

Table	of	Contents
JavaScript:	Functional	Programming	for	JavaScript	Developers
JavaScript:	Functional	Programming	for	JavaScript	Developers
Credits
Preface

What	this	learning	path	covers
What	you	need	for	this	learning	path
Who	this	learning	path	is	for
Reader	feedback
Customer	support

Downloading	theexample	code
Errata
Piracy
Questions

1.	Module	1
1.	JavaScript	Primer

A	little	bit	of	history
How	to	use	this	book
Hello	World

An	overview	of	JavaScript
Comments
Variables
Constants
Number
String
Undefined	values
Booleans
The	instanceof	operator
Date	objects
The	+	operator
The	++	and	--	operators
Boolean	operators
Equality

Strict	equality	using	===
Weak	equality	using	==

JavaScript	types
Automatic	semicolon	insertion
JavaScript	style	guide

Whitespaces
Parentheses,	line	breaks,	and	braces
Quotes
End	of	lines	and	empty	lines
Type	checking
Type	casting

Conditional	evaluation
Naming
The	eval()	method	is	evil
The	strict	mode

Enabling	the	strict	mode	for	an	existing	code	can	break	it
Package	with	care
Variables	must	be	declared	in	strict	mode

The	eval()	function	is	cleaner	in	strict	mode
Features	that	are	blocked	in	strict	mode

Running	JSHint
Summary

2.	Functions,	Closures,	and	Modules
A	function	literal

A	function	declaration
Functions	as	data
Scoping

Global	scope
Local	scope
Function-level	scope	versus	block-level	scope
Inline	function	expressions
Block	scopes

Function	declarations	versus	function	expressions
The	arguments	parameter

The	this	parameter
Invocation	as	a	function
Invocation	as	a	method
Invocation	as	a	constructor
Invocation	using	apply()	and	call()	methods

Anonymous	functions
Anonymous	functions	while	creating	an	object
Anonymous	functions	while	creating	a	list
Anonymous	functions	as	a	parameter	to	another	function
Anonymous	functions	in	conditional	logic

Closures
Timers	and	callbacks
Private	variables
Loops	and	closures
Modules

Stylistic	considerations
Summary

3.	Data	Structures	and	Manipulation
Regular	expressions
Exact	match
Match	from	a	class	of	characters
Repeated	occurrences

Alternatives	–	OR
Beginning	and	end
Backreferences
Greedy	and	lazy	quantifiers

Arrays
Maps
Sets
A	matter	of	style
Summary

4.	Object-Oriented	JavaScript
Understanding	objects

Behavior	of	JavaScript	objects
Prototypes

Instance	properties	versus	prototype	properties
Inheritance
Getters	and	setters
Summary

5.	Testing	and	Debugging
Unit	testing

Test-driven	development
Behavior-driven	development

JavaScript	debugging
Syntax	errors
Using	strict
Runtime	exceptions

Console.log	and	asserts
Chrome	DevTools

Summary
6.	ECMAScript	6

Shims	or	polyfills
Transpilers
ES6	syntax	changes

Block	scoping
Default	parameters
Spread	and	rest
Destructuring
Object	literals
Template	literals
Maps	and	Sets
Symbols
Iterators
For..of	loops
Arrow	functions

Summary
7.	DOM	Manipulation	and	Events

DOM
Accessing	DOM	elements
Accessing	specific	nodes

Chaining
Traversal	and	manipulation
Working	with	browser	events
Propagation
jQuery	event	handling	and	propagation

Event	delegation
The	event	object
Summary

8.	Server-Side	JavaScript
An	asynchronous	evented-model	in	a	browser
Callbacks
Timers
EventEmitters
Modules

Creating	modules
npm

Installing	packages
JavaScript	performance

JavaScript	profiling
The	CPU	profile
The	Timeline	view

Summary
2.	Module	2

1.	Designing	for	Fun	and	Profit
The	road	to	JavaScript

The	early	days
A	pause
The	way	of	GMail
JavaScript	everywhere

What	is	a	design	pattern?
Anti-patterns
Summary

2.	Organizing	Code
Chunks	of	code
What's	the	matter	with	global	scope	anyway?
Objects	in	JavaScript
Build	me	a	prototype
Inheritance
Modules
ECMAScript	2015	classes	and	modules
Best	practices	and	troubleshooting
Summary

3.	Creational	Patterns
Abstract	factory

Implementation
Builder

Implementation
Factory	method

Implementation
Singleton

Implementation
Disadvantages

Prototype
Implementation

Tips	and	tricks
Summary

4.	Structural	Patterns
Adapter

Implementation
Bridge

Implementation
Composite

Example
Implementation

Decorator
Implementation

Façade
Implementation

Flyweight
Implementation

Proxy
Implementation

Hints	and	tips
Summary

5.	Behavioral	Patterns
Chain	of	responsibility

Implementation
Command

Command	message
Invoker
Receiver

Interpreter
Example
Implementation

Iterator
Implementation
ECMAScript	2015	iterators

Mediator
Implementation

Memento
Implementation

Observer
Implementation

State
Implementation

Strategy
Implementation

Template	method
Implementation

Visitor
Hints	and	tips
Summary
Part	2

6.	Functional	Programming
Functional	functions	are	side-effect-free
Function	passing

Implementation
Filters	and	pipes

Implementation
Accumulators

Implementation
Memoization

Implementation
Immutability
Lazy	instantiation

Implementation
Hints	and	tips
Summary

7.	Reactive	Programming
Application	state	changes
Streams
Filtering	streams
Merging	streams
Streams	for	multiplexing
Hints	and	tips
Summary

8.	Application	Patterns
First,	some	history
Model	View	Controller

MVC	code
Model	View	Presenter

MVP	code
Model	View	ViewModel

MVVM	code
A	better	way	to	transfer	changes	between	the	model	and	the	view
Observing	view	changes

Tips	and	tricks
Summary

9.	Web	Patterns
Sending	JavaScript

Combining	files
Minification
Content	Delivery	Networks

Plugins
jQuery
d3

Doing	two	things	at	once	–	multithreading
Circuit	breaker	pattern

Back-off
Degraded	application	behavior

Promise	pattern
Hints	and	tips

Summary
10.	Messaging	Patterns

What's	a	message	anyway?
Commands
Events

Request-reply
Publish-subscribe

Fan	out	and	in
Dead	letter	queues

Message	replay
Pipes	and	filters
Versioning	messages

Hints	and	tips
Summary

11.	Microservices
Façade
Service	selector
Aggregate	services
Pipeline
Message	upgrader
Failure	patterns

Service	degradation
Message	storage
Message	replay
Indempotence	of	message	handling

Hints	and	tips
Summary

12.	Patterns	for	Testing
The	testing	pyramid
Testing	in	the	small	with	unit	tests
Arrange-Act-Assert

Assert
Fake	objects
Test	spies
Stubs
Mock
Monkey	patching
Interacting	with	the	user	interface

Browser	testing
Faking	the	DOM
Wrapping	the	manipulation

Tips	and	tricks
Summary

13.	Advanced	Patterns
Dependency	injection
Live	post	processing
Aspect	oriented	programming
Mixins
Macros

Tips	and	tricks
Summary

14.	ECMAScript-2015/2016	Solutions	Today
TypeScript

Decorators
Async/Await
Typing

BabelJS
Classes
Default	parameters
Template	literals
Block	bindings	with	let
In	production

Tips	and	tricks
Summary

3.	Module	3
1.	The	Powers	of	JavaScript's	Functional	Side	–	a	Demonstration

Introduction
The	demonstration
The	application	–	an	e-commerce	website

Imperative	methods
Functional	programming
Summary

2.	Fundamentals	of	Functional	Programming
Functional	programming	languages

What	makes	a	language	functional?
Advantages

Cleaner	code
Modularity
Reusability
Reduced	coupling
Mathematically	correct

Functional	programming	in	a	nonfunctional	world
Is	JavaScript	a	functional	programming	language?

Working	with	functions
Self-invoking	functions	and	closures
Higher-order	functions
Pure	functions
Anonymous	functions
Method	chains
Recursion

Divide	and	conquer
Lazy	evaluation

The	functional	programmer's	toolkit
Callbacks
Array.prototype.map()
Array.prototype.filter()
Array.prototype.reduce()
Honorable	mentions

Array.prototype.forEach
Array.prototype.concat
Array.prototype.reverse
Array.prototype.sort
Array.prototype.every	and	Array.prototype.some

Summary
3.	Setting	Up	the	Functional	Programming	Environment

Introduction
Functional	libraries	for	JavaScript

Underscore.js
Fantasy	Land
Bilby.js
Lazy.js
Bacon.js
Honorable	mentions

Development	and	production	environments
Browsers
Server-side	JavaScript

A	functional	use	case	in	the	server-side	environment
CLI
Using	functional	libraries	with	other	JavaScript	modules
Functional	languages	that	compile	into	JavaScript

Summary
4.	Implementing	Functional	Programming	Techniques	in	JavaScript

Partial	function	application	and	currying
Function	manipulation

Apply,	call,	and	the	this	keyword
Binding	arguments
Function	factories

Partial	application
Partial	application	from	the	left
Partial	application	from	the	right

Currying
Function	composition

Compose
Sequence	–	compose	in	reverse

Compositions	versus	chains
Programming	with	compose

Mostly	functional	programming
Handling	events

Functional	reactive	programming
Reactivity
Putting	it	all	together

Summary
5.	Category	Theory

Category	theory
Category	theory	in	a	nutshell
Type	safety

Object	identities

Functors
Creating	functors
Arrays	and	functors
Function	compositions,	revisited

Monads
Maybes
Promises
Lenses
jQuery	is	a	monad

Implementing	categories
Summary

6.	Advanced	Topics	and	Pitfalls	in	JavaScript
Recursion

Tail	recursion
The	Tail-call	elimination

Trampolining
The	Y-combinator

Memoization
Variable	scope

Scope	resolutions
Global	scope
Local	scope
Object	properties

Closures
Gotchas

Function	declarations	versus	function	expressions	versus	the	function
constructor

Function	declarations
Function	expressions
The	function	constructor
Unpredictable	behavior

Summary
7.	Functional	and	Object-oriented	Programming	in	JavaScript

JavaScript	–	the	multi-paradigm	language
JavaScript's	object-oriented	implementation	–	using	prototypes

Inheritance
JavaScript's	prototype	chain
Inheritance	in	JavaScript	and	the	Object.create()	method

Mixing	functional	and	object-oriented	programming	in	JavaScript
Functional	inheritance

Strategy	Pattern
Mixins

Classical	mixins
Functional	mixins

Summary
A.	Common	Functions	for	Functional	Programming	in	JavaScript
B.	Glossary	of	Terms

A.	Bibliography
Index

JavaScript:	Functional
Programming	for	JavaScript
Developers

JavaScript:	Functional
Programming	for	JavaScript
Developers
Unlock	the	powers	of	functional	programming	hidden
within	JavaScript	to	build	smarter,	cleaner,	and	more

reliable	web	apps

A	course	in	three	modules

BIRMINGHAM	-	MUMBAI

JavaScript:	Functional
Programming	for	JavaScript
Developers
Copyright	©	2016	Packt	Publishing	All	rights	reserved.
No	part	of	this	course	may	be	reproduced,	stored	in	a
retrieval	system,	or	transmitted	in	any	form	or	by	any
means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations
embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this
course	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this
course	is	sold	without	warranty,	either	express	or
implied.	Neither	the	authors,	nor	Packt	Publishing,	and
its	dealers	and	distributors	will	be	held	liable	for	any
damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	course.

Packt	Publishing	has	endeavored	to	provide	trademark
information	about	all	of	the	companies	and	products
mentioned	in	this	course	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee
the	accuracy	of	this	information.

Published	on:	August	2016

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78712-466-0

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Ved	Antani

Simon	Timms

Dan	Mantyla

Reviewers

Ivano	Malavolta

Dobrin	Ganev

Dom	Derrien

Joe	Dorocak

Peter	Ehrlich

Edward	E.	Griebel	Jr.

Content	Development	Editor

Pooja	Mhapsekar

Graphics

Disha	Haria

Production	Coordinator

Aparna	Bhagat

Preface
Functional	programming	is	a	style	that	emphasizes	and
enables	smarter	code	that	minimizes	complexity	and
increases	modularity.	It's	a	way	of	writing	cleaner	code
through	clever	ways	of	mutating,	combining	and	using
functions.	And	JavaScript	provides	an	excellent	medium
for	this	approach.	JavaScript,	the	internet's	scripting
language,	is	actually	a	functional	language	at	heart.	By
learning	how	to	expose	JavaScript's	true	identity	as	a
functional	language,	we	can	implement	web	apps	that
are	more	powerful,	easier	to	maintain	and	more	reliable.
JavaScript's	odd	quirks	and	pitfalls	will	suddenly	become
clear	and	the	language	as	a	whole	will	make	infinitely
more	sense.	Learning	how	to	use	functional
programming	will	make	you	a	better	programmer	for	life.

This	course	is	a	guide	for	both	new	and	experienced
JavaScript	developers	who	are	interested	in	learning
functional	programming.	With	a	focus	on	the	progression
of	functional	programming	techniques	and	styles	in
JavaScript,	detailed	information	of	JavaScript	libraries,
this	course	will	help	you	to	write	smarter	code	and
become	a	better	programmer.

What	this	learning	path
covers

Module	1,	Mastering	JavaScript,	provides	a	detailed
overview	of	the	language	fundamentals	and	some	of	the
modern	tools	and	libraries	–	like	jQuery,	underscore.js
and	jasmine.

Module	2,	Mastering	JavaScript	Design	Patterns-Second
Edition,	is	divided	into	two	main	parts.	The	first	part
covers	the	classical	design	patterns,	which	are	found	in
the	GoF	book	whereas	the	second	part	looks	at	patterns,
which	are	either	not	covered	in	the	GoF	book	or	ones
that	are	more	specific	to	JavaScript.

Module	3,	Functional	Programming	in	JavaScript,
explores	the	core	concepts	of	functional	programming
common	to	all	functional	languages,	with	examples	of
their	use	in	JavaScript.

What	you	need	for	this
learning	path
All	the	examples	in	this	course	can	be	run	on	any	of	the
modern	browsers.	For	the	last	chapter	from	first	module,
you	will	need	Node.js.	You	will	need	the	following	to	run
the	examples	and	samples	from	this	course:

A	computer	with	Windows	7	or	higher,	Linux	or	Mac	OSX	installed

Latest	version	of	Google	Chrome	or	Mozilla	Firefox	browser

A	texteditor	of	your	choice.	Sublime	Text,	Vi,	Atom	or	Notepad++
would	be	ideal.	The	choice	is	entirely	yours.

There	are	standalone	JavaScript	engines	written	in	C++
(V8)	and	Java	(Rhino)	and	these	are	used	to	power	all
sorts	of	tools	such	as	nodejs,	couchdb	and	even
elasticsearch.	These	patterns	can	be	applied	to	any	of
these	technologies.

Who	this	learning	path	is	for
If	you	are	a	JavaScript	developer	interested	in	learning
functional	programming,	looking	for	the	quantum	leap
towards	mastering	the	JavaScript	language,	or	just	want
to	become	a	better	programmer	in	general,	then	this
course	is	ideal	for	you.	This	guide	is	aimed	at
programmers,	involved	in	developing	reactive	front-end
apps,	server-side	apps	that	wrangle	with	reliability	and
concurrency,	and	everything	in	between.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us
know	what	you	think	about	this	course—what	you	liked
or	disliked.	Reader	feedback	is	important	for	us	as	it
helps	us	develop	titles	that	you	will	really	get	the	most
out	of.

To	send	us	general	feedback,	simply	e-mail
<feedback@packtpub.com>,	and	mention	the
course's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are
interested	in	either	writing	or	contributing	to	a	book,	see
our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packtproduct,	we
have	a	number	of	things	to	help	you	to	get	the	most	from
your	purchase.

Downloading	theexample	code
You	can	download	the	example	code	files	for	this	course
from	your	account	at	http://www.packtpub.com.	If	you
purchased	this	course	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have
the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these
steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and
password.

2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enterthe	name	of	the	course	in	the	Search	box.
5.	 Select	the	course	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	course

from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on
theCode	Filesbutton	on	the	course's	webpage	at	the
Packt	Publishing	website.	This	page	can	be	accessed	by
entering	the	course's	name	in	the	Search	box.	Please
note	that	you	need	to	be	logged	into	your	Packt	account.

http://www.packtpub.com
http://www.packtpub.com/support

Once	the	file	is	downloaded,	please	make	sure	that	you
unzip	or	extract	the	folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows

Zipeg	/	iZip	/	UnRarX	for	Mac

7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	course	is	also	hosted	on	GitHub
at	https://github.com/PacktPublishing/JavaScript--
Functional-Programming-for-JavaScript-Developers.We
also	have	other	code	bundles	from	our	rich	catalog	of
books,	courses	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

Errata
Although	we	have	taken	every	care	to	ensure	the
accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	courses—maybe	a	mistake	in	the
text	or	the	code—we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	course.	If	you	find	any	errata,	please
report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	course,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details	of	your
errata.	Once	your	errata	are	verified,	your	submission
will	be	accepted	and	the	errata	will	be	uploaded	to	our
website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

https://github.com/PacktPublishing/JavaScript--Functional-Programming-for-JavaScript-Developers
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and
enter	the	name	of	the	coursein	the	search	field.	The
required	information	will	appear	under	the	Errata
section.

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an
ongoing	problem	across	all	media.	At	Packt,	we	take	the
protection	of	our	copyright	and	licenses	very	seriously.	If
you	come	across	any	illegal	copies	of	our	works	in	any
form	on	the	Internet,	please	provide	us	with	the	location
address	or	website	name	immediately	so	that	we	can
pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>
with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and
our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	course,	you
can	contact	us	at	<questions@packtpub.com>,	and
we	will	do	our	best	to	address	the	problem.

https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Part	1.	Module	1
Mastering	JavaScript

Explore	and	master	modern	JavaScript	techniques	in
order	to	build	large-scale	web	applications

Chapter	1.	JavaScript
Primer
It	is	always	difficult	to	pen	the	first	few	words,	especially
on	a	subject	like	JavaScript.	This	difficulty	arises
primarily	because	so	many	things	have	been	said	about
this	language.	JavaScript	has	been	the	Language	of	the
Web—lingua	franca,	if	you	will,	since	the	earliest	days	of
the	Netscape	Navigator.	JavaScript	went	from	a	tool	of
the	amateur	to	the	weapon	of	the	connoisseur	in	a
shockingly	short	period	of	time.

JavaScript	is	the	most	popular	language	on	the	web	and
open	source	ecosystem.	http://githut.info/	charts	the
number	of	active	repositories	and	overall	popularity	of
the	language	on	GitHub	for	the	last	few	years.
JavaScript's	popularity	and	importance	can	be	attributed
to	its	association	with	the	browser.	Google's	V8	and
Mozilla's	SpiderMonkey	are	extremely	optimized
JavaScript	engines	that	power	Google	Chrome	and
Mozilla	Firefox	browsers,	respectively.

Although	web	browsers	are	the	most	widely	used
platforms	for	JavaScript,	modern	databases	such	as
MongoDB	and	CouchDB	use	JavaScript	as	their
scripting	and	query	language.	JavaScript	has	become	an
important	platform	outside	browsers	as	well.	Projects
such	as	Node.js	and	io.js	provide	powerful	platforms	to

http://githut.info/

develop	scalable	server	environments	using	JavaScript.
Several	interesting	projects	are	pushing	the	language
capabilities	to	its	limits,	for	example,	Emscripten
(http://kripken.github.io/emscripten-site/)	is	a	Low-Level
Virtual	Machine	(LLVM)-based	project	that	compiles	C
and	C++	into	highly	optimizable	JavaScript	in	an	asm.js
format.	This	allows	you	to	run	C	and	C++	on	the	web	at
near	native	speed.

JavaScript	is	built	around	solid	foundations	regarding,	for
example,	functions,	dynamic	objects,	loose	typing,
prototypal	inheritance,	and	a	powerful	object	literal
notation.

While	JavaScript	is	built	on	sound	design	principles,
unfortunately,	the	language	had	to	evolve	along	with	the
browser.	Web	browsers	are	notorious	in	the	way	they
support	various	features	and	standards.	JavaScript	tried
to	accommodate	all	the	whims	of	the	browsers	and
ended	up	making	some	very	bad	design	decisions.
These	bad	parts	(the	term	made	famous	by	Douglas
Crockford)	overshadowed	the	good	parts	of	the
language	for	most	people.	Programmers	wrote	bad
code,	other	programmers	had	nightmares	trying	to
debug	that	bad	code,	and	the	language	eventually	got	a
bad	reputation.	Unfortunately,	JavaScript	is	one	of	the
most	misunderstood	programming	languages
(http://javascript.crockford.com/javascript.html).

Another	criticism	leveled	at	JavaScript	is	that	it	lets	you
get	things	done	without	you	being	an	expert	in	the

http://kripken.github.io/emscripten-site/
http://javascript.crockford.com/javascript.html

language.	I	have	seen	programmers	write	exceptionally
bad	JavaScript	code	just	because	they	wanted	to	get	the
things	done	quickly	and	JavaScript	allowed	them	to	do
just	this.	I	have	spent	hours	debugging	very	bad	quality
JavaScript	written	by	someone	who	clearly	was	not	a
programmer.	However,	the	language	is	a	tool	and	cannot
be	blamed	for	sloppy	programming.	Like	all	crafts,
programming	demands	extreme	dedication	and
discipline.

A	little	bit	of	history
In	1993,	the	Mosaic	browser	of	National	Center	for
Supercomputing	Applications	(NCSA)	was	one	of	the
first	popular	web	browsers.	A	year	later,	Netscape
Communications	created	the	proprietary	web	browser,
Netscape	Navigator.	Several	original	Mosaic	authors
worked	on	Navigator.

In	1995,	Netscape	Communications	hired	Brendan	Eich
with	the	promise	of	letting	him	implement	Scheme	(a
Lisp	dialect)	in	the	browser.	Before	this	happened,
Netscape	got	in	touch	with	Sun	Microsystems	(now
Oracle)	to	include	Java	in	the	Navigator	browser.

Due	to	the	popularity	and	easy	programming	of	Java,
Netscape	decided	that	a	scripting	language	had	to	have
a	syntax	similar	to	that	of	Java.	This	ruled	out	adopting
existing	languages	such	as	Python,	Tool	Command
Language	(TCL),	or	Scheme.	Eich	wrote	the	initial

prototype	in	just	10	days
(http://www.computer.org/csdl/mags/co/2012/02/mco201
2020007.pdf),	in	May	1995.	JavaScript's	first	code	name
was	Mocha,	coined	by	Marc	Andreessen.	Netscape	later
changed	it	to	LiveScript,	for	trademark	reasons.	In	early
December	1995,	Sun	licensed	the	trademark	Java	to
Netscape.	The	language	was	renamed	to	its	final	name,
JavaScript.

http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf

How	to	use	this	book
This	book	is	not	going	to	help	if	you	are	looking	to	get
things	done	quickly.	This	book	is	going	to	focus	on	the
correct	ways	to	code	in	JavaScript.	We	are	going	to
spend	a	lot	of	time	understanding	how	to	avoid	the	bad
parts	of	the	language	and	build	reliable	and	readable
code	in	JavaScript.	We	will	skirt	away	from	sloppy
features	of	the	language	just	to	make	sure	that	you	are
not	getting	used	to	them—if	you	have	already	learned	to
code	using	these	habits,	this	book	will	try	to	nudge	you
away	from	this.	There	will	be	a	lot	of	focus	on	the	correct
style	and	tools	to	make	your	code	better.

Most	of	the	concepts	in	this	book	are	going	to	be
examples	and	patterns	from	real-world	problems.	I	will
insist	that	you	code	each	of	the	snippets	to	make	sure
that	your	understanding	of	the	concept	is	getting
programmed	into	your	muscle	memory.	Trust	me	on	this,
there	is	no	better	way	to	learn	programming	than	writing
a	lot	of	code.

Typically,	you	will	need	to	create	an	HTML	page	to	run
an	embedded	JavaScript	code	as	follows:

<!DOCTYPE	html>

<html>

<head>

		<script	type="text/javascript"	

src="script.js"></script>

		<script	type="text/javascript">

				var	x	=	"Hello	World";

				console.log(x);

		</script>

</head>

<body>

</body>

</html>

This	sample	code	shows	two	ways	in	which	JavaScript	is
embedded	into	the	HTML	page.	First,	the	<script>	tag
in	<head>	imports	JavaScript,	while	the	second
<script>	tag	is	used	to	embed	inline	JavaScript.

TIPTIP
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

You	can	save	this	HTML	page	locally	and	open	it	in	a
browser.	On	Firefox,	you	can	open	the	Developer
console	(Firefox	menu	|	Developer	|	Web	Console)	and
you	can	see	the	"Hello	World"	text	on	the	Console	tab.
Based	on	your	OS	and	browser	version,	the	screen	may
look	different:

You	can	run	the	page	and	inspect	it	using	Chrome's

http://www.packtpub.com
http://www.packtpub.com/support

Developer	Tool:

A	very	interesting	thing	to	notice	here	is	that	there	is	an
error	displayed	on	the	console	regarding	the	missing
.js	file	that	we	are	trying	to	import	using	the	following
line	of	code:

<script	type="text/javascript"

src="script.js"></script>

Using	browser	developer	consoles	or	an	extension	such
as	Firebug	can	be	very	useful	in	debugging	error
conditions	in	the	code.	We	will	discuss	in	detail	the
debugging	techniques	in	later	chapters.

Creating	such	HTML	scaffolds	can	be	tedious	for	every
exercise	in	this	book.	Instead,	we	want	to	use	a	Read-
Eval-Print-Loop	(REPL)	for	JavaScript.	Unlike	Python,
JavaScript	does	not	come	packaged	with	an	REPL.	We
can	use	Node.js	as	an	REPL.	If	you	have	Node.js
installed	on	your	machine,	you	can	just	type	node	on	the
command	line	and	start	experimenting	with	it.	You	will
observe	that	Node	REPL	errors	are	not	very	elegantly
displayed.

Let's	see	the	following	example:

EN-VedA:~$	node

>function	greeter(){

		x="World"l

SyntaxError:	Unexpected	identifier

		at	Object.exports.createScript	

(vm.js:44:10)

		at	REPLServer.defaultEval	

(repl.js:117:23)

		at	bound	(domain.js:254:14)

		…

After	this	error,	you	will	have	to	restart.	Still,	it	can	help
you	try	out	small	fragments	of	code	a	lot	faster.

Another	tool	that	I	personally	use	a	lot	is	JS	Bin
(http://jsbin.com/).	JS	Bin	provides	you	with	a	great	set	of
tools	to	test	JavaScript,	such	as	syntax	highlighting	and
runtime	error	detection.	The	following	is	a	screenshot	of
JS	Bin:

Based	on	your	preference,	you	can	pick	the	tool	that
makes	it	easier	to	try	out	the	code	samples.	Regardless

http://jsbin.com/

of	which	tool	you	use,	make	sure	that	you	type	out	every
exercise	in	this	book.

Hello	World
No	programming	language	should	be	published	without
a	customary	Hello	World	program—why	should	this	book
be	any	different?

Type	(don't	copy	and	paste)	the	following	code	in	JS	Bin:

function	sayHello(what)	{

		return	"Hello	"	+	what;

}

console.log(sayHello("world"));

Your	screen	should	look	something	as	follows:

An	overview	of	JavaScript
In	a	nutshell,	JavaScript	is	a	prototype-based	scripting
language	with	dynamic	typing	and	first-class	function
support.	JavaScript	borrows	most	of	its	syntax	from
Java,	but	is	also	influenced	by	Awk,	Perl,	and	Python.
JavaScript	is	case-sensitive	and	white	space-agnostic.

COMMENTS
JavaScript	allows	single	line	or	multiple	line	comments.
The	syntax	is	similar	to	C	or	Java:

//	a	one	line	comment

	

/*	this	is	a	longer,	

			multiline	comment

	

	

	You	can't	/*	nest	comments	/	SyntaxError	

/

VARIABLES
Variables	are	symbolic	names	for	values.	The	names	of
variables,	or	identifiers,	must	follow	certain	rules.

A	JavaScript	variable	name	must	start	with	a	letter,
underscore	(_),	or	dollar	sign	($);	subsequent	characters
can	also	be	digits	(0-9).	As	JavaScript	is	case	sensitive,
letters	include	the	characters	A	through	Z	(uppercase)
and	the	characters	a	through	z	(lowercase).

You	can	use	ISO	8859-1	or	Unicode	letters	in	variable
names.

New	variables	in	JavaScript	should	be	defined	with	the
var	keyword.	If	you	declare	a	variable	without	assigning
a	value	to	it,	its	type	is	undefined	by	default.	One	terrible
thing	is	that	if	you	don't	declare	your	variable	with	the	var
keyword,	they	become	implicit	globals.	Let	me	reiterate
that	implicit	globals	are	a	terrible	thing—we	will	discuss

this	in	detail	later	in	the	book	when	we	discuss	variable
scopes	and	closures,	but	it's	important	to	remember	that
you	should	always	declare	a	variable	with	the	var
keyword	unless	you	know	what	you	are	doing:

var	a;						//declares	a	variable	but	its

undefined

var	b	=	0;

console.log(b);				//0

console.log(a);				//undefined

console.log(a+b);		//NaN

The	NaN	value	is	a	special	value	that	indicates	that	the
entity	is	not	a	number.

CONSTANTS
You	can	create	a	read-only	named	constant	with	the
const	keyword.	The	constant	name	must	start	with	a
letter,	underscore,	or	dollar	sign	and	can	contain
alphabetic,	numeric,	or	underscore	characters:

const	area_code	=	'515';

A	constant	cannot	change	the	value	through	assignment
or	be	redeclared,	and	it	has	to	be	initialized	to	a	value.

JavaScript	supports	the	standard	variations	of	types:

Number

String

Boolean

Symbol	(new	in	ECMAScript	6)

Object:

Function

Array

Date

RegExp

Null

Undefined

NUMBER
The	Number	type	can	represent	both	32-bit	integer	and
64-bit	floating	point	values.	For	example,	the	following
line	of	code	declares	a	variable	to	hold	an	integer	value,
which	is	defined	by	the	literal	555:

var	aNumber	=	555;

To	define	a	floating	point	value,	you	need	to	include	a
decimal	point	and	one	digit	after	the	decimal	point:

var	aFloat	=	555.0;

Essentially,	there's	no	such	thing	as	an	integer	in
JavaScript.	JavaScript	uses	a	64-bit	floating	point
representation,	which	is	the	same	as	Java's	double.

Hence,	you	would	see	something	as	follows:

EN-VedA:~$	node

>	0.1+0.2

0.30000000000000004

>	(0.1+0.2)===0.3

false

I	recommend	that	you	read	the	exhaustive	answer	on
Stack	Overflow
(http://stackoverflow.com/questions/588004/is-floating-
point-math-broken)	and	(http://floating-point-gui.de/),
which	explains	why	this	is	the	case.	However,	it	is
important	to	understand	that	floating	point	arithmetic
should	be	handled	with	due	care.	In	most	cases,	you	will
not	have	to	rely	on	extreme	precision	of	decimal	points
but	if	you	have	to,	you	can	try	using	libraries	such	as
big.js	(https://github.com/MikeMcl/big.js)	that	try	to	solve
this	problem.

If	you	intend	to	code	extremely	precise	financial
systems,	you	should	represent	$	values	as	cents	to
avoid	rounding	errors.	One	of	the	systems	that	I	worked
on	used	to	round	off	the	Value	Added	Tax	(VAT)
amount	to	two	decimal	points.	With	thousands	of	orders
a	day,	this	rounding	off	amount	per	order	became	a
massive	accounting	headache.	We	needed	to	overhaul
the	entire	Java	web	service	stack	and	JavaScript
frontend	for	this.

A	few	special	values	are	also	defined	as	part	of	the
Number	type.	The	first	two	are	Number.MAX_VALUE
and	Number.MIN_VALUE,	which	define	the	outer
bounds	of	the	Number	value	set.	All	ECMAScript
numbers	must	fall	between	these	two	values,	without
exception.	A	calculation	can,	however,	result	in	a
number	that	does	not	fall	in	between	these	two	numbers.

http://stackoverflow.com/questions/588004/is-floating-point-math-broken
http://floating-point-gui.de/
https://github.com/MikeMcl/big.js

When	a	calculation	results	in	a	number	greater	than
Number.MAX_VALUE,	it	is	assigned	a	value	of
Number.POSITIVE_INFINITY,	meaning	that	it	has	no
numeric	value	anymore.	Likewise,	a	calculation	that
results	in	a	number	less	than	Number.MIN_VALUE	is
assigned	a	value	of	Number.NEGATIVE_INFINITY,
which	also	has	no	numeric	value.	If	a	calculation	returns
an	infinite	value,	the	result	cannot	be	used	in	any	further
calculations.	You	can	use	the	isInfinite()	method	to
verify	if	the	calculation	result	is	an	infinity.

Another	peculiarity	of	JavaScript	is	a	special	value	called
NaN	(short	for	Not	a	Number).	In	general,	this	occurs
when	conversion	from	another	type	(String,	Boolean,
and	so	on)	fails.	Observe	the	following	peculiarity	of
NaN:

EN-VedA:~	$	node

>	isNaN(NaN);

true

>	NaN==NaN;

false

>	isNaN("elephant");

true

>	NaN+5;

NaN

The	second	line	is	strange—NaN	is	not	equal	to	NaN.	If
NaN	is	part	of	any	mathematical	operation,	the	result
also	becomes	NaN.	As	a	general	rule,	stay	away	from
using	NaN	in	any	expression.	For	any	advanced
mathematical	operations,	you	can	use	the	Math	global
object	and	its	methods:

>	Math.E

2.718281828459045

>	Math.SQRT2

1.4142135623730951

>	Math.abs(-900)

900

>	Math.pow(2,3)

8

You	can	use	the	parseInt()	and	parseFloat()
methods	to	convert	a	string	expression	to	an	integer	or
float:

>	parseInt("230",10);

230

>	parseInt("010",10);

10

>	parseInt("010",8);	//octal	base

8

>	parseInt("010",2);	//binary

2

>	+	"4"

4

With	parseInt(),	you	should	provide	an	explicit	base
to	prevent	nasty	surprises	on	older	browsers.	The	last
trick	is	just	using	a	+	sign	to	auto-convert	the	"42"	string
to	a	number,	42.	It	is	also	prudent	to	handle	the
parseInt()	result	with	isNaN().	Let's	see	the
following	example:

var	underterminedValue	=	"elephant";

if	(isNaN(parseInt(underterminedValue,2)))

{

			console.log("handle	not	a	number

case");

}

}

else

{

			console.log("handle	number	case");

}

In	this	example,	you	are	not	sure	of	the	type	of	the	value
that	the	underterminedValue	variable	can	hold	if	the
value	is	being	set	from	an	external	interface.	If	isNaN()
is	not	handled,	parseInt()	will	cause	an	exception
and	the	program	can	crash.

STRING
In	JavaScript,	strings	are	a	sequence	of	Unicode
characters	(each	character	takes	16	bits).	Each
character	in	the	string	can	be	accessed	by	its	index.	The
first	character	index	is	zero.	Strings	are	enclosed	inside
"	or	'—both	are	valid	ways	to	represent	strings.	Let's
see	the	following:

>	console.log("Hippopotamus	chewing	gum");

Hippopotamus	chewing	gum

>	console.log('Single	quoted

hippopotamus');

Single	quoted	hippopotamus

>	console.log("Broken	\n	lines");

Broken

	lines

The	last	line	shows	you	how	certain	character	literals
when	escaped	with	a	backslash	\	can	be	used	as
special	characters.	The	following	is	a	list	of	such	special
characters:

\n:	Newline

\t:	Tab

\b:	Backspace

\r:	Carriage	return

\\:	Backslash

\':	Single	quote

\":	Double	quote

You	get	default	support	for	special	characters	and
Unicode	literals	with	JavaScript	strings:

>	'\xA9'

'©'

>	'\u00A9'

'©'

One	important	thing	about	JavaScript	Strings,	Numbers,
and	Booleans	is	that	they	actually	have	wrapper	objects
around	their	primitive	equivalent.	The	following	example
shows	the	usage	of	the	wrapper	objects:

var	s	=	new	String("dummy");	//Creates	a

String	object

console.log(s);	//"dummy"

console.log(typeof	s);	//"object"

var	nonObject	=	"1"	+	"2";	//Create	a

String	primitive

console.log(typeof	nonObject);	//"string"

var	objString	=	new	String("1"	+	"2");

//Creates	a	String	object

console.log(typeof	objString);	//"object"

//Helper	functions

console.log("Hello".length);	//5

console.log("Hello".charAt(0));	//"H"

console.log("Hello".charAt(1));	//"e"

console.log("Hello".indexOf("e"));	//1

console.log("Hello".indexOf("e"));	//1

console.log("Hello".lastIndexOf("l"));	//3

console.log("Hello".startsWith("H"));

//true

console.log("Hello".endsWith("o"));	//true

console.log("Hello".includes("X"));

//false

var	splitStringByWords	=	"Hello

World".split("	");

console.log(splitStringByWords);

//["Hello",	"World"]

var	splitStringByChars	=	"Hello

World".split("");

console.log(splitStringByChars);	//["H",

"e",	"l",	"l",	"o",	"	",	"W",	"o",	"r",

"l",	"d"]

console.log("lowercasestring".toUpperCase(

));	//"LOWERCASESTRING"

console.log("UPPPERCASESTRING".toLowerCase

());	//"upppercasestring"

console.log("There	are	no	spaces	in	the

end					".trim());	//"There	are	no	spaces

in	the	end"

JavaScript	allows	multiline	strings	also.	Strings	enclosed
within	`	(Grave	accent
—https://en.wikipedia.org/wiki/Grave_accent)	are
considered	multiline.	Let's	see	the	following	example:

>	console.log(`string	text	on	first	line

string	text	on	second	line	`);

"string	text	on	first	line

string	text	on	second	line	"

This	kind	of	string	is	also	known	as	a	template	string	and
can	be	used	for	string	interpolation.	JavaScript	allows
Python-like	string	interpolation	using	this	syntax.

https://en.wikipedia.org/wiki/Grave_accent

Normally,	you	would	do	something	similar	to	the
following:

var	a=1,	b=2;

console.log("Sum	of	values	is	:"	+	(a+b)	+	

"	and	multiplication	is	:"	+	(a*b));

However,	with	string	interpolation,	things	become	a	bit
clearer:

console.log(`Sum	of	values	is	:${a+b}	and	

multiplication	is	:	${a*b}`);

UNDEFINED	VALUES
JavaScript	indicates	an	absence	of	meaningful	values	by
two	special	values—null,	when	the	non-value	is
deliberate,	and	undefined,	when	the	value	is	not
assigned	to	the	variable	yet.	Let's	see	the	following
example:

>	var	xl;

>	console.log(typeof	xl);

undefined

>	console.log(null==undefined);

true

BOOLEANS
JavaScript	Boolean	primitives	are	represented	by	true
and	false	keywords.	The	following	rules	govern	what
becomes	false	and	what	turns	out	to	be	true:

False,	0,	the	empty	string	(""),	NaN,	null,	and	undefined	are

represented	as	false

Everything	else	is	true

JavaScript	Booleans	are	tricky	primarily	because	the
behavior	is	radically	different	in	the	way	you	create	them.

There	are	two	ways	in	which	you	can	create	Booleans	in
JavaScript:

You	can	create	primitive	Booleans	by	assigning	a	true	or	false	literal
to	a	variable.	Consider	the	following	example:

var	pBooleanTrue	=	true;

var	pBooleanFalse	=	false;

Use	the	Boolean()	function;	this	is	an	ordinary	function	that	returns

a	primitive	Boolean:

var	fBooleanTrue	=	Boolean(true);

var	fBooleanFalse	=	Boolean(false);

Both	these	methods	return	expected	truthy	or	falsy
values.	However,	if	you	create	a	Boolean	object	using
the	new	operator,	things	can	go	really	wrong.

Essentially,	when	you	use	the	new	operator	and	the
Boolean(value)	constructor,	you	don't	get	a	primitive
true	or	false	in	return,	you	get	an	object	instead—and
unfortunately,	JavaScript	considers	an	object	as	truthy:

var	oBooleanTrue	=	new	Boolean(true);

var	oBooleanFalse	=	new	Boolean(false);

console.log(oBooleanTrue);	//true

console.log(typeof	oBooleanTrue);	//object

if(oBooleanFalse){

	console.log("I	am	seriously	truthy,	don't	

believe	me");

}

>"I	am	seriously	truthy,	don't	believe	me"

if(oBooleanTrue){

	console.log("I	am	also	truthy,	see	?");

}

>"I	am	also	truthy,	see	?"

//Use	valueOf()	to	extract	real	value	

within	the	Boolean	object

if(oBooleanFalse.valueOf()){

	console.log("With	valueOf,	I	am	false");		

}else{

	console.log("Without	valueOf,	I	am	still	

truthy");

}

>"Without	valueOf,	I	am	still	truthy"

So,	the	smart	thing	to	do	is	to	always	avoid	Boolean
constructors	to	create	a	new	Boolean	object.	It	breaks
the	fundamental	contract	of	Boolean	logic	and	you
should	stay	away	from	such	difficult-to-debug	buggy
code.

THE	INSTANCEOF	OPERATOR
One	of	the	problems	with	using	reference	types	to	store
values	has	been	the	use	of	the	typeof	operator,	which
returns	object	no	matter	what	type	of	object	is	being
referenced.	To	provide	a	solution,	you	can	use	the
instanceof	operator.	Let's	see	some	examples:

var	aStringObject	=	new	String("string");

console.log(typeof	aStringObject);								

//"object"

console.log(aStringObject	instanceof	

String);				//true

var	aString	=	"This	is	a	string";

console.log(aString	instanceof	String);					

//false

The	third	line	returns	false.	We	will	discuss	why	this	is
the	case	when	we	discuss	prototype	chains.

DATE	OBJECTS
JavaScript	does	not	have	a	date	data	type.	Instead,	you
can	use	the	Date	object	and	its	methods	to	work	with
dates	and	times	in	your	applications.	A	Date	object	is
pretty	exhaustive	and	contains	several	methods	to
handle	most	date-and	time-related	use	cases.

JavaScript	treats	dates	similarly	to	Java.	JavaScript
store	dates	as	the	number	of	milliseconds	since	January
1,	1970,	00:00:00.

You	can	create	a	Date	object	using	the	following
declaration:

var	dataObject	=	new	Date([parameters]);

The	parameters	for	the	Date	object	constructors	can	be
as	follows:

No	parameters	creates	today's	date	and	time.	For	example,	var

today	=	new	Date();.

A	String	representing	a	date	as	Month	day,	year

hours:minutes:seconds.	For	example,	var

twoThousandFifteen	=	new	Date("December	31,	2015

23:59:59");.	If	you	omit	hours,	minutes,	or	seconds,	the	value	will

be	set	to	0.

A	set	of	integer	values	for	the	year,	month,	and	day.	For	example,
var	christmas	=	new	Date(2015,	11,	25);.

A	set	of	integer	values	for	the	year,	month,	day,	hour,	minute,	and
seconds.	For	example,	var	christmas	=	new	Date(2015,	11,

25,	21,	00,	0);.

Here	are	some	examples	on	how	to	create	and
manipulate	dates	in	JavaScript:

var	today	=	new	Date();

console.log(today.getDate());	//27

console.log(today.getMonth());	//4

console.log(today.getFullYear());	//2015

console.log(today.getHours());	//23

console.log(today.getMinutes());	//13

console.log(today.getSeconds());	//10

//number	of	milliseconds	since	January	1,

1970,	00:00:00	UTC

console.log(today.getTime());

//1432748611392

console.log(today.getTimezoneOffset());

//-330	Minutes

	

//Calculating	elapsed	time

var	start	=	Date.now();

//	loop	for	a	long	time

for	(var	i=0;i<100000;i++);

var	end	=	Date.now();

var	elapsed	=	end	-	start;	//	elapsed	time

in	milliseconds

console.log(elapsed);	//71

For	any	serious	applications	that	require	fine-grained
control	over	date	and	time	objects,	we	recommend	using
libraries	such	as	Moment.js

(https://github.com/moment/moment),	Timezone.js
(https://github.com/mde/timezone-js),	or	date.js
(https://github.com/MatthewMueller/date).	These	libraries
simplify	a	lot	of	recurrent	tasks	for	you	and	help	you
focus	on	other	important	things.

THE	+	OPERATOR
The	+	operator,	when	used	as	a	unary,	does	not	have
any	effect	on	a	number.	However,	when	applied	to	a
String,	the	+	operator	converts	it	to	numbers	as	follows:

var	a=25;

a=+a;												//No	impact	on	a's	value

console.log(a);		//25

	

var	b="70";

console.log(typeof	b);	//string

b=+b;											//converts	string	to

number

console.log(b);	//70

console.log(typeof	b);	//number

The	+	operator	is	used	often	by	a	programmer	to	quickly
convert	a	numeric	representation	of	a	String	to	a
number.	However,	if	the	String	literal	is	not	something
that	can	be	converted	to	a	number,	you	get	slightly
unpredictable	results	as	follows:

var	c="foo";

c=+c;												//Converts	foo	to	number

console.log(c);		//NaN

console.log(typeof	c);		//number

	

var	zero="";

zero=+zero;	//empty	strings	are	converted

https://github.com/moment/moment
https://github.com/mde/timezone-js
https://github.com/MatthewMueller/date

zero=+zero;	//empty	strings	are	converted

to	0

console.log(zero);

console.log(typeof	zero);

We	will	discuss	the	effects	of	the	+	operator	on	several
other	data	types	later	in	the	text.

THE	++	AND	--	OPERATORS
The	++	operator	is	a	shorthand	version	of	adding	1	to	a
value	and	--	is	a	shorthand	to	subtract	1	from	a	value.
Java	and	C	have	equivalent	operators	and	most	will	be
familiar	with	them.	How	about	this?

var	a=	1;

var	b=	a++;

console.log(a);	//2

console.log(b);	//1

Err,	what	happened	here?	Shouldn't	the	b	variable	have
the	value	2?	The	++	and	--	operators	are	unary
operators	that	can	be	used	either	prefix	or	postfix.	The
order	in	which	they	are	used	matters.	When	++	is	used
in	the	prefix	position	as	++a,	it	increments	the	value
before	the	value	is	returned	from	the	expression	rather
than	after	as	with	a++.	Let's	see	the	following	code:

var	a=	1;

var	b=	++a;

console.log(a);		//2

console.log(b);		//2

Many	programmers	use	the	chained	assignments	to

assign	a	single	value	to	multiple	variables	as	follows:

var	a,	b,	c;

a	=	b	=	c	=	0;

This	is	fine	because	the	assignment	operator	(=)	results
in	the	value	being	assigned.	In	this	case,	c=0	is
evaluated	to	0;	this	would	result	in	b=0,	which	also
evaluates	to	0,	and	hence,	a=0	is	evaluated.

However,	a	slight	change	to	the	previous	example	yields
extraordinary	results.	Consider	this:

var	a	=	b	=	0;

In	this	case,	only	the	a	variable	is	declared	with	var,
while	the	b	variable	is	created	as	an	accidental	global.	(If
you	are	in	the	strict	mode,	you	will	get	an	error	for	this.)
With	JavaScript,	be	careful	what	you	wish	for,	you	might
get	it.

BOOLEAN	OPERATORS
There	are	three	Boolean	operators	in	JavaScript—
AND(&),	OR(|),	and	NOT(!).

Before	we	discuss	logical	AND	and	OR	operators,	we
need	to	understand	how	they	produce	a	Boolean	result.
Logical	operators	are	evaluated	from	left	to	right	and
they	are	tested	using	the	following	short-circuit	rules:

Logical	AND:	If	the	first	operand	determines	the	result,	the	second
operand	is	not	evaluated.

In	the	following	example,	I	have	highlighted	the	right-hand	side
expression	if	it	gets	executed	as	part	of	short-circuit	evaluation	rules:

console.log(true		&&	true);	//	true	

AND	true	returns	true

console.log(true		&&	false);//	true	

AND	false	returns	false

console.log(false	&&	true);//	false	

AND	true	returns	false

console.log("Foo"	&&	"Bar");//	

Foo(true)	AND	Bar(true)	returns	Bar

console.log(false	&&	"Foo");//	false	

&&	Foo(true)	returns	false

console.log("Foo"	&&	false);//	

Foo(true)	&&	false	returns	false

console.log(false	&&	(1	==	2));//	

false	&&	false(1==2)	returns	false

Logical	OR:	If	the	first	operand	is	true,	the	second	operand	is	not
evaluated:

console.log(true		||	true);	//	true	

AND	true	returns	true

console.log(true		||	false);//	true	

AND	false	returns	true

console.log(false	||	true);//	false	

AND	true	returns	true

console.log("Foo"	||	"Bar");//	

Foo(true)	AND	Bar(true)	returns	Foo

console.log(false	||	"Foo");//	false	

&&	Foo(true)	returns	Foo

console.log("Foo"	||	false);//	

Foo(true)	&&	false	returns	Foo

console.log(false	||	(1	==	2));//	

false	&&	false(1==2)	returns	false

However,	both	logical	AND	and	logical	OR	can	also	be	used	for	non-
Boolean	operands.	When	either	the	left	or	right	operand	is	not	a
primitive	Boolean	value,	AND	and	OR	do	not	return	Boolean	values.

Now	we	will	explain	the	three	logical	Boolean	operators:

Logical	AND(&&):	If	the	first	operand	object	is	falsy,	it	returns	that
object.	If	its	truthy,	the	second	operand	object	is	returned:

console.log	(0	&&	"Foo");		//First

operand	is	falsy	-	return	it

console.log	("Foo"	&&	"Bar");	//First

operand	is	truthy,	return	the	second

operand

Logical	OR(||):	If	the	first	operand	is	truthy,	it's	returned.	Otherwise,
the	second	operand	is	returned:

console.log	(0	||	"Foo");		//First

operand	is	falsy	-	return	second

operand

console.log	("Foo"	||	"Bar");	//First

operand	is	truthy,	return	it

console.log	(0	||	false);	//First

operand	is	falsy,	return	second

operand

The	typical	use	of	a	logical	OR	is	to	assign	a	default	value	to	a
variable:

function	greeting(name){

				name	=	name	||	"John";

				console.log("Hello	"	+	name);

}

	

greeting("Johnson");	//	alerts	"Hi

Johnson";

greeting();	//alerts	"Hello	John"

You	will	see	this	pattern	frequently	in	most	professional	JavaScript
libraries.	You	should	understand	how	the	defaulting	is	done	by	using
a	logical	OR	operator.

Logical	NOT:	This	always	returns	a	Boolean	value.	The	value
returned	depends	on	the	following:

//If	the	operand	is	an	object,	false

is	returned.

var	s	=	new	String("string");

console.log(!s);														//false

	

//If	the	operand	is	the	number	0,	true

is	returned.

var	t	=	0;

console.log(!t);														//true

	

//If	the	operand	is	any	number	other

than	0,	false	is	returned.

var	x	=	11;

console.log(!x);														//false

	

//If	operand	is	null	or	NaN,	true	is

returned

var	y	=null;

var	z	=	NaN;

console.log(!y);														//true

console.log(!z);														//true

//If	operand	is	undefined,	you	get

true

var	foo;

console.log(!foo);												//true

Additionally,	JavaScript	supports	C-like	ternary	operators
as	follows:

var	allowedToDrive	=	(age	>	21)	?	"yes"	:

"no";

If	(age>21),	the	expression	after	?	will	be	assigned	to
the	allowedToDrive	variable	and	the	expression	after
:	is	assigned	otherwise.	This	is	equivalent	to	an	if-else
conditional	statement.	Let's	see	another	example:

function	isAllowedToDrive(age){

		if(age>21){

				return	true;

		}else{

		}else{

				return	false;

		}

}

console.log(isAllowedToDrive(22));

In	this	example,	the	isAllowedToDrive()	function
accepts	one	integer	parameter,	age.	Based	on	the	value
of	this	variable,	we	return	true	or	false	to	the	calling
function.	This	is	a	well-known	and	most	familiar	if-else
conditional	logic.	Most	of	the	time,	if-else	keeps	the	code
easier	to	read.	For	simpler	cases	of	single	conditions,
using	the	ternary	operator	is	also	okay,	but	if	you	see
that	you	are	using	the	ternary	operator	for	more
complicated	expressions,	try	to	stick	with	if-else	because
it	is	easier	to	interpret	if-else	conditions	than	a	very
complex	ternary	expression.

If-else	conditional	statements	can	be	nested	as	follows:

if	(condition1)	{

		statement1

}	else	if	(condition2)	{

		statement2

}	else	if	(condition3)	{

		statement3

}

..

}	else	{

		statementN

}

Purely	as	a	matter	of	taste,	you	can	indent	the	nested
else	if	as	follows:

if	(condition1)	{

if	(condition1)	{

		statement1

}	else

				if	(condition2)	{

Do	not	use	assignments	in	place	of	a	conditional
statement.	Most	of	the	time,	they	are	used	because	of	a
mistake	as	follows:

if(a=b)	{

		//do	something

}

Mostly,	this	happens	by	mistake;	the	intended	code	was
if(a==b),	or	better,	if(a===b).	When	you	make	this
mistake	and	replace	a	conditional	statement	with	an
assignment	statement,	you	end	up	committing	a	very
difficult-to-find	bug.	However,	if	you	really	want	to	use	an
assignment	statement	with	an	if	statement,	make	sure
that	you	make	your	intentions	very	clear.

One	way	is	to	put	extra	parentheses	around	your
assignment	statement:

if((a=b)){

		//this	is	really	something	you	want	to

do

}

Another	way	to	handle	conditional	execution	is	to	use
switch-case	statements.	The	switch-case	construct	in
JavaScript	is	similar	to	that	in	C	or	Java.	Let's	see	the
following	example:

function	sayDay(day){

function	sayDay(day){

		switch(day){

				case	1:	console.log("Sunday");

						break;

				case	2:	console.log("Monday");

						break;

				default:

						console.log("We	live	in	a	binary

world.	Go	to	Pluto");

		}

}

	

sayDay(1);	//Sunday

sayDay(3);	//We	live	in	a	binary	world.	Go

to	Pluto

One	problem	with	this	structure	is	that	you	have	break
out	of	every	case;	otherwise,	the	execution	will	fall
through	to	the	next	level.	If	we	remove	the	break
statement	from	the	first	case	statement,	the	output	will
be	as	follows:

>sayDay(1);

Sunday

Monday

As	you	can	see,	if	we	omit	the	break	statement	to	break
the	execution	immediately	after	a	condition	is	satisfied,
the	execution	sequence	follows	to	the	next	level.	This
can	lead	to	difficult-to-detect	problems	in	your	code.
However,	this	is	also	a	popular	style	of	writing
conditional	logic	if	you	intend	to	fall	through	to	the	next
level:

function	debug(level,msg){

		switch(level){

				case	"INFO":	//intentional	fall-

				case	"INFO":	//intentional	fall-

through

				case	"WARN"	:

				case	"DEBUG":	console.log(level+	":	"

+	msg);

						break;

				case	"ERROR":	console.error(msg);

		}

}

	

debug("INFO","Info	Message");

debug("DEBUG","Debug	Message");

debug("ERROR","Fatal	Exception");

In	this	example,	we	are	intentionally	letting	the	execution
fall	through	to	write	a	concise	switch-case.	If	levels	are
either	INFO,	WARN,	or	DEBUG,	we	use	the	switch-case
to	fall	through	to	a	single	point	of	execution.	We	omit	the
break	statement	for	this.	If	you	want	to	follow	this
pattern	of	writing	switch	statements,	make	sure	that	you
document	your	usage	for	better	readability.

Switch	statements	can	have	a	default	case	to	handle
any	value	that	cannot	be	evaluated	by	any	other	case.

JavaScript	has	a	while	and	do-while	loop.	The	while	loop
lets	you	iterate	a	set	of	expressions	till	a	condition	is	met.
The	following	first	example	iterates	the	statements
enclosed	within	{}	till	the	i<10	expression	is	true.
Remember	that	if	the	value	of	the	i	counter	is	already
greater	than	10,	the	loop	will	not	execute	at	all:

var	i=0;

while(i<10){

		i=i+1;

		console.log(i);

		console.log(i);

}

The	following	loop	keeps	executing	till	infinity	because
the	condition	is	always	true—this	can	lead	to	disastrous
effects.	Your	program	can	use	up	all	your	memory	or
something	equally	unpleasant:

//infinite	loop

while(true){

		//keep	doing	this

}

If	you	want	to	make	sure	that	you	execute	the	loop	at
least	once,	you	can	use	the	do-while	loop	(sometimes
known	as	a	post-condition	loop):

var	choice;

do	{

choice=getChoiceFromUserInput();

}	while(!isInputValid(choice));

In	this	example,	we	are	asking	the	user	for	an	input	till
we	find	a	valid	input	from	the	user.	While	the	user	types
invalid	input,	we	keep	asking	for	an	input	to	the	user.	It	is
always	argued	that,	logically,	every	do-while	loop	can	be
transformed	into	a	while	loop.	However,	a	do-while	loop
has	a	very	valid	use	case	like	the	one	we	just	saw	where
you	want	the	condition	to	be	checked	only	after	there
has	been	one	execution	of	the	loop	block.

JavaScript	has	a	very	powerful	loop	similar	to	C	or	Java
—the	for	loop.	The	for	loop	is	popular	because	it	allows
you	to	define	the	control	conditions	of	the	loop	in	a	single

line.

The	following	example	prints	Hello	five	times:

for	(var	i=0;i<5;i++){

		console.log("Hello");

}

Within	the	definition	of	the	loop,	you	defined	the	initial
value	of	the	loop	counter	i	to	be	0,	you	defined	the	i<5
exit	condition,	and	finally,	you	defined	the	increment
factor.

All	three	expressions	in	the	previous	example	are
optional.	You	can	omit	them	if	required.	For	example,	the
following	variations	are	all	going	to	produce	the	same
result	as	the	previous	loop:

var	x=0;

//Omit	initialitzation

for	(;x<5;x++){

		console.log("Hello");

}

	

//Omit	exit	condition

for	(var	j=0;;j++){

		//exit	condition

		if(j>=5){

				break;

		}else{

				console.log("Hello");

		}

}

//Omit	increment

for	(var	k=0;	k<5;){

		console.log("Hello");

		k++;

		k++;

}

You	can	also	omit	all	three	of	these	expressions	and
write	for	loops.	One	interesting	idiom	used	frequently	is
to	use	for	loops	with	empty	statements.	The	following
loop	is	used	to	set	all	the	elements	of	the	array	to	100.
Notice	how	there	is	no	body	to	the	for-loop:

var	arr	=	[10,	20,	30];

//	Assign	all	array	values	to	100

for	(i	=	0;	i	<	arr.length;	arr[i++]	=

100);

console.log(arr);

The	empty	statement	here	is	just	the	single	that	we	see
after	the	for	loop	statement.	The	increment	factor	also
modifies	the	array	content.	We	will	discuss	arrays	later	in
the	book,	but	here	it's	sufficient	to	see	that	the	array
elements	are	set	to	the	100	value	within	the	loop
definition	itself.

EQUALITY
JavaScript	offers	two	modes	of	equality—strict	and
loose.	Essentially,	loose	equality	will	perform	the	type
conversion	when	comparing	two	values,	while	strict
equality	will	check	the	values	without	any	type
conversion.	A	strict	equality	check	is	performed	by	===
while	a	loose	equality	check	is	performed	by	==.

ECMAScript	6	also	offers	the	Object.is	method	to	do
a	strict	equality	check	like	===.	However,	Object.is

has	a	special	handling	for	NaN:	-0	and	+0.	When
NaN===NaN	and	NaN==NaN	evaluates	to	false,
Object.is(NaN,NaN)	will	return	true.

Strict	equality	using	===

Strict	equality	compares	two	values	without	any	implicit
type	conversions.	The	following	rules	apply:

If	the	values	are	of	a	different	type,	they	are	unequal.

For	non-numerical	values	of	the	same	type,	they	are	equal	if	their
values	are	the	same.

For	primitive	numbers,	strict	equality	works	for	values.	If	the	values
are	the	same,	===	results	in	true.	However,	a	NaN	doesn't	equal	to

any	number	and	NaN===<a	number>	would	be	a	false.

Strict	equality	is	always	the	correct	equality	check	to	use.
Make	it	a	rule	to	always	use	===	instead	of	==:

	
Condition
	
	

	
Output
	
	

	
""	===	"0"

	
	

	
false
	
	

	
0	===	""

	
	

	
false
	
	

	
0	===	"0"

	
	

	
false
	
	

	
false	===	"false"

	
	

	
false
	
	

	 	

	
false	===	"0"

	
	

	
false
	
	

	
false	===	undefined

	
	

	
false
	
	

	
false	===	null

	
	

	
false
	
	

	
null	===	undefined

	
	

	
false
	
	

In	case	of	comparing	objects,	we	get	results	as	follows:

	
Condition
	
	

	
Output
	
	

	
{}	===	{};

	
	

	
false
	
	

	
new	String('bah')	===	'bah';

	
	

	
false
	
	

	
new	Number(1)	===	1;

	
	

	
false
	
	

	
var	bar	=	{};

	
bar	===	bar;

	
	

	
true
	
	

The	following	are	further	examples	that	you	should	try	on
either	JS	Bin	or	Node	REPL:

var	n	=	0;

var	o	=	new	String("0");

var	s	=	"0";

var	b	=	false;

	

console.log(n	===	n);	//	true	-	same

values	for	numbers

console.log(o	===	o);	//	true	-	non

numbers	are	compared	for	their	values

console.log(s	===	s);	//	true	-	ditto

	

console.log(n	===	o);	//	false	-	no

implicit	type	conversion,	types	are

different

console.log(n	===	s);	//	false	-	types	are

different

console.log(o	===	s);	//	false	-	types	are

different

console.log(null	===	undefined);	//	false

console.log(o	===	null);	//	false

console.log(o	===	undefined);	//	false

You	can	use	!==	to	handle	the	Not	Equal	To	case	while
doing	strict	equality	checks.

Weak	equality	using	==

Nothing	should	tempt	you	to	use	this	form	of	equality.
Seriously,	stay	away	from	this	form.	There	are	many	bad
things	with	this	form	of	equality	primarily	due	to	the	weak
typing	in	JavaScript.	The	equality	operator,	==,	first	tries
to	coerce	the	type	before	doing	a	comparison.	The
following	examples	show	you	how	this	works:

	
Condition
	
	

	
Output
	
	

	
""	==	"0"

	
	

	
false
	
	

	
0		==	""

	
	

	
true
	
	

	
0		==	"0"

	
	

	
true
	
	

	
false	==	"false"

	
	

	
false
	
	

	
false	==	"0"

	
	

	
true
	
	

	
false	==	undefined

	
	

	
false
	
	

	
false	==	null

	
	

	
false
	
	

	
null		==	undefined

	
	

	
true
	
	

From	these	examples,	it's	evident	that	weak	equality	can
result	in	unexpected	outcomes.	Also,	implicit	type
coercion	is	costly	in	terms	of	performance.	So,	in
general,	stay	away	from	weak	equality	in	JavaScript.

JavaScript	types
We	briefly	discussed	that	JavaScript	is	a	dynamic
language.	If	you	have	a	previous	experience	of	strongly
typed	languages	such	as	Java,	you	may	feel	a	bit
uncomfortable	about	the	complete	lack	of	type	checks
that	you	are	used	to.	Purists	argue	that	JavaScript
should	claim	to	have	tags	or	perhaps	subtypes,	but	not
types.	Though	JavaScript	does	not	have	the	traditional
definition	of	types,	it	is	absolutely	essential	to
understand	how	JavaScript	handles	data	types	and
coercion	internally.	Every	nontrivial	JavaScript	program
will	need	to	handle	value	coercion	in	some	form,	so	it's
important	that	you	understand	the	concept	well.

Explicit	coercion	happens	when	you	modify	the	type
yourself.	In	the	following	example,	you	will	convert	a
number	to	a	String	using	the	toString()	method	and
extract	the	second	character	out	of	it:

var	fortyTwo	=	42;

console.log(fortyTwo.toString()[1]);

//prints	"2"

This	is	an	example	of	an	explicit	type	conversion.	Again,
we	are	using	the	word	type	loosely	because	type	was
not	enforced	anywhere	when	you	declared	the
fortyTwo	variable.

However,	there	are	many	different	ways	in	which	such
coercion	can	happen.	Coercion	happening	explicitly	can

be	easy	to	understand	and	mostly	reliable;	but	if	you're
not	careful,	coercion	can	happen	in	very	strange	and
surprising	ways.

Confusion	around	coercion	is	perhaps	one	of	the	most
talked	about	frustrations	for	JavaScript	developers.	To
make	sure	that	you	never	have	this	confusion	in	your
mind,	let's	revisit	types	in	JavaScript.	We	talked	about
some	concepts	earlier:

typeof	1													===	"number";				//

true

typeof	"1"											===	"string";				//

true

typeof	{	age:	39	}			===	"object";				//

true

typeof	Symbol()						===	"symbol";				//

true

typeof	undefined					===	"undefined";	//

true

typeof	true										===	"boolean";			//

true

So	far,	so	good.	We	already	knew	this	and	the	examples
that	we	just	saw	reinforce	our	ideas	about	types.

Conversion	of	a	value	from	one	type	to	another	is	called
casting	or	explicit	coercion.	JavaScript	also	does	implicit
coercion	by	changing	the	type	of	a	value	based	on
certain	guesses.	These	guesses	make	JavaScript	work
around	several	cases	and	unfortunately	make	it	fail
quietly	and	unexpectedly.	The	following	snippet	shows
cases	of	explicit	and	implicit	coercion:

var	t=1;

var	t=1;

var	u=""+t;	//implicit	coercion

console.log(typeof	t);		//"number"

console.log(typeof	u);		//"string"

var	v=String(t);		//Explicit	coercion

console.log(typeof	v);		//"string"

var	x=null

console.log(""+x);	//"null"

It	is	easy	to	see	what	is	happening	here.	When	you	use
""+t	to	a	numeric	value	of	t	(1,	in	this	case),	JavaScript
figures	out	that	you	are	trying	to	concatenate	something
with	a	""	string.	As	only	strings	can	be	concatenated
with	other	strings,	JavaScript	goes	ahead	and	converts	a
numeric	1	to	a	"1"	string	and	concatenates	both	into	a
resulting	string	value.	This	is	what	happens	when
JavaScript	is	asked	to	convert	values	implicitly.
However,	String(t)	is	a	very	deliberate	call	to	convert
a	number	to	a	String.	This	is	an	explicit	conversion	of
types.	The	last	bit	is	surprising.	We	are	concatenating
null	with	""—shouldn't	this	fail?

So	how	does	JavaScript	do	type	conversions?	How	will
an	abstract	value	become	a	String	or	number	or
Boolean?	JavaScript	relies	on	toString(),
toNumber(),	and	toBoolean()	methods	to	do	this
internally.

When	a	non-String	value	is	coerced	into	a	String,
JavaScript	uses	the	toString()	method	internally	to
do	this.	All	primitives	have	a	natural	string	form—null	has
a	string	form	of	"null",	undefined	has	a	string	form	of
"undefined",	and	so	on.	For	Java	developers,	this	is

analogous	to	a	class	having	a	toString()	method	that
returns	a	string	representation	of	the	class.	We	will	see
exactly	how	this	works	in	case	of	objects.

So	essentially	you	can	do	something	similar	to	the
following:

var	a="abc";

console.log(a.length);

console.log(a.toUpperCase());

If	you	are	keenly	following	and	typing	all	these	little
snippets,	you	would	have	realized	something	strange	in
the	previous	snippet.	How	are	we	calling	properties	and
methods	on	primitives?	How	come	primitives	have
objects	such	as	properties	and	methods?	They	don't.

As	we	discussed	earlier,	JavaScript	kindly	wraps	these
primitives	in	their	wrappers	by	default	thus	making	it
possible	for	us	to	directly	access	the	wrapper's	methods
and	properties	as	if	they	were	of	the	primitives
themselves.

When	any	non-number	value	needs	to	be	coerced	into	a
number,	JavaScript	uses	the	toNumber()	method
internally:	true	becomes	1,	undefined	becomes	NaN,
false	becomes	0,	and	null	becomes	0.	The
toNumber()	method	on	strings	works	with	literal
conversion	and	if	this	fails,	the	method	returns	NaN.

What	about	some	other	cases?

typeof	null	==="object"	//true

Well,	null	is	an	object?	Yes,	an	especially	long-lasting
bug	makes	this	possible.	Due	to	this	bug,	you	need	to	be
careful	while	testing	if	a	value	is	null:

var	x	=	null;

if	(!x	&&	typeof	x	===	"object"){

		console.log("100%	null");

}

What	about	other	things	that	may	have	types,	such	as
functions?

f	=	function	test()	{

		return	12;

}

console.log(typeof	f	===	"function");

//prints	"true"

What	about	arrays?

console.log	(typeof	[1,2,3,4]);	//"object"

Sure	enough,	they	are	also	objects.	We	will	take	a
detailed	look	at	functions	and	arrays	later	in	the	book.

In	JavaScript,	values	have	types,	variables	don't.	Due	to
the	dynamic	nature	of	the	language,	variables	can	hold
any	value	at	any	time.

JavaScript	doesn't	does	not	enforce	types,	which	means
that	the	language	doesn't	insist	that	a	variable	always
hold	values	of	the	same	initial	type	that	it	starts	out	with.

A	variable	can	hold	a	String,	and	in	the	next	assignment,
hold	a	number,	and	so	on:

var	a	=	1;

typeof	a;	//	"number"

a	=	false;

typeof	a;	//	"boolean"

The	typeof	operator	always	returns	a	String:

typeof	typeof	1;	//	"string"

Automatic	semicolon	insertion
Although	JavaScript	is	based	on	the	C	style	syntax,	it
does	not	enforce	the	use	of	semicolons	in	the	source
code.

However,	JavaScript	is	not	a	semicolon-less	language.	A
JavaScript	language	parser	needs	the	semicolons	in
order	to	understand	the	source	code.	Therefore,	the
JavaScript	parser	automatically	inserts	them	whenever	it
encounters	a	parse	error	due	to	a	missing	semicolon.	It's
important	to	note	that	automatic	semicolon	insertion
(ASI)	will	only	take	effect	in	the	presence	of	a	newline
(also	known	as	a	line	break).	Semicolons	are	not
inserted	in	the	middle	of	a	line.

Basically,	if	the	JavaScript	parser	parses	a	line	where	a
parser	error	would	occur	(a	missing	expected	;)	and	it
can	insert	one,	it	does	so.	What	are	the	criteria	to	insert
a	semicolon?	Only	if	there's	nothing	but	white	space

and/or	comments	between	the	end	of	some	statement
and	that	line's	newline/line	break.

There	have	been	raging	debates	on	ASI—a	feature
justifiably	considered	to	be	a	very	bad	design	choice.
There	have	been	epic	discussions	on	the	Internet,	such
as	https://github.com/twbs/bootstrap/issues/3057	and
https://brendaneich.com/2012/04/the-infernal-semicolon/.

Before	you	judge	the	validity	of	these	arguments,	you
need	to	understand	what	is	affected	by	ASI.	The
following	statements	are	affected	by	ASI:

An	empty	statement

A	var	statement

An	expression	statement

A	do-while	statement

A	continue	statement

A	break	statement

A	return	statement

A	throw	statement

The	idea	behind	ASI	is	to	make	semicolons	optional	at
the	end	of	a	line.	This	way,	ASI	helps	the	parser	to
determine	when	a	statement	ends.	Normally,	it	ends	with
a	semicolon.	ASI	dictates	that	a	statement	also	ends	in
the	following	cases:

A	line	terminator	(for	example,	a	newline)	is	followed	by	an	illegal
token

A	closing	brace	is	encountered

https://github.com/twbs/bootstrap/issues/3057
https://brendaneich.com/2012/04/the-infernal-semicolon/

The	end	of	the	file	has	been	reached

Let's	see	the	following	example:

if	(a	<	1)	a	=	1	console.log(a)

The	console	token	is	illegal	after	1	and	triggers	ASI	as
follows:

if	(a	<	1)	a	=	1;	console.log(a);

In	the	following	code,	the	statement	inside	the	braces	is
not	terminated	by	a	semicolon:

function	add(a,b)	{	return	a+b	}

ASI	creates	a	syntactically	correct	version	of	the
preceding	code:

function	add(a,b)	{	return	a+b;	}

JavaScript	style	guide
Every	programming	language	develops	its	own	style	and
structure.	Unfortunately,	new	developers	don't	put	much
effort	in	learning	the	stylistic	nuances	of	a	language.	It	is
very	difficult	to	develop	this	skill	later	once	you	have
acquired	bad	practices.	To	produce	beautiful,	readable,
and	easily	maintainable	code,	it	is	important	to	learn	the
correct	style.	There	are	a	ton	of	style	suggestions.	We
will	be	picking	the	most	practical	ones.	Whenever
applicable,	we	will	discuss	the	appropriate	style.	Let's	set

some	stylistic	ground	rules.

WHITESPACES
Though	whitespace	is	not	important	in	JavaScript,	the
correct	use	of	whitespace	can	make	the	code	easy	to
read.	The	following	guidelines	will	help	in	managing
whitespaces	in	your	code:

Never	mix	spaces	and	tabs.

Before	you	write	any	code,	choose	between	soft	indents	(spaces)	or
real	tabs.	For	readability,	I	always	recommend	that	you	set	your
editor's	indent	size	to	two	characters—this	means	two	spaces	or	two
spaces	representing	a	real	tab.

Always	work	with	the	show	invisibles	setting	turned	on.	The	benefits
of	this	practice	are	as	follows:

Enforced	consistency.

Eliminates	the	end-of-line	white	spaces.

Eliminates	blank	line	white	spaces.

Commits	and	diffs	that	are	easier	to	read.

Uses	EditorConfig	(http://editorconfig.org/)	when	possible.

PARENTHESES,	LINE	BREAKS,	AND
BRACES
If,	else,	for,	while,	and	try	always	have	spaces	and
braces	and	span	multiple	lines.	This	style	encourages
readability.	Let's	see	the	following	code:

//Cramped	style	(Bad)

if(condition)	doSomeTask();

while(condition)	i++;

http://editorconfig.org/

for(var	i=0;i<10;i++)	iterate();

//Use	whitespace	for	better	readability	

(Good)

//Place	1	space	before	the	leading	brace.

if	(condition)	{

		//	statements

}

while	(condition)	{

		//	statements

}

for	(var	i	=	0;	i	<	100;	i++)	{

		//	statements

}

//	Better:

var	i,

				length	=	100;

for	(i	=	0;	i	<	length;	i++)	{

		//	statements

}

//	Or...

var	i	=	0,

				length	=	100;

for	(;	i	<	length;	i++)	{

		//	statements

}

var	value;

for	(value	in	object)	{

		//	statements

}

if	(true)	{

		//	statements

}	else	{

		//	statements

}

//Set	off	operators	with	spaces.

//	bad

var	x=y+5;

//	good

var	x	=	y	+	5;

//End	files	with	a	single	newline	

character.

//	bad

(function(global)	{

		//	...stuff...

})(this);

//	bad

(function(global)	{

		//	...stuff...

})(this);↵
↵

//	good

(function(global)	{

		//	...stuff...

})(this);↵

QUOTES
Whether	you	prefer	single	or	double	quotes	shouldn't
matter;	there	is	no	difference	in	how	JavaScript	parses
them.	However,	for	the	sake	of	consistency,	never	mix

quotes	in	the	same	project.	Pick	one	style	and	stick	with
it.

END	OF	LINES	AND	EMPTY	LINES
Whitespace	can	make	it	impossible	to	decipher	code
diffs	and	changelists.	Many	editors	allow	you	to
automatically	remove	extra	empty	lines	and	end	of	lines
—you	should	use	these.

TYPE	CHECKING
Checking	the	type	of	a	variable	can	be	done	as	follows:

//String:

typeof	variable	===	"string"

//Number:

typeof	variable	===	"number"

//Boolean:

typeof	variable	===	"boolean"

//Object:

typeof	variable	===	"object"

//null:

variable	===	null

//null	or	undefined:

variable	==	null

TYPE	CASTING
Perform	type	coercion	at	the	beginning	of	the	statement
as	follows:

//	bad

const	totalScore	=	this.reviewScore	+	'';

//	good

const	totalScore	=

String(this.reviewScore);

String(this.reviewScore);

Use	parseInt()	for	Numbers	and	always	with	a	radix
for	the	type	casting:

const	inputValue	=	'4';

//	bad

const	val	=	new	Number(inputValue);

//	bad

const	val	=	+inputValue;

//	bad

const	val	=	inputValue	>>	0;

//	bad

const	val	=	parseInt(inputValue);

//	good

const	val	=	Number(inputValue);

//	good

const	val	=	parseInt(inputValue,	10);

The	following	example	shows	you	how	to	type	cast	using
Booleans:

const	age	=	0;		//	bad

const	hasAge	=	new	Boolean(age);		//	good

const	hasAge	=	Boolean(age);	//	good

const	hasAge	=	!!age;

CONDITIONAL	EVALUATION
There	are	various	stylistic	guidelines	around	conditional
statements.	Let's	study	the	following	code:

//	When	evaluating	that	array	has	length,

//	WRONG:

if	(array.length	>	0)	...

	

//	evaluate	truthiness(GOOD):

if	(array.length)	...

if	(array.length)	...

	

//	When	evaluating	that	an	array	is	empty,

//	(BAD):

if	(array.length	===	0)	...

	

//	evaluate	truthiness(GOOD):

if	(!array.length)	...

	

//	When	checking	if	string	is	not	empty,

//	(BAD):

if	(string	!==	"")	...

	

//	evaluate	truthiness	(GOOD):

if	(string)	...

	

//	When	checking	if	a	string	is	empty,

//	BAD:

if	(string	===	"")	...

	

//	evaluate	falsy-ness	(GOOD):

if	(!string)	...

	

//	When	checking	if	a	reference	is	true,

//	BAD:

if	(foo	===	true)	...

	

//	GOOD

if	(foo)	...

	

//	When	checking	if	a	reference	is	false,

//	BAD:

if	(foo	===	false)	...

	

//	GOOD

if	(!foo)	...

	

//	this	will	also	match:	0,	"",	null,

undefined,	NaN

//	If	you	MUST	test	for	a	boolean	false,

then	use

if	(foo	===	false)	...

	

//	a	reference	that	might	be	null	or

undefined,	but	NOT	false,	""	or	0,

//	BAD:

if	(foo	===	null	||	foo	===	undefined)

...

	

//	GOOD

if	(foo	==	null)	...

	

//	Don't	complicate	matters

return	x	===	0	?	'sunday'	:	x	===	1	?

'Monday'	:	'Tuesday';

	

//	Better:

if	(x	===	0)	{

				return	'Sunday';

}	else	if	(x	===	1)	{

				return	'Monday';

}	else	{

				return	'Tuesday';

}

	

//	Even	Better:

switch	(x)	{

				case	0:

								return	'Sunday';

				case	1:

								return	'Monday';

				default:

								return	'Tuesday';

}

NAMING
Naming	is	super	important.	I	am	sure	that	you	have
encountered	code	with	terse	and	undecipherable
naming.	Let's	study	the	following	lines	of	code:

//Avoid	single	letter	names.	Be	

descriptive	with	your	naming.

//	bad

function	q()	{

}

//	good

function	query()	{

}

//Use	camelCase	when	naming	objects,	

functions,	and	instances.

//	bad

const	OBJEcT	=	{};

const	this_is_object	=	{};

function	c()	{}

//	good

const	thisIsObject	=	{};

function	thisIsFunction()	{}

//Use	PascalCase	when	naming	constructors	

or	classes.

//	bad

function	user(options)	{

		this.name	=	options.name;

}

const	bad	=	new	user({

		name:	'nope',

});

//	good

class	User	{

		constructor(options)	{

				this.name	=	options.name;

		}

}

const	good	=	new	User({

		name:	'yup',

});

//	Use	a	leading	underscore		when	naming	

private	properties.

