Public	Function	Count()	As	Integer

												Return	ctr

								End	Function

				End	Class

				Public	Class	Tester

								Public	Sub	Run()

												'	create	a	new	list	box	and	initialize

												Dim	lbt	As	New	ListBoxTest("Hello",	"World")

												Dim	i	As	Integer

												Console.WriteLine("After	creation...")

												For	i	=	0	To	lbt.Count	-	1

																Console.WriteLine("lbt({0}):	{1}",	i,	lbt(i))

												Next

												'	add	a	few	strings

												lbt.Add("Who")

												lbt.Add("Is")

												lbt.Add("John")

												lbt.Add("Galt")

												Console.WriteLine(vbCrLf	&	"After	adding	strings...")

												For	i	=	0	To	lbt.Count	-	1

																Console.WriteLine("lbt({0}):	{1}",	i,	lbt(i))

												Next

												'	test	the	access

												Dim	subst	As	String	=	"Universe"

												lbt(1)	=	subst

												lbt("Hel")	=	"GoodBye"

												'	access	all	the	strings

												Console.WriteLine(vbCrLf	&	"After	editing	strings...")

												For	i	=	0	To	lbt.Count	-	1

																Console.WriteLine("lbt({0}):	{1}",	i,	lbt(i))

												Next

								End	Sub

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub

				End	Class

End	Namespace

Output:
lbt[0]:	GoodBye

lbt[1]:	Universe

lbt[2]:	Who

lbt[3]:	Is

lbt[4]:	John

lbt[5]:	Galt

In	Example	14-11,	the	findString()	method	simply	iterates
through	the	strings	held	in	myStrings	until	it	finds	a	string	that
starts	with	the	target	string	used	in	the	index.	If	found,	it

returns	the	index	of	that	string;	otherwise	it	returns	the	value
-1.

You	can	see	in	Main()	that	the	user	passes	in	a	string	segment
to	the	index,	just	as	was	done	with	an	integer:
lbt("Hel")	=	"GoodBye"

This	calls	the	overloaded	default	property,	which	does	some
rudimentary	error	checking	(in	this	case,	making	sure	the
string	passed	in	has	at	least	one	letter)	and	then	passes	the
value	(Hel)	to	findString().	It	gets	back	an	index	and	uses	that
index	to	index	into	the	strings	array:
Return	strings(findString(index))

The	set	accessor	works	in	the	same	way:
strings(findString(index))	=	Value

If	the	string	does	not	match,	a	value	of	-1	is	returned,	which	is
then	used	as	an	index	into	myStrings.	This	action	then
generates	an	exception	(System.NullReferenceException),	as
you	can	see	by	un-commenting	the	following	line	in	Main():
lbt["xyz"]	=	"oops"

Note
The	proper	handling	of	not	finding	a	string	is,	as	they
say,	left	as	an	exercise	for	the	reader.	You	might
consider	displaying	an	error	message	or	otherwise
allowing	the	user	to	recover	from	the	error.
Exceptions	are	discussed	in	Chapter	17.

Chapter	15.	Collection	Interfaces	and	Types
A	collection	is	a	container	that	holds	a	group	of	objects.
Collections	are	used	to	hold	all	the	strings	in	a	listbox,	to	hold
all	the	employees	in	a	company,	to	hold	all	the	controls	on	a
page,	and	so	forth.	You've	already	seen	the	simplest	collection,
the	array	(see	Chapter	14).	An	array	is	a	collection	that
provides	an	indexed	list	of	elements,	all	of	the	same	type.

The	.NET	Framework	provides	a	number	of	already	built	and
tested	collection	classes,	including	the	ArrayList,	Collection,
Queue,	and	Stack.	This	chapter	will	explain	how	to	use	these
collections	and	will	provide	examples	of	their	use.

The	Collection	Interfaces
Every	collection	has	certain	shared	characteristics.	These	are
captured	by	the	collection	interfaces.	The	.NET	Framework
provides	standard	interfaces	for	enumerating,	comparing,	and
creating	collections.

Tip
Chapter	13	introduced	interfaces,	which	create	a
contract	that	a	class	can	fulfill.	Implementing	an
interface	allows	clients	of	the	class	to	know	exactly
what	to	expect	from	the	class.

By	implementing	the	collection	interfaces,	your	custom	class
can	provide	the	same	semantics	as	the	collection	classes
available	through	the	.NET	Framework.	Table	15-1	lists	the	key
collection	interfaces	and	their	uses.

Table	15-1.	The	collection	interfaces

Interface Purpose

IEnumerable Designates	a	class	that	can	be
enumerated

IEnumerator
A	class	that	iterates	over	a	collection;
supports	the	For
Each	loop

ICollection Implemented	by	all	collections

IComparer Compares	two	objects;	used	for
sorting

IList Used	by	collections	that	can	be
indexed

IDictionary For	key/value-based	collections

IDictionaryEnumerator Allows	enumeration	with	For	Each	of	a
collection	that	supports	IDictionary

The	current	chapter	will	focus	on	the	IEnumerable	interface,
using	it	to	demonstrate	how	you	can	implement	the	collection
interfaces	in	your	own	classes	to	allow	clients	to	treat	your
custom	classes	as	if	they	were	collections.	For	example,	you
might	create	a	custom	class	named	ListBoxTest.	Your
ListBoxTest	class	will	have	a	set	of	strings	to	be	displayed.	You
can	implement	the	collection	interfaces	in	your	ListBoxTest

class	to	allow	clients	to	treat	your	ListBoxTest	as	if	it	were	a
collection.	This	will	allow	clients	to	add	to	the	ListBoxTest
using	the	index	operator	(e.g.,	myListBox(5)	=	"New	String"),	to	sort	the
ListBoxTest,	to	enumerate	the	elements	of	the	ListBoxTest,	and
so	forth.

The	IEnumerable	Interface

In	the	previous	chapter,	you	developed	a	simple	ListBoxTest
class	that	provided	an	indexer	for	array-like	semantics.	That	is,
your	ListBoxTest	implemented	its	own	indexer,	so	that	you
could	treat	the	ListBoxTest	object	like	it	was	an	array.
myListBoxTest(5)	=	"Hello	World"

dim	theText	as	String	=	myListBoxTest(1)

Of	course,	ListBoxTest	is	not	an	array;	it	is	just	a	custom	class
that	can	be	treated	like	an	array,	because	you	gave	it	this
indexer.	You	can	make	your	ListBoxTest	class	even	more	like	a
real	array	by	providing	support	for	iterating	over	the	contents
of	the	array	using	the	For	Each	statement.

The	For	Each	statement	will	work	with	any	class	that	implements
the	IEnumerable	interface.	Classes	that	implement	the
IEnumerable	interface	have	a	single	method,	GetEnumerator(
),	that	returns	an	object	that	implements	a	second	interface,
IEnumerator.

Tip
Note	the	subtle	difference	in	the	names	of	these	two
interfaces:	IEnumerable	vs.	IEnumerator.	The	former
designates	a	class	that	can	be	enumerated;	the	latter
designates	a	class	that	does	the	actual	enumeration.

The	entire	job	of	the	IEnumerable	interface	is	to	define	the
GetEnumerator()	method.	The	job	of	the	GetEnumerator()
method	is	to	generate	an	enumerator—that	is,	an	instance	of	a
class	that	implements	the	IEnumerator	interface.

By	implementing	the	IEnumerable	interface,	your	ListBoxTest
class	is	saying	"you	can	enumerate	my	members,	just	ask	me
for	my	enumerator."	The	client	asks	the	ListBoxTest	for	its
enumerator	by	calling	the	GetEnumerator()	method.	What	it
gets	back	is	an	instance	of	a	class	that	knows	how	to	iterate
over	a	listbox.	That	class,	ListBoxEnumerator,	will	implement
the	IEnumerator	interface.

Tip
When	you	iterate	over	an	array,	you	visit	each
member	in	turn.	Programmers	talk	about	iterating
over	an	array,	iterating	the	array,	iterating	through
the	array,	and	enumerating	the	array.	All	of	these
terms	mean	the	same	thing.

This	gets	a	bit	confusing,	so	let's	use	an	example.	When	you
implement	the	IEnumerable	interface	for	ListBoxTest,	you	are
promising	potential	clients	that	ListBoxTest	will	support
enumeration.	That	will	allow	clients	of	your	ListBoxTest	class
to	write	code	like	this:
Dim	s	As	String

For	Each	s	In	ListBoxText

			'...

Next

You	implement	IEnumerable	by	providing	the	GetEnumerator()
method,	which	returns	an	implementation	of	the	IEnumerator
interface.	In	this	case,	you'll	return	an	instance	of	the
ListBoxEnumerator	class,	and	ListBoxEnumerator	will
implement	the	IEnumerator	interface:
Public	Function	GetEnumerator()	As	IEnumerator	_

								Implements	IEnumerable.GetEnumerator

												Return	New	ListBoxEnumerator(Me)

								End	Function

The	ListBoxEnumerator	is	a	specialized	instance	of
IEnumerator	that	knows	how	to	enumerate	the	contents	of	your
ListBoxTest	class.	Notice	two	things	about	this	implementation.
First,	the	constructor	for	ListBoxEnumerator	takes	a	single

argument,	and	you	pass	in	the	Me	keyword.	Doing	so	passes	in	a
reference	to	the	current	ListBoxTest	object,	which	is	the	object
that	will	be	enumerated.	Second,	notice	that	the
ListBoxEnumerator	is	returned	as	an	instance	of	IEnumerator.
This	implicit	cast	is	safe	because	the	ListBoxEnumerator	class
implements	the	IEnumerator	interface.

Note
An	alternative	to	creating	a	specialized	class	to
implement	IEnumerator	is	to	have	the	enumerable
class	(ListBoxTest)	implement	IEnumerator	itself.	In
that	case,	the	IEnumerator	returned	by
GetEnumerator()	would	be	the	ListBoxTest	object,
cast	to	IEnumerator.
Putting	the	enumeration	responsibility	into	a
dedicated	class	that	implements	IEnumerator
(ListBoxEnumerator)	is	generally	preferred	to	the
alternative	of	letting	the	collection	class	(ListBoxTest)
know	how	to	enumerate	itself.	The	specialized
enumeration	class	encapsulates	the	responsibility	of
enumeration,	and	the	collection	class	(ListBoxTest)	is
not	cluttered	with	a	lot	of	enumeration	code.

Because	ListBoxEnumerator	is	specialized	to	know	only	how	to
enumerate	ListBoxTest	objects	(and	not	any	other	enumerable
objects),	you	will	make	ListBoxEnumerator	a	private	class,
contained	within	the	definition	of	ListBoxTest.	(The	collection
class	is	often	referred	to	as	the	container	class	because	it
contains	the	members	of	the	collection.)	The	complete	listing	is
shown	in	Example	15-1,	followed	by	a	detailed	analysis.

Example	15-1.	Enumeration

Option	Strict	On

Imports	System

Imports	System.Collections

Namespace	Enumeration

				Public	Class	ListBoxTest	:	Implements	IEnumerable

								Private	strings()	As	String

								Private	ctr	As	Integer	=	0

								'	private	nested	implementation	of	ListBoxEnumerator

								Private	Class	ListBoxEnumerator

												Implements	IEnumerator

												'	member	fields	of	the	nested	ListBoxEnumerator	class

												Private	currentListBox	As	ListBoxTest

												Private	index	As	Integer

												'	public	within	the	private	implementation

												'	thus,	private	within	ListBoxTest

												Public	Sub	New(ByVal	currentListBox	As	ListBoxTest)

																'	a	particular	ListBoxTest	instance	is

																'	passed	in,	hold	a	reference	to	it

																'	in	the	member	variable	currentListBox.	

																Me.currentListBox	=	currentListBox

																index	=	-1

												End	Sub

												'	Increment	the	index	and	make	sure	the

												'	value	is	valid

												Public	Function	MoveNext()	As	Boolean	_

														Implements	IEnumerator.MoveNext

																index	+=	1

																If	index	>=	currentListBox.strings.Length	Then

																				Return	False

																Else

																				Return	True

																End	If

												End	Function

												Public	Sub	Reset()	

														Implements	IEnumerator.Reset

																index	=	-1

												End	Sub

												'	Current	property	defined	as	the

												'	last	string	added	to	the	listbox

												Public	ReadOnly	Property	Current()	As	Object	

												Implements	IEnumerator.Current

																Get

																				Return	currentListBox(index)

																End	Get

												End	Property

								End	Class		'	end	nested	class

								'	Enumerable	classes	can	return	an	enumerator

								Public	Function	GetEnumerator()	As	IEnumerator	

								Implements	IEnumerable.GetEnumerator

												Return	New	ListBoxEnumerator(Me)

								End	Function

								'	initialize	the	list	box	with	strings

								Public	Sub	New(

										ByVal	ParamArray	initialStrings()	As	String)

												'	allocate	space	for	the	strings

												ReDim	strings(7)

												'	copy	the	strings	passed	in	to	the	constructor

												Dim	s	As	String

												For	Each	s	In	initialStrings

																strings(ctr)	=	s

																ctr	+=	1

												Next

								End	Sub

								'	add	a	single	string	to	the	end	of	the	list	box

								Public	Sub	Add(ByVal	theString	As	String)

												strings(ctr)	=	theString

												ctr	+=	1

								End	Sub

								'	allow	array-like	access

								Default	Public	Property	Item(

										ByVal	index	As	Integer)	As	String

												Get

																If	index	<	0	Or	index	>=	strings.Length	Then

																				'	handle	bad	index

																				Exit	Property

																End	If

																Return	strings(index)

												End	Get

												Set(ByVal	Value	As	String)

																strings(index)	=	Value

												End	Set

								End	Property

								'	publish	how	many	strings	you	hold

								Public	Function	GetNumEntries()	As	Integer

												Return	ctr

								End	Function

				End	Class

				Public	Class	Tester

								Public	Sub	Run()

												'	create	a	new	list	box	and	initialize

												Dim	currentListBox	As	New	

																ListBoxTest("Hello",	"World")

												'	add	a	few	strings

												currentListBox.Add("Who")

												currentListBox.Add("Is")

												currentListBox.Add("John")

												currentListBox.Add("Galt")

												'	test	the	access

												Dim	subst	As	String	=	"Universe"

												currentListBox(1)	=	subst

												'	access	all	the	strings

												Dim	s	As	String

												For	Each	s	In	currentListBox

																Console.WriteLine("Value:	{0}",	s)

												Next

								End	Sub

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub

				End	Class

End	Namespace

Output:
Value:	Hello

Value:	Universe

Value:	Who

Value:	Is

Value:	John

Value:	Galt

Value:

Value:

The	GetEnumerator()	method	of	ListBoxTest	passes	a
reference	to	the	current	object	(ListBoxEnumerator)	to	the
enumerator,	using	the	Me	keyword:
Return	New	ListBoxEnumerator(Me)

The	enumerator	will	enumerate	the	members	of	the
ListBoxTest	object	passed	in	as	a	parameter.

The	class	to	implement	the	Enumerator	is	implemented	as
ListBoxEnumerator.	The	most	interesting	aspect	of	this	code	is
the	definition	of	the	ListBoxEnumerator	class.	Notice	that	this
class	is	defined	within	the	definition	of	ListBoxTest.	It	is	a
contained	class.	It	is	also	marked	private;	the	only	method	that
will	ever	instantiate	a	ListBoxEnumerator	object	is	the
GetEnumerator()	method	of	ListBoxTest:
'	private	nested	implementation	of	ListBoxEnumerator

								Private	Class	ListBoxEnumerator

												Implements	IEnumerator

ListBoxEnumerator	is	defined	to	implement	the	IEnumerator
interface,	which	defines	one	property	and	two	methods,	as
shown	in	Table	15-2.

Table	15-2.	IEnumerator	members

Property	or
Method Description

Current Property	that	returns	the	current	element.

MoveNext(
)

Method	that	advances	the	enumerator	to	the
next	element.

Reset() Method	that	sets	the	enumerator	to	its	initial
position,	before	the	first	element.

The	ListBoxTest	object	to	be	enumerated	is	passed	in	as	an
argument	to	the	ListBoxEnumerator	constructor,	where	it	is
assigned	to	the	member	variable	currentListBox.	The
constructor	also	sets	the	member	variable	index	to	-1,	indicating
that	you	have	not	yet	begun	to	enumerate	the	object:
Public	Sub	New(ByVal	currentListBox	As	ListBoxTest)

				Me.currentListBox	=	currentListBox

				index	=	-1

End	Sub

Tip
The	number	-1	is	used	as	a	signal	to	indicate	that	the
enumerator	is	not	yet	pointing	to	any	of	the	elements
in	the	ListBoxTest	object.	You	can't	use	the	value	0,
because	0	is	a	valid	offset	into	the	collection.

The	MoveNext()	method	increments	the	index	and	then	checks
the	length	property	of	the	strings	array	to	ensure	that	you've
not	run	past	the	end	of	the	strings	array.	If	you	have	run	past
the	end,	you	return	false;	otherwise,	you	return	true:
Public	Function	MoveNext()	As	Boolean	_

		Implements	IEnumerator.MoveNext

				index	+=	1

				If	index	>=	currentListBox.strings.Length	Then

								Return	False

				Else

								Return	True

				End	If

End	Function

The	IEnumerator	method	Reset()	does	nothing	but	reset	the
index	to	-1.	You	can	call	Reset()	any	time	you	want	to	start

index	to	-1.	You	can	call	Reset()	any	time	you	want	to	start
over	iterating	the	ListBoxTest	object.

The	Current	property	is	implemented	to	return	the	string	at	the
index.	This	is	an	arbitrary	decision;	in	other	classes,	Current
will	have	whatever	meaning	the	designer	decides	is
appropriate.	However	defined,	every	enumerator	must	be	able
to	return	the	current	member,	as	accessing	the	current
member	is	what	enumerators	are	for.	The	interface	defines	the
Current	property	to	return	an	object.	Since	strings	are	derived
from	object,	there	is	an	implicit	cast	of	the	string	to	the	more
general	object	type.
Public	ReadOnly	Property	Current()	As	Object	_

Implements	IEnumerator.Current

				Get

								Return	currentListBox(index)

				End	Get

End	Property

The	call	to	For	Each	fetches	the	enumerator	and	uses	it	to
enumerate	over	the	array.	Because	For	Each	will	display	every
string,	whether	or	not	you've	added	a	meaningful	value,	in	this
example	the	strings	array	is	initialized	to	hold	only	eight
strings.

Now	that	you've	seen	how	ListBoxTest	implements
IEnumerable,	let's	examine	how	the	ListBoxTest	object	is	used.
The	program	begins	by	creating	a	new	ListBoxTest	object	and
passing	two	strings	to	the	constructor.
Public	Class	Tester

				Public	Sub	Run()

								Dim	currentListBox	As	New	_

												ListBoxTest("Hello",	"World")

When	the	ListBoxTest	object	(currentListBox)	is	created,	an
array	of	String	objects	is	created	with	room	for	eight	strings.
The	initial	two	strings	passed	in	to	the	constructor	are	added	to
the	array.
Public	Sub	New(_

		ByVal	ParamArray	initialStrings()	As	String)

				

				ReDim	strings(7)

				

				

				Dim	s	As	String

				For	Each	s	In	initialStrings

								strings(ctr)	=	s

								ctr	+=	1

				Next

End	Sub

Back	in	Run(),	four	more	strings	are	added	using	the	Add()
method,	and	the	second	string	is	updated	with	the	word
"Universe,"	just	as	in	Example	14-11.
currentListBox.Add("Who")

currentListBox.Add("Is")

currentListBox.Add("John")

currentListBox.Add("Galt")

	

Dim	subst	As	String	=	"Universe"

currentListBox(1)	=	subst

You	iterate	over	the	strings	in	currentListBox	with	a	For	Each
loop,	displaying	each	string	in	turn:
Dim	s	As	String

For	Each	s	In	currentListBox

				Console.WriteLine("Value:	{0}",	s)

Next

The	For	Each	loop	checks	that	your	class	implements	IEnumerable
(and	throws	an	exception	if	it	does	not)	and	invokes
GetEnumerator():
Public	Function	GetEnumerator()	As	IEnumerator	_

Implements	IEnumerable.GetEnumerator

				Return	New	ListBoxEnumerator(Me)

End	Function

GetEnumerator()	calls	the	ListBoxEnumerator	constructor,
thus	initializing	the	index	to	-1.
Public	Sub	New(ByVal	currentListBox	As	ListBoxTest

				Me.currentListBox	=	currentListBox

				index	=	-1

End	Sub

The	first	time	through	the	loop,	For	Each	automatically	invokes
MoveNext(),	which	immediately	increments	the	index	to	0	and
returns	true.
Public	Function	MoveNext()	As	Boolean	_

		Implements	IEnumerator.MoveNext

		Implements	IEnumerator.MoveNext

				index	+=	1

				If	index	>=	currentListBox.strings.Length	Then

								Return	False

				Else

								Return	True

				End	If

End	Function

The	For	Each	loop	then	uses	the	Current	property	to	get	back	the
current	string.
Public	ReadOnly	Property	Current()	As	Object	_

Implements	IEnumerator.Current

				Get

								Return	currentListBox(index)

				End	Get

End	Property

The	Current	property	invokes	the	ListBoxTest's	indexer,
getting	back	the	string	stored	at	index	0.	This	string	is
assigned	to	the	variable	s	defined	in	the	For	Each	loop,	and	that
string	is	displayed	on	the	console.	The	For	Each	loop	repeats	these
steps	(call	MoveNext(),	access	the	Current	property,	display
the	string)	until	all	the	strings	in	the	ListBoxTest	object	have
been	displayed.

Walking	Through	the	For	Each	Loop	in	a
Debugger

The	calls	to	MoveNext()	and	Current	are	done	for	you	by	the	
For	Each	construct;	you	will	not	see	these	invoked	directly,	though
you	can	step	into	the	methods	in	the	debugger	as	you	iterate
through	the	For	Each	loop.	The	debugger	makes	the	relationships
among	the	For	Each	construct,	the	ListBoxTest	class,	and	its
enumerator	explicit.	To	examine	these	relationships,	put	a
breakpoint	at	the	For	Each	loop,	as	shown	in	Figure	15-1.

Figure	15-1.	Setting	a	breakpoint	on	For	Each

Run	the	application	to	the	breakpoint	by	pressing	the	F5	key.
Press	F11	to	step	into	the	For	Each	loop,	and	you'll	find	that	you
are	in	the	MoveNext()	method	of	the	ListBoxEnumerator.
(There	is	no	explicit	call	to	this	method,	but	the	method	is
invoked	by	the	For	Each	construct	itself.)	Notice	the	Locals
window	shows	the	Me	reference	and	the	index	(currently	-1),
both	circled	and	highlighted	in	Figure	15-2.

Figure	15-2.	The	Locals	window	in	MoveNext()

Now	expand	the	Me	reference	in	the	Locals	window.	You'll	see
the	CurrentListBox	as	a	property.	Expand	that	property	and
you'll	see	the	strings	as	a	property,	as	well	as	ctr,	indicating
that	there	are	six	strings	so	far,	as	shown	in	Figure	15-3.

Figure	15-3.	The	Locals	window	with	Me	expanded

Expand	the	strings	member	variable	and	you'll	see	the	six
strings,	nicely	tucked	away	in	the	strings	array,	in	the	order
you	added	them.	This	is	shown	in	Figure	15-4.

Figure	15-4.	The	strings	expanded

Press	the	F11	key	once.	This	increments	the	index	property
from	-1	to	0.	You'll	see	the	index	property	listed	in	red	in	the
Locals	window.	(Each	time	a	value	changes,	it	is	marked	in
red.)

The	MoveNext()	method	tests	whether	the	index	(0)	is	greater
than	the	Length	property	of	the	array	(8).	Since	at	this	point	it
is	not,	MoveNext()	returns	true,	indicating	that	you	have	not
exceeded	the	bounds	of	the	array	but	instead	have	moved	to
the	next	valid	value	in	the	collection.

Press	F11	repeatedly,	until	you	return	to	the	For	Each	loop.
Pressing	F11	again	moves	the	highlight	to	the	string	in	the	For
Each	statement,	and	one	more	press	of	F11	steps	you	into	the
Current	property's	accessor.	Continue	pressing	F11,	you'll	step
into	the	indexer	of	the	ListBoxTest	class,	where	the	current
index	(0)	is	used	as	an	index	into	the	internal	strings	array,	as
shown	in	Figure	15-5.

Figure	15-5.	Indexing	into	the	strings	array

If	you	continue	pressing	F11,	you	will	exit	the	enumerator	and
return	to	the	For	Each	loop	where	the	string	(Hello)	is	displayed.

Array	Lists
Imagine	that	your	program	asks	the	user	for	input	or	gathers
input	from	a	web	site.	As	it	finds	objects	(strings,	books,	values,
etc.),	you	would	like	to	add	them	to	an	array,	but	you	have	no
idea	how	many	objects	you'll	collect	in	any	given	session.

It	is	difficult	to	use	an	array	for	such	a	purpose	because	you
must	declare	the	size	of	an	Array	object	at	compile	time.	If	you
try	to	add	more	objects	than	you've	allocated	memory	for,	the
Array	class	will	throw	an	exception.	If	you	do	not	know	in
advance	how	many	objects	your	array	will	be	required	to	hold,
you	run	the	risk	of	declaring	either	too	small	an	array	(and
running	out	of	room)	or	too	large	an	array	(and	wasting
memory).

The	.NET	Framework	provides	a	class	designed	for	just	this
situation.	The	ArrayList	class	is	an	array	whose	size	is
dynamically	increased	as	required.	The	ArrayList	class
provides	many	useful	methods	and	properties.	A	few	of	the
most	important	are	shown	in	Table	15-3.

Table	15-3.	ArrayList	members

Method	or
property Purpose

Capacity Property	containing	the	number	of	elements
the	array	can	currently	hold.

Count Property	that	returns	the	number	of
elements	currently	in	the	array.

Item()
Method	that	gets	or	sets	the	element	at	the
specified	index;	this	is	the	indexer	for	the
ArrayList	class.

Add() Method	that	adds	an	object	to	the	ArrayList.

Clear() Method	that	removes	all	elements	from	the
ArrayList.

GetEnumerator(
)

Method	that	returns	an	enumerator	to
iterate	an	ArrayList.

Insert() Method	that	inserts	an	element	into
ArrayList.

RemoveAt() Method	that	removes	the	element	at	the
specified	index.

Reverse() Method	that	reverses	the	order	of	elements
in	the	ArrayList.

Sort() Method	that	alphabetically	sorts	the
ArrayList.

ToArray() Method	that	copies	the	elements	of	the
ArrayList	to	a	new	array.

When	you	create	an	ArrayList,	you	do	not	define	how	many
objects	it	will	contain.	You	add	to	the	ArrayList	using	the	Add()
method,	and	the	list	takes	care	of	its	own	internal	bookkeeping,
as	illustrated	in	Example	15-2.

Example	15-2.	Using	an	ArrayList

Option	Strict	On

Imports	System

Namespace	ArrayListDemo

				'	a	class	to	hold	in	the	array	list

				Public	Class	Employee

								Private	myEmpID	As	Integer

	

								Public	Sub	New(ByVal	empID	As	Integer)

												Me.myEmpID	=	empID

								End	Sub	'New

	

								Public	Overrides	Function	ToString()	As	String

												Return	myEmpID.ToString()

								End	Function	'ToString

	

								Public	Property	EmpID()	As	Integer

												Get

																Return	myEmpID

												End	Get

												Set(ByVal	Value	As	Integer)

																myEmpID	=	Value

												End	Set

								End	Property

				End	Class	'Employee

	

				Class	Tester

	

								Public	Sub	Run()

												Dim	empArray	As	New	ArrayList()

												Dim	intArray	As	New	ArrayList()

	

												'	populate	the	arraylists

												Dim	i	As	Integer

												For	i	=	0	To	4

																empArray.Add(New	Employee(i	+	100))

																intArray.Add((i	*	5))

												Next	i

	

												'	print	each	member	of	the	array

												For	Each	i	In	intArray

																Console.Write("{0}	",	i.ToString())

												Next	i

	

												Console.WriteLine(ControlChars.Lf)

												'	print	each	employee

												Dim	e	As	Employee

												For	Each	e	In	empArray

																Console.Write("{0}	",	e.ToString())

												Next	e

	

												Console.WriteLine(ControlChars.Lf)

												Console.WriteLine("empArray.Capacity:	{0}",	empArray.Capacity)

								End	Sub	'Run

								End	Sub	'Run

	

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ArrayListDemo

Output:
0	5	10	15	20

100	101	102	103	104

empArray.Capacity:	16

Suppose	you're	defining	two	ArrayList	objects,	empArray	to
hold	Employee	objects,	and	intArray	to	hold	integers:
Dim	empArray	As	New	ArrayList()

Dim	intArray	As	New	ArrayList()

Each	ArrayList	object	has	a	property,	Capacity,	which	is	the
number	of	elements	the	ArrayList	is	capable	of	storing.

Tip
The	default	capacity	for	the	ArrayList	class	is	16.	You
are	free	to	set	a	different	starting	capacity	for	your
ArrayList,	but	typically	there	is	no	need	for	you	ever
to	do	so.

You	add	elements	to	the	ArrayList	with	the	Add()	method:
empArray.Add(New	Employee(i	+	100))

intArray.Add((i	*	5))

When	you	add	the	17th	element,	the	capacity	is	automatically
doubled	to	32.	If	you	change	the	For	loop	to:
For	i	=	0	To	17

the	output	looks	like	this:
0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85

100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117

empArray.Capacity:	32

Similarly,	if	you	added	a	33rd	element,	the	capacity	would	be

doubled	to	64.	The	65th	element	increases	the	capacity	to	128,
the	129th	element	increases	it	to	256,	and	so	forth.

The	Collection	Class
Visual	Basic	.NET	offers	a	generic	collection	class	named,
aptly,	Collection.	In	many	ways,	the	Collection	object	serves	as
an	object-oriented	alternative	to	Array,	much	as	ArrayList	does.

These	two	constructs	(ArrayList	and	Collection)	are	very
similar.

Both	offer	and	Add()	and	Remove()	methods	as	well	as	an	Item
property.	The	Collection	class,	however,	overloads	the	Item
property	to	take	a	string	as	a	key	into	the	collection.	This
allows	the	Collection	class	to	act	as	a	dictionary,	associating
keys	with	values.	You	can	also	use	the	Item	property	to	access
members	of	the	collection	by	index	value;	however	the
Collection	uses	a	one-based	index	(i.e.,	the	first	element	is
index	1	rather	than	0).

Example	15-3	illustrates	the	use	of	a	VB.NET

Collection	object.

Example	15-3.	Using	a	Collection	object

Option	Strict	On	Imports	System

	

Namespace	CollectionDemo

	

				'	a	class	to	hold	in	the	array	list	Public	Class	Employee

	

								Private	myEmpID	As	Integer

	

								Public	Sub	New(ByVal	empID	As	Integer)	Me.myEmpID	=	empID

	

								End	Sub	'New

	

	

	

	

								Public	Overrides	Function	ToString()	As	String	Return	myEmpID.ToString()	End

Function	'ToString

	

								Public	Property	EmpID()	As	Integer	Get

	

																Return	myEmpID

	

												End	Get

	

												Set(ByVal	Value	As	Integer)	myEmpID	=	Value	End	Set

	

								End	Property

	

				End	Class	'Employee

	

	

	

				Class	Tester

	

	

	

								Public	Sub	Run()

	

												Dim	intCollection	As	New	Collection()	Dim	empCollection	As	New	Collection()

Dim	empCollection2	As	New	Collection()

	

												'	populate	the	Collections	Dim	i	As	Integer

	

												For	i	=	0	To	4

	

																empCollection.Add(New	Employee(i	+	100))	intCollection.Add((i	*	5))	Next

i

	

	

	

												'	add	key/value	pairs	empCollection2.Add(New	Employee(1789),	"George

Washington")	empCollection2.Add(New	Employee(1797),	"John	Adams")	empCollection2.Add(New

Employee(1801),	"Thomas	Jefferson")

	

												'	print	each	member	of	the	array	For	Each	i	In	intCollection	Console.Write("

												'	print	each	member	of	the	array	For	Each	i	In	intCollection	Console.Write("

{0}	",	i.ToString())	Next	i

	

	

	

												Console.WriteLine()	Console.WriteLine("Employee	collection...")	Dim	e	As

Employee

	

												For	Each	e	In	empCollection	Console.Write("{0}	",	e.ToString())	Next	e

	

	

	

												Console.WriteLine()	Console.WriteLine("Employee	collection	2...")	For	Each	e

In	empCollection2

	

																Console.Write("{0}	",	e.ToString())	Next	e

	

	

	

												Console.WriteLine()

	

												'	retrieve	an	Employee	by	key	Dim	emp	As	Employee	emp	=

empCollection2.Item("John	Adams")	Console.WriteLine(_

	

														"Key	John	Adams	retrieved	empID	{0}",	emp.ToString())

	

												'	note	that	indexing	is	1-based	(rather	than	zero	based)	emp	=

empCollection2.Item(1)	Console.WriteLine(_

	

														"Index(1)	retrieved	empID	{0}",	emp.ToString())

	

								End	Sub	'Run

	

	

	

								Shared	Sub	Main()

	

												Dim	t	As	New	Tester()	t.Run()

	

								End	Sub	'Main

	

				End	Class	'Tester

	

End	Namespace	'CollectionDemo

Output:
0	5	10	15	20

	

Employee	collection...

	

100	101	102	103	104

	

Employee	collection	2...

	

1789	1797	1801

	

Key	John	Adams	retrieved	empID	1797

	

Index(1)	retrieved	empID	1789

Example	15-3	creates	three	Collection	objects	(intCollection,
empCollection,	and	empCollection2):
Dim	intCollection	As	New	Collection()	Dim	empCollection	As	New	Collection()	Dim

empCollection2	As	New	Collection()

The	first	two	objects	are	populated	in	For	loops,	just	as	the
ArrayList	was	created	in	Example	15-2.
Dim	i	As	Integer	For	i	=	0	To	4

	

				empCollection.Add(New	Employee(i	+	100))	intCollection.Add((i	*	5))	Next	i

The	third	Collection	object,	empCollection2,	is	populated	using
key	values.	Each	new	Employee	is	associated	with	a	string,
representing	the	name	of	the	Employee:
empCollection2.Add(New	Employee(1789),	"George	Washington")	empCollection2.Add(New

Employee(1797),	"John	Adams")	empCollection2.Add(New	Employee(1801),	"Thomas	Jefferson")

You	retrieve	objects	from	the	collection	much	as	you	did	from

You	retrieve	objects	from	the	collection	much	as	you	did	from
the	ArrayLists:
For	Each	i	In	intCollection	Console.Write("{0}	",	i.ToString())	Next	i

	

	

	

Dim	e	As	Employee

	

For	Each	e	In	empCollection

	

				Console.Write("{0}	",	e.ToString())	Next	e

	

	

	

For	Each	e	In	empCollection2

	

				Console.Write("{0}	",	e.ToString())	Next	e

You	can,	however,	retrieve	objects	from	the	collection	using
either	the	key	value	or	an	index	value	(one-based):
Dim	emp	As	Employee	emp	=	empCollection2.Item("John	Adams")	Console.WriteLine("Key	John

Adams	retrieved	empID	{0}",	emp.ToString())

	

emp	=	empCollection2.Item(1)

	

Console.WriteLine("Index(1)	retrieved	empID	{0}",	emp.ToString())

Queues
A	queue	represents	a	first-in	first-out	(FIFO)	collection.	The
classic	analogy	is	a	line	(or	queue	if	you	are	British)	at	a	ticket
window.	The	first	person	to	get	in	the	line	ought	to	be	the	first
person	to	come	off	the	line	to	buy	a	ticket.

The	Queue	class	is	a	good	collection	to	use	when	you	are
managing	a	limited	resource.	For	example,	you	might	want	to
send	messages	to	a	resource	that	can	handle	only	one	message
at	a	time.	You	would	then	create	a	message	queue	so	that	you
can	say	to	your	clients:	"Your	message	is	important	to	us.
Messages	are	handled	in	the	order	in	which	they	are	received."

The	Queue	class	has	a	number	of	member	methods	and
properties,	the	most	important	of	which	are	shown	in	Table	15-
4.

Table	15-4.	Queue	members

Method	or
property Purpose

Count Public	property	that	gets	the	number	of
elements	in	the	Queue

Clear() Method	that	removes	all	objects	from	the
Queue

Contains() Method	that	determines	if	an	element	is	in
the	Queue

CopyTo() Method	that	copies	the	Queue	elements	to
an	existing	one-dimensional	array

Dequeue() Method	that	removes	and	returns	the	object
at	the	beginning	of	the	Queue

Enqueue() Method	that	adds	an	object	to	the	end	of	the
Queue

GetEnumerator(
)

Method	that	returns	an	enumerator	for	the
Queue

Peek() Method	that	returns	the	object	at	the
beginning	of	the	Queue	without	removing	it

ToArray() Method	that	copies	the	elements	to	a	new
array

Add	elements	to	your	queue	with	the	Enqueue()	method,	and
take	them	off	the	queue	with	Dequeue()	or	by	using	an
enumerator.	Example	15-4	shows	how	to	use	a	Queue,	followed
by	the	output	and	a	complete	analysis.

Example	15-4.	Implementing	the	Queue	class

Option	Strict	On

Imports	System

Namespace	QueueDemo

				Class	Tester

								Public	Sub	Run()

												Dim	intQueue	As	New	Queue()

	

												'	populate	the	array

												Dim	i	As	Integer

												For	i	=	0	To	4

												For	i	=	0	To	4

																intQueue.Enqueue((i	*	5))

												Next	i

	

												'	Display	the	Queue.

												Console.WriteLine("intQueue	values:")

												DisplayValues(intQueue)

	

												'	Remove	an	element	from	the	queue.

												Console.WriteLine("(Dequeue)	{0}",	intQueue.Dequeue())

	

												'	Display	the	Queue.

												Console.WriteLine("intQueue	values:")

												DisplayValues(intQueue)

	

												'	Remove	another	element	from	the	queue.

												Console.WriteLine("(Dequeue)	{0}",	intQueue.Dequeue())

	

												'	Display	the	Queue.

												Console.WriteLine("intQueue	values:")

												DisplayValues(intQueue)

	

												'	View	the	first	element	in	the

												'	Queue	but	do	not	remove.

												Console.WriteLine("(Peek)			{0}",	intQueue.Peek())

	

												'	Display	the	Queue.

												Console.WriteLine("intQueue	values:")

												DisplayValues(intQueue)

								End	Sub	'Run

	

								Public	Shared	Sub	DisplayValues(ByVal	myCollection	As	IEnumerable)

												Dim	myEnumerator	As	IEnumerator	=	myCollection.GetEnumerator()

												While	myEnumerator.MoveNext()

																Console.WriteLine("{0}	",	myEnumerator.Current)

												End	While

												Console.WriteLine()

								End	Sub	'DisplayValues

	

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'QueueDemo

Output:
intQueue	values:

0

5

10

15

20

(Dequeue)	0

intQueue	values:

5

10

15

20

(Dequeue)	5

intQueue	values:

10

15

20

(Peek)			10

intQueue	values:

10

15

20

In	Example	15-4,	the	ArrayList	from	Example	15-2	is	replaced
by	a	Queue.	I've	dispensed	with	the	Employee	class	and
enqueued	integers	to	save	room	in	the	book,	but	of	course	you
can	enqueue	user-defined	objects	as	well.