//	bad

this._firstName__	=	'Panda';

this.firstName_	=	'Panda';

//	good

this._firstName	=	'Panda';

THE	EVAL()	METHOD	IS	EVIL
The	eval()	method,	which	takes	a	String	containing
JavaScript	code,	compiles	it	and	runs	it,	is	one	of	the
most	misused	methods	in	JavaScript.	There	are	a	few
situations	where	you	will	find	yourself	using	eval(),	for
example,	when	you	are	building	an	expression	based	on
the	user	input.

However,	most	of	the	time,	eval()	is	used	is	just
because	it	gets	the	job	done.	The	eval()	method	is	too
hacky	and	makes	the	code	unpredictable.	It's	slow,
unwieldy,	and	tends	to	magnify	the	damage	when	you
make	a	mistake.	If	you	are	considering	using	eval(),
then	there	is	probably	a	better	way.

The	following	snippet	shows	the	usage	of	eval():

console.log(typeof	eval(new

String("1+1")));	//	"object"

console.log(eval(new	String("1+1")));

//1+1

console.log(eval("1+1"));

console.log(eval("1+1"));

//	2

console.log(typeof	eval("1+1"));

//	returns	"number"

var	expression	=	new	String("1+1");

console.log(eval(expression.toString()));

//2

I	will	refrain	from	showing	other	uses	of	eval()	and
make	sure	that	you	are	discouraged	enough	to	stay
away	from	it.

THE	STRICT	MODE
ECMAScript	5	has	a	strict	mode	that	results	in	cleaner
JavaScript,	with	fewer	unsafe	features,	more	warnings,
and	more	logical	behavior.	The	normal	(non-strict)	mode
is	also	called	sloppy	mode.	The	strict	mode	can	help
you	avoid	a	few	sloppy	programming	practices.	If	you
are	starting	a	new	JavaScript	project,	I	would	highly
recommend	that	you	use	the	strict	mode	by	default.

You	switch	on	the	strict	mode	by	typing	the	following	line
first	in	your	JavaScript	file	or	in	your	<script>	element:

'use	strict';

Note	that	JavaScript	engines	that	don't	support
ECMAScript	5	will	simply	ignore	the	preceding	statement
and	continue	as	non-strict	mode.

If	you	want	to	switch	on	the	strict	mode	per	function,	you
can	do	it	as	follows:

function	foo()	{

				'use	strict';

				

}

This	is	handy	when	you	are	working	with	a	legacy	code
base	where	switching	on	the	strict	mode	everywhere
may	break	things.

If	you	are	working	on	an	existing	legacy	code,	be	careful
because	using	the	strict	mode	can	break	things.	There
are	caveats	on	this:

Enabling	the	strict	mode	for	an	existing	code	can	break	it

The	code	may	rely	on	a	feature	that	is	not	available
anymore	or	on	behavior	that	is	different	in	a	sloppy	mode
than	in	a	strict	mode.	Don't	forget	that	you	have	the
option	to	add	single	strict	mode	functions	to	files	that	are
in	the	sloppy	mode.

Package	with	care

When	you	concatenate	and/or	minify	files,	you	have	to
be	careful	that	the	strict	mode	isn't	switched	off	where	it
should	be	switched	on	or	vice	versa.	Both	can	break
code.

The	following	sections	explain	the	strict	mode	features	in
more	detail.	You	normally	don't	need	to	know	them	as
you	will	mostly	get	warnings	for	things	that	you	shouldn't
do	anyway.

Variables	must	be	declared	in	strict	mode

All	variables	must	be	explicitly	declared	in	strict	mode.
This	helps	to	prevent	typos.	In	the	sloppy	mode,
assigning	to	an	undeclared	variable	creates	a	global
variable:

function	sloppyFunc()	{

		sloppyVar	=	123;

}	sloppyFunc();		//	creates	global

variable	`sloppyVar`

console.log(sloppyVar);		//	123

In	the	strict	mode,	assigning	to	an	undeclared	variable
throws	an	exception:

function	strictFunc()	{

		'use	strict';

		strictVar	=	123;

}

strictFunc();		//	ReferenceError:

strictVar	is	not	defined

The	eval()	function	is	cleaner	in	strict	mode

In	strict	mode,	the	eval()	function	becomes	less	quirky:
variables	declared	in	the	evaluated	string	are	not	added
to	the	scope	surrounding	eval()	anymore.

Features	that	are	blocked	in	strict	mode

The	with	statement	is	not	allowed.	(We	will	discuss	this
in	the	book	later.)	You	get	a	syntax	error	at	compile	time
(when	loading	the	code).

In	the	sloppy	mode,	an	integer	with	a	leading	zero	is
interpreted	as	octal	(base	8)	as	follows:

>	010	===	8	true

In	strict	mode,	you	get	a	syntax	error	if	you	use	this	kind
of	literal:

function	f()	{

'use	strict';

return	010

}

//SyntaxError:	Octal	literals	are	not

allowed	in

RUNNING	JSHINT
JSHint	is	a	program	that	flags	suspicious	usage	in
programs	written	in	JavaScript.	The	core	project	consists
of	a	library	itself	as	well	as	a	command	line	interface
(CLI)	program	distributed	as	a	Node	module.

If	you	have	Node.js	installed,	you	can	install	JSHint
using	npm	as	follows:

npm	install	jshint	–g

Once	JSHint	is	installed,	you	can	lint	a	single	or	multiple
JavaScript	files.	Save	the	following	JavaScript	code
snippet	in	the	test.js	file:

function	f(condition)	{

		switch	(condition)	{

		case	1:

				console.log(1);

		case	2:

				console.log(1);

		}

		}

}

When	we	run	the	file	using	JSHint,	it	will	warn	us	of	a
missing	break	statement	in	the	switch	case	as	follows:

>jshint	test.js

test.js:	line	4,	col	19,	Expected	a	

'break'	statement	before	'case'.

1	error

JSHint	is	configurable	to	suit	your	needs.	Check	the
documentation	at	http://jshint.com/docs/	to	see	how	you
can	customize	JSHint	according	to	your	project	needs.	I
use	JSHint	extensively	and	suggest	you	start	using	it.
You	will	be	surprised	to	see	how	many	hidden	bugs	and
stylistic	issues	you	will	be	able	to	fix	in	your	code	with
such	a	simple	tool.

You	can	run	JSHint	at	the	root	of	your	project	and	lint	the
entire	project.	You	can	place	JSHint	directives	in	the
.jshintrc	file.	This	file	may	look	something	as	follows:

{

					"asi":	false,

					"expr":	true,

					"loopfunc":	true,

					"curly":	false,

					"evil":	true,

					"white":	true,

					"undef":	true,

					"indent":	4

}

http://jshint.com/docs/

Summary
In	this	chapter,	we	set	some	foundations	around
JavaScript	grammar,	types,	and	stylistic	considerations.
We	have	consciously	not	talked	about	other	important
aspects	such	as	functions,	variable	scopes,	and	closures
primarily	because	they	deserve	their	own	place	in	this
book.	I	am	sure	that	this	chapter	helps	you	understand
some	of	the	primary	concepts	of	JavaScript.	With	these
foundations	in	place,	we	will	take	a	look	at	how	we	can
write	professional	quality	JavaScript	code.

Chapter	2.	Functions,
Closures,	and	Modules
In	the	previous	chapter,	we	deliberately	did	not	discuss
certain	aspects	of	JavaScript.	These	are	some	of	the
features	of	the	language	that	give	JavaScript	its	power
and	elegance.	If	you	are	an	intermediate-or	advanced-
level	JavaScript	programmer,	you	may	be	actively	using
objects	and	functions.	In	many	cases,	however,
developers	stumble	at	these	fundamental	levels	and
develop	a	half-baked	or	sometimes	wrong	understanding
of	the	core	JavaScript	constructs.	There	is	generally	a
very	poor	understanding	of	the	concept	of	closures	in
JavaScript,	due	to	which	many	programmers	cannot	use
the	functional	aspects	of	JavaScript	very	well.	In
JavaScript,	there	is	a	strong	interconnection	between
objects,	functions,	and	closures.	Understanding	the
strong	relationship	between	these	three	concepts	can
vastly	improve	our	JavaScript	programming	ability,	giving
us	a	strong	foundation	for	any	type	of	application
development.

Functions	are	fundamental	to	JavaScript.	Understanding
functions	in	JavaScript	is	the	single	most	important
weapon	in	your	arsenal.	The	most	important	fact	about
functions	is	that	in	JavaScript,	functions	are	first-class
objects.	They	are	treated	like	any	other	JavaScript
object.	Just	like	other	JavaScript	data	types,	they	can	be

referenced	by	variables,	declared	with	literals,	and	even
passed	as	function	parameters.

As	with	any	other	object	in	JavaScript,	functions	have
the	following	capabilities:

They	can	be	created	via	literals

They	can	be	assigned	to	variables,	array	entries,	and	properties	of
other	objects

They	can	be	passed	as	arguments	to	functions

They	can	be	returned	as	values	from	functions

They	can	possess	properties	that	can	be	dynamically	created	and
assigned

We	will	talk	about	each	of	these	unique	abilities	of	a
JavaScript	function	in	this	chapter	and	the	rest	of	the
book.

A	function	literal
One	of	the	most	important	concepts	in	JavaScript	is	that
the	functions	are	the	primary	unit	of	execution.	Functions
are	the	pieces	where	you	will	wrap	all	your	code,	hence
they	will	give	your	programs	a	structure.

JavaScript	functions	are	declared	using	a	function	literal.

Function	literals	are	composed	of	the	following	four
parts:

The	function	keyword.

An	optional	name	that,	if	specified,	must	be	a	valid	JavaScript

identifier.

A	list	of	parameter	names	enclosed	in	parentheses.	If	there	are	no
parameters	to	the	function,	you	need	to	provide	empty	parentheses.

The	body	of	the	function	as	a	series	of	JavaScript	statements
enclosed	in	braces.

A	function	declaration
The	following	is	a	very	trivial	example	to	demonstrate	all
the	components	of	a	function	declaration:

function	add(a,b){

		return	a+b;

}

c	=	add(1,2);

console.log(c);		//prints	3

The	declaration	begins	with	a	function	keyword
followed	by	the	function	name.	The	function	name	is
optional.	If	a	function	is	not	given	a	name,	it	is	said	to	be
anonymous.	We	will	see	how	anonymous	functions	are
used.	The	third	part	is	the	set	of	parameters	of	the
function,	wrapped	in	parentheses.	Within	the
parentheses	is	a	set	of	zero	or	more	parameter	names
separated	by	commas.	These	names	will	be	defined	as
variables	in	the	function,	and	instead	of	being	initialized
to	undefined,	they	will	be	initialized	to	the	arguments
supplied	when	the	function	is	invoked.	The	fourth	part	is
a	set	of	statements	wrapped	in	curly	braces.	These
statements	are	the	body	of	the	function.	They	are
executed	when	the	function	is	invoked.

This	method	of	function	declaration	is	also	known	as

function	statement.	When	you	declare	functions	like
this,	the	content	of	the	function	is	compiled	and	an	object
with	the	same	name	as	the	function	is	created.

Another	way	of	function	declaration	is	via	function
expressions:

var	add	=	function(a,b){

		return	a+b;

}

c	=	add(1,2);

console.log(c);		//prints	3

Here,	we	are	creating	an	anonymous	function	and
assigning	it	to	an	add	variable;	this	variable	is	used	to
invoke	the	function	as	in	the	earlier	example.	One
problem	with	this	style	of	function	declaration	is	that	we
cannot	have	recursive	calls	to	this	kind	of	function.
Recursion	is	an	elegant	style	of	coding	where	the
function	calls	itself.	You	can	use	named	function
expressions	to	solve	this	limitation.	As	an	example,	refer
to	the	following	function	to	compute	the	factorial	of	a
given	number,	n:

var	facto	=	function	factorial(n)	{

		if	(n	<=	1)

				return	1;

		return	n	*	factorial(n	-	1);

};

console.log(facto(3));		//prints	6

Here,	instead	of	creating	an	anonymous	function,	you
are	creating	a	named	function.	Now,	because	the

function	has	a	name,	it	can	call	itself	recursively.

Finally,	you	can	create	self-invoking	function	expressions
(we	will	discuss	them	later):

(function	sayHello()	{

		console.log("hello!");

})();

Once	defined,	a	function	can	be	called	in	other
JavaScript	functions.	After	the	function	body	is	executed,
the	caller	code	(that	executed	the	function)	continues	to
execute.	You	can	also	pass	a	function	as	a	parameter	to
another	function:

function	changeCase(val)	{

		return	val.toUpperCase();

}

function	demofunc(a,	passfunction)	{

		console.log(passfunction(a));

}

demofunc("smallcase",	changeCase);

In	the	preceding	example,	we	are	calling	the
demofunc()	function	with	two	parameters.	The	first
parameter	is	the	string	that	we	want	to	convert	to
uppercase	and	the	second	one	is	the	function	reference
to	the	changeCase()	function.	In	demofunc(),	we	call
the	changeCase()	function	via	its	reference	passed	to
the	passfunction	argument.	Here	we	are	passing	a
function	reference	as	an	argument	to	another	function.
This	powerful	concept	will	be	discussed	in	detail	later	in
the	book	when	we	discuss	callbacks.

A	function	may	or	may	not	return	a	value.	In	the	previous
examples,	we	saw	that	the	add	function	returned	a	value
to	the	calling	code.	Apart	from	returning	a	value	at	the
end	of	the	function,	calling	return	explicitly	allows	you
to	conditionally	return	from	a	function:

var	looper	=	function(x){

		if	(x%5===0)	{

				return;

		}

		console.log(x)

}

for(var	i=1;i<10;i++){

		looper(i);

}

This	code	snippet	prints	1,	2,	3,	4,	6,	7,	8,	and	9,	and
not	5.	When	the	if	(x%5===0)	condition	is	evaluated
to	true,	the	code	simply	returns	from	the	function	and	the
rest	of	the	code	is	not	executed.

Functions	as	data
In	JavaScript,	functions	can	be	assigned	to	variables,
and	variables	are	data.	You	will	shortly	see	that	this	is	a
powerful	concept.	Let's	see	the	following	example:

var	say	=	console.log;

say("I	can	also	say	things");

In	the	preceding	example,	we	assigned	the	familiar
console.log()	function	to	the	say	variable.	Any
function	can	be	assigned	to	a	variable	as	shown	in	the
preceding	example.	Adding	parentheses	to	the	variable
will	invoke	it.	Moreover,	you	can	pass	functions	in	other
functions	as	parameters.	Study	the	following	example
carefully	and	type	it	in	JS	Bin:

var	validateDataForAge	=	function(data)	{

		person	=	data();

		console.log(person);

		if	(person.age	<1	||	person.age	>	99){

				return	true;

		}else{

				return	false;

		}

};

var	errorHandlerForAge	=	function(error)	{

		console.log("Error	while	processing	

age");

};

function	

parseRequest(data,validateData,errorHandle

r)	{

		var	error	=	validateData(data);

		if	(!error)	{

				console.log("no	errors");

		}	else	{

				errorHandler();

		}

}

var	generateDataForScientist	=	function()	

{

		return	{

				name:	"Albert	Einstein",

				age	:	Math.floor(Math.random()		(100	-	

1))	+	1,

		};

};

var	generateDataForComposer	=	function()	{

		return	{

				name:	"J	S	Bach",

				age	:	Math.floor(Math.random()		(100	-	

1))	+	1,

		};

};

//parse	request

parseRequest(generateDataForScientist,	

validateDataForAge,	errorHandlerForAge);

parseRequest(generateDataForComposer,	

validateDataForAge,	errorHandlerForAge);

In	this	example,	we	are	passing	functions	as	parameters
to	a	parseRequest()	function.	We	are	passing
different	functions	for	two	different	calls,
generateDataForScientist	and
generateDataForComposers,	while	the	other	two
functions	remain	the	same.	You	can	observe	that	we

defined	a	generic	parseRequest().	It	takes	three
functions	as	arguments,	which	are	responsible	for
stitching	together	the	specifics:	the	data,	validator,	and
error	handler.	The	parseRequest()	function	is	fully
extensible	and	customizable,	and	because	it	will	be
invoked	by	every	request,	there	is	a	single,	clean
debugging	point.	I	am	sure	that	you	have	started	to
appreciate	the	incredible	power	that	JavaScript	functions
provide.

Scoping
For	beginners,	JavaScript	scoping	is	slightly	confusing.
These	concepts	may	seem	straightforward;	however,
they	are	not.	Some	important	subtleties	exist	that	must
be	understood	in	order	to	master	the	concept.	So	what	is
Scope?	In	JavaScript,	scope	refers	to	the	current	context
of	code.

A	variable's	scope	is	the	context	in	which	the	variable
exists.	The	scope	specifies	from	where	you	can	access	a
variable	and	whether	you	have	access	to	the	variable	in
that	context.	Scopes	can	be	globally	or	locally	defined.

Global	scope
Any	variable	that	you	declare	is	by	default	defined	in
global	scope.	This	is	one	of	the	most	annoying	language
design	decisions	taken	in	JavaScript.	As	a	global
variable	is	visible	in	all	other	scopes,	a	global	variable
can	be	modified	by	any	scope.	Global	variables	make	it
harder	to	run	loosely	coupled	subprograms	in	the	same
program/module.	If	the	subprograms	happen	to	have
global	variables	that	share	the	same	names,	then	they
will	interfere	with	each	other	and	likely	fail,	usually	in
difficult-to-diagnose	ways.	This	is	sometimes	known	as
namespace	clash.	We	discussed	global	scope	in	the
previous	chapter	but	let's	revisit	it	briefly	to	understand
how	best	to	avoid	this.

You	can	create	a	global	variable	in	two	ways:

The	first	way	is	to	place	a	var	statement	outside	any	function.
Essentially,	any	variable	declared	outside	a	function	is	defined	in	the
global	scope.

The	second	way	is	to	omit	the	var	statement	while	declaring	a
variable	(also	called	implied	globals).	I	think	this	was	designed	as	a
convenience	for	new	programmers	but	turned	out	to	be	a	nightmare.
Even	within	a	function	scope,	if	you	omit	the	var	statement	while
declaring	a	variable,	it's	created	by	default	in	the	global	scope.	This	is
nasty.	You	should	always	run	your	program	against	ESLint	or	JSHint
to	let	them	flag	such	violations.	The	following	example	shows	how
global	scope	behaves:

//Global	Scope

var	a	=	1;

function	scopeTest()	{

		console.log(a);

}

scopeTest();		//prints	1

Here	we	are	declaring	a	variable	outside	the	function
and	in	the	global	scope.	This	variable	is	available	in	the
scopeTest()	function.	If	you	assign	a	new	value	to	a
global	scope	variable	within	a	function	scope	(local),	the
original	value	in	the	global	scope	is	overwritten:

//Global	Scope

var	a	=	1;

function	scopeTest()	{

		a	=	2;	//Overwrites	global	variable	2,

you	omit	'var'

		console.log(a);

}

console.log(a);	//prints	1

scopeTest();		//prints	2

console.log(a);	//prints	2	(global	value

is	overwritten)

Local	scope
Unlike	most	programming	languages,	JavaScript	does
not	have	block-level	scope	(variables	scoped	to
surrounding	curly	brackets);	instead,	JavaScript	has
function-level	scope.	Variables	declared	within	a	function
are	local	variables	and	are	only	accessible	within	that
function	or	by	functions	inside	that	function:

var	scope_name	=	"Global";

function	showScopeName	()	{

		//	local	variable;	only	accessible	in

this	function

		var	scope_name	=	"Local";

		console.log	(scope_name);	//	Local

}

console.log	(scope_name);					//prints	-

Global

showScopeName();													//prints	–

Local

Function-level	scope	versus	block-
level	scope
JavaScript	variables	are	scoped	at	the	function	level.
You	can	think	of	this	as	a	small	bubble	getting	created
that	prevents	the	variable	to	be	visible	from	outside	this
bubble.	A	function	creates	such	a	bubble	for	variables
declared	inside	the	function.	You	can	visualize	the
bubbles	as	follows:

-GLOBAL	SCOPE-----------------------------

----------------|

----------------|

var	g	=0;

|

function	foo(a)	{	-----------------------|

|

				var	b	=	1;																											|

|

				//code																															|

|

				function	bar()	{	------|													|

|

								//	...													|ScopeBar					|

ScopeFoo							|

				}																------|													|

|

				//	code																														|

|

				var	c	=	2;																											|

|

}--|

|

foo();			//WORKS

|

bar();			//FAILS

|

--

----------------|

JavaScript	uses	scope	chains	to	establish	the	scope	for
a	given	function.	There	is	typically	one	global	scope,	and
each	function	defined	has	its	own	nested	scope.	Any
function	defined	within	another	function	has	a	local
scope	that	is	linked	to	the	outer	function.	It's	always	the
position	in	the	source	that	defines	the	scope.	When
resolving	a	variable,	JavaScript	starts	at	the	innermost
scope	and	searches	outwards.	With	this,	let's	look	at
various	scoping	rules	in	JavaScript.

In	the	preceding	crudely	drawn	visual,	you	can	see	that
the	foo()	function	is	defined	in	the	global	scope.	The
foo()	function	has	its	local	scope	and	access	to	the	g
variable	because	it's	in	the	global	scope.	The	a,	b,	and	c
variables	are	available	in	the	local	scope	because	they
are	defined	within	the	function	scope.	The	bar()
function	is	also	declared	within	the	function	scope	and	is
available	within	the	foo()	function.	However,	once	the
function	scope	is	over,	the	bar()	function	is	not
available.	You	cannot	see	or	call	the	bar()	function
from	outside	the	foo()	function—a	scope	bubble.

Now	that	the	bar()	function	also	has	its	own	function
scope	(bubble),	what	is	available	in	here?	The	bar()
function	has	access	to	the	foo()	function	and	all	the
variables	created	in	the	parent	scope	of	the	foo()
function—a,	b,	and	c.	The	bar()	function	also	has
access	to	the	global	scoped	variable,	g.

This	is	a	powerful	idea.	Take	a	moment	to	think	about	it.
We	just	discussed	how	rampant	and	uncontrolled	global
scope	can	get	in	JavaScript.	How	about	we	take	an
arbitrary	piece	of	code	and	wrap	it	around	with	a
function?	We	will	be	able	to	hide	and	create	a	scope
bubble	around	this	piece	of	code.	Creating	the	correct
scope	using	function	wrapping	will	help	us	create	correct
code	and	prevent	difficult-to-detect	bugs.

Another	advantage	of	the	function	scope	and	hiding
variables	and	functions	within	this	scope	is	that	you	can

avoid	collisions	between	two	identifiers.	The	following
example	shows	such	a	bad	case:

function	foo()	{

		function	bar(a)	{

				i	=	2;	//	changing	the	'i'	in	the

enclosing	scope's	for-loop

				console.log(a+i);

		}

		for	(var	i=0;	i<10;	i++)	{

				bar(i);	//	infinite	loop

		}

}

foo();

In	the	bar()	function,	we	are	inadvertently	modifying
the	value	of	i=2.	When	we	call	bar()	from	within	the
for	loop,	the	value	of	the	i	variable	is	set	to	2	and	we
never	come	out	of	an	infinite	loop.	This	is	a	bad	case	of
namespace	collision.

So	far,	using	functions	as	a	scope	sounds	like	a	great
way	to	achieve	modularity	and	correctness	in	JavaScript.
Well,	though	this	technique	works,	it's	not	really	ideal.
The	first	problem	is	that	we	must	create	a	named
function.	If	we	keep	creating	such	functions	just	to
introduce	the	function	scope,	we	pollute	the	global	scope
or	parent	scope.	Additionally,	we	have	to	keep	calling
such	functions.	This	introduces	a	lot	of	boilerplate,	which
makes	the	code	unreadable	over	time:

var	a	=	1;

//Lets	introduce	a	function	-scope

//1.	Add	a	named	function	foo()	into	the	

global	scope

function	foo()	{	

		var	a	=	2;

		console.log(a);	//	2

}	

//2.	Now	call	the	named	function	foo()

foo();

console.log(a);	//	1

We	introduced	the	function	scope	by	creating	a	new
function	foo()	to	the	global	scope	and	called	this
function	later	to	execute	the	code.

In	JavaScript,	you	can	solve	both	these	problems	by
creating	functions	that	immediately	get	executed.
Carefully	study	and	type	the	following	example:

var	a	=	1;

//Lets	introduce	a	function	-scope

//1.	Add	a	named	function	foo()	into	the	

global	scope

(function	foo()	{	

				var	a	=	2;

				console.log(a);	//	2

})();	//<---this	function	executes	

immediately

console.log(a);	//	1

Notice	that	the	wrapping	function	statement	starts	with
function.	This	means	that	instead	of	treating	the
function	as	a	standard	declaration,	the	function	is	treated
as	a	function	expression.

The	(function	foo(){	})	statement	as	an
expression	means	that	the	identifier	foo	is	found	only	in

the	scope	of	the	foo()	function,	not	in	the	outer	scope.
Hiding	the	name	foo	in	itself	means	that	it	does	not
pollute	the	enclosing	scope	unnecessarily.	This	is	so
useful	and	far	better.	We	add	()	after	the	function
expression	to	execute	it	immediately.	So	the	complete
pattern	looks	as	follows:

(function	foo(){	/*	code	*/	})();

This	pattern	is	so	common	that	it	has	a	name:	IIFE,
which	stands	for	Immediately	Invoked	Function
Expression.	Several	programmers	omit	the	function
name	when	they	use	IIFE.	As	the	primary	use	of	IIFE	is
to	introduce	function-level	scope,	naming	the	function	is
not	really	required.	We	can	write	the	earlier	example	as
follows:

var	a	=	1;

(function()	{	

				var	a	=	2;

				console.log(a);	//	2

})();	

console.log(a);	//	1

Here	we	are	creating	an	anonymous	function	as	IIFE.
While	this	is	identical	to	the	earlier	named	IIFE,	there	are
a	few	drawbacks	of	using	anonymous	IIFEs:

As	you	can't	see	the	function	name	in	the	stack	traces,	debugging
such	code	is	very	difficult

You	cannot	use	recursion	on	anonymous	functions	(as	we	discussed
earlier)

Overusing	anonymous	IIFEs	sometimes	results	in	unreadable	code

Douglas	Crockford	and	a	few	other	experts	recommend
a	slight	variation	of	IIFE:

(function(){	/*	code	*/	}());

Both	these	IIFE	forms	are	popular	and	you	will	see	a	lot
of	code	using	both	these	variations.

You	can	pass	parameters	to	IIFEs.	The	following
example	shows	you	how	to	pass	parameters	to	IIFEs:

(function	foo(b)	{

				var	a	=	2;

				console.log(a	+	b);

})(3);	//prints	5

Inline	function	expressions
There	is	another	popular	usage	of	inline	function
expressions	where	the	functions	are	passed	as
parameters	to	other	functions:

function	setActiveTab(activeTabHandler,	

tab){

		//set	active	tab

		//call	handler

		activeTabHandler();

}

setActiveTab(function	(){	

		console.log("Setting	active	tab");

},	1);

//prints	"Setting	active	tab"

Again,	you	can	name	this	inline	function	expression	to

make	sure	that	you	get	a	correct	stack	trace	while	you
are	debugging	the	code.

Block	scopes
As	we	discussed	earlier,	JavaScript	does	not	have	the
concept	of	block	scopes.	Programmers	familiar	with
other	languages	such	as	Java	or	C	find	this	very
uncomfortable.	ECMAScript	6	(ES6)	introduces	the	let
keyword	to	introduce	traditional	block	scope.	This	is	so
incredibly	convenient	that	if	you	are	sure	your
environment	is	going	to	support	ES6,	you	should	always
use	the	let	keyword.	See	the	following	code:

var	foo	=	true;

if	(foo)	{

		let	bar	=	42;	//variable	bar	is	local	in

this	block	{	}

		console.log(bar);

}

console.log(bar);	//	ReferenceError

However,	as	things	stand	today,	ES6	is	not	supported	by
default	in	most	popular	browsers.

This	chapter	so	far	should	have	given	you	a	fair
understanding	of	how	scoping	works	in	JavaScript.	If	you
are	still	unclear,	I	would	suggest	that	you	stop	here	and
revisit	the	earlier	sections	of	this	chapter.	Research	your
doubts	on	the	Internet	or	put	your	questions	on	Stack
Overflow.	In	short,	make	sure	that	you	have	no	doubts
related	to	the	scoping	rules.

It	is	very	natural	for	us	to	think	of	code	execution
happening	from	top	to	bottom,	line	by	line.	This	is	how
most	of	JavaScript	code	is	executed	but	with	some
exceptions.

Consider	the	following	code:

console.log(a);

var	a	=	1;

If	you	said	this	is	an	invalid	code	and	will	result	in
undefined	when	we	call	console.log(),	you	are
absolutely	correct.	However,	what	about	this?

a	=	1;

var	a;

console.log(a);

What	should	be	the	output	of	the	preceding	code?	It	is
natural	to	expect	undefined	as	the	var	a	statement
comes	after	a	=	1,	and	it	would	seem	natural	to
assume	that	the	variable	is	redefined	and	thus	assigned
the	default	undefined.	However,	the	output	will	be	1.

When	you	see	var	a	=	1,	JavaScript	splits	it	into	two
statements:	var	a	and	a	=	1.	The	first	statement,	the
declaration,	is	processed	during	the	compilation	phase.
The	second	statement,	the	assignment,	is	left	in	place
for	the	execution	phase.

So	the	preceding	snippet	would	actually	be	executed	as
follows:

var	a;			//----Compilation	phase

	

a	=	1;				//------execution	phase

console.log(a);

The	first	snippet	is	actually	executed	as	follows:

var	a;					//-----Compilation	phase

	

console.log(a);

a	=	1;					//------execution	phase

So,	as	we	can	see,	variable	and	function	declarations
are	moved	up	to	the	top	of	the	code	during	compilation
phase—this	is	also	popularly	known	as	hoisting.	It	is
very	important	to	remember	that	only	the	declarations
themselves	are	hoisted,	while	any	assignments	or	other
executable	logic	are	left	in	place.	The	following	snippet
shows	you	how	function	declarations	are	hoisted:

foo();

function	foo()	{

		console.log(a);	//	undefined

		var	a	=	1;

}

The	declaration	of	the	foo()	function	is	hoisted	such
that	we	are	able	to	execute	the	function	before	defining
it.	One	important	aspect	of	hoisting	is	that	it	works	per
scope.	Within	the	foo()	function,	declaration	of	the	a
variable	will	be	hoisted	to	the	top	of	the	foo()	function,
and	not	to	the	top	of	the	program.	The	actual	execution
of	the	foo()	function	with	hoisting	will	be	something	as
follows:

function	foo()	{

		var	a;

		console.log(a);	//	undefined

		a	=	1;

}

We	saw	that	function	declarations	are	hoisted	but
function	expressions	are	not.	The	next	section	explains
this	case.

Function	declarations
versus	function	expressions
We	saw	two	ways	by	which	functions	are	defined.
Though	they	both	serve	identical	purposes,	there	is	a
difference	between	these	two	types	of	declarations.
Check	the	following	example:

//Function	expression

functionOne();

//Error

//"TypeError:	functionOne	is	not	a

function

	

var	functionOne	=	function()	{

		console.log("functionOne");

};

//Function	declaration

functionTwo();

//No	error

//Prints	-	functionTwo

	

function	functionTwo()	{

		console.log("functionTwo");

}

A	function	declaration	is	processed	when	execution
enters	the	context	in	which	it	appears	before	any	step-
by-step	code	is	executed.	The	function	that	it	creates	is
given	a	proper	name	(functionTwo()	in	the	preceding
example)	and	this	name	is	put	in	the	scope	in	which	the
declaration	appears.	As	it's	processed	before	any	step-

by-step	code	in	the	same	context,	calling
functionTwo()	before	defining	it	works	without	an
error.

However,	functionOne()	is	an	anonymous	function
expression,	evaluated	when	it's	reached	in	the	step-by-
step	execution	of	the	code	(also	called	runtime
execution);	we	have	to	declare	it	before	we	can	invoke	it.

So	essentially,	the	function	declaration	of
functionTwo()	was	hoisted	while	the	function
expression	of	functionOne()	was	executed	when	line-
by-line	execution	encountered	it.

NOTENOTE
Both	function	declarations	and	variable	declarations	are	hoisted	but	functions	are	hoisted
first,	and	then	variables.

One	thing	to	remember	is	that	you	should	never	use
function	declarations	conditionally.	This	behavior	is	non-
standardized	and	can	behave	differently	across
platforms.	The	following	example	shows	such	a	snippet
where	we	try	to	use	function	declarations	conditionally.
We	are	trying	to	assign	different	function	body	to	function
sayMoo()	but	such	a	conditional	code	is	not	guaranteed
to	work	across	all	browsers	and	can	result	in
unpredictable	results:

//	Never	do	this	-	different	browsers	will

behave	differently

if	(true)	{

		function	sayMoo()	{

				return	'trueMoo';

				return	'trueMoo';

		}

}

else	{

		function	sayMoo()	{

				return	'falseMoo';

		}

}

foo();

However,	it's	perfectly	safe	and,	in	fact,	smart	to	do	the
same	with	function	expressions:

var	sayMoo;

if	(true)	{

		sayMoo	=	function()	{

				return	'trueMoo';

		};

}

else	{

		sayMoo	=	function()	{

				return	'falseMoo';

		};

}

foo();

If	you	are	curious	to	know	why	you	should	not	use
function	declarations	in	conditional	blocks,	read	on;
otherwise,	you	can	skip	the	following	paragraph.

Function	declarations	are	allowed	to	appear	only	in	the
program	or	function	body.	They	cannot	appear	in	a	block
({	...	}).	Blocks	can	only	contain	statements	and	not
function	declarations.	Due	to	this,	almost	all
implementations	of	JavaScript	have	behavior	different
from	this.	It	is	always	advisable	to	never	use	function
declarations	in	a	conditional	block.

Function	expressions,	on	the	other	hand,	are	very
popular.	A	very	common	pattern	among	JavaScript
programmers	is	to	fork	function	definitions	based	on
some	kind	of	a	condition.	As	such	forks	usually	happen
in	the	same	scope,	it	is	almost	always	necessary	to	use
function	expressions.

The	arguments	parameter
The	arguments	parameter	is	a	collection	of	all	the
arguments	passed	to	the	function.	The	collection	has	a
property	named	length	that	contains	the	count	of
arguments,	and	the	individual	argument	values	can	be
obtained	using	an	array	indexing	notation.	Okay,	we	lied
a	bit.	The	arguments	parameter	is	not	a	JavaScript
array,	and	if	you	try	to	use	array	methods	on	arguments,
you'll	fail	miserably.	You	can	think	of	arguments	as	an
array-like	structure.	This	makes	it	possible	to	write
functions	that	take	an	unspecified	number	of	parameters.
The	following	snippet	shows	you	how	you	can	pass	a
variable	number	of	arguments	to	the	function	and	iterate
through	them	using	an	arguments	array:

var	sum	=	function	()	{

		var	i,	total	=	0;

		for	(i	=	0;	i	<	arguments.length;	i	+=

1)	{

				total	+=	arguments[i];

		}

		return	total;

};

console.log(sum(1,2,3,4,5,6,7,8,9));	//

prints	45

console.log(sum(1,2,3,4,5));	//	prints	15

As	we	discussed,	the	arguments	parameter	is	not	really
an	array;	it	is	possible	to	convert	it	to	an	array	as	follows:

var	args	=

var	args	=

Array.prototype.slice.call(arguments);

Once	converted	to	an	array,	you	can	manipulate	the	list
as	you	wish.

The	this	parameter
Whenever	a	function	is	invoked,	in	addition	to	the
parameters	that	represent	the	explicit	arguments	that
were	provided	on	the	function	call,	an	implicit	parameter
named	this	is	also	passed	to	the	function.	It	refers	to
an	object	that's	implicitly	associated	with	the	function
invocation,	termed	as	a	function	context.	If	you	have
coded	in	Java,	the	this	keyword	will	be	familiar	to	you;
like	Java,	this	points	to	an	instance	of	the	class	in
which	the	method	is	defined.

Equipped	with	this	knowledge,	let's	talk	about	various
invocation	methods.

INVOCATION	AS	A	FUNCTION
If	a	function	is	not	invoked	as	a	method,	constructor,	or
via	apply()	or	call(),	it's	simply	invoked	as	a
function:

function	add()	{}

add();

var	substract	=	function()	{

		

};

substract();

When	a	function	is	invoked	with	this	pattern,	this	is
bound	to	the	global	object.	Many	experts	believe	this	to
be	a	bad	design	choice.	It	is	natural	to	assume	that	this
would	be	bound	to	the	parent	context.	When	you	are	in	a
situation	such	as	this,	you	can	capture	the	value	of	this
in	another	variable.	We	will	focus	on	this	pattern	later.

INVOCATION	AS	A	METHOD
A	method	is	a	function	tied	to	a	property	on	an	object.
For	methods,	this	is	bound	to	the	object	on	invocation:

var	person	=	{

		name:	'Albert	Einstein',

		age:	66,

		greet:	function	()	{

				console.log(this.name);

		}

};

person.greet();

In	this	example,	this	is	bound	to	the	person	object	on
invoking	greet	because	greet	is	a	method	of	person.
Let's	see	how	this	behaves	in	both	these	invocation
patterns.

Let's	prepare	this	HTML	and	JavaScript	harness:

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8">

		<title>This	test</title>

		<script	type="text/javascript">

				function	testF(){	return	this;	}

				console.log(testF());												

				var	testFCopy	=	testF;

				console.log(testFCopy());								

				var	testObj	=	{

						testObjFunc:	testF

				};

				console.log(testObj.testObjFunc	());

		</script>

</head>

<body>

</body>

</html>

In	the	Firebug	console,	you	can	see	the	following
output:

The	first	two	method	invocations	were	invocation	as	a
function;	hence,	the	this	parameter	pointed	to	the
global	context	(Window,	in	this	case).

Next,	we	define	an	object	with	a	testObj	variable	with	a
property	named	testObjFunc	that	receives	a	reference
to	testF()—don't	fret	if	you	are	not	really	aware	of
object	creation	yet.	By	doing	this,	we	created	a
testObjMethod()	method.	Now,	when	we	invoke	this
method,	we	expect	the	function	context	to	be	displayed

when	we	display	the	value	of	this.

INVOCATION	AS	A	CONSTRUCTOR
Constructor	functions	are	declared	just	like	any	other
functions	and	there's	nothing	special	about	a	function
that's	going	to	be	used	as	a	constructor.	However,	the
way	in	which	they	are	invoked	is	very	different.

To	invoke	the	function	as	a	constructor,	we	precede	the
function	invocation	with	the	new	keyword.	When	this
happens,	this	is	bound	to	the	new	object.

Before	we	discuss	more,	let's	take	a	quick	introduction	to
object	orientation	in	JavaScript.	We	will,	of	course,
discuss	the	topic	in	great	detail	in	the	next	chapter.
JavaScript	is	a	prototypal	inheritance	language.	This
means	that	objects	can	inherit	properties	directly	from
other	objects.	The	language	is	class-free.	Functions	that
are	designed	to	be	called	with	the	new	prefix	are	called
constructors.	Usually,	they	are	named	using
PascalCase	as	opposed	to	CamelCase	for	easier
distinction.	In	the	following	example,	notice	that	the
greet	function	uses	this	to	access	the	name	property.
The	this	parameter	is	bound	to	Person:

var	Person	=	function	(name)	{

		this.name	=	name;

};

Person.prototype.greet	=	function	()	{

		return	this.name;

};

var	albert	=	new	Person('Albert

Einstein');

Einstein');

console.log(albert.greet());

We	will	discuss	this	particular	invocation	method	when
we	study	objects	in	the	next	chapter.

INVOCATION	USING	APPLY()	AND
CALL()	METHODS
We	said	earlier	that	JavaScript	functions	are	objects.
Like	other	objects,	they	also	have	certain	methods.	To
invoke	a	function	using	its	apply()	method,	we	pass
two	parameters	to	apply():	the	object	to	be	used	as
the	function	context	and	an	array	of	values	to	be	used	as
the	invocation	arguments.	The	call()	method	is	used
in	a	similar	manner,	except	that	the	arguments	are
passed	directly	in	the	argument	list	rather	than	as	an
array.

Anonymous	functions
We	introduced	you	to	anonymous	functions	a	bit	earlier
in	this	chapter,	and	as	they're	a	crucial	concept,	we	will
take	a	detailed	look	at	them.	For	a	language	inspired	by
Scheme,	anonymous	functions	are	an	important	logical
and	structural	construct.

Anonymous	functions	are	typically	used	in	cases	where
the	function	doesn't	need	to	have	a	name	for	later
reference.	Let's	look	at	some	of	the	most	popular	usages
of	anonymous	functions.

Anonymous	functions	while
creating	an	object
An	anonymous	function	can	be	assigned	to	an	object
property.	When	we	do	that,	we	can	call	that	function	with
a	dot	(.)	operator.	If	you	are	coming	from	a	Java	or	other
OO	language	background,	you	will	find	this	very	familiar.
In	such	languages,	a	function,	which	is	part	of	a	class	is
generally	called	with	a	notation—Class.function().
Let's	consider	the	following	example:

var	santa	=	{

		say	:function(){

				console.log("ho	ho	ho");

		}

}

santa.say();

In	this	example,	we	are	creating	an	object	with	a	say
property,	which	is	an	anonymous	function.	In	this
particular	case,	this	property	is	known	as	a	method	and
not	a	function.	We	don't	need	to	name	this	function
because	we	are	going	to	invoke	it	as	the	object	property.
This	is	a	popular	pattern	and	should	come	in	handy.

Anonymous	functions	while
creating	a	list
Here,	we	are	creating	two	anonymous	functions	and
adding	them	to	an	array.	(We	will	take	a	detailed	look	at
arrays	later.)	Then,	you	loop	through	this	array	and
execute	the	functions	in	a	loop:

<script	type="text/javascript">

var	things	=	[

		function()	{	alert("ThingOne")	},

		function()	{	alert("ThingTwo")	},

];

for(var	x=0;	x<things.length;	x++)	{

		things[x]();

}

</script>

Anonymous	functions	as	a
parameter	to	another	function
This	is	one	of	the	most	popular	patterns	and	you	will	find
such	code	in	most	professional	libraries:

//	function	statement

//	function	statement

function	eventHandler(event){

		event();

}

	

eventHandler(function(){

		//do	a	lot	of	event	related	things

		console.log("Event	fired");

});

You	are	passing	the	anonymous	function	to	another
function.	In	the	receiving	function,	you	are	executing	the
function	passed	as	a	parameter.	This	can	be	very
convenient	if	you	are	creating	single-use	functions	such
as	object	methods	or	event	handlers.	The	anonymous
function	syntax	is	more	concise	than	declaring	a	function
and	then	doing	something	with	it	as	two	separate	steps.

Anonymous	functions	in
conditional	logic
You	can	use	anonymous	function	expressions	to
conditionally	change	behavior.	The	following	example
shows	this	pattern:

var	shape;

if(shape_name	===	"SQUARE")	{

		shape	=	function()	{

				return	"drawing	square";

		}

}

else	{

		shape	=	function()	{

				return	"drawing	square";

		}

}

alert(shape());

alert(shape());

Here,	based	on	a	condition,	we	are	assigning	a	different
implementation	to	the	shape	variable.	This	pattern	can
be	very	useful	if	used	with	care.	Overusing	this	can
result	in	unreadable	and	difficult-to-debug	code.

Later	in	this	book,	we	will	look	at	several	functional	tricks
such	as	memoization	and	caching	function	calls.	If	you
have	reached	here	by	quickly	reading	through	the	entire
chapter,	I	would	suggest	that	you	stop	for	a	while	and
contemplate	on	what	we	have	discussed	so	far.	The	last
few	pages	contain	a	ton	of	information	and	it	will	take
some	time	for	all	this	information	to	sink	in.	I	would
suggest	that	you	reread	this	chapter	before	proceeding
further.	The	next	section	will	focus	on	closures	and	the
module	pattern.

Closures
Traditionally,	closures	have	been	a	feature	of	purely
functional	programming	languages.	JavaScript	shows	its
affinity	with	such	functional	programming	languages	by
considering	closures	integral	to	the	core	language
constructs.	Closures	are	gaining	popularity	in
mainstream	JavaScript	libraries	and	advanced
production	code	because	they	let	you	simplify	complex
operations.	You	will	hear	experienced	JavaScript
programmers	talking	almost	reverently	about	closures—
as	if	they	are	some	magical	construct	far	beyond	the
reach	of	the	intellect	that	common	men	possess.
However,	this	is	not	so.	When	you	study	this	concept,
you	will	find	closures	to	be	very	obvious,	almost	matter-
of-fact.	Till	you	reach	closure	enlightenment,	I	suggest
you	read	and	reread	this	chapter,	research	on	the
Internet,	write	code,	and	read	JavaScript	libraries	to
understand	how	closures	behave—but	do	not	give	up.

The	first	realization	that	you	must	have	is	that	closure	is
everywhere	in	JavaScript.	It	is	not	a	hidden	special	part
of	the	language.

Before	we	jump	into	the	nitty-gritty,	let's	quickly	refresh
the	lexical	scope	in	JavaScript.	We	discussed	in	great
detail	how	lexical	scope	is	determined	at	the	function
level	in	JavaScript.	Lexical	scope	essentially	determines
where	and	how	all	identifiers	are	declared	and	predicts

how	they	will	be	looked	up	during	execution.

In	a	nutshell,	closure	is	the	scope	created	when	a
function	is	declared	that	allows	the	function	to	access
and	manipulate	variables	that	are	external	to	this
function.	In	other	words,	closures	allow	a	function	to
access	all	the	variables,	as	well	as	other	functions,	that
are	in	scope	when	the	function	itself	is	declared.

Let's	look	at	some	example	code	to	understand	this
definition:

var	outer	=	'I	am	outer';	//Define	a	value

in	global	scope

function	outerFn()	{	//Declare	a	a

function	in	global	scope

		console.log(outer);

}

outerFn();	//prints	-	I	am	outer

Were	you	expecting	something	shiny?	No,	this	is	really
the	most	ordinary	case	of	a	closure.	We	are	declaring	a
variable	in	the	global	scope	and	declaring	a	function	in
the	global	scope.	In	the	function,	we	are	able	to	access
the	variable	declared	in	the	global	scope—outer.	So
essentially,	the	outer	scope	for	the	outerFn()	function
is	a	closure	and	always	available	to	outerFn().	This	is
a	good	start	but	perhaps	then	you	are	not	sure	why	this
is	such	a	great	thing.

Let's	make	things	a	bit	more	complex:

var	outer	=	'Outer';	//Variable	declared

in	global	scope

in	global	scope

var	copy;

function	outerFn(){		//Function	declared

in	global	scope

	

		var	inner	=	'Inner';	//Variable	has

function	scope	only,	can	not	be

		//accessed	from	outside

	

		function	innerFn(){					//Inner	function

within	Outer	function,

				//both	global	context	and	outer

				//context	are	available	hence	can

access

				//'outer'	and	'inner'

				console.log(outer);

				console.log(inner);

		}

		copy=innerFn;										//Store	reference

to	inner	function,

		//because	'copy'	itself	is	declared

		//in	global	context,	it	will	be

available

		//outside	also

}

outerFn();

copy();		//Cant	invoke	innerFn()	directly

but	can	invoke	via	a

//variable	declared	in	global	scope

Let's	analyze	the	preceding	example.	In	innerFn(),	the
outer	variable	is	available	as	it's	part	of	the	global
context.	We're	executing	the	inner	function	after	the
outer	function	has	been	executed	via	copying	a
reference	to	the	function	to	a	global	reference	variable,
copy.	When	innerFn()	executes,	the	scope	in
outerFn()	is	gone	and	not	visible	at	the	point	at	which
we're	invoking	the	function	through	the	copy	variable.	So

shouldn't	the	following	line	fail?

console.log(inner);

Should	the	inner	variable	be	undefined?	However,	the
output	of	the	preceding	code	snippet	is	as	follows:

"Outer"

"Inner"

What	phenomenon	allows	the	inner	variable	to	still	be
available	when	we	execute	the	inner	function,	long	after
the	scope	in	which	it	was	created	has	gone	away?	When
we	declared	innerFn()	in	outerFn(),	not	only	was
the	function	declaration	defined,	but	a	closure	was	also
created	that	encompasses	not	only	the	function
declaration,	but	also	all	the	variables	that	are	in	scope	at
the	point	of	the	declaration.	When	innerFn()	executes,
even	if	it's	executed	after	the	scope	in	which	it	was
declared	goes	away,	it	has	access	to	the	original	scope
in	which	it	was	declared	through	its	closure.

Let's	continue	to	expand	this	example	to	understand	how
far	you	can	go	with	closures:

var	outer='outer';

var	copy;

function	outerFn()	{

		var	inner='inner';

		function	innerFn(param){

				console.log(outer);

				console.log(inner);

				console.log(param);

				console.log(magic);

		}

		copy=innerFn;

}

console.log(magic);	//ERROR:	magic	not	

defined

var	magic="Magic";

outerFn();

copy("copy");

In	the	preceding	example,	we	have	added	a	few	more
things.	First,	we	added	a	parameter	to	innerFn()—just
to	illustrate	that	parameters	are	also	part	of	the	closure.
There	are	two	important	points	that	we	want	to	highlight.

All	variables	in	an	outer	scope	are	included	even	if	they
are	declared	after	the	function	is	declared.	This	makes	it
possible	for	the	line,	console.log(magic),	in
innerFn(),	to	work.

However,	the	same	line,	console.log(magic),	in	the
global	scope	will	fail	because	even	within	the	same
scope,	variables	not	yet	defined	cannot	be	referenced.

All	these	examples	were	intended	to	convey	a	few
concepts	that	govern	how	closures	work.	Closures	are	a
prominent	feature	in	the	JavaScript	language	and	you
can	see	them	in	most	libraries.

Let's	look	at	some	popular	patterns	around	closures.

Timers	and	callbacks
In	implementing	timers	or	callbacks,	you	need	to	call	the
handler	asynchronously,	mostly	at	a	later	point	in	time.
Due	to	the	asynchronous	calls,	we	need	to	access
variables	from	outside	the	scope	in	such	functions.
Consider	the	following	example:

function	delay(message)	{

		setTimeout(function	timerFn(){

				console.log(message);

		},	1000);

}

delay("Hello	World");

We	pass	the	inner	timerFn()	function	to	the	built-in
library	function,	setTimeout().	However,	timerFn()
has	a	scope	closure	over	the	scope	of	delay(),	and
hence	it	can	reference	the	variable	message.

Private	variables
Closures	are	frequently	used	to	encapsulate	some
information	as	private	variables.	JavaScript	does	not
allow	such	encapsulation	found	in	programming
languages	such	as	Java	or	C++,	but	by	using	closures,
we	can	achieve	similar	encapsulation:

function	privateTest(){

		var	points=0;

		this.getPoints=function(){

				return	points;

		};

		this.score=function(){

				points++;

		};

}

var	private	=	new	privateTest();

private.score();

console.log(private.points);	//	undefined

console.log(private.getPoints());

In	the	preceding	example,	we	are	creating	a	function	that
we	intend	to	call	as	a	constructor.	In	this
privateTest()	function,	we	are	creating	a	var
points=0	variable	as	a	function-scoped	variable.	This
variable	is	available	only	in	privateTest().
Additionally,	we	create	an	accessor	function	(also	called
a	getter)—getPoints()—this	method	allows	us	to
read	the	value	of	only	the	points	variable	from	outside
privateTest(),	making	this	variable	private	to	the

function.	However,	another	method,	score(),	allows	us
to	modify	the	value	of	the	private	point	variable	without
directly	accessing	it	from	outside.	This	makes	it	possible
for	us	to	write	code	where	a	private	variable	is	updated
in	a	controlled	fashion.	This	pattern	can	be	very	useful
when	you	are	writing	libraries	where	you	want	to	control
how	variables	are	accessed	based	on	a	contract	and
pre-established	interface.

Loops	and	closures
Consider	the	following	example	of	using	functions	inside
loops:

for	(var	i=1;	i<=5;	i++)	{

		setTimeout(function	delay(){

				console.log(i);

		},	i*100);

}

This	snippet	should	print	1,	2,	3,	4,	and	5	on	the	console
at	an	interval	of	100	ms,	right?	Instead,	it	prints	6,	6,	6,
6,	and	6	at	an	interval	of	100	ms.	Why	is	this	happening?
Here,	we	encounter	a	common	issue	with	closures	and
looping.	The	i	variable	is	being	updated	after	the
function	is	bound.	This	means	that	every	bound	function
handler	will	always	print	the	last	value	stored	in	i.	In
fact,	the	timeout	function	callbacks	are	running	after	the
completion	of	the	loop.	This	is	such	a	common	problem
that	JSLint	will	warn	you	if	you	try	to	use	functions	this
way	inside	a	loop.

How	can	we	fix	this	behavior?	We	can	introduce	a
function	scope	and	local	copy	of	the	i	variable	in	that
scope.	The	following	snippet	shows	you	how	we	can	do
this:

for	(var	i=1;	i<=5;	i++)	{

		(function(j){

				setTimeout(function	delay(){

				setTimeout(function	delay(){

						console.log(j);

				},	j*100);

		})(i);

}

We	pass	the	i	variable	and	copy	it	to	the	j	variable	local
to	the	IIFE.	The	introduction	of	an	IIFE	inside	each
iteration	creates	a	new	scope	for	each	iteration	and
hence	updates	the	local	copy	with	the	correct	value.

Modules
Modules	are	used	to	mimic	classes	and	focus	on	public
and	private	access	to	variables	and	functions.	Modules
help	in	reducing	the	global	scope	pollution.	Effective	use
of	modules	can	reduce	name	collisions	across	a	large
code	base.	A	typical	format	that	this	pattern	takes	is	as
follows:

Var	moduleName=function()	{

		//private	state

		//private	functions

		return	{

					//public	state

					//public	variables

		}

}

There	are	two	requirements	to	implement	this	pattern	in
the	preceding	format:

There	must	be	an	outer	enclosing	function	that	needs	to	be	executed
at	least	once.

This	enclosing	function	must	return	at	least	one	inner	function.	This	is
necessary	to	create	a	closure	over	the	private	state—without	this,	you
can't	access	the	private	state	at	all.

Check	the	following	example	of	a	module:

var	superModule	=	(function	(){

		var	secret	=	'supersecretkey';

		var	passcode	=	'nuke';

	

		function	getSecret()	{

		function	getSecret()	{

				console.log(secret);

		}

	

		function	getPassCode()	{

				console.log(passcode);

		}

	

		return	{

				getSecret:	getSecret,

				getPassCode:	getPassCode

		};

})();

superModule.getSecret();

superModule.getPassCode();

This	example	satisfies	both	the	conditions.	Firstly,	we
create	an	IIFE	or	a	named	function	to	act	as	an	outer
enclosure.	The	variables	defined	will	remain	private
because	they	are	scoped	in	the	function.	We	return	the
public	functions	to	make	sure	that	we	have	a	closure
over	the	private	scope.	Using	IIFE	in	the	module	pattern
will	actually	result	in	a	singleton	instance	of	this	function.
If	you	want	to	create	multiple	instances,	you	can	create
named	function	expressions	as	part	of	the	module	as
well.

We	will	keep	exploring	various	facets	of	functional
aspects	of	JavaScript	and	closures	in	particular.	There
can	be	a	lot	of	imaginative	uses	of	such	elegant
constructs.	An	effective	way	to	understand	various
patterns	is	to	study	the	code	of	popular	libraries	and
practice	writing	these	patterns	in	your	code.

Stylistic	considerations

As	in	the	previous	chapter,	we	will	conclude	this
discussion	with	certain	stylistic	considerations.	Again,
these	are	generally	accepted	guidelines	and	not	rules—
feel	free	to	deviate	from	them	if	you	have	reason	to
believe	otherwise:

Use	function	declarations	instead	of	function	expressions:

//	bad

const	foo	=	function	()	{

};

	

//	good

function	foo()	{

}

Never	declare	a	function	in	a	non-function	block	(if,	while,	and	so	on).
Assign	the	function	to	a	variable	instead.	Browsers	allow	you	to	do	it,
but	they	all	interpret	it	differently.

Never	name	a	parameter	arguments.	This	will	take	precedence	over

the	arguments	object	that	is	given	to	every	function	scope.

Summary
In	this	chapter,	we	studied	JavaScript	functions.	In
JavaScript,	functions	play	a	critical	role.	We	discussed
how	functions	are	created	and	used.	We	also	discussed
important	ideas	of	closures	and	the	scope	of	variables	in
terms	of	functions.	We	discussed	functions	as	a	way	to
create	visibility	classes	and	encapsulation.

In	the	next	chapter,	we	will	look	at	various	data
structures	and	data	manipulation	techniques	in
JavaScript.

Chapter	3.	Data	Structures
and	Manipulation
Most	of	the	time	that	you	spend	in	programming,	you	do
something	to	manipulate	data.	You	process	properties	of
data,	derive	conclusions	based	on	the	data,	and	change
the	nature	of	the	data.	In	this	chapter,	we	will	take	an
exhaustive	look	at	various	data	structures	and	data
manipulation	techniques	in	JavaScript.	With	the	correct
usage	of	these	expressive	constructs,	your	programs	will
be	correct,	concise,	easy	to	read,	and	most	probably
faster.	This	will	be	explained	with	the	help	of	the
following	topics:

Regular	expressions

Exact	match

Match	from	a	class	of	characters

Repeated	occurrences

Beginning	and	end

Backreferences

Greedy	and	lazy	quantifiers

Arrays

Maps

Sets

A	matter	of	style

Regular	expressions

If	you	are	not	familiar	with	regular	expressions,	I	request
you	to	spend	time	learning	them.	Learning	and	using
regular	expressions	effectively	is	one	of	the	most
rewarding	skills	that	you	will	gain.	During	most	of	the
code	review	sessions,	the	first	thing	that	I	comment	on	is
how	a	piece	of	code	can	be	converted	to	a	single	line	of
regular	expression	(or	RegEx).	If	you	study	popular
JavaScript	libraries,	you	will	be	surprised	to	see	how
ubiquitous	RegEx	are.	Most	seasoned	engineers	rely	on
RegEx	primarily	because	once	you	know	how	to	use
them,	they	are	concise	and	easy	to	test.	However,
learning	RegEx	will	take	a	significant	amount	of	effort
and	time.	A	regular	expression	is	a	way	to	express	a
pattern	to	match	strings	of	text.	The	expression	itself
consists	of	terms	and	operators	that	allow	us	to	define
these	patterns.	We'll	see	what	these	terms	and	operators
consist	of	shortly.

In	JavaScript,	there	are	two	ways	to	create	a	regular
expression:	via	a	regular	expression	literal	and
constructing	an	instance	of	a	RegExp	object.

For	example,	if	we	wanted	to	create	a	RegEx	that
matches	the	string	test	exactly,	we	could	use	the
following	RegEx	literal:

var	pattern	=	test;

RegEx	literals	are	delimited	using	forward	slashes.
Alternatively,	we	could	construct	a	RegExp	instance,
passing	the	RegEx	as	a	string:

var	pattern	=	new	RegExp("test");

Both	of	these	formats	result	in	the	same	RegEx	being
created	in	the	variable	pattern.	In	addition	to	the
expression	itself,	there	are	three	flags	that	can	be
associated	with	a	RegEx:

i:	This	makes	the	RegEx	case-insensitive,	so	testi	matches	not

only	test,	but	also	Test,	TEST,	tEsT,	and	so	on.

g:	This	matches	all	the	instances	of	the	pattern	as	opposed	to	the

default	of	local,	which	matches	the	first	occurrence	only.	More	on	this
later.

m:	This	allows	matches	across	multiple	lines	that	might	be	obtained

from	the	value	of	a	textarea	element.

These	flags	are	appended	to	the	end	of	the	literal	(for
example,	testig)	or	passed	in	a	string	as	the	second
parameter	to	the	RegExp	constructor	(new
RegExp("test",	"ig")).

The	following	example	illustrates	the	various	flags	and
how	they	affect	the	pattern	match:

var	pattern	=	orange;

console.log(pattern.test("orange"));	//	

true

var	patternIgnoreCase	=	orangei;

console.log(patternIgnoreCase.test("Orange

"));	//	true

var	patternGlobal	=	orangeig;

console.log(patternGlobal.test("Orange	

Juice"));	//	true

It	isn't	very	exciting	if	we	can	just	test	whether	the	pattern
matches	a	string.	Let's	see	how	we	can	express	more
complex	patterns.

Exact	match
Any	sequence	of	characters	that's	not	a	special	RegEx
character	or	operator	represents	a	character	literal:

var	pattern	=	orange;

We	mean	o	followed	by	r	followed	by	a	followed	by	n
followed	by	…—you	get	the	point.	We	rarely	use	exact
match	when	using	RegEx	because	that	is	the	same	as
comparing	two	strings.	Exact	match	patterns	are
sometimes	called	simple	patterns.

Match	from	a	class	of
characters
If	you	want	to	match	against	a	set	of	characters,	you	can
place	the	set	inside	[].	For	example,	[abc]	would
mean	any	character	a,	b,	or	c:

var	pattern	=	[abc];

console.log(pattern.test('a'));	//true

console.log(pattern.test('d'));	//false

You	can	specify	that	you	want	to	match	anything	but	the
pattern	by	adding	a	^	(caret	sign)	at	the	beginning	of	the
pattern:

var	pattern	=	[^abc];

console.log(pattern.test('a'));	//false

console.log(pattern.test('d'));	//true

One	critical	variation	of	this	pattern	is	a	range	of	values.
If	we	want	to	match	against	a	sequential	range	of
characters	or	numbers,	we	can	use	the	following	pattern:

var	pattern	=	[0-5];

console.log(pattern.test(3));	//true

console.log(pattern.test(12345));	//true

console.log(pattern.test(9));	//false

console.log(pattern.test(6789));	//false

console.log(/[0123456789]/.test("This	is	

year	2015"));	//true

Special	characters	such	as	$	and	period	(.)	characters
either	represent	matches	to	something	other	than
themselves	or	operators	that	qualify	the	preceding	term.
In	fact,	we've	already	seen	how	[,],	-,	and	^	characters
are	used	to	represent	something	other	than	their	literal
values.

How	do	we	specify	that	we	want	to	match	a	literal	[or	$
or	^	or	some	other	special	character?	Within	a	RegEx,
the	backslash	character	escapes	whatever	character
follows	it,	making	it	a	literal	match	term.	So	\[specifies
a	literal	match	to	the	[character	rather	than	the	opening
of	a	character	class	expression.	A	double	backslash	(\\)
matches	a	single	backslash.

In	the	preceding	examples,	we	saw	the	test()	method
that	returns	true	or	false	based	on	the	pattern	matched.
There	are	times	when	you	want	to	access	occurrences
of	a	particular	pattern.	The	exec()	method	comes	in
handy	in	such	situations.

The	exec()	method	takes	a	string	as	an	argument	and
returns	an	array	containing	all	matches.	Consider	the
following	example:

var	strToMatch	=	'A	Toyota!	Race	fast,	

safe	car!	A	Toyota!';	

var	regExAt	=	Toy;

var	arrMatches	=	regExAt.exec(strToMatch);		

console.log(arrMatches);

The	output	of	this	snippet	would	be	['Toy'];	if	you	want

all	the	instances	of	the	pattern	Toy,	you	can	use	the	g
(global)	flag	as	follows:

var	strToMatch	=	'A	Toyota!	Race	fast,	

safe	car!	A	Toyota!';	

var	regExAt	=	Toyg;

var	arrMatches	=	regExAt.exec(strToMatch);		

console.log(arrMatches);

This	will	return	all	the	occurrences	of	the	word	oyo	from
the	original	text.	The	String	object	contains	the	match()
method	that	has	similar	functionality	of	the	exec()
method.	The	match()	method	is	called	on	a	String
object	and	the	RegEx	is	passed	to	it	as	a	parameter.
Consider	the	following	example:

var	strToMatch	=	'A	Toyota!	Race	fast,	

safe	car!	A	Toyota!';	

var	regExAt	=	Toy;

var	arrMatches	=	

strToMatch.match(regExAt);

console.log(arrMatches);

In	this	example,	we	are	calling	the	match()	method	on
the	String	object.	We	pass	the	RegEx	as	a	parameter	to
the	match()	method.	The	results	are	the	same	in	both
these	cases.

The	other	String	object	method	is	replace().	It
replaces	all	the	occurrences	of	a	substring	with	a
different	string:

var	strToMatch	=	'Blue	is	your	favorite	

color	?';	

var	regExAt	=	Blue;

console.log(strToMatch.replace(regExAt,	

"Red"));

//Output-	"Red	is	your	favorite	color	?"

It	is	possible	to	pass	a	function	as	a	second	parameter	of
the	replace()	method.	The	replace()	function	takes
the	matching	text	as	a	parameter	and	returns	the	text
that	is	used	as	a	replacement:

var	strToMatch	=	'Blue	is	your	favorite	

color	?';	

var	regExAt	=	Blue;

console.log(strToMatch.replace(regExAt,	

function(matchingText){

		return	'Red';

}));

//Output-	"Red	is	your	favorite	color	?"

The	String	object's	split()	method	also	takes	a	RegEx
parameter	and	returns	an	array	containing	all	the
substrings	generated	after	splitting	the	original	string:

var	sColor	=	'sun,moon,stars';

var	reComma	=	\,;

console.log(sColor.split(reComma));

//Output	-	["sun",	"moon",	"stars"]

We	need	to	add	a	backslash	before	the	comma	because
a	comma	is	treated	specially	in	RegEx	and	we	need	to
escape	it	if	we	want	to	use	it	literally.

Using	simple	character	classes,	you	can	match	multiple
patterns.	For	example,	if	you	want	to	match	cat,	bat,

and	fat,	the	following	snippet	shows	you	how	to	use
simple	character	classes:

var	strToMatch	=	'wooden	bat,	smelly	Cat,a	

fat	cat';

var	re	=	[bcf]atgi;

var	arrMatches	=	strToMatch.match(re);

console.log(arrMatches);

//["bat",	"Cat",	"fat",	"cat"]

As	you	can	see,	this	variation	opens	up	possibilities	to
write	concise	RegEx	patterns.	Take	the	following
example:

var	strToMatch	=	

'i1,i2,i3,i4,i5,i6,i7,i8,i9';

var	re	=	i[0-5]gi;

var	arrMatches	=	strToMatch.match(re);

console.log(arrMatches);

//["i1",	"i2",	"i3",	"i4",	"i5"]

In	this	example,	we	are	matching	the	numeric	part	of	the
matching	string	with	a	range	[0-5],	hence	we	get	a
match	from	i0	to	i5.	You	can	also	use	the	negation
class	^	to	filter	the	rest	of	the	matches:

var	strToMatch	=	

'i1,i2,i3,i4,i5,i6,i7,i8,i9';

var	re	=	i[^0-5]gi;

var	arrMatches	=	strToMatch.match(re);

console.log(arrMatches);

//["i6",	"i7",	"i8",	"i9"]

Observe	how	we	are	negating	only	the	range	clause	and
not	the	entire	expression.

Several	character	groups	have	shortcut	notations.	For
example,	the	shortcut	\d	means	the	same	thing	as	[0-
9]:

	
Notation
	
	

	
Meaning
	
	

	
\d

	
	

	
Any	digit	character
	
	

	
\w

	
	

	
An	alphanumeric	character	(word	character)
	
	

	
\s

	
	

	
Any	whitespace	character	(space,	tab,	newline,	and	similar)
	
	

	
\D

	
	

	
A	character	that	is	not	a	digit
	
	

	
\W

	
	

	
A	non-alphanumeric	character
	
	

	
\S

	
	

	
A	non-whitespace	character
	
	

	
.

	
	

	
Any	character	except	for	newline
	
	

These	shortcuts	are	valuable	in	writing	concise	RegEx.
Consider	this	example:

var	strToMatch	=	'123-456-7890';

var	re	=	[0-9][0-9][0-9]-[0-9][0-9][0-9];

var	arrMatches	=	strToMatch.match(re);

console.log(arrMatches);

//["123-456"]

This	expression	definitely	looks	a	bit	strange.	We	can
replace	[0-9]	with	\d	and	make	this	a	bit	more
readable:

var	strToMatch	=	'123-456-7890';

var	re	=	\d\d\d-\d\d\d;

var	arrMatches	=	strToMatch.match(re);

console.log(arrMatches);

//["123-456"]

However,	you	will	soon	see	that	there	are	even	better
ways	to	do	something	like	this.

Repeated	occurrences
So	far,	we	saw	how	we	can	match	fixed	characters	or
numeric	patterns.	Most	often,	you	want	to	handle	certain
repetitive	natures	of	patterns	also.	For	example,	if	I	want
to	match	4	as,	I	can	write	aaaa,	but	what	if	I	want	to
specify	a	pattern	that	can	match	any	number	of	as?

Regular	expressions	provide	you	with	a	wide	variety	of
repetition	quantifiers.	Repetition	quantifiers	let	us	specify
how	many	times	a	particular	pattern	can	occur.	We	can
specify	fixed	values	(characters	should	appear	n	times)
and	variable	values	(characters	can	appear	at	least	n
times	till	they	appear	m	times).	The	following	table	lists
the	various	repetition	quantifiers:

?:	Either	0	or	1	occurrence	(marks	the	occurrence	as	optional)

*:	0	or	more	occurrences

+:	1	or	more	occurrences

{n}:	Exactly	n	occurrences

{n,m}:	Occurrences	between	n	and	m

{n,}:	At	least	an	n	occurrence

{,n}:	0	to	n	occurrences

In	the	following	example,	we	create	a	pattern	where	the
character	u	is	optional	(has	0	or	1	occurrence):

var	str	=	behaviou?r;

console.log(str.test("behaviour"));

//	true

console.log(str.test("behavior"));

//	true

It	helps	to	read	the	behaviou?r	expression	as	0	or	1
occurrences	of	character	u.	The	repetition	quantifier
succeeds	the	character	that	we	want	to	repeat.	Let's	try
out	some	more	examples:

console.log(/'\d+'.test("'123'"));	/	true

You	should	read	and	interpret	the	\d+	expression	as	'	is
a	literal	character	match,	\d	matches	characters	[0-9],
the	+	quantifier	will	allow	one	or	more	occurrences,	and
'	is	a	literal	character	match.

You	can	also	group	character	expressions	using	().
Observe	the	following	example:

var	heartyLaugh	=	Ha+(Ha+)+i;

console.log(heartyLaugh.test("HaHaHaHaHaHa

Haaaaaaaaaaa"));

//true

Let's	break	the	preceding	expression	into	smaller	chunks
to	understand	what	is	going	on	in	here:

H:	literal	character	match

a+:	1	or	more	occurrences	of	character	a

(:	start	of	the	expression	group

H:	literal	character	match

a+:	1	or	more	occurrences	of	character	a

):	end	of	expression	group

+:	1	or	more	occurrences	of	expression	group	(Ha+)

Now	it	is	easier	to	see	how	the	grouping	is	done.	If	we
have	to	interpret	the	expression,	it	is	sometimes	helpful
to	read	out	the	expression,	as	shown	in	the	preceding
example.

Often,	you	want	to	match	a	sequence	of	letters	or
numbers	on	their	own	and	not	just	as	a	substring.	This	is
a	fairly	common	use	case	when	you	are	matching	words
that	are	not	just	part	of	any	other	words.	We	can	specify
the	word	boundaries	by	using	the	\b	pattern.	The	word
boundary	with	\b	matches	the	position	where	one	side	is
a	word	character	(letter,	digit,	or	underscore)	and	the
other	side	is	not.	Consider	the	following	examples.

The	following	is	a	simple	literal	match.	This	match	will
also	be	successful	if	cat	is	part	of	a	substring:

console.log(/cat/.test('a	black	cat'));

//true

However,	in	the	following	example,	we	define	a	word
boundary	by	indicating	\b	before	the	word	cat—this
means	that	we	want	to	match	only	if	cat	is	a	word	and
not	a	substring.	The	boundary	is	established	before	cat,
and	hence	a	match	is	found	on	the	text,	a	black	cat:

console.log(/\bcat/.test('a	black	cat'));

//true

When	we	use	the	same	boundary	with	the	word	tomcat,
we	get	a	failed	match	because	there	is	no	word
boundary	before	cat	in	the	word	tomcat:

console.log(/\bcat/.test('tomcat'));

//false

There	is	a	word	boundary	after	the	string	cat	in	the	word
tomcat,	hence	the	following	is	a	successful	match:

console.log(/cat\b/.test('tomcat'));

//true

In	the	following	example,	we	define	the	word	boundary
before	and	after	the	word	cat	to	indicate	that	we	want
cat	to	be	a	standalone	word	with	boundaries	before	and
after:

console.log(/\bcat\b/.test('a	black

cat'));	//true

Based	on	the	same	logic,	the	following	match	fails
because	there	are	no	boundaries	before	and	after	cat	in
the	word	concatenate:

console.log(/\bcat\b/.test("concatenate"))

;	//false

The	exec()	method	is	useful	in	getting	information
about	the	match	found	because	it	returns	an	object	with
information	about	the	match.	The	object	returned	from
exec()	has	an	index	property	that	tells	us	where	the

successful	match	begins	in	the	string.	This	is	useful	in
many	ways:

var	match	=	\d+.exec("There	are	100	ways	

to	do	this");

console.log(match);

//	["100"]

console.log(match.index);

//	10

Alternatives	–	OR
Alternatives	can	be	expressed	using	the	|	(pipe)
character.	For	example,	a|b	matches	either	the	a	or	b
character,	and	(ab)+|(cd)+	matches	one	or	more
occurrences	of	either	ab	or	cd.

Beginning	and	end
Frequently,	we	may	wish	to	ensure	that	a	pattern
matches	at	the	beginning	of	a	string	or	perhaps	at	the
end	of	a	string.	The	caret	character,	when	used	as	the
first	character	of	the	RegEx,	anchors	the	match	at	the
beginning	of	the	string	such	that	^test	matches	only	if
the	test	substring	appears	at	the	beginning	of	the	string
being	matched.	Similarly,	the	dollar	sign	($)	signifies	that
the	pattern	must	appear	at	the	end	of	the	string:	test$.

Using	both	^	and	$	indicates	that	the	specified	pattern
must	encompass	the	entire	candidate	string:	^test$.

Backreferences
After	an	expression	is	evaluated,	each	group	is	stored
for	later	use.	These	values	are	known	as
backreferences.	Backreferences	are	created	and
numbered	by	the	order	in	which	opening	parenthesis
characters	are	encountered	going	from	left	to	right.	You
can	think	of	backreferences	as	the	portions	of	a	string
that	are	successfully	matched	against	terms	in	the
regular	expression.

The	notation	for	a	backreference	is	a	backslash	followed
by	the	number	of	the	capture	to	be	referenced,	beginning
with	1,	such	as	\1,	\2,	and	so	on.

An	example	could	be	/^([XYZ])a\1/,	which	matches
a	string	that	starts	with	any	of	the	X,	Y,	or	Z	characters
followed	by	an	a	and	followed	by	whatever	character
matched	the	first	capture.	This	is	very	different	from
[XYZ]	a[XYZ].	The	character	following	a	can't	be	any
of	X,	or	Y,	or	Z,	but	must	be	whichever	one	of	those	that
triggered	the	match	for	the	first	character.
Backreferences	are	used	with	String's	replace()
method	using	the	special	character	sequences,	$1,	$2,
and	so	on.	Suppose	that	you	want	to	change	the	1234
5678	string	to	5678	1234.	The	following	code
accomplishes	this:

var	orig	=	"1234	5678";

var	re	=	(\d{4})	(\d{4});

var	modifiedStr	=	orig.replace(re,	"$2	

$1");	

console.log(modifiedStr);	//outputs	"5678	

1234"	

In	this	example,	the	regular	expression	has	two	groups
each	with	four	digits.	In	the	second	argument	of	the
replace()	method,	$2	is	equal	to	5678	and	$1	is
equal	to	1234,	corresponding	to	the	order	in	which	they
appear	in	the	expression.

Greedy	and	lazy	quantifiers
All	the	quantifiers	that	we	discussed	so	far	are	greedy.	A
greedy	quantifier	starts	looking	at	the	entire	string	for	a
match.	If	there	are	no	matches,	it	removes	the	last
character	in	the	string	and	reattempts	the	match.	If	a
match	is	not	found	again,	the	last	character	is	again
removed	and	the	process	is	repeated	until	a	match	is
found	or	the	string	is	left	with	no	characters.

The	\d+	pattern,	for	example,	will	match	one	or	more
digits.	For	example,	if	your	string	is	123,	a	greedy	match
would	match	1,	12,	and	123.	Greedy	pattern	h.+l	would
match	hell	in	a	string	hello—which	is	the	longest
possible	string	match.	As	\d+	is	greedy,	it	will	match	as
many	digits	as	possible	and	hence	the	match	would	be
123.

In	contrast	to	greedy	quantifiers,	a	lazy	quantifier
matches	as	few	of	the	quantified	tokens	as	possible.	You
can	add	a	question	mark	(?)	to	the	regular	expression	to
make	it	lazy.	A	lazy	pattern	h.?l	would	match	hel	in
the	string	hello—which	is	the	shortest	possible	string.

The	\w*?X	pattern	will	match	zero	or	more	words	and
then	match	an	X.	However,	a	question	mark	after	*
indicates	that	as	few	characters	as	possible	should	be
matched.	For	an	abcXXX	string,	the	match	can	be	abcX,
abcXX,	or	abcXXX.	Which	one	should	be	matched?	As

*?	is	lazy,	as	few	characters	as	possible	are	matched
and	hence	the	match	is	abcX.

With	this	necessary	information,	let's	try	to	solve	some
common	problems	using	regular	expressions.

Removing	extra	white	space	from	the	beginning	and	end
of	a	string	is	a	very	common	use	case.	As	a	String	object
did	not	have	the	trim()	method	until	recently,	several
JavaScript	libraries	provide	and	use	an	implementation
of	string	trimming	for	older	browsers	that	don't	have	the
String.trim()	method.	The	most	commonly	used
approach	looks	something	like	the	following	code:

function	trim(str)	{

		return	(str	||	"").replace(/^\s+|\s+$/g,

"");

}

console.log("--"+trim("			test				")+"--

");

//"--test--"

What	if	we	want	to	replace	repeated	whitespaces	with	a
single	whitespace?

re=/\s+/g;

console.log('There	are				a	lot						of

spaces'.replace(re,'	'));

//"There	are	a	lot	of	spaces"

In	the	preceding	snippet,	we	are	trying	to	match	one	or
more	space	character	sequences	and	replacing	them
with	a	single	space.

As	you	can	see,	regular	expressions	can	prove	to	be	a
Swiss	army	knife	in	your	JavaScript	arsenal.	Careful
study	and	practice	will	be	extremely	rewarding	for	you	in
the	long	run.

Arrays
An	array	is	an	ordered	set	of	values.	You	can	refer	to	the
array	elements	with	a	name	and	index.	These	are	the
three	ways	to	create	arrays	in	JavaScript:

var	arr	=	new	Array(1,2,3);

var	arr	=	Array(1,2,3);

var	arr	=	[1,2,3];

When	these	values	are	specified,	the	array	is	initialized
with	them	as	the	array's	elements.	An	array's	length
property	is	equal	to	the	number	of	arguments.	The
bracket	syntax	is	called	an	array	literal.	It's	a	shorter	and
preferred	way	to	initialize	arrays.

You	have	to	use	the	array	literal	syntax	if	you	want	to
initialize	an	array	with	a	single	element	and	the	element
happens	to	be	a	number.	If	you	pass	a	single	number
value	to	the	Array()	constructor	or	function,	JavaScript
considers	this	parameter	as	the	length	of	the	array,	not
as	a	single	element:

var	arr	=	[10];

var	arr	=	Array(10);	//	Creates	an	array

with	no	element,	but	with	arr.length	set

to	10

//	The	above	code	is	equivalent	to

var	arr	=	[];

arr.length	=	10;

JavaScript	does	not	have	an	explicit	array	data	type.
However,	you	can	use	the	predefined	Array	object	and
its	methods	to	work	with	arrays	in	your	applications.	The
Array	object	has	methods	to	manipulate	arrays	in
various	ways,	such	as	joining,	reversing,	and	sorting
them.	It	has	a	property	to	determine	the	array	length	and
other	properties	for	use	with	regular	expressions.