The	program	begins	by	creating	an	instance	of	a	Queue,	called
intQueue:
Dim	intQueue	As	New	Queue()

The	queue	is	populated	with	integers:
For	i	=	0	To	4

				intQueue.Enqueue((i	*	5))

Next	i

The	contents	of	the	queue	are	then	displayed	using	the
DisplayValues()	method.	This	method	takes	a	collection	that
implements	the	IEnumerable	interface	(as	does	each	of	the
collections	provided	by	the	.NET	Framework)	and	asks	that
collection	for	its	Enumerator.	It	then	explicitly	iterates	over	the
collection,	displaying	each	element	in	turn.
Public	Shared	Sub	DisplayValues(ByVal	myCollection	As	IEnumerable)

				Dim	myEnumerator	As	IEnumerator	=	myCollection.GetEnumerator()

				While	myEnumerator.MoveNext()

								Console.Write("{0}	",	myEnumerator.Current)

				End	While

				Console.WriteLine()

End	Sub	'DisplayValues

Tip
Every	collection	in	the	.NET	Framework	implements
IEnumerable.

You	can	avoid	all	the	details	of	the	Enumerator	by	using	the	For

Each	loop	instead:
Public	Shared	Sub	DisplayValues(_

						ByVal	myCollection	As	IEnumerable)

				Dim	o	As	Object

				For	Each	o	In	myCollection

								Console.WriteLine(o)

				Next

End	Sub	'DisplayValues

Either	version	of	DisplayValues()	will	work	equally	well.

You	can	display	the	first	value	in	the	queue	without	removing	it
by	calling	the	Peek()	method:
Console.WriteLine("(Peek)	{0}",	intQueue.Peek())

Or,	having	displayed	the	values	in	the	For	Each	loop,	you	can
remove	the	current	value	by	calling	the	Dequeue()	method:
Console.WriteLine("(Dequeue)	{0}",	intQueue.Dequeue())

Stacks
A	stack	is	a	last-in	first-out	(LIFO)	collection,	like	a	stack	of
dishes	at	a	buffet	table	or	a	stack	of	coins	on	your	desk.	You
add	a	dish	on	top,	and	it	is	the	first	dish	you	take	off	the	stack.

Tip
The	classic	example	of	a	stack	is	the	stack,	the
portion	of	memory	on	which	parameters	and	local
variables	are	stored.	See	Chapter	8	for	more	about
the	stack.

The	principal	methods	for	adding	to	and	removing	from	an
instance	of	the	Stack	class	are	Push()	and	Pop();	Stack	also
offers	a	Peek()	method,	very	much	like	Queue.	The	most
important	methods	and	properties	for	Stack	are	shown	in	Table
15-5.

Table	15-5.	Stack	members

Method	or
property Purpose

Count Public	property	that	gets	the	number	of
elements	in	the	Stack

Clear() Method	that	removes	all	objects	from	the
Stack

Contains() Method	that	determines	if	an	element	is	in
the	Stack

CopyTo() Method	that	copies	the	Stack	elements	to	an
existing	one-dimensional	array

GetEnumerator(
)

Method	that	returns	an	enumerator	for	the
Stack

Peek() Method	that	returns	the	object	at	the	top	of
the	Stack	without	removing	it

Pop() Method	that	removes	and	returns	the	object
at	the	top	of	the	Stack

Push() Method	that	inserts	an	object	at	the	top	of
the	Stack

ToArray() Method	that	copies	the	elements	to	a	new
array

In	Example	15-5,	you	rewrite	Example	15-4	to	use	a	Stack
rather	than	a	Queue.	The	logic	is	almost	identical.	The	key
difference	is	that	a	Stack	is	Last	In	First	Out,	while	a	Queue	is
First	In	First	Out.

Example	15-5.	Using	a	Stack

Option	Strict	On

Imports	System

Namespace	StackDemo

				Class	Tester

								Public	Sub	Run()

												Dim	intStack	As	New	Stack()

	

												'	populate	the	stack

												Dim	i	As	Integer

												For	i	=	0	To	7

												For	i	=	0	To	7

																intStack.Push((i	*	5))

												Next	i

	

												'	Display	the	Stack.

												Console.WriteLine("intStack	values:")

												DisplayValues(intStack)

	

												'	Remove	an	element	from	the	stack.

												Console.WriteLine("(Pop){0}",	intStack.Pop())

	

												'	Display	the	Stack.

												Console.WriteLine("intStack	values:")

												DisplayValues(intStack)

	

												'	Remove	another	element	from	the	stack.

												Console.WriteLine("(Pop){0}",	intStack.Pop())

	

												'	Display	the	Stack.

												Console.WriteLine("intStack	values:")

												DisplayValues(intStack)

	

												'	View	the	first	element	in	the

												'	Stack	but	do	not	remove.

												Console.WriteLine("(Peek)			{0}",	intStack.Peek())

	

												'	Display	the	Stack.

												Console.WriteLine("intStack	values:")

												DisplayValues(intStack)

								End	Sub	'Run

	

								Public	Shared	Sub	DisplayValues(ByVal	myCollection	As	IEnumerable)

												Dim	o	As	Object

												For	Each	o	In	myCollection

																Console.WriteLine(o)

												Next	o

								End	Sub	'DisplayValues

	

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StackDemo

Output:
intStack	values:

35

30

25

20

15

10

5

0

(Pop)35

intStack	values:

30

25

20

15

10

5

0

(Pop)30

intStack	values:

25

20

15

10

5

0

(Peek)			25

intStack	values:

25

20

15

10

5

You	start	Example	15-5	by	creating	a	Stack	object	called
intStack:
Dim	intStack	As	New	Stack()

You	populate	the	stack	with	integers	by	calling	the	Push()
method,	which	pushes	each	integer	object	onto	the	stack	(i.e.,
adds	it	to	the	top	of	the	Stack):
For	i	=	0	To	7

				intStack.Push((i	*	5))

Next	i

You	remove	an	object	from	the	stack	by	popping	it	off	the	stack
with	the	Pop()	method:
Console.WriteLine("(Pop){0}",	intStack.Pop())

Just	as	you	could	peek	at	the	object	at	the	beginning	of	the
Queue	without	dequeing	it,	you	can	Peek()	at	the	object	on	top
of	the	stack	without	popping	it:
Console.WriteLine("(Peek)			{0}",	intStack.Peek())

Copying	from	a	Collection	Type	to	an	Array
The	ArrayList,	Queue,	and	Stack	types	contain	overloaded
CopyTo()	and	ToArray()	methods	for	copying	their	elements	to
an	array.	The	CopyTo()	method	copies	its	elements	to	an
existing	one-dimensional	array,	overwriting	the	contents	of	the
array	beginning	at	the	index	you	specify.	The	ToArray()
method	returns	a	new	array	with	the	contents	of	the	type's
elements.

For	example,	in	the	case	of	a	Stack,	ToArray()	would	return	a
new	array	containing	the	elements	in	the	Stack.	CopyTo()
would	copy	the	Stack	over	a	preexisting	array.	Example	15-6
modifies	Example	15-5	to	demonstrate	both	methods.	The
listing	is	followed	by	a	complete	analysis.

Example	15-6.	Copying	from	Stack	to	an	array

Option	Strict	On

	

Namespace	StackDemo

	

				Class	Tester

	

	

	

								Public	Sub	Run()

	

												Dim	intStack	As	New	Stack()

	

												'	populate	the	array

	

												Dim	i	As	Integer

	

												For	i	=	1	To	4

	

																intStack.Push((i	*	5))	Next	i

																intStack.Push((i	*	5))	Next	i

	

	

	

												'	Display	the	Stack.

	

												Console.WriteLine("intStack	values:")	DisplayValues(intStack)

	

												Const	arraySize	As	Integer	=	10

	

												Dim	testArray(arraySize)	As	Integer

	

												'	populate	the	array

	

												For	i	=	1	To	arraySize	-	1

	

																testArray(i)	=	i	*	100

	

												Next	i

	

												Console.WriteLine("Contents	of	the	test	array")	DisplayValues(testArray)

	

												'	Copy	the	intStack	into	the	new	array,	start	offset	3

	

												intStack.CopyTo(testArray,	3)	Console.WriteLine("TestArray	after	copy:		")

DisplayValues(testArray)

	

												'	Copy	the	entire	source	Stack	'	to	a	new	standard	array.

	

												Dim	myArray	As	Object()	=	intStack.ToArray()

	

												'	Display	the	values	of	the	new	standard	array.

	

												Console.WriteLine("The	new	array:")	DisplayValues(myArray)	End	Sub	'Run

	

	

	

								Public	Shared	Sub	DisplayValues(ByVal	myCollection	As	IEnumerable)	Dim	o	As

								Public	Shared	Sub	DisplayValues(ByVal	myCollection	As	IEnumerable)	Dim	o	As

Object

	

												For	Each	o	In	myCollection	Console.WriteLine(o)	Next	o

	

								End	Sub	'DisplayValues

	

	

	

								Shared	Sub	Main()

	

												Dim	t	As	New	Tester()	t.Run()

	

								End	Sub	'Main

	

				End	Class	'Tester

	

End	Namespace	'StackDemo

Output:
intStack	values:

	

20

	

15

	

10

	

5

	

Contents	of	the	test	array

	

0

	

100

	

200

	

300

	

400

	

500

	

600

	

700

	

800

	

900

	

0

	

TestArray	after	copy:

	

0

	

100

	

200

	

20

	

15

	

10

	

5

	

700

	

800

	

900

	

0

	

The	new	array:

	

20

	

15

	

10

	

5

You	begin	again	by	creating	the	Stack	(intStack),	populating	it
with	integers,	and	displaying	its	contents	using	WriteLine():
Dim	intStack	As	New	Stack()

	

'	populate	the	array

	

Dim	i	As	Integer

	

For	i	=	1	To	4

	

				intStack.Push((i	*	5))

	

Next	i

	

	

	

'	Display	the	Stack.

	

Console.WriteLine("intStack	values:")	DisplayValues(intStack)

You	next	create	an	array,	populate	it,	and	display	its	values:
Const	arraySize	As	Integer	=	10

	

Dim	testArray(arraySize)	As	Integer	'	populate	the	array

	

For	i	=	1	To	arraySize	-	1

	

				testArray(i)	=	i	*	100

	

Next	i

	

Console.WriteLine("Contents	of	the	test	array")	DisplayValues(testArray)

You	are	ready	to	copy	the	stack	over	the	array.	You	do	so	with
the	CopyTo()	method,	passing	in	the	array	name,	and	the
offset	at	which	to	begin	the	copy:
intStack.CopyTo(testArray,	3)

This	copies	the	four	values	from	the	stack	over	the	array,
starting	at	offset	3	(the	fourth	element	in	the	array).
0

	

100

	

200

	

20

												15

												10

												5

700

	

800

	

900

Rather	than	copying	to	an	existing	array,	you	are	free	to	copy

Rather	than	copying	to	an	existing	array,	you	are	free	to	copy
to	a	new	array.	You	do	this	with	the	ToArray()	method,	which
generates	a	properly	sized	new	array	to	hold	the	contents	of
the	stack:
Dim	myArray	As	Object()	=	intStack.ToArray()

Chapter	16.	Strings
People	once	thought	of	computers	as	manipulating	numeric
values	exclusively.	Early	computers	were	first	used	to	calculate
missile	trajectories,	and	programming	was	taught	in	the	math
department	of	major	universities.

Today,	most	programs	are	concerned	more	with	strings	of
characters	than	with	numbers.	Typically	these	strings	are	used
for	word	processing,	document	manipulation,	and	creation	of
web	pages.

VB.NET	provides	built-in	support	for	a	fully	functional	String
type.	More	importantly,	VB.NET	treats	Strings	as	objects	that
encapsulate	all	the	manipulation,	sorting,	and	searching
methods	normally	applied	to	strings	of	characters.

Complex	string	manipulation	and	pattern	matching	is	aided	by
the	use	of	regular	expressions.	VB.NET	combines	the	power
and	complexity	of	regular	expression	syntax,	originally	found
only	in	string	manipulation	languages	such	as	awk	and	Perl,
with	a	fully	object-oriented	design.

In	this	chapter,	you	will	learn	to	work	with	the	VB.NET	String
type	and	the	.NET	Framework	System.String	class	that	it
aliases.	You	will	see	how	to	extract	sub-strings,	manipulate	and
concatenate	strings,	and	build	new	strings	with	the
StringBuilder	class.	In	addition,	you	will	find	a	short
introduction	to	the	RegEx	class	used	to	match	strings	based	on
regular	expressions.

Creating	Strings
VB.NET	treats	strings	as	if	they	were	built-in	types.	When	you
declare	a	VB.NET	String	using	the	String	keyword,	you	are	in
fact	declaring	the	object	to	be	of	the	type	System.String,	one	of
the	built-in	types	provided	by	the	.NET	Framework	Class

Library.

In	.NET,	each	String	object	is	an	immutable	sequence	of
Unicode	characters.	In	other	words,	methods	that	appear	to
change	the	String	actually	return	a	modified	copy;	the	original
String	remains	intact.

The	declaration	of	the	System.String	class	is:
NotInheritable	Public	Class	String

			Implements	IComparable,	ICloneable,	IConvertible,	IEnumerable

This	declaration	reveals	that	the	class	is	NotInheritable,
meaning	that	it	is	not	possible	to	derive	from	the	String	class.
The	class	also	implements	four	system	interfaces—
IComparable,	ICloneable,	IConvertible,	and	IEnumerable—
which	dictate	functionality	that	System.String	shares	with
other	classes	in	the	.NET	Framework.

The	IComparable	interface	is	implemented	by	types	that	can	be
sorted.	Strings,	for	example,	can	be	alphabetized;	any	given
string	can	be	compared	with	another	string	to	determine	which
should	come	first	in	an	ordered	list.	IComparable	classes
implement	the	CompareTo()	method.

ICloneable	objects	can	create	new	instances	with	the	same
value	as	the	original	instance.	In	this	case,	it	is	possible	to
clone	a	String	object	to	produce	a	new	String	object	with	the
same	values	(characters)	as	the	original.	ICloneable	classes
implement	the	Clone()	method.

IConvertible	classes	provide	methods	to	facilitate	conversion	to
other	primitive	types;	these	methods	include	ToInt32(),
ToDouble(),	and	ToDecimal().

IEnumerable,	discussed	in	Chapter	15,	lets	you	use	the	For	Each
construct	to	enumerate	a	String	as	a	collection	of	Chars.

String	Literals

The	most	common	way	to	create	a	string	is	to	assign	a	quoted
string	of	characters,	known	as	a	string	literal,	to	a	user-defined
variable	of	type	String.	The	following	code	declares	a	string
called	newString	that	contains	the	phrase	This	is	a	string
literal:
Dim	newString	As	String	=	"This	is	a	string	literal"

The	ToString()	Method

Another	common	way	to	create	a	string	is	to	call	the	ToString()
method	on	an	object	and	assign	the	result	to	a	string	variable.
All	the	built-in	types	override	this	method	to	simplify	the	task
of	converting	a	value	(often	a	numeric	value)	to	a	string
representation	of	that	value.	In	the	following	example,	the
ToString()	method	of	an	Integer	type	is	called	to	store	its	value
in	a	string:
Dim	myInteger	As	Integer	=	5

Dim	integerString	As	String	=	myInteger.ToString()

The	call	to	myInteger.ToString()	returns	a	String	object,	which
is	then	assigned	to	the	string	variable,	integerString.

Strings	Are	Immutable

While	Strings	are	considered	to	be	reference	types,	the	String
objects	themselves	are	immutable.	They	can	not	be	changed
once	created.	When	you	appear	to	be	changing	a	String,	what
is	actually	happening	is	that	a	new	String	is	being	created	and
the	old	String	destroyed.	Thus,	suppose	you	write,
Dim	myString	as	String	=	"Hello"

myString	=	"GoodBye"

The	first	line	creates	a	String	object	on	the	heap	with	the
characters	Hello	and	assigns	a	reference	to	that	string	to	the
variable	myString.	The	second	line	creates	a	new	String	object
with	the	characters	GoodBye	and	assigns	a	reference	to	that

new	String	to	the	reference	myString.	The	original	String	is
then	cleaned	up	by	the	garbage	collector.

Manipulating	Strings
The	String	class	provides	a	host	of	methods	for	comparing,
searching,	and	manipulating	strings,	the	most	important	of
which	are	shown	in	Table	16-1.

Table	16-1.	String	class	methods

Method	or
field Explanation

Chars The	string	indexer

Compare() Overloaded	public	shared	method	that
compares	two	strings

Copy() Public	shared	method	that	creates	a	new	string
by	copying	another

Equals()
Overloaded	public	shared	and	instance	method
that	determines	if	two	strings	have	the	same
value

Format() Overloaded	public	shared	method	that	formats
a	string	using	a	format	specification

Length The	number	of	characters	in	the	instance

PadLeft()
Right-aligns	the	characters	in	the	string,
padding	to	the	left	with	spaces	or	a	specified
character

PadRight()
Left-aligns	the	characters	in	the	string,
padding	to	the	right	with	spaces	or	a	specified
character

Remove() Deletes	the	specified	number	of	characters

Split() Divides	a	string,	returning	the	substrings
delimited	by	the	specified	characters

StartsWith() Indicates	if	the	string	starts	with	the	specified
characters

SubString() Retrieves	a	substring

ToCharArray(
)

Copies	the	characters	from	the	string	to	a
character	array

ToLower() Returns	a	copy	of	the	string	in	lowercase

ToUpper() Returns	a	copy	of	the	string	in	uppercase

Trim()
Removes	all	occurrences	of	a	set	of	specified
characters	from	beginning	and	end	of	the
string

string

TrimEnd() Behaves	like	Trim(),	but	only	at	the	end

TrimStart() Behaves	like	Trim(),	but	only	at	the	start

Comparing	Strings

The	Compare()	method	is	overloaded.	The	first	version	takes
two	strings	and	returns	a	negative	number	if	the	first	string	is
alphabetically	before	the	second,	a	positive	number	if	the	first
string	is	alphabetically	after	the	second,	and	zero	if	they	are
equal.	The	second	version	works	just	like	the	first	but	is	case
insensitive.	Example	16-1	illustrates	the	use	of	Compare().

Example	16-1.	Compare()	method

Namespace	StringManipulation

				Class	Tester

								Public	Sub	Run()

												'	create	some	Strings	to	work	with

												Dim	s1	As	[String]	=	"abcd"

												Dim	s2	As	[String]	=	"ABCD"

												Dim	result	As	Integer	'	hold	the	results	of	comparisons

												'	compare	two	Strings,	case	sensitive

												result	=	[String].Compare(s1,	s2)

												Console.WriteLine(

														"compare	s1:	{0},	s2:	{1},	result:	{2}"		

														&	Environment.NewLine,	s1,	s2,	result)

												'	overloaded	compare,	takes	boolean	"ignore	case"	

												'(true	=	ignore	case)

												result	=	[String].Compare(s1,	s2,	True)

												Console.WriteLine("Compare	insensitive.	result:	{0}"	_

															&	Environment.NewLine,	result)

								End	Sub	'Run

								Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StringManipulation

Output:
compare	s1:	abcd,	s2:	ABCD,	result:	-1

Compare	insensitive.	result:	0

Tip
This	code	uses	the	Shared	NewLine	property	of	the
Environment	class	to	create	a	new	line	in	the	output.
This	is	a	very	general	way	to	ensure	that	the	correct
code	sequence	is	sent	to	create	the	newline	on	the
current	operating	system.

Example	16-1	begins	by	declaring	two	strings,	s1	and	s2,
initialized	with	string	literals:
Dim	s1	As	[String]	=	"abcd"

Dim	s2	As	[String]	=	"ABCD"

Compare()	is	used	with	many	types.	A	negative	return	value
indicates	that	the	first	parameter	is	less	than	the	second;	a
positive	result	indicates	the	first	parameter	is	greater	than	the
second,	and	a	zero	indicates	they	are	equal.

In	Unicode	(as	in	ASCII),	a	lowercase	letter	has	a	smaller	value
than	an	uppercase	letter.	Thus,	the	output	properly	indicates
that	s1	(abcd)	is	"less	than"	s2	(ABCB):
compare	s1:	abcd,	s2:	ABCD,	result:	-1

The	second	comparison	uses	an	overloaded	version	of
Compare,	which	takes	a	third,	Boolean	parameter,	the	value	of
which	determines	whether	case	should	be	ignored	in	the
comparison.	If	the	value	of	this	"ignore	case"	parameter	is	true,
the	comparison	is	made	without	regard	to	case.	This	time	the
result	is	0,	indicating	that	the	two	strings	are	identical	(without
regard	to	case):
Compare	insensitive.	result:	0

Concatenating	Strings

There	are	a	couple	ways	to	concatenate	strings	in	VB.NET.	You
can	use	the	Concat()	method,	which	is	a	shared	public	method
of	the	String	class:
Dim	s3	As	String	=	String.Concat(s1,	s2)

or	you	can	simply	use	the	concatenation	(&)	operator:
Dim	s4	As	String	=	s1	&	s2

These	two	methods	are	demonstrated	in	Example	16-2.

Example	16-2.	Concatenation

Option	Strict	On

Imports	System

Namespace	StringManipulation

				Class	Tester

	

								Public	Sub	Run()

												Dim	s1	As	String	=	"abcd"

												Dim	s2	As	String	=	"ABCD"

	

												'	concatenation	method

												Dim	s3	As	String	=	String.Concat(s1,	s2)

												Console.WriteLine("s3	concatenated	from	s1	and	s2:	{0}",	s3)

	

												'	use	the	overloaded	operator

												Dim	s4	As	String	=	s1	&	s2

												Console.WriteLine("s4	concatenated	from	s1	&	s2:	{0}",	s4)

								End	Sub	'Run

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StringManipulation

Output:
s3	concatenated	from	s1	and	s2:	abcdABCD

s4	concatenated	from	s1	&	s2:	abcdABCD

In	Example	16-2,	the	new	string	s3	is	created	by	calling	the
shared	Concat()	method	and	passing	in	s1	and	s2,	while	the
string	s4	is	created	by	using	the	overloaded	concatenation	(&)
operator	that	concatenates	two	strings	and	returns	a	string	as
a	result.

VB.NET	supports	two	concatenation	operators	(+	and	&),
however	the	plus	sign	is	also	used	for	adding	numeric	values,
and	Microsoft	documentation	suggests	using	the	ampersand	to
reduce	ambiguity.

Copying	Strings

Similarly,	creating	a	new	copy	of	a	string	can	be	accomplished
in	two	ways.	First,	you	can	use	the	shared	Copy()	method:
Dim	s5	As	String	=	String.Copy(s2)

or	for	convenience,	you	might	instead	use	the	assignment
operator	(=),	which	will	implicitly	make	a	copy:
Dim	s6	As	String	=	s5

Tip
When	you	assign	one	string	to	another,	the	two
reference	types	refer	to	the	same	String	in	memory.
This	implies	that	altering	one	would	alter	the	other
because	they	refer	to	the	same	String	object.
However,	this	is	not	the	case.	The	String	type	is
immutable.	Thus,	if	after	assigning	s5	to	s6,	you	alter
s6,	the	two	strings	will	actually	be	different.

Example	16-3	illustrates	how	to	copy	strings.

Example	16-3.	Copying	strings

Option	Strict	On

Imports	System

Namespace	StringManipulation

				

			Class	Tester

						

						Public	Sub	Run()

									Dim	s1	As	String	=	"abcd"

									Dim	s2	As	String	=	"ABCD"

									

									'	the	String	copy	method

									Dim	s5	As	String	=	String.Copy(s2)

									Console.WriteLine("s5	copied	from	s2:	{0}",	s5)

									

									'	use	the	overloaded	operator

									Dim	s6	As	String	=	s5

									Dim	s6	As	String	=	s5

									Console.WriteLine("s6	=	s5:	{0}",	s6)

						End	Sub	'Run

						

						

						Public	Shared	Sub	Main()

									Dim	t	As	New	Tester()

									t.Run()

						End	Sub	'Main

			End	Class	'Tester

End	Namespace	'StringManipulation

Output:
s5	copied	from	s2:	ABCD

s6	=	s5:	ABCD

Testing	for	Equality

The	.NET	String	class	provides	two	ways	to	test	for	the	equality
of	two	strings.	First,	you	can	use	the	overloaded	Equals()
method	and	ask	one	string	(say,	s6)	directly	whether	another
string	(s5)	is	of	equal	value:
Console.WriteLine("Does	s6.Equals(s5)?:	{0}",	s6.Equals(s5))

A	second	technique	is	to	pass	both	strings	to	the	String	class's
shared	method	Equals():
Console.WriteLine("Does	Equals(s6,s5)?:	{0}",	_

			String.Equals(s6,	s5))

In	each	of	these	cases,	the	returned	result	is	a	Boolean	value
(true	for	equal	and	false	for	unequal).	These	techniques	are
demonstrated	in	Example	16-4.

Example	16-4.	Are	all	strings	created	equal?

Option	Strict	On

Imports	System

Namespace	StringManipulation

	

				Class	Tester

	

								Public	Sub	Run()

												Dim	s1	As	String	=	"abcd"

												Dim	s2	As	String	=	"ABCD"

	

												'	the	String	copy	method

												Dim	s5	As	String	=	String.Copy(s2)

												Console.WriteLine("s5	copied	from	s2:	{0}",	s5)

												Console.WriteLine("s5	copied	from	s2:	{0}",	s5)

	

												'	copy	with	the	overloaded	operator

												Dim	s6	As	String	=	s5

												Console.WriteLine("s6	=	s5:	{0}",	s6)

	

												'	member	method

												Console.WriteLine("Does	s6.Equals(s5)?:	{0}",	s6.Equals(s5))

	

												'	shared	method

												Console.WriteLine("Does	Equals(s6,s5)?:	{0}",	_

															String.Equals(s6,	s5))

	

								End	Sub	'Run

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StringManipulation

Output:
s5	copied	from	s2:	ABCD

s6	=	s5:	ABCD

Does	s6.Equals(s5)?:	True

Does	Equals(s6,s5)?:	True

Does	s6==s5?:	True

Other	Useful	String	Methods

The	String	class	includes	a	number	of	useful	methods	and
properties	for	finding	specific	characters	or	substrings	within	a
string,	as	well	as	for	manipulating	the	contents	of	the	string.	A
few	such	methods	are	demonstrated	in	Example	16-5.
Following	the	output	is	a	complete	analysis.

Example	16-5.	Useful	string	methods

Option	Strict	On

Imports	System

Namespace	StringManipulation

				

				Class	Tester

								Public	Sub	Run()

												Dim	s1	As	String	=	"abcd"

												Dim	s2	As	String	=	"ABCD"

												Dim	s3	As	String	=	"Liberty	Associates,	Inc.	provides	"

												s3	=	s3	&	"custom	.NET	development"

												'	the	String	copy	method

												Dim	s5	As	String	=	String.Copy(s2)	'

												Console.WriteLine("s5	copied	from	s2:	{0}",	s5)

												'	The	length

												Console.WriteLine("String	s3	is	{0}	characters	long.	",	_

															s5.Length)

												Console.WriteLine()

												Console.WriteLine("s3:	{0}",	s3)

												'	test	whether	a	String	ends	with	a	set	of	characters

												Console.WriteLine("s3:	ends	with	Training?:	{0}",	

															s3.EndsWith("Training"))

												Console.WriteLine("Ends	with	developement?:	{0}",	

																s3.EndsWith("development"))

												Console.WriteLine()

												'	return	the	index	of	the	string

												Console.Write("The	first	occurrence	of	provides	")

												Console.WriteLine("in	s3	is	{0}",	s3.IndexOf("provides"))

												'	hold	the	location	of	provides	as	an	integer

												Dim	location	As	Integer	=	s3.IndexOf("provides")

												'	insert	the	word	usually	before	"provides"

												Dim	s10	As	String	=	s3.Insert(location,	"usually	")

												Console.WriteLine("s10:	{0}",	s10)

												'	you	can	combine	the	two	as	follows:

												Dim	s11	As	String	=	_

																s3.Insert(s3.IndexOf("provides"),	"usually	")

												Console.WriteLine("s11:	{0}",	s11)

												Console.WriteLine()

												'Use	the	Mid	function	to	replace	within	the	string

												Mid(s11,	s11.IndexOf("usually")	+	1,	9)	=	"always!"

												Console.WriteLine("s11	now:	{0}",	s11)

								End	Sub	'Run

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StringManipulation

Output:
s5	copied	from	s2:	ABCD

String	s3	is	4	characters	long.

s3:	Liberty	Associates,	Inc.	provides	custom	.NET	development

s3:	ends	with	Training?:	False

Ends	with	developement?:	True

The	first	occurrence	of	provides	in	s3	is	25

s10:	Liberty	Associates,	Inc.	usually	provides	custom	.NET	development

s11:	Liberty	Associates,	Inc.	usually	provides	custom	.NET	development

s11	now:	Liberty	Associates,	Inc.	always!	provides	custom	.NET	development

The	Length	property	returns	the	length	of	the	entire	string:
Console.WriteLine("String	s3	is	{0}	characters	long.	",	_

			s5.Length)

Here's	the	output:
String	s3	is	4	characters	long.

The	EndsWith()	method	asks	a	string	whether	a	substring	is
found	at	the	end	of	the	string.	Thus,	you	might	ask	s3	first	if	it
ends	with	"Training"	(which	it	does	not)	and	then	if	it	ends	with
"Consulting"	(which	it	does):
Console.WriteLine("s3:	ends	with	Training?:	{0}",	

			s3.EndsWith("Training"))

Console.WriteLine("Ends	with	developement?:	{0}",	

				s3.EndsWith("development"))

The	output	reflects	that	the	first	test	fails	and	the	second
succeeds:
s3:	ends	with	Training?:	False

Ends	with	developement?:	True

The	IndexOf()	method	locates	a	substring	within	our	string,
and	the	Insert()	method	inserts	a	new	substring	into	a	copy	of
the	original	string.	The	following	code	locates	the	first
occurrence	of	"provides"	in	s3:
Console.Write("The	first	occurrence	of	provides	")

Console.WriteLine("in	s3	is	{0}",	s3.IndexOf("provides"))

The	output	indicates	that	the	offset	is	25:
The	first	occurrence	of	provides	in	s3	is	25

You	can	then	use	that	value	to	insert	the	word	"usually",
followed	by	a	space,	into	that	string.	Actually	the	insertion	is
into	a	copy	of	the	string	returned	by	the	Insert()	method	and
assigned	to	s10:
Dim	s10	As	String	=	s3.Insert(location,	"usually	")

Console.WriteLine("s10:	{0}",	s10)

Here's	the	output:

Here's	the	output:
s10:	Liberty	Associates,	Inc.	usually	provides	custom	.NET	development

Finally,	you	can	combine	these	operations	to	make	a	more
efficient	insertion	statement:
Dim	s11	As	String	=	s3.Insert(s3.IndexOf("provides"),	"usually	")

Finding	Substrings

The	String	class	has	methods	for	finding	and	extracting
substrings.	For	example,	the	IndexOf()	method	returns	the
index	of	the	first	occurrence	of	a	string	(or	one	or	more
characters)	within	a	target	string.

For	example,	given	the	definition	of	the	string	s1	as:
Dim	s1	As	String	=	"One	Two	Three	Four"

You	can	find	the	first	instance	of	the	characters	"hre"	by
writing:
Dim	index	as	Integer	=	s1.IndexOf("hre")

This	code	will	set	the	integer	variable	index	to	9,	which	is	the
offset	of	the	letters	"hre"	in	the	string	s1.

Similarly,	the	LastIndexOf()	method	returns	the	index	of	the
last	occurrence	of	a	string	or	substring.	While	the	following
code:
s1.IndexOf("o")

will	return	the	value	6	(the	first	occurrence	of	the	lowercase
letter	"o"	is	at	the	end	of	the	word	Two),	the	method	call:
s1.LastIndexOf("o")

will	return	the	value	15,	the	last	occurrence	of	"o"	is	in	the
word	Four.

The	Substring()	method	return	a	series	of	characters.	You	can
ask	it	for	all	the	characters	starting	at	a	particular	offset	and
ending	either	with	the	end	of	the	string	or	with	an	offset	you
(optionally)	provide.

The	Substring()	method	is	illustrated	in	Example	16-6.

Example	16-6.	Finding	Substrings	by	index

Option	Strict	On

Imports	System

Namespace	StringSearch

	

				Class	Tester

	

								Public	Sub	Run()

												'	create	some	strings	to	work	with

												Dim	s1	As	String	=	"One	Two	Three	Four"

	

												Dim	index	As	Integer

												'	get	the	index	of	the	last	space

	

												index	=	s1.LastIndexOf("	")

												'	get	the	last	word.

												Dim	s2	As	String	=	s1.Substring((index	+	1))

	

												'	set	s1	to	the	substring	starting	at	0

												'	and	ending	at	index	(the	start	of	the	last	word

												'	thus	s1	has	One	Two	Three

												s1	=	s1.Substring(0,	index)

	

												'	find	the	last	space	in	s1	(after	"Two")

												index	=	s1.LastIndexOf("	")

	

												'	set	s3	to	the	substring	starting	at

												'	index,	the	space	after	"Two"	plus	one	more

												'	thus	s3	=	"three"

												Dim	s3	As	String	=	s1.Substring((index	+	1))

	

												'	reset	s1	to	the	substring	starting	at	0

												'	and	ending	at	index,	thus	the	String	"One	Two"

												s1	=	s1.Substring(0,	index)

	

												'	reset	index	to	the	space	between

												'	"One"	and	"Two"

												index	=	s1.LastIndexOf("	")

	

												'	set	s4	to	the	substring	starting	one

												'	space	after	index,	thus	the	substring	"Two"

												Dim	s4	As	String	=	s1.Substring((index	+	1))

	

												'	reset	s1	to	the	substring	starting	at	0

												'	and	ending	at	index,	thus	"One"

												s1	=	s1.Substring(0,	index)

	

												'	set	index	to	the	last	space,	but	there	is

												'	none	so	index	now	=	-1

												index	=	s1.LastIndexOf("	")

	

	

												'	set	s5	to	the	substring	at	one	past

												'	the	last	space.	there	was	no	last	space

												'	so	this	sets	s5	to	the	substring	starting

												'	at	zero

												Dim	s5	As	String	=	s1.Substring((index	+	1))

	

												Console.WriteLine("s1:	{0}",	s1)

												Console.WriteLine("s2:	{0}",	s2)

												Console.WriteLine("s3:	{0}",	s3)

												Console.WriteLine("s4:	{0}",	s4)

												Console.WriteLine("s5:	{0}",	s5)

								End	Sub	'Run

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StringSearch

Output:
s1:	One

s2:	Four

s3:	Three

s4:	Two

s5:	One

Example	16-6	is	not	the	most	elegant	solution	to	the	problem	of
extracting	words	from	a	string,	but	it	is	a	good	first
approximation	and	it	illustrates	a	useful	technique.	The
example	begins	by	creating	a	string,	s1:
Dim	s1	As	String	=	"One	Two	Three	Four"

The	local	variable	index	is	assigned	the	value	of	the	last	space	in
the	string	(which	comes	before	the	word	Four):
index	=	s1.LastIndexOf("	")

The	substring	that	begins	one	space	later	is	assigned	to	the
new	string,	s2:
Dim	s2	As	String	=	s1.Substring((index	+	1))

This	extracts	the	characters	from	index	+1	to	the	end	of	the
line	(i.e.,	the	string	"Four"),	assigning	the	value	"Four"	to	s2.

The	next	step	is	to	remove	the	word	Four	from	s1.	You	can	do
this	by	assigning	to	s1	the	substring	of	s1	that	begins	at	0	and
ends	at	the	index:

ends	at	the	index:
s1	=	s1.SubString(0,index);

You	reassign	index	to	the	last	(remaining)	space,	which	points
you	to	the	beginning	of	the	word	Three.	You	then	extract	the
characters	"Three"	into	string	s3.	You	can	continue	like	this
until	you've	populated	s4	and	s5.	Finally,	you	display	the
results:
s1:	One

s2:	Four

s3:	Three

s4:	Two

s5:	One

Splitting	Strings

A	more	effective	solution	to	the	problem	illustrated	in	Example
16-6	would	be	to	use	the	Split()	method	of	String,	which
parses	a	string	into	substrings.	To	use	Split(),	you	pass	in	an
array	of	delimiters	(characters	that	will	indicate	where	to
divide	the	words).	The	method	returns	an	array	of	substrings,
which	Example	16-7	illustrates.	The	complete	analysis	follows
the	code.

Example	16-7.	The	Split()	method

Option	Strict	On

Imports	System

Namespace	StringSearch

	

				Class	Tester

	

								Public	Sub	Run()

												'	create	some	Strings	to	work	with

												Dim	s1	As	String	=	"One,Two,Three	Liberty	Associates,	Inc."

	

												'	constants	for	the	space	and	comma	characters

												Const	Space	As	Char	=	"	"c

												Const	Comma	As	Char	=	","c

	

												'	array	of	delimiters	to	split	the	sentence	with

												Dim	delimiters()	As	Char	=	{Space,	Comma}

	

												Dim	output	As	String	=	""

												Dim	ctr	As	Integer	=	0

	

												'	split	the	String	and	then	iterate	over	the

												'	resulting	array	of	strings

												'	resulting	array	of	strings

												Dim	resultArray	As	String()	=	s1.Split(delimiters)

	

												Dim	subString	As	String

												For	Each	subString	In	resultArray

																ctr	=	ctr	+	1

																output	&=	ctr.ToString()

																output	&=	":	"

																output	&=	subString

																output	&=	Environment.NewLine

												Next	subString

												Console.WriteLine(output)

								End	Sub	'Run

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StringSearch

Output:
1:	One

2:	Two

3:	Three

4:	Liberty

5:	Associates

6:

7:	Inc.

Example	16-7	starts	by	creating	a	string	to	parse:
Dim	s1	As	String	=	"One,Two,Three	Liberty	Associates,	Inc."

The	delimiters	are	set	to	the	space	and	comma	characters:
Const	Space	As	Char	=	"	"c

Const	Comma	As	Char	=	","c

Dim	delimiters()	As	Char	=	{Space,	Comma}

Tip
Double	quotes	are	used	in	VB.NET	to	signal	a	string
constant.	The	c	after	the	string	literals	establishes
that	these	are	characters,	not	strings.

You	then	call	Split()	on	the	string,	passing	in	the	delimiters:
Dim	resultArray	As	String()	=	s1.Split(delimiters)

Split()	returns	an	array	of	the	substrings	that	you	can	then
iterate	over	using	the	For	Each	loop,	as	explained	in	Chapter	14.

Dim	subString	As	String

For	Each	subString	In	resultArray

				ctr	=	ctr	+	1

				output	&=	ctr.ToString()

				output	&=	":	"

				output	&=	subString

				output	&=	Environment.NewLine

Next	subString

You	increment	the	counter	variable,	ctr.	Then	you	build	up	the
output	string	in	four	steps.	You	concatenate	the	string	value	of
ctr.	Next	you	add	the	colon,	then	the	substring	returned	by
Split(),	then	the	newline.
ctr	=	ctr		1

output	&=	ctr.ToString()

output	&=	":	"

output	&=	subString

output	&=	Environment.NewLine

With	each	concatenation,	a	new	copy	of	the	string	is	made,	and
all	four	steps	are	repeated	for	each	substring	found	by	Split().
This	repeated	copying	of	the	string	is	terribly	inefficient.

The	problem	is	that	the	String	type	is	not	designed	for	this	kind
of	operation.	What	you	want	is	to	create	a	new	string	by
appending	a	formatted	string	each	time	through	the	loop.	The
class	you	need	is	StringBuilder.

The	StringBuilder	Class

The	System.Text.StringBuilder	class	is	used	for	creating	and
modifying	strings.	Semantically,	it	is	the	encapsulation	of	a
constructor	for	a	string.	The	important	members	of
StringBuilder	are	summarized	in	Table	16-2.