You	can	populate	an	array	by	assigning	values	to	its
elements:

var	days	=	[];

days[0]	=	"Sunday";

days[1]	=	"Monday";

You	can	also	populate	an	array	when	you	create	it:

var	arr_generic	=	new	Array("A	String",

myCustomValue,	3.14);

var	fruits	=	["Mango",	"Apple",	"Orange"]

In	most	languages,	the	elements	of	an	array	are	all
required	to	be	of	the	same	type.	JavaScript	allows	an
array	to	contain	any	type	of	values:

var	arr	=	[

		'string',	42.0,	true,	false,	null,

undefined,

		['sub',	'array'],	{object:	true},	NaN

];

You	can	refer	to	elements	of	an	Array	using	the
element's	index	number.	For	example,	suppose	you

define	the	following	array:

var	days	=	["Sunday",	"Monday",	"Tuesday"]

You	then	refer	to	the	first	element	of	the	array	as
colors[0]	and	the	second	element	of	the	array	as
colors[1].	The	index	of	the	elements	starts	with	0.

JavaScript	internally	stores	array	elements	as	standard
object	properties,	using	the	array	index	as	the	property
name.	The	length	property	is	different.	The	length
property	always	returns	the	index	of	the	last	element
plus	one.	As	we	discussed,	JavaScript	array	indexes	are
0-based:	they	start	at	0,	not	1.	This	means	that	the
length	property	will	be	one	more	than	the	highest	index
stored	in	the	array:

var	colors	=	[];

colors[30]	=	['Green'];

console.log(colors.length);	//	31

You	can	also	assign	to	the	length	property.	Writing	a
value	that	is	shorter	than	the	number	of	stored	items
truncates	the	array;	writing	0	empties	it	entirely:

var	colors	=	['Red',	'Blue',	'Yellow'];

console.log(colors.length);	//	3

colors.length	=	2;

console.log(colors);	//	["Red","Blue"]	-

Yellow	has	been	removed

colors.length	=	0;

console.log(colors);	//	[]	the	colors

array	is	empty

colors.length	=	3;

console.log(colors);	//	[undefined,

undefined,	undefined]

If	you	query	a	non-existent	array	index,	you	get
undefined.

A	common	operation	is	to	iterate	over	the	values	of	an
array,	processing	each	one	in	some	way.	The	simplest
way	to	do	this	is	as	follows:

var	colors	=	['red',	'green',	'blue'];

for	(var	i	=	0;	i	<	colors.length;	i++)	{

		console.log(colors[i]);

}

The	forEach()	method	provides	another	way	of
iterating	over	an	array:

var	colors	=	['red',	'green',	'blue'];

colors.forEach(function(color)	{

		console.log(color);

});

The	function	passed	to	forEach()	is	executed	once	for
every	item	in	the	array,	with	the	array	item	passed	as	the
argument	to	the	function.	Unassigned	values	are	not
iterated	in	a	forEach()	loop.

The	Array	object	has	a	bunch	of	useful	methods.	These
methods	allow	the	manipulation	of	the	data	stored	in	the
array.

The	concat()	method	joins	two	arrays	and	returns	a

new	array:

var	myArray	=	new	Array("33",	"44",	"55");

myArray	=	myArray.concat("3",	"2",	"1");

console.log(myArray);

//	["33",	"44",	"55",	"3",	"2",	"1"]

The	join()	method	joins	all	the	elements	of	an	array
into	a	string.	This	can	be	useful	while	processing	a	list.
The	default	delimiter	is	a	comma	(,):

var	myArray	=	new	

Array('Red','Blue','Yellow');

var	list	=	myArray.join("		");	

console.log(list);

//"Red		Blue	~	Yellow"

The	pop()	method	removes	the	last	element	from	an
array	and	returns	that	element.	This	is	analogous	to	the
pop()	method	of	a	stack:

var	myArray	=	new	Array("1",	"2",	"3");

var	last	=	myArray.pop();

//	myArray	=	["1",	"2"],	last	=	"3"

The	push()	method	adds	one	or	more	elements	to	the
end	of	an	array	and	returns	the	resulting	length	of	the
array:

var	myArray	=	new	Array("1",	"2");

myArray.push("3");

//	myArray	=	["1",	"2",	"3"]

The	shift()	method	removes	the	first	element	from	an

array	and	returns	that	element:

var	myArray	=	new	Array	("1",	"2",	"3");

var	first	=	myArray.shift();

//	myArray	=	["2",	"3"],	first	=	"1"

The	unshift()	method	adds	one	or	more	elements	to
the	front	of	an	array	and	returns	the	new	length	of	the
array:

var	myArray	=	new	Array	("1",	"2",	"3");

myArray.unshift("4",	"5");

//	myArray	=	["4",	"5",	"1",	"2",	"3"]

The	reverse()	method	reverses	or	transposes	the
elements	of	an	array—the	first	array	element	becomes
the	last	and	the	last	becomes	the	first:

var	myArray	=	new	Array	("1",	"2",	"3");

myArray.reverse();

//	transposes	the	array	so	that	myArray	=

["3",	"2",	"1"]

The	sort()	method	sorts	the	elements	of	an	array:

var	myArray	=	new	Array("A",	"C",	"B");

myArray.sort();

//	sorts	the	array	so	that	myArray	=	[

"A","B","c"]

The	sort()	method	can	optionally	take	a	callback
function	to	define	how	the	elements	are	compared.	The
function	compares	two	values	and	returns	one	of	three
values.	Let	us	study	the	following	functions:

indexOf(searchElement[,	fromIndex]):	This	searches	the

array	for	searchElement	and	returns	the	index	of	the	first	match:

var	a	=	['a',	'b',	'a',	'b',

'a','c','a'];

console.log(a.indexOf('b'));	//	1

//	Now	try	again,	starting	from	after

the	last	match

console.log(a.indexOf('b',	2));	//	3

console.log(a.indexOf('1'));	//	-1,

'q'	is	not	found

lastIndexOf(searchElement[,	fromIndex]):	This	works	like

indexOf(),	but	only	searches	backwards:

var	a	=	['a',	'b',	'c',	'd',	'a',

'b'];

console.log(a.lastIndexOf('b'));	//		5

//	Now	try	again,	starting	from	before

the	last	match

console.log(a.lastIndexOf('b',	4));	//

1

console.log(a.lastIndexOf('z'));	//

-1

Now	that	we	have	covered	JavaScript	arrays	in	depth,	let
me	introduce	you	to	a	fantastic	library	called
Underscore.js	(http://underscorejs.org/).	Underscore.js
provides	a	bunch	of	exceptionally	useful	functional
programming	helpers	to	make	your	code	even	more
clear	and	functional.

We	will	assume	that	you	are	familiar	with	Node.js;	in	this
case,	install	Underscore.js	via	npm:

npm	install	underscore

http://underscorejs.org/

As	we	are	installing	Underscore	as	a	Node	module,	we
will	test	all	the	examples	by	typing	them	in	a	.js	file	and
running	the	file	on	Node.js.	You	can	install	Underscore
using	Bower	also.

Like	jQuery's	$	module,	Underscore	comes	with	a	_
module	defined.	You	will	call	all	functions	using	this
module	reference.

Type	the	following	code	in	a	text	file	and	name	it
test_.js:

var	_	=	require('underscore');

function	print(n){

		console.log(n);

}

_.each([1,	2,	3],	print);

//prints	1	2	3

This	can	be	written	as	follows,	without	using	each()
function	from	underscore	library:

var	myArray	=	[1,2,3];

var	arrayLength	=	myArray.length;

for	(var	i	=	0;	i	<	arrayLength;	i++)	{

		console.log(myArray[i]);

}

What	you	see	here	is	a	powerful	functional	construct	that
makes	the	code	much	more	elegant	and	concise.	You
can	clearly	see	that	the	traditional	approach	is	verbose.
Many	languages	such	as	Java	suffer	from	this	verbosity.
They	are	slowly	embracing	functional	paradigms.	As

JavaScript	programmers,	it	is	important	for	us	to
incorporate	these	ideas	into	our	code	as	much	as
possible.

The	each()	function	we	saw	in	the	preceding	example
iterates	over	a	list	of	elements,	yielding	each	to	an
iteratee	function	in	turn.	Each	invocation	of	iteratee	is
called	with	three	arguments	(element,	index,	and	list).	In
the	preceding	example,	the	each()	function	iterates
over	the	array	[1,2,3],	and	for	each	element	in	the
array,	the	print	function	is	called	with	the	array
element	as	the	parameter.	This	is	a	convenient
alternative	to	the	traditional	looping	mechanism	to
access	all	the	elements	in	an	array.

The	range()	function	creates	lists	of	integers.	The	start
value,	if	omitted,	defaults	to	0	and	step	defaults	to	1.	If
you'd	like	a	negative	range,	use	a	negative	step:

var		=	require('underscore');

console.log(.range(10));

//	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

console.log(_.range(1,	11));

//[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

console.log(_.range(0,	30,	5));

//[0,	5,	10,	15,	20,	25]

console.log(_.range(0,	-10,	-1));

//[0,	-1,	-2,	-3,	-4,	-5,	-6,	-7,	-8,	-9	

]

console.log(_.range(0));

//[]

By	default,	range()	populates	the	array	with	integers,
but	with	a	little	trick,	you	can	populate	other	data	types

also:

console.log(_.range(3).map(function	()	{

return	'a'	}));

['a',	'a',	'a']

This	is	a	fast	and	convenient	way	to	create	and	initialize
an	array	with	values.	We	frequently	do	this	by	traditional
loops.

The	map()	function	produces	a	new	array	of	values	by
mapping	each	value	in	the	list	through	a	transformation
function.	Consider	the	following	example:

var	_	=	require('underscore');

console.log(_.map([1,	2,	3],	function(num)

{	return	num	*	3;	}));

//[3,6,9]

The	reduce()	function	reduces	a	list	of	values	to	a
single	value.	The	initial	state	is	passed	by	the	iteratee
function	and	each	successive	step	is	returned	by	the
iteratee.	The	following	example	shows	the	usage:

var		=	require('underscore');

var	sum	=	.reduce([1,	2,	3],	

function(memo,	

num){console.log(memo,num);return	memo	+	

num;	},	0);

console.log(sum);

In	this	example,	the	line,	console.log(memo,num);,
is	just	to	make	the	idea	clear.	The	output	will	be	as
follows:

0	1

1	2

3	3

6

The	final	output	is	a	sum	of	1+2+3=6.	As	you	can	see,
two	values	are	passed	to	the	iteratee	function.	On	the
first	iteration,	we	call	the	iteratee	function	with	two	values
(0,1)—the	value	of	the	memo	is	defaulted	in	the	call	to
the	reduce()	function	and	1	is	the	first	element	of	the
list.	In	the	function,	we	sum	memo	and	num	and	return	the
intermediate	sum,	which	will	be	used	by	the	iterate()
function	as	a	memo	parameter—eventually,	the	memo	will
have	the	accumulated	sum.	This	concept	is	important	to
understand	how	the	intermediate	states	are	used	to
calculate	eventual	results.

The	filter()	function	iterates	through	the	entire	list
and	returns	an	array	of	all	the	elements	that	pass	the
condition.	Take	a	look	at	the	following	example:

var		=	require('underscore');

var	evens	=	.filter([1,	2,	3,	4,	5,	6],	

function(num){	return	num	%	2	==	0;	});

console.log(evens);

The	filter()	function's	iteratee	function	should	return
a	truth	value.	The	resulting	evens	array	contains	all	the
elements	that	satisfy	the	truth	test.

The	opposite	of	the	filter()	function	is	reject().	As
the	name	suggests,	it	iterates	through	the	list	and

ignores	elements	that	satisfy	the	truth	test:

var		=	require('underscore');

var	odds	=	.reject([1,	2,	3,	4,	5,	6],	

function(num){	return	num	%	2	==	0;	});

console.log(odds);

//[1,	3,	5]

We	are	using	the	same	code	as	the	previous	example
but	using	the	reject()	method	instead	of	filter()—
the	result	is	exactly	the	opposite.

The	contains()	function	is	a	useful	little	function	that
returns	true	if	the	value	is	present	in	the	list;	otherwise,
returns	false:

var		=	require('underscore');

console.log(.contains([1,	2,	3],	3));

//true

One	very	useful	function	that	I	have	grown	fond	of	is
invoke().	It	calls	a	specific	function	on	each	element	in
the	list.	I	can't	tell	you	how	many	times	I	have	used	it
since	I	stumbled	upon	it.	Let	us	study	the	following
example:

var		=	require('underscore');

console.log(.invoke([[5,	1,	7],	[3,	2,	

1]],	'sort'));

//[[1,	5,	7],	[1,	2,	3]]

In	this	example,	the	sort()	method	of	the	Array	object
is	called	for	each	element	in	the	array.	Note	that	this

would	fail:

var		=	require('underscore');

console.log(.invoke(["new","old","cat"],	

'sort'));

//[undefined,	undefined,	undefined]

This	is	because	the	sort	method	is	not	part	of	the	String
object.	This,	however,	would	work	perfectly:

var		=	require('underscore');

console.log(.invoke(["new","old","cat"],	

'toUpperCase'));

//['NEW',	'OLD',	'CAT']

This	is	because	toUpperCase()	is	a	String	object
method	and	all	elements	of	the	list	are	of	the	String	type.

The	uniq()	function	returns	the	array	after	removing	all
duplicates	from	the	original	one:

var		=	require('underscore');

var	uniqArray	=	.uniq([1,1,2,2,3]);

console.log(uniqArray);

//[1,2,3]

The	partition()	function	splits	the	array	into	two;	one
whose	elements	satisfy	the	predicate	and	the	other
whose	elements	don't	satisfy	the	predicate:

var		=	require('underscore');

function	isOdd(n){

		return	n%2==0;

}

console.log(.partition([0,	1,	2,	3,	4,	5],	

isOdd));

//[[0,	2,	4],	[1,	3,	5]]

The	compact()	function	returns	a	copy	of	the	array
without	all	falsy	values	(false,	null,	0,	"",	undefined,	and
NaN):

console.log(_.compact([0,	1,	false,	2,	'',

3]));

This	snippet	will	remove	all	falsy	values	and	return	a	new
array	with	elements	[1,2,3]—this	is	a	helpful	method
to	eliminate	any	value	from	a	list	that	can	cause	runtime
exceptions.

The	without()	function	returns	a	copy	of	the	array	with
all	instances	of	the	specific	values	removed:

var		=	require('underscore');

console.log(.without([1,2,3,4,5,6,7,8,9,0,

1,2,0,0,1,1],0,1,2));

//[3,	4,	5,	6,	7,	8,	9]

Maps
ECMAScript	6	introduces	maps.	A	map	is	a	simple	key-
value	map	and	can	iterate	its	elements	in	the	order	of
their	insertion.	The	following	snippet	shows	some
methods	of	the	Map	type	and	their	usage:

var	founders	=	new	Map();

founders.set("facebook",	"mark");

founders.set("google",	"larry");

founders.size;	//	2

founders.get("twitter");	//	undefined

founders.has("yahoo");	//	false

	

for	(var	[key,	value]	of	founders)	{

		console.log(key	+	"	founded	by	"	+

value);

}

//	"facebook	founded	by	mark"

//	"google	founded	by	larry"

Sets
ECMAScript	6	introduces	sets.	Sets	are	collections	of
values	and	can	be	iterated	in	the	order	of	the	insertion	of
their	elements.	An	important	characteristic	about	sets	is
that	a	value	can	occur	only	once	in	a	set.

The	following	snippet	shows	some	basic	operations	on
sets:

var	mySet	=	new	Set();

mySet.add(1);

mySet.add("Howdy");

mySet.add("foo");

	

mySet.has(1);	//	true

mySet.delete("foo");

mySet.size;	//	2

	

for	(let	item	of	mySet)	console.log(item);

//	1

//	"Howdy"

We	discussed	briefly	that	JavaScript	arrays	are	not	really
arrays	in	a	traditional	sense.	In	JavaScript,	arrays	are
objects	that	have	the	following	characteristics:

The	length	property

The	functions	that	inherit	from	Array.prototype	(we	will	discuss

this	in	the	next	chapter)

Special	handling	for	keys	that	are	numeric	keys

When	we	write	an	array	index	as	numbers,	they	get

converted	to	strings—arr[0]	internally	becomes
arr["0"].	Due	to	this,	there	are	a	few	things	that	we
need	to	be	aware	of	when	we	use	JavaScript	arrays:

Accessing	array	elements	by	an	index	is	not	a	constant	time	operation
as	it	is	in,	say,	C.	As	arrays	are	actually	key-value	maps,	the	access
will	depend	on	the	layout	of	the	map	and	other	factors	(collisions	and
others).

JavaScript	arrays	are	sparse	(most	of	the	elements	have	the	default
value),	which	means	that	the	array	can	have	gaps	in	it.	To	understand
this,	look	at	the	following	snippet:

var	testArr=new	Array(3);

console.log(testArr);

You	will	see	the	output	as	[undefined,	undefined,

undefined]—undefined	is	the	default	value	stored	on	the	array

element.

Consider	the	following	example:

var	testArr=[];

testArr[3]	=	10;

testArr[10]	=	3;

console.log(testArr);

//	[undefined,	undefined,	undefined,	10,

undefined,	undefined,	undefined,

undefined,	undefined,	undefined,	3]

You	can	see	that	there	are	gaps	in	this	array.	Only	two
elements	have	elements	and	the	rest	are	gaps	with	the
default	value.	Knowing	this	helps	you	in	a	couple	of
things.	Using	the	for...in	loop	to	iterate	an	array	can
result	in	unexpected	results.	Consider	the	following
example:

var	a	=	[];

var	a	=	[];

a[5]	=	5;

for	(var	i=0;	i<a.length;	i++)	{

		console.log(a[i]);

}

//	Iterates	over	numeric	indexes	from	0	to

5

//

[undefined,undefined,undefined,undefined,u

ndefined,5]

	

for	(var	x	in	a)	{

		console.log(x);

}

//	Shows	only	the	explicitly	set	index	of

"5",	and	ignores	0-4

A	matter	of	style
Like	the	previous	chapters,	we	will	spend	some	time
discussing	the	style	considerations	while	creating	arrays.

Use	the	literal	syntax	for	array	creation:

//	bad

const	items	=	new	Array();

//	good

const	items	=	[];

Use	Array#push	instead	of	a	direct	assignment	to	add	items	to	an

array:

const	stack	=	[];

//	bad

stack[stack.length]	=	'pushme';

//	good

stack.push('pushme');

Summary
As	JavaScript	matures	as	a	language,	its	tool	chain	also
becomes	more	robust	and	effective.	It	is	rare	to	see
seasoned	programmers	staying	away	from	libraries	such
as	Underscore.js.	As	we	see	more	advanced	topics,	we
will	continue	to	explore	more	such	versatile	libraries	that
can	make	your	code	compact,	more	readable,	and
performant.	We	looked	at	regular	expressions—they	are
first-class	objects	in	JavaScript.	Once	you	start
understanding	RegExp,	you	will	soon	find	yourself	using
more	of	them	to	make	your	code	concise.	In	the	next
chapter,	we	will	look	at	JavaScript	Object	notation	and
how	JavaScript	prototypal	inheritance	is	a	new	way	of
looking	at	object-oriented	programming.

Chapter	4.	Object-Oriented
JavaScript
JavaScript's	most	fundamental	data	type	is	the	Object
data	type.	JavaScript	objects	can	be	seen	as	mutable
key-value-based	collections.	In	JavaScript,	arrays,
functions,	and	RegExp	are	objects	while	numbers,
strings,	and	Booleans	are	object-like	constructs	that	are
immutable	but	have	methods.	In	this	chapter,	you	will
learn	the	following	topics:

Understanding	objects

Instance	properties	versus	prototype	properties

Inheritance

Getters	and	setters

Understanding	objects
Before	we	start	looking	at	how	JavaScript	treats	objects,
we	should	spend	some	time	on	an	object-oriented
paradigm.	Like	most	programming	paradigms,	object-
oriented	programming	(OOP)	also	emerged	from	the
need	to	manage	complexity.	The	main	idea	is	to	divide
the	entire	system	into	smaller	pieces	that	are	isolated
from	each	other.	If	these	small	pieces	can	hide	as	many
implementation	details	as	possible,	they	become	easy	to
use.	A	classic	car	analogy	will	help	you	understand	this
very	important	point	about	OOP.

When	you	drive	a	car,	you	operate	on	the	interface—the
steering,	clutch,	brake,	and	accelerator.	Your	view	of
using	the	car	is	limited	by	this	interface,	which	makes	it
possible	for	us	to	drive	the	car.	This	interface	is
essentially	hiding	all	the	complex	systems	that	really
drive	the	car,	such	as	the	internal	functioning	of	its
engine,	its	electronic	system,	and	so	on.	As	a	driver,	you
don't	bother	about	these	complexities.	A	similar	idea	is
the	primary	driver	of	OOP.	An	object	hides	the
complexities	of	how	to	implement	a	particular
functionality	and	exposes	a	limited	interface	to	the
outside	world.	All	other	systems	can	use	this	interface
without	really	bothering	about	the	internal	complexity	that
is	hidden	from	view.	Additionally,	an	object	usually	hides
its	internal	state	from	other	objects	and	prevents	its
direct	modification.	This	is	an	important	aspect	of	OOP.

In	a	large	system	where	a	lot	of	objects	call	other
objects'	interfaces,	things	can	go	really	bad	if	you	allow
them	to	modify	the	internal	state	of	such	objects.	OOP
operates	on	the	idea	that	the	state	of	an	object	is
inherently	hidden	from	the	outside	world	and	it	can	be
changed	only	via	controlled	interface	operations.

OOP	was	an	important	idea	and	a	definite	step	forward
from	the	traditional	structured	programming.	However,
many	feel	that	OOP	is	overdone.	Most	OOP	systems
define	complex	and	unnecessary	class	and	type
hierarchies.	Another	big	drawback	was	that	in	the	pursuit
of	hiding	the	state,	OOP	considered	the	object	state
almost	immaterial.	Though	hugely	popular,	OOP	was

clearly	flawed	in	many	areas.	Still,	OOP	did	have	some
very	good	ideas,	especially	hiding	the	complexity	and
exposing	only	the	interface	to	the	outside	world.
JavaScript	picked	up	a	few	good	ideas	and	built	its
object	model	around	them.	Luckily,	this	makes
JavaScript	objects	very	versatile.	In	their	seminal	work,
Design	Patterns:	Elements	of	Reusable	Object-Oriented
Software,	the	Gang	of	Four	gave	two	fundamental
principles	of	a	better	object-oriented	design:

Program	to	an	interface	and	not	to	an	implementation

Object	composition	over	class	inheritance

These	two	ideas	are	really	against	how	classical	OOP
operates.	The	classical	style	of	inheritance	operates	on
inheritance	that	exposes	parent	classes	to	all	child
classes.	Classical	inheritance	tightly	couples	children	to
its	parents.	There	are	mechanisms	in	classical
inheritance	to	solve	this	problem	to	a	certain	extent.	If
you	are	using	classical	inheritance	in	a	language	such	as
Java,	it	is	generally	advisable	to	program	to	an	interface,
not	an	implementation.	In	Java,	you	can	write	a
decoupled	code	using	interfaces:

//programming	to	an	interface	'List'	and

not	implementation	'ArrayList'

List	theList	=	new	ArrayList();

Instead	of	programming	to	an	implementation,	you	can
perform	the	following:

ArrayList	theList	=	new	ArrayList();

How	does	programming	to	an	interface	help?	When	you
program	to	the	List	interface,	you	can	call	methods
only	available	to	the	List	interface	and	nothing	specific
to	ArrayList	can	be	called.	Programming	to	an
interface	gives	you	the	liberty	to	change	your	code	and
use	any	other	specific	child	of	the	List	interface.	For
example,	I	can	change	my	implementation	and	use
LinkedList	instead	of	ArrayList.	You	can	change
your	variable	to	use	LinkedList	instead:

List	theList	=	new	LinkedList();

The	beauty	of	this	approach	is	that	if	you	are	using	the
List	at	100	places	in	your	program,	you	don't	have	to
worry	about	changing	the	implementation	at	all	these
places.	As	you	were	programming	to	the	interface	and
not	to	the	implementation,	you	were	able	to	write	a
loosely	coupled	code.	This	is	an	important	principle
when	you	are	using	classical	inheritance.

Classical	inheritance	also	has	a	limitation	where	you	can
only	enhance	the	child	class	within	the	limit	of	the	parent
classes.	You	can't	fundamentally	differ	from	what	you
have	got	from	the	ancestors.	This	inhibits	reuse.
Classical	inheritance	has	several	other	problems	as
follows:

Inheritance	introduces	tight	coupling.	Child	classes	have	knowledge
about	their	ancestors.	This	tightly	couples	a	child	class	with	its	parent.

When	you	subclass	from	a	parent,	you	don't	have	a	choice	to	select
what	you	want	to	inherit	and	what	you	don't.	Joe	Armstrong	(the
inventor	of	Erlang)	explains	this	situation	very	well—his	now	famous

quote:

"The	problem	with	object-oriented	languages	is	they've	got	all	this
implicit	environment	that	they	carry	around	with	them.	You	wanted	a
banana	but	what	you	got	was	a	gorilla	holding	the	banana	and	the

entire	jungle."

Behavior	of	JavaScript	objects
With	this	background,	let's	explore	how	JavaScript
objects	behave.	In	broad	terms,	an	object	contains
properties,	defined	as	a	key-value	pair.	A	property	key
(name)	can	be	a	string	and	the	value	can	be	any	valid
JavaScript	value.	You	can	create	objects	using	object
literals.	The	following	snippet	shows	you	how	object
literals	are	created:

var	nothing	=	{};

var	author	=	{

		"firstname":	"Douglas",

		"lastname":	"Crockford"

}

A	property's	name	can	be	any	string	or	an	empty	string.
You	can	omit	quotes	around	the	property	name	if	the
name	is	a	legal	JavaScript	name.	So	quotes	are	required
around	firstname	but	are	optional	around
firstname.	Commas	are	used	to	separate	the	pairs.
You	can	nest	objects	as	follows:

var	author	=	{

		firstname	:	"Douglas",

		lastname	:	"Crockford",

		book	:	{

				title:"JavaScript-The	Good	Parts",

				pages:"172"

		}

};

Properties	of	an	object	can	be	accessed	by	using	two
notations:	the	array-like	notation	and	dot	notation.
According	to	the	array-like	notation,	you	can	retrieve	the
value	from	an	object	by	wrapping	a	string	expression	in
[].	If	the	expression	is	a	valid	JavaScript	name,	you	can
use	the	dot	notation	using	.	instead.	Using	.	is	a
preferred	method	of	retrieving	values	from	an	object:

console.log(author['firstname']);

//Douglas

console.log(author.lastname);

//Crockford

console.log(author.book.title);			//

JavaScript-The	Good	Parts

You	will	get	an	undefined	error	if	you	attempt	to
retrieve	a	non-existent	value.	The	following	would	return
undefined:

console.log(author.age);

A	useful	trick	is	to	use	the	||	operator	to	fill	in	default
values	in	this	case:

console.log(author.age	||	"No	Age	Found");

You	can	update	values	of	an	object	by	assigning	a	new
value	to	the	property:

author.book.pages	=	190;

console.log(author.book.pages);	//190

If	you	observe	closely,	you	will	realize	that	the	object
literal	syntax	that	you	see	is	very	similar	to	the	JSON
format.

Methods	are	properties	of	an	object	that	can	hold
function	values	as	follows:

var	meetingRoom	=	{};

meetingRoom.book	=	function(roomId){

		console.log("booked	meeting	room	-

"+roomId);

}

meetingRoom.book("VL");

Prototypes
Apart	from	the	properties	that	we	add	to	an	object,	there
is	one	default	property	for	almost	all	objects,	called	a
prototype.	When	an	object	does	not	have	a	requested
property,	JavaScript	goes	to	its	prototype	to	look	for	it.
The	Object.getPrototypeOf()	function	returns	the
prototype	of	an	object.

Many	programmers	consider	prototypes	closely	related
to	objects'	inheritance—they	are	indeed	a	way	of
defining	object	types—but	fundamentally,	they	are
closely	associated	with	functions.

Prototypes	are	used	as	a	way	to	define	properties	and
functions	that	will	be	applied	to	instances	of	objects.	The

prototype's	properties	eventually	become	properties	of
the	instantiated	objects.	Prototypes	can	be	seen	as
blueprints	for	object	creation.	They	can	be	seen	as
analogous	to	classes	in	object-oriented	languages.
Prototypes	in	JavaScript	are	used	to	write	a	classical
style	object-oriented	code	and	mimic	classical
inheritance.	Let's	revisit	our	earlier	example:

var	author	=	{};

author.firstname	=	'Douglas';

author.lastname	=	'Crockford';

In	the	preceding	code	snippet,	we	are	creating	an	empty
object	and	assigning	individual	properties.	You	will	soon
realize	that	this	is	not	a	very	standard	way	of	building
objects.	If	you	know	OOP	already,	you	will	immediately
see	that	there	is	no	encapsulation	and	the	usual	class
structure.	JavaScript	provides	a	way	around	this.	You
can	use	the	new	operator	to	instantiate	an	object	via
constructors.	However,	there	is	no	concept	of	a	class	in
JavaScript,	and	it	is	important	to	note	that	the	new
operator	is	applied	to	the	constructor	function.	To	clearly
understand	this,	let's	look	at	the	following	example:

//A	function	that	returns	nothing	and

creates	nothing

function	Player()	{}

	

//Add	a	function	to	the	prototype	property

of	the	function

Player.prototype.usesBat	=	function()	{

		return	true;

}

	

//We	call	player()	as	a	function	and	prove

that	nothing	happens

var	crazyBob	=	Player();

if(crazyBob	===	undefined){

		console.log("CrazyBob	is	not	defined");

}

	

//Now	we	call	player()	as	a	constructor

along	with	'new'

//1.	The	instance	is	created

//2.	method	usesBat()	is	derived	from	the

prototype	of	the	function

var	swingJay	=	new	Player();

if(swingJay	&&	swingJay.usesBat	&&

swingJay.usesBat()){

		console.log("SwingJay	exists	and	can	use

bat");

}

In	the	preceding	example,	we	have	a	player()	function
that	does	nothing.	We	invoke	it	in	two	different	ways.
The	first	call	of	the	function	is	as	a	normal	function	and
second	call	is	as	a	constructor—note	the	use	of	the
new()	operator	in	this	call.	Once	the	function	is	defined,
we	add	a	usesBat()	method	to	it.	When	this	function	is
called	as	a	normal	function,	the	object	is	not	instantiated
and	we	see	undefined	assigned	to	crazyBob.
However,	when	we	call	this	function	with	the	new
operator,	we	get	a	fully	instantiated	object,	swingJay.

Instance	properties	versus
prototype	properties
Instance	properties	are	the	properties	that	are	part	of	the
object	instance	itself,	as	shown	in	the	following	example:

function	Player()	{

		this.isAvailable	=	function()	{

				return	"Instance	method	says	-	he	is

hired";

		};

}

Player.prototype.isAvailable	=	function()

{

		return	"Prototype	method	says	-	he	is

Not	hired";

};

var	crazyBob	=	new	Player();

console.log(crazyBob.isAvailable());

When	you	run	this	example,	you	will	see	that	Instance
method	says	-	he	is	hired	is	printed.	The
isAvailable()	function	defined	in	the	Player()
function	is	called	an	instance	of	Player.	This	means
that	apart	from	attaching	properties	via	the	prototype,
you	can	use	the	this	keyword	to	initialize	properties	in	a
constructor.	When	we	have	the	same	functions	defined
as	an	instance	property	and	also	as	a	prototype,	the
instance	property	takes	precedence.	The	rules	governing
the	precedence	of	the	initialization	are	as	follows:

Properties	are	tied	to	the	object	instance	from	the	prototype

Properties	are	tied	to	the	object	instance	in	the	constructor	function

This	example	brings	us	to	the	use	of	the	this	keyword.
It	is	easy	to	get	confused	by	the	this	keyword	because
it	behaves	differently	in	JavaScript.	In	other	OO
languages	such	as	Java,	the	this	keyword	refers	to	the
current	instance	of	the	class.	In	JavaScript,	the	value	of
this	is	determined	by	the	invocation	context	of	a
function	and	where	it	is	called.	Let's	see	how	this
behavior	needs	to	be	carefully	understood:

When	this	is	used	in	a	global	context:	When	this	is	called	in	a

global	context,	it	is	bound	to	the	global	context.	For	example,	in	the
case	of	a	browser,	the	global	context	is	usually	window.	This	is	true

for	functions	also.	If	you	use	this	in	a	function	that	is	defined	in	the

global	context,	it	is	still	bound	to	the	global	context	because	the
function	is	part	of	the	global	context:

function	globalAlias(){

		return	this;

}

console.log(globalAlias());	//[object

Window]

When	this	is	used	in	an	object	method:	In	this	case,	this	is

assigned	or	bound	to	the	enclosing	object.	Note	that	the	enclosing
object	is	the	immediate	parent	if	you	are	nesting	the	objects:

var	f	=	{

		name:	"f",

		func:	function	()	{

				return	this;

		}

};

console.log(f.func());

//prints	-

//[object	Object]	{

//		func:	function	()	{

//		func:	function	()	{

//				return	this;

//		},

//		name:	"f"

//}

When	there	is	no	context:	A	function,	when	invoked	without	any
object,	does	not	get	any	context.	By	default,	it	is	bound	to	the	global
context.	When	you	use	this	in	such	a	function,	it	is	also	bound	to	the

global	context.

When	this	is	used	in	a	constructor	function:	As	we	saw	earlier,	when

a	function	is	called	with	a	new	keyword,	it	acts	as	a	constructor.	In	the

case	of	a	constructor,	this	points	to	the	object	being	constructed.	In

the	following	example,	f()	is	used	as	a	constructor	(because	it's

invoked	with	a	new	keyword)	and	hence,	this	is	pointing	to	the	new

object	being	created.	So	when	we	say	this.member	=	"f",	the

new	member	is	added	to	the	object	being	created,	in	this	case,	that
object	happens	to	be	o:

var	member	=	"global";

function	f()

{

		this.member	=	"f";

}

var	o=	new	f();

console.log(o.member);	//	f

We	saw	that	instance	properties	take	precedence	when
the	same	property	is	defined	both	as	an	instance
property	and	prototype	property.	It	is	easy	to	visualize
that	when	a	new	object	is	created,	the	properties	of	the
constructor's	prototype	are	copied	over.	However,	this	is
not	a	correct	assumption.	What	actually	happens	is	that
the	prototype	is	attached	to	the	object	and	referred	when
any	property	of	this	object	is	referred.	Essentially,	when
a	property	is	referenced	on	an	object,	either	of	the
following	occur:

The	object	is	checked	for	the	existence	of	the	property.	If	it's	found,
the	property	is	returned.

The	associated	prototype	is	checked.	If	the	property	is	found,	it	is
returned;	otherwise,	an	undefined	error	is	returned.

This	is	an	important	understanding	because,	in
JavaScript,	the	following	code	actually	works	perfectly:

function	Player()	{

		isAvailable=false;

}

var	crazyBob	=	new	Player();

Player.prototype.isAvailable	=	function()

{

		return	isAvailable;

};

console.log(crazyBob.isAvailable());

//false

This	code	is	a	slight	variation	of	the	earlier	example.	We
are	creating	the	object	first	and	then	attaching	the
function	to	its	prototype.	When	you	eventually	call	the
isAvailable()	method	on	the	object,	JavaScript	goes
to	its	prototype	to	search	for	it	if	it's	not	found	in	the
particular	object	(crazyBob,	in	this	case).	Think	of	this
as	hot	code	loading—when	used	properly,	this	ability	can
give	you	incredible	power	to	extend	the	basic	object
framework	even	after	the	object	is	created.

If	you	are	familiar	with	OOP	already,	you	must	be
wondering	whether	we	can	control	the	visibility	and
access	of	the	members	of	an	object.	As	we	discussed
earlier,	JavaScript	does	not	have	classes.	In
programming	languages	such	as	Java,	you	have	access

modifiers	such	as	private	and	public	that	let	you
control	the	visibility	of	the	class	members.	In	JavaScript,
we	can	achieve	something	similar	using	the	function
scope	as	follows:

You	can	declare	private	variables	using	the	var	keyword	in	a

function.	They	can	be	accessed	by	private	functions	or	privileged
methods.

Private	functions	may	be	declared	in	an	object's	constructor	and	can
be	called	by	privileged	methods.

Privileged	methods	can	be	declared	with
this.method=function()	{}.

Public	methods	are	declared	with
Class.prototype.method=function(){}.

Public	properties	can	be	declared	with	this.property	and

accessed	from	outside	the	object.

The	following	example	shows	several	ways	of	doing	this:

function	Player(name,sport,age,country){

	

		this.constructor.noOfPlayers++;

	

		//	Private	Properties	and	Functions

		//	Can	only	be	viewed,	edited	or	invoked

by	privileged	members

		var	retirementAge	=	40;

		var	available=true;

		var	playerAge	=	age?age:18;

		function	isAvailable(){	return	available

&&	(playerAge<retirementAge);	}

		var	playerName=name	?	name	:"Unknown";

		var	playerSport	=	sport	?	sport	:

"Unknown";

	

		//	Privileged	Methods

		//	Can	be	invoked	from	outside	and	can

access	private	members

		//	Can	be	replaced	with	public

counterparts

		this.book=function(){

				if	(!isAvailable()){

						this.available=false;

				}	else	{

						console.log("Player	is

unavailable");

				}

		};

		this.getSport=function(){	return

playerSport;	};

		//	Public	properties,	modifiable	from

anywhere

		this.batPreference="Lefty";

		this.hasCelebGirlfriend=false;

		this.endorses="Super	Brand";

}

	

//	Public	methods	-	can	be	read	or	written

by	anyone

//	Can	only	access	public	and	prototype

properties

Player.prototype.switchHands	=	function(){

this.batPreference="righty";	};

Player.prototype.dateCeleb	=	function(){

this.hasCelebGirlfriend=true;	}	;

Player.prototype.fixEyes	=	function(){

this.wearGlasses=false;	};

	

//	Prototype	Properties	-	can	be	read	or

written	by	anyone	(or	overridden)

Player.prototype.wearsGlasses=true;

	

//	Static	Properties	-	anyone	can	read	or

write

Player.noOfPlayers	=	0;

	

	

(function	PlayerTest(){

(function	PlayerTest(){

		//New	instance	of	the	Player	object

created.

		var	cricketer=new

Player("Vivian","Cricket",23,"England");

		var	golfer	=new

Player("Pete","Golf",32,"USA");

		console.log("So	far	there	are	"	+

Player.noOfPlayers	+	"	in	the	guild");

		

		//Both	these	functions	share	the	common

'Player.prototype.wearsGlasses'	variable

		cricketer.fixEyes();

		golfer.fixEyes();

	

	

		cricketer.endorses="Other

Brand";//public	variable	can	be	updated

	

		//Both	Player's	public	method	is	now

changed	via	their	prototype

		Player.prototype.fixEyes=function(){

				this.wearGlasses=true;

		};

		//Only	Cricketer's	function	is	changed

		cricketer.switchHands=function(){

				this.batPreference="undecided";

		};

	

})();

Let's	understand	a	few	important	concepts	from	this
example:

The	retirementAge	variable	is	a	private	variable	that	has	no

privileged	method	to	get	or	set	its	value.

The	country	variable	is	a	private	variable	created	as	a	constructor

argument.	Constructor	arguments	are	available	as	private	variables	to
the	object.

When	we	called	cricketer.switchHands(),	it	was	only	applied	to

the	cricketer	and	not	to	both	the	players,	although	it's	a	prototype

function	of	the	Player	itself.

Private	functions	and	privileged	methods	are	instantiated	with	each
new	object	created.	In	our	example,	new	copies	of	isAvailable()

and	book()	would	be	created	for	each	new	player	instance	that	we

create.	On	the	other	hand,	only	one	copy	of	public	methods	is	created
and	shared	between	all	instances.	This	can	mean	a	bit	of
performance	gain.	If	you	don't	really	need	to	make	something	private,
think	about	keeping	it	public.

Inheritance
Inheritance	is	an	important	concept	of	OOP.	It	is
common	to	have	a	bunch	of	objects	implementing	the
same	methods.	It	is	also	common	to	have	an	almost
similar	object	definition	with	differences	in	a	few
methods.	Inheritance	is	very	useful	in	promoting	code
reuse.	We	can	look	at	the	following	classic	example	of
inheritance	relation:

Here,	you	can	see	that	from	the	generic	Animal	class,
we	derive	more	specific	classes	such	as	Mammal	and
Bird	based	on	specific	characteristics.	Both	the	Mammal
and	Bird	classes	do	have	the	same	template	of	an

Animal;	however,	they	also	define	behaviors	and
attributes	specific	to	them.	Eventually,	we	derive	a	very
specific	mammal,	Dog.	A	Dog	has	common	attributes
and	behaviors	from	an	Animal	class	and	Mammal	class,
while	it	adds	specific	attributes	and	behaviors	of	a	Dog.
This	can	go	on	to	add	complex	inheritance	relationships.

Traditionally,	inheritance	is	used	to	establish	or	describe
an	IS-A	relationship.	For	example,	a	dog	IS-A	mammal.
This	is	what	we	know	as	classical	inheritance.	You
would	have	seen	such	relationships	in	object-oriented
languages	such	as	C++	and	Java.	JavaScript	has	a
completely	different	mechanism	to	handle	inheritance.
JavaScript	is	classless	language	and	uses	prototypes	for
inheritance.	Prototypal	inheritance	is	very	different	in
nature	and	needs	thorough	understanding.	Classical	and
prototypal	inheritance	are	very	different	in	nature	and
need	careful	study.

In	classical	inheritance,	instances	inherit	from	a	class
blueprint	and	create	subclass	relationships.	You	can't
invoke	instance	methods	on	a	class	definition	itself.	You
need	to	create	an	instance	and	then	invoke	methods	on
this	instance.	In	prototypal	inheritance,	on	the	other
hand,	instances	inherit	from	other	instances.

As	far	as	inheritance	is	concerned,	JavaScript	uses	only
objects.	As	we	discussed	earlier,	each	object	has	a	link
to	another	object	called	its	prototype.	This	prototype
object,	in	turn,	has	a	prototype	of	its	own,	and	so	on	until
an	object	is	reached	with	null	as	its	prototype;	null,

by	definition,	has	no	prototype,	and	acts	as	the	final	link
in	this	prototype	chain.

To	understand	prototype	chains	better,	let's	consider	the
following	example:

function	Person()	{}

Person.prototype.cry	=	function()	{

		console.log("Crying");

}

function	Child()	{}

Child.prototype	=	{cry:

Person.prototype.cry};

var	aChild	=	new	Child();

console.log(aChild	instanceof	Child);

//true

console.log(aChild	instanceof	Person);

//false

console.log(aChild	instanceof	Object);

//true

Here,	we	define	a	Person	and	then	Child—a	child	IS-
A	person.	We	also	copy	the	cry	property	of	a	Person	to
the	cry	property	of	Child.	When	we	try	to	see	this
relationship	using	instanceof,	we	soon	realize	that
just	by	copying	a	behavior,	we	could	not	really	make
Child	an	instance	of	Person;	aChild	instanceof
Person	fails.	This	is	just	copying	or	masquerading,	not
inheritance.	Even	if	we	copy	all	the	properties	of	Person
to	Child,	we	won't	be	inheriting	from	Person.	This	is
usually	a	bad	idea	and	is	shown	here	only	for	illustrative
purposes.	We	want	to	derive	a	prototype	chain—an	IS-A
relationship,	a	real	inheritance	where	we	can	say	that
child	IS-A	person.	We	want	to	create	a	chain:	a	child	IS-

A	person	IS-A	mammal	IS-A	animal	IS-A	object.	In
JavaScript,	this	is	done	using	an	instance	of	an	object	as
a	prototype	as	follows:

SubClass.prototype	=	new	SuperClass();

Child.prototype	=	new	Person();

Let's	modify	the	earlier	example:

function	Person()	{}

Person.prototype.cry	=	function()	{	

		console.log("Crying");

}

function	Child()	{}

Child.prototype	=	new	Person();

var	aChild	=	new	Child();

console.log(aChild	instanceof	Child);		

//true

console.log(aChild	instanceof	Person);	

//true

console.log(aChild	instanceof	Object);	

//true

The	changed	line	uses	an	instance	of	Person	as	the
prototype	of	Child.	This	is	an	important	distinction	from
the	earlier	method.	Here	we	are	declaring	that	child	IS-A
person.

We	discussed	about	how	JavaScript	looks	for	a	property
up	the	prototype	chain	till	it	reaches
Object.prototype.	Let's	discuss	the	concept	of
prototype	chains	in	detail	and	try	to	design	the	following
employee	hierarchy:

This	is	a	typical	pattern	of	inheritance.	A	manager	IS-
A(n)	employee.	Manager	has	common	properties
inherited	from	an	Employee.	It	can	have	an	array	of
reportees.	An	Individual	Contributor	is	also	based	on
an	employee	but	he	does	not	have	any	reportees.	A
Team	Lead	is	derived	from	a	Manager	with	a	few
functions	that	are	different	from	a	Manager.	What	we	are
doing	essentially	is	that	each	child	is	deriving	properties
from	its	parent	(Manager	being	the	parent	and	Team
Lead	being	the	child).

Let's	see	how	we	can	create	this	hierarchy	in	JavaScript.
Let's	define	our	Employee	type:

function	Employee()	{

		this.name	=	'';

		this.dept	=	'None';

		this.dept	=	'None';

		this.salary	=	0.00;

}

There	is	nothing	special	about	these	definitions.	The
Employee	object	contains	three	properties—name,
salary,	and	department.	Next,	we	define	Manager.	This
definition	shows	you	how	to	specify	the	next	object	in	the
inheritance	chain:

function	Manager()	{

		Employee.call(this);

		this.reports	=	[];

}

Manager.prototype	=	

Object.create(Employee.prototype);

In	JavaScript,	you	can	add	a	prototypical	instance	as	the
value	of	the	prototype	property	of	the	constructor
function.	You	can	do	so	at	any	time	after	you	define	the
constructor.	In	this	example,	there	are	two	ideas	that	we
have	not	explored	earlier.	First,	we	are	calling
Employee.call(this).	If	you	come	from	a	Java
background,	this	is	analogous	to	the	super()	method
call	in	the	constructor.	The	call()	method	calls	a
function	with	a	specific	object	as	its	context	(in	this	case,
it	is	the	given	the	this	value),	in	other	words,	call	allows
to	specify	which	object	will	be	referenced	by	the	this
keyword	when	the	function	will	be	executed.	Like
super()	in	Java,	calling	parentObject.call(this)
is	necessary	to	correctly	initialize	the	object	being
created.

The	other	thing	we	see	is	Object.create()	instead	of
calling	new.	Object.create()	creates	an	object	with	a
specified	prototype.	When	we	do	new	Parent(),	the
constructor	logic	of	the	parent	is	called.	In	most	cases,
what	we	want	is	for	Child.prototype	to	be	an	object
that	is	linked	via	its	prototype	to	Parent.prototype.	If
the	parent	constructor	contains	additional	logic	specific
to	the	parent,	we	don't	want	to	run	this	while	creating	the
child	object.	This	can	cause	very	difficult-to-find	bugs.
Object.create()	creates	the	same	prototypal	link
between	the	child	and	parent	as	the	new	operator
without	calling	the	parent	constructor.

To	have	a	side	effect-free	and	accurate	inheritance
mechanism,	we	have	to	make	sure	that	we	perform	the
following:

Setting	the	prototype	to	an	instance	of	the	parent	initializes	the
prototype	chain	(inheritance);	this	is	done	only	once	(as	the	prototype
object	is	shared)

Calling	the	parent's	constructor	initializes	the	object	itself;	this	is	done
with	every	instantiation	(you	can	pass	different	parameters	each	time
you	construct	it)

With	this	understanding	in	place,	let's	define	the	rest	of
the	objects:

function	IndividualContributor()	{

		Employee.call(this);

		this.active_projects	=	[];

}

IndividualContributor.prototype	=

Object.create(Employee.prototype);

	

function	TeamLead()	{

function	TeamLead()	{

		Manager.call(this);

		this.dept	=	"Software";

		this.salary	=	100000;

}

TeamLead.prototype	=

Object.create(Manager.prototype);

	

function	Engineer()	{

		TeamLead.call(this);

		this.dept	=	"JavaScript";

		this.desktop_id	=	"8822"	;

		this.salary	=	80000;

}

Engineer.prototype	=

Object.create(TeamLead.prototype);

Based	on	this	hierarchy,	we	can	instantiate	these
objects:

var	genericEmployee	=	new	Employee();

console.log(genericEmployee);

You	can	see	the	following	output	for	the	preceding	code
snippet:

[object	Object]	{

		dept:	"None",

		name:	"",

		salary:	0

}

A	generic	Employee	has	a	department	assigned	to
None	(as	specified	in	the	default	value)	and	the	rest	of
the	properties	are	also	assigned	as	the	default	ones.

Next,	we	instantiate	a	manager;	we	can	provide	specific

values	as	follows:

var	karen	=	new	Manager();

karen.name	=	"Karen";

karen.reports	=	[1,2,3];

console.log(karen);

You	will	see	the	following	output:

[object	Object]	{

		dept:	"None",

		name:	"Karen",

		reports:	[1,	2,	3],

		salary:	0

}

For	TeamLead,	the	reports	property	is	derived	from
the	base	class	(Manager	in	this	case):

var	jason	=	new	TeamLead();

jason.name	=	"Json";

console.log(jason);

You	will	see	the	following	output:

[object	Object]	{

		dept:	"Software",

		name:	"Json",

		reports:	[],

		salary:	100000

}

When	JavaScript	processes	the	new	operator,	it	creates
a	new	object	and	passes	this	object	as	the	value	of	this
to	the	parent—the	TeamLead	constructor.	The

constructor	function	sets	the	value	of	the	projects
property	and	implicitly	sets	the	value	of	the	internal
__proto__	property	to	the	value	of
TeamLead.prototype.	The	__proto__	property
determines	the	prototype	chain	used	to	return	property
values.	This	process	does	not	set	values	for	properties
inherited	from	the	prototype	chain	in	the	jason	object.
When	the	value	of	a	property	is	read,	JavaScript	first
checks	to	see	whether	the	value	exists	in	that	object.	If
the	value	does	exist,	this	value	is	returned.	If	the	value	is
not	there,	JavaScript	checks	the	prototype	chain	using
the	__proto__	property.	Having	said	this,	what
happens	when	you	do	the	following:

Employee.prototype.name	=	"Undefined";

It	does	not	propagate	to	all	the	instances	of	Employee.
This	is	because	when	you	create	an	instance	of	the
Employee	object,	this	instance	gets	a	local	value	for	the
name.	When	you	set	the	TeamLead	prototype	by
creating	a	new	Employee	object,
TeamLead.prototype	has	a	local	value	for	the	name
property.	Therefore,	when	JavaScript	looks	up	the	name
property	of	the	jason	object,	which	is	an	instance	of
TeamLead),	it	finds	the	local	value	for	this	property	in
TeamLead.prototype.	It	does	not	try	to	do	further
lookups	up	the	chain	to	Employee.prototype.

If	you	want	the	value	of	a	property	changed	at	runtime
and	have	the	new	value	be	inherited	by	all	the

descendants	of	the	object,	you	cannot	define	the
property	in	the	object's	constructor	function.	To	achieve
this,	you	need	to	add	it	to	the	constructor's	prototype.	For
example,	let's	revisit	the	earlier	example	but	with	a	slight
change:

function	Employee()	{

		this.dept	=	'None';

		this.salary	=	0.00;

}

Employee.prototype.name	=	'';

function	Manager()	{

		this.reports	=	[];

}

Manager.prototype	=	new	Employee();

var	sandy	=	new	Manager();

var	karen	=	new	Manager();

Employee.prototype.name	=	"Junk";

console.log(sandy.name);

console.log(karen.name);

You	will	see	that	the	name	property	of	both	sandy	and
karen	has	changed	to	Junk.	This	is	because	the	name
property	is	declared	outside	the	constructor	function.	So,
when	you	change	the	value	of	name	in	the	Employee's
prototype,	it	propagates	to	all	the	descendants.	In	this
example,	we	are	modifying	Employee's	prototype	after
the	sandy	and	karen	objects	are	created.	If	you
changed	the	prototype	before	the	sandy	and	karen
objects	were	created,	the	value	would	still	have	changed
to	Junk.

All	native	JavaScript	objects—Object,	Array,	String,
Number,	RegExp,	and	Function—have	prototype
properties	that	can	be	extended.	This	means	that	we	can
extend	the	functionality	of	the	language	itself.	For
example,	the	following	snippet	extends	the	String
object	to	add	a	reverse()	method	to	reverse	a	string.
This	method	does	not	exist	in	the	native	String	object	but
by	manipulating	String's	prototype,	we	add	this	method
to	String:

String.prototype.reverse	=	function()	{

		return

Array.prototype.reverse.apply(this.split('

')).join('');

};

var	str	=	'JavaScript';

console.log(str.reverse());	//"tpircSavaJ"

Though	this	is	a	very	powerful	technique,	care	should	be
taken	not	to	overuse	it.	Refer	to
http://perfectionkills.com/extending-native-builtins/	to
understand	the	pitfalls	of	extending	native	builtins	and
what	care	should	be	taken	if	you	intend	to	do	so.

http://perfectionkills.com/extending-native-builtins/

Getters	and	setters
Getters	are	convenient	methods	to	get	the	value	of
specific	properties;	as	the	name	suggests,	setters	are
methods	that	set	the	value	of	a	property.	Often,	you	may
want	to	derive	a	value	based	on	some	other	values.
Traditionally,	getters	and	setters	used	to	be	functions
such	as	the	following:

var	person	=	{

		firstname:	"Albert",

		lastname:	"Einstein",

		setLastName:	function(_lastname){

				this.lastname=	lastname;

		},

		setFirstName:	function	(firstname){

				this.firstname=	_firstname;

		},

		getFullName:	function	(){

				return	this.firstname	+	'	'+	

this.lastname;

		}		

};

person.setLastName('Newton');

person.setFirstName('Issac');

console.log(person.getFullName());

As	you	can	see,	setLastName(),	setFirstName(),
and	getFullName()	are	functions	used	to	do	get	and
set	of	properties.	Fullname	is	a	derived	property	by
concatenating	the	firstname	and	lastname
properties.	This	is	a	very	common	use	case	and
ECMAScript	5	now	provides	you	with	a	default	syntax	for

getters	and	setters.

The	following	example	shows	you	how	getters	and
setters	are	created	using	the	object	literal	syntax	in
ECMAScript	5:

var	person	=	{

		firstname:	"Albert",

		lastname:	"Einstein",

		get	fullname()	{

				return	this.firstname	+"

"+this.lastname;

		},

		set	fullname(_name){

				var	words	=	_name.toString().split('

');

				this.firstname	=	words[0];

				this.lastname	=	words[1];

		}

};

person.fullname	=	"Issac	Newton";

console.log(person.firstname);	//"Issac"

console.log(person.lastname);		//"Newton"

console.log(person.fullname);		//"Issac

Newton"

Another	way	of	declaring	getters	and	setters	is	using	the
Object.defineProperty()	method:

var	person	=	{

		firstname:	"Albert",

		lastname:	"Einstein",

};

Object.defineProperty(person,	'fullname',

{

		get:	function()	{

				return	this.firstname	+	'	'	+

this.lastname;

this.lastname;

		},

		set:	function(name)	{

				var	words	=	name.split('	');

				this.firstname	=	words[0];

				this.lastname	=	words[1];

		}

});

person.fullname	=	"Issac	Newton";

console.log(person.firstname);	//"Issac"

console.log(person.lastname);		//"Newton"

console.log(person.fullname);		//"Issac

Newton"

In	this	method,	you	can	call
Object.defineProperty()	even	after	the	object	is
created.

Now	that	you	have	tasted	the	object-oriented	flavor	of
JavaScript,	we	will	go	through	a	bunch	of	very	useful
utility	methods	provided	by	Underscore.js.	We
discussed	the	installation	and	basic	usage	of
Underscore.js	in	the	previous	chapter.	These	methods
will	make	common	operations	on	objects	very	easy:

keys():	This	method	retrieves	the	names	of	an	object's	own

enumerable	properties.	Note	that	this	function	does	not	traverse	up
the	prototype	chain:

var		=	require('underscore');

var	testobj	=	{

		name:	'Albert',

		age	:	90,

		profession:	'Physicist'

};

console.log(.keys(testobj));

//['name',	'age',	'profession']

allKeys():	This	method	retrieves	the	names	of	an	object's	own	and

inherited	properties:

var	_	=	require('underscore');

function	Scientist()	{

		this.name	=	'Albert';

}

Scientist.prototype.married	=	true;

aScientist	=	new	Scientist();

console.log(_.keys(aScientist));	//[

'name']

console.log(_.allKeys(aScientist));//[

'name',	'married']

values():	This	method	retrieves	the	values	of	an	object's	own

properties:

var		=	require('underscore');

function	Scientist()	{

		this.name	=	'Albert';

}

Scientist.prototype.married	=	true;

aScientist	=	new	Scientist();

console.log(.values(aScientist));	//[

'Albert']

mapObject():	This	method	transforms	the	value	of	each	property	in

the	object:

var		=	require('underscore');

function	Scientist()	{

		this.name	=	'Albert';

		this.age	=	90;

}

aScientist	=	new	Scientist();

var	lst	=	.mapObject(aScientist,	

function(val,key){

		if(key==="age"){

				return	val	+	10;

		}	else	{

				return	val;

		}

});

console.log(lst);	//{	name:	'Albert',	

age:	100	}

functions():	This	returns	a	sorted	list	of	the	names	of	every

method	in	an	object—the	name	of	every	function	property	of	the
object.

pick():	This	function	returns	a	copy	of	the	object,	filtered	to	just	the

values	of	the	keys	provided:

var		=	require('underscore');

var	testobj	=	{

		name:	'Albert',

		age	:	90,

		profession:	'Physicist'

};

console.log(.pick(testobj,	

'name','age'));	//{	name:	'Albert',	

age:	90	}

console.log(_.pick(testobj,	

function(val,key,object){

		return	_.isNumber(val);

}));	//{	age:	90	}

omit():	This	function	is	an	invert	of	pick()—it	returns	a	copy	of	the

object,	filtered	to	omit	the	values	for	the	specified	keys.

Summary
JavaScript	applications	can	improve	in	clarity	and	quality
by	allowing	for	the	greater	degree	of	control	and
structure	that	object-orientation	can	bring	to	the	code.
JavaScript	object-orientation	is	based	on	the	function
prototypes	and	prototypal	inheritance.	These	two	ideas
can	provide	an	incredible	amount	of	wealth	to
developers.

In	this	chapter,	we	saw	basic	object	creation	and
manipulation.	We	looked	at	how	constructor	functions
are	used	to	create	objects.	We	dived	into	prototype
chains	and	how	inheritance	operates	on	the	idea	of
prototype	chains.	These	foundations	will	be	used	to	build
your	knowledge	of	JavaScript	patterns	that	we	will
explore	in	the	next	module.	We	will	discuss	various
testing	and	debugging	techniques	in	the	next	chapter.

Chapter	5.	Testing	and
Debugging
As	you	write	JavaScript	applications,	you	will	soon
realize	that	having	a	sound	testing	strategy	is
indispensable.	In	fact,	not	writing	enough	tests	is	almost
always	a	bad	idea.	It	is	essential	to	cover	all	the	non-
trivial	functionality	of	your	code	to	make	sure	of	the
following	points:

The	existing	code	behaves	as	per	the	specifications

Any	new	code	does	not	break	the	behavior	defined	by	the
specifications

Both	these	points	are	very	important.	Many	engineers
consider	only	the	first	point	the	sole	reason	to	cover	your
code	with	enough	tests.	The	most	obvious	advantage	of
test	coverage	is	to	really	make	sure	that	the	code	being
pushed	to	the	production	system	is	mostly	error-free.
Writing	test	cases	to	smartly	cover	the	maximum
functional	areas	of	the	code	generally	gives	you	a	good
indication	about	the	overall	quality	of	the	code.	There
should	be	no	arguments	or	compromises	around	this
point.	It	is	unfortunate	though	that	many	production
systems	are	still	bereft	of	adequate	code	coverage.	It	is
very	important	to	build	an	engineering	culture	where
developers	think	about	writing	tests	as	much	as	they
think	about	writing	code.

The	second	point	is	even	more	important.	Legacy
systems	are	usually	very	difficult	to	manage.	When	you
are	working	on	code	written	either	by	someone	else	or	a
large	distributed	team,	it	is	fairly	easy	to	introduce	bugs
and	break	things.	Even	the	best	engineers	make
mistakes.	When	you	are	working	on	a	large	code	base
that	you	are	unfamiliar	with	and	if	there	is	no	sound	test
coverage	to	help	you,	you	will	introduce	bugs.	As	you
won't	have	the	confidence	in	the	changes	that	you	are
making	(because	there	are	no	test	cases	to	confirm	your
changes),	your	code	releases	will	be	shaky,	slow,	and
obviously	full	of	hidden	bugs.

You	will	refrain	from	refactoring	or	optimizing	your	code
because	you	won't	really	be	sure	what	changes	to	the
code	base	would	potentially	break	something	(again,
because	there	are	no	test	cases	to	confirm	your
changes)—all	this	is	a	vicious	circle.	It's	like	a	civil
engineer	saying,	"though	I	have	constructed	this	bridge,	I
have	no	confidence	in	the	quality	of	the	construction.	It
may	collapse	immediately	or	never."	Though	this	may
sound	like	an	exaggeration,	I	have	seen	a	lot	of	high
impact	production	code	being	pushed	with	no	test
coverage.	This	is	risky	and	should	be	avoided.	When
you	are	writing	enough	test	cases	to	cover	majority	of
your	functional	code	and	when	you	make	a	change	to
these	pieces,	you	immediately	realize	if	there	is	a
problem	with	this	new	change.	If	your	changes	make	the
test	case	fail,	you	realize	the	problem.	If	your	refactoring
breaks	the	test	scenario,	you	realize	the	problem—all
this	happens	much	before	the	code	is	pushed	to

production.

In	recent	years,	ideas	such	as	test-driven	development
and	self-testing	code	are	gaining	prominence,	especially
in	agile	methodology.	These	are	fundamentally	sound
ideas	and	will	help	you	write	robust	code—code	that	you
are	confident	of.	We	will	discuss	all	these	ideas	in	this
chapter.	You	will	understand	how	to	write	good	test
cases	in	modern	JavaScript.	We	will	also	look	at	several
tools	and	methods	to	debug	your	code.	JavaScript	has
been	traditionally	a	bit	difficult	to	test	and	debug	primarily
due	to	lack	of	tools,	but	modern	tools	make	both	of	these
easy	and	natural.

Unit	testing
When	we	talk	about	test	cases,	we	mostly	mean	unit
tests.	It	is	incorrect	to	assume	that	the	unit	that	we	want
to	test	is	always	a	function.	The	unit	(or	unit	of	work)	is	a
logical	unit	that	constitutes	a	single	behavior.	This	unit
should	be	able	to	be	invoked	via	a	public	interface	and
should	be	testable	independently.

Thus,	a	unit	test	performs	the	following	functions:

It	tests	a	single	logical	function

It	can	be	run	without	a	specific	order	of	execution

It	takes	care	of	its	own	dependencies	and	mock	data

It	always	returns	the	same	result	for	the	same	input

It	should	be	self-explanatory,	maintainable,	and	readable

NOTENOTE
Martin	Fowler	advocates	the	test	pyramid	(http://martinfowler.com/bliki/TestPyramid.html)
strategy	to	make	sure	that	we	have	a	high	number	of	unit	tests	to	ensure	maximum	code
coverage.	The	test	pyramid	says	that	you	should	write	many	more	low-level	unit	tests	than
higher	level	integration	and	UI	tests.

There	are	two	important	testing	strategies	that	we	will
discuss	in	this	chapter.

Test-driven	development
Test-driven	development	(TDD)	has	gained	a	lot	of
prominence	in	the	last	few	years.	The	concept	was	first
proposed	as	part	of	the	Extreme	Programming
methodology.	The	idea	is	to	have	short	repetitive
development	cycles	where	the	focus	is	on	writing	the	test
cases	first.	The	cycle	looks	as	follows:

1.	 Add	a	test	case	as	per	the	specifications	for	a	specific	unit	of	code.
2.	 Run	the	existing	suite	of	test	cases	to	see	if	the	new	test	case	that

you	wrote	fails—it	should	(because	there	is	no	code	for	this	unit	yet).
This	step	ensures	that	the	current	test	harness	works	well.

3.	 Write	the	code	that	serves	mainly	to	confirm	the	test	case.	This	code
is	not	optimized	or	refactored	or	even	entirely	correct.	However,	this	is
fine	at	the	moment.

4.	 Rerun	the	tests	and	see	if	all	the	test	cases	pass.	After	this	step,	you
will	be	confident	that	the	new	code	is	not	breaking	anything.

5.	 Refactor	the	code	to	make	sure	that	you	are	optimizing	the	unit	and
handling	all	corner	cases.

These	steps	are	repeated	for	all	the	new	code	that	you
add.	This	is	an	elegant	strategy	that	works	really	well	for
the	agile	methodology.	TDD	will	be	successful	only	if	the
testable	units	of	code	are	small	and	confirm	only	to	the
test	case	and	nothing	more.	It	is	important	to	write	small,

http://martinfowler.com/bliki/TestPyramid.html

modular,	and	precise	code	units	that	have	input	and
output	confirming	the	test	case.

Behavior-driven	development
A	very	common	problem	while	trying	to	follow	TDD	is
vocabulary	and	the	definition	of	correctness.	BDD	tries	to
introduce	a	ubiquitous	language	while	writing	the	test
cases	when	you	are	following	TDD.	This	language
makes	sure	that	both	the	business	and	engineering
teams	are	talking	about	the	same	thing.

We	will	use	Jasmine	as	the	primary	BDD	framework	and
explore	various	testing	strategies.

NOTENOTE
You	can	install	Jasmine	by	downloading	the	standalone	package	from
https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip.

When	you	unzip	this	package,	you	will	have	the	following
directory	structure:

https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip

The	lib	directory	contains	the	JavaScript	files	that	you
need	in	your	project	to	start	writing	Jasmine	test	cases.	If
you	open	SpecRunner.html,	you	will	find	the	following
JavaScript	files	included	in	it:

<script	src="lib/jasmine-

2.3.4/jasmine.js"></script>

<script	src="lib/jasmine-2.3.4/jasmine-

html.js"></script>

<script	src="lib/jasmine-2.3.4/boot.js">

</script>

	

<!--	include	source	files	here...	-->

<script	src="src/Player.js"></script>

<script	src="src/Song.js"></script>

<!--	include	spec	files	here...	-->

<script	src="spec/SpecHelper.js"></script>

<script	src="spec/PlayerSpec.js"></script>

<script	src="spec/PlayerSpec.js"></script>

The	first	three	are	Jasmine's	own	framework	files.	The
next	section	includes	the	source	files	that	we	want	to	test
and	the	actual	test	specifications.

Let's	experiment	with	Jasmine	with	a	very	ordinary
example.	Create	a	bigfatjavascriptcode.js	file
and	place	it	in	the	src/	directory.	We	will	test	the
following	function:

function	capitalizeName(name){

		return	name.toUpperCase();

}

This	is	a	simple	function	that	does	one	single	thing.	It
receives	a	string	and	returns	a	capitalized	string.	We	will
test	various	scenarios	around	this	function.	This	is	the
unit	of	code	that	we	discussed	earlier.

Next,	create	the	test	specifications.	Create	one
JavaScript	file,	test.spec.js,	and	place	it	in	the
spec/	directory.	The	file	should	contain	the	following.
You	will	need	to	add	the	following	two	lines	to
SpecRunner.html:

<script	src="src/bigfatjavascriptcode.js">

</script>

<script	src="spec/test.spec.js"></script>

The	order	of	this	inclusion	does	not	matter.	When	we	run
SpecRunner.html,	you	will	see	something	as	follows:

This	is	the	Jasmine	report	that	shows	the	details	about
the	number	of	tests	that	were	executed	and	the	count	of
failures	and	successes.	Now,	let's	make	the	test	case
fail.	We	want	to	test	a	case	where	an	undefined	variable
is	passed	to	the	function.	Add	one	more	test	case	as
follows:

it("can	handle	undefined",	function()	{

		var	str=	undefined;

		

expect(capitalizeName(str)).toEqual(undefi

ned);

});

Now,	when	you	run	SpecRunner.html,	you	will	see	the
following	result:

As	you	can	see,	the	failure	is	displayed	for	this	test	case
in	a	detailed	error	stack.	Now,	we	go	about	fixing	this.	In
your	original	JavaScript	code,	we	can	handle	an
undefined	condition	as	follows:

function	capitalizeName(name){

		if(name){

				return	name.toUpperCase();

		}

}

With	this	change,	your	test	case	will	pass	and	you	will
see	the	following	in	the	Jasmine	report:

This	is	very	similar	to	what	a	test-driven	development
would	look.	You	write	test	cases,	you	then	fill	in	the
necessary	code	to	confirm	to	the	specifications,	and
rerun	the	test	suite.	Let's	understand	the	structure	of	the
Jasmine	tests.

Our	test	specification	looks	as	follows:

describe("TestStringUtilities",	function()

{

		it("converts	to	capital",	function()	{

				var	str	=	"albert";

				var	str	=	"albert";

				

expect(capitalizeName(str)).toEqual("ALBER

T");

		});

		it("can	handle	undefined",	function()	{

				var	str=	undefined;

				

expect(capitalizeName(str)).toEqual(undefi

ned);

		});

});

The	describe("TestStringUtilities"	is	a	test
suite.	The	name	of	the	test	suite	should	describe	the	unit
of	code	that	we	are	testing—this	can	be	a	function	or
group	of	related	functionality.	In	the	specifications,	you
call	the	global	Jasmine	it	function	to	which	you	pass	the
title	of	the	specification	and	test	function	used	by	the	test
case.	This	function	is	the	actual	test	case.	You	can	catch
one	or	more	assertions	or	the	general	expectations	using
the	expect	function.	When	all	expectations	are	true,
your	specification	is	passed.	You	can	write	any	valid
JavaScript	code	in	the	describe	and	it	functions.	The
values	that	you	verify	as	part	of	the	expectations	are
matched	using	a	matcher.	In	our	example,	toEqual()
is	the	matcher	that	matches	two	values	for	equality.
Jasmine	contains	a	rich	set	of	matches	to	suit	most	of
the	common	use	cases.	Some	common	matchers
supported	by	Jasmine	are	as	follows:

toBe():	This	matcher	checks	whether	two	objects	being	compared

are	equal.	This	is	the	same	as	the	===	comparison,	as	shown	in	the

following	code:

var	a	=	{	value:	1};

var	a	=	{	value:	1};

var	b	=	{	value:	1	};

	

expect(a).toEqual(b);		//	success,

same	as	==	comparison

expect(b).toBe(b);					//	failure,

same	as	===	comparison

expect(a).toBe(a);					//	success,

same	as	===	comparison

not:	You	can	negate	a	matcher	with	a	not	prefix.	For	example,

expect(1).not.toEqual(2);	will	negate	the	match	made	by

toEqual().

toContain():	This	checks	whether	an	element	is	part	of	an	array.

This	is	not	an	exact	object	match	as	toBe().	For	example,	look	at

the	following	code:

expect([1,	2,	3]).toContain(3);

expect("astronomy	is	a

science").toContain("science");

toBeDefined()	and	toBeUndefined():	These	two	matches	are

handy	to	check	whether	a	variable	is	undefined	(or	not).

toBeNull():	This	checks	whether	a	variable's	value	is	null.

toBeGreaterThan()	and	toBeLessThan():	These	matchers

perform	numeric	comparisons	(they	work	on	strings	too):

expect(2).toBeGreaterThan(1);

expect(1).toBeLessThan(2);

expect("a").toBeLessThan("b");

One	interesting	feature	of	Jasmine	is	the	spies.	When
you	are	writing	a	large	system,	it	is	not	possible	to	make
sure	that	all	systems	are	always	available	and	correct.	At
the	same	time,	you	don't	want	your	unit	tests	to	fail	due
to	a	dependency	that	may	be	broken	or	unavailable.	To
simulate	a	situation	where	all	dependencies	are
available	for	a	unit	of	code	that	we	want	to	test,	we	mock

these	dependencies	to	always	give	the	response	that	we
expect.	Mocking	is	an	important	aspect	of	testing	and
most	testing	frameworks	provide	support	for	the
mocking.	Jasmine	allows	mocking	using	a	feature	called
a	spy.	Jasmine	spies	essentially	stub	the	functions	that
we	may	not	have	ready;	at	the	time	of	writing	the	test
case	but	as	part	of	the	functionality,	we	need	to	track
that	we	are	executing	these	dependencies	and	not
ignoring	them.	Consider	the	following	example:

describe("mocking	configurator",	

function()	{

		var	configurator	=	null;

		var	responseJSON	=	{};

		beforeEach(function()	{

				configurator	=	{

						submitPOSTRequest:	function(payload)	

{

								//This	is	a	mock	service	that	will	

eventually	be	replaced	

								//by	a	real	service

								console.log(payload);

								return	{"status":	"200"};

						}

				};

				spyOn(configurator,	

'submitPOSTRequest').and.returnValue({"sta

tus":	"200"});

				configurator.submitPOSTRequest({

						"port":"8000",

						"client-encoding":"UTF-8"

				});

		});

		it("the	spy	was	called",	function()	{

				

expect(configurator.submitPOSTRequest).toH

aveBeenCalled();

		});

		it("the	arguments	of	the	spy's	call	are	

tracked",	function()	{

				

expect(configurator.submitPOSTRequest).toH

aveBeenCalledWith({"port":"8000","client-e

ncoding":"UTF-8"});

		});

});

In	this	example,	while	we	are	writing	this	test	case,	we
either	don't	have	the	real	implementation	of	the
configurator.submitPOSTRequest()	dependency
or	someone	is	fixing	this	particular	dependency.	In	any
case,	we	don't	have	it	available.	For	our	test	to	work,	we
need	to	mock	it.	Jasmine	spies	allow	us	to	replace	a
function	with	its	mock	and	track	its	execution.

In	this	case,	we	need	to	ensure	that	we	called	the
dependency.	When	the	actual	dependency	is	ready,	we
will	revisit	this	test	case	to	make	sure	that	it	fits	the
specifications,	but	at	this	time,	all	that	we	need	to	ensure
is	that	the	dependency	is	called.	The	Jasmine
tohaveBeenCalled()	function	lets	us	track	the
execution	of	a	function,	which	may	be	a	mock.	We	can
use	toHaveBeenCalledWith()	that	allows	us	to
determine	if	the	stub	function	was	called	with	the	correct
parameters.	There	are	several	other	interesting
scenarios	that	you	can	create	using	Jasmine	spies.	The
scope	of	this	chapter	won't	permit	us	to	cover	them	all,
but	I	would	encourage	you	to	discover	these	areas	on

your	own.

NOTENOTE
You	can	refer	to	the	user	manual	for	Jasmine	for	more	information	on	Jasmine	spies	at
http://jasmine.github.io/2.0/introduction.html.

TIPTIP
Mocha,	Chai,	and	Sinon

Though	Jasmine	is	the	most	prominent	JavaScript	testing	framework,	Mocha	and	Chai	are
gaining	prominence	in	the	Node.js	environment.	Mocha	is	the	testing	framework	used	to
describe	and	run	test	cases.	Chai	is	the	assertion	library	supported	by	Mocha.	Sinon.JS
comes	in	handy	while	creating	mocks	and	stubs	for	your	tests.	We	won't	discuss	these
frameworks	in	this	book,	but	experience	on	Jasmine	will	be	handy	if	you	want	to	experiment
with	these	frameworks.

http://jasmine.github.io/2.0/introduction.html

JavaScript	debugging
If	you	are	not	a	completely	new	programmer,	I	am	sure
you	must	have	spent	some	amount	of	time	debugging
your	or	someone	else's	code.	Debugging	is	almost	like
an	art	form.	Every	language	has	different	methods	and
challenges	around	debugging.	JavaScript	has
traditionally	been	a	difficult	language	to	debug.	I	have
personally	spent	days	and	nights	of	misery	trying	to
debug	badly-written	JavaScript	code	using	alert()
functions.	Fortunately,	modern	browsers	such	as	Mozilla
Firefox	and	Google	Chrome	have	excellent	developer
tools	to	help	debug	JavaScript	in	the	browser.	There	are
IDEs	like	IntelliJ	WebStorm	with	great	debugging
support	for	JavaScript	and	Node.js.	In	this	chapter,	we
will	focus	primarily	on	Google	Chrome's	built-in
developer	tool.	Firefox	also	supports	the	Firebug
extension	and	has	excellent	built-in	developer	tools,	but
as	they	behave	more	or	less	the	same	as	Google
Chrome's	Developer	Tools	(DevTools),	we	will	discuss
common	debugging	approaches	that	work	in	both	of
these	tools.

Before	we	talk	about	the	specific	debugging	techniques,
let's	understand	the	type	of	errors	that	we	would	be
interested	in	while	we	try	to	debug	our	code.

Syntax	errors

When	your	code	has	something	that	does	not	confirm	to
the	JavaScript	language	grammar,	the	interpreter	rejects
this	piece	of	code.	These	are	easy	to	catch	if	your	IDE	is
helping	you	with	syntax	checking.	Most	modern	IDEs
help	with	these	errors.	Earlier,	we	discussed	the
usefulness	of	the	tools	such	as	JSLint	and	JSHint
around	catching	syntax	issues	with	your	code.	They
analyze	the	code	and	flag	errors	in	the	syntax.	JSHint
output	can	be	very	illuminating.	For	example,	the
following	output	shows	up	so	many	things	that	we	can
change	in	the	code.	This	snippet	is	from	one	of	my
existing	projects:

temp	git:(dev_branch)	✗	jshint	test.js
test.js:	line	1,	col	1,	Use	the	function	

form	of	"use	strict".

test.js:	line	4,	col	1,	'destructuring	

expression'	is	available	in	ES6	(use	

esnext	option)	or	Mozilla	JS	extensions	

(use	moz).

test.js:	line	44,	col	70,	'arrow	function	

syntax	(=>)'	is	only	available	in	ES6	(use	

esnext	option).

test.js:	line	61,	col	33,	'arrow	function	

syntax	(=>)'	is	only	available	in	ES6	(use	

esnext	option).

test.js:	line	200,	col	29,	Expected	')'	to	

match	'('	from	line	200	and	instead	saw	

':'.

test.js:	line	200,	col	29,	'function	

closure	expressions'	is	only	available	in	

Mozilla	JavaScript	extensions	(use	moz	

option).

test.js:	line	200,	col	37,	Expected	'}'	to	

match	'{'	from	line	36	and	instead	saw	

')'.

test.js:	line	200,	col	39,	Expected	')'	

and	instead	saw	'{'.

test.js:	line	200,	col	40,	Missing	

semicolon.