Table	16-2.	StringBuilder	members

Method	or
property Explanation

Overloaded	public	method	that	appends	a

Append()
Overloaded	public	method	that	appends	a
typed	object	to	the	end	of	the	current
StringBuilder

AppendFormat(
)

Overloaded	public	method	that	replaces
format	specifiers	with	the	formatted	value	of
an	object

EnsureCapacity(
)

Method	that	ensures	that	the	current
StringBuilder	has	a	capacity	at	least	as	large
as	the	specified	value

Capacity
Property	that	retrieves	or	assigns	the
number	of	characters	the	StringBuilder	is
capable	of	holding

Chars Property	that	contains	the	indexer

Insert() Overloaded	public	method	that	inserts	an
object	at	the	specified	position

Length Property	that	retrieves	or	assigns	the	length
of	the	StringBuilder

MaxCapacity Property	that	retrieves	the	maximum
capacity	of	the	StringBuilder

Remove() Removes	the	specified	characters

Replace()
Overloaded	public	method	that	replaces	all
instances	of	specified	characters	with	new
characters

Unlike	the	String	class,	StringBuilder	is	mutable;	when	you
modify	an	instance	of	the	StringBuilder	class,	you	modify	the
actual	string,	not	a	copy.

Example	16-8	replaces	the	String	object	in	Example	16-7	with	a
StringBuilder	object.

Example	16-8.	The	StringBuilder	class

Imports	System.Text

Namespace	StringSearch

	

				Class	Tester

	

								Public	Sub	Run()

												'	create	some	Strings	to	work	with

												Dim	s1	As	String	=	"One,Two,Three	Liberty	Associates,	Inc."

	

												'	constants	for	the	space	and	comma	characters

												Const	Space	As	Char	=	"	"c

												Const	Comma	As	Char	=	","c

	

												'	array	of	delimiters	to	split	the	sentence	with

												Dim	delimiters()	As	Char	=	{Space,	Comma}

	

												Dim	output	As	New	StringBuilder()

												Dim	ctr	As	Integer	=	0

	

												'	split	the	String	and	then	iterate	over	the

												'	resulting	array	of	Strings

												Dim	resultArray	As	String()	=	s1.Split(delimiters)

	

												Dim	subString	As	String

												For	Each	subString	In	resultArray

																ctr	=	ctr	+	1

																output.AppendFormat("{0}	:	{1}"	&	_

																			Environment.NewLine,	ctr,	subString)

												Next	subString

												Console.WriteLine(output)

								End	Sub	'Run

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'StringSearch

Only	the	last	part	of	the	program	is	modified	from	the	previous
example.	Rather	than	using	the	concatenation	operator	to
modify	the	string,	you	use	the	AppendFormat()	method	of
StringBuilder	to	append	new,	formatted	strings	as	you	create
them.	This	is	much	easier	and	far	more	efficient.	The	output	is
identical:
1:	One

2:	Two

3:	Three

4:	Liberty

5:	Associates

6:

7:	Inc.

Delimiter	Limitations

Because	you	passed	in	delimiters	of	both	comma	and	space,
the	space	after	the	comma	between	"Associates"	and	"Inc."	is
returned	as	a	word,	numbered	6	previously.	That	is	not	what
you	want.	To	eliminate	this,	you	need	to	tell	Split()	to	match	a
comma	(as	between	"One",	"Two",	and	"Three")	or	a	space	(as
between	"Liberty"	and	"Associates")	or	a	comma	followed	by	a
space.	It	is	that	last	bit	that	is	tricky	and	requires	that	you	use
a	regular	expression.

Regular	Expressions
Regular	expressions	are	a	powerful	language	for	describing
and	manipulating	text.	Underlying	regular	expressions	is	a
technique	called	pattern	matching,	which	involves	comparing
one	string	to	another,	or	comparing	a	series	of	wildcards	that
represent	a	type	of	string	to	a	literal	string.	A	regular
expression	is	applied	to	a	string—that	is,	to	a	set	of	characters.
Often	that	string	is	an	entire	text	document.

The	result	of	applying	a	regular	expression	to	a	string	is	either
to	return	a	substring,	or	to	return	a	new	string	representing	a
modification	of	some	part	of	the	original	string.	(Remember
that	strings	are	immutable	and	so	cannot	be	changed	by	the
regular	expression.)

By	applying	a	properly	constructed	regular	expression	to	the
following	string:
One,Two,Three	Liberty	Associates,	Inc.

you	can	return	any	or	all	of	its	substrings	(e.g.,	Liberty	or	One),
or	modified	versions	of	its	substrings	(e.g.,	LIBeRtY	or	OnE).
What	the	regular	expression	does	is	determined	by	the	syntax
of	the	regular	expression	itself.

A	regular	expression	consists	of	two	types	of	characters:
literals	and	metacharacters.	A	literal	is	just	a	character	you
want	to	match	in	the	target	string.	A	metacharacter	is	a	special
symbol	that	acts	as	a	command	to	the	regular	expression
parser.	The	parser	is	the	engine	responsible	for	understanding
the	regular	expression.	For	example,	if	you	create	a	regular
expression:
^(From|To|Subject|Date):

this	will	match	any	substring	with	the	letters	"From"	or	the
letters	"To"	or	the	letters	"Subject"	or	the	letters	"Date"	so	long

as	those	letters	start	a	new	line	(^)	and	end	with	a	colon	(:).

The	caret	(^)	in	this	case	indicates	to	the	regular	expression
parser	that	the	string	you're	searching	for	must	begin	a	new
line.	The	letters	"From"	and	"To"	are	literals,	and	the
metacharacters	left	and	right	parentheses	((,))	and	vertical
bar	(|)	are	all	used	to	group	sets	of	literals	and	indicate	that
any	of	the	choices	should	match.	Thus	you	would	read	the
following	line	as	"match	any	string	that	begins	a	new	line
followed	by	any	of	the	four	literal	strings	From,	To,	Subject,	or
Date	followed	by	a	colon":
^(From|To|Subject|Date):

Tip
A	full	explanation	of	regular	expressions	is	beyond
the	scope	of	this	book,	but	all	the	regular	expressions
used	in	the	examples	are	explained.	For	a	complete
understanding	of	regular	expressions,	I	highly
recommend	Mastering	Regular	Expressions,2nd
Edition	by	Jeffrey	E.	F.	Friedl	(O'Reilly).

The	Regex	Class
The	.NET	Framework	provides	an	object-oriented	approach	to
regular	expression	matching	and	replacement.

The	Framework	Class	Library	namespace
System.Text.RegularExpressions	is	the	home	to	all	the	.NET
Framework	objects	associated	with	regular	expressions.	The
central	class	for	regular	expression	support	is	Regex,	which
represents	an	immutable,	compiled	regular	expression.
Example	16-9	rewrites	Example	16-8	to	use	regular	expressions
and	thus	solves	the	problem	of	searching	for	more	than	one
type	of	delimiter.

Example	16-9.	Using	the	Regex	class	for	regular	expressions

Imports	System

Imports	System.Text

Imports	System.Text.RegularExpressions

	

Namespace	RegularExpressions

	

				Class	Tester

	

								Public	Sub	Run()

												Dim	s1	As	String	=	"One,Two,Three	Liberty	Associates,	Inc."

												Dim	theRegex	As	New	Regex("	|,	|,")

												Dim	sBuilder	As	New	StringBuilder()

												Dim	id	As	Integer	=	1

	

												Dim	subString	As	String

												For	Each	subString	In	theRegex.Split(s1)

																id	=	id	+	1

																sBuilder.AppendFormat("{0}:	{1}"		_

																		&	Environment.NewLine,	id,	subString)

												Next	subString

												Console.WriteLine("{0}",	sBuilder)

								End	Sub	'Run

	

								Public	Shared	Sub	Main()

												Dim	t	As	New	Tester()

												t.Run()

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'RegularExpressions

Output:
1:	One

2:	Two

3:	Three

4:	Liberty

5:	Associates

6:	Inc.

Example	16-9	begins	by	creating	a	string,	s1,	identical	to	the
string	used	in	Example	16-8:
Dim	s1	As	String	=	"One,Two,Three	Liberty	Associates,	Inc."

and	a	regular	expression	that	will	be	used	to	search	that	string:
Dim	theRegex	As	New	Regex("	|,	|,")

One	of	the	overloaded	constructors	for	Regex	takes	a	regular
expression	string	as	its	parameter.

Tip
This	can	be	a	bit	confusing.	In	the	context	of	a
VB.NET	program,	which	is	the	regular	expression:	the
text	passed	in	to	the	constructor	or	the	Regex	object
itself?	It	is	true	that	the	text	string	passed	to	the
constructor	is	a	regular	expression	in	the	traditional
sense	of	the	term.	From	an	object-oriented	VB.NET
point	of	view,	however,	the	argument	to	the
constructor	is	just	a	string	of	characters;	it	is	the
Regex	object	that	is	the	regular	expression	object.

The	rest	of	the	program	proceeds	like	the	earlier	Example	16-8,
except	that	rather	than	calling	the	Split()	method	of	String	on
string	s1,	the	Split()	method	of	Regex	is	called.	theRegex.Split(
)	acts	in	much	the	same	way	as	String.Split(),	returning	an
array	of	strings	as	a	result	of	matching	the	regular	expression
pattern	within	the	Regex.

Chapter	17.	Throwing	and	Catching	Exceptions
VB.NET	handles	errors	and	abnormal	conditions	with
exceptions.	An	exception	is	an	object	that	encapsulates
information	about	an	unusual	program	occurrence,	such	as
running	out	of	memory	or	losing	a	network	connection.	When
an	exceptional	circumstance	arises,	an	exception	will	be
thrown.

Tip
Throwing	an	exception	is	sometimes	called	raising	an
exception.

You	might	throw	an	exception	in	your	own	methods	(for
example,	if	you	realize	that	an	invalid	parameter	has	been
provided)	or	an	exception	might	be	thrown	in	a	class	provided
by	the	Framework	Class	Library	(for	example,	if	you	try	to
write	to	a	read-only	file).	Many	exceptions	are	thrown	by	the
runtime	when	the	program	can	no	longer	continue	due	to	an
operating	system	problem	(such	as	a	security	violation).

Tip
VB.NET	also	provides	unstructured	exception
handling	through	the	use	of	Error,	On	Error	and	Resume
statements.	This	approach	is	not	object	oriented	and
not	consistent	with	how	exceptions	are	handled	in
other.NET	languages.	Thus	it	is	discouraged	and	not
shown	in	this	book.

You	provide	for	the	possibility	of	exceptions	by	adding	try/catch
blocks	in	your	program.	The	catch	blocks	are	also	called
exception	handlers.	The	idea	is	that	you	try	potentially
dangerous	code,	and	if	an	exception	is	thrown	you	catch	the
exception	in	your	catch	block.

Tip

Catching	an	exception	is	sometimes	referred	to	as
handling	the	exception.

Ideally,	after	the	exception	is	caught	the	program	can	fix	the
problem	and	continue.	Even	if	your	program	can't	continue,	by
catching	the	exception	you	have	an	opportunity	to	print	a
meaningful	error	message	and	terminate	gracefully.

It	is	important	to	distinguish	exceptions	from	bugs	and	errors.
A	bug	is	a	programmer	mistake	that	should	be	fixed	before	the
code	is	shipped.	An	exception	is	not	the	result	of	a	programmer
mistake	(though	such	mistakes	can	also	raise	exceptions).
Rather,	exceptions	are	raised	as	a	result	of	predictable	but
unpreventable	problems	that	arise	while	your	program	is
running	(e.g.,	a	network	connection	is	dropped	or	you	run	out
of	disk	space).

An	error	is	caused	by	user	action.	For	example,	the	user	might
enter	a	number	where	a	letter	is	expected.	Once	again,	an
error	might	cause	an	exception,	but	you	can	prevent	that	by
implementing	code	to	validate	user	input.	Whenever	possible,
user	errors	should	be	anticipated	and	prevented.

Even	if	you	remove	all	bugs	and	anticipate	all	user	errors,	you
will	still	run	into	unavoidable	problems,	such	as	running	out	of
memory	or	attempting	to	open	a	file	that	no	longer	exists.
These	are	exceptions.	You	cannot	prevent	exceptions,	but	you
can	handle	them	so	that	they	do	not	bring	down	your	program.

Throwing	Exceptions
All	exceptions	will	either	be	of	type	System.Exception	or	of
types	derived	from	System.Exception.	The	CLR	System
namespace	includes	a	number	of	exception	types	that	can	be
used	by	your	program.	These	exception	types	include
ArgumentNullException,	InvalidCastException,	and
OverflowException,	as	well	as	many	others.	You	can	guess	their
use	based	on	their	name.	For	example,	ArgumentNull

exception	is	thrown	when	an	argument	to	a	method	is	null
when	that	is	not	an	expected	(or	acceptable)	value.

The	current	chapter	describes	how	to	write	your	programs	to
catch	and	handle	exceptions.	This	chapter	will	also	show	you
how	to	use	the	properties	of	the	Exception	class	to	provide
information	to	the	user	about	what	went	wrong,	and	it	will
show	you	how	to	create	and	use	your	own	custom	exception
types.

Searching	for	an	Exception	Handler
When	your	program	encounters	an	exceptional	circumstance,
such	as	running	out	of	memory,	it	throws	(or	"raises")	an
exception.	Exceptions	must	be	handled	before	the	program	can
continue.

The	search	for	an	exception	handler	can	unwind	the	stack.	This
means	that	if	the	currently	running	function	does	not	handle
the	exception,	the	current	function	will	terminate,	and	the
calling	function	will	get	a	chance	to	handle	the	exception.	If
none	of	the	calling	functions	handles	it,	the	exception	will
ultimately	be	handled	by	the	Common	Language	Runtime
(CLR),	which	will	abruptly	terminate	your	program.

If	function	A	calls	function	B	and	function	B	calls	function	C,
these	function	calls	are	all	placed	on	the	stack.	When	a
programmer	talks	about	"unwinding	the	stack,"	what	is	meant
is	that	you	back	up	from	C	to	B	to	A,	as	illustrated	in	Figure	17-
1.

If	you	must	unwind	the	stack	from	C	to	B	to	A	to	handle	the
exception,	when	you	are	done	you	are	in	A;	there	is	no
automatic	return	to	C.

Figure	17-1.	Unwinding	the	stack

If	you	return	all	the	way	to	the	first	method	(Main)	and	no
exception	handler	is	found,	the	default	exception	handler
(provided	by	the	compiler)	will	be	invoked.	The	default

exception	handler	just	terminates	the	program.

The	Throw	Statement
To	signal	an	abnormal	condition	in	a	VB.NET	program,	you
throw	an	exception.	To	do	this,	you	use	the	Throw	keyword.	The
following	line	of	code	creates	a	new	instance	of
System.Exception	and	then	throws	it:
Throw	New	System.Exception()

Example	17-1	illustrates	what	happens	if	you	throw	an
exception	and	there	is	no	try/catch	block	to	catch	and	handle
the	exception.	In	this	example,	you'll	throw	an	exception	even
though	nothing	has	actually	gone	wrong,	just	to	illustrate	how
an	exception	can	bring	your	program	to	a	halt.

Example	17-1.	Unhandled	exception

Option	Strict	On

Imports	System

Namespace	ExceptionHandling

	

				Class	Tester

								Shared	Sub	Main()

												Console.WriteLine("Enter	Main...")

												Dim	t	As	New	Tester()

												t.Run()

												Console.WriteLine("Exit	Main...")

								End	Sub	'Main

	

								Public	Sub	Run()

												Console.WriteLine("Enter	Run...")

												Func1()

												Console.WriteLine("Exit	Run...")

								End	Sub	'Run

								Public	Sub	Func1()

												Console.WriteLine("Enter	Func1...")

												Func2()

												Console.WriteLine("Exit	Func1...")

								End	Sub	'Func1

Public	Sub	Func2()

												Console.WriteLine("Enter	Func2...")

												Throw	New	System.Exception()

												Console.WriteLine("Exit	Func2...")

								End	Sub	'Func2

	

				End	Class	'Tester

End	Namespace	'ExceptionHandling

Output:
Enter	Main...

Enter	Run...

Enter	Func1...

Enter	Func2...

Unhandled	Exception:	System.Exception:	Exception	of	type	System.Exception	was	thrown.

at	DebuggingVB.ExceptionHandling.Tester.Func2()	in	C:...\Module1.vb:line	27

			at	DebuggingVB.ExceptionHandling.Tester.Func1()	

			in	C:...\Module1.vb:line	21

			at	DebuggingVB.ExceptionHandling.Tester.Run()	

			in	C:...\Module1.vb:line	14

			at	DebuggingVB.ExceptionHandling.Tester.Main()	

			in	C:...\Module1.vb:line	8

This	simple	example	writes	to	the	console	as	it	enters	and	exits
each	method.	Main()	calls	Run()	which	in	turn	calls	Func1().
After	printing	out	the	Enter	Func1	message,	Func1()
immediately	calls	Func2().	Func2()	prints	out	the	first
message	and	throws	an	object	of	type	System.Exception.

Execution	immediately	stops,	and	the	CLR	looks	to	see	whether
a	handler	is	in	Func2().	There	is	not,	and	so	the	runtime
unwinds	the	stack	(never	printing	the	exit	statement)	to	Func1(
).	Again,	there	is	no	handler,	and	the	runtime	unwinds	the
stack	back	to	Main().	With	no	exception	handler	there,	the
default	handler	is	called,	which	prints	the	error	message,	and
terminates	the	program.

The	Try	and	Catch	Statements
To	handle	exceptions,	you	take	the	following	steps:

1.	 Execute	any	code	that	you	suspect	might	throw	an
exception	(such	as	code	that	opens	a	file	or	allocates
memory)	within	a	try	block.

2.	 Catch	any	exceptions	that	are	thrown	in	a	catch	block.

A	try	block	is	created	using	the	keyword	Try	and	is	ended	with
the	keywords	End	Try.	A	catch	block	is	created	using	the	Catch
keyword.	A	catch	block	can	be	terminated	either	by	the	next
use	of	the	Catch	keyword	or	by	the	End	Try	statement.	These
constructs	are	illustrated	in	Example	17-2.	Note	that	Example
17-2	is	the	same	as	Example	17-1	except	that	a	try/catch	block
has	been	added.

Example	17-2.	Try	and	catch	blocks

Option	Strict	On

Imports	System

Namespace	ExceptionHandling

	

				Class	Tester

	

								Shared	Sub	Main()

												Console.WriteLine("Enter	Main...")

												Dim	t	As	New	Tester()

												t.Run()

												Console.WriteLine("Exit	Main...")

								End	Sub	'Main

	

								Public	Sub	Run()

												Console.WriteLine("Enter	Run...")

												Func1()

												Console.WriteLine("Exit	Run...")

								End	Sub	'Run

	

								Public	Sub	Func1()

												Console.WriteLine("Enter	Func1...")

												Func2()

												Console.WriteLine("Exit	Func1...")

								End	Sub	'Func1

	

								Public	Sub	Func2()

												Console.WriteLine("Enter	Func2...")

												Try

																Console.WriteLine("Entering	Try	block...")

																Throw	New	System.Exception()

																Throw	New	System.Exception()

																Console.WriteLine("Exitintg	Try	block...")

												Catch

																Console.WriteLine("Exception	caught	and	handled")

												End	Try

											Console.WriteLine("Exit	func2...")

								End	Sub	'Func2

	

				End	Class	'Tester

	

End	Namespace	'ExceptionHandling

Output:
Enter	Main...

Enter	Run...

Enter	Func1...

Enter	Func2...

Entering	try	block...

Exception	caught	and	handled!

Exit	Func2...

Exit	Func1...

Exit	Run...

Exit	Main...

Following	the	try	statement	is	a	generic	catch	statement.	The
catch	statement	in	Example	17-2	is	generic	because	you
haven't	specified	what	kind	of	exceptions	to	catch.	If	you	don't
specify	a	particular	exception	type,	the	catch	block	will	catch
any	exceptions	that	are	thrown.

Notice	that	the	Exit	statements	are	now	written	in	the	output.
With	the	exception	handled,	execution	resumes	immediately
after	the	catch	block.

In	Example	17-2,	the	catch	statement	simply	reports	that	the
exception	has	been	caught	and	handled.	In	a	real	catch
statement,	you	might	take	corrective	action	to	fix	the	problem
that	caused	an	exception	to	be	thrown.	For	example,	if	the	user
is	trying	to	open	a	read-only	file,	you	might	invoke	a	method
that	allows	the	user	to	change	the	attributes	of	the	file.	If	the
program	has	run	out	of	memory,	you	might	give	the	user	an
opportunity	to	close	other	applications.	If	all	else	fails,	the
catch	block	can	print	an	error	message	so	that	the	user	knows
what	went	wrong.	Using	catch	statements	to	catch	specific
types	of	exceptions	is	discussed	later	in	this	chapter.