Using	strict
We	briefly	discussed	the	strict	mode	in	earlier	chapters.
The	strict	mode	in	JavaScript	flags	or	eliminates	some	of
the	JavaScript	silent	errors.	Rather	than	silently	failing,
the	strict	mode	makes	these	failures	throw	errors
instead.	The	strict	mode	also	helps	in	converting
mistakes	to	actual	errors.	There	are	two	ways	of
enforcing	the	strict	mode.	If	you	want	the	strict	mode	for
the	entire	script,	you	can	just	add	the	use	strict
statement	as	the	first	line	of	your	JavaScript	program.	If
you	want	a	specific	function	to	conform	with	the	strict
mode,	you	can	add	the	directive	as	the	first	line	of	a
function:

function	strictFn(){

//	This	line	makes	EVERYTHING	under	this

strict	mode

'use	strict';

…

function	nestedStrictFn()	{

//Everything	in	this	function	is	also

nested

…

}

}

Runtime	exceptions

These	errors	appear	when	you	execute	the	code	and	try
to	refer	to	an	undefined	variable	or	process	a	null.	When
a	runtime	exception	occurs,	any	code	after	that	particular
line	(which	caused	the	exception)	does	not	get	executed.
It	is	essential	to	handle	such	exceptional	scenarios
correctly	in	the	code.	While	exception	handling	can	help
prevent	crashes,	they	also	aid	in	debugging.	You	can
wrap	the	code	that	may	encounter	a	runtime	exception	in
a	try{	}	block.	When	any	code	in	this	block	generates
a	runtime	exception,	a	corresponding	handler	captures	it.
The	handler	is	defined	by	a	catch(exception){}
block.	Let's	clarify	this	using	an	example:

try	{

		var	a	=	doesnotexist;	//	throws	a

runtime	exception

}	catch(e)	{

		console.log(e.message);		//handle	the

exception

		//prints	-	"doesnotexist	is	not	defined"

}

In	this	example,	the	var	a	=	doesnotexist;	line
tries	to	assign	an	undefined	variable,	doesnotexist,	to
another	variable,	a.	This	causes	a	runtime	exception.
When	we	wrap	this	problematic	code	in	the	try{}
catch(){}	block	and	when	the	exception	occurs	(or	is
thrown),	the	execution	stops	in	the	try{}	block	and
goes	directly	to	the	catch()	{}	handler.	The	catch
handler	is	responsible	for	handling	the	exceptional
scenario.	In	this	case,	we	are	displaying	the	error
message	on	the	console	for	debugging	purposes.	You

can	explicitly	throw	an	exception	to	trigger	an	unhandled
scenario	in	the	code.	Consider	the	following	example:

function	engageGear(gear){

		if(gear==="R"){	console.log	

("Reversing");}

		if(gear==="D"){	console.log	

("Driving");}

		if(gear==="N"){	console.log	

("Neutral/Parking");}

		throw	new	Error("Invalid	Gear	State");

}

try

{

		engageGear("R");		//Reversing

		engageGear("P");		//Invalid	Gear	State

}

catch(e){

		console.log(e.message);

}

In	this	example,	we	are	handling	valid	states	of	a	gear
shift	(R,	N,	and	D),	but	when	we	receive	an	invalid	state,
we	are	explicitly	throwing	an	exception	clearly	stating	the
reason.	When	we	call	the	function	that	we	think	may
throw	an	exception,	we	wrap	the	code	in	the	try{}
block	and	attach	a	catch(){}	handler	with	it.	When	the
exception	is	caught	by	the	catch()	block,	we	handle
the	exceptional	condition	appropriately.

CONSOLE.LOG	AND	ASSERTS
Displaying	the	state	of	execution	on	the	console	can	be
very	useful	while	debugging.	However,	modern
developer	tools	allow	you	to	put	breakpoints	and	halt

execution	to	inspect	a	particular	value	during	runtime.
You	can	quickly	detect	small	issues	by	logging	some
variable	state	on	the	console.

With	these	concepts,	let's	see	how	we	can	use	Chrome
Developer	Tools	to	debug	JavaScript	code.

CHROME	DEVTOOLS
You	can	start	Chrome	DevTools	by	navigating	to	menu	|
More	tools	|	Developer	Tools:

Chrome	DevTools	opens	up	on	the	lower	pane	of	your
browser	and	has	a	bunch	of	very	useful	sections:

The	Elements	panel	helps	you	inspect	and	monitor	the
DOM	tree	and	associated	style	sheet	for	each	of	these
components.

The	Network	panel	is	useful	to	understand	network
activity.	For	example,	you	can	monitor	the	resources
being	downloaded	over	the	network	in	real	time.

The	most	important	pane	for	us	is	the	Sources	pane.
This	pane	is	where	the	JavaScript	source	and	debugger
are	displayed.	Let's	create	a	sample	HTML	with	the
following	content:

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8">

		<title>This	test</title>

		<script	type="text/javascript">

		function	engageGear(gear){

				if(gear==="R"){	console.log

("Reversing");}

				if(gear==="D"){	console.log

				if(gear==="D"){	console.log

("Driving");}

				if(gear==="N"){	console.log

("Neutral/Parking");}

				throw	new	Error("Invalid	Gear	State");

		}

		try

		{

				engageGear("R");		//Reversing

				engageGear("P");		//Invalid	Gear	State

		}

		catch(e){

				console.log(e.message);

		}

		</script>

</head>

<body>

</body>

</html>

Save	this	HTML	file	and	open	it	in	Google	Chrome.
Open	DevTools	in	the	browser	and	you	will	see	the
following	screen:

This	is	the	view	of	the	Sources	panel.	You	can	see	the
HTML	and	embedded	JavaScript	source	in	this	panel.
You	can	see	the	Console	window	as	well.	You	can	see
that	the	file	is	executed	and	output	is	displayed	in	the
Console.

On	the	right-hand	side,	you	will	see	the	debugger
window:

In	the	Sources	panel,	click	on	the	line	numbers	8	and	15
to	add	a	breakpoint.	The	breakpoints	allow	you	to	stop
the	execution	of	the	script	at	the	specified	point:

In	the	debugging	pane,	you	can	see	all	the	existing
breakpoints:

Now,	when	you	rerun	the	same	page,	you	will	see	that
the	execution	stops	at	the	debug	point.	One	very	useful
technique	is	to	inject	code	during	the	debugging	phase.
While	the	debugger	is	running,	you	can	add	code	in
order	to	help	you	understand	the	state	of	the	code	better:

This	window	now	has	all	the	action.	You	can	see	that	the
execution	is	paused	on	line	15.	In	the	debug	window,
you	can	see	which	breakpoint	is	being	triggered.	You
can	see	the	Call	Stack	also.	You	can	resume	execution
in	several	ways.	The	debug	command	window	has	a
bunch	of	actions:

You	can	resume	execution	(which	will	execute	until	the

next	breakpoint)	by	clicking	on	the	 	button.	When
you	do	this,	the	execution	continues	until	the	next
breakpoint	is	encountered.	In	our	case,	we	halt	at	line	8:

You	can	observe	that	the	Call	Stack	window	shows	you
how	we	arrived	at	line	8.	The	Scope	panel	shows	the
Local	scope	where	you	can	see	the	variables	in	the
scope	when	the	breakpoint	was	arrived	at.	You	can	also
step	into	or	step	over	the	next	function.

There	are	other	very	useful	mechanisms	to	debug	and
profile	your	code	using	Chrome	DevTools.	I	would
suggest	you	to	go	experiment	with	the	tool	and	make	it	a
part	of	your	regular	development	flow.

Summary
Both	the	testing	and	debugging	phases	are	essential	to
developing	robust	JavaScript	code.	TDD	and	BDD	are
approaches	closely	associated	with	the	agile
methodology	and	are	widely	embraced	by	the	JavaScript
developer	community.	In	this	chapter,	we	reviewed	the
best	practices	around	TDD	and	usage	of	Jasmine	as	the
testing	framework.	We	saw	various	methods	of
debugging	JavaScript	using	Chrome	DevTools.	In	the
next	chapter,	we	will	explore	the	new	and	exciting	world
of	ES6,	DOM	manipulation,	and	cross-browser
strategies.

Chapter	6.	ECMAScript	6
So	far,	we	have	taken	a	detailed	tour	of	the	JavaScript
programming	language.	I	am	sure	that	you	must	have
gained	significant	insight	into	the	core	of	the	language.
What	we	saw	so	far	was	as	per	the	ECMAScript	5	(ES5)
standards.	ECMAScript	6	(ES6)	or	ECMAScript	2015
(ES2015)	is	the	latest	version	of	the	ECMAScript
standard.	This	standard	is	evolving	and	the	last	round	of
modifications	was	done	in	June,	2015.	ES2015	is
significant	in	its	scope	and	the	recommendations	of
ES2015	are	being	implemented	in	most	JavaScript
engines.	This	is	great	news.	ES6	introduces	a	huge
number	of	features	that	add	syntactic	forms	and	helpers
that	enrich	the	language	significantly.	The	pace	at	which
ECMAScript	standards	keep	evolving	makes	it	a	bit
difficult	for	browsers	and	JavaScript	engines	to	support
new	features.	It	is	also	a	practical	reality	that	most
programmers	have	to	write	code	that	can	be	supported
by	older	browsers.	The	notorious	Internet	Explorer	6	was
once	the	most	widely	used	browser	in	the	world.	To
make	sure	that	your	code	is	compatible	with	the	most
number	of	browsers	is	a	daunting	task.	So,	while	you
want	to	jump	to	the	next	set	of	awesome	ES6	features,
you	will	have	to	consider	the	fact	that	several	ES6
features	may	not	be	supported	by	the	most	popular	of
browsers	or	JavaScript	frameworks.

This	may	look	like	a	dire	scenario,	but	things	are	not	that

dark.	Node.js	uses	the	latest	version	of	the	V8	engine
that	supports	majority	of	ES6	features.	Facebook's
React	also	supports	them.	Mozilla	Firefox	and	Google
Chrome	are	two	of	the	most	used	browsers	today	and
they	support	a	majority	of	ES6	features.

To	avoid	such	pitfalls	and	unpredictability,	certain
solutions	have	been	proposed.	The	most	useful	among
these	are	polyfills/shims	and	transpilers.

Shims	or	polyfills
Polyfills	(also	known	as	shims)	are	patterns	to	define
behavior	from	a	new	version	in	a	compatible	form
supported	by	an	older	version	of	the	environment.
There's	a	great	collection	of	ES6	shims	called	ES6	shim
(https://github.com/paulmillr/es6-shim/);	I	would	highly
recommend	a	study	of	these	shims.	From	the	ES6	shim
collection,	consider	the	following	example	of	a	shim.

The	Number.isFinite()	method	of	the	ECMAScript
2015	(ES6)	standard	determines	whether	the	passed
value	is	a	finite	number.	The	equivalent	shim	for	it	would
look	something	as	follows:

var	numberIsFinite	=	Number.isFinite	||

function	isFinite(value)	{

		return	typeof	value	===	'number'	&&

globalIsFinite(value);

};

The	shim	first	checks	if	the	Number.isFinite()

https://github.com/paulmillr/es6-shim/

method	is	available;	if	not,	it	fills	it	up	with	an
implementation.	This	is	a	pretty	nifty	technique	to	fill	in
gaps	in	specifications.	Shims	are	constantly	upgraded
with	newer	features	and,	hence,	it	is	a	sound	strategy	to
keep	the	most	updated	shims	in	your	project.

NOTENOTE
The	endsWith()	polyfill	is	described	in	detail	at	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith.
String.endsWith()	is	part	of	ES6	but	can	be	polyfilled	easily	for	pre-ES6	environments.

Shims,	however,	cannot	polyfill	syntactical	changes.	For
this,	we	can	consider	transpilers	as	an	option.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith

Transpilers
Transpiling	is	a	technique	that	combines	both
compilation	and	transformation.	The	idea	is	to	write	ES6-
compatible	code	and	use	a	tool	that	transpiles	this	code
into	a	valid	and	equivalent	ES5	code.	We	will	be	looking
at	the	most	complete	and	popular	transpiler	for	ES6
called	Babel	(https://babeljs.io/).

Babel	can	be	used	in	various	ways.	You	can	install	it	as
a	node	module	and	invoke	it	from	the	command	line	or
import	it	as	a	script	in	your	web	page.	Babel's	setup	is
exhaustive	and	well-documented	at
https://babeljs.io/docs/setup/.	Babel	also	has	a	great
Read-Eval-Print-Loop	(REPL).	We	will	Babel	REPL	for
most	of	the	examples	in	this	chapter.	An	in-depth
understanding	of	various	ways	in	which	Babel	can	be
used	is	out	of	the	scope	of	this	book.	However,	I	would
urge	you	to	start	using	Babel	as	part	of	your
development	workflow.

We	will	cover	the	most	important	part	of	ES6
specifications	in	this	chapter.	You	should	explore	all	the
features	of	ES6	if	possible	and	make	them	part	of	your
development	workflow.

https://babeljs.io/
https://babeljs.io/docs/setup/

ES6	syntax	changes
ES6	brings	in	significant	syntactic	changes	to	JavaScript.
These	changes	need	careful	study	and	some	getting
used	to.	In	this	section,	we	will	study	some	of	the	most
important	syntax	changes	and	see	how	you	can	use
Babel	to	start	using	these	newer	constructs	in	your	code
right	away.

Block	scoping
We	discussed	earlier	that	the	variables	in	JavaScript	are
function-scoped.	Variables	created	in	a	nested	scope	are
available	to	the	entire	function.	Several	programming
languages	provide	you	with	a	default	block	scope	where
any	variable	declared	within	a	block	of	code	(usually
delimited	by	{})	is	scoped	(available)	only	within	this
block.	To	achieve	a	similar	block	scope	in	JavaScript,	a
prevalent	method	is	to	use	immediately-invoked
function	expressions	(IIFE).	Consider	the	following
example:

var	a	=	1;

(function	blockscope(){

				var	a	=	2;

				console.log(a);			//	2

})();

console.log(a);							//	1

Using	the	IIFE,	we	are	creating	a	block	scope	for	the	a

variable.	When	a	variable	is	declared	in	the	IIFE,	its
scope	is	restricted	within	the	function.	This	is	the
traditional	way	of	simulating	the	block	scope.	ES6
supports	block	scoping	without	using	IIFEs.	In	ES6,	you
can	enclose	any	statement(s)	in	a	block	defined	by	{}.
Instead	of	using	var,	you	can	declare	a	variable	using
let	to	define	the	block	scope.	The	preceding	example
can	be	rewritten	using	ES6	block	scopes	as	follows:

"use	strict";

var	a	=	1;

{

		let	a	=	2;

		console.log(a);	//	2

}

console.log(a);	//	1

Using	standalone	brackets	{}	may	seem	unusual	in
JavaScript,	but	this	convention	is	fairly	common	to	create
a	block	scope	in	many	languages.	The	block	scope	kicks
in	other	constructs	such	as	if	{	}	or	for	(){	}	as
well.

When	you	use	a	block	scope	in	this	way,	it	is	generally
preferred	to	put	the	variable	declaration	on	top	of	the
block.	One	difference	between	variables	declared	using
var	and	let	is	that	variables	declared	with	var	are
attached	to	the	entire	function	scope,	while	variables
declared	using	let	are	attached	to	the	block	scope	and
they	are	not	initialized	until	they	appear	in	the	block.
Hence,	you	cannot	access	a	variable	declared	with	let
earlier	than	its	declaration,	whereas	with	variables

declared	using	var,	the	ordering	doesn't	matter:

function	fooey()	{

		console.log(foo);	//	ReferenceError

		let	foo	=	5000;

}

One	specific	use	of	let	is	in	for	loops.	When	we	use	a
variable	declared	using	var	in	a	for	loop,	it	is	created	in
the	global	or	parent	scope.	We	can	create	a	blockscoped
variable	in	the	for	loop	scope	by	declaring	a	variable
using	let.	Consider	the	following	example:

for	(let	i	=	0;	i<5;	i++)	{

		console.log(i);

}

console.log(i);	//	i	is	not	defined

As	i	is	created	using	let,	it	is	scoped	in	the	for	loop.
You	can	see	that	the	variable	is	not	available	outside	the
scope.

One	more	use	of	block	scopes	in	ES6	is	the	ability	to
create	constants.	Using	the	const	keyword,	you	can
create	constants	in	the	block	scope.	Once	the	value	is
set,	you	cannot	change	the	value	of	such	a	constant:

if(true){

		const	a=1;

		console.log(a);

		a=100;		///"a"	is	read-only,	you	will

get	a	TypeError

}

A	constant	has	to	be	initialized	while	being	declared.	The
same	block	scope	rules	apply	to	functions	also.	When	a
function	is	declared	inside	a	block,	it	is	available	only
within	that	scope.

Default	parameters
Defaulting	is	very	common.	You	always	set	some	default
value	to	parameters	passed	to	a	function	or	variables
that	you	initialize.	You	may	have	seen	code	similar	to	the
following:

function	sum(a,b){

		a	=	a	||	0;

		b	=	b	||	0;

		return	(a+b);

}

console.log(sum(9,9));	//18

console.log(sum(9));			//9

Here,	we	are	using	||	(the	OR	operator)	to	default
variables	a	and	b	to	0	if	no	value	was	supplied	when	this
function	was	invoked.	With	ES6,	you	have	a	standard
way	of	defaulting	function	arguments.	The	preceding
example	can	be	rewritten	as	follows:

function	sum(a=0,	b=0){

		return	(a+b);

}

console.log(sum(9,9));	//18

console.log(sum(9));			//9

You	can	pass	any	valid	expression	or	function	call	as

part	of	the	default	parameter	list.

Spread	and	rest
ES6	has	a	new	operator,	….	Based	on	how	it	is	used,	it	is
called	either	spread	or	rest.	Let's	look	at	a	trivial
example:

function	print(a,	b){

		console.log(a,b);

}

print(...[1,2]);		//1,2

What's	happening	here	is	that	when	you	add	…	before	an
array	(or	an	iterable)	it	spreads	the	element	of	the	array
in	individual	variables	in	the	function	parameters.	The	a
and	b	function	parameters	were	assigned	two	values
from	the	array	when	it	was	spread	out.	Extra	parameters
are	ignored	while	spreading	an	array:

print(...[1,2,3]);		//1,2

This	would	still	print	1	and	2	because	there	are	only	two
functional	parameters	available.	Spreads	can	be	used	in
other	places	also,	such	as	array	assignments:

var	a	=	[1,2];

var	b	=	[0,	...a,	3];

console.log(b);	//[0,1,2,3]

There	is	another	use	of	the	…	operator	that	is	the	very
opposite	of	the	one	that	we	just	saw.	Instead	of

spreading	the	values,	the	same	operator	can	gather
them	into	one:

function	print	(a,...b){

		console.log(a,b);

}

console.log(print(1,2,3,4,5,6,7));		//1

[2,3,4,5,6,7]

In	this	case,	the	variable	b	takes	the	rest	of	the	values.
The	a	variable	took	the	first	value	as	1	and	b	took	the
rest	of	the	values	as	an	array.

Destructuring
If	you	have	worked	on	a	functional	language	such	as
Erlang,	you	will	relate	to	the	concept	of	pattern
matching.	Destructuring	in	JavaScript	is	something	very
similar.	Destructuring	allows	you	to	bind	values	to
variables	using	pattern	matching.	Consider	the	following
example:

var	[start,	end]	=	[0,5];

for	(let	i=start;	i<end;	i++){

		console.log(i);

}

//prints	-	0,1,2,3,4

We	are	assigning	two	variables	with	the	help	of	array
destructuring:

var	[start,	end]	=	[0,5];

As	shown	in	the	preceding	example,	we	want	the	pattern
to	match	when	the	first	value	is	assigned	to	the	first
variable	(start)	and	the	second	value	is	assigned	to
the	second	variable	(end).	Consider	the	following
snippet	to	see	how	the	destructuring	of	array	elements
works:

function	fn()	{

		return	[1,2,3];

}

var	[a,b,c]=fn();

console.log(a,b,c);	//1	2	3

//We	can	skip	one	of	them

var	[d,,f]=fn();

console.log(d,f);			//1	3

//Rest	of	the	values	are	not	used

var	[e,]	=	fn();

console.log(e);					//1

Let's	discuss	how	objects'	destructuring	works.	Let's	say
that	you	have	a	function	f	that	returns	an	object	as
follows:

function	f()	{

		return	{

				a:	'a',

				b:	'b',

				c:	'c'

		};

}

When	we	destructure	the	object	being	returned	by	this
function,	we	can	use	the	similar	syntax	as	we	saw
earlier;	the	difference	is	that	we	use	{}	instead	of	[]:

var	{	a:	a,	b:	b,	c:	c	}	=	f();

var	{	a:	a,	b:	b,	c:	c	}	=	f();

console.log(a,b,c);	//a	b	c

Similar	to	arrays,	we	use	pattern	matching	to	assign
variables	to	their	corresponding	values	returned	by	the
function.	There	is	an	even	shorter	way	of	writing	this	if
you	are	using	the	same	variable	as	the	one	being
matched.	The	following	example	would	do	just	fine:

var	{	a,b,c	}	=	f();

However,	you	would	mostly	be	using	a	different	variable
name	from	the	one	being	returned	by	the	function.	It	is
important	to	remember	that	the	syntax	is	source:
destination	and	not	the	usual	destination:	source.
Carefully	observe	the	following	example:

//this	is	target:	source	-	which	is

incorrect

var	{	x:	a,	x:	b,	x:	c	}	=	f();

console.log(x,y,z);	//x	is	undefined,	y	is

undefined	z	is	undefined

//this	is	source:	target	-	correct

var	{	a:	x,	b:	y,	c:	z	}	=	f();

console.log(x,y,z);	//	a	b	c

This	is	the	opposite	of	the	target	=	source	way	of
assigning	values	and	hence	will	take	some	time	in
getting	used	to.

Object	literals
Object	literals	are	everywhere	in	JavaScript.	You	would
think	that	there	is	no	scope	of	improvement	there.

However,	ES6	wants	to	improve	this	too.	ES6	introduces
several	shortcuts	to	create	a	concise	syntax	around
object	literals:

var	firstname	=	"Albert",	lastname	=

"Einstein",

		person	=	{

				firstname:	firstname,

				lastname:	lastname

		};

If	you	intend	to	use	the	same	property	name	as	the
variable	that	you	are	assigning,	you	can	use	the	concise
property	notation	of	ES6:

var	firstname	=	"Albert",	lastname	=

"Einstein",

		person	=	{

				firstname,

				lastname

		};

Similarly,	you	are	assigning	functions	to	properties	as
follows:

var	person	=	{

		getName:	function(){

				//	..

		},

		getAge:	function(){

				//..

		}

}

Instead	of	the	preceding	lines,	you	can	say	the	following:

var	person	=	{

		getName(){

				//	..

		},

		getAge(){

				//..

		}

}

Template	literals
I	am	sure	you	have	done	things	such	as	the	following:

function	SuperLogger(level,	clazz,	msg){

		console.log(level+":	Exception	happened

in	class:"+clazz+"	-	Exception	:"+	msg);

}

This	is	a	very	common	way	of	replacing	variable	values
to	form	a	string	literal.	ES6	provides	you	with	a	new	type
of	string	literal	using	the	backtick	(`)	delimiter.	You	can
use	string	interpolation	to	put	placeholders	in	a	template
string	literal.	The	placeholders	will	be	parsed	and
evaluated.

The	preceding	example	can	be	rewritten	as	follows:

function	SuperLogger(level,	clazz,	msg){

		console.log(`${level}	:	Exception

happened	in	class:	${clazz}	-	Exception	:

{$msg}`);

}

We	are	using	``	around	a	string	literal.	Within	this	literal,
any	expression	of	the	${..}	form	is	parsed

immediately.	This	parsing	is	called	interpolation.	While
parsing,	the	variable's	value	replaces	the	placeholder
within	${}.	The	resulting	string	is	just	a	normal	string
with	the	placeholders	replaced	with	actual	variable
values.

With	string	interpolation,	you	can	split	a	string	into
multiple	lines	also,	as	shown	in	the	following	code	(very
similar	to	Python):

var	quote	=

`Good	night,	good	night!

Parting	is	such	sweet	sorrow,

that	I	shall	say	good	night

till	it	be	morrow.`;

console.log(quote);

You	can	use	function	calls	or	valid	JavaScript
expressions	as	part	of	the	string	interpolation:

function	sum(a,b){

		console.log(`The	sum	seems	to	be	${a	+

b}`);

}

sum(1,2);	//The	sum	seems	to	be	3

The	final	variation	of	the	template	strings	is	called
tagged	template	string.	The	idea	is	to	modify	the
template	string	using	a	function.	Consider	the	following
example:

function	emmy(key,	...values){

		console.log(key);

		console.log(values);

}

let	category="Best	Movie";

let	movie="Adventures	in	ES6";

emmy`And	the	award	for	${category}	goes	to	

${movie}`;

//["And	the	award	for	","	goes	to	",""]

//["Best	Movie","Adventures	in	ES6"]

The	strangest	part	is	when	we	call	the	emmy	function
with	the	template	literal.	It's	not	a	traditional	function	call
syntax.	We	are	not	writing	emmy();	we	are	just	tagging
the	literal	with	the	function.	When	this	function	is	called,
the	first	argument	is	an	array	of	all	the	plain	strings	(the
string	between	interpolated	expressions).	The	second
argument	is	the	array	where	all	the	interpolated
expressions	are	evaluated	and	stored.

Now	what	this	means	is	that	the	tag	function	can	actually
change	the	resulting	template	tag:

function	priceFilter(s,	...v){

		//Bump	up	discount

		return	s[0]+	(v[0]	+	5);

}

let	default_discount	=	20;

let	greeting	=	priceFilter	`Your	purchase

has	a	discount	of	${default_discount}

percent`;

console.log(greeting);		//Your	purchase

has	a	discount	of	25

As	you	can	see,	we	modified	the	value	of	the	discount	in
the	tag	function	and	returned	the	modified	values.

Maps	and	Sets
ES6	introduces	four	new	data	structures:	Map,
WeakMap,	Set,	and	WeakSet.	We	discussed	earlier	that
objects	are	the	usual	way	of	creating	key-value	pairs	in
JavaScript.	The	disadvantage	of	objects	is	that	you
cannot	use	non-string	values	as	keys.	The	following
snippets	demonstrate	how	Maps	are	created	in	ES6:

let	m	=	new	Map();

let	s	=	{	'seq'	:	101	};

	

m.set('1','Albert');

m.set('MAX',	99);

m.set(s,'Einstein');

	

console.log(m.has('1'));	//true

console.log(m.get(s));			//Einstein

console.log(m.size);					//3

m.delete(s);

m.clear();

You	can	initialize	the	map	while	declaring	it:

let	m	=	new	Map([

		[1,	'Albert'],

		[2,	'Douglas'],

		[3,	'Clive'],

]);

If	you	want	to	iterate	over	the	entries	in	the	Map,	you	can
use	the	entries()	function	that	will	return	you	an
iterator.	You	can	iterate	through	all	the	keys	using	the
keys()	function	and	you	can	iterate	through	the	values

of	the	Map	using	the	values()	function:

let	m2	=	new	Map([

				[1,	'Albert'],

				[2,	'Douglas'],

				[3,	'Clive'],

]);

for	(let	a	of	m2.entries()){

		console.log(a);

}

//[1,"Albert"]	[2,"Douglas"][3,"Clive"]

for	(let	a	of	m2.keys()){

		console.log(a);

}	//1	2	3

for	(let	a	of	m2.values()){

		console.log(a);

}

//Albert	Douglas	Clive

A	variation	of	JavaScript	Maps	is	a	WeakMap—a
WeakMap	does	not	prevent	its	keys	from	being	garbage-
collected.	Keys	for	a	WeakMap	must	be	objects	and	the
values	can	be	arbitrary	values.	While	a	WeakMap
behaves	in	the	same	way	as	a	normal	Map,	you	cannot
iterate	through	it	and	you	can't	clear	it.	There	are
reasons	behind	these	restrictions.	As	the	state	of	the
Map	is	not	guaranteed	to	remain	static	(keys	may	get
garbage-collected),	you	cannot	ensure	correct	iteration.

There	are	not	many	cases	where	you	may	want	to	use
WeakMap.	Most	uses	of	a	Map	can	be	written	using
normal	Maps.

While	Maps	allow	you	to	store	arbitrary	values,	Sets	are
a	collection	of	unique	values.	Sets	have	similar	methods

as	Maps;	however,	set()	is	replaced	with	add(),	and
the	get()	method	does	not	exist.	The	reason	that	the
get()	method	is	not	there	is	because	a	Set	has	unique
values,	so	you	are	interested	in	only	checking	whether
the	Set	contains	a	value	or	not.	Consider	the	following
example:

let	x	=	{'first':	'Albert'};

let	s	=	new	Set([1,2,'Sunday',x]);

//console.log(s.has(x));		//true

s.add(300);

//console.log(s);		//[1,2,"Sunday",

{"first":"Albert"},300]

	

for	(let	a	of	s.entries()){

		console.log(a);

}

//[1,1]

//[2,2]

//["Sunday","Sunday"]

//[{"first":"Albert"},{"first":"Albert"}]

//[300,300]

for	(let	a	of	s.keys()){

		console.log(a);

}

//1

//2

//Sunday

//{"first":"Albert"}

//300

for	(let	a	of	s.values()){

		console.log(a);

}

//1

//2

//Sunday

//{"first":"Albert"}

//300

The	keys()	and	values()	iterators	both	return	a	list	of
the	unique	values	in	the	Set.	The	entries()	iterator
yields	a	list	of	entry	arrays,	where	both	items	of	the	array
are	the	unique	Set	values.	The	default	iterator	for	a	Set
is	its	values()	iterator.

Symbols
ES6	introduces	a	new	data	type	called	Symbol.	A
Symbol	is	guaranteed	to	be	unique	and	immutable.
Symbols	are	usually	used	as	an	identifier	for	object
properties.	They	can	be	considered	as	uniquely
generated	IDs.	You	can	create	Symbols	with	the
Symbol()	factory	method—remember	that	this	is	not	a
constructor	and	hence	you	should	not	use	a	new
operator:

let	s	=	Symbol();

console.log(typeof	s);	//symbol

Unlike	strings,	Symbols	are	guaranteed	to	be	unique	and
hence	help	in	preventing	name	clashes.	With	Symbols,
we	have	an	extensibility	mechanism	that	works	for
everyone.	ES6	comes	with	a	number	of	predefined	built-
in	Symbols	that	expose	various	meta	behaviors	on
JavaScript	object	values.

Iterators
Iterators	have	been	around	in	other	programming

languages	for	quite	some	time.	They	give	convenience
methods	to	work	with	collections	of	data.	ES6	introduces
iterators	for	the	same	use	case.	ES6	iterators	are	objects
with	a	specific	interface.	Iterators	have	a	next()
method	that	returns	an	object.	The	returning	object	has
two	properties—value	(the	next	value)	and	done
(indicates	whether	the	last	result	has	been	reached).
ES6	also	defines	an	Iterable	interface,	which
describes	objects	that	must	be	able	to	produce	iterators.
Let's	look	at	an	array,	which	is	an	iterable,	and	the
iterator	that	it	can	produce	to	consume	its	values:

var	a	=	[1,2];

var	i	=	a[Symbol.iterator]();

console.log(i.next());						//	{	value:	1,

done:	false	}

console.log(i.next());						//	{	value:	2,

done:	false	}

console.log(i.next());						//	{	value:

undefined,	done:	true	}

As	you	can	see,	we	are	accessing	the	array's	iterator	via
Symbol.iterator()	and	calling	the	next()	method
on	it	to	get	each	successive	element.	Both	value	and
done	are	returned	by	the	next()	method	call.	When
you	call	next()	past	the	last	element	in	the	array,	you
get	an	undefined	value	and	done:	true,	indicating	that
you	have	iterated	over	the	entire	array.

For..of	loops
ES6	adds	a	new	iteration	mechanism	in	form	of	the

for..of	loop,	which	loops	over	the	set	of	values
produced	by	an	iterator.

The	value	that	we	iterate	over	with	for..of	is	an
iterable.

Let's	compare	for..of	to	for..in:

var	list	=	['Sunday','Monday','Tuesday'];

for	(let	i	in	list){

		console.log(i);		//0	1	2

}

for	(let	i	of	list){

		console.log(i);		//Sunday	Monday	Tuesday

}

As	you	can	see,	using	the	for..in	loop,	you	can	iterate
over	indexes	of	the	list	array,	while	the	for..of	loop
lets	you	iterate	over	the	values	stored	in	the	list	array.

Arrow	functions
One	of	the	most	interesting	new	parts	of	ECMAScript	6
is	arrow	functions.	Arrow	functions	are,	as	the	name
suggests,	functions	defined	with	a	new	syntax	that	uses
an	arrow	(=>)	as	part	of	the	syntax.	Let's	first	see	how
arrow	functions	look:

//Traditional	Function

function	multiply(a,b)	{

		return	a*b;

}

//Arrow

var	multiply	=	(a,b)	=>	a*b;

console.log(multiply(1,2));	//2

console.log(multiply(1,2));	//2

The	arrow	function	definition	consists	of	a	parameter	list
(of	zero	or	more	parameters	and	surrounding	(..)	if
there's	not	exactly	one	parameter),	followed	by	the	=>
marker,	which	is	followed	by	a	function	body.

The	body	of	the	function	can	be	enclosed	by	{	..	}	if
there's	more	than	one	expression	in	the	body.	If	there's
only	one	expression,	and	you	omit	the	surrounding	{	..
},	there's	an	implied	return	in	front	of	the	expression.
There	are	several	variations	of	how	you	can	write	arrow
functions.	The	following	are	the	most	commonly	used:

//	single	argument,	single	statement

//arg	=>	expression;

var	f1	=	x	=>	console.log("Just	X");

f1();	//Just	X

	

//	multiple	arguments,	single	statement

//(arg1	[,	arg2])	=>	expression;

var	f2	=	(x,y)	=>	x*y;

console.log(f2(2,2));	//4

	

//	single	argument,	multiple	statements

//	arg	=>	{

//					statements;

//	}

var	f3	=	x	=>	{

		if(x>5){

				console.log(x);

		}

		else	{

				console.log(x+5);

		}

}

f3(6);	//6

	

//	multiple	arguments,	multiple	statements

//	([arg]	[,	arg])	=>	{

//			statements

//	}

var	f4	=	(x,y)	=>	{

		if(x!=0	&&	y!=0){

				return	x*y;

		}

}

console.log(f4(2,2));//4

	

//	with	no	arguments,	single	statement

//()	=>	expression;

var	f5	=	()	=>	2*2;

console.log(f5());	//4

	

//IIFE

console.log((x	=>	x	*	3)(3));	//	9

It	is	important	to	remember	that	all	the	characteristics	of
a	normal	function	parameter	are	available	to	arrow
functions,	including	default	values,	destructuring,	and
rest	parameters.

Arrow	functions	offer	a	convenient	and	short	syntax,
which	gives	your	code	a	very	functional	programming
flavor.	Arrow	functions	are	popular	because	they	offer	an
attractive	promise	of	writing	concise	functions	by
dropping	function,	return,	and	{	..	}	from	the	code.
However,	arrow	functions	are	designed	to	fundamentally
solve	a	particular	and	common	pain	point	with	this-aware
coding.	In	normal	ES5	functions,	every	new	function
defined	its	own	value	of	this	(a	new	object	in	case	of	a
constructor,	undefined	in	strict	mode	function	calls,

context	object	if	the	function	is	called	as	an	object
method,	and	so	on).	JavaScript	functions	always	have
their	own	this	and	this	prevents	you	from	accessing	the
this	of,	for	example,	a	surrounding	method	from	inside
a	callback.	To	understand	this	problem,	consider	the
following	example:

function	CustomStr(str){

		this.str	=	str;

}

CustomStr.prototype.add	=	function(s){

//	-->	1

		'use	strict';

		return	s.map(function	(a){

//	-->	2

				return	this.str	+	a;

//	-->	3

		});

};

	

var	customStr	=	new	CustomStr("Hello");

console.log(customStr.add(["World"]));

//Cannot	read	property	'str'	of	undefined

On	the	line	marked	with	3,	we	are	trying	to	get
this.str,	but	the	anonymous	function	also	has	its	own
this,	which	shadows	this	from	the	method	from	line	1.
To	fix	this	in	ES5,	we	can	assign	this	to	a	variable	and
use	the	variable	instead:

function	CustomStr(str){

		this.str	=	str;

}

CustomStr.prototype.add	=	function(s){			

		'use	strict';

		var	that	=	this;																							

//	-->	1

		return	s.map(function	(a){													

//	-->	2

				return	that.str	+	a;																	

//	-->	3

		});

};

var	customStr	=	new	CustomStr("Hello");

console.log(customStr.add(["World"]));	

//["HelloWorld]

On	the	line	marked	with	1,	we	are	assigning	this	to	a
variable,	that,	and	in	the	anonymous	function	we	are
using	the	that	variable,	which	will	have	a	reference	to
this	from	the	correct	context.

ES6	arrow	functions	have	lexical	this,	meaning	that	the
arrow	functions	capture	the	this	value	of	the	enclosing
context.	We	can	convert	the	preceding	function	to	an
equivalent	arrow	function	as	follows:

function	CustomStr(str){

		this.str	=	str;

}

CustomStr.prototype.add	=	function(s){	

		return	s.map((a)=>	{

				return	this.str	+	a;

		});

};

var	customStr	=	new	CustomStr("Hello");

console.log(customStr.add(["World"]));	

//["HelloWorld]

Summary
In	this	chapter,	we	discussed	a	few	important	features
being	added	to	the	language	in	ES6.	It's	an	exciting
collection	of	new	language	features	and	paradigms	and,
using	polyfills	and	transpilers,	you	can	start	with	them
right	away.	JavaScript	is	an	ever	growing	language	and
it	is	important	to	understand	what	the	future	holds.	ES6
features	make	JavaScript	an	even	more	interesting	and
mature	language.	In	the	next	chapter,	we	will	dive	deep
into	manipulating	the	browser's	Document	Object
Model	(DOM)	and	events	using	JavaScript	with	jQuery.

Chapter	7.	DOM
Manipulation	and	Events
The	most	important	reason	for	JavaScript's	existence	is
the	web.	JavaScript	is	the	language	for	the	web	and	the
browser	is	the	raison	d'être	for	JavaScript.	JavaScript
gives	dynamism	to	otherwise	static	web	pages.	In	this
chapter,	we	will	dive	deep	into	this	relationship	between
the	browser	and	language.	We	will	understand	the	way
in	which	JavaScript	interacts	with	the	components	of	the
web	page.	We	will	look	at	the	Document	Object	Model
(DOM)	and	JavaScript	event	model.

DOM
In	this	chapter,	we	will	look	at	various	aspects	of
JavaScript	with	regard	to	the	browser	and	HTML.	HTML,
as	I	am	sure	you	are	aware,	is	the	markup	language
used	to	define	web	pages.	Various	forms	of	markups
exist	for	different	uses.	The	popular	marks	are
Extensible	Markup	Language	(XML)	and	Standard
Generalized	Markup	Language	(SGML).	Apart	from
these	generic	markup	languages,	there	are	very	specific
markup	languages	for	specific	purposes	such	as	text
processing	and	image	meta	information.	HyperText
Markup	Language	(HTML)	is	the	standard	markup
language	that	defines	the	presentation	semantics	of	a
web	page.	A	web	page	is	essentially	a	document.	The

DOM	provides	you	with	a	representation	of	this
document.	The	DOM	also	provides	you	with	a	means	of
storing	and	manipulating	this	document.	The	DOM	is	the
programming	interface	of	HTML	and	allows	structural
manipulation	using	scripting	languages	such	as
JavaScript.	The	DOM	provides	a	structural
representation	of	the	document.	The	structure	consists
of	nodes	and	objects.	Nodes	have	properties	and
methods	on	which	you	can	operate	in	order	to
manipulate	the	nodes	themselves.	The	DOM	is	just	a
representation	and	not	a	programming	construct.	DOM
acts	as	a	model	for	DOM	processing	languages	such	as
JavaScript.

Accessing	DOM	elements
Most	of	the	time,	you	will	be	interested	in	accessing
DOM	elements	to	inspect	their	values	or	processing
these	values	for	some	business	logic.	We	will	take	a
detailed	look	at	this	particular	use	case.	Let's	create	a
sample	HTML	file	with	the	following	content:

<html>

<head>

		<title>DOM</title>

</head>

<body>

		<p>Hello	World!</p>

</body>

</html>

You	can	save	this	file	as	sample_dom.html;	when	you
open	this	in	the	Google	Chrome	browser,	you	will	see

the	web	page	displayed	with	the	Hello	World	text
displayed.	Now,	open	Google	Chrome	Developer	Tools
by	navigating	to	options	|	More	Tools	|	Developer	Tools
(this	route	may	differ	on	your	operating	system	and
browser	version).	In	the	Developer	Tools	window,	you
will	see	the	DOM	structure:

Next,	we	will	insert	some	JavaScript	into	this	HTML
page.	We	will	invoke	the	JavaScript	function	when	the
web	page	is	loaded.	To	do	this,	we	will	call	a	function	on
window.onload.	You	can	place	your	script	in	the
<script>	tag	located	under	the	<head>	tag.	Your	page
should	look	as	follows:

<html>

		<head>

				<title>DOM</title>

				<script>

						//	run	this	function	when	the	

document	is	loaded

						window.onload	=	function()	{

								var	doc	=	

document.documentElement;

								var	body	=	doc.body;

								var	head	=	doc.firstChild;

								var	body	=	doc.lastChild;

								var	head	=	doc.childNodes[0];

								var	title	=	head.firstChild;

								alert(head.parentNode	===	doc);	

//true

						}

				</script>

		</head>

		<body>

				<p>Hello	World!</p>

		</body>

</html>

The	anonymous	function	is	executed	when	the	browser
loads	the	page.	In	the	function,	we	are	getting	the	nodes
of	the	DOM	programmatically.	The	entire	HTML
document	can	be	accessed	using	the
document.documentElement	function.	We	store	the
document	in	a	variable.	Once	the	document	is	accessed,
we	can	traverse	the	nodes	using	several	helper
properties	of	the	document.	We	are	accessing	the
<body>	element	using	doc.body.	You	can	traverse
through	the	children	of	an	element	using	the
childNodes	array.	The	first	and	last	children	of	a	node
can	be	accessed	using	additional	properties
—firstChild	and	lastChild.

NOTENOTE
It	is	not	recommended	to	use	render-blocking	JavaScript	in	the	<head>	tag.	This	slows
down	the	page	render	dramatically.	Modern	browsers	support	the	async	and	defer
attributes	to	indicate	to	the	browsers	that	the	rendering	can	go	on	while	the	script	is	being
downloaded.	You	can	use	these	tags	in	the	<head>	tag	without	worrying	about
performance	degradation.	You	can	get	more	information	at
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-
html-markup.

Accessing	specific	nodes

http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup

The	core	DOM	defines	the	getElementsByTagName()
method	to	return	NodeList	of	all	the	element	objects
whose	tagName	property	is	equal	to	a	specific	value.
The	following	line	of	code	returns	a	list	of	all	the	<p/>
elements	in	a	document:

var	paragraphs	=

document.getElementsByTagName('p');

The	HTML	DOM	defines	getElementsByName()	to
retrieve	all	the	elements	that	have	their	name	attribute
set	to	a	specific	value.	Consider	the	following	snippet:

<html>

		<head>

				<title>DOM</title>

				<script>

						showFeelings	=	function()	{

								var	feelings	=	

document.getElementsByName("feeling");

								

alert(feelings[0].getAttribute("value"));

								

alert(feelings[1].getAttribute("value"));

						}

				</script>

		</head>

		<body>

				<p>Hello	World!</p>

				<form	method="post"	action="post">

						<fieldset>

								<p>How	are	you	feeling	today?<p>

								<input	type="radio"	name="feeling"	

value="Happy"	>	Happy

								<input	type="radio"	name="feeling"	

value="Sad"	>Sad

						</fieldset>

						<input	type="button"	value="Submit"	

onClick="showFeelings()">

				<form>

		</body>

</html>

In	this	example,	we	are	creating	a	group	of	radio	buttons
with	the	name	attribute	defined	as	feeling.	In	the
showFeelings	function,	we	get	all	the	elements	with
the	name	attribute	set	to	feeling	and	we	iterate
through	all	these	elements.

The	other	method	defined	by	the	HTML	DOM	is
getElementById().	This	is	a	very	useful	method	in
accessing	a	specific	element.	This	method	does	the
lookup	based	on	the	id	associated	with	an	element.	The
id	attribute	is	unique	for	every	element	and,	hence,	this
kind	of	lookup	is	very	fast	and	should	be	preferred	over
getElementsByName().	-However,	you	should	be
aware	that	the	browser	does	not	guarantee	the
uniqueness	of	the	id	attribute.	In	the	following	example,
we	are	accessing	a	specific	element	using	the	ID.
Element	IDs	are	unique	as	opposed	to	tags	or	name
attributes:

<html>

		<head>

				<title>DOM</title>

				<script>

						window.onload=	function()	{

								var	greeting	=	

document.getElementById("greeting");

								alert(greeting.innerHTML);	//shows	

"Hello	World"	alert

						}

				</script>

		</head>

		<body>

				<p	id="greeting">Hello	World!</p>

				<p	id="identify">Earthlings</p>

		</body>

</html>

What	we	discussed	so	far	was	the	basics	of	DOM
traversal	in	JavaScript.	When	the	DOM	gets	complex
and	you	want	sophisticated	operations	on	the	DOM,
these	traversal	and	access	functions	seem	limiting.	With
this	basic	knowledge	with	us,	it's	time	to	get	introduced
to	a	fantastic	library	for	DOM	traversal	(among	other
things)	called	jQuery.

jQuery	is	a	lightweight	library	designed	to	make	common
browser	operations	easier.	Common	operations	such	as
DOM	traversal	and	manipulation,	event	handling,
animation,	and	Ajax	can	be	tedious	if	done	using	pure
JavaScript.	jQuery	provides	you	with	easy-to-use	and
shorter	helper	mechanisms	to	help	you	develop	these
common	operations	very	easily	and	quickly.	jQuery	is	a
feature-rich	library,	but	as	far	as	this	chapter	goes,	we
will	focus	primarily	on	DOM	manipulation	and	events.

You	can	add	jQuery	to	your	HTML	by	adding	the	script
directly	from	a	content	delivery	network	(CDN)	or
manually	downloading	the	file	and	adding	it	to	the	script
tag.	The	following	example	shows	you	how	to	download
jQuery	from	Google's	CDN:

<html>

<html>

		<head>

				<script

src="https://ajax.googleapis.com/ajax/libs

/jquery/2.1.4/jquery.min.js"></script>

		</head>

		<body>

		</body>

</html>

The	advantage	of	a	CDN	download	is	that	Google's	CDN
automatically	finds	the	nearest	download	server	for	you
and	keeps	an	updated	stable	copy	of	the	jQuery	library.
If	you	wish	to	download	and	manually	host	jQuery	along
with	your	website,	you	can	add	the	script	as	follows:

<script	src="./lib/jquery.js"></script>

In	this	example,	the	jQuery	library	is	manually
downloaded	in	the	lib	directory.	With	the	jQuery	setup
in	the	HTML	page,	let's	explore	the	methods	of
manipulating	the	DOM	elements.	Consider	the	following
example:

<html>

		<head>

				<script	

src="https://ajax.googleapis.com/ajax/libs

/jquery/2.1.4/jquery.min.js"></script>

				<script>

				$(document).ready(function()	{

								$('#greeting').html('Hello	World	

Martian');

				});

		</script>

		</head>

		<body>

				<p	id="greeting">Hello	World	Earthling	

!	</p>

		</body>

</html>

After	adding	jQuery	to	the	HTML	page,	we	write	the
custom	JavaScript	that	selects	the	element	with	a
greeting	ID	and	changes	its	value.	The	strange-
looking	code	within	$()	is	the	jQuery	in	action.	If	you
read	the	jQuery	source	code	(and	you	should,	it's
brilliant)	you	will	see	the	final	line:

//	Expose	jQuery	to	the	global	object

window.jQuery	=	window.$	=	jQuery;

The	$	is	just	a	function.	It	is	an	alias	for	the	function
called	jQuery.	The	$	is	a	syntactic	sugar	that	makes	the
code	concise.	In	fact,	you	can	use	both	$	and	jQuery
interchangeably.	For	example,	both
$('#greeting').html('Hello	World

Martian');	and
jQuery('#greeting').html('Hello	World

Martian');	are	the	same.

You	can't	use	jQuery	before	the	page	is	completely
loaded.	As	jQuery	will	need	to	know	all	the	nodes	of	the
DOM	structure,	the	entire	DOM	has	to	be	in-memory.	To
ensure	that	the	page	is	completely	loaded	and	in	a	state
where	it's	ready	to	be	manipulated,	we	can	use	the
$(document).ready()	function.	Here,	the	IIFE	is
executed	only	after	the	entire	documented	is	ready:

$(document).ready(function()	{

		$('#greeting').html('Hello	World

Martian');

});

This	snippet	shows	you	how	we	can	associate	a	function
to	jQuery's	.ready()	function.	This	function	will	be
executed	once	the	document	is	ready.	We	are	using
$(document)	to	create	a	jQuery	object	from	our	page's
document.	We	are	calling	the	.ready()	function	on	the
jQuery	object	and	passing	it	the	function	that	we	want	to
execute.

This	is	a	very	common	thing	to	do	when	using	jQuery—
so	much	so	that	it	has	its	own	shortcut.	You	can	replace
the	entire	ready()	call	with	a	short	$()	call:

$(function()	{

		$('#greeting').html('Hello	World

Martian');

});

The	most	important	function	in	jQuery	is	$().	This
function	typically	accepts	a	CSS	selector	as	its	sole
parameter	and	returns	a	new	jQuery	object	pointing	to
the	corresponding	elements	on	the	page.	The	three
primary	selectors	are	the	tag	name,	ID,	and	class.	They
can	be	used	either	on	their	own	or	in	combination	with
others.	The	following	simple	examples	illustrate	how
these	three	selectors	appear	in	code:

	
Se

	
CSS	

	
jQuery	

	

le
ct
or
	
	

Sele
ctor
	
	

Selecto
r
	
	

	
Output	from	the	selector
	
	

	
Ta

g
	
	

	
p{}

	
	

	
$('p')

	
	

	
This	selects	all	the	p	tags	from	the	document.
	
	

	
Id
	
	

	
#div

_1

	
	

	
$('#di

v_1')

	
	

	
This	selects	single	elements	that	have	a	div_1	ID.	

The	symbol	used	to	identify	the	ID	is	#.
	
	

	
Cl
as
s
	
	

	
.bol

d_fo

nts

	
	

	
$('.bo

ld_fon

ts')

	
	

	
This	selects	all	the	elements	in	the	document	that	
have	the	CSS	class	bold_fonts.	The	symbol	used	to	

identify	the	class	match	is	".".
	
	

jQuery	works	on	CSS	selectors.

NOTENOTE
As	CSS	selectors	are	not	in	the	scope	of	this	book,	I	would	suggest	that	you	go	to
http://www.w3.org/TR/CSS2/selector.html	to	get	a	fair	idea	of	the	concept.

We	also	assume	that	you	are	familiar	with	HTML	tags
and	syntax.	The	following	example	covers	the
fundamental	idea	of	how	jQuery	selectors	work:

<html>

		<head>

				<script	

src="https://ajax.googleapis.com/ajax/libs

/jquery/2.1.4/jquery.min.js"></script>

				<script>

http://www.w3.org/TR/CSS2/selector.html

						$(function()	{

								$('h1').html(function(index,	

oldHTML){

										return	oldHTML	+	"Finally?";

								});

								$('h1').addClass('highlight-

blue');

								$('#header	>	h1	

').css('background-color',	'cyan');

								$('ul	li:not(.highlight-

blue)').addClass('highlight-green');

								$('tr:nth-

child(odd)').addClass('zebra');

						});

				</script>

				<style>

						.highlight-blue	{

								color:	blue;

						}

						.highlight-green{

								color:	green;

						}

						.zebra{

								background-color:	#666666;

								color:	white;

						}

				</style>

		</head>

		<body>

				<div	id=header>

						<h1>Are	we	there	yet	?	</h1>

						

								<p>Journey	to	Mars</p>

								

										First

										Second

										<li	

class="highlight-blue">Third

								

						

						<table>

								<tr><th>Id</th><th>First	

name</th><th>Last	Name</th></tr>

								

<tr><td>1</td><td>Albert</td><td>Einstein<

/td></tr>

								

<tr><td>2</td><td>Issac</td><td>Newton</td

></tr>

								

<tr><td>3</td><td>Enrico</td><td>Fermi</td

></tr>

								

<tr><td>4</td><td>Richard</td><td>Feynman<

/td></tr>

						</table>

				</div>

		</body>

</html>

In	this	example,	we	are	selecting	several	DOM	elements
in	the	HTML	page	using	selectors.	We	have	an	H1
header	with	the	text,	Are	we	there	yet	?;	when	the
page	loads,	our	jQuery	script	accesses	all	H1	headers
and	appends	the	text	Finally?	to	them:

$('h1').html(function(index,	oldHTML){

		return	oldHTML	+	"Finally	?";

});

The	$.html()	function	sets	the	HTML	for	the	target
element—an	H1	header	in	this	case.	Additionally,	we
select	all	H1	headers	and	apply	a	specific	CSS	style
class,	highlight-blue,	to	all	of	them.	The
$('h1').addClass('highlight-blue')	statement
selects	all	the	H1	headers	and	uses	the

$.addClass(<CSS	class>)	method	to	apply	a	CSS
class	to	all	the	elements	selected	using	the	selector.

We	use	the	child	combinator	(>)	to	custom	CSS	styles
using	the	$.css()	function.	In	effect,	the	selector	in	the
$()	function	is	saying,	"Find	each	header	(h1)	that	is	a
child	(>)	of	the	element	with	an	ID	of	header	(#header)."
For	each	such	element,	we	apply	a	custom	CSS.	The
next	usage	is	interesting.	Consider	the	following	line:

$('ul	li:not(.highlight-

blue)').addClass('highlight-green');

We	are	selecting	"For	all	list	elements	(li)	that	do	not
have	the	class	highlight-blue	applied	to	them,	apply
CSS	class	highlight-green.	The	final	line
—$('tr:nth-child(odd)').addClass('zebra')

—can	be	interpreted	as:	From	all	table	rows	(tr),	for
every	odd	row,	apply	CSS	style	zebra.	The	nth-child
selector	is	a	custom	selector	provided	by	jQuery.	The
final	output	looks	something	similar	to	the	following
(Though	it	shows	several	jQuery	selector	types,	it	is	very
clear	that	knowledge	of	jQuery	is	not	a	substitute	for	bad
design	taste.):

Once	you	have	made	a	selection,	there	are	two	broad
categories	of	methods	that	you	can	call	on	the	selected
element.	These	methods	are	getters	and	setters.
Getters	retrieve	a	piece	of	information	from	the	selection,
and	setters	alter	the	selection	in	some	way.

Getters	usually	operate	only	on	the	first	element	in	a
selection	while	setters	operate	on	all	the	elements	in	a
selection.	Setters	use	implicit	iteration	to	automatically
iterate	over	all	the	elements	in	the	selection.

For	example,	we	want	to	apply	a	CSS	class	to	all	list
items	on	the	page.	When	we	call	the	addClass	method
on	the	selector,	it	is	automatically	applied	to	all	elements
of	this	particular	selection.	This	is	implicit	iteration	in
action:

$('li').addClass(highlighted');

However,	sometimes	you	just	don't	want	to	go	through
all	the	elements	via	implicit	iteration.	You	may	want	to

selectively	modify	only	a	few	of	the	elements.	You	can
explicitly	iterate	over	the	elements	using	the	.each()
method.	In	the	following	code,	we	are	processing
elements	selectively	and	using	the	index	property	of	the
element:

$('li').each(function(index,	element)

{

		if(index	%	2	==	0)

				$(elem).prepend(''	+	STATUS	+

'');

});

Chaining
Chaining	jQuery	methods	allows	you	to	call	a	series	of
methods	on	a	selection	without	temporarily	storing	the
intermediate	values.	This	is	possible	because	every
setter	method	that	we	call	returns	the	selection	on	which
it	was	called.	This	is	a	very	powerful	feature	and	you	will
see	it	being	used	by	many	professional	libraries.
Consider	the	following	example:

$('#button_submit')

		.click(function()	{

				$(this).addClass('submit_clicked'

);

		})

		.find('#notification')

				.attr('title',	'Message	Sent');x

In	this	snippet,	we	are	chaining	click(),	find(),	and
attr()	methods	on	a	selector.	Here,	the	click()
method	is	executed,	and	once	the	execution	finishes,	the
find()	method	locates	the	element	with	the
notification	ID	and	changes	its	title	attribute	to	a
string.

Traversal	and	manipulation
We	discussed	various	methods	of	element	selection
using	jQuery.	We	will	discuss	several	DOM	traversal	and
manipulation	methods	using	jQuery	in	this	section.
These	tasks	would	be	rather	tedious	to	achieve	using
native	DOM	manipulation.	jQuery	makes	them	intuitive
and	elegant.

Before	we	delve	into	these	methods,	let's	familiarize
ourselves	with	a	bit	of	HTML	terminology	that	we	will	be
using	from	now	on.	Consider	the	following	HTML:

	<-This	is	the	parent	of	both	'li'	and	

ancestor	of	everything	in	

			<-The	first	(li)	is	a	child	of	the	

(ul)

						<-this	is	the	descendent	of	

the	'ul'

						<i>Hello</i>

				

		

		World	<-both	'li'	are	siblings

Using	jQuery	traversal	methods,	we	select	the	first
element	and	traverse	through	the	DOM	in	relation	to	this
element.	As	we	traverse	the	DOM,	we	alter	the	original
selection	and	we	are	either	replacing	the	original
selection	with	the	new	one	or	we	are	modifying	the
original	selection.

For	example,	you	can	filter	an	existing	selection	to
include	only	elements	that	match	a	certain	criterion.
Consider	this	example:

var	list	=	$('li');	//select	all	list

elements

//	filter	items	that	has	a	class

'highlight'	associated

var	highlighted	=	list.filter('.highlight

);

//	filter	items	that	doesn't	have	class

'highlight'	associated

var	not_highlighted	=	list.not(

'.highlight);

jQuery	allows	you	to	add	and	remove	classes	to
elements.	If	you	want	to	toggle	class	values	for
elements,	you	can	use	the	toggleClass()	method:

$('#usename').addClass('hidden');

$('#usename').removeClass('hidden');

$('#usename').toggleClass('hidden');

Most	often,	you	may	want	to	alter	the	value	of	elements.
You	can	use	the	val()	method	to	alter	the	form	of
element	values.	For	example,	the	following	line	alters	the
value	of	all	the	text	type	inputs	in	the	form:

$('input[type="text"]').val('Enter

usename:');

To	modify	element	attributes,	you	can	use	the	attr()
method	as	follows:

$('a').attr('title',	'Click');

$('a').attr('title',	'Click');

jQuery	has	an	incredible	depth	of	functionality	when	it
comes	to	DOM	manipulation—the	scope	of	this	book
restricts	a	detailed	discussion	of	all	the	possibilities.

Working	with	browser
events
When	are	you	developing	for	browsers,	you	will	have	to
deal	with	user	interactions	and	events	associated	to
them,	for	example,	text	typed	in	the	textbox,	scrolling	of
the	page,	mouse	button	press,	and	others.	When	the
user	does	something	on	the	page,	an	event	takes	place.
Some	events	are	not	triggered	by	user	interaction,	for
example,	load	event	does	not	require	a	user	input.

When	you	are	dealing	with	mouse	or	keyboard	events	in
the	browser,	you	can't	predict	when	and	in	which	order
these	events	will	occur.	You	will	have	to	constantly	look
for	a	key	press	or	mouse	move	to	happen.	It's	like
running	an	endless	background	loop	listening	to	some
key	or	mouse	event	to	happen.	In	traditional
programming,	this	was	known	as	polling.	There	were
many	variations	of	these	where	the	waiting	thread	used
to	be	optimized	using	queues;	however,	polling	is	still	not
a	great	idea	in	general.

Browsers	provide	a	much	better	alternative	to	polling.
Browsers	provide	you	with	programmatic	means	to	react
when	an	event	occurs.	These	hooks	are	generally	called
listeners.	You	can	register	a	listener	that	reacts	to	a
particular	event	and	executes	an	associated	callback
function	when	the	event	is	triggered.	Consider	this

example:

<script>

		addEventListener("click",	function()	{

				...

		});

</script>

The	addEventListener	function	registers	its	second
argument	as	a	callback	function.	This	callback	is
executed	when	the	event	specified	in	the	first	argument
is	triggered.

What	we	saw	just	now	was	a	generic	listener	for	the
click	event.	Similarly,	every	DOM	element	has	its	own
addEventListener	method,	which	allows	you	to	listen
specifically	on	this	element:

<button>Submit</button>

<p>No	handler	here.</p>

<script>

		var	button	=

document.getElementById("#Bigbutton");

		button.addEventListener("click",

function()	{

				console.log("Button	clicked.");

		});

</script>

In	this	example,	we	are	using	the	reference	to	a	specific
element—a	button	with	a	Bigbutton	ID—by	calling
getElementById().	On	the	reference	of	the	button
element,	we	are	calling	addEventListener()	to
assign	a	handler	function	for	the	click	event.	This	is

perfectly	legitimate	code	that	works	fine	in	modern
browsers	such	as	Mozilla	Firefox	or	Google	Chrome.	On
Internet	Explorer	prior	to	IE9,	however,	this	is	not	a	valid
code.	This	is	because	Microsoft	implements	its	own
custom	attachEvent()	method	as	opposed	to	the
W3C	standard	addEventListener()	prior	to	Internet
Explorer	9.	This	is	very	unfortunate	because	you	will
have	to	write	very	bad	hacks	to	handle	browser-specific
quirks.

Propagation
At	this	point,	we	should	ask	an	important	question—if	an
element	and	one	of	its	ancestors	have	a	handler	on	the
same	event,	which	handler	will	be	fired	first?	Consider
the	following	figure:

For	example,	we	have	Element2	as	a	child	of	Element1
and	both	have	the	onClick	handler.	When	a	user	clicks
on	Element2,	onClick	on	both	Element2	and	Element1
is	triggered	but	the	question	is	which	one	is	triggered
first.	What	should	the	event	order	be?	Well,	the	answer,
unfortunately,	is	that	it	depends	entirely	on	the	browser.
When	browsers	first	arrived,	two	opinions	emerged,
naturally,	from	Netscape	and	Microsoft.

Netscape	decided	that	the	first	event	triggered	should	be
Element1's	onClick.	This	event	ordering	is	known	as
event	capturing.

Microsoft	decided	that	the	first	event	triggered	should	be
Element2's	onClick.	This	event	ordering	is	known	as

event	bubbling.

These	are	two	completely	opposite	views	and
implementations	of	how	browsers	handled	events.	To
end	this	madness,	World	Wide	Web	Consortium
(W3C)	decided	a	wise	middle	path.	In	this	model,	an
event	is	first	captured	until	it	reaches	the	target	element
and	then	bubbles	up	again.	In	this	standard	behavior,
you	can	choose	in	which	phase	you	want	to	register	your
event	handler—either	in	the	capturing	or	bubbling	phase.
If	the	last	argument	is	true	in	addEventListener(),
the	event	handler	is	set	for	the	capturing	phase,	if	it	is
false,	the	event	handler	is	set	for	the	bubbling	phase.

There	are	times	when	you	don't	want	the	event	to	be
raised	by	the	parents	if	it	was	already	raised	by	the	child.
You	can	call	the	stopPropagation()	method	on	the
event	object	to	prevent	handlers	further	up	from
receiving	the	event.	Several	events	have	a	default	action
associated	with	them.	For	example,	if	you	click	on	a	URL
link,	you	will	be	taken	to	the	link's	target.	The	JavaScript
event	handlers	are	called	before	the	default	behavior	is
performed.	You	can	call	the	preventDefault()
method	on	the	event	object	to	stop	the	default	behavior
from	being	triggered.

These	are	event	basics	when	you	are	using	plain
JavaScript	on	a	browser.	There	is	a	problem	here.
Browsers	are	notorious	when	it	comes	to	defining	event-
handling	behavior.	We	will	look	at	jQuery's	event
handling.	To	make	things	easier	to	manage,	jQuery

always	registers	event	handlers	for	the	bubbling	phase
of	the	model.	This	means	that	the	most	specific	elements
will	get	the	first	opportunity	to	respond	to	any	event.

jQuery	event	handling	and
propagation
jQuery	event	handling	takes	care	of	many	of	these
browser	quirks.	You	can	focus	on	writing	code	that	runs
on	most	supported	browsers.	jQuery's	support	for
browser	events	is	simple	and	intuitive.	For	example,	this
code	listens	for	a	user	to	click	on	any	button	element	on
the	page:

$('button').click(function(event)	{

		console.log('Mouse	button	clicked');

});

Just	like	the	click()	method,	there	are	several	other	helper
methods	to	cover	almost	all	kinds	of	browser	event.	The
following	helpers	exist:

blur

change

click

dblclick

error

focus

keydown

keypress

keyup

load

mousedown

mousemove

mouseout

mouseover

mouseup

resize

scroll

select

submit

unload

Alternatively,	you	can	use	the	.on()	method.	There	are	a	few
advantages	of	using	the	on()	method	as	it	gives	you	a	lot
more	flexibility.	The	on()	method	allows	you	to	bind	a
handler	to	multiple	events.	Using	the	on()	method,	you	can
work	on	custom	events	as	well.

Event	name	is	passed	as	the	first	parameter	to	the	on()
method	just	like	the	other	methods	that	we	saw:

$('button').on('click',	function(event)

{

		console.log('	Mouse	button	clicked');

});

Once	you've	registered	an	event	handler	to	an	element,	you
can	trigger	this	event	as	follows:

$('button').trigger('click');

This	event	can	also	be	triggered	as	follows:

$('button').click();

You	can	unbind	an	event	using	jQuery's	.off()	method.	This	will	remove	any
event	handlers	that	were	bound	to	the	specified	event:

$('button').off('click');

You	can	add	more	than	one	handler	to	an	element:

$("#element")

.on("click",	firstHandler)

.on("click",	secondHandler);

When	the	event	is	fired,	both	the	handlers	will	be	invoked.	If	you	want	to
remove	only	the	first	handler,	you	can	use	the	off()	method	with	the	second
parameter	indicating	the	handler	that	you	want	to	remove:

$("#element).off("click",firstHandler);

This	is	possible	if	you	have	the	reference	to	the	handler.	If	you	are	using
anonymous	functions	as	handlers,	you	can't	get	reference	to	them.	In	this	case,
you	can	use	namespaced	events.	Consider	the	following	example:

$("#element").on("click.firstclick",function()	{

		console.log("first	click");

});

Now	that	you	have	a	namespaced	event	handler	registered	with	the	element,	you
can	remove	it	as	follows:

$("#element).off("click.firstclick");

A	major	advantage	of	using	.on()	is	that	you	can	bind	to	multiple	events	at
once.	The	.on()	method	allows	you	to	pass	multiple	events	in	a	space-
separated	string.	Consider	the	following	example:

$('#inputBoxUserName').on('focus	blur',	function()	{

		console.log(Handling	Focus	or	blur	event');

});

You	can	add	multiple	event	handlers	for	multiple	events	as	follows:

$("#heading").on({

		mouseenter:	function()	{

				console.log("mouse	entered	on	heading");

		},

		mouseleave:	function()	{

				console.log("mouse	left	heading");

		},

		click:	function()	{

				console.log("clicked	on	heading");

		}

});

As	of	jQuery	1.7,	all	events	are	bound	via	the	on()	method,	even	if	you	call
helper	methods	such	as	click().	Internally,	jQuery	maps	these	calls	to	the
on()	method.	Due	to	this,	it's	generally	recommended	to	use	the	on()	method
for	consistency	and	faster	execution.

Event	delegation
Event	delegation	allows	us	to	attach	a	single	event
listener	to	a	parent	element.	This	event	will	fire	for	all	the
descendants	matching	a	selector	even	if	these
descendants	will	be	created	in	the	future	(after	the
listener	was	bound	to	the	element).

We	discussed	event	bubbling	earlier.	Event	delegation	in
jQuery	works	primarily	due	to	event	bubbling.	Whenever
an	event	occurs	on	a	page,	the	event	bubbles	up	from
the	element	that	it	originated	from,	up	to	its	parent,	then
up	to	the	parent's	parent,	and	so	on,	until	it	reaches	the
root	element	(window).	Consider	the	following	example:

<html>

		<body>

				<div	id="container">

						<ul	id="list">

								Google

								Myntra

								Bing

						

				</div>

		</body>

</html>

Now	let's	say	that	we	want	to	perform	some	common
action	on	any	of	the	URL	clicks.	We	can	add	an	event

handler	to	all	the	a	elements	in	the	list	as	follows:

$("#list	a").on("click",	function(

event)	{

		console.log($(this).text());

});

This	works	perfectly	fine,	but	this	code	has	a	minor	bug.
What	will	happen	if	there	is	an	additional	URL	added	to
the	list	as	a	result	of	some	dynamic	action?	Let's	say	that
we	have	an	Add	button	that	adds	new	URLs	to	this	list.
So,	if	the	new	list	item	is	added	with	a	new	URL,	the
earlier	event	handler	will	not	be	attached	to	it.	For
example,	if	the	following	link	is	added	to	the	list
dynamically,	clicking	on	it	will	not	trigger	the	handler	that
we	just	added:

Yahoo

This	is	because	such	events	are	registered	only	when
the	on()	method	is	called.	In	this	case,	as	this	new
element	did	not	exist	when	.on()	was	called,	it	does	not
get	the	event	handler.	With	our	understanding	of	event
bubbling,	we	can	visualize	how	the	event	will	travel	up
the	DOM	tree.	When	any	of	the	URLs	are	clicked	on,	the
travel	will	be	as	follows:

a(click)->li->ul#list->div#container-

>body->html->root

We	can	create	a	delegated	event	as	follows:

$("#list").on("click",	"a",	function(

event)	{

		console.log($(this).text());

});

We	moved	a	from	the	original	selector	to	the	second
parameter	in	the	on()	method.	This	second	parameter
of	the	on()	method	tells	the	handler	to	listen	to	this
specific	event	and	check	whether	the	triggering	element
was	the	second	parameter	(the	a	in	our	case).	As	the
second	parameter	matches,	the	handler	function	is
executed.	With	this	delegate	event,	we	are	attaching	a
single	handler	to	the	entire	ul#list.	This	handler	will
listen	to	the	click	event	triggered	by	any	descendent	of
the	ul	element.

The	event	object
So	far,	we	attached	anonymous	functions	as	event
handlers.	To	make	our	event	handlers	more	generic	and
useful,	we	can	create	named	functions	and	assign	them
to	the	events.	Consider	the	following	lines:

function	handlesClicks(event){

		//Handle	click	event

}

$("#bigButton").on('click',

handlesClicks);

Here,	we	are	passing	a	named	function	instead	of	an
anonymous	function	to	the	on()	method.	Let's	shift	our
focus	now	to	the	event	parameter	that	we	pass	to	the
function.	jQuery	passes	an	event	object	with	all	the	event
callbacks.	An	event	object	contains	very	useful
information	about	the	event	being	triggered.	In	cases
where	we	don't	want	the	default	behavior	of	the	element
to	kick	in,	we	can	use	the	preventDefault()	method
of	the	event	object.	For	example,	we	want	to	fire	an
AJAX	request	instead	of	a	complete	form	submission	or
we	want	to	prevent	the	default	location	to	be	opened
when	a	URL	anchor	is	clicked	on.	In	these	cases,	you
may	also	want	to	prevent	the	event	from	bubbling	up	the
DOM.	You	can	stop	the	event	propagation	by	calling	the
stopPropagation()	method	of	the	event	object.
Consider	this	example:

$("#loginform").on("submit",	function(

event)	{

		//	Prevent	the	form's	default

submission.

		event.preventDefault();

		//	Prevent	event	from	bubbling	up	DOM

tree,	also	stops	any	delegation

		event.stopPropagation();

});

Apart	from	the	event	object,	you	also	get	a	reference	to
the	DOM	object	on	which	the	event	was	fired.	This
element	can	be	referred	by	$(this).	Consider	the
following	example:

$("a").click(function(event)	{

		var	anchor	=	$(this);

		if	(anchor.attr("href").match(

"google"))	{

				event.preventDefault();

		}

});

Summary
This	chapter	was	all	about	understanding	JavaScript	in
its	most	important	role—that	of	browser	language.
JavaScript	plays	the	role	of	introducing	dynamism	on	the
web	by	facilitating	DOM	manipulation	and	event
management	on	the	browser.	We	discussed	both	of
these	concepts	with	and	without	jQuery.	As	the	demands
of	the	modern	web	are	increasing,	using	libraries	such
as	jQuery	is	essential.	These	libraries	significantly
improve	the	code	quality	and	efficiency	and,	at	the	same
time,	give	you	the	freedom	to	focus	on	important	things.

We	will	focus	on	another	incarnation	of	JavaScript—
mainly	on	the	server	side.	Node.js	has	become	a	popular
JavaScript	framework	to	write	scalable	server-side
applications.	We	will	take	a	detailed	look	at	how	we	can
best	utilize	Node.js	for	server	applications.

Chapter	8.	Server-Side
JavaScript
We	have	been	focusing	so	far	on	the	versatility	of
JavaScript	as	the	language	of	the	browser.	It	speaks
volumes	about	the	brilliance	of	the	language	given	that
JavaScript	has	gained	significant	popularity	as	a
language	to	program	scalable	server	systems.	In	this
chapter,	we	will	look	at	Node.js.	Node.js	is	one	of	the
most	popular	JavaScript	frameworks	used	for	server-
side	programming.	Node.js	is	also	one	of	the	most
watched	project	on	GitHub	and	has	superb	community
support.

Node	uses	V8,	the	virtual	machine	that	powers	Google
Chrome,	for	server-side	programming.	V8	gives	a	huge
performance	benefit	to	Node	because	it	directly	compiles
the	JavaScript	into	native	machine	code	over	executing
bytecode	or	using	an	interpreter	as	a	middleware.

The	versatility	of	V8	and	JavaScript	is	a	wonderful
combination—the	performance,	reach,	and	overall
popularity	of	JavaScript	made	Node	an	overnight
success.	In	this	chapter,	we	will	cover	the	following
topics:

An	asynchronous	evented-model	in	a	browser	and	Node.js

Callbacks

Timers

EventEmitters

Modules	and	npm

An	asynchronous	evented-
model	in	a	browser
Before	we	try	to	understand	Node,	let's	try	to	understand
JavaScript	in	a	browser.

Node	relies	on	event-driven	and	asynchronous	platforms
for	server-side	JavaScript.	This	is	very	similar	to	how
browsers	handle	JavaScript.	Both	the	browser	and	Node
are	event-driven	and	non-blocking	when	they	use	I/O.

To	dive	deeper	into	the	event-driven	and	asynchronous
nature	of	Node.js,	let's	first	do	a	comparison	of	the
various	kinds	of	operations	and	costs	associated	with
them:

	
L1	cache	read
	
	

	
0.5	nanoseconds
	
	

	
L2	cache	read
	
	

	
7	nanoseconds
	
	

	
RAM
	
	

	
100	nanoseconds
	
	

	
Read	4	KB	randomly	from	SSD
	

	
150,000	ns
	

	
	

	
	

	
Read	1	MB	sequentially	from	SSD
	
	

	
1,000,000	ns
	
	

	
Read	1	MB	sequentially	from	disk
	
	

	
20,000,000	ns
	
	

These	numbers	are	from
https://gist.github.com/jboner/2841832	and	show	how
costly	Input/Output	(I/O)	can	get.	The	longest
operations	taken	by	a	computer	program	are	the	I/O
operations	and	these	operations	slow	down	the	overall
program	execution	if	the	program	keeps	waiting	on	these
I/O	operations	to	finish.	Let's	see	an	example	of	such	an
operation:

console.log("1");

var	log	=

fileSystemReader.read("./verybigfile.txt")

;

console.log("2");

When	you	call	fileSystemReader.read(),	you	are
reading	a	file	from	the	filesystem.	As	we	just	saw,	I/O	is
the	bottleneck	here	and	can	take	quite	a	while	before	the
read	operation	is	completed.	Depending	on	the	kind	of
hardware,	filesystem,	OS,	and	so	on,	this	operation	will
block	the	overall	program	execution	quite	a	bit.	The
preceding	code	does	some	I/O	that	will	be	a	blocking
operation—the	process	will	be	blocked	till	I/O	finishes
and	the	data	comes	back.	This	is	the	traditional	I/O

https://gist.github.com/jboner/2841832

model	and	most	of	us	are	familiar	with	this.	However,
this	is	costly	and	can	cause	terribly	latency.	Every
process	has	associated	memory	and	state—both	these
will	be	blocked	till	I/O	is	complete.

If	a	program	blocks	I/O,	the	Node	server	will	refuse	new
requests.	There	are	several	ways	of	solving	this
problem.	The	most	popular	traditional	approach	is	to	use
several	threads	to	process	requests—this	technique	is
known	as	multithreading.	If	are	you	familiar	with
languages	such	as	Java,	chances	are	that	you	have
written	multithreaded	code.	Several	languages	support
threads	in	various	forms—a	thread	essentially	holds	its
own	memory	and	state.	Writing	multithreaded
applications	on	a	large	scale	is	tough.	When	multiple
threads	are	accessing	a	common	shared	memory	or
values,	maintaining	the	correct	state	across	these
threads	is	a	very	difficult	task.	Threads	are	also	costly
when	it	comes	to	memory	and	CPU	utilization.	Threads
that	are	used	on	synchronized	resources	may	eventually
get	blocked.

The	browser	handles	this	differently.	I/O	in	the	browser
happens	outside	the	main	execution	thread	and	an	event
is	emitted	when	I/O	finishes.	This	event	is	handled	by	the
callback	function	associated	with	that	event.	This	type	of
I/O	is	non-blocking	and	asynchronous.	As	I/O	is	not
blocking	the	main	execution	thread,	the	browser	can
continue	to	process	other	events	as	they	come	without
waiting	on	any	I/O.	This	is	a	powerful	idea.
Asynchronous	I/O	allows	browsers	to	respond	to	several

events	and	allows	a	high	level	of	interactivity.

Node	uses	a	similar	idea	for	asynchronous	processing.
Node's	event	loop	runs	as	a	single	thread.	This	means
that	the	application	that	you	write	is	essentially	single-
threaded.	This	does	not	mean	that	Node	itself	is	single-
threaded.	Node	uses	libuv	and	is	multithreaded—
fortunately,	these	details	are	hidden	within	Node	and	you
don't	need	to	know	them	while	developing	your
application.

Every	call	that	involves	an	I/O	call	requires	you	to
register	a	callback.	Registering	a	callback	is	also
asynchronous	and	returns	immediately.	As	soon	as	an
I/O	operation	is	completed,	its	callback	is	pushed	on	the
event	loop.	It	is	executed	as	soon	as	all	the	other
callbacks	that	were	pushed	on	the	event	loop	before	are
executed.	All	operations	are	essentially	thread-safe,
primarily	because	there	is	no	parallel	execution	path	in
the	event	loop	that	will	require	synchronization.

Essentially,	there	is	only	one	thread	running	your	code
and	there	is	no	parallel	execution;	however,	everything
else	except	for	your	code	runs	in	parallel.

Node.js	relies	on	libev
(http://software.schmorp.de/pkg/libev.html)	to	provide	the
event	loop,	which	is	supplemented	by	libeio
(http://software.schmorp.de/pkg/libeio.html)	that	uses
pooled	threads	to	provide	asynchronous	I/O.	To	learn
even	more,	take	a	look	at	the	libev	documentation	at

http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libeio.html

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod.

Consider	the	following	example	of	asynchronous	code
execution	in	Node.js:

var	fs	=	require('fs');

console.log('1');

fs.readFile('./response.json',	function

(error,	data)	{

		if(!error){

				console.log(data);

		});

console.log('2');

In	this	program,	we	read	the	response.json	file	from
the	disk.	When	the	disk	I/O	is	finished,	the	callback	is
executed	with	parameters	containing	the	argument's
error,	if	any	error	occurred,	and	data,	which	is	the	file
data.	What	you	will	see	in	the	console	is	the	output	of
console.log('1')	and	console.log('2')	one
immediately	after	another:

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod

Node.js	does	not	need	any	additional	server	component
as	it	creates	its	own	server	process.	A	Node	application
is	essentially	a	server	running	on	a	designated	port.	In
Node,	the	server	and	application	are	the	same.

Here	is	an	example	of	a	Node.js	server	responding	with
the	Hello	Node	string	when	the
http://localhost:3000/	URL	is	run	from	a
browser:

var	http	=	require('http');

var	server	=	http.createServer();

server.on('request',	function	(req,	res)	{

		res.writeHead(200,	{'Content-Type':

'text/plain'});

		res.end('Hello	Node\n');

});

server.listen(3000);

In	this	example,	we	are	using	an	http	module.	If	you
recall	our	earlier	discussions	on	the	JavaScript	module,
you	will	realize	that	this	is	the	CommonJS	module
implementation.	Node	has	several	modules	compiled
into	the	binary.	The	core	modules	are	defined	within
Node's	source.	They	can	be	located	in	the	lib/	folder.

They	are	loaded	first	if	their	identifier	is	passed	to
require().	For	instance,	require('http')	will
always	return	the	built-in	HTTP	module,	even	if	there	is	a
file	by	this	name.

After	loading	the	module	to	handle	HTTP	requests,	we
create	a	server	object	and	use	a	listener	for	a
request	event	using	the	server.on()	function.	The
callback	is	called	whenever	there	is	a	request	to	this
server	on	port	3000.	The	callback	receives	request
and	response	parameters.	We	are	also	setting	the
Content-Type	header	and	HTTP	response	code
before	we	send	the	response	back.	You	can	copy	the
preceding	code,	save	it	in	a	plain	text	file,	and	name	it
app.js.	You	can	run	the	server	from	the	command	line
using	Node.js	as	follows:

$	»	node	app.js

Once	the	server	is	started,	you	can	open	the
http://localhost:3000	URL	in	a	browser	and	you
will	be	greeted	with	unexciting	text:

If	you	want	to	inspect	what's	happening	internally,	you
can	issue	a	curl	command	as	follows:

~	»	curl	-v	http://localhost:3000	

	Rebuilt	URL	to:	http://localhost:3000/

			Trying	::1...

	Connected	to	localhost	(::1)	port	3000	

(#0)

>	GET		HTTP1.1

>	Host:	localhost:3000

>	User-Agent:	curl/7.43.0

>	Accept:	/*

>

<	HTTP/1.1	200	OK

<	Content-Type:	text/plain

<	Date:	Thu,	12	Nov	2015	05:31:44	GMT

<	Connection:	keep-alive

<	Transfer-Encoding:	chunked

<

Hello	Node

*	Connection	#0	to	host	localhost	left	

intact

Curl	shows	a	nice	request	(>)	and	response	(<)	dialog
including	the	request	and	response	headers.

Callbacks
Callbacks	in	JavaScript	usually	take	some	time	getting
used	to.	If	you	are	coming	from	some	other	non-
asynchronous	programming	background,	you	will	need
to	understand	carefully	how	callbacks	work;	you	may	feel
like	you're	learning	programming	for	the	first	time.	As
everything	is	asynchronous	in	Node,	you	will	be	using
callbacks	for	everything	without	trying	to	carefully
structure	them.	The	most	important	part	of	the	Node.js
project	is	sometimes	the	code	organization	and	module
management.

Callbacks	are	functions	that	are	executed
asynchronously	at	a	later	time.	Instead	of	the	code
reading	top	to	bottom	procedurally,	asynchronous
programs	may	execute	different	functions	at	different
times	based	on	the	order	and	speed	that	earlier
functions	such	as	HTTP	requests	or	filesystem	reads
happen.

Whether	a	function	execution	is	sequential	or
asynchronous	depends	on	the	context	in	which	it	is
executed:

var	i=0;

function	add(num){

		console.log(i);

		i=i+num;

}

add(100);

add(100);

console.log(i);

If	you	run	this	program	using	Node,	you	will	see	the
following	output	(assuming	that	your	file	is	named
app.js):

~/Chapter9	»	node	app.js

0

100

This	is	what	we	are	all	used	to.	This	is	traditional
synchronous	code	execution	where	each	line	is
executed	in	a	sequence.	The	code	here	defines	a
function	and	then	on	the	next	line	calls	this	function,
without	waiting	for	anything.	This	is	sequential	control
flow.

Things	will	be	different	if	we	introduced	I/O	to	this
sequence.	If	we	try	to	read	something	from	the	file	or	call
a	remote	endpoint,	Node	will	execute	these	operations	in
an	asynchronous	fashion.	For	the	next	example,	we	are
going	to	use	a	Node.js	module	called	request.	We	will
use	this	module	to	make	HTTP	calls.	You	can	install	the
module	as	follows:

npm	install	request

We	will	discuss	the	use	of	npm	later	in	this	chapter.
Consider	the	following	example:

var	request	=	require('request');

var	status	=	undefined;

request('http://google.com',	function

request('http://google.com',	function

(error,	response,	body)	{

		if	(!error	&&	response.statusCode	==

200)	{

				status_code	=	response.statusCode;

		}

});

console.log(status);

When	you	execute	this	code,	you	will	see	that	the	value
of	the	status	variable	is	still	undefined.	In	this
example,	we	are	making	an	HTTP	call—this	is	an	I/O
operation.	When	we	do	an	I/O	operation,	the	execution
becomes	asynchronous.	In	the	earlier	example,	we	are
doing	everything	within	the	memory	and	there	was	no
I/O	involved,	hence,	the	execution	was	synchronous.
When	we	run	this	program,	all	of	the	functions	are
immediately	defined,	but	they	don't	all	execute
immediately.	The	request()	function	is	called	and	the
execution	continues	to	the	next	line.	If	there	is	nothing	to
execute,	Node	will	either	wait	for	I/O	to	finish	or	it	will
exit.	When	the	request()	function	finishes	its	work,	it
will	execute	the	callback	function	(an	anonymous
function	as	the	second	parameter	to	the	request()
function).	The	reason	that	we	got	undefined	in	the
preceding	example	is	that	nowhere	in	our	code	exists	the
logic	that	tells	the	console.log()	statement	to	wait
until	the	request()	function	has	finished	fetching	the
response	from	the	HTTP	call.

Callbacks	are	functions	that	get	executed	at	some	later
time.	This	changes	things	in	the	way	you	organize	your
code.	The	idea	around	reorganizing	the	code	is	as

follows:

Wrapping	the	asynchronous	code	in	a	function

Passing	a	callback	function	to	the	wrapper	function

We	will	organize	our	previous	example	with	these	two
ideas	in	mind.	Consider	this	modified	example:

var	request	=	require('request');

var	status	=	undefined;

function	getSiteStatus(callback){

		request('http://google.com',	function

(error,	response,	body)	{

				if	(!error	&&	response.statusCode	==

200)	{

						status_code	=	response.statusCode;

				}

				callback(status_code);

		});

}

function	showStatusCode(status){

		console.log(status);

}

getSiteStatus(showStatusCode);

When	you	run	this,	you	will	get	the	following	(correct)
output:

$node	app.js

200

What	we	changed	was	to	wrap	the	asynchronous	code
in	a	getSiteStatus()	function,	pass	a	function
named	callback()	as	a	parameter	to	this	function,
and	execute	this	function	on	the	last	line	of
getSiteStatus().	The	showStatusCode()	callback

function	simply	wraps	around	console.log()	that	we
called	earlier.	The	difference,	however,	is	in	the	way	the
asynchronous	execution	works.	The	most	important	idea
to	understand	while	learning	how	to	program	with
callbacks	is	that	functions	are	first-class	objects	that	can
be	stored	in	variables	and	passed	around	with	different
names.	Giving	simple	and	descriptive	names	to	your
variables	is	important	in	making	your	code	readable	by
others.	Now	that	the	callback	function	is	called	once	the
HTTP	call	is	completed,	the	value	of	the	status_code
variable	will	have	a	correct	value.	There	are	genuine
circumstances	where	you	want	an	asynchronous	task
executed	only	after	another	asynchronous	task	is
completed.	Consider	this	scenario:

http.createServer(function	(req,	res)	{

		getURL(url,	function	(err,	res)	{

				getURLContent(res.data,

function(err,res)	{

						...

				});

		});

});

As	you	can	see,	we	are	nesting	one	asynchronous
function	in	another.	This	kind	of	nesting	can	result	in
code	that	is	difficult	to	read	and	manage.	This	style	of
callback	is	sometimes	known	as	callback	hell.	To	avoid
such	a	scenario,	if	you	have	code	that	has	to	wait	for
some	other	asynchronous	code	to	finish,	then	you
express	that	dependency	by	putting	your	code	in
functions	that	get	passed	around	as	callbacks.	Another

important	idea	is	to	name	your	functions	instead	of
relying	on	anonymous	functions	as	callbacks.	We	can
restructure	the	preceding	example	into	a	more	readable
one	as	follows:

var	urlContentProcessor	=	function(data){

		...

}

var	urlResponseProcessor	=	function(data){

		getURLContent(data,urlContentProcessor);

}

var	createServer	=	function(req,res){

		getURL(url,urlResponseProcessor);

};

http.createServer(createServer);

This	fragment	uses	two	important	concepts.	First,	we	are
using	named	functions	and	using	them	as	callbacks.
Second,	we	are	not	nesting	these	asynchronous
functions.	If	you	are	accessing	closure	variables	within
the	inner	functions,	the	preceding	would	be	a	bit	different
implementation.	In	such	cases,	using	inline	anonymous
functions	is	even	more	preferable.

Callbacks	are	most	frequently	used	in	Node.	They	are
usually	preferred	to	define	logic	for	one-off	responses.
When	you	need	to	respond	to	repeating	events,	Node
provides	another	mechanism	for	this.	Before	going
further,	we	need	to	understand	the	function	of	timers	and
events	in	Node.

Timers
Timers	are	used	to	schedule	the	execution	of	a	particular
callback	after	a	specific	delay.	There	are	two	primary
methods	to	set	up	such	delayed	execution:	setTimeout
and	setInterval.	The	setTimeout()	function	is
used	to	schedule	the	execution	of	a	specific	callback
after	a	delay,	while	setInterval	is	used	to	schedule
the	repeated	execution	of	a	callback.	The	setTimeout
function	is	useful	to	perform	tasks	that	need	to	be
scheduled	such	as	housekeeping.	Consider	the	following
example:

setTimeout(function()	{

		console.log("This	is	just	one	time

delay");

},1000);

var	count=0;

var	t	=	setInterval(function()	{

		count++;

		console.log(count);

		if	(count>	5){

				clearInterval(t);

		}

},	2000);

First,	we	are	using	setTimeout()	to	execute	a	callback
(the	anonymous	function)	after	a	delay	of	1,000	ms.	This
is	just	a	one-time	schedule	for	this	callback.	We
scheduled	the	repeated	execution	of	the	callback	using
setInterval().	Note	that	we	are	assigning	the	value

returned	by	setInterval()	in	a	variable	t—we	can
use	this	reference	in	clearInterval()	to	clear	this
schedule.

EventEmitters
We	discussed	earlier	that	callbacks	are	great	for	the
execution	of	one-off	logic.	EventEmitters	are	useful	in
responding	to	repeating	events.	EventEmitters	fire
events	and	include	the	ability	to	handle	these	events
when	triggered.	Several	important	Node	APIs	are	built
on	EventEmitters.

Events	raised	by	EventEmitters	are	handled	through
listeners.	A	listener	is	a	callback	function	associated	with
an	event—when	the	event	fires,	its	associated	listener	is
triggered	as	well.	The	event.EventEmitter	is	a	class
that	is	used	to	provide	a	consistent	interface	to	emit
(trigger)	and	bind	callbacks	to	events.

As	a	common	style	convention,	event	names	are
represented	by	a	camel-cased	string;	however,	any	valid
string	can	be	used	as	an	event	name.

Use	require('events')	to	access	the
EventEmitter	class:

var	EventEmitter	=	require('events');

When	an	EventEmitter	instance	encounters	an	error,	it
emits	an	error	event.	Error	events	are	treated	as	a
special	case	in	Node.js.	If	you	don't	handle	these,	the
program	exits	with	an	exception	stack.

All	EventEmitters	emit	the	newListener	event	when
new	listeners	are	added	and	removeListener	when	a
listener	is	removed.

To	understand	the	usage	of	EventEmitters,	we	will	build
a	simplistic	telnet	server	where	different	clients	can	log	in
and	enter	certain	commands.	Based	on	these
commands,	our	server	will	respond	accordingly:

var	net	=	require('net');

var	events	=	require	('events');

var	emitter	=	new	events.EventEmitter();

emitter.on('join',	function(id,caller){

		console.log(id+"	-	joined");

});

emitter.on('quit',	function(id,caller){

		console.log(id+"	-	left");

});

var	server	=	

net.createServer(function(caller)	{

		var	processid	=	caller.remoteAddress	+	

':'	+	caller.remotePort;

		emitter.emit('join',id,caller);

		caller.on('end',	function()	{

				console.log("disconnected");

				emitter.emit('quit',id,caller);

		});

});

_server.listen(8124);

In	this	code	snippet,	we	are	using	the	net	module	from
Node.	The	idea	here	is	to	create	a	server	and	let	the
client	connect	to	it	via	a	standard	telnet	command.
When	a	client	connects,	the	server	displays	the	client
address	and	port,	and	when	the	client	quits,	the	server

logs	this	too.

When	a	client	connects,	we	are	emitting	a	join	event,
and	when	the	client	disconnects,	we	are	emitting	a	quit
event.	We	have	listeners	for	both	these	events	and	they
log	appropriate	messages	on	the	server.

You	start	this	program	and	connect	to	our	server	using
telnet	as	follows:

telnet	127.0.0.1	8124

On	the	server	console,	you	will	see	the	server	logging
which	client	joined	the	server:

»	node	app.js

::ffff:127.0.0.1:51000	-	joined

::ffff:127.0.0.1:51001	–	joined

If	any	client	quits	the	session,	an	appropriate	message
will	appear	as	well.

Modules
When	you	are	writing	a	lot	of	code,	you	soon	reach	a
point	where	you	have	to	start	thinking	about	how	you
want	to	organize	the	code.	Node	modules	are
CommonJS	modules	that	we	discussed	earlier	when	we
discussed	module	patterns.	Node	modules	can	be
published	to	the	Node	Package	Manager	(npm)
repository.	The	npm	repository	is	an	online	collection	of
Node	modules.

Creating	modules
Node	modules	can	be	either	single	files	or	directories
containing	one	or	more	files.	It's	usually	a	good	idea	to
create	a	separate	module	directory.	The	file	in	the
module	directory	that	will	be	evaluated	is	normally
named	index.js.	A	module	directory	can	look	as
follows:

node_project/src/nav

																---	>index.js

In	your	project	directory,	the	nav	module	directory
contains	the	module	code.	Conventionally,	your	module
code	needs	to	reside	in	the	index.js	file—you	can
change	this	to	another	file	if	you	want.	Consider	this
trivial	module	called	geo.js:

exports.area	=	function	(r)	{

		return	3.14		r		r;

};

exports.circumference	=	function	(r)	{

		return	3.14		3.14		r;

};

You	are	exporting	two	functions	via	exports.	You	can
use	the	module	using	the	require	function.	This
function	takes	the	name	of	the	module	or	system	path	to
the	module's	code.	You	can	use	the	module	that	we
created	as	follows:

var	geo	=	require('./geo.js');

console.log(geo.area(2));

As	we	are	exporting	only	two	functions	to	the	outside
world,	everything	else	remains	private.	If	you	recollect,
we	discussed	the	module	pattern	in	detail—Node	uses
CommonJS	modules.	There	is	an	alternative	syntax	to
create	modules	as	well.	You	can	use
modules.exports	to	export	your	modules.	Indeed,
exports	is	a	helper	created	for	modules.exports.
When	you	use	exports,	it	attaches	the	exported
properties	of	a	module	to	modules.exports.	However,
if	modules.exports	already	has	some	properties
attached	to	it,	properties	attached	by	exports	are
ignored.

The	geo	module	created	earlier	in	this	section	can	be
rewritten	in	order	to	return	a	single	Geo	constructor
function	rather	than	an	object	containing	functions.	We

can	rewrite	the	geo	module	and	its	usage	as	follows:

var	Geo	=	function(PI)	{

		this.PI	=	PI;

}

Geo.prototype.area	=	function	(r)	{

		return	this.PI		r		r;

};

Geo.prototype.circumference	=	function	(r)	

{

		return	this.PI		this.PI		r;

};

module.exports	=	Geo;

Consider	a	config.js	module:

var	db_config	=	{

		server:	"0.0.0.0",

		port:	"3306",

		user:	"mysql",

		password:	"mysql"

};

module.exports	=	db_config;

If	you	want	to	access	db_config	from	outside	this
module,	you	can	use	require()	to	include	the	module
and	refer	the	object	as	follows:

var	config	=	require('./config.js');

console.log(config.user);

There	are	three	ways	to	organize	modules:

Using	a	relative	path,	for	example,	config	=

require('./lib/config.js')

Using	an	absolute	path,	for	example,	config	=

require('nodeprojectlib/config.js')

Using	a	module	search,	for	example,	config	=

require('config')

The	first	two	are	self-explanatory—they	allow	Node	to
look	for	a	module	in	a	particular	location	in	the
filesystem.

When	you	use	the	third	option,	you	are	asking	Node	to
locate	the	module	using	the	standard	look	method.	To
locate	the	module,	Node	starts	at	the	current	directory
and	appends	.node_modules	to	it.	Node	then	attempts
to	load	the	module	from	this	location.	If	the	module	is	not
found,	then	the	search	starts	from	the	parent	directory
until	the	root	of	the	filesystem	is	reached.

For	example,	if	require('config')	is	called	in
projectsnode/,	the	following	locations	will	be
searched	until	a	match	a	found:

projectsnode	node_modulesconfig.js

projectsnode_modules/config.js

node_modulesconfig.js

For	modules	downloaded	from	npm,	using	this	method	is
relatively	simple.	As	we	discussed	earlier,	you	can
organize	your	modules	in	directories	as	long	as	you
provide	a	point	of	entry	for	Node.

The	easiest	way	to	do	this	is	to	create	the
.node_modulessupermodule/	directory,	and	insert
an	index.js	file	in	this	directory.	The	index.js	file

will	be	loaded	by	default.	Alternatively,	you	can	put	a
package.json	file	in	the	mymodulename	folder,
specifying	the	name	and	main	file	of	the	module:

{

		"name":	"supermodule",

		"main":	"./lib/config.js"

}

You	have	to	understand	that	Node	caches	modules	as
objects.	If	you	have	two	(or	more)	files	requiring	a
specific	module,	the	first	require	will	cache	the	module
in	memory	so	that	the	second	require	will	not	have	to
reload	the	module	source	code.	However,	the	second
require	can	alter	the	module	functionality	if	it	wishes
to.	This	is	commonly	called	monkey	patching	and	is
used	to	modify	a	module	behavior	without	really
modifying	or	versioning	the	original	module.

npm
The	npm	is	the	package	manager	used	by	Node	to
distribute	modules.	The	npm	can	be	used	to	install,
update,	and	manage	modules.	Package	managers	are
popular	in	other	languages	such	as	Python.	The	npm
automatically	resolves	and	updates	dependencies	for	a
package	and	hence	makes	your	life	easy.

Installing	packages
There	are	two	ways	to	install	npm	packages:	locally	or
globally.	If	you	want	to	use	the	module's	functionality
only	for	a	specific	Node	project,	you	can	install	it	locally
relative	to	the	project,	which	is	default	behavior	of	npm
install.	Alternatively,	there	are	several	modules	that
you	can	use	as	a	command-line	tool;	in	this	case,	you
can	install	them	globally:

npm	install	request

The	install	directive	with	npm	will	install	a	particular
module—request	in	this	case.	To	confirm	that	npm
install	worked	correctly,	check	to	see	whether	a
node_modules	directory	exists	and	verify	that	it
contains	a	directory	for	the	package(s)	that	you	installed.

As	you	start	adding	modules	to	your	project,	it	becomes
difficult	to	manage	the	version/dependency	of	each

module.	The	best	way	to	manage	locally	installed
packages	is	to	create	a	package.json	file	in	your
project.

A	package.json	file	can	help	you	in	the	following
ways:

Defining	versions	of	each	module	that	you	want	to	install.	There	are
times	when	your	project	depends	on	a	specific	version	of	a	module.	In
this	case,	your	package.json	helps	you	download	and	maintain	the

correct	version	dependency.

Serving	as	a	documentation	of	all	the	modules	that	your	project
needs.

Deploying	and	packaging	your	application	without	worrying	about
managing	dependencies	every	time	you	deploy	the	code.

You	can	create	package.json	by	issuing	the	following
command:

npm	init

After	answering	basic	questions	about	your	project,	a
blank	package.json	is	created	with	content	similar	to
the	following:

{

		"name":	"chapter9",

		"version":	"1.0.0",

		"description":	"chapter9	sample

project",

		"main":	"app.js",

		"dependencies":	{

				"request":	"^2.65.0"

		},

		"devDependencies":	{},

		"scripts":	{

		"scripts":	{

				"test":	"echo	\"Error:	no	test

specified\"	&&	exit	1"

		},

		"keywords":	[

				"Chapter9",

				"sample",

				"project"

],

		"author":	"Ved	Antani",

		"license":	"MIT"

}

You	can	manually	edit	this	file	in	a	text	editor.	An
important	part	of	this	file	is	the	dependencies	tag.	To
specify	the	packages	that	your	project	depends	on,	you
need	to	list	the	packages	you'd	like	to	use	in	your
package.json	file.	There	are	two	types	of	packages
that	you	can	list:

dependencies:	These	packages	are	required	by	your	application	in

production

devDependencies:	These	packages	are	needed	only	for

development	and	testing	(for	example,	using	the	Jasmine	node
package)

In	the	preceding	example,	you	can	see	the	following
dependency:

"dependencies":	{

		"request":	"^2.65.0"

},

This	means	that	the	project	is	dependent	on	the
request	module.

NOTENOTE
The	version	of	the	module	is	dependent	on	the	semantic	versioning	rules
—https://docs.npmjs.com/getting-started/semantic-versioning.

Once	your	package.json	file	is	ready,	you	can	simply
use	the	npm	install	command	to	install	all	the
modules	for	your	projects	automatically.

There	is	a	cool	trick	that	I	love	to	use.	While	installing
modules	from	the	command	line,	we	can	add	the	--
save	flag	to	add	that	module's	dependency	to	the
package.json	file	automatically:

npm	install	async	--save

npm	WARN	package.json	chapter9@1.0.0	No

repository	field.

npm	WARN	package.json	chapter9@1.0.0	No

README	data

async@1.5.0	node_modules/async

In	the	preceding	command,	we	installed	the	async
module	with	the	normal	npm	command	with	a	--save
flag.	There	is	a	corresponding	entry	automatically
created	in	package.json:

"dependencies":	{

		"async":	"^1.5.0",

		"request":	"^2.65.0"

},

https://docs.npmjs.com/getting-started/semantic-versioning

JavaScript	performance
Like	any	other	language,	writing	correct	JavaScript	code
at	scale	is	an	involved	task.	As	the	language	matures,
several	of	the	inherent	problems	are	being	taken	care	of.
There	are	several	exceptional	libraries	that	aid	in	writing
good	quality	code.	For	most	serious	systems,	good	code
=	correct	code	+	high	performance	code.	The	demands
of	new-generation	software	systems	are	high	on
performance.	In	this	section,	we	will	discuss	a	few	tools
that	you	can	use	to	analyze	your	JavaScript	code	and
understand	its	performance	metrics.

We	will	discuss	the	following	two	ideas	in	this	section:

Profiling:	Timing	various	functions	and	operations	during	script-
profiling	helps	in	identifying	areas	where	you	can	optimize	your	code

Network	performance:	Examining	the	loading	of	network	resources
such	as	images,	stylesheets,	and	scripts

JavaScript	profiling
JavaScript	profiling	is	critical	to	understand	performance
aspects	of	various	parts	of	your	code.	You	can	observe
timings	of	the	functions	and	operations	to	understand
which	operation	is	taking	more	time.	With	this
information,	you	can	optimize	the	performance	of	time-
consuming	functions	and	tune	the	overall	performance	of
your	code.	We	will	be	focusing	on	the	profiling	options
provided	by	Chrome's	Developer	Tools.	There	are

comprehensive	analysis	tools	that	you	can	use	to
understand	the	performance	metrics	of	your	code.

THE	CPU	PROFILE
The	CPU	profile	shows	the	execution	time	spent	by
various	parts	of	your	code.	We	have	to	inform	DevTools
to	record	the	CPU	profile	data.	Let's	take	the	profiler	for
a	spin.

You	can	enable	the	CPU	profiler	in	DevTools	as	follows:

1.	 Open	the	Chrome	DevTools	Profiles	panel.
2.	 Verify	that	Collect	JavaScript	CPU	Profile	is	selected:	

For	this	chapter,	we	will	be	using	Google's	own	benchmark
page,	http://octane-
benchmark.googlecode.com/svn/latest/index.html.	We	will	use

http://octane-benchmark.googlecode.com/svn/latest/index.html

THE	TIMELINE	VIEW
The	Chrome	DevTools	Timeline	tool	is	the	first	place	you	can	start
looking	at	the	overall	performance	of	your	code.	It	lets	you	record	and
analyze	all	the	activity	in	your	application	as	it	runs.

this	because	it	contains	sample	functions	where	we	can	see
various	performance	bottlenecks	and	benchmarks.	To	start
recording	the	CPU	profile,	open	DevTools	in	Chrome,	and	in
the	Profiles	tab,	click	on	the	Start	button	or	press	Cmd/Ctrl	+
E.	Refresh	the	V8	Benchmark	Suite	page.	When	the	page	has
completed	reloading,	a	score	for	the	benchmark	tests	is	shown.
Return	to	the	Profiles	panel	and	stop	the	recording	by	clicking
on	the	Stop	button	or	pressing	Cmd/Ctrl	+	E	again.

The	recorded	CPU	profile	shows	you	a	detailed	view	of	the
functions	and	the	execution	time	taken	by	them	in	the	bottom-
up	fashion,	as	shown	in	the	following	image:	

The	Timeline	provides	you	with	a	complete	overview	of	where	time	is
spent	when	loading	and	using	your	site.	A	timeline	recording	includes	a
record	for	each	event	that	occurred	and	is	displayed	in	a	waterfall	graph:

The	preceding	screen	shows	you	the	timeline	view	when	we	try	to	render
https://twitter.com/	in	the	browser.	The	timeline	view	gives	you	an	overall	view
of	which	operation	took	how	much	time	in	execution:	

https://twitter.com/

In	the	preceding	screenshot,	we	can	see	the	progressive	execution	of	various
JavaScript	functions,	network	calls,	resource	downloads,	and	other	operations
involved	in	rendering	the	Twitter	home	page.	This	view	gives	us	a	very	good
idea	about	which	operations	may	be	taking	longer.	Once	we	identify	such
operations,	we	can	optimize	them	for	performance.	The	Memory	view	is	a	great
tool	to	understand	how	the	memory	is	used	during	the	lifetime	of	your
application	in	the	browser.	The	Memory	view	shows	you	a	graph	of	the	memory
used	by	your	application	over	time	and	maintains	a	counter	of	the	number	of
documents,	DOM	nodes,	and	event	listeners	that	are	held	in	the	memory.	The
Memory	view	can	help	detect	memory	leaks	and	give	you	good	enough	hints	to
understand	what	optimizations	are	required:	

JavaScript	performance	is	a	fascinating	subject	and	deserves	its	own	dedicated
text.	I	would	urge	you	to	explore	Chrome's	DevTools	and	understand	how	best
to	use	the	tools	to	detect	and	diagnose	performance	problems	in	your	code.

Summary
In	this	chapter,	we	looked	at	a	different	avatar	of
JavaScript—that	of	a	server-side	framework	in	the	form
of	Node.js.

Node	offers	an	asynchronous	evented-model	to	program
scalable	and	high-performance	server	applications	in
JavaScript.	We	dived	deep	into	some	core	concepts	on
Node,	such	as	an	event	loop,	callbacks,	modules,	and
timers.	Understanding	them	is	critical	to	write	good	Node
code.	We	also	discussed	several	techniques	to	structure
Node	code	and	callbacks	in	a	better	way.

With	this,	we	reach	the	conclusion	of	our	exploration	of	a
brilliant	programming	language.	JavaScript	has	been
instrumental	in	the	evolution	of	the	World	Wide	Web
because	of	its	sheer	versatility.	The	language	continues
to	expand	its	horizons	and	improves	with	each	new
iteration.

We	started	our	journey	with	understanding	the	building
blocks	of	the	grammar	and	syntax	of	the	language.	We
grasped	the	fundamental	ideas	of	closures	and	the
functional	behavior	of	JavaScript.	These	concepts	are	so
essential	that	most	of	the	JavaScript	patterns	are	based
on	them.	We	looked	at	how	we	can	utilize	these	patterns
to	write	better	code	with	JavaScript.	We	studied	how
JavaScript	can	operate	on	a	DOM	and	how	to	use

jQuery	to	manipulate	the	DOM	effectively.	Finally,	we
looked	at	the	server-side	avatar	of	JavaScript	in	Node.js.

This	book	should	have	enabled	you	to	think	differently
when	you	start	programming	in	JavaScript.	Not	only	will
you	think	about	common	patterns	when	you	code,	but
also	appreciate	and	use	newer	language	features	by
ES6.

Part	2.	Module	2
Mastering	JavaScript	Design	Patterns	-	Second

Edition

Write	reliable	code	to	create	powerful	applications	by
mastering	advanced	JavaScript	design	patterns

Chapter	1.	Designing	for	Fun
and	Profit
JavaScript	is	an	evolving	language	that	has	come	a	long
way	from	its	inception.	Possibly	more	than	any	other
programming	language,	it	has	grown	and	changed	with
the	growth	of	the	World	Wide	Web.	The	exploration	of
how	JavaScript	can	be	written	using	good	design
principles	is	the	topic	of	this	book.	The	preface	of	this
book	contains	a	detailed	explanation	of	the	sections	of
the	book.

In	the	first	half	of	this	chapter,	we'll	explore	the	history	of
JavaScript	and	how	it	came	to	be	the	important	language
that	it	is	today.	As	JavaScript	has	evolved	and	grown	in
importance,	the	need	to	apply	rigorous	methods	to	its
construction	has	also	grown.	Design	patterns	can	be	a
very	useful	tool	to	assist	in	developing	maintainable
code.	The	second	half	of	the	chapter	will	be	dedicated	to
the	theory	of	design	patterns.	Finally,	we'll	look	briefly	at
anti-patterns.

The	topics	in	this	chapter	are	as	follows:

History	of	JavaScript

What	is	a	design	pattern?

Anti-patterns

The	road	to	JavaScript
We'll	never	know	how	language	first	came	into	being.
Did	it	slowly	evolve	from	a	series	of	grunts	and	guttural
sounds	made	during	grooming	rituals?	Perhaps	it
developed	to	allow	mothers	and	their	offspring	to
communicate.	Both	of	these	are	theories,	all	but
impossible	to	prove.	Nobody	was	around	to	observe	our
ancestors	during	that	important	period.	In	fact,	the
general	lack	of	empirical	evidence	led	the	Linguistic
Society	of	Paris	to	ban	further	discussions	on	the	topic,
seeing	it	as	unsuitable	for	serious	study.

The	early	days
Fortunately,	programming	languages	have	developed	in
recent	history	and	we've	been	able	to	watch	them	grow
and	change.	JavaScript	has	one	of	the	more	interesting
histories	of	modern	programming	languages.	During
what	must	have	been	an	absolutely	frantic	10	days	in
May	of	1995,	a	programmer	at	Netscape	wrote	the
foundation	for	what	would	grow	up	to	be	modern
JavaScript.

At	the	time,	Netscape	was	involved	in	the	first	of	the
browser	wars	with	Microsoft.	The	vision	for	Netscape
was	far	grander	than	simply	developing	a	browser.	They
wanted	to	create	an	entire	distributed	operating	system
making	use	of	Sun	Microsystems'	recently-released	Java
programming	language.	Java	was	a	much	more	modern

alternative	to	the	C++	Microsoft	was	pushing.	However,
Netscape	didn't	have	an	answer	to	Visual	Basic.	Visual
Basic	was	an	easier	to	use	programming	language,
which	was	targeted	at	developers	with	less	experience.	It
avoided	some	of	the	difficulties	around	memory
management	that	make	C	and	C++	notoriously	difficult	to
program.	Visual	Basic	also	avoided	strict	typing	and
overall	allowed	more	leeway.	Here	is	an	illustration	of	the
timeline	of	JavaScript:

Brendan	Eich	was	tasked	with	developing	Netscape
repartee	to	VB.	The	project	was	initially	codenamed

Mocha,	but	was	renamed	LiveScript	before	Netscape	2.0
beta	was	released.	By	the	time	the	full	release	was
available,	Mocha/LiveScript	had	been	renamed
JavaScript	to	tie	it	into	the	Java	applet	integration.	Java
Applets	were	small	applications	which	ran	in	the
browser.	They	had	a	different	security	model	from	the
browser	itself	and	so	were	limited	in	how	they	could
interact	with	both	the	browser	and	the	local	system.	It	is
quite	rare	to	see	applets	these	days,	as	much	of	their
functionality	has	become	part	of	the	browser.	Java	was
riding	a	popular	wave	at	the	time	and	any	relationship	to
it	was	played	up.

The	name	has	caused	much	confusion	over	the	years.
JavaScript	is	a	very	different	language	from	Java.
JavaScript	is	an	interpreted	language	with	loose	typing,
which	runs	primarily	on	the	browser.	Java	is	a	language
that	is	compiled	to	bytecode,	which	is	then	executed	on
the	Java	Virtual	Machine.	It	has	applicability	in	numerous
scenarios,	from	the	browser	(through	the	use	of	Java
applets),	to	the	server	(Tomcat,	JBoss,	and	so	on),	to	full
desktop	applications	(Eclipse,	OpenOffice,	and	so	on).	In
most	laypersons'	minds,	the	confusion	remains.

JavaScript	turned	out	to	be	really	quite	useful	for
interacting	with	the	web	browser.	It	was	not	long	until
Microsoft	had	also	adopted	JavaScript	into	their	Internet
Explorer	to	complement	VBScript.	The	Microsoft
implementation	was	known	as	JScript.

By	late	1996,	it	was	clear	that	JavaScript	was	going	to

be	the	winning	web	language	for	the	near	future.	In	order
to	limit	the	amount	of	language	deviation	between
implementations,	Sun	and	Netscape	began	working	with
the	European	Computer	Manufacturers	Association
(ECMA)	to	develop	a	standard	to	which	future	versions
of	JavaScript	would	need	to	comply.	The	standard	was
released	very	quickly	(very	quickly	in	terms	of	how
rapidly	standards	organizations	move),	in	July	of	1997.
On	the	off	chance	that	you	have	not	seen	enough	names
yet	for	JavaScript,	the	standard	version	was	called
ECMAScript,	a	name	which	still	persists	in	some	circles.

Unfortunately,	the	standard	only	specified	the	very	core
parts	of	JavaScript.	With	the	browser	wars	raging,	it	was
apparent	that	any	vendor	that	stuck	with	only	the	basic
implementation	of	JavaScript	would	quickly	be	left
behind.	At	the	same	time,	there	was	much	work	going	on
to	establish	a	standard	Document	Object	Model	(DOM)
for	browsers.	The	DOM	was,	in	effect,	an	API	for	a	web
page	that	could	be	manipulated	using	JavaScript.

For	many	years,	every	JavaScript	script	would	start	by
attempting	to	determine	the	browser	on	which	it	was
running.	This	would	dictate	how	to	address	elements	in
the	DOM,	as	there	were	dramatic	deviations	between
each	browser.	The	spaghetti	of	code	that	was	required	to
perform	simple	actions	was	legendary.	I	remember
reading	a	year-long	20-part	series	on	developing	a
Dynamic	HTML	(DHTML)	drop	down	menu	such	that	it
would	work	on	both	Internet	Explorer	and	Netscape
Navigator.	The	same	functionally	can	now	be	achieved

with	pure	CSS	without	even	having	to	resort	to
JavaScript.

NOTENOTE
DHTML	was	a	popular	term	in	the	late	1990s	and	early	2000s.	It	really	referred	to	any	web
page	that	had	some	sort	of	dynamic	content	that	was	executed	on	the	client	side.	It	has
fallen	out	of	use,	as	the	popularity	of	JavaScript	has	made	almost	every	page	a	dynamic
one.

Fortunately,	the	efforts	to	standardize	JavaScript
continued	behind	the	scenes.	Versions	2	and	3	of
ECMAScript	were	released	in	1998	and	1999.	It	looked
like	there	might	finally	be	some	agreement	between	the
various	parties	interested	in	JavaScript.	Work	began	in
early	2000	on	ECMAScript	4,	which	was	to	be	a	major
new	release.

A	pause
Then,	disaster	struck.	The	various	groups	involved	in	the
ECMAScript	effort	had	major	disagreements	about	the
direction	JavaScript	was	to	take.	Microsoft	seemed	to
have	lost	interest	in	the	standardization	effort.	It	was
somewhat	understandable,	as	it	was	around	that	time
that	Netscape	self-destructed	and	Internet	Explorer
became	the	de-facto	standard.	Microsoft	implemented
parts	of	ECMAScript	4	but	not	all	of	it.	Others
implemented	more	fully-featured	support,	but	without	the
market	leader	on-board,	developers	didn't	bother	using
them.

Years	passed	without	consensus	and	without	a	new

release	of	ECMAScript.	However,	as	frequently
happens,	the	evolution	of	the	Internet	could	not	be
stopped	by	a	lack	of	agreement	between	major	players.
Libraries	such	as	jQuery,	Prototype,	Dojo,	and	Mootools,
papered	over	the	major	differences	in	browsers,	making
cross-browser	development	far	easier.	At	the	same	time,
the	amount	of	JavaScript	used	in	applications	increased
dramatically.

The	way	of	GMail
The	turning	point	was,	perhaps,	the	release	of	Google's
GMail	application	in	2004.	Although	XMLHTTPRequest,
the	technology	behind	Asynchronous	JavaScript	and
XML	(AJAX),	had	been	around	for	about	five	years
when	GMail	was	released,	it	had	not	been	well-used.
When	GMail	was	released,	I	was	totally	knocked	off	my
feet	by	how	smooth	it	was.	We've	grown	used	to
applications	that	avoid	full	reloads,	but	at	the	time,	it	was
a	revolution.	To	make	applications	like	that	work,	a	great
deal	of	JavaScript	is	needed.

NOTENOTE
AJAX	is	a	method	by	which	small	chunks	of	data	are	retrieved	from	the	server	by	a	client
instead	of	refreshing	the	entire	page.	The	technology	allows	for	more	interactive	pages	that
avoid	the	jolt	of	full	page	reloads.

The	popularity	of	GMail	was	the	trigger	for	a	change	that
had	been	brewing	for	a	while.	Increasing	JavaScript
acceptance	and	standardization	pushed	us	past	the
tipping	point	for	the	acceptance	of	JavaScript	as	a
proper	language.	Up	until	that	point,	much	of	the	use	of

JavaScript	was	for	performing	minor	changes	to	the
page	and	for	validating	form	input.	I	joke	with	people
that,	in	the	early	days	of	JavaScript,	the	only	function
name	which	was	used	was	Validate().

Applications	such	as	GMail	that	have	a	heavy	reliance
on	AJAX	and	avoid	full	page	reloads	are	known	as
Single	Page	Applications	or	SPAs.	By	minimizing	the
changes	to	the	page	contents,	users	have	a	more	fluid
experience.	By	transferring	only	a	JavaScript	Object
Notation	(JSON)	payload	instead	of	HTML,	the	amount
of	bandwidth	required	is	also	minimized.	This	makes
applications	appear	to	be	snappier.	In	recent	years,
there	have	been	great	advances	in	frameworks	that	ease
the	creation	of	SPAs.	AngularJS,	backbone.js,	and
ember	are	all	Model	View	Controller	style	frameworks.
They	have	gained	great	popularity	in	the	past	two	to
three	years	and	provide	some	interesting	use	of
patterns.	These	frameworks	are	the	evolution	of	years	of
experimentation	with	JavaScript	best	practices	by	some
very	smart	people.

NOTENOTE
JSON	is	a	human-readable	serialization	format	for	JavaScript.	It	has	become	very	popular
in	recent	years,	as	it	is	easier	and	less	cumbersome	than	previously	popular	formats	such
as	XML.	It	lacks	many	of	the	companion	technologies	and	strict	grammatical	rules	of	XML,
but	makes	up	for	it	in	simplicity.

At	the	same	time	as	the	frameworks	using	JavaScript
are	evolving,	the	language	is	too.	2015	saw	the	release
of	a	much-vaunted	new	version	of	JavaScript	that	had
been	under	development	for	some	years.	Initially	called

ECMAScript	6,	the	final	name	ended	up	being
ECMAScript-2015.	It	brought	with	it	some	great
improvements	to	the	ecosystem.	Browser	vendors	are
rushing	to	adopt	the	standard.	Because	of	the	complexity
of	adding	new	language	features	to	the	code	base,
coupled	with	the	fact	that	not	everybody	is	on	the	cutting
edge	of	browsers,	a	number	of	other	languages	that
transcompile	to	JavaScript	are	gaining	popularity.
CoffeeScript	is	a	Python-like	language	that	strives	to
improve	the	readability	and	brevity	of	JavaScript.
Developed	by	Google,	Dart	is	being	pushed	by	Google
as	an	eventual	replacement	for	JavaScript.	Its
construction	addresses	some	of	the	optimizations	that
are	impossible	in	traditional	JavaScript.	Until	a	Dart
runtime	is	sufficiently	popular,	Google	provides	a	Dart	to
the	JavaScript	transcompiler.	TypeScript	is	a	Microsoft
project	that	adds	some	ECMAScript-2015	and	even
some	ECMAScript-201X	syntax,	as	well	as	an	interesting
typing	system,	to	JavaScript.	It	aims	to	address	some	of
the	issues	that	large	JavaScript	projects	present.

The	point	of	this	discussion	about	the	history	of
JavaScript	is	twofold:	first,	it	is	important	to	remember
that	languages	do	not	develop	in	a	vacuum.	Both	human
languages	and	computer	programming	languages
mutate	based	on	the	environments	in	which	they	are
used.	It	is	a	popularly	held	belief	that	the	Inuit	people
have	a	great	number	of	words	for	"snow",	as	it	was	so
prevalent	in	their	environment.	This	may	or	may	not	be
true,	depending	on	your	definition	for	the	word	and
exactly	who	makes	up	the	Inuit	people.	There	are,

however,	a	great	number	of	examples	of	domain-specific
lexicons	evolving	to	meet	the	requirements	for	exact
definitions	in	narrow	fields.	One	need	look	no	further
than	a	specialty	cooking	store	to	see	the	great	number	of
variants	of	items	which	a	layperson	such	as	myself
would	call	a	pan.

The	Sapir–Whorf	hypothesis	is	a	hypothesis	within	the
linguistics	domain,	which	suggests	that	not	only	is
language	influenced	by	the	environment	in	which	it	is
used,	but	also	that	language	influences	its	environment.
Also	known	as	linguistic	relativity,	the	theory	is	that	one's
cognitive	processes	differ	based	on	how	the	language	is
constructed.	Cognitive	psychologist	Keith	Chen	has
proposed	a	fascinating	example	of	this.	In	a	very	highly-
viewed	TED	talk,	Dr.	Chen	suggested	that	there	is	a
strong	positive	correlation	between	languages	that	lack	a
future	tense	and	those	that	have	high	savings	rates
(https://www.ted.com/talks/keith_chen_could_your_langu
age_affect_your_ability_to_save_money/transcript).	The
hypothesis	at	which	Dr.	Chen	arrived	is	that	when	your
language	does	not	have	a	strong	sense	of	connection
between	the	present	and	the	future,	this	leads	to	more
reckless	behavior	in	the	present.

Thus,	understanding	the	history	of	JavaScript	puts	one	in
a	better	position	to	understand	how	and	where	to	make
use	of	JavaScript.

The	second	reason	I	explored	the	history	of	JavaScript	is
because	it	is	absolutely	fascinating	to	see	how	quickly

https://www.ted.com/talks/keith_chen_could_your_language_affect_your_ability_to_save_money/transcript

such	a	popular	tool	has	evolved.	At	the	time	of	writing,	it
has	been	about	20	years	since	JavaScript	was	first	built
and	its	rise	to	popularity	has	been	explosive.	What	more
exciting	thing	is	there	than	to	work	in	an	ever-evolving
language?

JavaScript	everywhere
Since	the	GMail	revolution,	JavaScript	has	grown
immensely.	The	renewed	browser	wars,	which	pit
Internet	Explorer	and	Edge	against	Chrome	and	against
Firefox,	have	lead	to	building	a	number	of	very	fast
JavaScript	interpreters.	Brand	new	optimization
techniques	have	been	deployed	and	it	is	not	unusual	to
see	JavaScript	compiled	to	machine-native	code	for	the
added	performance	it	gains.	However,	as	the	speed	of
JavaScript	has	increased,	so	has	the	complexity	of	the
applications	built	using	it.

JavaScript	is	no	longer	simply	a	language	for
manipulating	the	browser,	either.	The	JavaScript	engine
behind	the	popular	Chrome	browser	has	been	extracted
and	is	now	at	the	heart	of	a	number	of	interesting
projects	such	as	Node.js.	Node.js	started	off	as	a	highly
asynchronous	method	of	writing	server-side	applications.
It	has	grown	greatly	and	has	a	very	active	community
supporting	it.	A	wide	variety	of	applications	have	been
built	using	the	Node.js	runtime.	Everything	from	build
tools	to	editors	have	been	built	on	the	base	of	Node.js.
Recently,	the	JavaScript	engine	for	Microsoft	Edge,
ChakraCore,	was	also	open	sourced	and	can	be

embedded	in	Node.js	as	an	alternative	to	Google's	V8.
SpiderMonkey,	the	Firefox	equivalent,	is	also	open
source	and	is	making	its	way	into	more	tools.

JavaScript	can	even	be	used	to	control	microcontrollers.
The	Johnny-Five	framework	is	a	programming
framework	for	the	very	popular	Arduino.	It	brings	a	much
simpler	approach	to	programming	devices	than	the
traditional	low-level	languages	used	for	programming
these	devices.	Using	JavaScript	and	Arduino	opens	up	a
world	of	possibilities,	from	building	robots	to	interacting
with	real-world	sensors.

All	of	the	major	smartphone	platforms	(iOS,	Android,	and
Windows	Phone)	have	an	option	to	build	applications
using	JavaScript.	The	tablet	space	is	much	the	same,
with	tablets	supporting	programming	using	JavaScript.
Even	the	latest	version	of	Windows	provides	a
mechanism	for	building	applications	using	JavaScript.
This	illustration	shows	some	of	the	things	possible	with
JavaScript:

JavaScript	is	becoming	one	of	the	most	important
languages	in	the	world.	Although	language	usage
statistics	are	notoriously	difficult	to	calculate,	every
single	source	which	attempts	to	develop	a	ranking	puts
JavaScript	in	the	top	10:

	
Language	index
	

	
Rank	of	JavaScript
	

	
	

	
	

	
Langpop.com
	
	

	
4
	
	

	
Statisticbrain.com
	
	

	
4
	
	

	
Codeval.com
	
	

	
6
	
	

	
TIOBE
	
	

	
8
	
	

What	is	more	interesting	is	that	most	of	of	these	rankings
suggest	that	the	usage	of	JavaScript	is	on	the	rise.

The	long	and	short	of	it	is	that	JavaScript	is	going	to	be	a
major	language	in	the	next	few	years.	More	and	more
applications	are	being	written	in	JavaScript	and	it	is	the
lingua	franca	for	any	sort	of	web	development.
Developer	of	the	popular	Stack	Overflow	website	Jeff
Atwood	created	Atwood's	Law	regarding	the	wide
adoption	of	JavaScript:

"Any	application	that	can	be	written	in	JavaScript,	will
eventually	be	written	in	JavaScript"	–	Atwood's	Law,	Jeff

Atwood

This	insight	has	been	proven	to	be	correct	time	and	time
again.	There	are	now	compilers,	spreadsheets,	word

processors—you	name	it—all	written	in	JavaScript.

As	the	applications	which	make	use	of	JavaScript
increase	in	complexity,	the	developer	may	stumble	upon
many	of	the	same	issues	as	have	been	encountered	in
traditional	programming	languages:	how	can	we	write
this	application	to	be	adaptable	to	change?

This	brings	us	to	the	need	for	properly	designing
applications.	No	longer	can	we	simply	throw	a	bunch	of
JavaScript	into	a	file	and	hope	that	it	works	properly.	Nor
can	we	rely	on	libraries	such	as	jQuery	to	save
ourselves.	Libraries	can	only	provide	additional
functionality	and	contribute	nothing	to	the	structure	of	an
application.	At	least	some	attention	must	now	be	paid	to
how	to	construct	the	application	to	be	extensible	and
adaptable.	The	real	world	is	ever-changing	and	any
application	that	is	unable	to	change	to	suit	the	changing
world	is	likely	to	be	left	in	the	dust.	Design	patterns
provide	some	guidance	in	building	adaptable
applications,	which	can	shift	with	changing	business
needs.

What	is	a	design	pattern?
For	the	most	part,	ideas	are	only	applicable	in	one	place.
Adding	peanut	butter	is	really	only	a	great	idea	in
cooking	and	not	in	sewing.	However,	from	time	to	time	it
is	possible	to	find	applicability	for	a	great	idea	outside	of
its	original	purpose.	This	is	the	story	behind	design
patterns.

In	1977,	Christopher	Alexander,	Sara	Ishikawa,	and
Murray	Silverstein	authored	a	seminal	book	on	what	they
called	design	patterns	in	urban	planning,	called	A
Pattern	Language:	Towns,	Buildings,	Construction.

The	book	described	a	language	for	talking	about	the
commonalities	of	design.	In	the	book,	a	pattern	is
described	thusly:

"The	elements	of	this	language	are	entities	called
patterns.	Each	pattern	describes	a	problem	that	occurs

over	and	over	again	in	our	environment,	and	then
describes	the	core	of	the	solution	to	that	problem,	in

such	a	way	that	you	can	use	this	solution	a	million	times
over,	without	ever	doing	it	the	same	way	twice."	—

Christopher	Alexander

These	design	patterns	were	such	things	as	how	to	layout
cities	to	provide	a	mixture	of	city	and	country	living,	or
how	to	build	roads	in	loops	as	a	traffic-calming	measure

in	residential	areas,	as	is	shown	in	the	following	picture
taken	from	the	book:

Even	for	those	without	a	strong	interest	in	urban

planning,	the	book	presents	some	fascinating	ideas
about	how	to	structure	our	world	to	promote	healthy
societies.

Using	the	work	of	Christopher	Alexander	and	the	other
authors	as	a	source	of	inspiration,	Erich	Gamma,
Richard	Helm,	Ralph	Johnson,	and	John	Vlissides	wrote
a	book	called	Design	Patterns:	Elements	of	Reusable
Object-Oriented	Software.	When	a	book	is	very
influential	in	a	computer	science	curriculum,	it	is	often
given	a	pet	name.	For	instance,	most	computer	science
graduates	will	know	of	which	book	you	mean	if	you	talk
about	The	Dragon	Book	(Principles	of	Compiler	Design,
1986).	In	enterprise	software,	The	Blue	Book	is	well
known	to	be	Eric	Evan's	book	on	domain-driven	design.
The	design	patterns	book	has	been	so	important	that	it	is
commonly	referred	do	as	the	GoF	book,	or	Gang	of	Four
book,	for	its	four	authors.

This	book	outlined	23	patterns	for	use	in	object-oriented
design.	It	is	divided	the	patterns	into	three	major	groups:

Creational:	These	patterns	outlined	a	number	of	ways	in	which
objects	could	be	created	and	their	lifecycles	managed

Behavioral:	These	patterns	describe	how	objects	interact	with	each
other

Structural:	These	patterns	describe	a	variety	of	different	ways	to	add
functionality	to	existing	objects

The	purpose	of	design	patterns	is	not	to	instruct	you	on
how	to	build	software,	but	rather	to	give	guidance	on
ways	in	which	to	solve	common	problems.	For	instance,

many	applications	have	a	need	to	provide	some	sort	of
an	undo	function.	The	problem	is	common	to	text	editors,
drawing	programs,	and	even	e-mail	clients.	Solving	this
problem	has	been	done	many	times	before	so	it	would
be	great	to	have	a	common	solution.	The	command
pattern	provides	just	such	a	common	solution.	It
suggests	keeping	track	of	all	the	actions	performed	in	an
application	as	instances	of	a	command.	This	command
will	have	forward	and	reverse	actions.	Every	time	a
command	is	processed	it	is	placed	onto	a	queue.	When
it	comes	time	to	undo	a	command	it	is	as	simple	as
popping	the	top	command	off	of	the	command	queue
and	executing	the	undo	action	on	it.

Design	patterns	provide	some	hints	about	how	to	solve
common	problems	like	the	undo	problem.	They	have
been	distilled	from	performing	hundreds	of	iterations	of
solving	the	same	problem.	The	design	pattern	may	not
be	exactly	the	correct	solution	for	the	problem	you	have,
but	it	should,	at	the	very	least,	provide	some	guidance	to
implement	a	solution	more	easily.

NOTENOTE
A	consultant	friend	of	mine	once	told	me	a	story	about	starting	an	assignment	at	a	new
company.	The	manager	told	them	that	he	didn't	think	there	would	be	a	lot	of	work	to	do	with
the	team	because	they	had	bought	the	GoF	design	pattern	book	for	the	developers	early	on
and	they'd	implemented	every	last	design	pattern.	My	friend	was	delighted	about	hearing
this	because	he	charges	by	the	hour.	The	misapplication	of	design	patterns	paid	for	much
of	his	first-born's	college	education.

Since	the	GoF	book,	there	has	been	a	great	proliferation
of	literature	dealing	with	enumerating	and	describing
design	patterns.	There	are	books	on	design	patterns

which	are	specific	to	a	certain	domains	and	books	which
deal	with	patterns	for	large	enterprise	systems.	The
Wikipedia	category	for	software	design	patterns	contains
130	entries	for	different	design	patterns.	I	would,
however,	argue	that	many	of	the	entries	are	not	true
design	patterns	but	rather	programming	paradigms.

For	the	most	part,	design	patterns	are	simple	constructs
that	don't	need	complicated	support	from	libraries.	While
there	do	exist	pattern	libraries	for	most	languages,	you
need	not	go	out	and	spend	a	lot	of	money	to	purchase
the	libraries.	Implement	the	patterns	as	you	find	the
need.	Having	an	expensive	library	burning	a	hole	in	your
pocket	encourages	blindly	applying	patterns	just	to	justify
having	spent	the	money.	Even	if	you	did	have	the
money,	I'm	not	aware	of	any	libraries	for	JavaScript
whose	sole	purpose	is	to	provide	support	for	patterns.	Of
course,	GitHub	is	a	wealth	of	interesting	JavaScript
projects,	so	there	may	well	be	a	library	on	there	of	which
I'm	unaware.

There	are	some	who	suggest	that	design	patterns	should
be	emergent.	That	is	to	say,	that	by	simply	writing
software	in	an	intelligent	way,	one	can	see	the	patterns
emerge	from	the	implementation.	I	think	that	may	be	an
accurate	statement,	however,	it	ignores	the	actual	cost
of	getting	to	those	implementations	by	trial	and	error.
Those	with	an	awareness	of	design	patterns	are	much
more	likely	to	spot	the	emergent	pattern	early	on.
Teaching	junior	programmers	about	patterns	is	a	very
useful	exercise.	Knowing	early	on	which	pattern	or

patterns	can	be	applied	acts	as	a	shortcut.	The	full
solution	can	be	arrived	at	earlier	and	with	fewer
missteps.

Anti-patterns
If	there	are	common	patterns	to	be	found	in	good
software	design,	are	there	also	patterns	that	can	be
found	in	bad	software	design?	Absolutely!	There	are	any
number	of	ways	to	do	things	incorrectly,	but	most	of
them	have	been	done	before.	It	takes	real	creativity	to
screw	up	in	a	hitherto	unknown	way.

The	shame	of	it	is	that	it	is	very	difficult	to	remember	all
the	ways	in	which	people	have	gone	wrong	over	the
years.	At	the	end	of	many	major	projects,	the	team	will
sit	down	and	put	together	a	document	called	Lessons
Learned.	This	document	contains	a	list	of	things	that
could	have	gone	better	on	the	project	and	may	even
outline	some	suggestions	as	to	how	these	issues	can	be
avoided	in	the	future.	That	these	documents	are	only
constructed	at	the	end	of	a	project	is	unfortunate.	By	that
time,	many	of	the	key	players	have	moved	on	and	those
who	are	left	must	try	to	remember	lessons	from	the	early
stages	of	the	project,	which	could	be	years	ago.	It	is	far
better	to	construct	the	document	as	the	project
progresses.

Once	complete,	the	document	is	filed	away	ready	for	the
next	project	to	make	use	of.	At	least,	that	is	the	theory.
For	the	most	part,	the	document	is	filed	away	and	never
used	again.	It	is	difficult	to	create	lessons	that	are
globally	applicable.	The	lessons	learned	tend	to	only	be

useful	for	the	current	project	or	an	exactly	identical
project,	which	almost	never	happens.

However,	by	looking	at	a	number	of	these	documents
from	various	projects,	patterns	start	to	emerge.	It	was	by
following	such	an	approach	that	William	Brown,	Raphael
Malveau,	Skip	McCormick,	and	Tom	Mowbray,
collectively	known	as	the	Upstart	Gang	of	Four	in
reference	to	the	original	Gang	of	Four,	wrote	the	initial
book	on	anti-patterns.	The	book,	AntiPatterns:
Refactoring	Software,	Architectures,	and	Projects	in
Crisis,	outlined	anti-patterns	not	just	for	issues	in	code,
but	also	in	the	management	process	which	surrounds
code.

Patterns	outlined	include	such	humorously	named
patterns	as	The	Blob	and	Lava	Flow.	The	Blob,	also
known	as	the	God	object,	is	the	pattern	where	one	object
grows	to	take	on	the	responsibility	for	vast	swathes	of
the	application	logic.	Lava	Flow	is	a	pattern	that	emerges
as	a	project	ages	and	nobody	knows	if	code	is	still	used.
Developers	are	nervous	about	deleting	the	code
because	it	might	be	used	somewhere	or	may	become
useful	again.	There	are	many	other	patterns	described	in
the	book	that	are	worth	exploring.	Just	as	with	patterns,
anti-patterns	are	emergent	from	writing	code,	but	in	this
case,	code	which	gets	out	of	hand.

This	book	will	not	cover	JavaScript	anti-patterns,	but	it	is
useful	to	remember	that	one	of	the	anti-patterns	is	an
over-application	of	design	patterns.

Summary
Design	patterns	have	a	rich	and	interesting	history.	From
their	origin	as	tools	for	helping	to	describe	how	to	build
the	structures	to	allow	people	to	live	together,	they	have
grown	to	be	applicable	to	a	number	of	domains.

It	has	now	been	a	decade	since	the	seminal	work	on
applying	design	patterns	to	programming.	Since	then,	a
vast	number	of	new	patterns	have	been	developed.
Some	of	these	patterns	are	general-purpose	patterns
such	as	those	outlined	in	the	GoF	book,	but	a	larger
number	are	very	specific	patterns	which	are	designed	for
use	in	a	narrow	domain.

JavaScript	also	has	an	interesting	history	and	is	really
coming	of	age.	With	server-side	JavaScript	taking	off
and	large	JavaScript	applications	becoming	common,
there	is	a	need	for	more	diligence	in	building	JavaScript
applications.	It	is	rare	to	see	patterns	being	properly
exploited	in	most	modern	JavaScript	code.

Leaning	on	the	teachings	provided	by	design	patterns	to
build	modern	JavaScript	patterns	gives	one	the	best	of
both	worlds.	As	Isaac	Newton	famously	wrote:

"If	I	have	seen	further	it	is	by	standing	on	ye	shoulders	of
Giants."

Patterns	give	us	easily-accessible	shoulders	on	which	to
stand.

In	the	next	chapter	we	will	look	at	some	techniques	for
building	structure	into	JavaScript.	The	inheritance
system	in	JavaScript	is	unlike	that	of	most	other	object-
oriented	languages	and	that	provides	us	both
opportunities	and	limits.	We'll	see	how	to	build	classes
and	modules	in	the	JavaScript	world.

Chapter	2.	Organizing	Code
In	this	chapter	we'll	look	at	how	to	organize	JavaScript
code	into	reusable,	understandable	chunks.	The
language	itself	doesn't	lend	itself	well	to	this	sort	of
modularization	but	a	number	of	methods	of	organizing
JavaScript	code	have	emerged	over	the	years.	This
chapter	will	argue	for	the	need	to	break	down	code	and
then	work	through	the	methods	of	creating	JavaScript
modules.

We	will	cover	the	following	topics:

Global	scope

Objects

Prototype	inheritance

ECMAScript	2015	classes

Chunks	of	code
The	first	thing	anybody	learns	to	program	is	the
ubiquitous	Hello	World	application.	This	simple
application	prints	some	variation	of	"hello	world"	to	the
screen.	Depending	on	who	you	ask,	the	phrase	hello
world	dates	back	to	the	early	1970s	where	it	was	used	to
demonstrate	the	B	programming	language	or	even	to
1967	where	it	appears	in	a	BCL	programming	guide.	In
such	a	simple	application	there	is	no	need	to	worry	about
the	structure	of	code.	Indeed,	in	many	programming

languages,	hello	world	needs	no	structure	at	all.

For	Ruby,	it	is	as	follows:

#!/usr/bin/ruby

puts	"hello	world"

For	JavaScript	(via	Node.js),	it	is	as	follows:

#!/usr/local/bin/node

console.log("Hello	world")

Programming	modern	computers	was	originally	done
using	brutally	simplistic	techniques.	Many	of	the	first
computers	had	problems	they	were	attempting	to	solve
hard-wired	into	them.	They	were	not	general	purpose
computing	machines	like	the	ones	we	have	today.
Instead	they	were	built	to	solve	just	one	problem	such	as
decoding	encrypted	texts.	Stored	program	computers
were	first	developed	in	the	late	1940s.

The	languages	used	to	program	these	computers	were
complicated	at	first,	usually	very	closely	tied	to	the
binary.	Eventually	higher	and	higher-level	abstractions
were	created	to	make	programming	more	accessible.	As
these	languages	started	to	take	shape	through	the	50s
and	60s	it	quickly	became	apparent	that	there	needed	to
be	some	way	to	divide	up	large	blocks	of	code.

In	part	this	was	simply	to	maintain	the	sanity	of
programmers	who	could	not	keep	an	entire,	large
program	in	their	heads	at	any	one	time.	However,

creating	reusable	modules	also	allowed	for	code	to	be
shared	within	an	application	and	even	between
applications.	The	initial	solution	was	to	make	use	of
statements,	which	jumped	the	flow	control	of	the
program	from	one	place	to	another.	For	a	number	of
years	these	GOTO	statements	were	heavily	relied	upon.
To	a	modern	programmer	who	has	been	fed	a	continual
stream	of	warnings	about	the	use	of	GOTO	statements
this	seems	like	insanity.	However	it	was	not	until	some
years	after	the	first	programming	languages	emerged
that	structured	programming	grew	to	replace	the	GOTO
syntax.

Structured	programming	is	based	on	the	Böhm-Jacopini
theorem,	which	states	that	there	is	a	rather	large	class	of
problems,	the	answer	to	which	can	be	computed	using
three	very	simple	constructs:

Sequential	execution	of	sub-programs

Conditional	execution	of	two	sub-programs

Repeated	execution	of	a	sub-program	until	a	condition	is	true

Astute	readers	will	recognize	these	constructs	as	being
the	normal	flow	of	execution,	a	branch	or	if	statement,
and	a	loop.

Fortran	was	one	of	the	earliest	languages	and	was
initially	built	without	support	for	structured	programming.
However	structured	programming	was	soon	adopted	as
it	helped	to	avoid	spaghetti	code.

Code	in	Fortran	was	organized	into	modules.	Modules

were	loosely	coupled	collections	of	procedures.	For
those	coming	from	a	modern	object	oriented	language,
the	closest	concept	might	be	that	a	module	was	like	a
class	that	contains	only	static	methods.

Modules	were	useful	for	dividing	code	into	logical
groupings.	However,	it	didn't	provide	for	any	sort	of
structure	for	the	actual	applications.	The	structure	for
object-oriented	languages,	that	is	classes	and
subclasses,	can	be	traced	to	a	1967	paper	written	by
Ole-Johan	Dahl	and	Kristen	Nygaard.	This	paper	would
go	on	to	form	the	basis	of	Simula-67,	the	first	language
with	support	for	object	oriented	programming.

While	Simula-67	was	the	first	language	to	have	classes,
the	language	most	talked	about	in	relation	to	early	object
oriented	programming	is	Smalltalk.	This	language	was
developed	behind	closed	doors	at	the	famous	Xerox
Palo	Alto	Research	Center	(PARC)	during	the	1970s.	it
was	released	to	the	public	in	1980	as	Smalltalk-80	(it
seems	like	all	historically	relevant	programming
languages	where	prefixed	with	the	year	of	release	as	a
version	number).	What	Smalltalk	brought	was	that
everything	in	the	language	was	an	object,	even	literal
numbers	like	3	could	have	operations	performed	on
them.

Almost	every	modern	programming	language	has	some
concept	of	classes	to	organize	code.	Often	these	classes
will	fall	into	a	higher-level	structure	commonly	called	a
namespace	or	module.	Through	the	use	of	these

structures,	even	very	large	programs	can	be	divided	into
manageable	and	understandable	chunks.

Despite	the	rich	history	and	obvious	utility	of	classes	and
modules,	JavaScript	did	not	support	them	as	first	class
constructs	until	just	recently.	To	understand	why,	one
has	to	simply	look	back	at	the	history	of	JavaScript	from
Chapter	1,	Designing	For	Fun	and	Profit,	and	realize	that
for	its	original	purpose	having	such	constructs	would
have	been	overkill.	Classes	were	a	part	of	the	ill-fated
ECMAScript	4	standard	and	they	finally	became	part	of
the	language	with	the	release	of	the	ECMAScript	2015
standard.

In	this	chapter	we'll	explore	some	of	the	ways	to	recreate
the	well	worn	class	structure	of	other	modern
programming	languages	in	JavaScript.

What's	the	matter	with
global	scope	anyway?
In	browser	based	JavaScript	every	object	you	create	is
assigned	to	the	global	scope.	For	the	browser,	this
object	is	simply	known	as	window.	It	is	simple	to	see
this	behavior	in	action	by	opening	up	the	development
console	in	your	favorite	browser.

TIPTIP
Opening	the	Development	Console

Modern	browsers	have,	built	into	them,	some	very	advanced	debugging	and	auditing	tools.
To	access	them	there	is	a	menu	item,	which	is	located	under	Tools	|	Developer	Tools	in
Chrome	|	Tools	|	Web	Developer	in	Firefox,	and	directly	under	the	menu	as	F12
Developer	Tools	in	Internet	Explorer.	Keyboard	shortcuts	also	exist	for	accessing	the
tools.	On	Windows	and	Linux,	F12	is	standard	and,	on	OSX,	Option	+	Command	+	I	is
used.

Within	the	developer	tools	is	a	console	window	that	provides	direct	access	to	the	current
page's	JavaScript.	This	is	a	very	handy	place	to	test	out	small	snippets	of	code	or	to
access	the	page's	JavaScript.

Once	you	have	the	console	open,	enter	the	following
code:

>	var	words	=	"hello	world"

>	console.log(window.words);

The	result	of	this	will	be	hello	world	printed	to	the
console.	By	declaring	words	globally	it	is	automatically
attached	to	the	top	level	container:	window.

In	Node.js	the	situation	is	somewhat	different.	Assigning

a	variable	in	this	fashion	will	actually	attach	it	to	the
current	module.	Not	including	the	var	object	will	attach
the	variable	to	the	global	object.

For	years	you've	likely	heard	that	making	use	of	global
variables	is	a	bad	thing.	This	is	because	globals	are	very
easily	polluted	by	other	code.

Consider	a	very	commonly	named	variable	such	as
index.	It	is	likely	that	in	any	application	of	appreciable
size	that	this	variable	name	would	be	used	in	several
places.	When	either	piece	of	code	makes	use	of	the
variable	it	will	cause	unexpected	results	in	the	other
piece	of	code.	It	is	certainly	possible	to	reuse	variables,
and	it	can	even	be	useful	in	systems	with	very	limited
memory	such	as	embedded	systems,	but	in	most
applications	reusing	variables	to	mean	different	things
within	a	single	scope	is	difficult	to	understand	and	a
source	of	errors.

Applications	that	make	use	global	scoped	variables	also
open	themselves	up	to	being	attacked	on	purpose	by
other	code.	It	is	trivial	to	alter	the	state	of	global	variables
from	other	code,	which	could	expose	secrets	like	login
information	to	attackers.

Finally	global	variables	add	a	great	deal	of	complexity	to
applications.	Reducing	the	scope	of	variables	to	a	small
section	of	code	allows	developers	to	more	easily
understand	the	ways	in	which	the	variable	is	used.	When
the	scope	is	global	then	changes	to	that	variable	may

have	an	effect	far	outside	of	the	one	section	of	code.	A
simple	change	to	a	variable	can	cascade	into	the	entire
application.

As	a	general	rule	global	variables	should	be	avoided.

Objects	in	JavaScript
JavaScript	is	an	object	oriented	language	but	most
people	don't	make	use	of	the	object	oriented	features	of
it	except	in	passing.	JavaScript	uses	a	mixed	object
model	in	that	it	has	some	primitives	as	well	as	objects.
JavaScript	has	five	primitive	types:

undefined

null

boolean

string

number

Of	these	five,	only	two	are	what	we	would	expect	to	be
an	object	anyway.	The	other	three,	boolean,	string,	and
number	all	have	wrapped	versions,	which	are	objects:
Boolean,	String,	and	Number.	They	are	distinguished	by
starting	with	uppercase.	This	is	the	same	sort	of	model
used	by	Java,	a	hybrid	of	objects	and	primitives.

JavaScript	will	also	box	and	unbox	the	primitives	as
needed.

In	this	code	you	can	see	the	boxed	and	unboxed
versions	of	JavaScript	primitives	at	work:

var	numberOne	=	new	Number(1);

var	numberTwo	=	2;

typeof	numberOne;	//returns	'object'

typeof	numberTwo;	//returns	'number'

typeof	numberTwo;	//returns	'number'

var	numberThree	=	numberOne	+	numberTwo;

typeof	numberThree;	//returns	'number'

Creating	objects	in	JavaScript	is	trivial.	This	can	be	seen
in	this	code	for	creating	an	object	in	JavaScript:

var	objectOne	=	{};

typeof	objectOne;	//returns	'object'

var	objectTwo	=	new	Object();

typeof	objectTwo;	//returns	'object'

Because	JavaScript	is	a	dynamic	language,	adding
properties	to	objects	is	also	quite	easy.	This	can	be	done
even	after	the	object	has	been	created.	This	code
creates	the	object:

var	objectOne	=	{	value:	7	};

var	objectTwo	=	{};

objectTwo.value	=	7;

Objects	contain	both	data	and	functionality.	We've	only
seen	the	data	part	so	far.	Fortunately	in	JavaScript,
functions	are	first	class	objects.	Functions	can	be
passed	around	and	functions	can	be	assigned	to
variables.	Let's	try	adding	some	functions	to	the	object
we're	creating	in	this	code:

var	functionObject	=	{};

functionObject.doThings	=	function()	{

		console.log("hello	world");

}

functionObject.doThings();	//writes	"hello

world"	to	the	console

This	syntax	is	a	bit	painful,	building	up	objects	an
assignment	at	a	time.	Let's	see	if	we	can	improve	upon
the	syntax	for	creating	objects:

var	functionObject	=	{

		doThings:	function()	{

				console.log("hello	world");

		}

}

functionObject.doThings();//writes	"hello

world"	to	the	console

This	syntax	seems,	at	least	to	me,	to	be	a	much	cleaner,
more	traditional	way	of	building	objects.	Of	course	it	is
possible	to	mix	data	and	functionality	in	an	object	in	this
fashion:

var	functionObject	=	{

		greeting:	"hello	world",

		doThings:	function()	{

				console.log(this.greeting);

		}

}

functionObject.doThings();//prints	hello

world

There	are	a	couple	of	things	to	note	in	this	piece	of	code.
The	first	is	that	the	different	items	in	the	object	are
separated	using	a	comma	and	not	a	semi-colon.	Those
coming	from	other	languages	such	as	C#	or	Java	are
likely	to	make	this	mistake.The	next	item	of	interest	is
that	we	need	to	make	use	of	the	this	qualifier	to
address	the	greeting	variable	from	within	the
doThings	function.	This	would	also	be	true	if	we	had	a

number	of	functions	within	the	object	as	shown	here:

var	functionObject	=	{

		greeting:	"hello	world",

		doThings:	function()	{

				console.log(this.greeting);

				this.doOtherThings();

		},

		doOtherThings:	function()	{

				

console.log(this.greeting.split("").revers

e().join(""));

		}

}

functionObject.doThings();//prints	hello

world	then	dlrow	olleh

The	this	keyword	behaves	differently	in	JavaScript
than	you	might	expect	coming	from	other	C-syntax
languages.	this	is	bound	to	the	owner	of	the	function	in
which	it	is	found.	However,	the	owner	of	the	function	is
sometimes	not	what	you	expect.	In	the	preceding
example	this	is	bound	to	the	functionObject	object,
however	if	the	function	were	declared	outside	of	an
object	this	would	refer	to	the	global	object.	In	certain
circumstances,	typically	event	handlers,	this	is	rebound
to	the	object	firing	the	event.

Let's	look	at	the	following	code:

var	target	=

document.getElementById("someId");

target.addEventListener("click",

function()	{

		console.log(this);

},	false);

},	false);

this	takes	on	the	value	of	target.	Getting	used	to	the
value	of	this	is,	perhaps,	one	of	the	trickiest	things	in
JavaScript.

ECMAScript-2015	introduces	the	let	keyword	which
can	replace	the	var	keyword	for	declaring	variables.
let	uses	block	level	scoping	which	is	the	scoping	you're
likely	to	use	from	most	languages.	Let's	see	an	example
of	how	they	differ:

for(var	varScoped	=0;	varScoped	<10;

varScoped++)

{

		console.log(varScoped);

}

console.log(varScoped	+10);

for(let	letScoped	=0;	letScoped<10;

letScoped++)

{

		console.log(letScoped);

}

console.log(letScoped+10);

With	the	var	scoped	version	you	can	see	that	the
variable	lives	on	outside	of	the	block.	This	is	because
behind	the	scenes	the	declaration	of	varScoped	is
hoisted	to	the	beginning	of	the	code	block.	With	the	let
scoped	version	of	the	code	letScoped	is	scoped	just
within	the	for	loop	so,	once	we	leave	the	loop,
letScoped	is	undefined.	When	given	the	option	of
using	let	or	var	we	would	tend	to	err	on	the	side	of
always	using	let.	There	are	some	cases	when	you

actually	would	want	to	use	var	scoping	but	they	are	few
and	far	between.

We	have	built	up	a	pretty	complete	model	of	how	to	build
objects	within	JavaScript.	However,	objects	are	not	the
same	thing	as	classes.	Objects	are	instances	of	classes.
If	we	want	to	create	multiple	instances	of	our
functionObject	object	we're	out	of	luck.	Attempting	to
do	so	will	result	in	an	error.	In	the	case	of	Node.js	the
error	will	be	as	follows:

let	obj	=	new	functionObject();

TypeError:	object	is	not	a	function

		at	repl:1:11

		at	REPLServer.self.eval	(repl.js:110:21)

		at	repl.js:249:20

		at	REPLServer.self.eval	(repl.js:122:7)

		at	Interface.<anonymous>

(repl.js:239:12)

		at	Interface.EventEmitter.emit

(events.js:95:17)

		at	Interface._onLine

(readline.js:202:10)

		at	Interface._line	(readline.js:531:8)

		at	Interface._ttyWrite

(readline.js:760:14)

		at	ReadStream.onkeypress

(readline.js:99:10)

The	stack	trace	here	shows	an	error	in	a	module	called
repl.	This	is	the	read-execute-print	loop	that	is	loaded
by	default	when	starting	Node.js.

Each	time	that	a	new	instance	is	required,	the	object
must	be	reconstructed.	To	get	around	this	we	can	define

the	object	using	a	function	as	can	be	seen	here:

let	ThingDoer	=	function(){

		this.greeting	=	"hello	world";

		this.doThings	=	function()	{

				console.log(this.greeting);

				this.doOtherThings();

		};

		this.doOtherThings	=	function()	{

				

console.log(this.greeting.split("").revers

e().join(""));

		};

}

let	instance	=	new	ThingDoer();

instance.doThings();	//prints	hello	world

then	dlrow	olleh

This	syntax	allows	for	a	constructor	to	be	defined	and	for
new	objects	to	be	created	from	this	function.
Constructors	without	return	values	are	functions	that	are
called	as	an	object	is	created.	In	JavaScript	the
constructor	actually	returns	the	object	created.	You	can
even	assign	internal	properties	using	the	constructor	by
making	them	part	of	the	initial	function	like	so:

let	ThingDoer	=	function(greeting){

		this.greeting	=	greeting;

		this.doThings	=	function()	{

				console.log(this.greeting);

		};

}

let	instance	=	new	ThingDoer("hello

universe");

instance.doThings();

Build	me	a	prototype
As	previously	mentioned,	there	was,	until	recently,	no
support	for	creating	true	classes	in	JavaScript.	While
ECMAScript-2015	brings	some	syntactic	sugar	to
classes,	the	underlying	object	system	is	still	as	it	has
been	in	the	past,	so	it	remains	instructive	to	see	how	we
would	have	created	objects	without	this	sugar.	Objects
created	using	the	structure	in	the	previous	section	have
a	fairly	major	drawback:	creating	multiple	objects	is	not
only	time	consuming	but	also	memory	intensive.	Each
object	is	completely	distinct	from	other	objects	created	in
the	same	fashion.	This	means	that	the	memory	used	to
hold	the	function	definitions	is	not	shared	between	all
instances.	What	is	even	more	fun	is	that	you	can
redefine	individual	instances	of	a	class	without	changing
all	of	the	instances.	This	is	demonstrated	in	this	code:

let	Castle	=	function(name){

		this.name	=	name;

		this.build	=	function()	{

				console.log(this.name);

		};

}

let	instance1	=	new	Castle("Winterfell");

let	instance2	=	new	Castle("Harrenhall");

instance1.build	=	function(){

console.log("Moat	Cailin");}

instance1.build();	//prints	"Moat	Cailin"

instance2.build();	//prints	"Harrenhall"

to	the	console

Altering	the	functionality	of	a	single	instance	or	really	of
any	already	defined	object	in	this	fashion	is	known	as
monkey	patching.	There	is	some	division	over	whether
or	not	this	is	a	good	practice.	It	can	certainly	be	useful
when	dealing	with	library	code	but	it	adds	great
confusion.	It	is	generally	considered	better	practice	to
extend	the	existing	class.

Without	a	proper	class	system	JavaScript,	of	course,	has
no	concept	of	inheritance.	However,	it	does	have	a
prototype.	At	the	most	basic	level	an	object	in	JavaScript
is	an	associative	array	of	keys	and	values.	Each	property
or	function	on	an	object	is	simply	defined	as	part	of	this
array.	You	can	even	see	this	in	action	by	accessing
members	of	an	object	using	array	syntax	as	is	shown
here:

let	thing	=	{	a:	7};

console.log(thing["a"]);

TIPTIP
Accessing	members	of	an	object	using	array	syntax	can	be	a	very	handy	way	to	avoid
using	the	eval	function.	For	instance,	if	I	had	the	name	of	the	function	I	wanted	to	call	in	a
string	called	funcName	and	I	wanted	to	call	it	on	an	object,	obj1,	then	I	could	do	so	by
doing	obj1[funcName]()	instead	of	using	a	potentially	dangerous	call	to	eval.	Eval
allows	for	arbitrary	code	to	be	executed.	Allowing	this	on	a	page	means	that	an	attacker
may	be	able	to	enter	malicious	scripts	on	other	people's	browsers.