How	the	Call	Stack	Works
Examine	the	output	of	Example	17-2	carefully.	You	see	the
code	enter	Main(),	Func1(),	Func2(),	and	the	try	block.	You
never	see	it	exit	the	try	block,	though	it	does	exit	Func2(),
Func1(),	and	Main().	What	happened?

When	the	exception	is	thrown,	execution	halts	immediately	and
is	handed	to	the	catch	block.	It	never	returns	to	the	original
code	path.	It	never	gets	to	the	line	that	prints	the	exit
statement	for	the	try	block.	The	catch	block	handles	the	error,
and	then	execution	falls	through	to	the	code	following	the
catch	block.

Because	there	is	a	catch	block,	the	stack	does	not	need	to
unwind.	The	exception	is	now	handled;	there	are	no	more
problems,	and	the	program	continues.	This	becomes	a	bit
clearer	if	you	move	the	try/catch	blocks	up	to	Func1(),	as
shown	in	Example	17-3.

Example	17-3.	Unwinding	the	stack	by	one	level

Option	Strict	On

Imports	System

Namespace	ExceptionHandling

	

				Class	Tester

	

								Shared	Sub	Main()

												Console.WriteLine("Enter	Main...")

												Dim	t	As	New	Tester()

												t.Run()

												Console.WriteLine("Exit	Main...")

								End	Sub	'Main

	

								Public	Sub	Run()

												Console.WriteLine("Enter	Run...")

												Func1()

												Console.WriteLine("Exit	Run...")

								End	Sub	'Run

	

								Public	Sub	Func1()

												Console.WriteLine("Enter	func1...")

												Try

																Console.WriteLine("Entering	Try	block...")

																Func2()

																Console.WriteLine("Exiting	Try	block...")

												Catch

																Console.WriteLine("Exception	caught	and	handled")

																Console.WriteLine("Exception	caught	and	handled")

												End	Try

												Console.WriteLine("Exit	func1...")

								End	Sub	'Func1

	

								Public	Sub	Func2()

												Console.WriteLine("Enter	Func2...")

												Throw	New	System.Exception()

												Console.WriteLine("Exit	Func2...")

								End	Sub	'Func2

	

End	Class	'Tester

End	Namespace	'ExceptionHandling

Output:
Enter	Main...

Enter	Run...

Enter	Func1...

Entering	try	block...

Enter	Func2...

Exception	caught	and	handled!

Exit	Func1...

Exit	Run...

Exit	Main...

This	time	the	exception	is	not	handled	in	Func2();	it	is	handled
in	Func1().	When	Func2()	is	called,	it	uses	Console.WriteLine
to	display	its	first	milestone:
Enter	Func2...

Then	Func2()	throws	an	exception	and	execution	halts.	The
runtime	looks	for	a	handler	in	Func2(),	but	there	isn't	one.
Then	the	stack	begins	to	unwind,	and	the	runtime	looks	for	a
handler	in	the	calling	function:	Func1().	A	catch	block	is	in
Func1()	so	its	code	is	executed,	and	execution	then	resumes
immediately	following	the	catch	statement,	printing	the	Exit
statement	for	Func1()	and	then	for	Main().

If	you're	not	entirely	sure	why	the	"Exiting	Try	Block"	message
and	the	"Exit	Func2"	message	are	not	printed,	try	putting	the
code	into	a	debugger	and	then	stepping	through	it.

Creating	Dedicated	Catch	Statements
So	far,	you've	been	working	only	with	generic	catch
statements.	You	can	create	dedicated	catch	statements	that
handle	only	some	exceptions	and	not	others,	based	on	the	type
of	exception	thrown.	Example	17-4	illustrates	how	to	specify
which	exception	you'd	like	to	handle.

Example	17-4.	Three	dedicated	catch	statements

Imports	System

Namespace	ExceptionHandling

				Class	Tester

								Public	Sub	Run()

												Try

																Dim	a	As	Double	=	5

																Dim	b	As	Double	=	0

																Console.WriteLine("Dividing	{0}	by	{1}...",	a,	b)

																Console.WriteLine("{0}		{1}	=	{2}",	

																				a,	b,	DoDivide(a,	b))

																'	most	derived	exception	type	first

												Catch	e	As	System.DivideByZeroException

																Console.WriteLine("DivideByZeroException	caught!")

												Catch	e	As	System.ArithmeticException

																Console.WriteLine("ArithmeticException	caught!")

																'	generic	exception	type	last

												Catch

																Console.WriteLine("Unknown	exception	caught")

												End	Try

								End	Sub

								'	do	the	division	if	legal

								Public	Function	DoDivide(

											ByVal	a	As	Double,	ByVal	b	As	Double)	As	Double

												If	b	=	0	Then

																Throw	New	System.DivideByZeroException()

												End	If

												If	a	=	0	Then

																Throw	New	System.ArithmeticException()

												End	If

												Return	a		b

								End	Function

								Public	Shared	Sub	Main()

												Console.WriteLine("Enter	Main...")

												Dim	t	As	Tester	=	New	Tester()

												t.Run()

												Console.WriteLine("Exit	Main...")

								End	Sub

				End	Class

End	Namespace

Output:
Enter	Main...

Dividing	5	by	0...

DivideByZeroException	caught!

Exit	Main...

In	Example	17-4,	the	DoDivide()	method	will	not	let	you	divide
zero	by	another	number,	nor	will	it	let	you	divide	a	number	by
zero.	If	you	try	to	divide	by	zero,	it	throws	an	instance	of
DivideByZeroException.	If	you	try	to	divide	zero	by	another
number,	there	is	no	appropriate	exception:	dividing	zero	by
another	number	is	a	legal	mathematical	operation	and
shouldn't	throw	an	exception	at	all.	However,	for	the	sake	of
this	example,	assume	you	don't	want	to	allow	division	of	zero
by	any	number;	you	will	throw	an	ArithmeticException.

When	the	exception	is	thrown,	the	runtime	examines	each
exception	handler	in	the	order	in	which	they	appear	in	the	code
and	matches	the	first	one	it	can.	When	you	run	this	program
with	a=5	and	b=7,	the	output	is:
5	/	7	=	0.7142857142857143

As	you'd	expect,	no	exception	is	thrown.	However,	when	you
change	the	value	of	a	to	0,	the	output	is:
ArithmeticException	caught!

The	exception	is	thrown,	and	the	runtime	examines	the	first
exception,	DivideByZeroException.	Because	this	does	not
match,	it	goes	on	to	the	next	handler,	ArithmeticException,
which	does	match.

In	a	final	pass	through,	suppose	you	change	a	to	7	and	b	to	0.
This	throws	the	DivideByZeroException.

Tip
You	have	to	be	particularly	careful	with	the	order	of

the	catch	statements	in	this	case	because	the
DivideByZeroException	is	derived	from
ArithmeticException.	If	you	reverse	the	catch
statements,	the	DivideByZeroException	will	match
the	ArithmeticException	handler,	and	the	exception
will	never	get	to	the	DivideByZeroException	handler.
In	fact,	if	their	order	is	reversed,	it	will	be	impossible
for	any	exception	to	reach	the	DivideByZeroException
handler.

Typically,	a	method	will	catch	every	exception	it	can	anticipate
for	the	code	it	is	running.	However,	it	is	possible	to	distribute
your	try/catch	statements,	catching	some	specific	exceptions	in
one	function	and	more	generic	exceptions	in	higher,	calling
functions.	Your	design	goals	should	dictate	the	exact	design.

Assume	you	have	a	Method	A	that	calls	another	Method	B,
which	in	turn	calls	Method	C,	which	calls	Method	D,	which
then	calls	Method	E	deep	in	your	code,	while	methods	B	and	A
are	higher	up.	If	you	anticipate	that	Method	E	might	throw	an
exception,	you	should	create	a	try/catch	block	deep	in	your
code	to	catch	that	exception	as	close	as	possible	to	the	place
where	the	problem	arises.	You	might	also	want	to	create	more
general	exception	handlers	higher	up	in	the	code	in	case
unanticipated	exceptions	slip	by.

The	Finally	Statement
In	some	instances,	throwing	an	exception	and	unwinding	the
stack	can	create	a	problem.	For	example,	if	you	have	opened	a
file	or	otherwise	committed	a	resource,	you	might	need	an
opportunity	to	close	the	file	or	flush	the	buffer.

If	you	must	take	some	action,	such	as	closing	a	file,	regardless
of	whether	an	exception	is	thrown,	you	have	two	strategies	to
choose	from.	One	approach	is	to	enclose	the	dangerous	action
in	a	try	block	and	then	to	perform	the	necessary	action	(e.g.,
close	the	file)	in	both	the	catch	and	try	blocks.	However,	this	is
an	ugly	duplication	of	code,	and	it's	error	prone.	VB.NET
provides	a	better	alternative	in	the	finally	block.

The	code	in	the	finally	block	is	guaranteed	to	be	executed
regardless	of	whether	an	exception	is	thrown.	You	create	a
finally	block	with	the	keyword	Finally,	and	it	ends	with	the	End	Try
statement.

A	finally	block	can	be	created	with	or	without	catch	blocks,	but
a	finally	block	requires	a	try	block	to	execute.	It	is	an	error	to
exit	a	finally	block	with	Exit,	Throw,	Return,	or	Goto.	The	TestFunc()
method	in	Example	17-5	simulates	opening	a	file	as	its	first
action.	The	method	then	undertakes	some	mathematical
operations,	and	then	the	file	is	closed.

It	is	possible	that	sometime	between	opening	and	closing	the
file,	an	exception	will	be	thrown.	If	this	were	to	occur,	it	would
be	possible	for	the	file	to	remain	open.	The	developer	knows
that	no	matter	what	happens,	at	the	end	of	this	method	the	file
should	be	closed,	so	the	file	close	function	call	is	moved	to	a
finally	block,	where	it	will	be	executed	regardless	of	whether
an	exception	is	thrown.	Example	17-5	uses	a	finally	block.

Example	17-5.	Using	a	Finally	block

Option	Strict	On

Imports	System

Namespace	ExceptionHandling

				Class	Tester

								Public	Sub	Run()

												Try

																Console.WriteLine("Open	file	here")

																Dim	a	As	Double	=	5

																Dim	b	As	Double	=	0

																Console.WriteLine("{0}		{1}	=	{2}",	a,	b,	DoDivide(a,	b))

																Console.WriteLine("This	line	may	or	may	not	print")

																'	most	derived	exception	type	first

												Catch	e	As	System.DivideByZeroException

																Console.WriteLine("DivideByZeroException	caught!")

												Catch

																Console.WriteLine("Unknown	exception	caught!")

												Finally

																Console.WriteLine("Close	file	here.")

												End	Try

								End	Sub	'Run

								'	do	the	division	if	legal

								Public	Function	DoDivide(_

												ByVal	a	As	Double,	ByVal	b	As	Double)	As	Double

												If	b	=	0	Then

																Throw	New	System.DivideByZeroException()

												End	If

												If	a	=	0	Then

																Throw	New	System.ArithmeticException()

												End	If

												Return	a		b

								End	Function	'DoDivide

								Shared	Sub	Main()

												Console.WriteLine("Enter	Main...")

												Dim	t	As	New	Tester()

												t.Run()

												Console.WriteLine("Exit	Main...")

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ExceptionHandling

Output:
Enter	Main...

Open	file	here

DivideByZeroException	caught!

Close	file	here.

Exit	Main...

In	Example	17-5,	one	of	the	catch	blocks	from	Example	17-4
has	been	eliminated	to	save	space,	and	a	finally	block	has	been

added.	Whether	or	not	an	exception	is	thrown,	the	finally	block
is	executed;	thus,	in	both	examples,	the	following	message	is
output:
Close	file	here.

Of	course,	in	a	real	application,	you	would	actually	open	the	file
in	the	try	block,	and	you'd	actually	close	the	file	in	the	finally
block.	The	details	of	file	manipulation	have	been	eliminated	to
simplify	the	example.

Exception	Class	Methods	and	Properties
So	far	you've	been	using	the	exception	as	a	sentinel—that	is,
the	presence	of	the	exception	signals	the	errors—but	you
haven't	touched	or	examined	the	Exception	object	itself.	The
System.Exception	class	provides	a	number	of	useful	methods
and	properties.

The	Message	property	provides	information	about	the
exception,	such	as	why	it	was	thrown.	The	Message	property	is
read-only;	the	code	throwing	the	exception	can	pass	in	the
message	as	an	argument	to	the	exception	constructor,	but	the
Message	property	cannot	be	modified	by	any	method	once	set
in	the	constructor.

The	HelpLink	property	provides	a	link	to	a	help	file	associated
with	the	exception.	This	property	is	read/write.	In	Example	17-
6,	the	Exception.HelpLink	property	is	set	and	retrieved	to
provide	information	to	the	user	about	the
DivideByZeroException.	It	is	generally	a	good	idea	to	provide	a
help	file	link	for	any	exceptions	you	create,	so	that	the	user	can
learn	how	to	correct	the	exceptional	circumstance.

The	read-only	StackTrace	property	is	set	by	the	CLR.	This
property	is	used	to	provide	a	stack	trace	for	the	error
statement.	A	stack	trace	is	used	to	display	the	call	stack:	the
series	of	method	calls	that	lead	to	the	method	in	which	the
exception	was	thrown.

Example	17-6.	Inside	the	Exception	class

Option	Strict	On

Imports	System

Namespace	ExceptionHandling

				Class	Tester

							

								Public	Sub	Run()

												Try

																Console.WriteLine("Open	file	here")

																Dim	a	As	Double	=	5

																Dim	b	As	Double	=	0

																Console.WriteLine("{0}		{1}	=	{2}",	a,	b,	DoDivide(a,	b))

																Console.WriteLine("This	line	may	or	may	not	print")

																'	most	derived	exception	type	first

												Catch	e	As	System.DivideByZeroException

																Console.WriteLine(

																		"DivideByZeroException!	Msg:	{0}",	e.Message)

																Console.WriteLine(

																			"Helplink:	{0}",	e.HelpLink)

																Console.WriteLine(

																				"Stack	trace:	{0}",	e.StackTrace)

												Catch

																Console.WriteLine("Unknown	exception	caught!")

												Finally

																Console.WriteLine("Close	file	here.")

												End	Try

								End	Sub	'Run

								'	do	the	division	if	legal

								Public	Function	DoDivide(

												ByVal	a	As	Double,	ByVal	b	As	Double)	As	Double

												If	b	=	0	Then

																Dim	e	As	New	System.DivideByZeroException()

													e.HelpLink	=	"http:/www.LibertyAssociates.com"

																Throw	e

												End	If

												If	a	=	0	Then

																Throw	New	System.ArithmeticException()

												End	If

												Return	a	/	b

								End	Function	'DoDivide

								Shared	Sub	Main()

												Console.WriteLine("Enter	Main...")

												Dim	t	As	New	Tester()

												t.Run()

												Console.WriteLine("Exit	Main...")

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ExceptionHandling

Output:
Enter	Main...

Open	file	here

DivideByZeroException!	Msg:	Attempted	to	divide	by	zero.

HelpLink:	http://www.libertyassociates.com

Here's	a	stack	trace:				

		at	ExceptionHandling.Tester.DoDivide(Double	a,	Double	b)	in	...Module1.vb:line	38

			at	ExceptionHandling.Tester.Run()	in	...Module1.vb:line	10

Close	file	here.

Exit	Main...

In	the	output	of	Example	17-6,	the	stack	trace	lists	the	methods

in	the	reverse	order	in	which	they	were	called;	by	reviewing
this	order,	you	can	infer	that	the	error	occurred	in	DoDivide(),
which	was	called	by	Run().	When	methods	are	deeply	nested,
the	stack	trace	can	help	you	understand	the	order	of	method
calls	and	thus	track	down	the	point	at	which	the	exception
occurred.

In	this	example,	rather	than	simply	throwing	a
DivideByZeroException,	you	create	a	new	instance	of	the
exception:
Dim	e	As	New	System.DivideByZeroException()

Throw	e

You	do	not	pass	in	a	custom	message,	and	so	the	default
message	will	be	printed:
DivideByZeroException!	Msg:	Attempted	to	divide	by	zero.

Tip
The	designer	of	each	Exception	class	has	the	option
to	provide	a	default	message	for	that	exception	type.
All	of	the	standard	exceptions	will	provide	a	default
message,	and	it	is	a	good	idea	to	add	a	default
message	to	your	custom	exceptions	as	well	(see
Section	17.9,	later	in	this	chapter).

If	you	want,	you	can	modify	this	line	of	code	to	pass	in	a	custom
message:
Dim	e	As	New	System.DivideByZeroException(_

		"You	tried	to	divide	by	zero	which	is	not	meaningful")

In	this	case,	the	output	message	will	reflect	the	custom
message:
DivideByZeroException!	Msg:

You	tried	to	divide	by	zero	which	is	not

meaningful

Before	throwing	the	exception,	you	set	the	HelpLink	property:
e.HelpLink	=		"http://www.libertyassociates.com"

e.HelpLink	=		"http://www.libertyassociates.com"

When	this	exception	is	caught,	Console.WriteLine()	prints	both
the	message	and	the	HelpLink:
Catch	e	As	System.DivideByZeroException

				Console.WriteLine(_

						"DivideByZeroException!	Msg:	{0}",	e.Message)

				Console.WriteLine(_

							"Helplink:	{0}",	e.HelpLink)

The	Message	and	HelpLink	properties	allow	you	to	provide
useful	information	to	the	user.	The	exception	handler	also
prints	the	StackTrace	by	getting	the	StackTrace	property	of	the
Exception	object:
Console.WriteLine(_

				"Stack	trace:	{0}",	e.StackTrace)

The	output	of	this	call	reflects	a	full	StackTrace	leading	to	the
moment	the	exception	was	thrown.	In	this	case,	only	two
methods	were	executed	before	the	exception,	DoDivide()	and
Run	():
Here's	a	stack	trace:

		at	ExceptionHandling.Tester.DoDivide(Double	a,	Double	b)	in	Module1.vb:line	38

			at	ExceptionHandling.Tester.Run()	in	Module1.vb:line	10

Note	that	I've	shortened	the	pathnames,	so	your	printout	might
look	a	little	different.

Custom	Exceptions
The	intrinsic	exception	types	the	CLR	provides,	coupled	with
the	custom	messages	shown	in	the	previous	example,	will	often
be	all	you	need	to	provide	extensive	information	to	a	catch
block	when	an	exception	is	thrown.

There	will	be	times,	however,	when	you	want	to	provide	more
extensive	information	to	or	need	special	capabilities	in	your
exception.	It	is	a	trivial	matter	to	create	your	own	custom
exception	class;	the	only	restriction	is	that	it	must	derive
(directly	or	indirectly)	from	System.ApplicationException.
Example	17-7	illustrates	the	creation	of	a	custom	exception.

Example	17-7.	A	custom	exception

Option	Strict	On

Imports	System

Namespace	ExceptionHandling

				'	custom	exception	class

				Public	Class	MyCustomException

								Inherits	System.ApplicationException

								Public	Sub	New(ByVal	message	As	String)

												'	pass	the	message	up	to	the	base	class

												MyBase.New(message)

								End	Sub	'New

				End	Class	'MyCustomException

				Class	Tester

								Public	Sub	Run()

												Try

																Console.WriteLine("Open	file	here")

																Dim	a	As	Double	=	0

																Dim	b	As	Double	=	5

																Console.WriteLine("{0}		{1}	=	{2}",	a,	b,	DoDivide(a,	b))

																Console.WriteLine("This	line	may	or	may	not	print")

																'	most	derived	exception	type	first

												Catch	e	As	System.DivideByZeroException

																Console.WriteLine(

																			"DivideByZeroException!	Msg:	{0}",	e.Message)

																Console.WriteLine("HelpLink:	{0}",	e.HelpLink)

																'	catch	custom	exception	

												Catch	e	As	MyCustomException

																Console.WriteLine(

																			"MyCustomException!	Msg:	{0}",	e.Message)

																Console.WriteLine("HelpLink:	{0}",	e.HelpLink)

												Catch	'	catch	any	uncaught	exceptions

																Console.WriteLine("Unknown	exception	caught")

												Finally

																Console.WriteLine("Close	file	here.")