When	an	object	is	created,	its	definition	is	inherited	from
a	prototype.	Weirdly	each	prototype	is	also	an	object	so
even	prototypes	have	prototypes.	Well,	except	for	the
object	which	is	the	top-level	prototype.	The	advantage	to
attaching	functions	to	the	prototype	is	that	only	a	single
copy	of	the	function	is	created;	saving	on	memory.	There

are	some	complexities	to	prototypes	but	you	can
certainly	survive	without	knowing	about	them.	To	make
use	of	a	prototype	you	need	to	simply	assign	functions	to
it	as	is	shown	here:

let	Castle	=	function(name){

		this.name	=	name;

}

Castle.prototype.build	=	function(){

console.log(this.name);}

let	instance1	=	new	Castle("Winterfell");

instance1.build();

One	thing	to	note	is	that	only	the	functions	are	assigned
to	the	prototype.	Instance	variables	such	as	name	are
still	assigned	to	the	instance.	As	these	are	unique	to
each	instance	there	is	no	real	impact	on	the	memory
usage.

In	many	ways	a	prototypical	language	is	more	powerful
than	a	class-based	inheritance	model.

If	you	make	a	change	to	the	prototype	of	an	object	at	a
later	date	then	all	the	objects	which	share	that	prototype
are	updated	with	the	new	function.	This	removes	some
of	the	concerns	expressed	about	monkey	typing.	An
example	of	this	behavior	is	shown	here:

let	Castle	=	function(name){

		this.name	=	name;

}

Castle.prototype.build	=	function(){

		console.log(this.name);

}

let	instance1	=	new	Castle("Winterfell");

let	instance1	=	new	Castle("Winterfell");

Castle.prototype.build	=	function(){

		

console.log(this.name.replace("Winterfell"

,	"Moat	Cailin"));

}

instance1.build();//prints	"Moat	Cailin"

to	the	console

When	building	up	objects	you	should	be	sure	to	take
advantage	of	the	prototype	object	whenever	possible.

Now	we	know	about	prototypes	there	is	an	alternative
approach	to	building	objects	in	JavaScript	and	that	is	to
use	the	Object.create	function.	This	is	a	new	syntax
introduced	in	ECMAScript	5.	The	syntax	is	as	follows:

Object.create(prototype	[,

propertiesObject])

The	create	syntax	will	build	a	new	object	based	on	the
given	prototype.	You	can	also	pass	in	a
propertiesObject	object	that	describes	additional
fields	on	the	created	object.	These	descriptors	consist	of
a	number	of	optional	fields:

writable:	This	dictates	whether	the	field	should	be	writable

configurable:	This	dictates	whether	the	files	should	be	removable

from	the	object	or	support	further	configuration	after	creation

enumerable:	This	dictates	whether	the	property	can	be	listed	during

an	enumeration	of	the	object's	properties

value:	This	dictates	the	default	value	of	the	field

It	is	also	possible	to	assign	a	get	and	set	functions

within	the	descriptor	that	act	as	getters	and	setters	for
some	other	internal	property.

Using	object.create	for	our	castle	we	can	build	an
instance	using	Object.create	like	so:

let	instance3	=

Object.create(Castle.prototype,	{name:	{

value:	"Winterfell",	writable:	false}});

instance3.build();

instance3.name="Highgarden";

instance3.build();

You'll	notice	that	we	explicitly	define	the	name	field.
Object.create	bypasses	the	constructor	so	the	initial
assignment	we	described	in	the	preceding	code	won't	be
called.	You	might	also	notice	that	writeable	is	set	to
false.	The	result	of	this	is	that	the	reassignment	of
name	to	Highgarden	has	no	effect.	The	output	is	as
follows:

Winterfell

Winterfell

Inheritance
One	of	the	niceties	of	objects	is	that	they	can	be	built
upon	to	create	increasingly	complex	objects.	This	is	a
common	pattern,	which	is	used	for	any	number	of	things.
There	is	no	inheritance	in	JavaScript	because	of	its
prototypical	nature.	However,	you	can	combine	functions
from	one	prototype	into	another.

Let's	say	that	we	have	a	base	class	called	Castle	and
we	want	to	customize	it	into	a	more	specific	class	called
Winterfell.	We	can	do	so	by	first	copying	all	of	the
properties	from	the	Castle	prototype	onto	the
Winterfell	prototype.	This	can	be	done	like	so:

let	Castle	=	function(){};

Castle.prototype.build	=	function()

{console.log("Castle	built");}

	

let	Winterfell	=	function(){};

Winterfell.prototype.build	=

Castle.prototype.build;

Winterfell.prototype.addGodsWood	=

function(){}

let	winterfell	=	new	Winterfell();

winterfell.build();	//prints	"Castle

built"	to	the	console

Of	course	this	is	a	very	painful	way	to	build	objects.
You're	forced	to	know	exactly	which	functions	the	base
class	has	to	copy	them.	It	can	be	abstracted	in	a	rather
naïve	fashion	like	this:

function	clone(source,	destination)	{

		for(var	attr	in	source.prototype){

destination.prototype[attr]	=

source.prototype[attr];}

}

If	you	are	into	object	diagrams	this	shows	how
Winterfell	extends	Castle	in	this	diagram:

This	can	be	used	quite	simply	as	follows:

let	Castle	=	function(){};

Castle.prototype.build	=	function()

{console.log("Castle	built");}

	

let	Winterfell	=	function(){};

clone(Castle,	Winterfell);

let	winterfell	=	new	Winterfell();

winterfell.build();

We	say	that	this	is	naïve	because	it	fails	to	take	into
account	a	number	of	potential	failure	conditions.	A	fully-
fledged	implementation	is	quite	extensive.	The	jQuery
library	provides	a	function	called	extend	which
implements	prototype	inheritance	in	a	robust	fashion.	It
is	about	50	lines	long	and	deals	with	deep	copies	and
null	values.	The	function	is	used	extensively,	internally	in
jQuery	but	it	can	be	a	very	useful	function	in	your	own
code.	We	mentioned	that	prototype	inheritance	is	more
powerful	than	the	traditional	methods	of	inheritance.	This
is	because	it	is	possible	to	mix	and	match	bits	from	many
base	classes	to	create	a	new	class.	Most	modern
languages	only	support	single	inheritance:	a	class	can
have	only	one	direct	parent.	There	are	some	languages
with	multiple	inheritance	however,	it	is	a	practice	that
adds	a	great	deal	of	complexity	when	attempting	to
decide	which	version	of	a	method	to	call	at	runtime.
Prototype	inheritance	avoids	many	of	these	issues	by
forcing	selection	of	a	method	at	assembly	time.

Composing	objects	in	this	fashion	permits	taking
properties	from	two	or	more	different	bases.	There	are
many	times	when	this	can	be	useful.	For	example	a
class	representing	a	wolf	might	take	some	of	its
properties	from	a	class	describing	a	dog	and	some	from
another	class	describing	a	quadruped.

By	using	classes	built	in	this	way	we	can	meet	pretty
much	all	of	the	requirements	for	constructing	a	system	of
classes	including	inheritance.	However	inheritance	is	a
very	strong	form	of	coupling.	In	almost	all	cases	it	is

better	to	avoid	inheritance	in	favor	of	a	looser	form	of
coupling.	This	will	allow	for	classes	to	be	replaced	or
altered	with	a	minimum	impact	on	the	rest	of	the	system.

Modules
Now	that	we	have	a	complete	class	system	it	would	be
good	to	address	the	global	namespace	discussed
earlier.	Again	there	is	no	first	class	support	for
namespaces	but	we	can	easily	isolate	functionality	to	the
equivalent	of	a	namespace.	There	are	a	number	of
different	approaches	to	creating	modules	in	JavaScript.
We'll	start	with	the	simplest	and	add	some	functionality
as	we	go	along.

To	start	we	simply	need	to	attach	an	object	to	the	global
namespace.	This	object	will	contain	our	root	namespace.
We'll	name	our	namespace	Westeros;	the	code	simply
looks	like:

Westeros	=	{}

This	object	is,	by	default,	attached	to	the	top	level	object
so	we	need	not	do	anything	more	than	that.	A	typical
usage	is	to	first	check	if	the	object	already	exists	and	use
that	version	instead	of	reassigning	the	variable.	This
allows	you	to	spread	your	definitions	over	a	number	of
files.	In	theory	you	could	define	a	single	class	in	each	file
and	then	bring	them	all	together	as	part	of	the	build
process	before	delivering	them	to	the	client	or	using
them	in	an	application.	The	short	form	of	this	is:

Westeros	=	Westeros	||	{}

Once	we	have	the	object,	it	is	simply	a	question	of
assigning	our	classes	as	properties	of	that	object.	If	we
continue	to	use	the	Castle	object	then	it	would	look
like:

let	Westeros	=	Westeros	||	{};

Westeros.Castle	=	function(name){this.name

=	name};	//constructor

Westeros.Castle.prototype.Build	=

function(){console.log("Castle	built:	"	+

this.name)};

If	we	want	to	build	a	hierarchy	of	namespaces	that	is
more	than	a	single	level	deep,	that	too	is	easily
accomplished,	as	seen	in	this	code:

let	Westeros	=	Westeros	||	{};

Westeros.Structures	=	Westeros.Structures

||	{};

Westeros.Structures.Castle	=

function(name){	this.name	=	name};

//constructor

Westeros.Structures.Castle.prototype.Build

=	function(){console.log("Castle	built:	"

+		this.name)};

This	class	can	be	instantiated	and	used	in	a	similar	way
to	previous	examples:

let	winterfell	=	new

Westeros.Structures.Castle("Winterfell");

winterfell.Build();

Of	course	with	JavaScript	there	is	more	than	one	way	to
build	the	same	code	structure.	An	easy	way	to	structure

the	preceding	code	is	to	make	use	of	the	ability	to	create
and	immediately	execute	a	function:

let	Castle	=	(function	()	{

		function	Castle(name)	{

				this.name	=	name;

		}

		Castle.prototype.Build	=	function	()	{

				console.log("Castle	built:	"	+

this.name);

		};

		return	Castle;

})();

Westros.Structures.Castle	=	Castle;

This	code	seems	to	be	a	bit	longer	than	the	previous
code	sample	but	I	find	it	easier	to	follow	due	to	its
hierarchical	nature.	We	can	create	a	new	castle	using
them	in	the	same	structure	as	shown	in	the	preceding
code:

let	winterfell	=	new

Westeros.Structures.Castle("Winterfell");

winterfell.Build();

Inheritance	using	this	structure	is	also	relatively	easily
done.	If	we	were	to	define	a	BaseStructure	class
which	was	to	be	in	the	ancestor	of	all	structures,	then
making	use	of	it	would	look	like	this:

let	BaseStructure	=	(function	()	{

		function	BaseStructure()	{

		}

		return	BaseStructure;

})();

Structures.BaseStructure	=	BaseStructure;

let	Castle	=	(function	(_super)	{

		__extends(Castle,	_super);

		function	Castle(name)	{

				this.name	=	name;

				_super.call(this);

		}

		Castle.prototype.Build	=	function	()	{

				console.log("Castle	built:	"	+	

this.name);

		};

		return	Castle;

})(BaseStructure);

You'll	note	that	the	base	structure	is	passed	into	the
Castle	object	when	the	closure	is	evaluated.	The
highlighted	line	of	code	makes	use	of	a	helper	method
called	__extends.	This	method	is	responsible	for
copying	the	functions	over	from	the	base	prototype	to	the
derived	class.	This	particular	piece	of	code	was
generated	from	a	TypeScript	compiler	which	also,
helpfully,	generated	an	extends	method	which	looks
like:

let	__extends	=	this.__extends	||	function

(d,	b)	{

		for	(var	p	in	b)	if

(b.hasOwnProperty(p))	d[p]	=	b[p];

		function	__()	{	this.constructor	=	d;	}

		__.prototype	=	b.prototype;

		d.prototype	=	new	__();

};

We	can	continue	the	rather	nifty	closure	syntax	we've
adopted	for	a	class	to	implement	an	entire	module.	This
is	shown	here:

var	Westeros;

(function	(Westeros)	{

		(function	(Structures)	{

				let	Castle	=	(function	()	{

						function	Castle(name)	{

								this.name	=	name;

						}

							Castle.prototype.Build	=	function

()	{

									console.log("Castle	built	"	+

this.name);

							};

							return	Castle;

					})();

					Structures.Castle	=	Castle;

		})(Westeros.Structures	||

(Westeros.Structures	=	{}));

		var	Structures	=	Westeros.Structures;

})(Westeros	||	(Westeros	=	{}));

Within	this	structure	you	can	see	the	same	code	for
creating	modules	that	we	explored	earlier.	It	is	also
relatively	easy	to	define	multiple	classes	inside	a	single
module.	This	can	be	seen	in	this	code:

var	Westeros;

(function	(Westeros)	{

		(function	(Structures)	{

				let	Castle	=	(function	()	{

						function	Castle(name)	{

								this.name	=	name;

						}

						Castle.prototype.Build	=	function	()	

{

								console.log("Castle	built:	"	+	

this.name);

								var	w	=	new	Wall();

						};

						return	Castle;

				})();

				Structures.Castle	=	Castle;

				var	Wall	=	(function	()	{

						function	Wall()	{

								console.log("Wall	constructed");

						}

						return	Wall;

				})();

				Structures.Wall	=	Wall;

		})(Westeros.Structures	||	

(Westeros.Structures	=	{}));

		var	Structures	=	Westeros.Structures;

})(Westeros	||	(Westeros	=	{}));

The	highlighted	code	creates	a	second	class	inside	of
the	module.	It	is	also	perfectly	permissible	to	define	one
class	in	each	file.	Because	the	code	checks	to	get	the
current	value	of	Westeros	before	blindly	reassigning	it,
we	can	safely	split	the	module	definition	across	multiple
files.

The	last	line	of	the	highlighted	section	shows	exposing
the	class	outside	of	the	closure.	If	we	want	to	make
private	classes	that	are	only	available	within	the	module
then	we	only	need	to	exclude	that	line.	This	is	actually
known	as	the	revealing	module	pattern.	We	only	reveal
the	classes	that	need	to	be	globally	available.	It	is	a
good	practice	to	keep	as	much	functionality	out	of	the
global	namespace	as	possible.

ECMAScript	2015	classes	and
modules
We've	seen	so	far	that	it	is	perfectly	possible	to	build
classes	and	even	modules	in	pre	ECMAScript	-2015
JavaScript.	The	syntax	is,	obviously,	a	bit	more	involved
than	in	a	language	such	as	C#	or	Java.	Fortunately
ECMAScript-2015,	brings	support	for	some	syntactic
sugar	for	making	classes:

class	Castle	extends

Westeros.Structures.BaseStructure	{

		constructor(name,	allegience)	{

				super(name);

				...

		}

		Build()	{

				...

				super.Build();

		}

}

ECMAScript-2015	also	brings	a	well	thought	out	module
system	for	JavaScript.	There's	also	syntactic	sugar	for	creating
modules	which	looks	like	this:

module	'Westeros'	{

		export	function	Rule(rulerName,	house)	{

				...

				return	"Long	live	"	+	rulerName	+	"	of

house	"	+	house;

		}

}

}

As	modules	can	contain	functions	they	can,	of	course,	contain
classes.	ECMAScript-2015	also	defines	a	module	import
syntax	and	support	for	retrieving	modules	from	remote
locations.	Importing	a	module	looks	like	this:

import	westeros	from	'Westeros';

module	JSON	from

'http://json.org/modules/json2.js';

westeros.Rule("Rob	Stark",	"Stark");

Some	of	this	syntactic	sugar	is	available	in	any	environment
which	has	full	ECMAScript-2015	support.	At	the	time	of
writing,	all	major	browser	vendors	have	very	good	support	for
the	class	portion	of	ECMAScript-2015	so	there	is	almost	no
reason	not	to	use	it	if	you	don't	have	to	support	ancient
browsers.

Best	practices	and
troubleshooting
In	an	ideal	world	everybody	would	get	to	work	on
greenfield	projects	where	they	can	put	in	standards	right
from	the	get	go.	However	that	isn't	the	case.	Frequently
you	may	find	yourself	in	a	situation	where	you	have	a
bunch	of	non-modular	JavaScript	code	as	part	of	a
legacy	system.

In	these	situations	it	may	be	advantageous	to	simply
ignore	the	non-modular	code	until	there	is	an	actual
need	to	upgrade	it.	Despite	the	popularity	of	JavaScript,
much	of	the	tooling	for	JavaScript	is	still	immature
making	it	difficult	to	rely	on	a	compiler	to	find	errors
introduced	by	JavaScript	refactoring.	Automatic
refactoring	tools	are	also	complicated	by	the	dynamic
nature	of	JavaScript.	However,	for	new	code,	proper	use
of	modular	JavaScript	can	be	very	helpful	to	avoid
namespace	conflicts	and	improve	testability.

How	to	arrange	JavaScript	is	an	interesting	question.
From	a	web	perspective	I	have	taken	the	approach	of
arranging	my	JavaScript	in	line	with	the	web	pages.	So
each	page	has	an	associated	JavaScript	file,	which	is
responsible	for	the	functionality	of	that	page.	In	addition,
components	which	are	common	between	pages,	say	a
grid	control,	are	placed	into	a	separate	file.	At	compile

time	all	the	files	are	combined	into	a	single	JavaScript
file.	This	helps	strike	a	balance	between	having	a	small
code	file	with	which	to	work	and	reducing	the	number	of
requests	to	the	server	from	the	browser.

Summary
It	has	been	said	that	there	are	only	two	really	hard	things
in	computing	science.	What	those	issues	are	varies
depending	on	who	is	speaking.	Frequently	it	is	some
variation	of	cache	invalidation	and	naming.	How	to
organize	your	code	is	a	large	part	of	that	naming
problem.

As	a	group	we	seem	to	have	settled	quite	firmly	on	the
idea	of	namespaces	and	classes.	As	we've	seen,	there
is	no	direct	support	for	either	of	these	two	concepts	in
JavaScript.	However	there	are	myriad	ways	to	work
around	the	problem,	some	of	which	actually	provide
more	power	than	one	would	get	through	a	traditional
namespace/class	system.

The	primary	concern	with	JavaScript	is	to	avoid	polluting
the	global	namespace	with	a	large	number	of	similarly
named,	unconnected	objects.	Encapsulating	JavaScript
into	modules	is	a	key	step	on	the	road	toward	writing
maintainable	and	reusable	code.

As	we	move	forward	we'll	see	that	many	of	the	patterns
which	are	quite	complex	arrangements	of	interfaces
become	far	simpler	in	the	land	of	JavaScript.	Prototype-
based	inheritance,	which	seems	difficult	at	the	outset,	is
a	tremendous	tool	for	aiding	in	the	simplification	of
design	patterns.

Chapter	3.	Creational
Patterns
In	the	last	chapter	we	took	a	long	look	at	how	to	fashion
a	class.	In	this	chapter	we'll	look	at	how	to	create
instances	of	classes.	On	the	surface	it	seems	like	a
simple	concern	but	how	we	create	instances	of	a	class
can	be	of	great	importance.

We	take	great	pains	in	creating	our	code	so	that	it	be	as
decoupled	as	possible.	Ensuring	that	classes	have
minimal	dependence	on	other	classes	is	the	key	to
building	a	system	that	can	change	fluently	with	the
changing	needs	of	those	using	the	software.	Allowing
classes	to	be	too	closely	related	means	that	changes
ripple	through	them	like,	well,	ripples.

One	ripple	isn't	a	huge	problem	but,	as	you	throw	more
and	more	changes	into	the	mix,	the	ripples	add	up	and
create	interference	patterns.	Soon	the	once	placid
surface	is	an	unrecognizable	mess	of	additive	and
destructive	nodes.	This	same	problem	occurs	in	our
applications:	the	changes	magnify	and	interact	in
unexpected	ways.	One	place	where	we	tend	to	forget
about	coupling	is	in	the	creation	of	objects:

let	Westeros;

(function	(Westeros)	{

		let	Ruler	=	(function	()	{

				function	Ruler()	{

				function	Ruler()	{

						this.house	=	new

Westeros.Houses.Targaryen();

				}

				return	Ruler;

		})();

		Westeros.Ruler	=	Ruler;

})(Westeros	||	(Westeros	=	{}));

You	can	see	in	this	class	that	the	Ruler's	house	is
strongly	coupled	to	the	class	Targaryen.	If	this	were
ever	to	change	then	this	tight	coupling	would	have	to
change	in	a	great	number	of	places.	This	chapter
discusses	a	number	of	patterns,	which	were	originally
presented	in	the	gang	of	four	book,	Design	Patterns:
Elements	of	Reusable	Object-Oriented	Software.	The
goal	of	these	patterns	is	to	improve	the	degree	of
coupling	in	applications	and	increase	the	opportunities
for	code	reuse.	The	patterns	are	as	follows:

Abstract	factory

Builder

Factory	method

Singleton

Prototype

Of	course	not	all	of	these	are	applicable	to	JavaScript,
but	we'll	see	all	about	that	as	we	work	through	the
creational	patterns.

Abstract	factory
The	first	pattern	presented	here	is	a	method	for	creating

kits	of	objects	without	knowing	the	concrete	types	of	the
objects.	Let's	continue	with	the	system	presented	in	the
preceding	section	for	ruling	a	kingdom.

For	the	kingdom	in	question	the	ruling	house	changes
with	some	degree	of	frequency.	In	all	likelihood	there	is	a
degree	of	battling	and	fighting	during	the	change	of
house	but	we'll	ignore	that	for	the	moment.	Each	house
will	rule	the	kingdom	differently.	Some	value	peace	and
tranquility	and	rule	as	benevolent	leaders,	while	others
rule	with	an	iron	fist.	The	rule	of	a	kingdom	is	too	large
for	a	single	individual	so	the	king	defers	some	of	his
decisions	to	a	second	in	command	known	as	the	hand	of
the	king.	The	king	is	also	advised	on	matters	by	a
council,	which	consists	of	some	of	the	more	savvy	lords
and	ladies	of	the	land.

A	diagram	of	the	classes	in	our	description	look	like	this:

TIPTIP
Unified	Modeling	Language	(UML)	is	a	standardized	language	developed	by	the	Object
Management	Group,	which	describes	computer	systems.	There	is	vocabulary	in	the
language	for	creating	user	interaction	diagrams,	sequence	diagrams,	and	state	machines,
amongst	others.	For	the	purposes	of	this	book	we're	most	interested	in	class	diagrams,
which	describe	the	relationship	between	a	set	of	classes.

The	entire	UML	class	diagram	vocabulary	is	extensive	and	is	beyond	the	scope	of	this
book.	However,	the	Wikipedia	article	available	at
https://en.wikipedia.org/wiki/Class_diagram	acts	as	a	great	introduction	as	does	Derek
Banas'	excellent	video	tutorial	on	class	diagrams	available	at
https://www.youtube.com/watch?v=3cmzqZzwNDM.

An	issue	is	that,	with	the	ruling	family,	and	even	the
member	of	the	ruling	family	on	the	throne,	changing	so
frequently,	coupling	to	a	concrete	family	such	as

https://en.wikipedia.org/wiki/Class_diagram
https://www.youtube.com/watch?v=3cmzqZzwNDM

Targaryen	or	Lannister	makes	our	application	brittle.
Brittle	applications	do	not	fare	well	in	an	ever-changing
world.

An	approach	to	fixing	this	is	to	make	use	of	the	abstract
factory	pattern.	The	abstract	factory	declares	an
interface	for	creating	each	of	the	various	classes	related
to	the	ruling	family.

The	class	diagram	of	this	pattern	is	rather	daunting:

The	abstract	factory	class	may	have	multiple
implementations	for	each	of	the	various	ruling	families.
These	are	known	as	concrete	factories	and	each	of	them
will	implement	the	interface	provided	by	the	abstract
factory.	The	concrete	factories,	in	return,	will	return

concrete	implementations	of	the	various	ruling	classes.
These	concrete	classes	are	known	as	products.

Let's	start	by	looking	at	the	code	for	the	interface	for	the
abstract	factory.

No	code?	Well,	actually	that	is	exactly	the	case.
JavaScript's	dynamic	nature	precludes	the	need	for
interfaces	to	describe	classes.	Instead	of	having
interfaces	we'll	just	create	the	classes	right	off	the	bat:

Instead	of	interfaces,	JavaScript	trusts	that	the	class	you
provide	implements	all	the	appropriate	methods.	At
runtime	the	interpreter	will	attempt	to	call	the	method	you
request	and,	if	it	is	found,	call	it.	The	interpreter	simply
assumes	that	if	your	class	implements	the	method	then	it

is	that	class.	This	is	known	as	duck	typing.

NOTENOTE
Duck	typing

The	name	duck	typing	comes	from	a	2000	post	to	the	comp.lang.python	news	group	by
Alex	Martelli	in	which	he	wrote:

In	other	words,	don't	check	whether	it	IS-a	duck:	check	whether	it	QUACKS-like-a	duck,
WALKS-like-a	duck,	and	so	on,	depending	on	exactly	what	subset	of	duck-like	behavior
you	need	to	play	your	language-games	with.

I	enjoy	the	possibility	that	Martelli	took	the	term	from	the	witch-hunt	sketch	from	Monty
Python	and	the	Holy	Grail.	Although	I	can	find	no	evidence	of	that,	I	think	it	quite	likely	as
the	Python	programming	language	takes	its	name	from	Monty	Python.

Duck	typing	is	a	powerful	tool	in	dynamic	languages
allowing	for	much	less	overhead	in	implementing	a	class
hierarchy.	It	does,	however,	introduce	some	uncertainty.
If	two	classes	implement	an	identically	named	method
which	have	radically	different	meanings	then	there	is	no
way	to	know	if	the	one	being	called	is	the	correct	one.
Consider	for	example	this	code:

class	Boxer{

		function	punch(){}

}

class	TicketMachine{

		function	punch(){}

}

Both	classes	have	a	punch()	method	but	they	clearly
have	different	meanings.	The	JavaScript	interpreter	has
no	idea	that	they	are	different	classes	and	will	happily
call	punch	on	either	class,	even	when	one	doesn't	make
sense.

Some	dynamic	languages	support	a	generic	method,
which	is	called	whenever	an	undefined	method	is	called.
Ruby,	for	instance,	has	missing_method,	which	has
proven	to	be	very	useful	in	a	number	of	scenarios.	As	of
writing,	there	is	currently	no	support	for
missing_method	in	JavaScript.	However,	ECMAScript
2016,	the	follow	up	to	ECMAScript	2015,	defines	a	new
construct	called	Proxy	which	will	support	dynamically
wrapping	objects,	with	this	one	could	implement	an
equivalent	of	missing_method.

Implementation
To	demonstrate	an	implementation	of	the	Abstract
Factory	the	first	thing	we'll	need	is	an	implementation	of
the	King	class.	This	code	provides	that	implementation:

let	KingJoffery=	(function	()	{

		function	KingJoffery()	{

		}

		KingJoffery.prototype.makeDecision	=

function	()	{

				…

		};

		KingJoffery.prototype.marry	=	function

()	{

				…

		};

		return	KingJoffery;

})();

NOTENOTE
This	code	does	not	include	the	module	structure	suggested	in	Chapter	2,	Organizing	Code.
Including	the	boiler-plate	module	code	in	every	example	is	tedious	and	you're	all	smart
cookies	so	you	know	to	put	this	in	modules	if	you're	going	to	actually	use	it.	The	fully

modularized	code	is	available	in	the	distributed	source	code.

This	is	just	a	regular	concrete	class	and	could	really
contain	any	implementation	details.	We'll	also	need	an
implementation	of	the	HandOfTheKing	class	which	is
equally	unexciting:

let	LordTywin	=	(function	()	{

		function	LordTywin()	{

		}

		LordTywin.prototype.makeDecision	=

function	()	{

		};

		return	LordTywin;

})();

The	concrete	factory	method	looks	like	this:

let	LannisterFactory	=	(function	()	{

		function	LannisterFactory()	{

		}

		LannisterFactory.prototype.getKing	=

function	()	{

				return	new	KingJoffery();

		};

		

LannisterFactory.prototype.getHandOfTheKin

g	=	function	()

		{

				return	new	LordTywin();

		};

		return	LannisterFactory;

})();

This	code	simply	instantiates	new	instances	of	each	of
the	required	classes	and	returns	them.	An	alternative

implementation	for	a	different	ruling	family	would	follow
the	same	general	form	and	might	look	like:

let	TargaryenFactory	=	(function	()	{

		function	TargaryenFactory()	{

		}

		TargaryenFactory.prototype.getKing	=

function	()	{

				return	new	KingAerys();

		};

		

TargaryenFactory.prototype.getHandOfTheKin

g	=	function	()	{

				return	new	LordConnington();

		};

		return	TargaryenFactory;

})();

The	implementation	of	the	Abstract	Factory	in	JavaScript
is	much	easier	than	in	other	languages.	However	the
penalty	for	this	is	that	you	lose	the	compiler	checks,
which	force	a	full	implementation	of	either	the	factory	or
the	products.	As	we	proceed	through	the	rest	of	the
patterns,	you'll	notice	that	this	is	a	common	theme.
Patterns	that	have	a	great	deal	of	plumbing	in	statically
typed	languages	are	far	simpler	but	create	a	greater	risk
of	runtime	failure.	Appropriate	unit	tests	or	a	JavaScript
compiler	can	ameliorate	this	situation.

To	make	use	of	the	Abstract	Factory	we'll	first	need	a
class	that	requires	the	use	of	some	ruling	family:

let	CourtSession	=	(function	()	{

		function	CourtSession(abstractFactory)	{

				this.abstractFactory	=

abstractFactory;

abstractFactory;

				this.COMPLAINT_THRESHOLD	=	10;

		}

		

CourtSession.prototype.complaintPresented

=	function	(complaint)	{

				if	(complaint.severity	<

this.COMPLAINT_THRESHOLD)	{

						

this.abstractFactory.getHandOfTheKing().ma

keDecision();

				}	else

				

this.abstractFactory.getKing().makeDecisio

n();

		};

		return	CourtSession;

})();

We	can	now	call	this	CourtSession	class	and	inject
different	functionality	depending	on	which	factory	we
pass	in:

let	courtSession1	=	new	CourtSession(new

TargaryenFactory());

courtSession1.complaintPresented({

severity:	8	});

courtSession1.complaintPresented({

severity:	12	});

	

let	courtSession2	=	new	CourtSession(new

LannisterFactory());

courtSession2.complaintPresented({

severity:	8	});

courtSession2.complaintPresented({

severity:	12	});

Despite	the	differences	between	a	static	language	and

JavaScript,	this	pattern	remains	applicable	and	useful	in
JavaScript	applications.	Creating	a	kit	of	objects,	which
work	together,	is	useful	in	a	number	of	situations;	any
time	a	group	of	objects	need	to	collaborate	to	provide
functionality	but	may	need	to	be	replaced	wholesale.	It
may	also	be	a	useful	pattern	when	attempting	to	ensure
that	a	set	of	objects	be	used	together	without
substitutions.

Builder
In	our	fictional	world	we	sometimes	have	some	rather
complicated	classes,	which	need	to	be	constructed.	The
classes	contain	different	implementations	of	an	interface
depending	on	how	they	are	constructed.	In	order	to
simplify	the	building	of	these	classes	and	encapsulate
the	knowledge	about	building	the	class	away	from	the
consumers,	a	builder	may	be	used.	Multiple	concrete
builders	reduce	the	complexity	of	the	constructor	in	the
implementation.	When	new	builders	are	required,	a
constructor	does	not	need	to	be	added,	a	new	builder
just	needs	to	be	plugged	in.

Tournaments	are	an	example	of	a	complicated	class.
Each	tournament	has	a	complicated	setup	involving	the
events,	the	attendees,	and	the	prizes.	Much	of	the	setup
for	these	tournaments	is	similar:	each	one	has	a	joust,
archery,	and	a	melee.	Creating	a	tournament	from
multiple	places	in	the	code	means	that	the	responsibility
for	knowing	how	to	construct	a	tournament	is	distributed.
If	there	is	a	need	to	change	the	initiation	code	then	it
must	be	done	in	a	lot	of	different	places.

Employing	a	builder	pattern	avoids	this	issue	by
centralizing	the	logic	necessary	to	build	the	object.
Different	concrete	builders	can	be	plugged	into	the
builder	to	construct	different	complicated	objects.	The
relationship	between	the	various	classes	in	the	builder

pattern	is	shown	here:

Implementation
Let's	drop	in	and	look	at	some	of	the	code.	To	start	with,
we'll	create	a	number	of	utility	classes,	which	will
represent	the	parts	of	a	tournament	as	shown	in	the
following	code:

let	Event	=	(function	()	{

		function	Event(name)	{

				this.name	=	name;

		}

		return	Event;

})();

Westeros.Event	=	Event;

	

let	Prize	=	(function	()	{

		function	Prize(name)	{

				this.name	=	name;

		}

		return	Prize;

})();

})();

Westeros.Prize	=	Prize;

	

let	Attendee	=	(function	()	{

		function	Attendee(name)	{

				this.name	=	name;

		}

		return	Attendee;

})();

Westeros.Attendee	=	Attendee;

The	tournament	itself	is	a	very	simple	class	as	we	don't
need	to	assign	any	of	the	public	properties	explicitly:

let	Tournament	=	(function	()	{

		this.Events	=	[];

		function	Tournament()	{

		}

		return	Tournament;

})();

Westeros.Tournament	=	Tournament;

We'll	implement	two	builders	which	create	different
tournaments.	This	can	be	seen	in	the	following	code:

let	LannisterTournamentBuilder	=	(function

()	{

		function	LannisterTournamentBuilder()	{

		}

		

LannisterTournamentBuilder.prototype.build

=	function	()	{

				var	tournament	=	new	Tournament();

				tournament.events.push(new

Event("Joust"));

				tournament.events.push(new

Event("Melee"));

				tournament.attendees.push(new

Attendee("Jamie"));

				tournament.prizes.push(new

				tournament.prizes.push(new

Prize("Gold"));

				tournament.prizes.push(new	Prize("More

Gold"));

				return	tournament;

		};

		return	LannisterTournamentBuilder;

})();

Westeros.LannisterTournamentBuilder	=

LannisterTournamentBuilder;

	

let	BaratheonTournamentBuilder	=	(function

()	{

		function	BaratheonTournamentBuilder()	{

		}

		

BaratheonTournamentBuilder.prototype.build

=	function	()	{

				let	tournament	=	new	Tournament();

				tournament.events.push(new

Event("Joust"));

				tournament.events.push(new

Event("Melee"));

				tournament.attendees.push(new

Attendee("Stannis"));

				tournament.attendees.push(new

Attendee("Robert"));

				return	tournament;

		};

		return	BaratheonTournamentBuilder;

})();

Westeros.BaratheonTournamentBuilder	=

BaratheonTournamentBuilder;

Finally	the	director,	or	as	we're	calling	it
TournamentBuilder,	simply	takes	a	builder	and
executes	it:

let	TournamentBuilder	=	(function	()	{

		function	TournamentBuilder()	{

		function	TournamentBuilder()	{

		}

		TournamentBuilder.prototype.build	=

function	(builder)	{

				return	builder.build();

		};

		return	TournamentBuilder;

})();

Westeros.TournamentBuilder	=

TournamentBuilder;

Again	you'll	see	that	the	JavaScript	implementation	is	far
simpler	than	the	traditional	implementation	due	to	there
being	no	need	for	interfaces.

Builders	need	not	return	a	fully	realized	object.	This
means	that	you	can	create	a	builder	which	partially
hydrates	an	object	then	allows	the	object	to	be	passed
on	to	another	builder	for	it	to	finish.	A	good	real	world
analogy	might	be	the	manufacturing	process	for	a	car.
Each	station	along	the	assembly	line	builds	just	a	part	of
the	car	before	passing	it	onto	the	next	station	to	build
another	part.	This	approach	allows	for	dividing	the	work
of	building	an	object	amongst	several	classes	with
limited	responsibility.	In	our	example	above	we	could
have	a	builder	that	is	responsible	for	populating	the
events	and	another	that	is	responsible	for	populating	the
attendees.

Does	the	builder	pattern	still	make	sense	in	view	of
JavaScript's	prototype	extension	model?	I	believe	so.
There	are	still	cases	where	a	complicated	object	needs
to	be	created	according	to	different	approaches.

Factory	method
We've	already	looked	at	the	Abstract	Factory	and	a
builder.	The	Abstract	Factory	builds	a	family	of	related
classes	and	the	builder	creates	complicated	objects
using	different	strategies.	The	factory	method	pattern
allows	a	class	to	request	a	new	instance	of	an	interface
without	the	class	making	decisions	about	which
implementation	of	the	interface	to	use.	The	factory	may
use	some	strategy	to	select	which	implementation	to
return:

Sometimes	this	strategy	is	simply	to	take	a	string
parameter	or	to	examine	some	global	setting	to	act	as	a
switch.

Implementation
In	our	example	world	of	Westeros	there	are	plenty	of
times	when	we	would	like	to	defer	the	choice	of
implementation	to	a	factory.	Just	like	the	real	world,
Westeros	has	a	vibrant	religious	culture	with	dozens	of
competing	religions	worshiping	a	wide	variety	of	gods.

When	praying	in	each	religion,	different	rules	must	be
followed.	Some	religions	demand	sacrifices	while	others
demand	only	that	a	gift	be	given.	The	prayer	class
doesn't	want	to	know	about	all	the	different	religions	and
how	to	construct	them.

Let's	start	with	creating	a	number	of	different	gods	to
which	prayers	can	be	offered.	This	code	creates	three
gods	including	a	default	god	to	whom	prayers	fall	if	no
other	god	is	specified:

let	WateryGod	=	(function	()	{

		function	WateryGod()	{

		}

		WateryGod.prototype.prayTo	=	function	()

{

		};

		return	WateryGod;

})();

Religion.WateryGod	=	WateryGod;

let	AncientGods	=	(function	()	{

		function	AncientGods()	{

		}

		AncientGods.prototype.prayTo	=	function

()	{

		};

		return	AncientGods;

})();

Religion.AncientGods	=	AncientGods;

	

let	DefaultGod	=	(function	()	{

		function	DefaultGod()	{

		}

		DefaultGod.prototype.prayTo	=	function

()	{

		};

		return	DefaultGod;

})();

})();

Religion.DefaultGod	=	DefaultGod;

I've	avoided	any	sort	of	implementation	details	for	each
god.	You	may	imagine	whatever	traditions	you	want	to
populate	the	prayTo	methods.	There	is	also	no	need	to
ensure	that	each	of	the	gods	implements	an	IGod
interface.	Next	we'll	need	a	factory,	which	is	responsible
for	constructing	each	of	the	different	gods:

let	GodFactory	=	(function	()	{

		function	GodFactory()	{

		}

		GodFactory.Build	=	function	(godName)	{

				if	(godName	===	"watery")

						return	new	WateryGod();

				if	(godName	===	"ancient")

						return	new	AncientGods();

				return	new	DefaultGod();

		};

		return	GodFactory;

})();

You	can	see	that	in	this	example	we're	taking	in	a	simple
string	to	decide	how	to	create	a	god.	It	could	be	done	via
a	global	or	via	a	more	complicated	object.	In	some
polytheistic	religions	in	Westeros,	gods	have	defined
roles	as	gods	of	courage,	beauty,	or	some	other	aspect.
The	god	to	which	one	must	pray	is	determined	by	not
just	the	religion	but	the	purpose	of	the	prayer.	We	can
represent	this	with	a	GodDeterminant	class	as	is
shown	here:

let	GodDeterminant	=	(function	()	{

		function	GodDeterminant(religionName,

prayerPurpose)	{

prayerPurpose)	{

				this.religionName	=	religionName;

				this.prayerPurpose	=	prayerPurpose;

		}

		return	GodDeterminant;

})();

The	factory	would	be	updated	to	take	this	class	instead
of	the	simple	string.

Finally,	the	last	step	is	to	see	how	this	factory	would	be
used.	It	is	quite	simple,	we	just	need	to	pass	in	a	string
that	denotes	which	religion	we	wish	to	observe	and	the
factory	will	construct	the	correct	god	and	return	it.	This
code	demonstrates	how	to	call	the	factory:

let	Prayer	=	(function	()	{

		function	Prayer()	{

		}

		Prayer.prototype.pray	=	function

(godName)	{

		GodFactory.Build(godName).prayTo();

		};

		return	Prayer;

})();

Once	again	there	is	certainly	need	for	a	pattern	such	as
this	in	JavaScript.	There	are	plenty	of	times	where
separating	the	instantiation	from	the	use	is	useful.
Testing	the	instantiation	is	also	very	simple	thanks	to	the
separation	of	concerns	and	the	ability	to	inject	a	fake
factory	to	allow	testing	of	Prayer	is	also	easy.

Continuing	the	trend	of	creating	simpler	patterns	without
interfaces,	we	can	ignore	the	interface	portion	of	the

pattern	and	work	directly	with	the	types,	thanks	to	duck
typing.

Factory	Method	is	a	very	useful	pattern:	it	allows	classes
to	defer	the	selection	of	the	implementation	of	an
instantiation	to	another	class.	This	pattern	is	very	useful
when	there	are	multiple	similar	implementations	such	as
the	strategy	pattern	(see	Chapter	5,	Behavioral	Patterns)
and	is	commonly	used	in	conjunction	with	the	Abstract
Factory	pattern.	The	Factory	Method	is	used	to	build	the
concrete	objects	within	a	concrete	implementation	of	the
abstract	factory.	An	Abstract	Factory	pattern	may	contain
a	number	of	Factory	Methods.	Factory	Method	is
certainly	a	pattern	that	remains	applicable	in	the	land	of
JavaScript.

Singleton
The	Singleton	pattern	is	perhaps	the	most	overused
pattern.	It	is	also	a	pattern	that	has	fallen	out	of	favor	in
recent	years.	To	see	why	people	are	starting	to	advise
against	using	Singleton	let's	take	a	look	at	how	the
pattern	works.

Singleton	is	used	when	a	global	variable	is	desirable,	but
Singleton	provides	protection	against	accidentally
creating	multiple	copies	of	complex	objects.	It	also
allows	for	the	deferral	of	object	instantiation	until	the	first
use.

The	UML	diagram	for	Singleton	looks	like	the	following:

It	is	clearly	a	very	simple	pattern.	The	Singleton	acts	as
a	wrapper	around	an	instance	of	the	class	and	the
singleton	itself	lives	as	a	global	variable.	When
accessing	the	instance	we	simply	ask	the	Singleton	for
the	current	instance	of	the	wrapped	class.	If	the	class
does	not	yet	exist	within	the	Singleton	it	is	common	to
create	a	new	instance	at	that	time.

Implementation
Within	our	ongoing	example	in	the	world	of	Westeros,	we
need	to	find	a	case	where	there	can	only	ever	be	one	of
something.	Unfortunately,	it	is	a	land	with	frequent
conflicts	and	rivalries,	and	so	my	first	idea	of	using	the
king	as	the	Singleton	is	simply	not	going	to	fly.	This	split
also	means	that	we	cannot	make	use	of	any	of	the	other
obvious	candidates	(capital	city,	queen,	general,	and	so
on).	However,	in	the	far	north	of	Westeros	there	is	a
giant	wall	constructed	to	keep	an	ancient	enemy	at	bay.
There	is	only	one	of	these	walls	and	it	should	pose	no
issue	having	it	in	the	global	scope.

Let's	go	ahead	and	create	a	singleton	in	JavaScript:

let	Westros;

(function	(Westeros)	{

		var	Wall	=	(function	()	{

				function	Wall()	{

						this.height	=	0;

						if	(Wall._instance)

								return	Wall._instance;

						Wall._instance	=	this;

				}

				Wall.prototype.setHeight	=	function	

(height)	{

						this.height	=	height;

				};

				Wall.prototype.getStatus	=	function	()	

{

						console.log("Wall	is	"	+	this.height	

+	"	meters	tall");

				};

				Wall.getInstance	=	function	()	{

						if	(!Wall._instance)	{

								Wall._instance	=	new	Wall();

						}

						return	Wall._instance;

				};

				Wall._instance	=	null;

				return	Wall;

		})();

		Westeros.Wall	=	Wall;

})(Westeros	||	(Westeros	=	{}));

The	code	creates	a	lightweight	representation	of	the
Wall.	The	Singleton	is	demonstrated	in	the	two
highlighted	sections.	In	a	language	like	C#	or	Java	we
would	normally	just	set	the	constructor	to	be	private	so
that	it	could	only	be	called	by	the	static	method
getInstance.	However,	we	don't	have	that	ability	in
JavaScript:	constructors	cannot	be	private.	Thus	we	do
the	best	we	can	and	return	the	current	instance	from	the
constructor.	This	may	appear	strange	but	in	the	way
we've	constructed	our	classes	the	constructor	is	no
different	from	any	other	method	so	it	is	possible	to	return
something	from	it.

In	the	second	highlighted	section	we	set	a	static	variable,
_instance,	to	be	a	new	instance	of	the	Wall	when	one
is	not	already	there.	If	that	_instance	already	exists,
we	return	that.	In	C#	and	Java,	there	would	need	to	be
some	complicated	locking	logic	in	this	function	to	avoid
race	conditions	as	two	different	threads	attempted	to
access	the	instance	at	the	same	time.	Fortunately,	there
is	no	need	to	worry	about	this	in	JavaScript	where	the
multi-threading	story	is	different.

Disadvantages
Singletons	have	gained	something	of	a	bad	reputation	in
the	last	few	years.	They	are,	in	effect,	glorified	global
variables.	As	we've	discussed,	global	variables	are	ill
conceived	and	the	potential	cause	of	numerous	bugs.
They	are	also	difficult	to	test	with	unit	tests	as	the
creation	of	the	instance	cannot	easily	be	overridden	and
any	form	of	parallelism	in	the	test	runner	can	introduce
difficult-to-diagnose	race	conditions.	The	single	largest
concern	I	have	with	them	is	that	singletons	have	too
much	responsibility.	They	control	not	just	themselves	but
also	their	instantiation.	This	is	a	clear	violation	of	the
single	responsibility	principle.	Almost	every	problem	that
can	be	solved	by	using	a	Singleton	is	better	solved	using
some	other	mechanism.

JavaScript	makes	the	problem	even	worse.	It	isn't
possible	to	create	a	clean	implementation	of	the
Singleton	due	to	the	restrictions	on	the	constructor.	This,
coupled	with	the	general	problems	around	the	Singleton,
lead	me	to	suggest	that	the	Singleton	pattern	should	be
avoided	in	JavaScript.

Prototype
The	final	creational	pattern	in	this	chapter	is	the
Prototype	pattern.	Perhaps	this	name	sounds	familiar.	It
certainly	should:	it	is	the	mechanism	through	which
JavaScript	inheritance	is	supported.

We	looked	at	prototypes	for	inheritance	but	the
applicability	of	prototypes	need	not	be	limited	to
inheritance.	Copying	existing	objects	can	be	a	very
useful	pattern.	There	are	numerous	cases	where	being
able	to	duplicate	a	constructed	object	is	handy.	For
instance,	maintaining	a	history	of	the	state	of	an	object	is
easily	done	by	saving	previous	instances	created	by
leveraging	some	sort	of	cloning.

Implementation
In	Westeros,	we	find	that	members	of	a	family	are
frequently	very	similar;	as	the	adage	goes:	"like	father,
like	son".	As	each	generation	is	born	it	is	easier	to	create
the	new	generation	through	copying	and	modifying	an
existing	family	member	than	to	build	one	from	scratch.

In	Chapter	2,	Organizing	Code,	we	looked	at	how	to
copy	existing	objects	and	presented	a	very	simple	piece
of	code	for	cloning:

function	clone(source,	destination)	{

		for(var	attr	in	source.prototype){

		for(var	attr	in	source.prototype){

				destination.prototype[attr]	=

source.prototype[attr];}

}

This	code	can	easily	be	altered	to	be	used	inside	a	class
to	return	a	copy	of	itself:

var	Westeros;

(function	(Westeros)	{

		(function	(Families)	{

				var	Lannister	=	(function	()	{

						function	Lannister()	{

						}

						Lannister.prototype.clone	=	function	

()	{

								var	clone	=	new	Lannister();

								for	(var	attr	in	this)	{

										clone[attr]	=	this[attr];

								}

								return	clone;

						};

						return	Lannister;

				})();

				Families.Lannister	=	Lannister;

		})(Westeros.Families	||	

(Westeros.Families	=	{}));

		var	Families	=	Westeros.Families;

})(Westeros	||	(Westeros	=	{}));

The	highlighted	section	of	code	is	the	modified	clone
method.	It	can	be	used	as	such:

let	jamie	=	new

Westeros.Families.Lannister();

jamie.swordSkills	=	9;

jamie.charm	=	6;

jamie.wealth	=	10;

	

let	tyrion	=	jamie.clone();

tyrion.charm	=	10;

//tyrion.wealth	==	10

//tyrion.swordSkill	==	9

The	Prototype	pattern	allows	for	a	complex	object	to	be
constructed	only	once	and	then	cloned	into	any	number
of	objects	that	vary	only	slightly.	If	the	source	object	is
not	complicated	there	is	little	to	be	gained	from	taking	a
cloning	approach.	Care	must	be	taken	when	using	the
prototype	approach	to	think	about	dependent	objects.
Should	the	clone	be	a	deep	one?

Prototype	is	obviously	a	useful	pattern	and	one	that
forms	an	integral	part	of	JavaScript	from	the	get	go.	As
such	it	is	certainly	a	pattern	that	will	see	some	use	in	any
JavaScript	application	of	appreciable	size.

Tips	and	tricks
Creational	patterns	allow	for	specialized	behavior	in
creating	objects.	In	many	cases,	such	as	the	factory,
they	provide	extension	points	into	which	crosscutting
logic	can	be	placed.	That	is	to	say	logic	that	applies	to	a
number	of	different	types	of	objects.	If	you're	looking	for
a	way	to	inject,	say,	logging	throughout	your	application,
then	being	able	to	hook	into	a	factory	is	of	great	utility.

For	all	the	utility	of	these	creational	patterns	they	should
not	be	used	very	frequently.	The	vast	majority	of	your
object	instantiations	should	still	be	just	the	normal
method	of	improving	the	objects.	Although	it	is	tempting
to	treat	everything	as	a	nail	when	you've	got	a	new
hammer,	the	truth	is	that	each	situation	needs	to	have	a
specific	strategy.	All	these	patterns	are	more
complicated	than	simply	using	new	and	complicated
code	is	more	liable	to	have	bugs	than	simple	code.	Use
new	whenever	possible.

Summary
This	chapter	presented	a	number	of	different	strategies
for	creating	objects.	These	methods	provide	abstractions
over	the	top	of	typical	methods	for	creating	objects.	The
Abstract	Factory	provides	a	method	for	building
interchangeable	kits	or	collections	of	related	objects.	The
Builder	pattern	provides	a	solution	to	telescoping
parameters	issues.	It	makes	the	construction	of	large
complicated	objects	easier.	The	Factory	Method,	which
is	a	useful	complement	to	Abstract	Factory,	allows
different	implementations	to	be	created	though	a	static
factory.	Singleton	is	a	pattern	for	providing	a	single	copy
of	a	class	that	is	available	to	the	entire	solution.	It	is	the
only	pattern	we've	seen	so	far	which	has	presented
some	questions	around	applicability	in	modern	software.
The	Prototype	pattern	is	a	commonly	used	pattern	in
JavaScript	for	building	objects	based	on	other	existing
objects.

We'll	continue	our	examination	of	classical	design
patterns	in	the	next	chapter	by	looking	at	structural
patterns.

Chapter	4.	Structural
Patterns
In	the	previous	chapter,	we	looked	at	a	number	of	ways
to	create	objects	in	order	to	optimize	for	reuse.	In	this
chapter,	we'll	take	a	look	at	structural	patterns;	these	are
patterns	that	are	concerned	with	easing	the	design	by
describing	simple	ways	in	which	objects	can	interact.

Again,	we	will	limit	ourselves	to	the	patterns	described	in
the	GoF	book.	There	are	a	number	of	other	interesting
structural	patterns	that	have	been	identified	since	the
publication	of	the	GoF	and	we'll	look	at	those	in	part	2	of
the	book.

The	patterns	we'll	examine	here	are:

Adapter

Bridge

Composite

Decorator

Façade

Flyweight

Proxy

Once	again,	we'll	discuss	whether	the	patterns	that	were
described	years	ago	are	still	relevant	for	a	different
language	and	a	different	time.

Adapter
From	time	to	time	there	is	a	need	to	fit	a	round	peg	in	a
square	hole.	If	you've	ever	played	with	a	child's	shape
sorting	toy	then	you	may	have	discovered	that	you	can,
in	fact,	put	a	round	peg	in	a	square	hole.	The	hole	is	not
completely	filled	and	getting	the	peg	in	there	can	be
difficult:

To	improve	the	fit	of	the	peg	an	adapter	can	be	used.
This	adapter	fills	the	hole	in	completely	resulting	in	a
perfect	fit:

In	software	a	similar	approach	is	often	needed.	We	may
need	to	make	use	of	a	class	that	does	not	perfectly	fit
the	required	interface.	The	class	may	be	missing
methods	or	may	have	additional	methods	we	would	like
to	hide.	This	occurs	frequently	when	dealing	with	third
party	code.	In	order	to	make	it	comply	with	the	interface
needed	in	your	code,	an	adapter	may	be	required.

The	class	diagram	for	an	adapter	is	very	simple	as	can
be	seen	here:

The	interface	of	the	implementation	does	not	look	the
way	we	would	like	it	to	for	use	in	our	code.	Normally	the
solution	to	this	is	to	simply	refactor	the	implementation
so	it	looks	the	way	we	would	like	it	to.	However,	there
are	a	number	of	possible	reasons	that	cannot	be	done.
Perhaps	the	implementation	exists	inside	third	party
code	to	which	we	have	no	access.	It	is	also	possible	that
the	implementation	is	used	elsewhere	in	the	application
where	the	interface	is	exactly	as	we	would	like	it	to	be.

The	adapter	class	is	a	thin	piece	of	code	that	implements
the	required	interface.	It	typically	wraps	a	private	copy	of
the	implementation	class	and	proxy	calls	through	to	it.
The	adapter	pattern	is	frequently	used	to	change	the
abstraction	level	of	the	code.	Let's	take	a	look	at	a	quick
example.

Implementation
In	the	land	of	Westeros,	much	of	the	trade	and	travel	is
done	by	boat.	It	is	not	only	more	dangerous	to	travel	by
ship	than	to	walk	or	travel	by	horse,	but	also	riskier	due
to	the	constant	presence	of	storms	and	pirates.	These
ships	are	not	the	sort	which	might	be	used	by	Royal
Caribbean	to	cruise	around	the	Caribbean;	they	are
crude	things	which	might	look	more	at	home	captained
by	15th	century	European	explorers.

While	I	am	aware	that	ships	exist,	I	have	very	little
knowledge	of	how	they	work	or	how	I	might	go	about
navigating	one.	I	imagine	that	many	people	are	in	the
same	(cough!)	boat	as	me.	If	we	look	at	the	interface	for
a	Ship	in	Westeros,	it	looks	intimidating:

interface	Ship{

		SetRudderAngleTo(angle:	number);

		SetSailConfiguration(configuration:

SailConfiguration);

		SetSailAngle(sailId:	number,	sailAngle:

number);

		GetCurrentBearing():	number;

		GetCurrentSpeedEstimate():	number;

		ShiftCrewWeightTo(weightToShift:	number,

locationId:	number);

}

I	would	really	like	a	much	simpler	interface	that	abstracts
away	all	the	fiddly	little	details.	Ideally	something	like	the
following:

interface	SimpleShip{

interface	SimpleShip{

		TurnLeft();

		TurnRight();

		GoForward();

}

This	looks	like	something	I	could	probably	figure	out
even	living	in	a	city	that	is	over	1000	kilometers	from	the
nearest	ocean.	In	short,	what	I'm	looking	for	is	a	higher-
level	abstraction	around	the	Ship.	In	order	to	transform	a
Ship	into	a	SimpleShip	we	need	an	adapter.

The	adapter	will	have	the	interface	of	SimpleShip	but	it
will	perform	actions	on	a	wrapped	instance	of	Ship.	The
code	might	look	something	like	this:

let	ShipAdapter	=	(function	()	{

		function	ShipAdapter()	{

				this._ship	=	new	Ship();

		}

		ShipAdapter.prototype.TurnLeft	=

function	()	{

				this._ship.SetRudderAngleTo(-30);

				this._ship.SetSailAngle(3,	12);

		};

		ShipAdapter.prototype.TurnRight	=

function	()	{

				this._ship.SetRudderAngleTo(30);

				this._ship.SetSailAngle(5,	-9);

		};

		ShipAdapter.prototype.GoForward	=

function	()	{

				//do	something	else	to	the	_ship

		};

		return	ShipAdapter;

})();

In	reality	these	functions	would	be	far	more	complex,	but
it	should	not	matter	much	because	we've	got	a	nice
simple	interface	to	present	to	the	world.	The	presented
interface	can	also	be	set	up	so	as	to	restrict	access	to
certain	methods	on	the	underlying	type.	When	building
library	code,	adapters	can	be	used	to	mask	the	internal
method	and	only	present	the	limited	functions	needed	to
the	end	user.

To	use	this	pattern,	the	code	might	look	like:

var	ship	=	new	ShipAdapter();

ship.GoForward();

ship.TurnLeft();

You	would	likely	not	want	to	use	adapter	in	the	name	of
your	client	class	as	it	leaks	some	information	about	the
underlying	implementation.	Clients	should	be	unaware
they	are	talking	to	an	adapter.

The	adapter	itself	can	grow	to	be	quite	complex	to	adjust
one	interface	to	another.	In	order	to	avoid	creating	very
complex	adapters,	care	must	be	taken.	It	is	certainly	not
inconceivable	to	build	several	adapters,	one	atop
another.	If	you	find	an	adapter	becoming	too	large	then	it
is	a	good	idea	to	stop	and	examine	if	the	adapter	is
following	the	single	responsibility	principle.	That	is	to
say,	ensure	that	each	class	has	only	one	thing	for	which
it	has	some	responsibility.	A	class	that	looks	up	users
from	a	database	should	not	also	contain	functionality	for
sending	e-mails	to	these	users.	That	is	too	much
responsibility.	Complex	adapters	can	be	replaced	with	a

composite	object,	which	will	be	explored	later	in	this
chapter.

From	the	testing	perspective,	adapters	can	be	used	to
totally	wrap	third	party	dependencies.	In	this	scenario
they	provide	a	place	into	which	to	hook	tests.	Unit	tests
should	avoid	testing	libraries	but	they	can	certainly	test
the	adapters	to	ensure	that	they	are	proxying	through	the
correct	calls.

The	adapter	is	a	very	powerful	pattern	for	simplifying
code	interfaces.	Massaging	interfaces	to	better	match	a
requirement	is	useful	in	countless	places.	The	pattern	is
certainly	useful	in	JavaScript.	Applications	written	in
JavaScript	tend	to	make	use	of	a	large	number	of	small
libraries.	By	wrapping	up	these	libraries	in	adapters	I'm
able	to	limit	the	number	of	places	I	interact	with	the
libraries	directly;	this	means	that	the	libraries	can	easily
be	replaced.

The	adapter	pattern	can	be	slightly	modified	to	provide
consistent	interfaces	over	a	number	of	different
implementations.	This	is	usually	known	as	the	bridge
pattern.

Bridge
The	bridge	pattern	takes	the	adapter	pattern	to	a	new
level.	Given	an	interface,	we	can	build	multiple	adapters,
each	one	of	which	acts	as	an	intermediary	to	a	different
implementation.

An	excellent	example	that	I've	run	across,	is	dealing	with
two	different	services	that	provide	more	or	less	the	same
functionality	and	are	used	in	a	failover	configuration.
Neither	service	provides	exactly	the	interface	required	by
the	application	and	both	services	provide	different	APIs.
In	order	to	simplify	the	code,	adapters	are	written	to
provide	a	consistent	interface.	The	adapters	implement	a
consistent	interface	and	provide	fills	so	that	each	API
can	be	called	consistently.	To	expand	on	the	shape
sorter	metaphor	a	bit	more,	we	can	imagine	that	we	have
a	variety	of	different	pegs	we	would	like	to	use	to	fill	the
square	hole.	Each	adapter	fills	in	the	missing	bits	and
helps	us	get	a	good	fit:

The	bridge	is	a	very	useful	pattern.	Let's	take	a	look	at
how	to	implement	it:

The	adapters	shown	in	the	preceding	diagram	sit
between	the	implementation	and	the	desired	interface.
They	modify	the	implementation	to	fit	in	with	the	desired
interface.

Implementation
We've	already	discussed	that	in	the	land	of	Westeros	the
people	practice	a	number	of	disparate	religions.	Each
one	has	a	different	way	of	praying	and	making	offerings.
There	is	a	lot	of	complexity	around	making	the	correct
prayers	at	the	correct	time	and	we	would	like	to	avoid
exposing	this	complexity.	Instead	we'll	write	a	series	of
adapters	that	can	simplify	prayers.

The	first	thing	we	need	is	a	number	of	different	gods	to
which	we	can	pray:

class	OldGods	{

		prayTo(sacrifice)	{

				console.log("We	Old	Gods	hear	your	

prayer");

		}

}

Religion.OldGods	=	OldGods;

class	DrownedGod	{

		prayTo(humanSacrifice)	{

				console.log("BUBBLE	GURGLE");

		}

}

Religion.DrownedGod	=	DrownedGod;

class	SevenGods	{

		prayTo(prayerPurpose)	{

				console.log("Sorry	there	are	a	lot	of	

us,	it	gets	confusing	here.	Did	you	pray	

for	something?");

		}

}

Religion.SevenGods	=	SevenGods;

These	classes	should	look	familiar	as	they	are	basically
the	same	classes	found	in	the	previous	chapter	where
they	were	used	as	examples	for	the	factory	method.	You
may	notice,	however,	that	the	signature	for	the	prayTo
method	for	each	religion	is	slightly	different.	This	proves
to	be	something	of	an	issue	when	building	a	consistent
interface	like	the	one	shown	in	pseudo	code	here:

interface	God

{

		prayTo():void;

}

So	let's	slot	in	a	few	adapters	to	act	as	a	bridge	between
the	classes	we	have	and	the	signature	we	would	like	the
following:

class	OldGodsAdapter	{

		constructor()	{

				this._oldGods	=	new	OldGods();

		}

		prayTo()	{

				let	sacrifice	=	new	Sacrifice();

				this._oldGods.prayTo(sacrifice);

		}

}

Religion.OldGodsAdapter	=	OldGodsAdapter;

class	DrownedGodAdapter	{

		constructor()	{

				this._drownedGod	=	new	DrownedGod();

		}

		prayTo()	{

		prayTo()	{

				let	sacrifice	=	new	HumanSacrifice();

				this._drownedGod.prayTo(sacrifice);

		}

}

Religion.DrownedGodAdapter	=

DrownedGodAdapter;

class	SevenGodsAdapter	{

		constructor()	{

				this.prayerPurposeProvider	=	new

PrayerPurposeProvider();

				this._sevenGods	=	new	SevenGods();

		}

		prayTo()	{

				

this._sevenGods.prayTo(this.prayerPurposeP

rovider.GetPurpose());

		}

}

Religion.SevenGodsAdapter	=

SevenGodsAdapter;

class	PrayerPurposeProvider	{

		GetPurpose()	{	}

		}

Religion.PrayerPurposeProvider	=

PrayerPurposeProvider;

Each	one	of	these	adapters	implements	the	God
interface	we	wanted	and	abstracts	away	the	complexity
of	dealing	with	three	different	interfaces,	one	for	each
god:

To	use	the	Bridge	pattern,	we	could	write	code	like	so:

let	god1	=	new

Religion.SevenGodsAdapter();

let	god2	=	new

Religion.DrownedGodAdapter();

let	god3	=	new	Religion.OldGodsAdapter();

	

let	gods	=	[god1,	god2,	god3];

for(let	i	=0;	i<gods.length;	i++){

		gods[i].praryTo();

}

This	code	uses	the	bridges	to	provide	a	consistent
interface	to	the	gods	such	that	they	can	all	be	treated	as
equals.

In	this	case	we	are	simply	wrapping	the	individual	gods
and	proxying	method	calls	through	to	them.	The
adapters	could	each	wrap	a	number	of	objects	and	this
is	another	useful	place	in	which	to	use	the	adapter.	If	a
complex	series	of	objects	needs	to	be	orchestrated,	then
an	adapter	can	take	some	responsibility	for	that
orchestration	providing	a	simpler	interface	to	other
classes.

You	can	imagine	how	useful	the	bridge	pattern	is.	It	can
be	used	well	in	conjunction	with	the	factory	method
pattern	presented	in	the	previous	chapter.

This	pattern	certainly	remains	a	very	useful	one	for	use
in	JavaScript.	As	I	mentioned	at	the	start	of	this	section,
it	is	handy	for	dealing	with	different	APIs	in	a	consistent
fashion.	I	have	used	it	for	swapping	in	different	third
party	components	such	as	different	graphing	libraries	or
phone	system	integration	points.	If	you're	building
applications	on	a	mobile	platform	using	JavaScript,	then
the	bridge	pattern	is	going	to	be	a	great	friend	for	you,
allowing	you	to	separate	your	common	and	platform

specific	code	cleanly.	Because	there	are	no	interfaces	in
JavaScript,	the	bridge	pattern	is	far	closer	to	the	adapter
in	JavaScript	than	in	other	languages.	In	fact,	it	is
basically	exactly	the	same.

A	bridge	also	makes	testing	easier.	We	are	able	to
implement	a	fake	bridge	and	use	this	to	ensure	that	the
calls	into	the	bridge	are	correct.

Composite
In	the	previous	chapter	I	mentioned	that	we	would	like	to
avoid	coupling	our	objects	together	tightly.	Inheritance	is
a	very	strong	form	of	coupling	and	I	suggested	that,
instead,	composites	should	be	used.	The	composite
pattern	is	a	special	case	of	this	in	which	the	composite	is
treated	as	interchangeable	with	the	components.	Let's
explore	how	the	composite	pattern	works.

The	following	class	diagram	contains	two	different	ways
to	build	a	composite	component:

In	the	first	one,	the	composite	component	is	built	from	a
fixed	number	of	a	variety	of	components.	The	second
component	is	constructed	from	a	collection	of
indeterminate	length.	In	both	cases	the	components
contained	within	the	parent	composition	could	be	of	the
same	type	as	the	composition.	So	a	composition	may

contain	instances	of	its	own	type.

The	key	feature	of	the	composite	pattern	is	the
interchangeability	of	a	component	with	its	children.	So,	if
we	have	a	composite	which	implements	IComponent,
then	all	of	the	components	of	the	composite	will	also
implement	IComponent.	This	is,	perhaps,	best
illustrated	with	an	example.

Example
Tree	structures	are	very	useful	in	computing.	It	turns	out
that	a	hierarchical	tree	can	represent	many	things.	A	tree
is	made	up	of	a	series	of	nodes	and	edges	and	is	a
cyclical.	In	a	binary	tree,	each	node	contains	a	left	and
right	child	until	we	get	down	to	the	terminal	nodes	known
as	leaves.

While	life	is	difficult	in	Westeros	there	is	an	opportunity
for	taking	joy	in	things	like	religious	holidays	or
weddings.	At	these	events	there	is	typically	a	great	deal
of	feasting	on	delicious	foods.	The	recipes	for	these
foods	is	much	as	you	would	find	in	your	own	set	of
recipes.	A	simple	dish	like	baked	apples	contains	a	list	of
ingredients:

Baking	apple

Honey

Butter

Nuts

Each	one	of	these	ingredients	implements	an	interface
which	we'll	refer	to	as	IIngredient.	More	complex
recipes	contain	more	ingredients,	but	in	addition	to	that,
more	complex	recipes	may	contain	complex	ingredients
that	are	themselves	made	from	other	ingredients.

A	popular	dish	in	a	southern	part	of	Westeros	is	a
dessert	which	is	not	at	all	unlike	what	we	would	call
tiramisu.	It	is	a	complex	recipe	with	ingredients	such	as:

Custard

Cake

Whipped	cream

Coffee

Of	course	custard	itself	is	made	from:

Milk

Sugar

Eggs

Vanilla

Custard	is	a	composite	as	is	coffee	and	cake.

Operations	on	the	composite	object	are	typically	proxied
through	to	all	of	the	contained	objects.

Implementation
A	simple	ingredient,	one	which	would	be	a	leaf	node,	is
shown	in	this	code:

class	SimpleIngredient	{

class	SimpleIngredient	{

		constructor(name,	calories,	ironContent,

vitaminCContent)	{

				this.name	=	name;

				this.calories	=	calories;

				this.ironContent	=	ironContent;

				this.vitaminCContent	=

vitaminCContent;

		}

		GetName()	{

				return	this.name;

		}

		GetCalories()	{

				return	this.calories;

		}

		GetIronContent()	{

				return	this.ironContent;

		}

		GetVitaminCContent()	{

				return	this.vitaminCContent;

		}

}

It	can	be	used	interchangeably	with	a	compound
ingredient	which	has	a	list	of	ingredients:

class	CompoundIngredient	{

		constructor(name)	{

				this.name	=	name;

				this.ingredients	=	new	Array();

		}

		AddIngredient(ingredient)	{

				this.ingredients.push(ingredient);

		}

		GetName()	{

				return	this.name;

		}

		GetCalories()	{

				let	total	=	0;

				for	(let	i	=	0;	i	<	

this.ingredients.length;	i++)	{

						total	+=	

this.ingredients[i].GetCalories();

				}

				return	total;

		}

		GetIronContent()	{

				let	total	=	0;

				for	(let	i	=	0;	i	<	

this.ingredients.length;	i++)	{

						total	+=	

this.ingredients[i].GetIronContent();

				}

				return	total;

		}

		GetVitaminCContent()	{				let	total	=	0;

				for	(let	i	=	0;	i	<	

this.ingredients.length;	i++)	{

						total	+=	

this.ingredients[i].GetVitaminCContent();

				}

				return	total;

		}

}

The	composite	ingredient	loops	over	its	internal
ingredients	and	performs	the	same	operation	on	each	of
them.	There	is,	of	course,	no	need	to	define	an	interface
due	to	the	prototype	model.

To	make	use	of	this	compound	ingredient	we	might	do:

let	egg	=	new	SimpleIngredient("Egg",	155,

6,	0);

let	milk	=	new	SimpleIngredient("Milk",

42,	0,	0);

let	sugar	=	new	SimpleIngredient("Sugar",

387,	0,0);

let	rice	=	new	SimpleIngredient("Rice",

let	rice	=	new	SimpleIngredient("Rice",

370,	8,	0);

	

let	ricePudding	=	new

CompoundIngredient("Rice	Pudding");

ricePudding.AddIngredient(egg);

ricePudding.AddIngredient(rice);

ricePudding.AddIngredient(milk);

ricePudding.AddIngredient(sugar);

	

console.log("A	serving	of	rice	pudding

contains:");

console.log(ricePudding.GetCalories()	+	"

calories");

Of	course	this	only	shows	part	of	the	power	of	the
pattern.	We	could	use	rice	pudding	as	an	ingredient	in
an	even	more	complicated	recipe:	rice	pudding	stuffed
buns	(they	have	some	strange	foods	in	Westeros).	As
both	the	simple	and	compound	version	of	the	ingredient
have	the	same	interface,	the	caller	does	not	need	to
know	that	there	is	any	difference	between	the	two
ingredient	types.

Composite	is	a	heavily	used	pattern	in	JavaScript	code
that	deals	with	HTML	elements,	as	they	are	a	tree
structure.	For	example,	the	jQuery	library	provides	a
common	interface	if	you	have	selected	a	single	element
or	a	collection	of	elements.	When	a	function	is	called	it	is
actually	called	on	all	the	children,	for	instance:

$("a").hide()

This	will	hide	all	the	links	on	a	page	regardless	of	how
many	elements	are	actually	found	by	calling	$("a").

The	composite	is	a	very	useful	pattern	for	JavaScript
development.

Decorator
The	decorator	pattern	is	used	to	wrap	and	augment	an
existing	class.	Using	a	decorator	pattern	is	an	alternative
to	subclassing	an	existing	component.	Subclassing	is
typically	a	compile	time	operation	and	is	a	tight	coupling.
This	means	that	once	subclassing	is	performed,	there	is
no	way	to	alter	it	at	runtime.	In	cases	where	there	are
many	possible	subclassings	that	can	act	in	combination,
the	number	of	combinations	of	subclassings	explodes.
Let's	look	at	an	example.

The	armor	worn	by	knights	in	Westeros	can	be	quite
configurable.	Armor	can	be	fabricated	in	a	number	of
different	styles:	scale,	lamellar,	chainmail,	and	so	on.	In
addition	to	the	style	of	armor,	there	is	also	a	variety	of
different	face	guards,	knee,	and	elbow	joints,	and,	of
course,	colors.	The	behavior	of	armor	made	from
lamellar	and	a	grille	is	different	from	chainmail	with	a
face	visor.	You	can	see,	however,	that	there	is	a	large
number	of	possible	combinations;	far	too	many
combinations	to	explicitly	code.

What	we	do	instead	is	implement	the	different	styles	of
armor	using	the	decorator	pattern.	A	decorator	works
using	a	similar	theory	to	the	adapter	and	bridge	patterns,
in	that	it	wraps	another	instance	and	proxy	calls	through.
The	decorator	pattern,	however,	performs	the
redirections	at	runtime	by	having	the	instance	to	wrap

passed	into	it.	Typically,	a	decorator	will	act	as	a	simple
pass	through	for	some	methods	and	for	others	it	will
make	some	modifications.	These	modifications	could	be
limited	to	performing	an	additional	action	before	passing
the	call	off	to	the	wrapped	instance	or	could	go	so	far	as
to	change	the	parameters	passed	in.	A	UML
representation	of	the	decorator	pattern	looks	like	the
following	diagram:

This	allows	for	very	granular	control	over	which	methods
are	altered	by	the	decorator	and	which	remain	as	mere
pass-through.	Let's	take	a	look	at	an	implementation	of
the	pattern	in	JavaScript.

Implementation
In	this	code	we	have	a	base	class,	BasicArmor,	and	it
is	then	decorated	by	the	ChainMail	class:

class	BasicArmor	{

		CalculateDamageFromHit(hit)	{

				return	hit.Strength		.2;

		}

		GetArmorIntegrity()	{

				return	1;

		}

}

class	ChainMail	{

		constructor(decoratedArmor)	{

				this.decoratedArmor	=	decoratedArmor;

		}

		CalculateDamageFromHit(hit)	{

				hit.Strength	=	hit.Strength		.8;

				return	

this.decoratedArmor.CalculateDamageFromHit

(hit);

		}

		GetArmorIntegrity()	{

				return	.9	*	

this.decoratedArmor.GetArmorIntegrity();

		}

}

The	ChainMail	armor	takes	in	an	instance	of	armor
that	complies	with	an	interface,	such	as:

export	interface	IArmor{

		CalculateDamageFromHit(hit:	Hit):number;

		GetArmorIntegrity():number;

}

That	instance	is	wrapped	and	calls	proxied	through.	The
method	GetArmorIntegiry	modifies	the	result	from
the	underlying	class	while	CalculateDamageFromHit
modifies	the	arguments	that	are	passed	into	the
decorated	class.	This	ChainMail	class	could,	itself,	be
decorated	with	several	more	layers	of	decorators	until	a

long	chain	of	methods	is	actually	called	for	each	method
call.	This	behavior,	of	course,	remains	invisible	to
outside	callers.

To	make	use	of	this	armor	decorator,	look	at	the
following	code:

let	armor	=	new	ChainMail(new

Westeros.Armor.BasicArmor());

console.log(armor.CalculateDamageFromHit({

Location:	"head",	Weapon:	"Sock	filled

with	pennies",	Strength:	12}));

It	is	tempting	to	make	use	of	JavaScript's	ability	to
rewrite	individual	methods	on	classes	to	implement	this
pattern.	Indeed,	in	an	earlier	draft	of	this	section	I	had
intended	to	suggest	just	that.	However,	doing	so	is
syntactically	messy	and	not	a	common	way	of	doing
things.	One	of	the	most	important	things	to	keep	in	mind
when	programming	is	that	code	must	be	maintainable,
not	only	by	you	but	also	by	others.	Complexity	breeds
confusion	and	confusion	breeds	bugs.

The	decorator	pattern	is	a	valuable	pattern	for	scenarios
where	inheritance	is	too	limiting.	These	scenarios	still
exist	in	JavaScript,	so	the	pattern	remains	useful.

Façade
The	façade	pattern	is	a	special	case	of	the	Adapter
pattern	that	provides	a	simplified	interface	over	a
collection	of	classes.	I	mentioned	such	a	scenario	in	the
section	on	the	adapter	pattern	but	only	within	the	context
of	a	single	class,	SimpleShip.	This	same	idea	can	be
expanded	to	provide	an	abstraction	around	a	group	of
classes	or	an	entire	subsystem.	The	façade	pattern	in
UML	form	looks	like	the	following	diagram:

Implementation
If	we	take	the	same	SimpleShip	as	before	and	expand
it	to	an	entire	fleet,	we	have	a	great	example	of	a	use	for
creating	a	façade.	If	it	was	difficult	to	sail	a	single	ship	it
would	be	far	more	difficult	to	command	an	entire	fleet	of
ships.	There	is	a	great	deal	of	nuance	required,

commands	to	individual	ships	would	have	to	be	made.	In
addition	to	the	individual	ships	there	must	also	be	a	fleet
Admiral	and	a	degree	of	coordination	between	the	ships
in	order	to	distribute	supplies.	All	of	this	can	be
abstracted	away.	If	we	have	a	collection	of	classes
representing	the	aspects	of	a	fleet	such	as	these:

let	Ship	=	(function	()	{

		function	Ship()	{

		}

		Ship.prototype.TurnLeft	=	function	()	{

		};

		Ship.prototype.TurnRight	=	function	()	{

		};

		Ship.prototype.GoForward	=	function	()	{

		};

		return	Ship;

})();

Transportation.Ship	=	Ship;

	

let	Admiral	=	(function	()	{

		function	Admiral()	{

		}

		return	Admiral;

})();

Transportation.Admiral	=	Admiral;

	

let	SupplyCoordinator	=	(function	()	{

		function	SupplyCoordinator()	{

		}

		return	SupplyCoordinator;

})();

Transportation.SupplyCoordinator	=

SupplyCoordinator;

Then	we	might	build	a	façade	as	follows:

let	Fleet	=	(function	()	{

			function	Fleet()	{

		}

		Fleet.prototype.setDestination	=	

function	(destination)	{

				//pass	commands	to	a	series	of	ships,	

admirals	and	whoever	else	needs	it

		};

		Fleet.prototype.resupply	=	function	()	{

		};

		Fleet.prototype.attack	=	function	

(destination)	{

				//attack	a	city

		};

		return	Fleet;

})();

Façades	are	very	useful	abstractions,	especially	in
dealing	with	APIs.	Using	a	façade	around	a	granular	API
can	create	an	easier	interface.	The	level	of	abstraction	at
which	the	API	works	can	be	raised	so	that	it	is	more	in
sync	with	how	your	application	works.	For	instance,	if
you're	interacting	with	the	Azure	blob	storage	API	you
could	raise	the	level	of	abstraction	from	working	with
individual	files	to	working	with	collections	of	files.	Instead
of	writing	the	following:

$.ajax({method:	"PUT",

url:

"https://settings.blob.core.windows.net/co

ntainer/set1",

data:	"setting	data	1"});

	

$.ajax({method:	"PUT",

url:

"https://settings.blob.core.windows.net/co

ntainer/set2",

data:	"setting	data	2"});

	

$.ajax({method:	"PUT",

url:

"https://settings.blob.core.windows.net/co

ntainer/set3",

data:	"setting	data	3"});

A	façade	could	be	written	which	encapsulates	all	of
these	calls	and	provides	an	interface,	like:

public	interface	SettingSaver{

		Save(settings:	Settings);	//preceding

code	in	this	method

		Retrieve():Settings;

}

As	you	can	see	façades	remain	useful	in	JavaScript	and
should	be	a	pattern	that	remains	in	your	toolbox.

Flyweight
In	boxing	there	is	a	light	weight	division	between	49-52
kg	known	as	the	flyweight	division.	It	was	one	of	the	last
divisions	to	be	established	and	was	named,	I	imagine,
for	the	fact	that	the	fighters	in	it	were	tiny,	like	flies.