												End	Try

								End	Sub	'Run

								'	do	the	division	if	legal

								Public	Function	DoDivide(_

												ByVal	a	As	Double,	ByVal	b	As	Double)	As	Double

												If	b	=	0	Then

																Dim	e	As	New	DivideByZeroException()

																e.HelpLink	=	"http:/www.libertyassociates.com"

																Throw	e

												End	If

												If	a	=	0	Then

																'	create	a	custom	exception	instance

																Dim	e	As	New	_

																		MyCustomException("Can't	have	zero	divisor")

																e.HelpLink	=	_

																			"http://www.libertyassociates.com/NoZeroDivisor.htm"

																Throw	e

												End	If

												Return	a	/	b

								End	Function	'DoDivide

								Shared	Sub	Main()

												Console.WriteLine("Enter	Main...")

												Dim	t	As	New	Tester()

												t.Run()

												Console.WriteLine("Exit	Main...")

								End	Sub	'Main

				End	Class	'Tester

End	Namespace	'ExceptionHandling

Output:
Enter	Main...

Open	file	here

MyCustomException!	Msg:	Can't	have	zero	divisor

HelpLink:	http://www.libertyassociates.com/NoZeroDivisor.htm

Close	file	here.

Exit	Main...

MyCustomException	is	derived	from
System.ApplicationException	and	consists	of	nothing	more	than
a	constructor	that	takes	a	string	message	that	it	passes	to	its
base	class.

Tip
Remember	that	constructors	cannot	be	inherited,	so
every	derived	class	must	have	its	own	constructor.

The	advantage	of	creating	this	custom	exception	class	is	that	it
better	reflects	the	particular	design	of	the	Test	class,	in	which
it	is	not	legal	to	have	a	zero	divisor.	Using	the
ArithmeticException	rather	than	a	custom	exception	would
work	as	well,	but	it	might	confuse	other	programmers	because
a	zero	divisor	wouldn't	normally	be	considered	an	arithmetic
error.

Chapter	18.	Applications	and	Events
Until	now	you	have	been	creating	console	applications.
Developing	these	simple	programs	has	allowed	you	to	focus	on
the	fundamentals	of	the	VB.NET	language,	rather	than	on	the
details	of	creating	an	interactive	user	interface.	However,	the
principal	purpose	of	Visual	Basic	.NET	is	to	help	you	create
Windows	and	web	applications.	Windows	applications	are
desktop	programs	like	Word,	Excel,	and	others	that	you
purchase	and	run	on	your	computer.	Web	applications	are
accessed	over	the	Web	using	a	browser.	Microsoft	provides	a
set	of	classes	and	tools	for	building	Windows	applications,
called	Windows	Forms.	Windows	applications	can	be	very
complex,	and	the	details	of	Windows	Forms	are	well	beyond	the
scope	of	this	book,	but	this	chapter	will	introduce	the
fundamentals	of	creating	Windows	application,	and	will	show
some	of	the	support	Visual	Studio	.NET	can	provide.

Similarly,	Microsoft	provides	ASP.NET	for	creating	Web
applications.	The	details	of	this	powerful	technology	could	also
fill	a	book,	but	this	chapter	will	show	you	how	to	get	started.

Every	Windows	and	web	application	is	driven	by	program
occurrences	known	as	events.	The	current	chapter	introduces
the	concept	of	events	in	the	context	of	developing	Windows	and
web	applications.

Tip
For	pointers	to	more	advanced	books	on	developing
Windows	and	web	applications,	as	well	as	other
available	resources,	see	Chapter	19.

Creating	a	Windows	Application
To	get	started	building	a	Windows	application,	open	VS.NET
and	choose	the	New	Project	item	from	the	Projects	menu.	As

you	have	done	throughout	this	book,	choose	Visual	Basic
Projects	from	the	Project	Types	window,	but	this	time	choose
Windows	Application	in	the	Templates	Window,	as	shown	in
Figure	18-1.

Figure	18-1.	Creating	the	new	project	Hello	World

Choose	an	appropriate	location	for	your	project	folder	and
name	the	project	Hello	World.

VS.NET	will	create	a	work	area	for	you	and	will	also	create	an
initial	form,	as	shown	in	Figure	18-2.

Figure	18-2.	Visual	Studio	.NET	initial	form

The	Toolbox	should	appear	docked	to	the	left-hand	side	of	your
work	area.	If	not,	you	can	open	the	toolbox	by	choosing	the
Toolbox	item	from	the	View	menu	or	by	using	the	keyboard
shortcut	Ctrl-Alt-X.	The	toolbox	provides	easy-to-use	widgets
for	your	application.

To	get	a	sense	of	how	this	works,	click	and	drag	a	label	from
the	Toolbox	onto	the	form.	Position	the	label	in	the	upper	third
of	the	form.	Notice	that	the	label	has	sizing	handles	on	each
side	that	you	can	click	on	and	drag	to	stretch	the	label	to
accommodate	a	fair	amount	of	text.

The	Properties	window	should	be	docked	along	the	right	side	of
your	window.	If	not,	you	can	open	the	Properties	window	by
choosing	the	Properties	Window	item	from	the	View	menu	or
by	using	the	keyboard	shortcut	F4.	Once	the	Properties
window	is	open,	you	can	click	on	the	label	to	display	the	label's
properties	in	the	Properties	window.

To	see	how	the	Properties	window	can	help	you	in	specifying

To	see	how	the	Properties	window	can	help	you	in	specifying
properties,	try	setting	the	label's	name	to	lblOutput.	Then	set
the	label's	text	to:
Hello	World

Now	scroll	down	the	Properties	window	until	you	come	to	the
Font	property.	Click	the	plus	sign	(+)	to	expand	the	Font
property,	as	shown	in	Figure	18-3.

Figure	18-3.	The	Properties	window

Notice	the	button	following	the	name	of	the	Font;	the	button	is
marked	with	an	ellipsis.	Click	on	this	button	to	open	the	Font
selection	window.	Set	the	Font	to	Verdana,	also	selecting	Bold
from	the	Font	style	list	and	12	(point)	from	the	Size	list,	as
shown	in	Figure	18-4.

Figure	18-4.	The	Font	selection	window

If	you	look	back	at	the	label	you	created	on	the	initial	form,
you'll	see	that	the	label	has	been	modified	in	accordance	with
the	properties	you've	set.

Now	go	back	to	the	Toolbox	and	drag	a	button	onto	your	form;
name	it	btnChange	and	set	its	Text	property	to:
Change!

Click	on	the	BackColor	property.	The	drop-down	menu	(which
should	list	"Control"	as	the	default	color)	opens	to	reveal	a
color	picker.	Click	on	the	Custom	tab	and	choose	the	red
square,	as	shown	(in	black	and	white)	in	Figure	18-5.

Figure	18-5.	Picking	a	color

Set	the	Button's	ForeColor	property	to	yellow	and	then	expand
the	Font	property.	Set	the	font	to	Verdana	and	set	the	Bold
attribute	of	the	Font	to	true.

Click	on	the	form	and	grab	the	lower	righthand	corner	by
clicking	and	dragging	with	the	mouse.	Resize	the	form	to
accommodate	just	the	label	and	the	button,	as	shown	in	Figure
18-6.

Figure	18-6.	Making	the	form	smaller

Now	run	the	Hello	World	application	by	holding	the	Control
key	and	pressing	F5.	The	form	comes	up	and	looks	just	great.
But	when	you	click	on	the	Change!	button,	nothing	happens.	In
order	to	understand	why,	you	must	understand	a	bit	about
events.

Events
When	something	happens	in	a	program,	we	call	that
occurrence	an	event.	Clicking	on	a	button	is	an	event.	Closing	a
window,	dropping	down	a	listbox,	pressing	a	key,	and	moving
the	mouse	are	all	events.	Windows	is	an	event-driven	operating
system.

How	does	the	operating	system	know	when	you've	pressed	a
key?	There	are,	in	general,	two	ways	for	the	system	to	receive
notification.	One	way	is	called	polling.	In	this	approach,	the
operating	system	asks	the	keyboard:	"Hey!	Do	you	have	a
keypress	for	me?	Nope?	Okay,	I'll	check	again	in	few
milliseconds."	This	is	very	much	the	same	as	the	way	I	find	out
if	I	have	mail.	Every	few	milliseconds,	I	walk	down	to	the
mailbox	and	look	inside.	Sometimes	there	is	mail;	most	of	the
time	it	is	empty.

The	second,	much	preferable,	way	to	keep	the	operating
system	apprised	of	events	is	to	ask	the	keyboard	to	notify	the
operating	system	when	a	key	is	pressed.	This	is	analogous	to
how	the	telephone	works.	You	don't	pick	up	the	phone	every
few	minutes	to	see	if	you	have	a	call.	Instead,	you	leave	the
phone	alone,	and	when	there	is	a	call,	the	phone	notifies	you
(typically,	just	as	you	sit	down	to	dinner).

This	act	of	notifying	you	is	called	raising	an	event.	In	this	case,
the	event	is	"a	call	is	ready	for	you."

VB.NET	provides	extensive	support	for	handling	events	such	as
button	clicks.	The	Button	object	is	declared	with	the	keyword	
WithEvents.	Right-click	on	your	form	and	choose	the	View	Code
item	from	the	pop-up	menu.	VS.NET	will	display	the	code	that
creates	your	form,	as	shown	in	Figure	18-7.

Figure	18-7.	Code	view

It	looks	like	not	much	is	there.	Notice,	however,	that	in	the
middle	of	the	code	a	gray	box	contains	the	words	"Windows
Form	Designer	generated	code."	To	the	left	of	the	box	is	a	plus
sign.	Click	on	the	plus	sign	to	expand	this	region	of	code	that
was	created	by	VS.NET.

Inside	this	area,	shown	in	Figure	18-8,	VS.NET	has	provided
your	class	with	a	constructor,	a	Dispose()	method,	and	various
declarations.	Just	below	the	Dispose()	method	are	the
declarations	of	the	two	controls	you've	added	to	your	form,	the
Label	and	the	Button,	as	shown	circled	and	highlighted	in
Figure	18-8.

Figure	18-8.	The	Label	and	the	Button	declared

Notice	that	the	declaration	of	both	controls	includes	the
keyword	WithEvents.	This	keyword	indicates	that	these	controls
will	raise	events.	The	Button	class	raises	a	number	of	events,
as	you	can	discover	by	looking	up	the	Button	class	in	the
documentation,	as	shown	in	Figure	18-9.

Figure	18-9.	Button	documentation

Tip
Surprisingly,	the	label	control	also	raises	a	great
many	events,	though	it	is	uncommon	to	respond	to
clicks	and	mouse	movements	over	a	label.

The	event	we	care	about	is	the	Button's	Click	event,	which	is
raised	every	time	the	Button	is	clicked.

Each	control	has	a	default	event,	and	the	Button's	default	event
is	Click.	You	can	create	the	event	handler	for	the	default	event
by	going	back	to	the	Design	view	and	then	double-clicking	on
the	Button.

Doing	so	causes	VS.NET	to	create	a	skeleton	event	handler	for
you,	in	this	case	a	method	called	btnChange_Click():
Private	Sub	btnChange_Click(

									ByVal	sender	As	System.Object,	

									ByVal	e	As	System.EventArgs)	_

											Handles	btnChange.Click

				End	Sub

Every	event	handler	takes	two	parameters.	The	first	is	of	type
Object	and	is	called	sender,	by	convention.	This	is	the	control
that	raised	the	event.	The	second	is	of	type	EventArgs	(or	a
class	derived	from	EventArgs)	and	is	a	structure	that	contains
information	about	the	event.	Often	this	structure	has	no	useful
content,	but	for	some	events,	this	structure	provides	useful
information	for	handling	the	event.	(Structures	are	discussed	in
depth	in	Chapter	12.)

The	method	declaration	includes	the	keyword	Handles	followed	by
the	event	that	the	method	is	designed	to	handle.	In	this	case,
you've	declared	that	the	btnChange_Click()	method	will	handle
the	Click	event	for	the	control	btnChange.

All	you	have	to	do	is	write	the	code	within	the	method	for
whatever	is	supposed	to	happen	when	the	button	is	clicked.	In
this	case,	you'd	like	to	change	the	contents	of	the	label	when
the	button	is	clicked.	Add	the	following	code	to	the	event
handler	method:
Private	Sub	btnChange_Click(

			ByVal	sender	As	System.Object,	

			ByVal	e	As	System.EventArgs)	_

			Handles	btnChange.Click

					lblOutput.Text	=	"Goodbye!"

																	lblOutput.BackColor	=	Color.Blue

																	lblOutput.ForeColor	=	Color.Yellow

End	Sub

This	code	will	cause	the	text	of	the	label	to	change,	along	with
its	background	color	and	foreground	color.	Run	the	application
with	Control-F5.	Click	on	the	button.	Hey!	Presto!	The	text
changes,	as	shown	in	Figure	18-10.

Figure	18-10.	Testing	the	event	handler

To	ensure	that	you	fully	understand	what	is	happening	with
this	code,	put	a	breakpoint	in	the	event	handler	and	then	run
the	program	in	debug	mode.	When	you	click	on	the	button,
you'll	see	the	program	stop	at	the	breakpoint.	Creating
complex	Windows	applications	now	becomes	largely	a	matter
of	dragging	the	controls	onto	the	form	and	wiring	up	the	event
handlers	to	do	the	work	you	want	when	the	various	events	are
fired.

Web	Applications

One	of	the	most	powerful	aspects	of	VS.NET	and	the	.NET
platform	is	that	the	tools	for	Rapid	Application	Development
that	are	provided	for	creating	Windows	applications	are	also
available	for	building	Web	applications.	To	see	how	similar	web
development	is	to	Windows	development,	close	the	current
project	by	choosing	the	Close	Solution	item	from	the	File	menu.
Then	choose	New	Project	from	the	Start	menu.	This	time,
rather	than	choosing	a	Windows	Application	as	the	Project
Type,	choose	an	ASP.NET	Web	Application;	then	enter	a
pathname	for	the	Hello	World	program	in	the	Location	box,	as
shown	in	Figure	18-11.

Figure	18-11.	Creating	Hello	World	as	an	ASP.NET	application

VS.NET	will	create	a	virtual	directory	for	you	on	your	web
server	(for	this	example,	you'll	need	to	have	IIS	installed),	and
will	open	a	development	environment	not	very	different	from
that	available	for	creating	Windows	applications.

Once	again	you'll	find	a	Toolbox	along	the	lefthand	side	of	the
VS.NET	window,	and	a	Properties	window	docked	to	the
righthand	side.	ASP.NET	applications	work	by	creating	an
HTML	file	named	with	an	.aspx	extension.	When	you	right-click
on	the	form	and	select	View	Code,	VS.NET	also	creates	an
associated	code-behind	file.	(Code-behind	files	are	integral	to
most	serious	applications	but	are	beyond	the	scope	of	this
primer.	See	Chapter	19	for	pointers	to	a	number	of	useful
books	on	advanced	VB.NET	programming	and	ASP.NET
development.)	Your	form's	default	name	is	WebForm1.aspx,
and	the	associated	code-behind	file	will	be	WebForm1.aspx.vb.

From	the	Toolbox,	drag	a	label	onto	the	form.	As	you	did	in	the
section	on	Windows	applications,	set	the	label's	name	to
lblOutput	and	its	text	to	"Hello	World!"	Then	click	on	the	Font
property	and	set	Bold	to	true	and	set	the	size	to	x-large.
Remember,	this	program	will	run	in	a	browser,	so	the
properties	are	restricted	to	those	supported	by	HTML	and

properties	are	restricted	to	those	supported	by	HTML	and
browsers.

Now	go	back	to	the	Toolbox	and	drag	a	button	onto	the	form.
Set	the	button's	name	to	btnChange	and	its	text	to	"Change!".
Set	its	BackColor	property	to	red	and	its	ForeColor	to	yellow.
Then	set	the	button's	font	to	bold.	The	results	are	shown	in
Figure	18-12.

Figure	18-12.	Creating	the	web	form

If	you	double-click	on	the	button,	VS.NET	creates	the	code-
behind	file	and	takes	you	to	the	event	handler	that	it	has
created	for	you:
Private	Sub	btnChange_Click(

ByVal	sender	As	System.Object,	

ByVal	e	As	System.EventArgs)	_

Handles	btnChange.Click

End	Sub

Your	job	is	to	fill	in	the	code	that	will	be	run	when	the	event	is
fired.	You	might	begin	by	copying	in	the	code	from	the	event
handler	you	created	for	the	Windows	application,	earlier	in	this

handler	you	created	for	the	Windows	application,	earlier	in	this
chapter:
Private	Sub	btnChange_Click(

ByVal	sender	As	System.Object,	

ByVal	e	As	System.EventArgs)	_

Handles	btnChange.Click

				

																			lblOutput.Text	=	"Goodbye!"

																			lblOutput.BackColor	=	Color.Blue

																			lblOutput.ForeColor	=	Color.Yellow

End	Sub

Now	run	the	application.	This	time	a	browser	opens	to	test
your	application,	within	which	the	text	and	button	appear.
Click	on	the	button.	Hey!	Presto!	the	page	is	redrawn	with	the
new	text	and	coloring,	as	shown	in	Figure	18-13.

Figure	18-13.	Handling	the	event	in	a	browser

Server-Side	Code
The	output	shown	in	Figure	18-13	is	nearly	identical	to	what
you	saw	in	the	Windows	application	(Figure	18-10),	and	in	fact
the	code	is	also	nearly	identical.

The	actual	processing,	however,	is	very	different.	When	you
click	a	button	in	a	Windows	application,	the	event	is	handled
right	there,	in	your	code,	on	the	desktop.	With	a	web
application,	when	you	click	the	"Change!"	button,	the	page	is
submitted	to	the	host,	the	event	is	handled	on	the	host,	and	the
new	page	(with	the	new	text)	is	sent	back	to	the	browser.	All	of
this	is	done	automatically	for	you	by	the	ASP.NET	Framework.

If	you	start	the	application	again,	and	select	the	Source	item
from	the	View	menu,	you'll	see	that	what	is	actually	sent	to	the
browser	is	just	HTML,	as	shown	in	Figure	18-14.

Figure	18-14.	Examining	the	source

All	of	the	code	is	run	on	the	server;	the	browser	need	not	have
any	special	functionality.	In	fact	the	browser	need	not	even	be
running	on	Windows	or	.NET!

Chapter	19.	Afterword
Congratulations!	If	you've	worked	your	way	to	this	point	in	the
book,	you	are	now	a	VB.NET	programmer.	You	should	be	very
proud.	Of	course,	no	primer	can	cover	everything	there	is	to
know	about	.NET	programming,	and	you	are	not	at	the	end,	but
rather	at	the	beginning	of	your	education.	Nonetheless,	you've
made	a	very	good	start.

Where	to	Go	from	Here
I	intentionally	kept	this	book	short	to	provide	you	with	the
fundamentals	and	not	let	more	difficult	topics	distract	you	from
the	core	elements	of	the	language.	Now	that	you've	completed
the	book,	however,	you	may	be	wondering	where	to	go	from
here	in	your	pursuit	of	.NET.

A	wealth	of	information	is	available,	both	in	books	and	online.
The	first	task	is	to	decide	what	you	are	interested	in.	Potential
topics	include:

Advanced	topics	in	VB.NET	programming

Web	(ASP.NET)	programming

Windows	(Windows	Forms)	programming

Sooner	or	later	you'll	probably	decide	to	read	extensively	on	all
three	topics;	the	only	question	is	which	you	tackle	first.	In	the
next	sections,	I'll	recommend	some	more	advanced	books	to
help	you	find	your	way	through	these	topics.

Advanced	Topics	in	VB.NET
If	you	decide	that	you	want	to	understand	all	the	nooks	and
crannies	of	VB.NET	before	going	on	to	creating	applications,
you	might	consider	reading	a	more	advanced	guide	or	a
reference	work	on	the	language.

O'Reilly	offers	a	few	choices:	Programming	Visual	Basic	.NET	is
a	more	advanced	book	I	am	writing	for	release	in	early	2003,
and	VB.NET	in	a	Nutshell,	by	Steven	Roman,	Ron	Petrusha,
and	Paul	Lomax	is	a	comprehensive	reference	work.	O'Reilly
also	has	VB.NET	Core	Classes	(title?)	in	a	Nutshell	by	Budi
Kurniawan	and	Ted	Neward.

The	difference	between	Programming	Visual	Basic	.NET	and
Learning	Visual	Basic	.NET	is	that	the	former	book	is	written
for	the	advanced	VB6	programmer,	and	so	does	not	spend	as
much	time	on	the	fundamentals.	In	exchange,	this	somewhat
longer	book	does	go	into	more	detail	and	actually	gets	into	the
process	of	developing	applications	for	the	.NET	platform.

You'll	find	that	all	of	the	material	covered	in	Learning	Visual
Basic	.NET	is	also	covered	in	the	first	chapters	of	Programming
Visual	Basic	.NET.	You	may	want	to	skim	these	chapters
anyway,	both	for	review	and	because	some	advanced	topics	do
appear	in	these	early	chapters.

The	next	four	chapters	of	Programming	Visual	Basic	.NET
provide	an	overview	of	both	ASP.NET	and	Windows	Forms,	as
well	as	ADO.NET.	ASP.NET	is	used	for	programming	web
applications	and	web	services,	while	the	Windows	Forms
technology	is	used	to	program	Windows	applications.	ADO.NET
is	the	.NET	technology	for	interacting	with	databases.

The	final	part	of	Programming	Visual	Basic	.NET	covers
advanced	topics	in	.NET	programming	such	as	assemblies,
versioning,	attributes	and	reflection,	marshaling	and	remoting,

threads	and	synchronization,	streams,	and	interoperating	with
COM.

Assemblies	are	the	basic	unit	of	compilation.	The	chapter	on
assemblies	and	versioning	addresses	issues	that	arise	when
you	create	large	commercial	applications.	You'll	find
information	about	private	and	shared	assemblies,	as	well	as	an
overview	of	how	you	manage	the	release	of	multiple	versions	of
your	program.

Attributes	are	metadata;	data	about	your	program.	Learning
Visual	Basic	.NET	doesn't	cover	attributes	because	this	is	an
advanced	topic.	However,	attributes	and	custom	attributes
allow	you	to	control	how	your	program	is	processed	by	the
tools	available	in	.NET.	Reflection	is	the	process	of	a	program
examining	itself	(or	another	program)	and	allows	you	to
discover,	at	runtime,	the	methods	and	properties	of	an	object
that	was	not	known	at	compile	time.

Threads	are	created	when	you	want	a	program	to	do	two	things
at	once.	When	you	have	more	than	one	thread	operating	in
your	program,	you	must	control	synchronization:	making	sure
that	access	to	your	data	is	mediated	so	that	one	thread	does
not	corrupt	the	data	created	in	a	second	thread.	The	chapter	on
threading	teaches	you	how	to	take	control	of	this	powerful
aspect	of	.NET	and	create	programs	that	are	highly	efficient.

Marshaling	is	the	process	of	sending	an	object	from	one
process	or	computer	to	another.	This	allows	you	to	share
objects	across	program	boundaries.	Remoting	is	the	process	of
calling	a	method	in	a	different	program.	These	very	advanced
topics	allow	you	to	build	highly	distributed	programs.

Streams	allow	you	to	read	and	write	data	both	from	a	file	and
across	the	network.	The	.NET	Framework	provides	extensive
stream	support,	including	support	for	reading	and	writing	data
across	the	standard	web	protocols	such	as	HTTP.

Finally,	many	companies	have	extensive	libraries	of	objects
created	in	COM,	the	earlier	Microsoft	technology	for	building
classes	and	controls.	The	chapter	on	COM	in	Programming
Visual	Basic	.NET	teaches	you	how	to	import	these	controls
and	DLL	files	into	your	.NET	application	(or	export	.NET
controls	to	COM)	to	preserve	your	investment.

If	you	decide	that	you	want	to	develop	expertise	in	integrating
COM	with	.NET,	take	a	look	at	Adam	Nathan's	.NET	and	Com
(Sams).	I	can't	think	of	a	more	definitive	book	on	this	difficult
topic.

If	you	want	to	go	beyond	the	basics	of	.NET	programming,	and
get	deep	into	the	internals,	there	is	no	better	book	than
Applied	Microsoft	.NET	Framework	Programming	in	Microsoft
Visual	Basic	.NET,	by	Jeffrey	Richter	and	Francesco	Belena
(Microsoft	Press,	2002).	Richter	and	Belena	are	phenomenal
writers,	and	their	chapter	on	delegates	alone	is	worth	the	cost
of	the	book.

Another	key	topic	in	.NET	programming	is	security.	For	the
definitive	word	on	.NET	security,	you'll	want	to	buy	.NET
Framework	Security,	by	LaMacchia	et	al	(Addison-Wesley).

Web	(ASP.NET)	Programming
Rather	than	diving	deeper	into	the	recesses	of	VB.NET,	you
might	decide	to	get	started	with	building	ASP.NET
applications.	ASP.NET	applications	can	be	interactive	web
sites,	portals,	or	complete	applications	running	on	and
distributed	through	the	web.	For	example,	Microsoft	offers	a
free	sample	application,	IBuySpyStore
(http://www.ibuyspystore.com),	that	demonstrates	how	you	can
build	a	full	online	store	using	ASP.NET	technology.

VS.NET	provides	extensive	support	for	building	ASP.NET
applications,	and	VB.NET	is	one	of	the	languages	of	choice	for
this	development.	With	what	you've	learned	already,	you	are
well	prepared	to	move	on	to	creating	web	applications.

I	wrote	Programming	ASP.NET,	with	Dan	Hurwitz	(O'Reilly)	as
a	comprehensive	guide	to	ASP.NET	technology.	You'll	find
extensive	coverage	of	Web	Form	controls	and	event	handling.
You'll	also	find	coverage	of	advanced	programming	technique,
error	handling,	and	validation.	Programming	ASP.NET	devotes
more	than	150	pages	to	working	with	data	in	your	web
applications	and	also	provides	extensive	coverage	of	web
services.	Finally,	Programming	ASP.NET	offers	coverage	of
such	advanced	topics	as	custom	controls,	security,	caching	and
performance,	and	deployment-related	issues.

http://www.ibuyspystore.com

Windows	Forms	Programming
Another	alternative	is	to	focus	on	building	rich-client	Windows
applications,	using	the	new	Windows	Forms	technology.
Windows	applications	allow	you	to	take	advantage	of	the	full
resources	of	the	operating	system,	and	yet	still	distribute
aspects	of	your	application	over	the	web.

A	good	starting	point	for	more	information	on	building	rich-
client	applications	is	an	article	in	the	June	2002	MSDN
Magazine	by	Jason	Clark.	You	can	read	this	article	online	at
http://msdn.microsoft.com/msdnmag/issues/02/06/rich/rich.asp.

I	am	currently	writing	the	O'Reilly	book	Programming	.NET
Windows	Applications,	again	with	Dan	Hurwitz,	to	be	published
in	the	spring	of	2003.	Programming	.NET	Windows
Applications	will	be	a	comprehensive	guide	to	writing	Windows
applications	that	includes	extensive	coverage	of	Windows	Form
controls	and	event	handling.	As	in	Programming	ASP.NET,
you'll	find	coverage	of	advanced	programming	techniques,
error	handling,	and	validation.

The	coverage	of	data	handling	will	be	extensive,	and	we	will
also	provide	complete	coverage	of	advanced	topics	such	as
custom	controls,	security,	performance,	and	deployment-
related	issues.

http://msdn.microsoft.com/msdnmag/issues/02/06/rich/rich.asp

Other	Resources
Extensive	resources	are	available	to	the	aspiring	VB.NET
programmer.	The	most	powerful,	of	course,	is	the	MSDN
library	available	from	Microsoft
(http://www.msdn.microsoft.com),	which	includes	a	number	of
different	subscription	levels,	depending	on	your	needs	and
resources.

Microsoft	also	hosts	the	gotdotnet	forum
(http://www.gotdotnet.com),	which	provides	sample	programs,
extensive	documentation	and	articles	on	.NET	programming.
Dozens	of	excellent	web	sites	are	devoted	to	.NET
programming,	not	least	of	which	is	the	O'Reilly	site,
http://dotnet.oreilly.com.

One	of	the	most	powerful	resources	available	to	VB.NET
programmers	is	the	set	of	extensive	mailing	lists	and
newsgroups	that	have	sprung	up	so	quickly.	I	find	the	dotnet
mailing	lists	from	Developmentor	(http://discuss.develop.com)
and	the	ASP	Friends	lists
(http://www.aspfriends.com/aspfriends)	to	be	particularly
useful.

Finally,	I	provide	a	FAQ,	source	code,	and	related	material	on
my	web	site:	http://www.LibertyAssociates.com,	where	you	can
also	sign	up	for	a	private	support	discussion	forum.

Best	of	luck	with	VB.NET,	and	please	do	keep	in	touch.

	

	

http://www.msdn.microsoft.com
http://www.gotdotnet.com
http://dotnet.oreilly.com
http://discuss.develop.com
http://www.aspfriends.com/aspfriends
http://www.LibertyAssociates.com

Colophon
Our	look	is	the	result	of	reader	comments,	our	own
experimentation,	and	feedback	from	distribution	channels.
Distinctive	covers	complement	our	distinctive	approach	to
technical	topics,	breathing	personality	and	life	into	potentially
dry	subjects.

The	animal	on	the	cover	of	Learning	Visual	Basic	.NET	is	a
snake-necked	turtle.	Snake-necked	turtles	(Chelodina
longicollis)	are	found	in	the	southern	hemisphere	in	South
America,	Australia,	and	New	Guinea.	They	live	in	slow-moving,
fresh-water	environments	such	as	rivers.	Sometimes,	though
not	regularly,	they	migrate	in	search	of	new	waters	in	the
summertime.

Snake-necked	turtles	have	large,	webbed	back	feet	in	the	back
for	swimming,	and	claws	on	their	front	feet.	Their	shells	have
high	bumps,	covered	with	moss	and	water	plants	that	help
them	blend	in	with	their	surroundings.	When	seeking	prey,	the
turtle	holds	its	head	sideways,	waits	for	prey	to	come	near,	and
then	extends	its	neck	and	strikes	like	a	snake.	It	feeds	on
insects,	worms,	frogs,	small	fish,	and	crustaceans.	The	turtle
emits	a	foul-smelling	fluid	from	its	musk	glands	when	handled,
or	when	trying	to	frighten	predators.

Darren	Kelly	was	the	production	editor	for	Learning	Visual
Basic	.NET.	Nancy	Crumpton	provided	production	services	and
wrote	the	index.	Emily	Quill	and	Claire	Cloutier	provided
quality	control.

Emma	Colby	designed	the	cover	of	this	book,	based	on	a	series
design	by	Edie	Freedman.	The	cover	image	is	a	19th-century
engraving	from	the	Dover	Pictorial	Archive.	Emma	Colby
produced	the	cover	layout	with	QuarkXPress	4.1	using	Adobe's
ITC	Garamond	font.

David	Futato	designed	the	interior	layout.	This	book	was

David	Futato	designed	the	interior	layout.	This	book	was
converted	to	FrameMaker	5.5.6	with	a	format	conversion	tool
created	by	Erik	Ray,	Jason	McIntosh,	Neil	Walls,	and	Mike
Sierra	that	uses	Perl	and	XML	technologies.	The	text	font	is
Linotype	Birka;	the	heading	font	is	Adobe	Myriad	Condensed;
and	the	code	font	is	LucasFont's	TheSans	Mono	Condensed.
The	illustrations	that	appear	in	the	book	were	produced	by
Robert	Romano	and	Jessamyn	Read	using	Macromedia
FreeHand	9	and	Adobe	Photoshop	6.	The	tip	and	warning	icons
were	drawn	by	Christopher	Bing.	This	colophon	was	written	by
Linley	Dolby.

The	online	edition	of	this	book	was	created	by	the	Safari
production	group	(John	Chodacki,	Becki	Maisch,	and	Madeleine
Newell)	using	a	set	of	Frame-to-XML	conversion	and	cleanup
tools	written	and	maintained	by	Erik	Ray,	Benn	Salter,	John
Chodacki,	and	Jeff	Liggett.

	Learning Visual Basic .NET
	Preface
	About This Book
	Who This Book Is For
	How the Book Is Organized
	Conventions Used in This Book
	Support
	We'd Like to Hear from You
	Acknowledgments

	1. Visual Basic .NET and .NET Programming
	1.1. Visual Basic and .NET
	1.1.1. Stepchild No Longer

	1.2. The .NET Platform
	1.3. The .NET Framework
	1.4. The VB.NET Language
	1.5. The Structure of VB.NET Applications
	1.6. The Development Environment

	2. Getting Started with VB.NET
	2.1. What's in a Program?
	2.2. Your First Program: Hello World
	2.2.1. The Compiler

	2.3. Examining Your First Program
	2.3.1. Line-by-Line Analysis

	3. Object-Oriented Programming
	3.1. Creating Models
	3.2. Classes and Objects
	3.3. Defining a Class
	3.4. Class Relationships
	3.5. The Three Pillars of Object-Oriented Programming
	3.6. Encapsulation
	3.7. Specialization
	3.8. Polymorphism
	3.9. Object-Oriented Analysis and Design

	4. Visual Studio .NET
	4.1. Start Page
	4.1.1. Projects and Solutions
	4.1.2. Templates

	4.2. Inside the Integrated Development Environment (IDE)
	4.2.1. Layout

	4.3. IntelliSense
	4.4. Building and Running
	4.5. For More Information

	5. VB.NET Language Fundamentals
	5.1. Types
	5.1.1. Numeric Types
	5.1.2. Non-Numeric Types: Boolean, Char, Date, and String
	5.1.3. Types and Compiler Errors

	5.2. Variables
	5.2.1. Specifying Type with a Character
	5.2.2. Initializing Variables
	5.2.3. Default Values

	5.3. Constants
	5.3.1. Literal Constants
	5.3.2. Symbolic Constants
	5.3.3. Enumerations
	5.3.4. About Casting

	5.4. Strings
	5.5. Statements
	5.6. Whitespace

	6. Branching
	6.1. Unconditional Branching Statements
	6.2. Conditional Branching Statements
	6.2.1. If Statements
	6.2.2. If . . . Else Statements
	6.2.3. Nested If Statements
	6.2.4. ElseIf
	6.2.5. Select Case Statements

	6.3. Iteration (Looping) Statements
	6.3.1. Creating Loops with Goto
	6.3.2. The Do Loop
	6.3.3. Breaking out of a Do Loop
	6.3.4. The For Loop
	6.3.5. Controlling a For Loop Using Next

	7. Operators
	7.1. The Assignment Operator (=)
	7.2. Mathematical Operators
	7.2.1. Simple Arithmetical Operators (+, -, *, /, \)
	7.2.2. The modulus Operator (Mod) to Return Remainders
	7.2.3. The Exponentiation Operator (^)

	7.3. Relational Operators
	7.4. Logical Operators Within Conditionals
	7.5. Operator Precedence

	8. Classes and Objects
	8.1. Defining Classes
	8.1.1. Instantiating Objects
	8.1.2. Modules Are Classes
	8.1.3. Memory Allocation: The Stack Versus the Heap
	8.1.4. Creating a Time Class
	8.1.5. Access Modifiers

	8.2. Method Arguments
	8.3. Constructors
	8.4. Initializers
	8.5. Copy Constructors
	8.6. The Me Keyword
	8.7. Using Shared Members
	8.8. Destroying Objects

	9. Inside Methods
	9.1. Overloading Methods
	9.2. Encapsulating Data with Properties
	9.2.1. The Get Accessor
	9.2.2. The Set Accessor
	9.2.3. ReadOnly and WriteOnly Properties

	9.3. Passing by Value and by Reference
	9.3.1. Passing Arguments by Value
	9.3.2. Passing Arguments by Reference
	9.3.3. Passing Reference Types by Value

	10. Basic Debugging
	10.1. Setting a Breakpoint
	10.1.1. Using the Debug Menu to Set Your Breakpoint
	10.1.2. Examining Values: The Autos and Locals Windows
	10.1.3. Set Your Watch

	10.2. The Call Stack

	11. Inheritance and Polymorphism
	11.1. Specialization and Generalization
	11.2. Inheritance
	11.2.1. Implementing Inheritance
	11.2.2. Calling Base Class Constructors
	11.2.3. Shadowing Base Methods
	11.2.4. Controlling Access

	11.3. Polymorphism
	11.3.1. Creating Polymorphic Types
	11.3.2. Creating Polymorphic Methods
	11.3.3. Versioning with Overridable and Overrides

	11.4. Abstract Classes
	11.5. NotInheritable Classes
	11.6. The Root of All Classes: Object
	11.7. Boxing and Unboxing Types
	11.7.1. Boxing Is Implicit
	11.7.2. Unboxing Must Be Explicit

	12. Structures
	12.1. Defining a Structure
	12.1.1. No Inheritance
	12.1.2. No Initialization
	12.1.3. Public Member Data?

	13. Interfaces
	13.1. Defining an Interface
	13.2. Implementing an Interface
	13.3. Implementing More Than One Interface
	13.4. Casting to an Interface
	13.4.1. The Is Operator

	13.5. Extending Interfaces
	13.6. Combining Interfaces
	13.7. Overriding Interface Implementations

	14. Arrays
	14.1. Arrays
	14.1.1. Declaring Arrays
	14.1.2. The Size of the Array
	14.1.3. The ReDim Keyword
	14.1.4. Understanding Default Values
	14.1.5. Accessing Array Elements
	14.1.6. The For Each Statement
	14.1.7. Initializing Array Elements
	14.1.8. The ParamArray Keyword

	14.2. Multidimensional Arrays
	14.2.1. Rectangular Arrays
	14.2.2. Jagged Arrays

	14.3. System.Array
	14.4. Indexers and the Default Property
	14.4.1. Default Properties and Assignment
	14.4.2. Indexing on Other Values

	15. Collection Interfaces and Types
	15.1. The Collection Interfaces
	15.1.1. The IEnumerable Interface
	15.1.2. Walking Through the For Each Loop in a Debugger

	15.2. Array Lists
	15.3. The Collection Class
	15.4. Queues
	15.5. Stacks
	15.6. Copying from a Collection Type to an Array

	16. Strings
	16.1. Creating Strings
	16.1.1. String Literals
	16.1.2. The ToString() Method
	16.1.3. Strings Are Immutable

	16.2. Manipulating Strings
	16.2.1. Comparing Strings
	16.2.2. Concatenating Strings
	16.2.3. Copying Strings
	16.2.4. Testing for Equality
	16.2.5. Other Useful String Methods
	16.2.6. Finding Substrings
	16.2.7. Splitting Strings
	16.2.8. The StringBuilder Class

	16.3. Regular Expressions
	16.4. The Regex Class

	17. Throwing and Catching Exceptions
	17.1. Throwing Exceptions
	17.2. Searching for an Exception Handler
	17.3. The Throw Statement
	17.4. The Try and Catch Statements
	17.5. How the Call Stack Works
	17.6. Creating Dedicated Catch Statements
	17.7. The Finally Statement
	17.8. Exception Class Methods and Properties
	17.9. Custom Exceptions

	18. Applications and Events
	18.1. Creating a Windows Application
	18.2. Events
	18.2.1. Web Applications

	18.3. Server-Side Code

	19. Afterword
	19.1. Where to Go from Here
	19.2. Advanced Topics in VB.NET
	19.3. Web (ASP.NET) Programming
	19.4. Windows Forms Programming
	19.5. Other Resources

	Colophon