The	flyweight	pattern	is	used	in	instances	when	there	are
a	large	number	of	instances	of	objects	which	vary	only
slightly.	I	should	perhaps	pause	here	to	mention	that	a
large	number,	in	this	situation,	is	probably	in	the	order	of
10,000	objects	rather	than	50	objects.	However,	the
cutoff	for	the	number	of	instances	is	highly	dependent	on
how	expensive	the	object	is	to	create.

In	some	cases,	the	object	may	be	so	expensive	that	only
a	handful	are	required	before	they	overload	the	system.
In	this	case	introducing	flyweight	at	a	smaller	number
would	be	beneficial.	Maintaining	a	full	object	for	each
object	consumes	a	lot	of	memory.	It	seems	that	the
memory	is	largely	consumed	wastefully	too,	as	most	of
the	instances	have	the	same	value	for	their	fields.
Flyweight	offers	a	way	to	compress	this	data	by	only
keeping	track	of	the	values	that	differ	from	some
prototype	in	each	instance.

JavaScript's	prototype	model	is	ideal	for	this	scenario.
We	can	simply	assign	the	most	common	value	to	the
prototype	and	have	individual	instances	override	them	as

needed.	Let's	see	how	that	looks	with	an	example.

Implementation
Returning	once	more	to	Westeros	(aren't	you	glad	I've
opted	for	a	single	overarching	problem	domain?)	we	find
that	armies	are	full	of	ill-equipped	fighting	people.	Within
this	set	of	people	there	is	really	very	little	difference	from
the	perspective	of	the	generals.	Certainly	each	person
has	their	own	life,	ambitions,	and	dreams	but	they	have
all	been	adapted	into	simple	fighting	automatons	in	the
eyes	of	the	general.	The	general	is	only	concerned	with
how	well	the	soldiers	fight,	if	they're	healthy,	and	if
they're	well	fed.	We	can	see	the	simple	set	of	fields	in
this	code:

let	Soldier	=	(function	()	{

		function	Soldier()	{

				this.Health	=	10;

				this.FightingAbility	=	5;

				this.Hunger	=	0;

		}

		return	Soldier;

})();

Of	course,	with	an	army	of	10,000	soldiers,	keeping	track
of	all	of	this	requires	quite	some	memory.	Let's	take	a
different	approach	and	use	a	class:

class	Soldier	{

		constructor()	{

				this.Health	=	10;

				this.FightingAbility	=	5;

				this.Hunger	=	0;

		}

		}

}

Using	this	approach,	we	are	able	to	defer	all	requests	for
the	soldier's	health	to	the	prototype.	Setting	the	value	is
easy	too:

let	soldier1	=	new	Soldier();

let	soldier2	=	new	Soldier();

console.log(soldier1.Health);	//10

soldier1.Health	=	7;

console.log(soldier1.Health);	//7

console.log(soldier2.Health);	//10

delete	soldier1.Health;

console.log(soldier1.Health);	//10

You'll	note	that	we	make	a	call	to	delete	to	remove	the
property	override	and	return	the	value	back	to	the	parent
value.

Proxy
The	final	pattern	presented	in	this	chapter	is	the	proxy.	In
the	previous	section	I	mentioned	how	it	is	expensive	to
create	objects	and	how	we	would	like	to	avoid	creating
too	many	of	them.	The	proxy	pattern	provides	a	method
of	controlling	the	creation	and	use	of	expensive	objects.
The	UML	of	the	proxy	pattern	looks	like	the	following
diagram:

As	you	can	see,	the	proxy	mirrors	the	interface	of	the
actual	instance.	It	is	substituted	in	for	the	instance	in	all
the	clients	and,	typically,	wraps	a	private	instance	of	the
class.	There	are	a	number	of	places	where	the	proxy
pattern	can	be	of	use:

Lazy	instantiation	of	an	expensive	object

Protection	of	secret	data

Stubbing	for	remote	method	invocation

Interposing	additional	actions	before	or	after	method	invocation

Often	an	object	is	expensive	to	instantiate	and	we	don't
want	to	have	instances	created	before	they're	actually
used.	In	this	case	the	proxy	can	check	its	internal
instance	and,	if	not	yet	initiated,	create	it	before	passing
on	the	method	call.	This	is	known	as	lazy	instantiation.

If	a	class	has	been	designed	without	any	security	in	mind
but	now	requires	some,	this	can	be	provided	through	the
use	of	a	proxy.	The	proxy	will	check	the	call	and	only
pass	on	the	method	call	in	cases	where	the	security
checks	out.

The	proxy	may	be	used	to	simply	provide	an	interface	to
methods	that	are	invoked	somewhere	else.	In	fact,	this	is
exactly	how	a	number	of	web	socket	libraries	function,
proxying	calls	back	to	the	web	server.

Finally,	there	may	be	cases	where	it	is	useful	to
interpose	some	functionality	into	the	method	invocation.
This	could	be	logging	of	parameters,	validating	of
parameters,	altering	results,	or	any	number	of	things.

Implementation
Let's	take	a	look	at	a	Westeros	example	where	method
interposition	is	needed.	As	tends	to	happen,	the	units	of
measurement	for	liquids	vary	greatly	from	one	side	of	the
land	to	the	other.	In	the	north,	one	might	buy	a	pint	of
beer,	while	in	the	south,	one	would	buy	it	by	the	dragon.

This	causes	no	end	of	confusion	and	code	duplication,
but	can	be	solved	by	wrapping	classes	that	care	about
measurement	in	proxies.

For	example,	this	code	is	for	a	barrel	calculator	which
estimates	the	number	of	barrels	needed	to	ship	a
quantity	of	liquid:

class	BarrelCalculator	{

		calculateNumberNeeded(volume)	{

				return	Math.ceil(volume	/	157);

		}

}

Although	it	is	not	well	documented,	here	this	version
takes	pints	as	a	volume	parameter.	A	proxy	is	created
which	deals	with	the	transformation	thusly:

class	DragonBarrelCalculator	{

		calculateNumberNeeded(volume)	{

				if	(this._barrelCalculator	==	null)

						this._barrelCalculator	=	new

BarrelCalculator();

				return

this._barrelCalculator.calculateNumberNeed

ed(volume	*	.77);

		}

}

Equally	we	might	create	another	proxy	for	a	pint-based
barrel	calculator:

class	PintBarrelCalculator	{

		calculateNumberNeeded(volume)	{

				if	(this._barrelCalculator	==	null)

						this._barrelCalculator	=	new

						this._barrelCalculator	=	new

BarrelCalculator();

				return

this._barrelCalculator.calculateNumberNeed

ed(volume	*	1.2);

		}

}

This	proxy	class	does	the	unit	conversion	for	us	and
helps	alleviate	some	confusion	around	units.	Some
languages,	such	as	F#,	support	the	concept	of	units	of
measure.	In	effect	it	is	a	typing	system	which	is	overlaid
over	simple	data	types	such	as	integers,	preventing
programmers	from	making	mistakes	such	as	adding	a
number	representing	pints	to	one	representing	liters.	Out
of	the	box	in	JavaScript	there	is	no	such	capability.
Using	a	library	such	as	JS-Quantities
(http://gentooboontoo.github.io/js-quantities/)	is	an	option
however.	If	you	look	at	it,	you'll	see	the	syntax	is	quite
painful.	This	is	because	JavaScript	doesn't	permit
operator	overloading.	Having	seen	how	weird	adding
things	such	as	an	empty	array	to	an	empty	array	are	(it
results	in	an	empty	string),	I	think	perhaps	we	can	be
thankful	that	operator	overloading	isn't	supported.

If	we	wanted	to	protect	against	accidentally	using	the
wrong	sort	of	calculator	when	we	have	pints	and	think
we	have	dragons,	then	we	could	stop	with	our	primitive
obsession	and	use	a	type	for	the	quantity,	a	sort	of	poor
person's	units	of	measure:

class	PintUnit	{

		constructor(unit,	quantity)	{

				this.quanity	=	quantity;

http://gentooboontoo.github.io/js-quantities/

		}

}

This	can	then	be	used	as	a	guard	in	the	proxy:

class	PintBarrelCalculator	{

		calculateNumberNeeded(volume)	{

				if(PintUnit.prototype	==

Object.getPrototypeOf(volume))

						//throw	some	sort	of	error	or

compensate

				if	(this._barrelCalculator	==	null)

						this._barrelCalculator	=	new

BarrelCalculator();

				return

this._barrelCalculator.calculateNumberNeed

ed(volume	*	1.2);

		}

}

As	you	can	see,	we	end	up	with	pretty	much	what	JS-
Quantities	does	but	in	a	more	ES6	form.

The	proxy	is	absolutely	a	useful	pattern	within
JavaScript.	I	already	mentioned	that	it	is	used	by	web
socket	libraries	when	generating	stubs	but	it	finds	itself
useful	in	countless	other	locations.

Hints	and	tips
Many	of	the	patterns	presented	in	this	chapter	provide
methods	of	abstracting	functionality	and	of	molding
interfaces	to	look	the	way	you	want.	Keep	in	mind	that
with	each	layer	of	abstraction	a	cost	is	introduced.
Function	calls	take	longer	but	it	is	also	much	more
confusing	for	people	who	need	to	understand	your	code.
Tooling	can	help	a	little	but	tracking	a	function	call
through	nine	layers	of	abstraction	is	never	fun.

Also	be	wary	of	doing	too	much	in	the	façade	pattern.	It
is	very	easy	to	turn	the	façade	into	a	fully-fledged
management	class	and	that	degrades	easily	into	a	God
object	that	is	responsible	for	coordinating	and	doing
everything.

Summary
In	this	chapter	we've	looked	at	a	number	of	patterns
used	to	structure	the	interaction	between	objects.	Some
of	them	are	quite	similar	to	each	other	but	they	are	all
useful	in	JavaScript,	although	the	bridge	is	effectively
reduced	to	an	adapter.	In	the	next	chapter	we'll	finish	our
examination	of	the	original	GoF	patterns	by	looking	at
behavioral	patterns.

Chapter	5.	Behavioral
Patterns
In	the	last	chapter	we	looked	at	structural	patterns	that
describe	ways	in	which	objects	can	be	constructed	to
ease	interaction.

In	this	chapter	we'll	take	a	look	at	the	final,	and	largest,
grouping	of	GoF	patterns:	behavioral	patterns.	These
patterns	are	ones	that	provide	guidance	on	how	objects
share	data	or,	from	a	different	perspective,	how	data
flows	between	objects.

The	patterns	we'll	look	at	are	as	follows:

Chain	of	responsibility

Command

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy

Template	method

Visitor

Once	again	there	are	a	number	of	more	recently

identified	patterns	that	could	well	be	classified	as
behavioral	patterns.	We'll	defer	looking	at	those	until	a
later	chapter,	instead	keeping	to	the	GoF	patterns.

Chain	of	responsibility
We	can	think	of	a	function	call	on	an	object	as	sending
that	object	a	message.	Indeed	this	message	passing
mentality	is	one	that	dates	back	to	the	days	of	Smalltalk.
The	chain	of	responsibility	pattern	describes	an
approach	in	which	a	message	tickles	down	from	one
class	to	another.	A	class	can	either	act	on	the	message
or	allow	it	to	be	passed	on	to	the	next	member	of	the
chain.	Depending	on	the	implementation	there	are	a	few
different	rules	that	can	be	applied	to	the	message
passing.	In	some	situations	only	the	first	matching	link	in
the	chain	is	permitted	to	act.	In	others,	every	matching
link	acts	on	the	message.	Sometimes	the	links	are
permitted	to	stop	processing	or	even	to	mutate	the
message	as	it	continues	down	the	chain:

Let's	see	if	we	can	find	a	good	example	of	this	pattern	in
our	go-to	example:	the	land	of	Westeros.

Implementation
There	is	very	little	in	the	way	of	a	legal	system	in
Westeros.	Certainly	there	are	laws	and	even	city	guards
who	enforce	them	but	the	judicial	system	is	scant.	The
law	of	the	land	is	really	decided	by	the	king	and	his
advisors.	Those	with	the	time	and	money	can	petition	for
an	audience	with	the	king	who	will	listen	to	their
complaint	and	pass	a	ruling.	This	ruling	is	law.	Of	course

any	king	who	spent	his	entire	day	listening	to	the
complaints	of	peasants	would	go	mad.	For	this	reason
many	of	the	cases	are	caught	and	solved	by	his	advisors
before	they	reach	his	ears.

To	represent	this	in	code	we'll	need	to	start	by	thinking
about	how	the	chain	of	responsibility	would	work.	A
complaint	comes	in	and	it	starts	with	the	lowest	possible
person	who	can	solve	it.	If	that	person	cannot	or	will	not
solve	the	problem	it	tickles	up	to	a	more	senior	member
of	the	ruling	class.	Eventually	the	problem	reaches	the
king	who	is	the	final	arbiter	of	disputes.	We	can	think	of
him	as	the	default	dispute	solver	who	is	called	upon
when	all	else	fails.	The	chain	of	responsibility	is	visible	in
the	following	diagram:

We'll	start	with	an	interface	to	describe	those	who	might
listen	to	complaints:

export	interface	ComplaintListener{

		IsAbleToResolveComplaint(complaint:

Complaint):	boolean;

		ListenToComplaint(complaint:	Complaint):

string;

}

The	interface	requires	two	methods.	The	first	is	a	simple
check	to	see	if	the	class	is	able	to	resolve	a	given
complaint.	The	second	listens	to	and	resolves	the
complaint.	Next	we'll	need	to	describe	what	constitutes	a
complaint:

var	Complaint	=	(function	()	{

		function	Complaint()	{

				this.ComplainingParty	=	"";

				this.ComplaintAbout	=	"";

				this.Complaint	=	"";

		}

		return	Complaint;

})();

Next	we	need	a	couple	of	different	classes	which
implement	ComplaintListener	and	are	able	to	solve
complaints:

class	ClerkOfTheCourt	{

		IsInterestedInComplaint(complaint)	{

				//decide	if	this	is	a	complaint	which

can	be	solved	by	the	clerk

				if(isInterested())

						return	true;

				return	false;

		}

		ListenToComplaint(complaint)	{

				//perform	some	operation

				//return	solution	to	the	complaint

				return	"";

		}

}

JudicialSystem.ClerkOfTheCourt	=

ClerkOfTheCourt;

class	King	{

		IsInterestedInComplaint(complaint)	{

				return	true;//king	is	the	final	member

				return	true;//king	is	the	final	member

in	the	chain	so	must	return	true

		}

		ListenToComplaint(complaint)	{

				//perform	some	operation

				//return	solution	to	the	complaint

				return	"";

		}

}

JudicialSystem.King	=	King;

Each	one	of	these	classes	implements	a	different
approach	to	solving	the	complaint.	We	need	to	chain
them	together	making	sure	that	the	king	is	in	the	default
position.	This	can	be	seen	in	this	code:

class	ComplaintResolver	{

		constructor()	{

				this.complaintListeners	=	new	Array();

					this.complaintListeners.push(new

ClerkOfTheCourt());

					this.complaintListeners.push(new

King());

		}

		ResolveComplaint(complaint)	{

				for	(var	i	=	0;	i	<

this.complaintListeners.length;	i++)	{

						if

(this.complaintListeners[i].IsInterestedIn

Complaint(complaint))	{

								return

this.complaintListeners[i].ListenToComplai

nt(complaint);

						}

				}

		}

}

This	code	will	work	its	way	through	each	of	the	listeners
until	it	finds	one	that	is	interested	in	hearing	the
complaint.	In	this	version	the	result	is	returned
immediately,	halting	any	further	processing.	There	are
variations	of	this	pattern	in	which	multiple	listeners	could
fire,	even	allowing	the	listeners	to	mutate	the	parameters
for	the	next	listener.	The	following	diagram	shows
multiple	listeners	configured:

Chain	of	responsibility	is	a	highly	useful	pattern	in
JavaScript.	In	browser-based	JavaScript	the	events	that
fire	fall	through	a	chain	of	responsibility.	For	instance	you
can	attach	multiple	listeners	to	the	click	event	on	a	link
and	each	of	them	will	fire	and	then,	finally,	the	default
navigation	listener.	It	is	likely	that	you're	using	chain	of
responsibility	in	much	of	your	code	without	even	knowing

it.

Command
The	command	pattern	is	a	method	of	encapsulating	both
the	parameters	to	a	method,	as	well	as	the	current	object
state,	and	which	method	is	to	be	called.	In	effect	the
command	pattern	packs	up	everything	needed	to	call	a
method	at	a	later	date	into	a	nice	little	package.	Using
this	approach	one	can	issue	a	command	and	wait	until	a
later	date	to	decide	which	piece	of	code	will	execute	the
command.	This	package	can	then	be	queued	or	even
serialized	for	later	execution.	Having	a	single	point	of
command	execution	also	allows	for	easily	adding
functionality	such	as	undo	or	command	logging.

This	pattern	can	be	a	bit	difficult	to	imagine	so	let's	break
it	down	into	its	components:

Command	message
The	first	component	of	the	command	pattern	is,
predictably,	the	command	itself.	As	I	mentioned,	the
command	encapsulates	everything	needed	to	invoke	a
method.	This	includes	the	method	name,	the
parameters,	and	any	global	state.	As	you	can	imagine
keeping	track	of	global	state	in	each	command	is	very
difficult.	What	happens	if	the	global	state	changes	after
the	command	has	been	created?	This	dilemma	is	yet
another	reason	why	using	a	global	state	is	problematic
and	should	be	avoided.

There	are	a	couple	of	options	for	setting	up	commands.
At	the	simple	end	of	the	scale	all	that	is	needed	is	to
track	a	function	and	a	set	of	parameters.	Because
functions	are	first	class	objects	in	JavaScript,	they	can
easily	be	saved	into	an	object.	We	can	also	save	the
parameters	to	the	function	into	a	simple	array.	Let's	build
a	command	using	this	very	simple	approach.

The	deferred	nature	of	commands	suggests	an	obvious
metaphor	in	the	land	of	Westeros.	There	are	no	methods
of	communicating	quickly	in	Westeros.	The	best	method
is	to	attach	small	messages	to	birds	and	release	them.
The	birds	have	a	tendency	to	want	to	return	to	their
homes,	so	each	lord	raises	a	number	of	birds	in	their
home	and,	when	they	come	of	age,	sends	them	to	other
lords	who	might	wish	to	communicate	with	them.	The
lords	keep	an	aviary	of	birds	and	retain	records	of	which
bird	will	travel	to	which	other	lord.	The	king	of	Westeros
sends	many	of	his	commands	to	his	loyal	lords	through
this	method.

The	commands	sent	by	the	king	contain	all	necessary
instructions	for	the	lords.	The	command	may	be
something	like	bring	your	troops	and	the	arguments	to
that	command	may	be	a	number	of	troops,	a	location,
and	a	date	by	which	the	command	must	be	carried	out.

In	JavaScript	the	simplest	way	of	representing	this	is
through	an	array:

var	simpleCommand	=	new	Array();

simpleCommand.push(new

simpleCommand.push(new

LordInstructions().BringTroops);

simpleCommand.push("King's	Landing");

simpleCommand.push(500);

simpleCommand.push(new	Date());

This	array	can	be	passed	around	and	invoked	at	will.	To
invoke	it,	a	generic	function	can	be	used:

simpleCommand[0](simpleCommand[1],

simpleCommand[2],	simpleCommand[3]);

As	you	can	see,	this	function	only	works	for	commands
with	three	arguments.	You	can,	of	course,	expand	this	to
any	number:

simpleCommand[0](simpleCommand[1],

simpleCommand[2],	simpleCommand[3],

simpleCommand[4],	simpleCommand[5],

simpleCommand[6]);

The	additional	parameters	are	undefined,	but	the
function	doesn't	use	them	so	there	are	no	ill	effects.	Of
course,	this	is	not	at	all	an	elegant	solution.

It	is	desirable	to	build	a	class	for	each	sort	of	command.
This	allows	you	to	ensure	the	correct	arguments	have
been	supplied	and	easily	distinguish	the	different	sorts	of
commands	in	a	collection.	Typically,	commands	are
named	using	the	imperative,	as	they	are	instructions.
Examples	of	this	are	BringTroops,	Surrender,
SendSupplies,	and	so	on.

Let's	transform	our	ugly	simple	command	into	a	proper

class:

class	BringTroopsCommand	{

		constructor(location,	numberOfTroops,

when)	{

				this._location	=	location;

				this._numberOfTroops	=	numberOfTroops;

				this._when	=	when;

		}

		Execute()	{

				var	receiver	=	new	LordInstructions();

				receiver.BringTroops(this._location,

this._numberOfTroops,	this._when);

		}

}

We	may	wish	to	implement	some	logic	to	ensure	that	the
parameters	passed	into	the	constructor	are	correct.	This
will	ensure	that	the	command	fails	on	creation	instead	of
on	execution.	It	is	easier	to	debug	the	issue	during
creation	rather	than	during	execution	as	execution	could
be	delayed,	even	for	days.	The	validation	won't	be
perfect,	but	even	if	it	catches	only	a	small	portion	of	the
errors	it	is	helpful.

As	mentioned	these	commands	can	be	saved	for	later
use	in	memory	or	even	written	to	disk.

Invoker
The	invoker	is	the	part	of	the	command	pattern	which
instructs	the	command	to	execute	its	instructions.	The
invoker	can	really	be	anything:	a	timed	event,	a	user
interaction,	or	just	the	next	step	in	the	process	may	all

trigger	invocation.	When	we	executed	the
simpleCommand	command	in	the	preceding	section,	we
were	playing	at	being	the	invoker.	In	a	more	rigorous
command	the	invoker	might	look	something	like	the
following:

command.Execute()

As	you	can	see,	invoking	a	command	is	very	easy.
Commands	may	be	invoked	at	once	or	at	some	later
date.	One	popular	approach	is	to	defer	the	execution	of
the	command	to	the	end	of	the	event	loop.	This	can	be
done	in	a	node	with:

process.nextTick(function()

{command.Execute();});

The	function	process.nextTick	defers	the	execution
of	a	command	to	the	end	of	the	event	loop	such	that,	if	it
is	executed	next	time	the	process	has	nothing	to	do.

Receiver
The	final	component	in	the	command	pattern	is	the
receiver.	This	is	the	target	of	the	command	execution.	In
our	example	we	created	a	receiver	called
LordInstructions:

class	LordInstructions	{

		BringTroops(location,	numberOfTroops,

when)	{

				console.log(`You	have	been	instructed

to	bring	${numberOfTroops}	troops	to

to	bring	${numberOfTroops}	troops	to

${location}	by	${when}`);

		}

}

The	receiver	knows	how	to	perform	the	action	that	the
command	has	deferred.	There	need	not	be	anything
special	about	the	receiver,	in	fact	it	may	be	any	class	at
all.

Together	these	components	make	up	the	command
pattern.	A	client	will	generate	a	command,	pass	it	off	to
an	invoker	that	may	delay	the	command	or	execute	it	at
once,	and	the	command	will	act	upon	a	receiver.

In	the	case	of	building	an	undo	stack,	the	commands	are
special,	in	that	they	have	both	an	Execute	and	an	Undo
method.	One	takes	the	application	state	forward	and	the
other	takes	it	backwards.	To	perform	an	undo,	simply
pop	the	command	off	the	undo	stack,	execute	the	Undo
function,	and	push	it	onto	a	redo	stack.	For	redo,	pop
from	redo,	execute	Execute,	and	push	to	the	undo
stack.	Simple	as	that,	although	one	must	make	sure	all
state	mutations	are	performed	through	commands.

The	GoF	book	outlines	a	slightly	more	complicated	set	of
players	for	the	command	pattern.	This	is	largely	due	to
the	reliance	on	interfaces	that	we've	avoided	in
JavaScript.	The	pattern	becomes	much	simpler	thanks	to
the	prototype	inheritance	model	in	JavaScript.

The	command	pattern	is	a	very	useful	one	for	deferring
the	execution	of	some	piece	of	code.	We'll	actually

explore	the	command	pattern	and	some	useful
companion	patterns	in	Chapter	10,	Messaging	Patterns.

Interpreter
The	interpreter	pattern	is	an	interesting	pattern	as	it
allows	for	the	creation	of	your	own	language.	This	might
sound	like	something	of	a	crazy	idea,	we're	already
writing	JavaScript,	why	would	we	want	to	create	a	new
language?	Since	the	publication	of	the	GoF	book
Domain	specific	languages	(DSLs)	have	had
something	of	a	renaissance.	There	are	situations	where
it	is	quite	useful	to	create	a	language	that	is	specific	to
one	requirement.	For	instance	the	Structured	Query
Language	(SQL)	is	very	good	at	describing	the	querying
of	relational	databases.	Equally,	regular	expressions
have	proven	themselves	to	be	highly	effective	for	the
parsing	and	manipulation	of	text.

There	are	many	scenarios	in	which	being	able	to	create
a	simple	language	is	useful.	That's	really	the	key:	a
simple	language.	Once	the	language	gets	more
complicated,	the	advantages	are	quickly	lost	to	the
difficulty	of	creating	what	is,	in	effect,	a	compiler.

This	pattern	is	different	from	those	we've	seen	to	this
point	as	there	is	no	real	class	structure	that	is	defined	by
the	pattern.	You	can	design	your	language	interpreter
however	you	wish.

Example

For	our	example	let	us	define	a	language	which	can	be
used	to	describe	historical	battles	in	the	land	of
Westeros.	The	language	must	be	simple	for	clerics	to
write	and	easy	to	read.	We'll	start	by	creating	a	simple
grammar:

(aggressor	->	battle	ground	<-	defender)	-

>	victor

Here	you	can	see	that	we're	just	writing	out	a	rather	nice
syntax	that	will	let	people	describe	battles.	A	battle
between	Robert	Baratheon	and	RhaegarTargaryen	at
the	river	Trident	would	look	like	the	following:

(Robert	Baratheon	->	River	Trident	<-

RhaegarTargaryen)	->	Robert	Baratheon

Using	this	grammar	we	would	like	to	build	some	code
which	is	able	to	query	a	list	of	battles	for	answers.	In
order	to	do	this	we're	going	to	rely	on	regular
expressions.	For	most	languages	this	wouldn't	be	a	good
approach	as	the	grammar	is	too	complicated.	In	those
cases	one	might	wish	to	create	a	lexor	and	a	parser	and
build	up	syntax	trees,	however,	by	that	point	you	may
wish	to	re-examine	if	creating	a	DSL	is	really	a	good
idea.	For	our	language	the	syntax	is	very	simple	so	we
can	get	away	with	regular	expressions.

Implementation
The	first	thing	we	establish	is	a	JavaScript	data	model
for	the	battle	like	so:

class	Battle	{

		constructor(battleGround,	agressor,

defender,	victor)	{

				this.battleGround	=	battleGround;

				this.agressor	=	agressor;

				this.defender	=	defender;

				this.victor	=	victor;

		}

}

Next	we	need	a	parser:

class	Parser	{

		constructor(battleText)	{

				this.battleText	=	battleText;

				this.currentIndex	=	0;

				this.battleList	=

battleText.split("\n");

		}

		nextBattle()	{

			if	(!this.battleList[0])

					return	null;

				var	segments	=

this.battleList[0].match(/\((.+?)\s?->\s?

(.+?)\s?<-\s?(.+?)\s?->\s?(.+)/);

				return	new	Battle(segments[2],

segments[1],	segments[3],	segments[4]);

		}

}

It	is	likely	best	that	you	don't	think	too	much	about	that
regular	expression.	However,	the	class	does	take	in	a	list
of	battles	(one	per	line)	and	using	next	Battle,	allows
one	to	parse	them.	To	use	the	class	we	simply	need	to
do	the	following:

var	text	=	"(Robert	Baratheon	->	River

Trident	<-	RhaegarTargaryen)	->	Robert

Trident	<-	RhaegarTargaryen)	->	Robert

Baratheon";

var	p	=	new	Parser(text);

p.nextBattle()

This	will	be	the	output:

{

		battleGround:	'River	Trident',

		agressor:	'Robert	Baratheon',

		defender:	'RhaegarTargaryen)',

		victor:	'Robert	Baratheon'

}

This	data	structure	can	now	be	queried	like	one	would
for	any	other	structure	in	JavaScript.

As	I	mentioned	earlier	there	is	no	fixed	way	to	implement
this	pattern,	so	the	implementation	done	in	the	preceding
code	is	provided	simply	as	an	example.	Your
implementation	will	very	likely	look	very	different	and	that
is	just	fine.

Interpreter	can	be	a	useful	pattern	in	JavaScript.	It	is,
however,	a	pretty	infrequently	used	pattern	in	most
situations.	The	best	example	of	a	language	interpreted	in
JavaScript	is	the	less	language	that	is	compiled,	by
JavaScript,	to	CSS.

Iterator
Traversing	collections	of	objects	is	an	amazingly
common	problem.	So	much	so	that	many	languages
provide	for	special	constructs	just	for	moving	through
collections.	For	example	C#	has	a	foreach	loop	and
Python	has	for	x	in.	These	looping	constructs	are
frequently	built	on	top	of	an	iterator.	An	iterator	is	a
pattern	that	provides	a	simple	method	for	selecting,
sequentially,	the	next	item	in	a	collection.

The	interface	for	an	iterator	looks	like	this:

interface	Iterator{

		next();

}

Implementation
In	the	land	of	Westeros	there	is	a	well-known	sequence
of	people	in	line	for	the	throne	in	the	very	unlikely	event
that	the	king	was	to	die.	We	can	set	up	a	handy	iterator
over	the	top	of	this	collection	and	simply	call	next	on	it
should	the	ruler	die:

class	KingSuccession	{

		constructor(inLineForThrone)	{

				this.inLineForThrone	=

inLineForThrone;

				this.pointer	=	0;

		}

		next()	{

				return

this.inLineForThrone[this.pointer++];

		}

}

This	is	primed	with	an	array	and	then	we	can	call	it:

var	king	=	new	KingSuccession(["Robert

Baratheon"	,"JofferyBaratheon",

"TommenBaratheon"]);

king.next()	//'Robert	Baratheon'

king.next()	//'JofferyBaratheon'

king.next()	//'TommenBaratheon'

An	interesting	application	of	iterators	is	to	not	iterate	over
a	fixed	collection.	For	instance	an	iterator	can	be	used	to
generate	sequential	members	of	an	infinite	set	like	the
fibonacci	sequence:

class	FibonacciIterator	{

		constructor()	{

				this.previous	=	1;

				this.beforePrevious	=	1;

		}

		next()	{

				var	current	=	this.previous	+

this.beforePrevious;

				this.beforePrevious	=	this.previous;

				this.previous	=	current;

				return	current;

		}

}

This	is	used	like	so:

var	fib	=	new	FibonacciIterator()

fib.next()	//2

fib.next()	//2

fib.next()	//3

fib.next()	//5

fib.next()	//8

fib.next()	//13

fib.next()	//21

Iterators	are	handy	constructs	allowing	for	exploring	not
just	arrays	but	any	collection	or	even	any	generated	list.
There	are	a	ton	of	places	where	this	can	be	used	to
great	effect.

ECMAScript	2015	iterators
Iterators	are	so	useful	that	they	are	actually	part	of	the
next	generation	of	JavaScript.	The	iterator	pattern	used
in	ECMAScript	2015	is	a	single	method	that	returns	an
object	that	contains	done	and	value.	done	is	true
when	the	iterator	is	at	the	end	of	the	collection.	What	is
nice	about	the	ECMAScript	2015	iterators	is	that	the
array	collection	in	JavaScript	will	support	the	iterator.
This	opens	up	a	new	syntax	which	can	largely	replace
the	for	loop:

var	kings	=	new	KingSuccession(["Robert

Baratheon"	,"JofferyBaratheon",

"TommenBaratheon"]);

for(var	king	of	kings){

		//act	on	members	of	kings

}

Iterators	are	a	syntactic	nicety	that	has	long	been
missing	from	JavaScript.	Another	great	feature	of
ECMAScript-2015	are	generators.	This	is,	in	effect,	a

built	in	iterator	factory.	Our	fibonacci	sequence	could	be
rewritten	like	the	following:

function*	FibonacciGenerator	(){

		var	previous	=	1;

		var	beforePrevious	=	1;

		while(true){

				var	current	=	previous	+

beforePrevious;

				beforePrevious	=	previous;

				previous	=	current;

				yield	current;

		}

}

This	is	used	like	so:

var	fib	=	new	FibonacciGenerator()

fib.next().value	//2

fib.next().value	//3

fib.next().value	//5

fib.next().value	//8

fib.next().value	//13

fib.next().value	//21

Mediator
Managing	many-to-many	relationships	in	classes	can	be
a	complicated	prospect.	Let's	consider	a	form	that
contains	a	number	of	controls,	each	of	which	wants	to
know	if	other	controls	on	the	page	are	valid	before
performing	their	action.	Unfortunately,	having	each
control	know	about	each	other	control	creates	a
maintenance	nightmare.	Each	time	a	new	control	is
added,	each	other	control	needs	to	be	modified.

A	mediator	will	sit	between	the	various	components	and
act	as	a	single	place	in	which	message	routing	changes
can	be	made.	By	doing	so	the	mediator	simplifies	the
otherwise	complex	work	needed	to	maintain	the	code.	In
the	case	of	controls	on	a	form,	the	mediator	is	likely	to
be	the	form	itself.	The	mediator	acts	much	like	a	real	life
mediator	would,	clarifying	and	routing	information
exchange	between	a	number	of	parties:

Implementation
In	the	land	of	Westeros	there	are	many	times	when	a
mediator	is	needed.	Frequently	the	mediator	ends	up
deceased,	but	I'm	sure	that	won't	be	the	case	with	our
example.

There	are	a	number	of	great	families	in	Westeros	who
own	large	castles	and	vast	tracts	of	land.	Lesser	lords
swear	themselves	to	the	great	houses	forming	an
alliance,	frequently	supported	through	marriage.

When	coordinating	the	various	houses	sworn	to	them,
the	great	lord	will	act	as	a	mediator,	communicating
information	back	and	forth	between	the	lesser	lords	and
resolving	any	disputes	they	may	have	amongst
themselves.

In	this	example	we'll	greatly	simplify	the	communication
between	the	houses	and	say	that	all	messages	pass

through	the	great	lord.	In	this	case	we'll	use	the	house	of
Stark	as	our	great	lord.	They	have	a	number	of	other
houses	which	talk	with	them.	Each	of	the	houses	looks
roughly	like	the	following:

class	Karstark	{

		constructor(greatLord)	{

				this.greatLord	=	greatLord;

		}

		receiveMessage(message)	{

		}

		sendMessage(message)	{

				this.greatLord.routeMessage(message);

		}

}

They	have	two	functions,	one	of	which	receives
messages	from	a	third	party	and	one	of	which	sends
messages	out	to	their	great	lord,	which	is	set	upon
instantiation.	The	HouseStark	class	looks	like	the
following:

class	HouseStark	{

		constructor()	{

				this.karstark	=	new	Karstark(this);

				this.bolton	=	new	Bolton(this);

				this.frey	=	new	Frey(this);

				this.umber	=	new	Umber(this);

		}

		routeMessage(message)	{

		}

}

By	passing	all	messages	through	the	HouseStark	class
the	various	other	houses	do	not	need	to	concern

themselves	with	how	their	messages	are	routed.	This
responsibility	is	handed	off	to	HouseStark	which	acts
as	the	mediator.

Mediators	are	best	used	when	the	communication	is
both	complex	and	well	defined.	If	the	communication	is
not	complex	then	the	mediator	adds	extra	complexity.	If
the	communication	is	ill	defined	then	it	becomes	difficult
to	codify	the	communication	rules	in	a	single	place.

Simplifying	communication	between	many-to-many
objects	is	certainly	useful	in	JavaScript.	I	would	actually
argue	that	in	many	ways	jQuery	acts	as	a	mediator.
When	acting	on	a	set	of	items	on	the	page,	it	serves	to
simplify	communication	by	abstracting	away	code's	need
to	know	exactly	which	objects	on	the	page	are	being
changed.	For	instance:

$(".error").slideToggle();

Is	jQuery	shorthand	for	toggling	the	visibility	of	all	the
elements	on	the	page	which	have	the	error	class?

Memento
In	the	section	on	the	command	pattern	we	talked	briefly
about	the	ability	to	undo	operations.	Creating	reversible
commands	is	not	always	possible.	For	many	operations
there	is	no	apparent	reversing	operation	which	can
restore	the	original	state.	For	instance,	imagine	code
which	squares	a	number:

class	SquareCommand	{

		constructor(numberToSquare)	{

				this.numberToSquare	=	numberToSquare;

		}

		Execute()	{

				this.numberToSquare	*=

this.numberToSquare;

		}

}

Giving	this	code	-9	will	result	in	81	but	giving	it	9	will	also
result	in	81.	There	is	no	way	to	reverse	this	command
without	additional	information.

The	memento	pattern	provides	an	approach	to	restore
the	state	of	objects	to	a	previous	state.	The	memento
keeps	a	record	of	the	previous	values	of	a	variable	and
provides	the	functionality	to	restore	them.	Keeping	a
memento	around	for	each	command	allows	for	easy
restoration	of	non-reversible	commands.

In	addition	to	an	undo-stack	there	are	many	instances

where	having	the	ability	to	roll	back	the	state	of	an	object
is	useful.	For	instance	doing	what-if	analysis	requires
that	you	make	some	hypothetical	changes	to	state	and
then	observe	how	things	change.	The	changes	are
generally	not	permanent	so	they	could	be	rolled	back
using	the	memento	pattern	or,	if	the	projects	are
desirable,	left	in	place.	A	diagram	of	the	memento
pattern	can	be	seen	here:

A	typical	memento	implementation	involves	three
players:

Originator:	The	originator	holds	some	form	of	state	and	provides	an
interface	for	generating	new	mementos.

Caretaker:	This	is	the	client	of	the	pattern,	it	is	what	requests	that
new	mementos	be	taken	and	governs	when	they	are	to	be	restored.

Memento:	This	is	a	representation	of	the	saved	state	of	the	originator.
This	is	what	can	be	persisted	to	storage	to	allow	for	rolling	back.

It	can	help	to	think	of	the	members	of	the	memento
pattern	as	a	boss	and	a	secretary	taking	notes.	The	boss
(caretaker)	dictates	some	memo	to	the	secretary
(originator)	who	writes	notes	in	a	notepad	(memento).
From	time	to	time	the	boss	may	request	that	the
secretary	cross	out	what	he	has	just	written.

The	involvement	of	the	caretaker	can	be	varied	slightly
with	the	memento	pattern.	In	some	implementation	the

originator	will	generate	a	new	memento	each	time	a
change	is	made	to	its	state.	This	is	commonly	known	as
copy	on	write,	as	a	new	copy	of	the	state	is	created	and
the	change	applied	to	it.	The	old	version	can	be	saved	to
a	memento.

Implementation
In	the	land	of	Westeros	there	are	a	number	of
soothsayers,	foretellers	of	the	future.	They	work	by	using
magic	to	peer	into	the	future	and	examine	how	certain
changes	in	the	present	will	play	out	in	the	future.	Often
there	is	need	for	numerous	foretelling	with	slightly
different	starting	conditions.	When	setting	their	starting
conditions,	a	memento	pattern	is	invaluable.

We	start	off	with	a	world	state	which	gives	information	on
the	state	of	the	world	for	a	certain	starting	point:

class	WorldState	{

		constructor(numberOfKings,

currentKingInKingsLanding,	season)	{

				this.numberOfKings	=	numberOfKings;

				this.currentKingInKingsLanding	=

currentKingInKingsLanding;

				this.season	=	season;

		}

}

This	WorldState	class	is	responsible	for	tracking	all
the	conditions	that	make	up	the	world.	It	is	what	is
altered	by	the	application	every	time	a	change	to	the
starting	conditions	is	made.	Because	this	world	state

encompasses	all	the	states	for	the	application,	it	can	be
used	as	a	memento.	We	can	serialize	this	object	and
save	it	to	disk	or	send	it	back	to	some	history	server
somewhere.

The	next	thing	we	need	is	a	class	which	provides	the
same	state	as	the	memento	and	allows	for	the	creation
and	restoration	of	mementos.	In	our	example	we've
called	this	as	WorldStateProvider:

class	WorldStateProvider	{

		saveMemento()	{

				return	new

WorldState(this.numberOfKings,

this.currentKingInKingsLanding,

this.season);

		}

		restoreMemento(memento)	{

				this.numberOfKings	=

memento.numberOfKings;

				this.currentKingInKingsLanding	=

memento.currentKingInKingsLanding;

				this.season	=	memento.season;

		}

}

Finally	we	need	a	client	for	the	foretelling,	which	we'll	call
Soothsayer:

class	Soothsayer	{

		constructor()	{

				this.startingPoints	=	[];

				this.currentState	=	new

WorldStateProvider();

		}

		setInitialConditions(numberOfKings,

currentKingInKingsLanding,	season)	{

currentKingInKingsLanding,	season)	{

				this.currentState.numberOfKings	=

numberOfKings;

				

this.currentState.currentKingInKingsLandin

g	=	currentKingInKingsLanding;

				this.currentState.season	=	season;

		}

		

alterNumberOfKingsAndForetell(numberOfKing

s)	{

				

this.startingPoints.push(this.currentState

.saveMemento());

				this.currentState.numberOfKings	=

numberOfKings;

		}

		alterSeasonAndForetell(season)	{

				

this.startingPoints.push(this.currentState

.saveMemento());

				this.currentState.season	=	season;

		}

		

alterCurrentKingInKingsLandingAndForetell(

currentKingInKingsLanding)	{

				

this.startingPoints.push(this.currentState

.saveMemento());

				

this.currentState.currentKingInKingsLandin

g	=	currentKingInKingsLanding;

				//run	some	sort	of	prediction

		}

		tryADifferentChange()	{

				

this.currentState.restoreMemento(this.star

tingPoints.pop());

		}

}

This	class	provides	a	number	of	convenience	methods
which	alter	the	state	of	the	world	and	then	run	a
foretelling.	Each	of	these	methods	pushes	the	previous
state	into	the	history	array,	startingPoints.	There	is
also	a	method,	tryADifferentChange,	which	undoes
the	previous	state	change	ready	to	run	another
foretelling.	The	undo	is	performed	by	loading	back	the
memento	which	is	stored	in	an	array.

Despite	a	great	pedigree	it	is	very	rare	that	client	side
JavaScript	applications	provide	an	undo	function.	I'm
sure	there	are	various	reasons	for	this,	but	for	the	most
part	it	is	likely	that	people	do	not	expect	such
functionality.	However	in	most	desktop	applications,
having	an	undo	function	is	expected.	I	imagine	that,	as
client	side	applications	continue	to	grow	in	their
capabilities,	undo	functionality	will	become	more
important.	When	it	does,	the	memento	pattern	is	a
fantastic	way	of	implementing	the	undo	stack.

Observer
The	observer	pattern	is	perhaps	the	most	used	pattern	in
the	JavaScript	world.	The	pattern	is	used	especially	with
modern	single	pages	applications;	it	is	a	big	part	of	the
various	libraries	that	provide	Model	View	View-Model
(MVVM)	functionality.	We'll	explore	those	patterns	in
some	detail	in	Chapter	7,	Reactive	Programming.

It	is	frequently	useful	to	know	when	the	value	on	an
object	has	changed.	In	order	to	do	so	you	could	wrap	up
the	property	of	interest	with	a	getter	and	setter:

class	GetterSetter	{

		GetProperty()	{

				return	this._property;

		}

		SetProperty(value)	{

				this._property	=	value;

		}

}

The	setter	function	can	now	be	augmented	with	a	call	to
some	other	object	which	is	interested	in	knowing	that	a
value	has	changed:

SetProperty(value)	{

		var	temp	=	this._property;

		this._property	=	value;

		this._listener.Event(value,	temp);

}

This	setter	will	now	notify	the	listener	that	a	property
change	has	occurred.	In	this	case	both	the	old	and	new
value	have	been	included.	This	is	not	necessary	as	the
listener	can	be	tasked	with	keeping	track	of	the	previous
value.

The	observer	pattern	generalizes	and	codifies	this	idea.
Instead	of	having	a	single	call	to	the	listener,	the
observer	pattern	allows	interested	parties	to	subscribe	to
change	notifications.	Multiple	subscribers	can	be	seen	in
the	following	diagram:

Implementation
The	court	of	Westeros	is	a	place	of	great	intrigue	and
trickery.	Controlling	who	is	on	the	throne	and	what
moves	they	make	is	a	complex	game.	Many	of	the
players	in	the	game	of	thrones	employ	numerous	spies
to	discover	what	moves	others	are	making.	Frequently
these	spies	are	employed	by	more	than	one	player	and
must	report	what	they	have	found	to	all	of	the	players.

The	spy	is	a	perfect	place	to	employ	the	observer
pattern.	In	our	particular	example,	the	spy	being
employed	is	the	official	doctor	to	the	king	and	the	players
are	very	interested	in	how	much	painkiller	is	being

prescribed	to	the	ailing	king.	Knowing	this	can	give	a
player	advanced	knowledge	of	when	the	king	might	die	–
a	most	useful	piece	of	information.

The	spy	looks	like	the	following:

class	Spy	{

		constructor()	{

				this._partiesToNotify	=	[];

		}

		Subscribe(subscriber)	{

				

this._partiesToNotify.push(subscriber);

		}

		Unsubscribe(subscriber)	{

				

this._partiesToNotify.remove(subscriber);

		}

		SetPainKillers(painKillers)	{

				this._painKillers	=	painKillers;

				for	(var	i	=	0;	i	<

this._partiesToNotify.length;	i++)	{

						this._partiesToNotify[i]

(painKillers);

				}

		}

}

In	other	languages,	the	subscriber	usually	has	to	comply
with	a	certain	interface	and	the	observer	will	call	only	the
interface	method.	This	encumbrance	doesn't	exist	with
JavaScript	and,	in	fact,	we	just	give	the	Spy	class	a
function.	This	means	that	there	is	no	strict	interface
required	for	the	subscriber.	This	is	an	example:

class	Player	{

		

		

OnKingPainKillerChange(newPainKillerAmount

)	{

				//perform	some	action

		}

}

This	can	be	used	like	so:

let	s	=	new	Spy();

let	p	=	new	Player();

s.Subscribe(p.OnKingPainKillerChange);	//p

is	now	a	subscriber

s.SetPainKillers(12);	//s	will	notify	all

subscribers

This	provides	a	very	simple	and	highly	effective	way	of
building	observers.	Having	subscribers	decouples	the
subscriber	from	the	observable	object.

The	observer	pattern	can	also	be	applied	to	methods	as
well	as	properties.	In	so	doing	you	can	provide	hooks	for
additional	behavior	to	happen.	This	is	a	common	method
of	providing	a	plugin	infrastructure	for	JavaScript
libraries.

In	browsers	all	the	event	listeners	on	various	items	in	the
DOM	are	implemented	using	the	observer	pattern.	For
instance,	using	the	popular	jQuery	library,	one	can
subscribe	to	all	the	click	events	on	buttons	on	a	page
by	doing	the	following:

$("body").on("click",	"button",	function()

{/*do	something*/})

Even	in	vanilla	JavaScript	the	same	pattern	applies:

let	buttons	=

document.getElementsByTagName("button");

for(let	i	=0;	i<	buttons.length;	i++)

{

		buttons[i].onclick	=	function(){/*do

something*/}

}

Clearly	the	observer	pattern	is	very	useful	when	dealing
with	JavaScript.	There	is	no	need	to	change	the	pattern
in	any	significant	fashion.

State
State	machines	are	an	amazingly	useful	device	in
computer	programming.	Unfortunately	they	are	not	used
very	frequently	by	most	programmers.	I'm	sure	that	at
least	some	of	the	objection	to	state	machines	is	that
many	people	implement	them	as	a	giant	if	statement
like	so:

function	(action,	amount)	{

		if	(this.state	==	"overdrawn"	&&	action

==	"withdraw")	{

				this.state	=	"on	hold";

		}

		if	(this.state	==	"on	hold"	&&	action	!=

"deposit")	{

				this.state	=	"on	hold";

		}

		if	(this.state	==	"good	standing"	&&

action	==	"withdraw"	&&	amount	<=

this.balance)	{

				this.balance	-=	amount;

		}

		if	(this.state	==	"good	standing"	&&

action	==	"withdraw"	&&	amount

>this.balance)	{

				this.balance	-=	amount;

				this.state	=	"overdrawn";

		}

};

This	is	just	a	sample	of	what	could	be	much	longer.	The
if	statements	of	this	length	are	painful	to	debug	and
highly	error	prone.	Simply	flipping	a	greater	than	sign	is

enough	to	drastically	change	how	the	if	statement
works.

Instead	of	using	a	single	giant	if	statement	block	we
can	make	use	of	the	state	pattern.	The	state	pattern	is
characterized	by	having	a	state	manager	which	abstracts
away	the	internal	state	and	proxies	a	message	through
to	the	appropriate	state	which	is	implemented	as	a	class.
All	the	logic	within	states	and	governing	state	transitions
is	governed	by	the	individual	state	classes.	The	state
manager	pattern	can	be	seen	in	the	following	diagram:

Splitting	state	into	a	class	per	state	allows	for	much
smaller	blocks	of	code	to	debug	and	makes	testing	much
easier.

The	interface	for	the	state	manager	is	fairly	simple	and
usually	just	provides	the	methods	needed	to
communicate	with	the	individual	states.	The	manager
may	also	contain	some	shared	state	variables.

Implementation

As	alluded	to	in	the	if	statement	example,	Westeros
has	a	banking	system.	Much	of	it	is	centered	on	the
island	of	Braavos.	Banking	there	runs	in	much	the	same
way	as	banking	here,	with	accounts,	deposits,	and
withdrawals.	Managing	the	state	of	a	bank	account
involves	keeping	an	eye	on	all	of	the	transactions	and
changing	the	state	of	the	bank	account	in	accordance
with	the	transactions.

Let's	take	a	look	at	some	of	the	code	which	is	needed	to
manage	a	bank	account	at	the	Iron	Bank	of	Braavos.
First	is	the	state	manager:

class	BankAccountManager	{

		constructor()	{

				this.currentState	=	new

GoodStandingState(this);

		}

		Deposit(amount)	{

				this.currentState.Deposit(amount);

		}

		Withdraw(amount)	{

				this.currentState.Withdraw(amount);

		}

		addToBalance(amount)	{

				this.balance	+=	amount;

		}

		getBalance()	{

				return	this.balance;

		}

		moveToState(newState)	{

				this.currentState	=	newState;

		}

}

The	BankAccountManager	class	provides	a	state	for

the	current	balance	and	also	the	current	state.	To	protect
the	balance,	it	provides	an	accessory	for	reading	the
balance	and	another	for	adding	to	the	balance.	In	a	real
banking	application,	I	would	rather	expect	the	function
that	sets	the	balance,	have	more	protection	than	this.	In
this	version	of	BankManager,	the	ability	to	manipulate
the	current	state	is	accessible	to	the	states.	They	have
the	responsibility	to	change	states.	This	functionality	can
be	centralized	in	the	manager	but	that	increases	the
complexity	of	adding	new	states.

We've	identified	three	simple	states	for	the	bank
account:	Overdrawn,	OnHold,	and	GoodStanding.
Each	one	is	responsible	for	dealing	with	withdrawals	and
deposits	when	in	that	state.	The	GoodStandingstate
class	looks	like	the	following:

class	GoodStandingState	{

		constructor(manager)	{

				this.manager	=	manager;

		}

		Deposit(amount)	{

				this.manager.addToBalance(amount);

		}

		Withdraw(amount)	{

				if	(this.manager.getBalance()	<

amount)	{

						this.manager.moveToState(new

OverdrawnState(this.manager));

				}

				this.manager.addToBalance(-1	*

amount);

		}

}

The	OverdrawnState	class	looks	like	the	following:

class	OverdrawnState	{

		constructor(manager)	{

				this.manager	=	manager;

		}

		Deposit(amount)	{

				this.manager.addToBalance(amount);

				if	(this.manager.getBalance()	>	0)	{

						this.manager.moveToState(new

GoodStandingState(this.manager));

				}

		}

		Withdraw(amount)	{

				this.manager.moveToState(new

OnHold(this.manager));

				throw	"Cannot	withdraw	money	from	an

already	overdrawn	bank	account";

		}

}

Finally,	the	OnHold	state	looks	like	the	following:

class	OnHold	{

		constructor(manager)	{

				this.manager	=	manager;

		}

		Deposit(amount)	{

				this.manager.addToBalance(amount);

				throw	"Your	account	is	on	hold	and	you

must	attend	the	bank	to	resolve	the

issue";

		}

		Withdraw(amount)	{

				throw	"Your	account	is	on	hold	and	you

must	attend	the	bank	to	resolve	the

issue";

		}

}

You	can	see	that	we've	managed	to	reproduce	all	the
logic	of	the	confusing	if	statement	in	a	number	of
simple	classes.	The	amount	of	code	here	looks	to	be	far
more	than	the	if	statement	but,	in	the	long	run,
encapsulating	the	code	into	individual	classes	will	pay
off.

There	is	plenty	of	opportunity	to	make	use	of	this	pattern
within	JavaScript.	Keeping	track	of	state	is	a	typical
problem	in	most	applications.	When	the	transitions
between	the	states	are	complex,	then	wrapping	it	up	in	a
state	pattern	is	one	method	of	simplifying	things.	It	is
also	possible	to	build	up	a	simple	workflow	by	registering
events	as	sequential.	A	nice	interface	for	this	might	be	a
fluent	one	so	that	you	could	register	states	like	the
following:

goodStandingState

.on("withdraw")

.when(function(manager){return

manager.balance	>	0;})

		.transitionTo("goodStanding")

.when(function(manager){return

mangaer.balance	<=0;})

		.transitionTo("overdrawn");

Strategy
It	has	been	said	that	there	is	more	than	one	way	to	skin
a	cat.	I	have,	wisely,	never	looked	into	how	many	ways
there	are.	The	same	is	frequently	true	for	algorithms	in
computer	programming.	Frequently	there	are	numerous
versions	of	an	algorithm	that	trades	off	memory	usage
for	CPU	usage.	Sometimes	there	are	different
approaches	that	provide	different	levels	of	fidelity.	For
example,	performing	a	geo-location	on	a	smart	phone
typically	uses	one	of	three	different	sources	of	data:

GPS	chip

Cell	phone	triangulation

Nearby	WiFi	points

Using	the	GPS	chip	provides	the	highest	level	of	fidelity
however	it	is	also	the	slowest	and	requires	the	most
battery.	Looking	at	the	nearby	WiFi	points	requires	very
little	energy	and	is	very	quick,	however	it	provides	poor
fidelity.

The	strategy	pattern	provides	a	method	of	swapping
these	strategies	out	in	a	transparent	fashion.	In	a
traditional	inheritance	model	each	strategy	would
implement	the	same	interface	which	would	allow	for	any
of	the	strategies	to	be	swapped	in.	The	following
diagram	shows	multiple	strategies	that	could	be
swapped	in:

Selecting	the	correct	strategy	to	use	can	be	done	in	a
number	of	different	ways.	The	simplest	method	is	to
select	the	strategy	statically.	This	can	be	done	through	a
configuration	variable	or	even	hard	coded.	This
approach	is	best	for	times	when	the	strategy	changes
infrequently	or	is	specific	to	a	single	customer	or	user.

Alternately	an	analysis	can	be	run	on	the	dataset	on
which	the	strategy	is	to	be	run	and	then	a	proper
strategy	selected.	If	it	is	known	that	strategy	A	works
better	than	strategy	B	when	the	data	passed	in	is
clustered	around	a	mean,	then	a	fast	algorithm	for
analyzing	spread	could	be	run	first	and	then	the
appropriate	strategy	selected.

If	a	particular	algorithm	fails	on	data	of	a	certain	type,
this	too	can	be	taken	into	consideration	when	choosing	a
strategy.	In	a	web	application	this	can	be	used	to	call	a
different	API	depending	on	the	shape	of	data.	It	can	also
be	used	to	provide	a	fallback	mechanism	should	one	of
the	API	endpoints	be	down.

Another	interesting	approach	is	to	use	progressive
enhancement.	The	fastest	and	least	accurate	algorithm
is	run	first	to	provide	rapid	user	feedback.	At	the	same
time	a	slower	algorithm	is	also	run	and,	when	it	is
finished,	the	superior	results	are	used	to	replace	the
existing	results.	This	approach	is	frequently	used	in	the
GPS	situation	outlined	above.	You	may	notice	when
using	a	map	on	a	mobile	device	your	location	is	updated
a	moment	after	the	map	loads;	this	is	an	example	of
progressive	enhancement.

Finally,	the	strategy	can	be	chosen	completely	at
random.	It	sounds	like	a	strange	approach	but	can	be
useful	when	comparing	the	performance	of	two	different
strategies.	In	this	case,	statistics	would	be	gathered
about	how	well	each	approach	works	and	an	analysis
run	to	select	the	best	strategy.	The	strategy	pattern	can
be	the	foundation	for	A/B	testing.

Selecting	which	strategy	to	use	can	be	an	excellent
place	to	apply	the	factory	pattern.

Implementation
In	the	land	of	Westeros	there	are	no	planes,	trains,	or
automobiles	but	there	is	still	a	wide	variety	of	different
ways	to	travel.	One	can	walk,	ride	a	horse,	sail	on	a
seagoing	vessel,	or	even	take	a	boat	down	the	river.
Each	one	has	different	advantages	and	drawbacks	but	in
the	end	they	still	take	a	person	from	point	A	to	point	B.
The	interface	might	look	something	like	the	following:

export	interface	ITravelMethod{

		Travel(source:	string,	destination:

string)	:	TravelResult;

}

The	travel	result	communicates	back	to	the	caller	some
information	about	the	method	of	travel.	In	our	case	we
track	how	long	the	trip	will	take,	what	the	risks	are,	and
how	much	it	will	cost:

class	TravelResult	{

		constructor(durationInDays,

probabilityOfDeath,	cost)	{

				this.durationInDays	=	durationInDays;

				this.probabilityOfDeath	=

probabilityOfDeath;

				this.cost	=	cost;

		}

}

In	this	scenario	we	might	like	to	have	an	additional
method	which	predicts	some	of	the	risks	to	allow	for
automating	selection	of	a	strategy.

Implementing	the	strategies	is	as	simple	as	the	following:

class	SeaGoingVessel	{

		Travel(source,	destination)	{

				return	new	TravelResult(15,	.25,	500);

		}

}

	

class	Horse	{

		Travel(source,	destination)	{

				return	new	TravelResult(30,	.25,	50);

		}

}

}

	

class	Walk	{

		Travel(source,	destination)	{

				return	new	TravelResult(150,	.55,	0);

		}

}

In	a	traditional	implementation	of	the	strategy	pattern	the
method	signature	for	each	strategy	should	be	the	same.
In	JavaScript	there	is	a	bit	more	flexibility	as	excess
parameters	to	a	function	are	ignored	and	missing
parameters	can	be	given	default	values.

Obviously,	the	actual	calculations	around	risk,	cost,	and
duration	would	not	be	hard	coded	in	an	actual
implementation.	To	make	use	of	these	one	needs	only	to
do	the	following:

var	currentMoney	=	getCurrentMoney();

var	strat;

if	(currentMoney>	500)

		strat	=	new	SeaGoingVessel();

else	if	(currentMoney>	50)

		strat	=	new	Horse();

else

		strat	=	new	Walk();

var	travelResult	=	strat.Travel();

To	improve	the	level	of	abstraction	for	this	strategy	we
might	replace	the	specific	strategies	with	more	generally
named	ones	that	describe	what	it	is	we're	optimizing	for:

var	currentMoney	=	getCurrentMoney();

var	strat;

if	(currentMoney>	500)

		strat	=	new

		strat	=	new

FavorFastestAndSafestStrategy();

else

		strat	=	new	FavorCheapest();

var	travelResult	=	strat.Travel();

Strategy	is	a	very	useful	pattern	in	JavaScript.	We're
also	able	to	make	the	approach	much	simpler	than	in	a
language	which	doesn't	use	prototype	inheritance:	there
is	no	need	for	an	interface.	We	don't	need	to	return	the
same	shaped	object	from	each	of	the	different	strategies.
So	long	as	the	caller	is	somewhat	aware	that	the
returned	object	may	have	additional	fields,	this	is	a
perfectly	reasonable,	if	difficult	to	maintain,	approach.

Template	method
The	strategy	pattern	allows	for	replacing	an	entire
algorithm	with	a	complimentary	one.	Frequently,
replacing	the	entire	algorithm	is	overkill:	the	vast	majority
of	the	algorithm	remains	the	same	in	every	strategy	with
only	minor	variations	in	specific	sections.

The	template	method	pattern	is	an	approach	which
allows	for	some	sections	of	an	algorithm	to	be	shared
and	other	sections	implemented	using	different
approaches.	These	farmed	out	sections	can	be
implemented	by	any	one	of	a	family	of	methods:

The	template	class	implements	parts	of	the	algorithm
and	leaves	other	parts	as	abstract	to	later	be	overridden

by	classes	which	extend	it.	The	inheritance	hierarchy
can	be	several	layers	deep,	with	each	level
implementing	more	and	more	of	the	template	class.

TIPTIP
An	abstract	class	is	one	that	contains	abstract	methods.	Abstract	methods	are	simply
methods	that	have	no	body	to	them.	The	abstract	class	cannot	be	used	directly	and	must,
instead,	be	extended	by	another	class	that	implements	the	abstract	methods.	An	abstract
class	may	extend	another	abstract	class	so	that	not	all	methods	need	to	be	implemented	by
the	extending	class.

This	approach	applies	the	principles	of	progressive
enhancement	to	an	algorithm.	We	move	closer	and
closer	to	a	fully	implemented	algorithm	and,	at	the	same
time,	build	up	an	interesting	inheritance	tree.	The
template	method	helps	keep	identical	code	to	a	single
location	while	still	allowing	for	some	deviation.	A	chain	of
partial	implementations	can	be	seen	in	the	following
diagram:

Overriding	methods	left	as	abstract	is	a	quintessential
part	of	object	oriented	programming.	It	is	likely	that	this
pattern	is	one	which	you've	used	frequently	without	even
being	aware	that	it	had	a	name.

Implementation
I	have	been	told,	by	those	in	the	know,	that	there	are
many	different	ways	to	produce	beer.	These	beers	differ
in	their	choice	of	ingredients	and	in	their	method	of
production.	In	fact	beer	does	not	even	need	to	contain
hops	–	it	can	be	made	from	any	number	of	grains.
However	there	are	similarities	between	all	beers.	They
are	all	created	through	the	fermentation	process	and	all
proper	beers	contain	some	alcohol	content.

In	Westeros	there	are	a	great	number	of	craftsmen	who
pride	themselves	on	creating	top	notch	beers.	We	would
like	to	describe	their	processes	as	a	set	of	classes,	each
one	describing	a	different	beer	making	methodology.	We
start	with	a	simplified	implementation	of	creating	a	beer:

class	BasicBeer	{

		Create()	{

				this.AddIngredients();

				this.Stir();

				this.Ferment();

				this.Test();

				if	(this.TestingPassed())	{

						this.Distribute();

				}

		}

		AddIngredients()	{

				throw	"Add	ingredients	needs	to	be

implemented";

		}

		Stir()	{

				//stir	15	times	with	a	wooden	spoon

		}

		Ferment()	{

				//let	stand	for	30	days

		}

		Test()	{

				//draw	off	a	cup	of	beer	and	taste	it

		}

		TestingPassed()	{

				throw	"Conditions	to	pass	a	test	must

be	implemented";

		}

		Distribute()	{

				//place	beer	in	50L	casks

		}

}

As	there	is	no	concept	of	abstract	in	JavaScript	we've
added	exceptions	to	the	various	methods	which	must	be
overridden.	The	remaining	methods	can	be	changed	but
do	not	require	it.	An	implementation	of	this	for	a
raspberry	beer	would	look	like	the	following:

class	RaspberryBeer	extends	BasicBeer	{

		AddIngredients()	{

				//add	ingredients,	probably	including	

raspberries

		}

		TestingPassed()	{

				//beer	must	be	reddish	and	taste	of	

raspberries

		}

}

Additional	sub-classing	may	be	performed	at	this	stage
for	more	specific	raspberry	beers.

The	template	method	remains	a	fairly	useful	pattern	in
JavaScript.	There	is	some	added	syntactic	sugar	around
creating	classes,	but	it	isn't	anything	we	haven't	already
seen	in	a	previous	chapter.	The	only	warning	I	would
give	is	that	the	template	method	uses	inheritance	and
thus	strongly	couples	the	inherited	classes	with	the
parent	class.	This	is	generally	not	a	desirable	state	of
affairs.

Visitor
The	final	pattern	in	this	section	is	the	visitor	pattern.	The
visitor	provides	a	method	of	decoupling	an	algorithm
from	the	object	structure	on	which	it	operates.	If	we
wanted	to	perform	some	action	over	a	collection	of
objects	which	differ	in	type	and	we	want	to	perform	a
different	action	depending	on	the	object	type,	we	would
typically	need	to	make	use	of	a	large	if	statement.

Let's	get	right	into	an	example	of	this	in	Westeros.	An
army	is	made	up	of	a	few	different	classes	of	fighting
person	(it	is	important	that	we	be	politically	correct	as
there	are	many	notable	female	fighters	in	Westeros).
However,	each	member	of	the	army	implements	a
hypothetical	interface	called	IMemberOfArmy:

interface	IMemberOfArmy{

		printName();

}

A	simple	implementation	of	this	might	be	the	following:

class	Knight	{

		constructor()	{

				this._type	=	"Westeros.Army.Knight";

		}

		printName()	{

				console.log("Knight");

		}

		visit(visitor)	{

				visitor.visit(this);

		}

}

Now	we	have	a	collection	of	these	different	types,	we
can	use	an	if	statement	to	only	call	the	printName
function	on	the	knights:

var	collection	=	[];

collection.push(new	Knight());

collection.push(new	FootSoldier());

collection.push(new	Lord());

collection.push(new	Archer());

	

for	(let	i	=	0;	i<collection.length;	i++)

{

		if	(typeof	(collection[i])	==	'Knight')

				collection[i].printName();

		else

				console.log("Not	a	knight");

}

Except,	if	you	run	this	code,	you'll	actually	find	that	all	we
get	is	the	following:

Not	a	knight

Not	a	knight

Not	a	knight

Not	a	knight

This	is	because,	despite	an	object	being	a	knight,	it	is
still	an	object	and	typeof	will	return	object	in	all	cases.

An	alternative	approach	is	to	use	instanceof	instead
of	typeof:

var	collection	=	[];

var	collection	=	[];

collection.push(new	Knight());

collection.push(new	FootSoldier());

collection.push(new	Lord());

collection.push(new	Archer());

	

for	(var	i	=	0;	i	<	collection.length;

i++)	{

		if	(collection[i]	instanceof	Knight)

				collection[i].printName();

		else

				console.log("No	match");

}

The	instance	of	approach	works	great	until	we	run	into
somebody	who	makes	use	of	the	Object.create
syntax:

collection.push(Object.create(Knight));

Despite	being	a	knight	this	will	return	false	when	asked
if	it	is	an	instance	of	Knight.

This	poses	something	of	a	problem	for	us.	The	problem
is	exacerbated	by	the	visitor	pattern	as	it	requires	that
the	language	supports	method	overloading.	JavaScript
does	not	really	support	this.	There	are	various	hacks
which	can	be	used	to	make	JavaScript	somewhat	aware
of	overloaded	methods	but	the	usual	advice	is	to	simply
not	bother	and	create	methods	with	different	names.

Let's	not	abandon	this	pattern	just	yet,	though;	it	is	a
useful	pattern.	What	we	need	is	a	way	to	reliably
distinguish	one	type	from	another.	The	simplest
approach	is	to	just	define	a	variable	on	the	class	which

denotes	its	type:

var	Knight	=	(function	()	{

		function	Knight()	{

				this._type	=	"Knight";

		}

		Knight.prototype.printName	=	function	()

{

				console.log("Knight");

		};

		return	Knight;

})();

Given	the	new	_type	variable	we	can	now	fake	having
real	method	overrides:

var	collection	=	[];

collection.push(new	Knight());

collection.push(new	FootSoldier());

collection.push(new	Lord());

collection.push(new	Archer());

	

for	(vari	=	0;	i<collection.length;	i++)	{

		if	(collection[i]._type	==	'Knight')

				collection[i].printName();

		else

				console.log("No	match");

}

Given	this	approach	we	can	now	implement	a	visitor.
The	first	step	is	to	expand	our	various	members	of	the
army	to	have	a	generic	method	on	them	which	takes	a
visitor	and	applies	it:

var	Knight	=	(function	()	{

		function	Knight()	{

				this._type	=	"Knight";

		}

		Knight.prototype.printName	=	function	()	

{

				console.log("Knight");

		};

		Knight.prototype.visit	=	function	

(visitor)	{

				visitor.visit(this);

		};

		return	Knight;

})();

Now	we	need	to	build	a	visitor.	This	code	approximates
the	if	statements	we	had	in	the	preceding	code:

varSelectiveNamePrinterVisitor	=	(function

()	{

		function	SelectiveNamePrinterVisitor()	{

		}

		

SelectiveNamePrinterVisitor.prototype.Visi

t	=	function	(memberOfArmy)	{

				if	(memberOfArmy._type	==	"Knight")	{

						this.VisitKnight(memberOfArmy);

				}	else	{

						console.log("Not	a	knight");

				}

		};

	

		

SelectiveNamePrinterVisitor.prototype.Visi

tKnight	=	function	(memberOfArmy)	{

				memberOfArmy.printName();

		};

		return	SelectiveNamePrinterVisitor;

})();

This	visitor	would	be	used	as	such:

var	collection	=	[];

collection.push(new	Knight());

collection.push(new	FootSoldier());

collection.push(new	Lord());

collection.push(new	Archer());

var	visitor	=	new

SelectiveNamePrinterVisitor();

for	(vari	=	0;	i<collection.length;	i++)	{

		collection[i].visit(visitor);

}

As	you	can	see	we've	pushed	the	decisions	about	the
type	of	the	item	in	the	collection	down	to	the	visitor.	This
decouples	the	items	themselves	from	the	visitor	as	can
be	seen	in	the	following	diagram:

If	we	allow	the	visitor	to	make	decisions	about	what
methods	are	called	on	the	visited	objects	there	is	a	fair
bit	of	trickery	required.	If	we	can	provide	a	constant
interface	for	the	visited	objects	then	all	the	visitor	needs
do	is	call	the	interface	method.	This	does,	however,
move	logic	from	the	visitor	into	the	objects	that	are
visited,	which	is	contrary	to	the	idea	that	the	objects
shouldn't	know	they	are	part	of	a	visitor.

Whether	suffering	through	the	trickery	is	worthwhile	is

really	an	exercise	for	you.	Personally	I	would	tend	to
avoid	using	the	visitor	pattern	in	JavaScript	as	the
requirements	to	get	it	working	are	complicated	and	non-
obvious.

Hints	and	tips
Here	are	a	couple	of	brief	tips	to	keep	in	mind	about
some	of	the	patterns	we've	seen	in	this	chapter:

When	implementing	the	interpreter	pattern	you	may	be	tempted	to
use	JavaScript	proper	as	your	DSL	and	then	use	the	eval	function	to

execute	the	code.	This	is	actually	a	very	dangerous	idea	as	eval

opens	up	an	entire	world	of	security	issues.	It	is	generally	considered
to	be	very	bad	form	to	use	eval	in	JavaScript.

If	you	find	yourself	in	the	position	to	audit	the	changes	to	data	in	your
project,	then	the	memento	pattern	can	easily	be	modified	to	suit.
Instead	of	keeping	track	of	just	the	state	changes,	you	can	also	track
when	the	change	was	made	and	who	changed	it.	Saving	these
mementos	to	disk	somewhere	allows	you	to	go	back	and	rapidly	build
an	audit	log	pointing	to	precisely	what	happened	to	change	the	object.

The	observer	pattern	is	notorious	for	causing	memory	leaks	when
listeners	aren't	properly	unregistered.	This	can	happen	even	in	a
memory	managed	environment	such	as	JavaScript.	Be	wary	of	failing
to	unhook	observers.

Summary
In	this	chapter	we've	looked	at	a	bunch	of	behavioral
patterns.	Some	of	these	patterns	such	as	observer	and
iterator	will	be	ones	you'll	use	almost	every	day,	while
others	such	as	interpreter	you	might	use	no	more	than	a
handful	of	times	in	your	entire	career.	Learning	about
these	patterns	should	help	you	identify	well-defined
solutions	to	common	problems.

Most	of	the	patterns	are	directly	applicable	to	JavaScript
and	some	of	them,	such	as	the	strategy	pattern,	become
more	powerful	in	a	dynamic	language.	The	only	pattern
we	found	that	has	some	limitations	is	the	visitor	pattern.
The	lack	of	static	classes	and	polymorphism	makes	this
pattern	difficult	to	implement	without	breaking	proper
separation	of	concerns.

These	aren't,	by	any	means,	all	of	the	behavioral
patterns	in	existence.	The	programming	community	has
spent	the	past	two	decades	building	on	the	ideas	of	the
GoF	book	and	identifying	new	patterns.	The	remainder
of	this	book	is	dedicated	to	these	newly	identified
patterns.	The	solutions	may	be	very	old	ones	but	not
generally	recognized	as	common	solutions	until	more
recently.	As	far	as	I'm	concerned	this	is	the	point	where
the	book	starts	to	get	very	interesting	as	we	start	looking
at	less	well	known	and	more	JavaScript-specific
patterns.

Part	2
Other	Patterns

Functional	Programming

Reactive	Programming

Application	Patterns

Web	Patterns

Messaging	Patterns

Microservices

Patterns	for	Testing

Advanced	Patterns

ECMAScript-2015/2016	Solutions	Today

In	Part	1	we	focused	on	patterns	originally	identified	in
the	GoF	book	that	were	the	original	impetus	behind

patterns	in	software	design.	In	this	part	of	the	book	we'll
expand	beyond	those	patterns	to	look	at	patterns	that
are	related	to	functional	programming,	large-scale

patterns	for	structuring	an	entire	application,	patterns
which	are	specific	to	the	Web,	and	messaging	patterns.
In	addition,	we'll	look	at	patterns	for	testing	and	some

rather	interesting	advanced	patterns.	Finally,	we'll	look	at
how	we	can	get	many	of	the	features	of	the	next	version

of	JavaScript	today.

Chapter	6.	Functional
Programming
Functional	programming	is	a	different	approach	to
development	than	the	heavily	object	oriented	approach
that	we	have	focused	on	so	far.	Object	oriented
programming	is	a	fantastic	tool	for	solving	a	great
number	of	problems	but	it	has	some	issues.	Parallel
programming	within	an	object	oriented	context	is	difficult
as	the	state	can	be	changed	by	various	different	threads
with	unknown	side	effects.	Functional	programming	does
not	permit	state	or	mutable	variables.	Functions	act	as
primary	building	blocks	in	functional	programming.
Places	where	you	might	have	used	a	variable	in	the	past
will	now	use	a	function.

Even	in	a	single	threaded	program,	functions	can	have
side-effects	that	change	global	state.	This	means	that,
when	calling	an	unknown	function,	it	can	alter	the	whole
flow	of	the	program.	This	makes	debugging	a	program
quite	difficult.

JavaScript	is	not	a	functional	programming	language	but
we	can	still	apply	some	functional	principles	to	our	code.
We'll	look	at	a	number	of	patterns	in	the	functional
space:

Function	passing

Filters	and	pipes

Accumulators

Memoization

Immutability

Lazy	instantiation

Functional	functions	are
side-effect-free
A	core	tenant	of	functional	programming	is	that	functions
should	not	change	state.	Values	local	to	the	function
may	be	set	but	nothing	outside	the	function	may	change.
This	approach	is	very	useful	for	making	code	more
maintainable.	There	need	no	longer	be	any	concern	that
passing	an	array	into	a	function	is	going	to	play	havoc
with	its	contents.	This	is	especially	a	concern	when	using
libraries	that	are	not	under	your	control.

There	is	no	mechanism	within	JavaScript	to	prevent	you
from	changing	global	state.	Instead	you	must	rely	on
developers	to	write	side-effect-free	functions.	This	may
be	difficult	or	not,	depending	on	the	maturity	of	the	team.

It	may	not	be	desirable	to	put	all	the	code	from	your
application	into	functions,	but	separating	as	much	as
possible	is	desirable.	There	is	a	pattern	called	command
query	separation	that	suggests	that	methods	should	fall
into	two	categories.	Either	they	are	a	function	that	reads
a	value	or	they	are	a	command	that	sets	a	value.	Never
the	twain	should	meet.	Keeping	methods	categorized

like	this	eases	in	debugging	and	in	code	reuse.

One	of	the	consequences	of	side	effect-free	functions	is
that	they	can	be	called	any	number	of	times	with	the
same	inputs	and	the	result	will	be	the	same.
Furthermore,	because	there	are	no	changes	to	state,
calling	the	function	many	times	will	not	cause	any	ill	side
effects,	other	than	making	it	run	slower.

Function	passing
In	functional	programming	languages,	functions	are	first
class	citizens.	Functions	can	be	assigned	to	variables
and	passed	around	just	like	you	would	with	any	other
variable.	This	is	not	entirely	a	foreign	concept.	Even
languages	such	as	C	had	function	pointers	that	could	be
treated	just	like	other	variables.	C#	has	delegates	and,	in
more	recent	versions,	lambdas.	The	latest	release	of
Java	has	also	added	support	for	lambdas	as	they	have
proven	to	be	so	useful.

JavaScript	allows	for	functions	to	be	treated	as	variables
and	even	as	objects	and	strings.	In	this	way	JavaScript
is	functional	in	nature.

Because	of	JavaScript's	single	threaded	nature,
callbacks	are	a	common	convention	and	you	can	find
them	pretty	much	everywhere.	Consider	calling	a
function	at	a	later	date	on	a	web	page.	This	is	done	by
setting	a	timeout	on	the	window	object	like	so:

setTimeout(function(){alert("Hello	from

the	past")},	5	*	1000);

The	arguments	for	the	set	timeout	function	are	a	function
to	call	and	a	time	to	delay	in	milliseconds.

Irrespective	of	the	JavaScript	environment	in	which
you're	working,	it	is	almost	impossible	to	avoid	functions

in	the	shape	of	callbacks.	Node.js'	asynchronous
processing	model	is	highly	dependent	on	being	able	to
call	a	function	and	pass	in	something	to	be	completed	at
a	later	date.	Making	calls	to	external	resources	in	a
browser	is	also	dependent	on	a	callback	to	notify	the
caller	that	some	asynchronous	operation	has	completed.
In	basic	JavaScript	this	looks	like	the	following:

let	xmlhttp	=	new	XMLHttpRequest()

xmlhttp.onreadystatechange	=	function()

if	(xmlhttp.readyState==4	&&

xmlhttp.status==200){

		//process	returned	data

}

};

xmlhttp.open("GET",

http://some.external.resource,	true);

xmlhttp.send();

You	may	notice	that	we	assign	the
onreadystatechange	function	before	we	even	send
the	request.	This	is	because	assigning	it	later	may	result
in	a	race	condition	in	which	the	server	responds	before
the	function	is	attached	to	the	ready	state	change.	In	this
case,	we've	used	an	inline	function	to	process	the
returned	data.	Because	functions	are	first	class	citizens
we	can	change	this	to	look	like	the	following:

let	xmlhttp;

function	requestData(){

		xmlhttp	=	new	XMLHttpRequest()

		xmlhttp.onreadystatechange=processData;

		xmlhttp.open("GET",

http://some.external.resource,	true);

		xmlhttp.send();

}

	

function	processData(){

		if	(xmlhttp.readyState==4

&&xmlhttp.status==200){

				//process	returned	data

		}

}

This	is	typically	a	cleaner	approach	and	avoids
performing	complex	processing	in	line	with	another
function.

However,	you	might	be	more	familiar	with	the	jQuery
version	of	this,	which	looks	something	like	the	following:

$.getJSON('http://some.external.resource',

function(json){

		//process	returned	data

});

In	this	case	the	boiler	plate	of	dealing	with	ready	state
changes	is	handled	for	you.	There	is	even	convenience
provided	for	you	if	the	request	for	data	fails:

$.ajax('http://some.external.resource',

		{	success:	function(json){

						//process	returned	data

				},

				error:	function(){

						//process	failure

				},

				dataType:	"json"

});

In	this	case,	we've	passed	an	object	into	the	ajax	call

which	defines	a	number	of	properties.	Amongst	these
properties	are	function	callbacks	for	success	and	failure.
This	method	of	passing	numerous	functions	into	another
suggests	a	great	way	of	providing	expansion	points	for
classes.

Likely	you've	seen	this	pattern	in	use	before	without
even	realizing	it.	Passing	functions	into	constructors	as
part	of	an	options	object	is	a	commonly	used	approach
to	providing	extension	hooks	in	JavaScript	libraries.	We
saw	some	treatment	of	functions	in	the	previous	chapter,
Chapter	5,	Behavioral	Patterns,	when	passing	function
into	the	observer.

Implementation
In	Westeros	the	tourism	industry	is	almost	non-extant.
There	are	great	difficulties	with	bandits	killing	tourists
and	tourists	becoming	entangled	in	regional	conflicts.
Nonetheless,	some	enterprising	folks	have	started	to
advertise	a	grant	tour	of	Westeros	in	which	they	will	take
those	with	the	means	on	a	tour	of	all	the	major
attractions.	From	King's	Landing	to	Eyrie,	to	the	great
mountains	of	Dorne	-	the	tour	will	cover	it	all.	In	fact,	a
rather	mathematically	inclined	member	of	the	tourism
board	has	taken	to	calling	it	a	Hamiltonian	tour	as	it	visits
everywhere	once.

The	HamiltonianTour	class	provides	an	options
object	which	allows	the	definition	of	an	options	object.
This	object	contains	the	various	places	to	which	a

callback	can	be	attached.	In	our	case	the	interface	for	it
would	look	something	like	the	following:

export	class	HamiltonianTourOptions{

		onTourStart:	Function;

		onEntryToAttraction:	Function;

		onExitFromAttraction:	Function;

		onTourCompletion:	Function;

}

The	full	HamiltonianTour	class	looks	like	the
following:

class	HamiltonianTour	{

		constructor(options)	{

				this.options	=	options;

		}

		StartTour()	{

				if	(this.options.onTourStart	&&	typeof

(this.options.onTourStart)	===	"function")

						this.options.onTourStart();

						this.VisitAttraction("King's

Landing");

						this.VisitAttraction("Winterfell");

						this.VisitAttraction("Mountains	of

Dorne");

						this.VisitAttraction("Eyrie");

				if	(this.options.onTourCompletion	&&

typeof	(this.options.onTourCompletion)	===

"function")

						this.options.onTourCompletion();

		}

		VisitAttraction(AttractionName)	{

				if	(this.options.onEntryToAttraction

&&	typeof

(this.options.onEntryToAttraction)	===

"function")

						

this.options.onEntryToAttraction(Attractio

this.options.onEntryToAttraction(Attractio

nName);

						//do	whatever	one	does	in	a

Attraction

				if	(this.options.onExitFromAttraction

&&	typeof

(this.options.onExitFromAttraction)	===

"function")

						

this.options.onExitFromAttraction(Attracti

onName);

		}

}

You	can	see	in	the	highlighted	code	how	we	check	the
options	and	then	execute	the	callback	as	needed.	This
can	be	used	by	simply	doing	the	following:

var	tour	=	new	HamiltonianTour({

		onEntryToAttraction:	function(cityname)

{console.log("I'm	delighted	to	be	in	"	+

cityname)}});

						tour.StartTour();

The	output	from	running	this	code	would	be	the
following:

I'm	delighted	to	be	in	King's	Landing

I'm	delighted	to	be	in	Winterfell

I'm	delighted	to	be	in	Mountains	of	Dorne

I'm	delighted	to	be	in	Eyrie

Passing	functions	is	a	great	approach	to	solving	a
number	of	problems	in	JavaScript	and	tends	to	be	used
extensively	by	libraries	such	as	jQuery	and	frameworks
such	as	express.	It	is	so	commonly	adopted	that	using	it

provides	added	barriers	to	your	code's	readability.

Filters	and	pipes
If	you're	at	all	familiar	with	the	Unix	command	line	or,	to
a	lesser	extent,	the	Windows	command	line,	then	you'll
have	probably	made	use	of	pipes.	A	pipe,	which	is
represented	by	the	|	character	is	shorthand	for	"take	the
output	of	program	A	and	put	it	into	program	B".	This
relatively	simple	idea	makes	the	Unix	command	line
incredibly	powerful.	For	instance,	if	you	wanted	to	list	all
the	files	in	a	directory	and	then	sort	them	and	filter	for
any	which	start	with	either	the	letters	b	or	g	and	end	with
an	f	then	the	command	might	look	like	the	following:

ls|sort|grep	"^[gb].*f$"

The	ls	command	lists	all	files	and	directories,	the	sort
command	sorts	them,	and	the	grep	command	matches
file	names	against	a	regular	expression.	Running	this
command	in	the	etc	directory	on	an	Ubuntu	box	in	/etc
would	give	a	result	which	looks	something	like	the
following:

stimms@ubuntu1:/etc$	ls|sort|grep	

"^[gb].*f$"

blkid.conf

bogofilter.cf

brltty.conf

gai.conf

gconf

groff

gssapi_mech.conf

Some	functional	programming	languages	such	as	F#
offer	a	special	syntax	for	piping	between	functions.	In	F#,
filtering	a	list	for	even	numbers	can	be	done	in	the
following	way:

[1..10]	|>List.filter	(fun	n	->	n%	2	=

0);;

This	syntax	is	very	nice-looking,	especially	when	used
for	long	chains	of	functions.	As	an	example,	taking	a
number,	casting	it	to	a	float,	square	rooting	it,	and	then
rounding	it	would	look	like	the	following:

10.5	|>	float	|>Math.Sqrt	|>Math.Round

This	is	a	clearer	syntax	than	the	C-style	syntax	that
would	look	more	like	the	following:

Math.Round(Math.Sqrt((float)10.5))

Unfortunately,	there	is	no	ability	to	write	pipes	in
JavaScript	using	a	nifty	F#	style	syntax,	but	we	can	still
improve	upon	the	normal	method	shown	in	the	preceding
code	by	using	method	chaining.

Everything	in	JavaScript	is	an	object,	which	means	that
we	can	have	some	real	fun	adding	functionality	to
existing	objects	to	improve	their	look.	Operating	on
collections	of	objects	is	a	space	in	which	functional
programming	provides	some	powerful	features.	Let's
start	by	adding	a	simple	filtering	method	to	the	array

object.	You	can	think	of	these	queries	as	being	like	SQL
database	queries	written	in	a	functional	fashion.

Implementation
We	would	like	to	provide	a	function	that	performs	a
match	against	each	member	of	the	array	and	returns	a
set	of	results:

Array.prototype.where	=	function

(inclusionTest)	{

		let	results	=	[];

		for	(let	i	=	0;	i<this.length;	i++)	{

				if	(inclusionTest(this[i]))

						results.push(this[i]);

		}

		return	results;

};

The	rather	simple	looking	function	allows	us	to	quickly
filter	an	array:

var	items	=	[1,2,3,4,5,6,7,8,9,10];

items.where(function(thing){	return	thing

%	2	==0;});

What	we	return	is	also	an	object,	an	array	object	in	this
case.	We	can	continue	to	chain	methods	onto	it	like	the
following:

items.where(function(thing){	return	thing

%	2	==0;})

		.where(function(thing){	return	thing	%	3

==	0;});

The	result	of	this	is	an	array	containing	only	the	number
6,	as	it	is	the	only	number	between	1	and	10	which	is
both	even	and	divisible	by	three.	This	method	of
returning	a	modified	version	of	the	original	object	without
changing	the	original	is	known	as	a	fluent	interface.	By
not	changing	the	original	item	array,	we've	introduced	a
small	degree	of	immutability	into	our	variables.

If	we	add	another	function	to	our	library	of	array
extensions,	we	can	start	to	see	how	useful	these	pipes
can	be:

Array.prototype.select=function(projection

){

		let	results	=	[];

		for(let	i	=	0;	i<this.length;i++){

				results.push(projection(this[i]));

		}

		return	results;

};

This	extension	allows	for	projections	of	the	original	items
based	on	an	arbitrary	projection	function.	Given	a	set	of
objects	which	contain	IDs	and	names,	we	can	use	our
fluent	extensions	to	array	to	perform	complex	operations:

let	children	=	[{	id:	1,	Name:	"Rob"	},

{	id:	2,	Name:	"Sansa"	},

{	id:	3,	Name:	"Arya"	},

{	id:	4,	Name:	"Brandon"	},

{	id:	5,	Name:	"Rickon"	}];

let	filteredChildren	=

children.where(function	(x)	{

		return	x.id	%	2	==	0;

}).select(function	(x)	{

		return	x.Name;

		return	x.Name;

});

This	code	will	build	a	new	array	which	contains	only
children	with	even	IDs	and	instead	of	full	objects,	the
array	will	contain	only	their	names:	Sansa	and
Brandon.	For	those	familiar	with	.Net	these	functions
may	look	very	familiar.	The	Language	Integrated
Queries	(LINQ)	library	on	.Net	provides	similarly	named
functional	inspired	functions	for	the	manipulation	of
collections.

Chaining	functions	in	this	manner	can	be	both	easier	to
understand	and	easier	to	build	than	alternatives:
temporary	variables	are	avoided	and	the	code	made
terser.	Consider	the	preceding	example	re-implemented
using	loops	and	temporary	variables:

let	children	=	[{	id:	1,	Name:	"Rob"	},

{	id:	2,	Name:	"Sansa"	},

{	id:	3,	Name:	"Arya"	},

{	id:	4,	Name:	"Brandon"	},

{	id:	5,	Name:	"Rickon"	}];

let	evenIds	=	[];

for(let	i=0;	i<children.length;i++)

{

		if(children[i].id%2==0)

				evenIds.push(children[i]);

}

let	names	=	[];

for(let	i=0;	i<	evenIds.length;i++)

{

		names.push(evenIds[i].name);

}

A	number	of	JavaScript	libraries	such	as	d3	are
constructed	to	encourage	this	sort	of	programming.	At
first	it	seems	like	the	code	created	following	this
convention	is	bad	due	to	very	long	line	length.	I	would
argue	that	this	is	a	function	of	line	length	not	being	a
very	good	tool	to	measure	complexity	rather	than	an
actual	problem	with	the	approach.

Accumulators
We've	looked	at	some	simple	array	functions	which	add
filtering	and	pipes	to	arrays.	Another	useful	tool	is	the
accumulator.	Accumulators	aid	in	building	up	a	single
result	by	iterating	over	a	collection.	Many	common
operations	such	as	summing	up	the	elements	of	an	array
can	be	implemented	using	an	accumulator	instead	of	a
loop.

Recursion	is	popular	within	functional	programming
languages	and	many	of	them	actually	offer	an
optimization	called	"tail	call	optimization".	A	language
that	supports	this	provides	optimizations	for	functions
using	recursion	in	which	the	stack	frame	is	reused.	This
is	very	efficient	and	can	easily	replace	most	loops.
Details	on	whether	tail	call	optimization	is	supported	in
any	JavaScript	interpreter	are	sketchy.	For	the	most	part
it	doesn't	seem	like	it	is	but	we	can	still	make	use	of
recursion.

The	problem	with	for	loops	is	that	the	control	flow
through	the	loop	is	mutable.	Consider	this	rather	easy-to-
make	mistake:

let	result	=	"";

let	multiArray	=	[[1,2,3],	["a",	"b",

"c"]];

for(vari=0;	i<multiArray.length;	i++)

		for(var	j=0;	i<multiArray[i].length;

j++)

j++)

				result	+=	multiArray[i][j];

Did	you	spot	the	error?	It	took	me	several	attempts	to	get
a	working	version	of	this	code	I	could	break.	The
problem	is	in	the	loop	counter	in	the	second	loop,	it
should	read	as	follows:

let	result	=	"";

let	multiArray	=	[[1,2,3],	["a",	"b",

"c"]];

for(let	i=0;	i<multiArray.length;	i++)

		for(let	j=0;	j<multiArray[i].length;

j++)

				result	+=multiArray[i][j];

Obviously	this	could	be	somewhat	mitigated	through
better	variable	naming	but	we	would	like	to	avoid	the
problem	altogether.

Instead	we	can	make	use	of	an	accumulator,	a	tool	for
combining	multiple	values	from	a	collection	into	a	single
value.	We've	rather	missed	Westeros	for	a	couple	of
patterns	so	let's	get	back	to	our	mythical	example	land.
Wars	cost	a	great	deal	of	money	but	fortunately	there
are	a	great	number	of	peasants	to	pay	taxes	and	finance
the	lords	in	their	games	for	the	throne.

Implementation
Our	peasants	are	represented	by	a	simple	model	which
looks	like	the	following:

let	peasants	=	[

		{name:	"Jory	Cassel",	taxesOwed:	11,

bankBalance:	50},

		{name:	"VardisEgen",	taxesOwed:	15,

bankBalance:	20}];

Over	this	set	of	peasants	we	have	an	accumulator	which
looks	like	the	following:

TaxCollector.prototype.collect	=	function

(items,	value,	projection)	{

		if	(items.length>	1)

				return	projection(items[0])	+

this.collect(items.slice(1),	value,

projection);

		return	projection(items[0]);

};

This	code	takes	a	list	of	items,	an	accumulator	value,
and	a	function	that	projects	the	value	to	be	integrated
into	the	accumulation.

The	projection	function	looks	something	like	the
following:

function	(item)	{

		return	Math.min(item.moneyOwed,

item.bankBalance);

}

In	order	to	prime	this	function,	we	simply	need	to	pass	in
an	initial	value	for	the	accumulator	along	with	the	array
and	projection.	The	priming	value	will	vary	but	more
often	than	not	it	will	be	an	identity;	an	empty	string	in	the
case	of	a	string	accumulator	and	a	0	or	1	in	the	case	of
mathematical	ones.

Each	pass	through	the	accumulator	shrinks	the	size	of
the	array	over	which	we	are	operating.	All	this	is	done
without	a	single	mutable	variable.

The	inner	accumulation	can	really	be	any	function	you
like:	string	appending,	addition,	or	something	more
complicated.	The	accumulator	is	somewhat	like	the
visitor	pattern	except	that	modifying	values	in	the
collection	inside	an	accumulator	is	frowned	upon.
Remember	that	functional	programming	is	side-effect-
free.

Memoization
Not	to	be	confused	with	memorization,	memoization	is	a
specific	term	for	retaining	a	number	of	previously
calculated	values	from	a	function.

As	we	saw	earlier,	side-effect-free	functions	can	be
called	multiple	times	without	causing	problems.	The
corollary	to	this	is	that	a	function	can	also	be	called
fewer	times	than	needed.	Consider	an	expensive
function	which	does	some	complex	or,	at	least,	time-
consuming	math.	We	know	that	the	result	of	the	function
is	entirely	predicated	on	the	inputs	to	the	function.	So	the
same	inputs	will	always	produce	the	same	outputs.	Why,
then,	would	we	need	to	call	the	function	multiple	times?
If	we	saved	the	output	of	the	function,	we	could	retrieve
that	instead	of	redoing	the	time-consuming	math.

Trading	off	space	for	time	is	a	classic	computing	science
problem.	By	caching	the	result,	we	make	the	application
faster	but	we	will	consume	more	memory.	Deciding
when	to	perform	caching	and	when	to	simply	recalculate
the	result	is	a	difficult	problem.

Implementation
In	the	land	of	Westeros,	learned	men,	known	as
Maesters,	have	long	had	a	fascination	with	a	sequence
of	numbers	which	seems	to	reappear	a	great	deal	in	the

natural	world.	In	a	strange	coincidence	they	call	this
sequence	the	Fibonacci	sequence.	It	is	defined	by
adding	the	two	previous	terms	in	the	sequence	to	get	the
next	one.	The	sequence	is	bootstrapped	by	defining	the
first	few	terms	as	0,	1,	1.	So	to	get	the	next	term	we
would	simply	add	1	and	1	to	get	2.	The	next	term	would
add	2	and	1	to	get	3	and	so	forth.	Finding	an	arbitrary
member	of	the	sequence	requires	finding	the	two
previous	members,	so	it	can	end	up	being	a	bit	of
calculation.

In	our	world	we	have	discovered	a	closed	form	that
avoids	much	of	this	calculation	but	in	Westeros	no	such
discovery	has	been	made.

A	naïve	approach	is	to	simply	calculate	every	term	like
so:

let	Fibonacci	=	(function	()	{

		function	Fibonacci()	{

		}

		Fibonacci.prototype.NaieveFib	=	function

(n)	{

				if	(n	==	0)

						return	0;

				if	(n	<=	2)

						return	1;

				return	this.NaieveFib(n	-	1)	+

this.NaieveFib(n	-	2);

		};

		return	Fibonacci;

})();

This	solution	works	very	quickly	for	small	numbers	such

as	10.	However,	for	larger	numbers,	say	greater	than	40,
there	is	a	substantial	slow-down.	This	is	because	the
base	case	is	called	102,334,155	times.

Let's	see	if	we	can	improve	things	by	memoizing	some
values:

let	Fibonacci	=	(function	()	{

		function	Fibonacci()	{

				this.memoizedValues	=	[];

		}

	

		Fibonacci.prototype.MemetoFib	=	function

(n)	{

				if	(n	==	0)

						return	0;

				if	(n	<=	2)

						return	1;

				if	(!this.	memoizedValues[n])

						this.	memoizedValues[n]	=

this.MemetoFib(n	-	1)	+	this.MemetoFib(n	-

2);

				return	this.	memoizedValues[n];

		};

		return	Fibonacci;

})();

We	have	just	memoized	every	item	we	encounter.	As	it
turns	out	for	this	algorithm	we	store	n+1	items,	which	is	a
pretty	good	trade-off.	Without	memoization,	calculating
the	40th	fibonacci	number	took	963ms	while	the
memoization	version	took	only	11ms.	The	difference	is
far	more	pronounced	when	the	functions	become	more
complex	to	calculate.	Fibonacci	of	140	took	12	ms	for	the
memoization	version	while	the	naïve	version	took…	well,

it	is	has	been	a	day	and	it	is	still	running.

The	best	part	of	this	memoization	is	that	subsequent
calls	to	the	function	with	the	same	parameter	will	be
lightning-fast	as	the	result	is	already	computed.

In	our	example	only	a	very	small	cache	was	needed.	In
more	complex	examples	it	is	difficult	to	know	how	large	a
cache	should	be	or	how	frequently	a	value	will	need	to
be	recomputed.	Ideally	your	cache	will	be	large	enough
that	there	will	always	be	room	to	put	more	results	in.
However,	this	may	not	be	realistic	and	tough	decisions
will	need	to	be	made	about	which	members	of	the	cache
should	be	removed	to	save	space.	There	is	a	plethora	of
methods	for	performing	cache	invalidation.	It	has	been
said	that	cache	invalidation	is	one	of	the	toughest
problems	in	computing	science,	the	reason	being	that
we're	effectively	trying	to	predict	the	future.	If	anybody
has	perfected	a	method	of	telling	the	future,	it	is	likely
they	are	applying	their	skills	in	a	more	important	domain
than	cache	invalidation.	Two	options	are	to	prey	on	the
least	recently	used	member	of	the	cache	or	the	least
frequently	used	member.	It	is	possible	that	the	shape	of
the	problem	may	dictate	a	better	strategy.

Memoization	is	a	fantastic	tool	for	speeding	up
calculations	which	need	to	be	performed	multiple	times
or	even	calculations	which	have	common	sub-
calculations.	One	can	consider	memoization	as	just	a
special	case	of	caching,	which	is	a	commonly	used
technique	when	building	web	servers	or	browsers.	It	is

certainly	worthwhile	exploring	in	more	complex
JavaScript	applications.

Immutability
One	of	the	cornerstones	of	functional	programming	is
that	so	called	variables	can	be	assigned	only	once.	This
is	known	as	immutability.	ECMAScript	2015	supports	a
new	keyword,	const.	The	const	keyword	can	be	used
in	the	same	way	as	var	except	that	variables	assigned
with	const	will	be	immutable.	For	instance,	the	following
code	shows	a	variable	and	a	constant	that	are	both
manipulated	in	the	same	way:

let	numberOfQueens	=	1;

const	numberOfKings	=	1;

numberOfQueens++;

numberOfKings++;

console.log(numberOfQueens);

console.log(numberOfKings);

The	output	of	running	this	is	the	following:

2

1

As	you	can	see,	the	results	for	the	constant	and	variable
are	different.

If	you're	using	an	older	browser	without	support,	then
const	won't	be	available	to	you.	A	possible	workaround
is	to	make	use	of	the	Object.freeze	functionality
which	is	more	widely	adopted:

let	consts	=	Object.freeze({	pi	:	3.141});

consts.pi	=	7;

console.log(consts.pi);//outputs	3.141

As	you	can	see,	the	syntax	here	is	not	very	user-friendly.
Also	an	issue	is	that	attempting	to	assign	to	an	already
assigned	const	simply	fails	silently	instead	of	throwing
an	error.	Failing	silently	in	this	fashion	is	not	at	all	a
desirable	behavior;	a	full	exception	should	be	thrown.	If
you	enable	strict	mode,	a	more	rigorous	parsing	mode	is
added	in	ECMAScript	5,	and	an	exception	is	actually
thrown:

"use	strict";

var	consts	=	Object.freeze({	pi	:	3.141});

consts.pi	=	7;

The	preceding	code	will	throw	the	following	error:

consts.pi	=	7;

										^

TypeError:	Cannot	assign	to	read	only

property	'pi'	of	#<Object>

An	alternative	is	the	object.Create	syntax	we	spoke
about	earlier.	When	creating	properties	on	the	object,
one	can	specify	writable:	false	to	make	the
property	immutable:

var	t	=	Object.create(Object.prototype,

{	value:	{	writable:	false,

		value:	10}

});

t.value	=	7;

console.log(t.value);//prints	10

console.log(t.value);//prints	10

However,	even	in	strict	mode	no	exception	is	thrown
when	attempting	to	write	to	a	non-writable	property.	Thus
I	would	claim	that	the	const	keyword	is	not	perfect	for
implementing	immutable	objects.	You're	better	off	using
freeze.

Lazy	instantiation
If	you	go	into	a	higher-end	coffee	shop	and	place	an
order	for	some	overly	complex	beverage	(Grande	Chai
Tea	Latte,	3	Pump,	Skim	Milk,	Lite	Water,	No	Foam,
Extra	Hot	anybody?)	then	that	beverage	is	going	to	be
made	on-the-fly	and	not	in	advance.	Even	if	the	coffee
shop	knew	which	orders	were	going	to	come	in	that	day,
they	would	still	not	make	all	the	beverages	up	front.	First,
because	it	would	result	in	a	large	number	of	ruined,	cold
beverages,	and	second,	it	would	be	a	very	long	time	for
the	first	customer	to	get	their	order	if	they	had	to	wait	for
all	the	orders	of	the	day	to	be	completed.

Instead	coffee	shops	follow	a	just-in-time	approach	to
crafting	beverages.	They	make	them	when	they're
ordered.	We	can	apply	a	similar	approach	to	our	code
through	the	use	of	a	technique	known	as	lazy
instantiation	or	lazy	initialization.

Consider	an	object	which	is	expensive	to	create;	that	is
to	say	that	it	takes	a	great	deal	of	time	to	create	the
object.	If	we	are	unsure	if	the	object's	value	will	be
needed,	we	can	defer	its	full	creation	until	later.

Implementation
Let's	jump	into	an	example	of	this.	Westeros	isn't	really
big	on	expensive	coffee	shops	but	they	do	love	a	good

bakery.	This	bakery	takes	requests	for	different	bread
types	in	advance	and	then	bakes	them	all	at	once	should
they	get	an	order.	However,	creating	the	bread	object	is
an	expensive	operation	so	we	would	like	to	defer	that
until	somebody	actually	comes	to	pick	up	the	bread:

class	Bakery	{

		constructor()	{

				this.requiredBreads	=	[];

		}

		orderBreadType(breadType)	{

				this.requiredBreads.push(breadType);

		}

}

We	start	by	creating	a	list	of	bread	types	to	be	created
as	needed.	This	list	is	appended	to	by	ordering	a	bread
type:

var	Bakery	=	(function	()	{

		function	Bakery()	{

				this.requiredBreads	=	[];

		}

		Bakery.prototype.orderBreadType	=

function	(breadType)	{

				this.requiredBreads.push(breadType);

		};

This	allows	for	breads	to	be	rapidly	added	to	the	required
bread	list	without	paying	the	price	for	each	bread	to	be
created.

Now	when	pickUpBread	is	called	we'll	actually	create
the	breads:

pickUpBread(breadType)	{

		console.log("Picup	of	bread	"	+

breadType	+	"	requested");

		if	(!this.breads)	{

				this.createBreads();

		}

		for	(var	i	=	0;	i	<	this.breads.length;

i++)	{

				if	(this.breads[i].breadType	==

breadType)

						return	this.breads[i];

		}

}

createBreads()	{

		this.breads	=	[];

		for	(var	i	=	0;	i	<

this.requiredBreads.length;	i++)	{

				this.breads.push(new

Bread(this.requiredBreads[i]));

		}

}

Here	we	call	a	series	of	operations:

let	bakery	=	new

Westeros.FoodSuppliers.Bakery();

bakery.orderBreadType("Brioche");

bakery.orderBreadType("Anadama	bread");

bakery.orderBreadType("Chapati");

bakery.orderBreadType("Focaccia");

	

console.log(bakery.pickUpBread("Brioche").

breadType	+	"picked	up");

This	will	result	in	the	following:

Pickup	of	bread	Brioche	requested.

Bread	Brioche	created.

Bread	Anadama	bread	created.

Bread	Chapati	created.

Bread	Focaccia	created.

Brioche	picked	up

You	can	see	that	the	collection	of	actual	breads	is	left
until	after	the	pickup	has	been	requested.

Lazy	instantiation	can	be	used	to	simplify	asynchronous
programming.	Promises	are	an	approach	to	simplifying
callbacks	which	are	common	in	JavaScript.	Instead	of
building	up	complicated	callbacks,	a	promise	is	an	object
which	contains	a	state	and	a	result.	When	first	called,	the
promise	is	in	an	unresolved	state;	once	the	async
operation	completes,	the	state	is	updated	to	complete
and	the	result	is	filled	in.	You	can	think	of	the	result	as
being	lazily	instantiated.	We'll	look	at	promises	and
promise	libraries	in	more	detail	in	Chapter	9,	Web
Patterns.

Being	lazy	can	save	you	quite	a	bit	of	time	in	creating
expensive	objects	that	end	up	never	being	used.

Hints	and	tips
Although	callbacks	are	the	standard	way	of	dealing	with
asynchronous	methods	in	JavaScript	they	can	get	out	of
hand	easily.	There	are	a	number	of	approaches	to
solving	this	spaghetti	code:	promise	libraries	provide	a
more	fluent	way	of	handling	callbacks	and	future
versions	of	JavaScript	may	adopt	an	approach	similar	to
the	C#	async/await	syntax.

I	really	like	accumulators	but	they	can	be	inefficient	in
terms	of	memory	use.	The	lack	of	tail	recursion	means
that	each	pass	through	adds	another	stack	frame,	so	this
approach	may	result	in	memory	pressure.	All	things	are
a	trade-off	in	this	case	between	memory	and	code
maintainability.

Summary
JavaScript	is	not	a	functional	programming	language.
That	is	not	to	say	that	it	isn't	possible	to	apply	some	of
the	ideas	from	functional	programming	to	it.	These
approaches	enable	cleaner,	easier	to	debug	code.	Some
might	even	argue	that	the	number	of	issues	will	be
reduced	although	I	have	never	seen	any	convincing
studies	on	that.

In	this	chapter	we	looked	at	six	different	patterns.	Lazy
instantiation,	memoization,	and	immutability	are	all
creational	patterns.	Function	passing	is	a	structural
pattern	as	well	as	a	behavioral	one.	Accumulators	are
also	behavioral	in	nature.	Filters	and	pipes	don't	really
fall	into	any	of	the	GoF	categories	so	one	might	think	of
them	as	a	style	pattern.

In	the	next	chapter	we'll	look	at	a	number	of	patterns	for
dividing	the	logic	and	presentation	in	applications.	These
patterns	have	become	more	important	as	JavaScript
applications	have	grown.

Chapter	7.	Reactive
Programming
I	once	read	a	book	that	suggested	that	Newton	came	up
with	the	idea	for	calculus	when	he	was	observing	the
flow	of	a	river	around	a	reed.	I've	never	been	able	to	find
any	other	source	which	supports	that	assertion.	It	is,
however,	a	nice	picture	to	hold	in	your	mind.	Calculus
deals	with	understanding	how	the	state	of	a	system
changes	over	time.	Most	developers	will	rarely	have	to
deal	with	calculus	in	their	day	to	day	work.	They	will,
however,	have	to	deal	with	systems	changing.	After	all,
having	a	system	which	doesn't	change	at	all	is	pretty
boring.

Over	the	last	few	years	a	number	of	different	ideas	have
arisen	in	the	area	of	treating	change	as	a	stream	of
events	–	just	like	the	stream	that	Newton	supposedly
observed.	Given	a	starting	position	and	a	stream	of
events	it	should	be	possible	to	figure	out	the	state	of	the
system.	Indeed,	this	is	the	idea	behind	using	an	event
store.	Instead	of	keeping	the	final	state	of	an	aggregate
in	a	database	we	instead	keep	track	of	all	the	events
which	have	been	applied	to	that	aggregate.	By	replaying
this	series	of	events	we	can	recreate	the	current	state	of
the	aggregate.	This	seems	like	a	roundabout	way	of
storing	the	state	of	an	object	but	it	is	actually	very	useful
for	a	number	of	situations.	For	example,	a	disconnected

system,	like	a	cell	phone	application	when	the	phone
isn't	connected	to	the	network,	which	uses	an	event
store	can	be	merged	with	other	events	much	more	easily
than	simply	keeping	the	end	state.	It	is	also	stunningly
useful	for	audit	scenarios	as	it	is	possible	to	pull	the
system	back	to	the	state	it	was	in	at	any	point	in	time	by
simply	halting	the	replay	at	a	time	index.	How	frequently
have	you	been	asked,	"why	is	the	system	in	this	state?",
and	you've	been	unable	to	reply?	With	an	event	store	the
answer	should	be	easy	to	ascertain.

In	this	chapter	we'll	cover	the	following	topics:

Application	state	changes

Streams

Filtering	streams

Merging	streams

Streams	for	multiplexing

Application	state	changes
Within	an	application	we	can	think	of	all	the	events
happening	as	a	similar	stream	of	events.	The	user	clicks
on	a	button?	Event.	The	user's	mouse	enters	some
region?	Event.	A	clock	ticks?	Event.	In	both	front	and
backend	applications,	events	are	the	things	which	trigger
changes	in	state.	You're	likely	already	using	events	for
event	listeners.	Consider	attaching	a	click	handler	to	a
button:

var	item	=

document.getElementById("item1");

document.getElementById("item1");

item.	addEventListener("click",

function(event){	/*do	something	*/	});

In	this	code	we	have	attached	a	handler	to	the	click
event.	This	is	fairly	simple	code	but	think	about	how
rapidly	the	complexity	of	this	code	increases	when	we
add	conditions	like	"ignore	additional	click	for	500ms
once	a	click	is	fired	to	prevent	people	double-clicking"
and	"Fire	a	different	event	if	the	Ctrl	key	is	being	held
when	the	button	is	clicked".	Reactive	programming	or
functional	reactive	programming	provides	a	simple
solution	to	these	complex	interaction	scenarios	through
use	of	streams.	Let's	explore	how	your	code	can	benefit
from	leveraging	reactive	programming.

Streams
The	easiest	way	to	think	of	an	event	stream	is	not	to
think	of	the	streams	you've	probably	used	before	in
programming,	input	reader	streams,	but	to	think	of
arrays.	Let's	say	that	you	have	an	array	with	a	series	of
numbers	in	it:

[1,	4,	6,	9,	34,	56,	77,	1,	2,	3,	6,	10]

Now	you	want	to	filter	this	array	to	only	show	you	even
numbers.	In	modern	JavaScript	this	is	easily	done
through	the	use	of	the	filter	function	on	the	array:

[1,	4,	6,	9,	34,	56,	77,	1,	2,	3,	6,

10].filter((x)=>x%2==0)	=>

[4,	6,	34,	56,	2,	6,	10]

A	graphical	representation	can	be	seen	here:

The	filtering	function	here	remains	the	same	should	we
have	ten	items	in	the	array	or	ten	thousand	items	in	the
array.	Now,	what	if	the	source	array	had	new	items	being
appended	to	it	all	the	time?	We	would	like	to	keep	our
dependent	array	up-to-date	by	inserting	any	new	items
which	are	even,	into	it.	To	do	this	we	could	hook	into	the
add	function	on	the	array	using	a	pattern-like	decorator.
Using	a	decorator	we	could	call	the	filter	method	and,	if	a
match	was	found,	we	would	add	it	to	the	filtered	array.

Streams	are,	in	effect,	an	observable	on	a	collection	of
future	events.	There	are	a	number	of	interesting
problems	which	can	be	solved	using	operations	on
streams.	Let's	start	with	a	simple	problem:	handling
clicks.	This	problem	is	so	simple	that,	on	the	surface,	it
doesn't	seem	like	there	is	any	advantage	to	using
streams.	Don't	worry	we'll	make	it	more	difficult	as	we	go
along.

For	the	most	part	this	book	avoids	making	use	of	any
specific	JavaScript	libraries.	The	idea	is	that	patterns
should	be	able	to	be	implemented	with	ease	without	a
great	deal	of	ceremony.	However,	in	this	case	we're
actually	going	to	make	use	of	a	library	because	streams
have	a	few	nuances	to	their	implementation	for	which
we'd	like	some	syntactic	niceties.	If	you're	looking	to	see
how	to	implement	a	basic	stream,	then	you	can	base	it
on	the	observer	pattern	outlined	in	Chapter	5,	Behavioral
Patterns.

There	are	a	number	of	stream	libraries	in	JavaScript

Reactive.js,	Bacon.js,	and	RxJS	to	name	a	few.	Each
one	has	various	advantages	and	disadvantages	but	the
specifics	are	outside	the	purview	of	this	book.	In	this
book	we'll	make	use	of	Reactive	Extensions	for
JavaScript,	the	source	code	for	which	can	be	found	on
GitHub	at	https://github.com/Reactive-Extensions/RxJS.

Let's	start	with	a	brief	piece	of	HTML:

<body>

		<button	id="button">	Click	Me!</button>

		

</body>

To	this,	let's	add	a	quick	click	counter:

<script>

		var	counter	=	0;

		var	button	=

document.getElementById('button');

		var	source	=

Rx.Observable.fromEvent(button,	'click');

		var	subscription	=

source.subscribe(function	(e)	{

				counter++;

				output.innerHTML	=	"Clicked	"	+

counter	+	"	time"	+	(counter	>	1	?	"s"	:

"");

		});

</script>

Here	you	can	see	we're	creating	a	new	stream	of	events
from	the	click	event	on	the	button.	The	newly	created
stream	is	commonly	referred	to	as	a	metastream.
Whenever	an	event	is	emitted	from	the	source	stream	it

https://github.com/Reactive-Extensions/RxJS

is	automatically	manipulated	and	published,	as	needed,
to	the	metastream.	We	subscribe	to	this	stream	and
increment	a	counter.	If	we	wanted	to	react	to	only	the
even	numbered	events,	we	could	do	so	by	subscribing	a
second	function	to	the	stream:

var	incrementSubscription	=

source.subscribe(()	=>	counter++);

var	subscription	=

source.filter(x=>counter%2==0).subscribe(f

unction	(e)	{

		output.innerHTML	=	"Clicked	"	+	counter

+	"	time"	+(counter	>	1	?	"s"	:	"");

});

Here	you	can	see	that	we're	applying	a	filter	to	the
stream	such	that	the	counter	is	distinct	from	the	function
which	updates	the	screen.	Keeping	a	counter	outside	of
the	streams	like	this	feels	dirty,	though,	doesn't	it?
Chances	are	that	incrementing	every	other	click	isn't	the
goal	of	this	function	anyway.	It	is	much	more	likely	that
we	would	like	to	run	a	function	only	on	double	click.

This	is	difficult	to	do	with	traditional	methods,	however
these	sorts	of	complex	interactions	are	easy	to	achieve
using	streams.	You	can	see	how	we	might	approach	the
problem	in	this	code:

source.buffer(()	=>	source.debounce(250))

.map((list)	=>	list.length)

.filter((x)	=>	x	>=	2)

.subscribe((x)=>	{

		counter++;

		output.innerHTML	=	"Clicked	"	+	counter

+	"	time"	+	(counter	>	1	?	"s"	:	"");

+	"	time"	+	(counter	>	1	?	"s"	:	"");

});

Here	we	take	the	click	stream	and	buffer	the	stream
using	a	debounce	to	generate	the	boundaries	of	the
buffer.	Debouncing	is	a	term	from	the	hardware	world
which	means	that	we	clean	up	a	noisy	signal	into	a
single	event.	When	a	physical	button	is	pushed,	there
are	often	a	couple	of	additional	high	or	low	signals
instead	of	the	single	point	signal	we	would	like.	In	effect
we	eliminate	repeated	signals	which	occur	within	a
window.	In	this	case	we	wait	250ms	before	firing	an
event	to	move	to	a	new	buffer.	The	buffer	contains	all	the
events	fired	during	the	debouncing	and	passes	on	a	list
of	them	to	the	next	function	in	the	chain.	The	map
function	generates	a	new	stream	with	the	list	length	as
the	contents.	Next,	we	filter	the	stream	to	show	only
events	with	a	value	of	2	or	more,	that's	two	clicks	or
more.	The	stream	of	events	look	like	the	following
diagram:

Performing	the	same	logic	as	this	using	traditional	event
listeners	and	call-backs	would	be	quite	difficult.	One
could	easily	imagine	a	far	more	complex	workflow	that
would	spiral	out	of	control.	FRP	allows	for	a	more
streamlined	approach	to	handling	events.

Filtering	streams
As	we	saw	in	the	preceding	section,	it	is	possible	to	filter
a	stream	of	events	and,	from	it	produce	a	new	stream	of
events.	You	might	be	familiar	with	being	able	to	filter
items	in	an	array.	ES5	introduced	a	number	of	new
operators	for	arrays	such	as	filter	and	some.	The	first	of
these	produces	a	new	array	containing	only	elements
which	match	the	rule	in	the	filter.	Some	is	a	similar
function	which	simply	returns	true	if	any	element	of	the
array	matches.	These	same	sorts	of	functions	are	also
supported	on	streams	as	well	as	functions	you	might	be
familiar	with	from	functional	languages	such	as	First	and
Last.	In	addition	to	the	functions	which	would	make
sense	for	arrays,	there	are	a	number	of	time	series
based	functions	which	make	much	more	sense	when
you	consider	that	streams	exist	in	time.

We've	already	seen	debounce	which	is	an	example	of	a
time	based	filter.	Another	very	simple	application	of
debounce	is	to	prevent	the	annoying	bug	of	users
double-clicking	a	submit	button.	Consider	how	much
simpler	the	code	for	that	is	using	a	stream:

Rx.Observable.FromEvent(button,	"click")

.debounce(1000).subscribe((x)=>doSomething

());

You	might	also	find	it	that	functions	like	Sample	–	which

generates	a	set	of	events	from	a	time	window.	This	is	a
very	handy	function	when	we're	dealing	with	observables
which	may	produce	a	large	number	of	events.	Consider
an	example	from	our	example	world	of	Westeros.

Unfortunately,	Westeros	is	quite	a	violent	place	where
people	seem	to	die	in	unpleasant	ways.	So	many	people
die	that	we	can't	possibly	keep	an	eye	on	each	one	so
we'd	like	to	just	sample	the	data	and	gather	a	few
causes	of	death.

To	simulate	this	incoming	stream,	we	will	start	with	an
array,	something	like	the	following:

var	deaths	=	[

		{

				Name:"Stannis",

				Cause:	"Cold"

		},

		{

				Name:	"Tyrion",

				Cause:	"Stabbing"

		},

…

}

TIPTIP
You	can	see	we're	using	an	array	to	simulate	a	stream	of	events.	This	can	be	done	with
any	stream	and	is	a	remarkably	easy	way	to	perform	testing	on	complex	code.	You	can
build	a	stream	of	events	in	an	array	and	then	publish	them	with	appropriate	delays	giving
an	accurate	representation	of	anything	from	a	stream	of	events	from	the	filesystem	to	user
interactions.

Now	we	need	to	make	our	array	into	a	stream	of	events.
Fortunately,	there	are	some	shortcuts	for	doing	that
using	the	from	method.	This	will	simply	return	a	stream

which	is	immediately	executed.	What	we'd	like	is	to
pretend	we	have	a	regularly	distributed	stream	of	events
or,	in	our	rather	morbid	case,	deaths.	This	can	be	done
by	using	two	methods	from	RxJS:	interval	and	zip.
interval	creates	a	stream	of	events	at	a	regular
interval.	zip	matches	up	pairs	of	events	from	two
streams.	Together	these	two	methods	will	emit	a	new
stream	of	events	at	a	regular	interval:

function	generateDeathsStream(deaths)	{

		return

Rx.Observable.from(deaths).zip(Rx.Observab

le.interval(500),	(death,_)=>death);

}

In	this	code	we	zip	together	the	deaths	array	with	an
interval	stream	which	fires	every	500ms.	Because	we're
not	super	interested	in	the	interval	event	we	simply
discard	it	and	project	the	item	from	the	array	onwards.

Now	we	can	sample	this	stream	by	simply	taking	a
sample	and	then	subscribing	to	it.	Here	we're	sampling
every	1500ms:

generateDeathsStream(deaths).sample(1500).

subscribe((item)	=>	{	/*do	something	*/

});

You	can	have	as	many	subscribers	to	a	stream	as	you
like	so	if	you	wanted	to	perform	some	sampling,	as	well
as	perhaps	some	aggregate	functions	like	simply
counting	the	events,	you	could	do	so	by	having	several
subscribers:

Var	counter	=	0;

generateDeathsStream(deaths).subscribe((it

em)	=>	{	counter++	});

Merging	streams
We've	already	seen	the	zip	function	that	merges	events
one-to-one	to	create	a	new	stream	but	there	are
numerous	other	ways	of	combining	streams.	A	very
simple	example	might	be	a	page	which	has	several	code
paths	which	all	want	to	perform	a	similar	action.	Perhaps
we	have	several	actions	all	of	which	result	in	a	status
message	being	updated:

var	button1	=

document.getElementById("button1");

var	button2	=

document.getElementById("button2");

var	button3	=

document.getElementById("button3");

var	button1Stream	=

Rx.Observable.fromEvent(button1,	'click');

var	button2Stream	=

Rx.Observable.fromEvent(button2,	'click');

var	button3Stream	=

Rx.Observable.fromEvent(button3,	'click');

var	messageStream	=

Rx.Observable.merge(button1Stream,

button2Stream,	button3Stream);

messageStream.subscribe(function	(x)	{

return	console.log(x.type	+	"	on	"	+

x.srcElement.id);	});

Here	you	can	see	how	the	various	streams	are	passed
into	the	merge	function	and	the	resulting	merged	stream:

While	useful,	this	code	doesn't	seem	to	be	particularly
better	than	simply	calling	the	event	handler	directly,	in
fact	it	is	longer	than	necessary.	However,	consider	that
there	are	more	sources	of	status	messages	than	just
button	pushes.	We	might	want	to	have	asynchronous
events	also	write	out	information.	For	instance,	sending
a	request	to	the	server	might	also	want	to	add	status
information.	Another	fantastic	application	may	be	with
web	workers	which	run	in	the	background	and
communicate	with	the	main	thread	using	messaging.	For
web	based	JavaScript	applications	this	is	how	we
implement	multithreaded	applications.	Let's	see	how	that
would	look.

First	we	can	create	a	stream	from	a	worker	role.	In	our

example	the	worker	simply	calculates	the	fibonacci
sequence.	We've	added	a	fourth	button	to	our	page	and
have	it	trigger	the	worker	process:

var	worker	=

Rx.DOM.fromWorker("worker.js");

button4Stream.subscribe(function	(_)	{

		worker.onNext({	cmd:	"start",	number:	35

});

});

Now	we	can	subscribe	to	the	merged	stream	and
combine	it	with	all	the	previous	streams:

var	messageStream	=

Rx.Observable.merge(button1Stream,

button2Stream,	button3Stream,	worker);

messageStream.subscribe(function	(x)	{

		appendToOutput(x.type	+	(x.srcElement.id

===	undefined	?	"	with	"	+	x.data	:	"	on	"

+	x.srcElement.id));

},

function	(err)	{	return

appendToOutput(err,	true);	}

);

This	all	looks	really	nice	but	we	don't	want	to	clobber	the
users	with	dozens	of	notifications	at	a	time.	We	can
throttle	the	stream	of	events	so	that	only	a	single	toast
shows	up	at	a	time	by	using	the	same	interval	zip	pattern
we	saw	earlier.	In	this	code	we've	replaced	our
appendToOutput	method	with	a	call	to	a	toast	display
library:

var	messageStream	=

Rx.Observable.merge(button1Stream,

Rx.Observable.merge(button1Stream,

button2Stream,	button3Stream,	worker);

var	intervalStream	=

Rx.Observable.interval(5000);

messageStream.zip(intervalStream,	function

(x,	_)	{

		return	x;})

.subscribe(function	(x)	{

		toastr.info(x.type	+	(x.srcElement.id

===	undefined	?	"	with	"	+	x.data	:	"	on	"

+	x.srcElement.id));

},

function	(err)	{	return	toastr.error(err);

}

);

As	you	can	see	the	code	for	this	functionality	is	short	and
easy	to	understand	yet	it	contains	a	great	deal	of
functionality.

Streams	for	multiplexing
One	does	not	rise	to	a	position	of	power	on	the	King's
council	in	Westeros	without	being	a	master	at	building
networks	of	spies.	Often	the	best	spy	is	one	who	can
respond	the	quickest.	Similarly,	we	may	have	some	code
which	has	the	option	of	calling	one	of	many	different
services	which	can	fulfill	the	same	task.	A	great	example
would	be	a	credit	card	processor:	it	doesn't	really	matter
which	processor	we	use	as	they're	pretty	much	all	the
same.

To	achieve	this,	we	can	kick	off	a	number	of	HTTP
requests	to	each	of	the	services.	If	we	take	each	of	the
requests	and	put	them	into	a	stream,	we	can	use	it	to
select	the	fastest	to	respond	processor	and	then	perform
the	rest	of	the	actions	using	that	processor.

With	RxJS	this	looks	like	the	following:

var	processors	=

Rx.Observable.amb(processorStream1,

processorStream2);

You	could	even	include	a	timeout	in	the	amb	call	which
would	be	called	to	handle	the	eventuality	that	none	of	the
processors	responded	in	time.

Hints	and	tips
There	are	a	large	number	of	different	functions	that	can
be	applied	to	streams.	If	you	happen	to	decide	on	the
RxJS	library	for	your	FRP	needs	in	JavaScript,	many	of
the	most	common	functions	have	been	implemented	for
you.	More	complex	functions	can	often	be	written	as	a
chain	of	the	included	functions	so	try	to	think	of	a	way	to
create	the	functionality	you	want	by	chaining	before
writing	your	own	functions.

Frequently,	asynchronous	calls	across	the	network	in
JavaScript	fail.	Networks	are	unreliable,	mobile	networks
doubly	so.	For	the	most	part	when	the	network	fails,	our
application	fails.	Streams	provide	an	easy	fix	to	this	by
allowing	you	to	easily	retry	failed	subscriptions.	In	RxJS
this	method	is	called	Retry.	Slotting	it	into	any
observable	chain	makes	it	more	resilient	to	network
failures.

Summary
Functional	reactive	programming	has	many	uses	in
different	applications	both	on	the	server	and	on	the
client.	On	the	client	side	it	can	be	used	to	wrangle	a
large	number	of	events	together	into	a	data	flow	enabling
complex	interactions.	It	can	also	be	used	for	the	simplest
of	things	such	as	preventing	a	user	from	double-clicking
a	button.	There	is	no	huge	cost	to	simply	using	streams
for	all	of	your	data	changes.	They	are	highly	testable	and
have	a	minimal	impact	on	performance.

Perhaps	the	nicest	thing	about	FRP	is	that	it	raises	the
level	of	abstraction.	You	have	to	deal	with	less	finicky
process	flow	code	and	can,	instead,	focus	on	the	logical
flow	of	the	application.

Chapter	8.	Application
Patterns
Thus	far	we	have	spent	a	great	deal	of	time	examining
patterns	that	are	used	to	solve	local	problems,	that	is;
problems	that	span	only	a	handful	of	classes	and	not	the
whole	application.	These	patterns	have	been	narrow	in
scope.	They	frequently	only	relate	to	two	or	three
classes	and	might	be	used	but	a	single	time	in	any	given
application.	As	you	can	imagine	there	are	also	larger
scale	patterns	that	are	applicable	to	the	application	as	a
whole.	You	might	think	of	"toolbar"	as	a	general	pattern
that	is	used	in	many	places	in	an	application.	What's
more,	it	is	a	pattern	that	is	used	in	a	great	number	of
applications	to	give	them	a	similar	look	and	feel.	Patterns
can	help	guide	how	the	whole	application	is	assembled.

In	this	chapter	we're	going	to	look	at	a	family	of	patterns
which	I've	taken	to	calling	the	MV*	family.	This	family
includes	MVC,	MVVM,	MVP,	and	even	PAC.	Just	like
their	names,	the	patterns	themselves	are	pretty	similar.
The	chapter	will	cover	each	of	these	patterns	and	show
how,	or	if,	we	can	apply	them	to	JavaScript.	We'll	also
pay	special	attention	to	how	the	patterns	differ	from	one
another.	By	the	end	of	the	chapter	you	should	be	able	to
thrill	guests	at	a	cocktail	party	with	an	explanation	of	the
nuances	of	MVP	versus	MVC.

The	topics	covered	will	be	as	follows:

History	of	Model	View	patterns

Model	View	Controller

Model	View	Presenter

Model	View	ViewModel

First,	some	history
Separating	concerns	inside	an	application	is	a	very
important	idea.	We	live	in	a	complex	and	ever-changing
world.	This	means	that	not	only	is	it	nearly	impossible	to
formulate	a	computer	program	which	works	in	exactly
the	way	users	want,	but	that	what	users	want	is	an	ever-
shifting	maze.	Couple	this	with	the	fact	that	an	ideal
program	for	user	A	is	totally	different	from	an	ideal
program	for	user	B	and	we're	guaranteed	to	end	up	in	a
mess.	Our	applications	need	to	change	as	frequently	as
we	change	our	socks:	at	least	once	a	year.

Layering	an	application	and	maintaining	modularity
reduces	the	impact	of	a	change.	The	less	each	layer
knows	about	the	other	layers	the	better.	Maintaining
simple	interfaces	between	the	layers	reduces	the
chances	that	a	change	to	one	layer	will	percolate	to
another	layer.

If	you've	ever	taken	a	close	look	at	a	high	quality	piece	of
nylon	(from	a	hot	air	balloon,	parachute,	or	expensive
jacket)	you	may	have	noticed	that	that	the	fabric	seems
to	form	tiny	squares.	This	is	because,	every	few

millimeters,	a	thick	reinforcing	thread	is	added	to	the
weave	to	form	a	crosshatch	pattern.	If	the	fabric	is
ripped,	then	the	rip	will	be	stopped	or	at	least	slowed	by
the	reinforcement.	This	limits	the	damage	to	a	small	area
and	prevents	it	from	spreading.

Layers	and	modules	in	an	application	are	exactly	the
same:	they	limit	the	spread	of	damage	from	a	change.

In	the	early	chapters	of	this	book,	we	talked	a	bit	about
the	seminal	language,	Smalltalk.	It	was	the	language
which	made	classes	famous.	Like	many	of	these
patterns,	the	original	MV*	pattern,	Model	View
Controller	(MVC),	was	used	long	before	it	was	ever
identified.	Although	difficult	to	prove	it	seems	that	MVC
was	originally	suggested	in	the	late	1970s	by	Trygve
Reenskaug,	a	Norwegian	computer	scientist,	during	a
visit	to	the	legendary	Xerox	PARC.	Through	the	1980s
the	pattern	became	heavily	used	in	Smalltalk
applications.	However,	it	was	not	until	1988	that	the
pattern	was	more	formally	documented	in	an	article
entitled,	A	Cookbook	for	Using	the	Model-View-
Controller	User	Interface	Paradigm	by	Glenn	E.	Krasner
and	Stephen	T.	Pope.

Model	View	Controller
MVC	is	a	pattern	that	is	useful	for	creating	rich,
interactive	user	interfaces:	just	the	sort	of	interfaces
which	are	becoming	more	and	more	popular	on	the	web.
The	astute	amongst	you	will	have	already	figured	out
that	the	pattern	is	made	up	of	three	major	components:
model,	view,	and	controller.	You	can	see	how
information	flows	between	the	components	in	this
illustration:

The	preceding	diagram	shows	the	relationship	between
the	three	components	in	MVC.

The	model	contains	the	state	of	the	program.	In	many
applications	this	model	is	contained	in	some	form,	in	a
database.	The	model	may	be	rehydrated	from	a
persistent	store	such	as	the	database	or	it	can	be
transient.	Ideally	the	model	is	the	only	mutable	part	of
the	pattern.	Neither	the	view	nor	the	controller	has	any
state	associated	with	them.

For	a	simple	login	screen	the	model	might	look	like	the
following:

class	LoginModel{

		UserName:	string;

		Password:	string;

		RememberMe:	bool;

		LoginSuccessful:	bool;

		LoginErrorMessage:	string;

}

You'll	notice	that	not	only	do	we	have	fields	for	the	inputs
shown	to	the	user	but	also	for	the	state	of	the	login.	This
would	not	be	apparent	to	the	user	but	it	is	still	part	of	the
application	state.

The	model	is	usually	modeled	as	a	simple	container	for
information.	Typically,	there	are	no	real	functions	in	the
model.	It	simply	contains	data	fields	and	may	also
contain	validation.	In	some	implementations	of	the	MVC
pattern	the	model	also	contains	meta-data	about	the
fields	such	as	validation	rules.

NOTENOTE
The	Naked	Object	pattern	is	a	deviation	from	the	typical	MVC	pattern.	It	augments	the
model	with	extensive	business	information	as	well	as	hits	about	the	display	and	editing	of
data.	It	even	contains	methods	for	persisting	the	model	to	storage.

The	views	in	the	Naked	Object	pattern	are	generated	from	these	models	automatically.	The
controller	is	also	automatically	generated	by	examining	the	model.	This	centralizes	the	logic
for	displaying	and	manipulating	application	states	and	saves	the	developer	from	having	to
write	their	own	views	and	controllers.	So	while	the	view	and	controller	still	exist,	they	are
not	actual	objects	but	are	dynamically	created	from	the	model.

Several	systems	have	been	successfully	deployed	using	this	pattern.	Some	criticism	has
emerged	around	the	ability	to	generate	an	attractive	user	interface	from	just	the	models	as
well	as	how	to	properly	coordinate	multiple	views.

In	a	foreword	to	the	PhD	thesis,	presenting	Naked	Objects	by	Reenskaug,	he	suggests	that

the	naked	objects	pattern	is	actually	closer	to	his	original	vision	for	MVC	than	most	of	the
derivations	of	MVC	in	the	wild.

Updates	to	the	model	are	communicated	to	the	view
whenever	the	state	changes.	This	is	typically	done
through	the	use	of	an	observer	pattern.	The	model	does
not	typically	know	about	either	the	controller	or	the	view.
The	first	is	simply	the	thing	telling	it	to	change	and	the
second	is	only	updated	through	the	observer	pattern	so
the	model	doesn't	have	direct	knowledge	of	it.

The	view	does	pretty	much	what	you	would	expect:
communicate	the	model	state	to	a	target.	I	hesitate	to
suggest	that	the	view	must	be	a	visual	or	graphical
representation	of	the	model	as	frequently	the	view	is
being	communicated	to	another	computer	and	may	be	in
the	form	of	XML,	JSON,	or	some	other	data	format.	In
most	cases,	especially	those	related	to	JavaScript,	the
view	will	be	a	graphical	object.	In	a	web	context	this	will
typically	be	HTML	which	is	rendered	by	the	browser.
JavaScript	is	also	gaining	popularity	on	phones	and	on
the	desktop,	so	the	view	could	also	be	a	screen	on	a
phone	or	on	the	desktop.

The	view	for	the	model	presented	in	the	preceding
paragraph	might	look	like	the	following	figure:

In	cases,	where	the	observer	pattern	is	not	used,	then
the	view	may	poll	the	model	at	some	interval	looking	for
changes.	In	this	case	the	view	may	have	to	keep	a
representation	of	the	state	itself	or	at	least	a	version
number.	It	is	important	that	the	view	not	unilaterally
update	this	state	without	passing	the	updates	to	the
controller,	otherwise	the	model	and	the	copy	in	the	view
will	get	out	of	sync.

Finally,	the	state	of	the	model	is	updated	by	the
controller.	The	controller	usually	contains	all	the	logic
and	business	rules	for	updating	fields	on	the	model.	A
simple	controller	for	our	login	page	might	look	like	the
following	code:

class	LoginController	{

		constructor(model)	{

				this.model	=	model;

				this.model	=	model;

		}

		Login(userName,	password,	rememberMe)	{

				this.model.UserName	=	userName;

				this.model.Password	=	password;

				this.model.RememberMe	=	rememberMe;

				if	(this.checkPassword(userName,

password))

						this.model.LoginSuccessful;

				else	{

						this.model.LoginSuccessful	=	false;

						this.model.LoginErrorMessage	=

"Incorrect	username	or	password";

				}

		}

};

The	controller	knows	about	the	existence	of	the	model
and	is	typically	aware	of	the	view's	existence	as	well.	It
coordinates	the	two	of	them.	A	controller	may	be
responsible	for	initializing	more	than	one	view.	For
instance,	a	single	controller	may	provide	a	list	view	of	all
the	instances	of	a	model	as	well	as	a	view	that	simply
provides	details.	In	many	systems	a	controller	will	have
create,	read,	update,	and	delete	(CRUD)	operations	on	it
that	work	over	a	model.	The	controller	is	responsible	for
choosing	the	correct	view	and	for	wiring	up	the
communication	between	the	model	and	the	view.

When	there	is	a	need	for	a	change	to	the	application
then	the	location	of	the	code	should	be	immediately
apparent.	For	example:

	
Change
	

	
Locatio
n
	

	
	 	

	

	
Elements	don't	appear	well	spaced	on	the	screen,	change	
spacing.
	
	

	
View
	
	

	
No	users	are	able	to	log	in	due	to	a	logical	error	in	password	
validation.
	
	

	
Controll
er
	
	

	
New	field	to	be	added.
	
	

	
All	
layers
	
	

NOTENOTE
Presentation-Abstraction-Control	(PAC)	is	another	pattern	that	makes	use	of	a	triad	of
components.	In	this	case	its	goal	is	to	describe	a	hierarchy	of	encapsulated	triples	that
more	closely	match	how	we	think	of	the	world.	The	control,	similar	to	an	MVC	controller,
passes	interactions	up	in	the	hierarchy	of	encapsulated	components	allowing	for
information	to	flow	between	components.	The	abstraction	is	similar	to	a	model	but	may
represent	only	a	few	fields	that	are	important	for	that	specific	PAC	instead	of	the	entire
model.	Finally,	the	presentation	is	effectively	the	same	as	a	view.

The	hierarchical	nature	of	PAC	allows	for	parallel	processing	of	the	components,	meaning
that	it	can	be	a	powerful	tool	in	today's	multiprocessor	systems.

You	might	notice	that	the	last	one	there	requires	a
change	in	all	layers	of	the	application.	These	multiple
locations	for	responsibility	are	something	that	the	Naked
Objects	pattern	attempts	to	address	by	dynamically
creating	views	and	controllers.	The	MVC	pattern	splits
code	into	locations	by	dividing	the	code	by	its	role	in	user
interaction.	This	means	that	a	single	data	field	lives	in	all
the	layers	as	is	shown	in	this	picture:

Some	might	call	this	a	cross-cutting	concern	but	really	it
doesn't	span	a	sufficient	amount	of	the	application	to	be
called	such.	Data	access	and	logging	are	cross-cutting
concerns	as	they	are	pervasive	and	difficult	to	centralize.
This	pervasion	of	a	field	through	the	different	layers	is
really	not	a	major	problem.	However,	if	it	is	bugging	you
then	you	might	be	an	ideal	candidate	for	using	the
Naked	Objects	pattern.

Let's	step	into	building	some	code	to	represent	a	MVC	in
JavaScript.

MVC	code
Let's	start	with	a	simple	scenario	for	which	we	can	apply
MVC.	Unfortunately,	Westeros	has	very	few	computers,
likely	due	to	the	lack	of	electricity.	Thus	applying
application	structuring	patterns	using	Westeros	as	an
example	is	difficult.	Sadly	we'll	have	to	take	a	step	back
and	talk	about	an	application	which	controls	Westeros.
Let's	assume	it	to	be	a	web	application	and	implement
the	entirety	of	MVC	on	the	client	side.

It	is	possible	to	implement	MVC	by	splitting	the	model,
view	and	controller	between	client	and	server.	Typically,
the	controller	would	sit	on	the	server	and	provide	an	API
which	is	known	by	the	view.	The	model	serves	as	a
communication	method	both	to	the	view	which	resides
on	the	web	browser	and	to	the	data	store,	likely	a
database	of	some	form.	It	is	also	common	that	the
controller	be	split	between	the	server	and	the	client	in
cases	where	some	additional	control	is	required	on	the
client.

In	our	example	we	would	like	to	create	a	screen	that
controls	the	properties	of	a	castle.	Fortunately,	you're
lucky	that	this	is	not	a	book	on	designing	user	interfaces
with	HTML	as	I	would	certainly	fail.	We'll	stick	to	a
picture	in	place	of	the	HTML:

For	the	most	part,	the	view	simply	provides	a	set	of
controls	and	data	for	the	end	user.	In	this	example	the
view	will	need	to	know	how	to	call	the	save	function	on
the	controller.	Let's	set	that	up:

class	CreateCastleView	{

		constructor(document,	controller,	model,

validationResult)	{

				this.document	=	document;

				this.controller	=	controller;

				this.model	=	model;

				this.validationResult	=

validationResult;

				

this.document.getElementById("saveButton")

.addEventListener("click",	()	=>

this.saveCastle());

				

this.document.getElementById("castleName")

.value	=	model.name;

				

this.document.getElementById("description"

).value	=	model.description;

				

this.document.getElementById("outerWallThi

ckness").value	=	model.outerWallThickness;

				

this.document.getElementById("numberOfTowe

rs").value	=	model.numberOfTowers;

				

this.document.getElementById("moat").value

=	model.moat;

		}

		saveCastle()	{

				var	data	=	{

						name:

this.document.getElementById("castleName")

.value,

						description:

this.document.getElementById("description"

this.document.getElementById("description"

).value,

						outerWallThickness:

this.document.getElementById("outerWallThi

ckness").value,

						numberOfTowers:

this.document.getElementById("numberOfTowe

rs").value,

						moat:

this.document.getElementById("moat").value

				};

				this.controller.saveCastle(data);

		}

}

You'll	notice	that	the	constructor	for	this	view	contains
both	a	reference	to	the	document	and	to	the	controller.
The	document	contains	both	HTML	and	styling,	provided
by	CSS.	We	can	get	away	with	not	passing	in	a
reference	to	the	document	but	injecting	the	document	in
this	fashion	allows	for	easier	testability.	We'll	look	at
testability	more	in	a	later	chapter.	It	also	permits	reusing
the	view	multiple	times	on	a	single	page	without	worrying
about	the	two	instances	conflicting.

The	constructor	also	contains	a	reference	to	the	model
which	is	used	to	add	data	to	fields	on	the	page	as
needed.	Finally,	the	constructor	also	references	a
collection	of	errors.	This	allows	for	validation	errors	from
the	controller	to	be	passed	back	to	the	view	to	be
handled.	We	have	set	the	validation	result	to	be	a
wrapped	collection	that	looks	something	like	the
following:

class	ValidationResult{

class	ValidationResult{

		public	IsValid:	boolean;

		public	Errors:	Array<String>;

		public	constructor(){

				this.Errors	=	new	Array<String>();

		}

}

The	only	functionality	here	is	that	the	button's	onclick
method	is	bound	to	calling	save	on	the	controller.
Instead	of	passing	in	a	large	number	of	parameters	to
the	saveCastle	function	on	the	controller,	we	build	a
lightweight	object	and	pass	that	in.	This	makes	the	code
more	readable,	especially	in	cases	where	some	of	the
parameters	are	optional.	No	real	work	is	done	in	the	view
and	all	the	input	goes	directly	to	the	controller.

The	controller	contains	the	real	functionality	of	the
application:

class	Controller	{

		constructor(document)	{

				this.document	=	document;

		}

		createCastle()	{

				this.setView(new

CreateCastleView(this.document,	this));

		}

		saveCastle(data)	{

				var	validationResult	=

this.validate(data);

				if	(validationResult.IsValid)	{

						//save	castle	to	storage

						this.saveCastleSuccess(data);

				}

				else	{

						this.setView(new

CreateCastleView(this.document,	this,

CreateCastleView(this.document,	this,

data,	validationResult));

				}

		}

		saveCastleSuccess(data)	{

				this.setView(new

CreateCastleSuccess(this.document,	this,

data));

		}

		setView(view)	{

				//send	the	view	to	the	browser

		}

		validate(model)	{

				var	validationResult	=	new

validationResult();

				if	(!model.name	||	model.name	===	"")

{

						validationResult.IsValid	=	false;

						validationResult.Errors.push("Name

is	required");

				}

				return;

		}

}

The	controller	here	does	a	number	of	things.	The	first
thing	is	that	it	has	a	setView	function	which	instructs
the	browser	to	set	the	given	view	as	the	current	one.
This	is	likely	done	through	the	use	of	a	template.	The
mechanics	of	how	that	works	are	not	important	to	the
pattern	so	I'll	leave	that	up	to	your	imagination.

Next,	the	controller	implements	a	validate	method.
This	method	checks	to	make	sure	that	the	model	is	valid.
Some	validation	may	be	performed	on	the	client,	such	as
testing	the	format	of	a	postal	code,	but	other	validation
requires	a	server	trip.	If	a	username	must	be	unique	then

there	is	no	reasonable	way	to	test	that	on	the	client
without	communicating	with	the	server.	In	some	cases,
the	validation	functionality	may	exist	on	the	model	rather
than	in	the	controller.

Methods	for	setting	up	various	different	views	are	also
found	in	the	controller.	In	this	case	we	have	a	bit	of	a
workflow	with	a	view	for	creating	a	castle	then	views	for
both	success	and	failure.	The	failure	case	just	returns
the	same	view	with	a	collection	of	validation	errors
attached	to	it.	The	success	case	returns	a	whole	new
view.

The	logic	to	save	the	model	to	some	sort	of	persistent
storage	is	also	located	in	the	controller.	Again	the
implementation	of	this	is	less	important	than	to	see	that
the	logic	for	communicating	with	the	storage	system	is
located	in	the	controller.

The	final	letter	in	MVC	is	the	model.	In	this	case,	it	is	a
very	light	weight	one:

class	Model	{

		constructor(name,	description,

outerWallThickness,	numberOfTowers,	moat)

{

				this.name	=	name;

				this.description	=	description;

				this.outerWallThickness	=

outerWallThickness;

				this.numberOfTowers	=	numberOfTowers;

				this.moat	=	moat;

		}

}

As	you	can	see,	all	it	does	is	keep	track	of	the	variables
that	make	up	the	state	of	the	application.

Concerns	are	well	separated	in	this	pattern	allowing	for
changes	to	be	made	with	relative	ease.

Model	View	Presenter
The	Model	View	Presenter	(MVP)	pattern	is	very	similar
to	MVC.	It	is	a	fairly	well	known	pattern	in	the	Microsoft
world	and	is	generally	used	to	structure	WPF	and
Silverlight	applications.	It	can	be	used	in	pure	JavaScript
as	well.	The	key	difference	comes	down	to	how	the
different	parts	of	the	system	interact	and	where	their
responsibility	ends.

The	first	difference	is	that,	with	the	presenter,	there	is	a
one	to	one	mapping	between	presenter	and	view.	This
means	that	the	logic	that	existed	in	the	controller	in	the
MVC	pattern,	which	selected	the	correct	view	to	render,
doesn't	exist.	Or	rather	it	exists	at	a	higher	level	outside
the	concern	of	the	pattern.	The	selection	of	the	correct
presenter	may	be	handled	by	a	routing	tool.	Such	a
router	will	examine	the	parameters	and	provide	the	best
choice	for	the	presenter.	The	flow	of	information	in	the
MVP	pattern	can	be	seen	here:

The	presenter	is	aware	of	both	the	view	and	the	model
but	the	view	is	unaware	of	the	model	and	the	model
unaware	of	the	view.	All	communication	is	passed
through	the	presenter.

The	presenter	pattern	is	often	characterized	by	a	great
deal	of	two-way	dispatch.	A	click	will	fire	in	the	presenter
and	then	the	presenter	will	update	the	model	with	the
change	and	then	the	view.	The	preceding	diagram
suggests	that	the	input	first	passes	through	the	view.	In	a

passive	version	of	the	MVP	pattern,	the	view	has	little	to
no	interaction	with	the	messages	as	they	are	passed
onto	the	presenter.	However,	there	is	also	a	variation
called	active	MVP	that	allows	the	view	to	contain	some
additional	logic.

This	active	version	of	MVP	can	be	more	useful	for	web
situations.	It	permits	adding	validation	and	other	simple
logic	to	the	view.	This	reduces	the	number	of	requests
that	need	to	pass	from	the	client	back	to	the	web	server.

Let's	update	our	existing	code	sample	to	use	MVP
instead	of	MVC.

MVP	code
Let's	start	again	with	the	view:

class	CreateCastleView	{

		constructor(document,	presenter)	{

				this.document	=	document;

				this.presenter	=	presenter;

				

this.document.getElementById("saveButton")

.addEventListener("click",

this.saveCastle);

		}

		setCastleName(name)	{

				

this.document.getElementById("castleName")

.value	=	name;

		}

		getCastleName()	{

				return

this.document.getElementById("castleName")

.value;

.value;

		}

		setDescription(description)	{

				

this.document.getElementById("description"

).value	=	description;

		}

		getDescription()	{

				return

this.document.getElementById("description"

).value;

		}

		

setOuterWallThickness(outerWallThickness)

{

				

this.document.getElementById("outerWallThi

ckness").value	=	outerWallThickness;

		}

		getOuterWallThickness()	{

				return

this.document.getElementById("outerWallThi

ckness").value;

		}

		setNumberOfTowers(numberOfTowers)	{

				

this.document.getElementById("numberOfTowe

rs").value	=	numberOfTowers;

		}

		getNumberOfTowers()	{

				return

parseInt(this.document.getElementById("num

berOfTowers").value);

		}

		setMoat(moat)	{

				

this.document.getElementById("moat").value

=	moat;

		}

		getMoat()	{

				return

this.document.getElementById("moat").value

this.document.getElementById("moat").value

;

		}

		setValid(validationResult)	{

		}

		saveCastle()	{

				this.presenter.saveCastle();

		}

}

As	you	can	see	the	constructor	for	the	view	no	longer
takes	a	reference	to	the	model.	This	is	because	the	view
in	MVP	doesn't	have	any	idea	about	what	model	is	being
used.	That	information	is	abstracted	away	by	the
presenter.	The	reference	to	presenter	remains	in	the
constructor	to	allow	sending	messages	back	to	the
presenter.

Without	the	model	there	is	an	increase	in	the	number	of
public	setter	and	getter	methods.	These	setters	allow	the
presenter	to	make	updates	to	the	state	of	the	view.	The
getters	provide	an	abstraction	over	how	the	view	stores
the	state	and	gives	the	presenter	a	way	to	get	the
information.	The	saveCastle	function	no	longer	passes
any	values	to	the	presenter.

The	presenter's	code	looks	like	the	following:

class	CreateCastlePresenter	{

		constructor(document)	{

				this.document	=	document;

				this.model	=	new	CreateCastleModel();

				this.view	=	new

CreateCastleView(document,	this);

		}

		saveCastle()	{

		saveCastle()	{

				var	data	=	{

						name:	this.view.getCastleName(),

						description:

this.view.getDescription(),

						outerWallThickness:

this.view.getOuterWallThickness(),

						numberOfTowers:

this.view.getNumberOfTowers(),

						moat:	this.view.getMoat()

				};

				var	validationResult	=

this.validate(data);

				if	(validationResult.IsValid)	{

						//write	to	the	model

						this.saveCastleSuccess(data);

				}

				else	{

						

this.view.setValid(validationResult);

				}

		}

		saveCastleSuccess(data)	{

				//redirect	to	different	presenter

		}

		validate(model)	{

				var	validationResult	=	new

validationResult();

				if	(!model.name	||	model.name	===	"")

{

						validationResult.IsValid	=	false;

						validationResult.Errors.push("Name

is	required");

				}

				return;

		}

}

You	can	see	that	the	view	is	now	referenced	in	a
persistent	fashion	in	the	presenter.	The	saveCastle

method	calls	into	the	view	to	get	its	values.	However,	the
presenter	does	make	sure	to	use	the	public	methods	of
the	view	instead	of	referencing	the	document	directly.
The	saveCastle	method	updates	the	model.	If	there
are	validation	errors,	then	it	will	call	back	into	the	view	to
update	the	IsValid	flag.	This	is	an	example	of	the
double	dispatch	I	mentioned	earlier.

Finally,	the	model	remains	unchanged	from	before.
We've	kept	the	validation	logic	in	the	presenter.	At	which
level	the	validation	is	done,	model	or	presenter,	matters
less	than	being	consistent	in	where	the	validation	is	done
through	your	application.

The	MVP	pattern	is	again	a	fairly	useful	pattern	for
building	user	interfaces.	The	larger	separation	between
the	view	and	the	model	creates	a	stricter	API	allowing	for
better	adaptation	to	change.	However,	this	comes	at	the
expense	of	more	code.	With	more	code	comes	more
opportunity	for	bugs.

Model	View	ViewModel
The	final	pattern	we'll	look	at	in	this	chapter	is	the	Model
View	ViewModel	pattern,	more	commonly	known	as
MVVM.	By	now	this	sort	of	pattern	should	be	getting
quite	familiar.	Again	you	can	see	the	flow	of	information
between	components	in	this	illustration:

You	can	see	here	that	many	of	the	same	constructs
have	returned	but	that	the	communication	between	them
is	somewhat	different.

In	this	variation,	what	has	previously	been	the	controller
and	presenter	is	now	the	view	model.	Just	like	with	MVC
and	MVP,	the	majority	of	the	logic	is	held	within	the
central	component,	in	this	case	the	view	model.	The
model	itself	is	actually	very	simple	in	MVVM.	Typically,	it
acts	as	an	envelope	that	just	holds	data.	Validation	is
done	within	the	view	model.

Just	like	with	MVP,	the	view	is	totally	unaware	of	the
existence	of	the	model.	The	difference	is	that,	with	MVP,
the	view	was	aware	that	it	was	talking	to	some
intermediate	class.	It	called	methods	rather	than	simply
setting	values.	In	MVVM	the	view	believes	that	the	view
model	is	its	view.	Instead	of	calling	operations	like
saveCastle	and	passing	in	data	or	waiting	for	data	to
be	requested,	the	view	updates	fields	on	the	view	model
as	they	change.	In	effect,	the	fields	on	the	view	are
bound	to	the	view	model.	The	view	model	may	proxy
these	values	through	to	the	model	or	wait	until	a	commit-
like	operation	like	save	is	called	to	pass	the	data	along.

Equally,	changes	to	the	view	model	should	be	reflected
at	once	in	the	view.	A	single	view	may	have	a	number	of
view	models.	Each	of	these	view	models	may	push
updates	to	the	view	or	have	changes	pushed	to	it	via	the
view.

Let's	take	a	look	at	a	really	rudimentary	implementation
of	this	and	then	we'll	discuss	how	to	make	it	better.

MVVM	code
The	naïve	view	implementation	is,	frankly,	a	huge	mess:

var	CreateCastleView	=	(function	()	{

		function	CreateCastleView(document,	

viewModel)	{

				this.document	=	document;

				this.viewModel	=	viewModel;

				var	this	=	this;

				

this.document.getElementById("saveButton")

.addEventListener("click",	function	()	{

				return	this.saveCastle();

		});

		

this.document.getElementById("name").addEv

entListener("change",	

this.nameChangedInView);

		

this.document.getElementById("description"

).addEventListener("change",	

this.descriptionChangedInView);

		

this.document.getElementById("outerWallThi

ckness").addEventListener("change",	

this.outerWallThicknessChangedInView);

		

this.document.getElementById("numberOfTowe

rs").addEventListener("change",	

this.numberOfTowersChangedInView);

		

this.document.getElementById("moat").addEv

entListener("change",this.moatChangedInVie

w);

}

CreateCastleView.prototype.nameChangedInVi

ew	=	function	(name)	{

		this.viewModel.nameChangedInView(name);

};

CreateCastleView.prototype.nameChangedInVi

ewModel	=	function	(name)	{

		

this.document.getElementById("name").value	

=	name;

};

//snipped	more	of	the	same

CreateCastleView.prototype.isValidChangedI

nViewModel	=	function	(validationResult)	{

		

this.document.getElementById("validationWa

rning").innerHtml	=	

validationResult.Errors;

		

this.document.getElementById("validationWa

rning").className	=	"visible";

};

CreateCastleView.prototype.saveCastle	=	

function	()	{

		this.viewModel.saveCastle();

};

return	CreateCastleView;

})();

CastleDesign.CreateCastleView	=	

CreateCastleView;

It	is	highly	repetitive	and	each	property	must	be	proxied
back	to	ViewModel.	I've	truncated	most	of	this	code	but
it	adds	up	to	a	good	70	lines.	The	code	inside	the	view
model	is	equally	terrible:

var	CreateCastleViewModel	=	(function	()	{

		function	CreateCastleViewModel(document)

{

				this.document	=	document;

				this.model	=	new	CreateCastleModel();

				this.view	=	new

CreateCastleView(document,	this);

		}

		

CreateCastleViewModel.prototype.nameChange

dInView	=	function	(name)	{

				this.name	=	name;

		};

	

		

CreateCastleViewModel.prototype.nameChange

dInViewModel	=	function	(name)	{

				

this.view.nameChangedInViewModel(name);

		};

		//snip

		

CreateCastleViewModel.prototype.saveCastle

=	function	()	{

				var	validationResult	=

this.validate();

				if	(validationResult.IsValid)	{

						//write	to	the	model

						this.saveCastleSuccess();

				}	else	{

						

this.view.isValidChangedInViewModel(valida

tionResult);

				}

		};

	

		

CreateCastleViewModel.prototype.saveCastle

Success	=	function	()	{

				//do	whatever	is	needed	when	save	is

successful.

				//Possibly	update	the	view	model

		};

	

		CreateCastleViewModel.prototype.validate

=	function	()	{

				var	validationResult	=	new

validationResult();

				if	(!this.name	||	this.name	===	"")	{

						validationResult.IsValid	=	false;

								validationResult.Errors.push("Name

is	required");

				}

				return;

		};

		return	CreateCastleViewModel;

})();

One	look	at	this	code	should	send	you	running	for	the
hills.	It	is	set	up	in	a	way	that	will	encourage	copy	and
paste	programming:	a	fantastic	way	to	introduce	errors
into	a	code	base.	I	sure	hope	there	is	a	better	way	to
transfer	changes	between	the	model	and	the	view.

A	better	way	to	transfer	changes
between	the	model	and	the	view
It	may	not	have	escaped	your	notice	that	there	are	a
number	of	MVVM-style	frameworks	for	JavaScript	in	the
wild.	Obviously	they	would	not	have	been	readily
adopted	if	they	followed	the	approach	that	we	described
in	the	preceding	section.	Instead	they	follow	one	of	two
different	approaches.

The	first	approach	is	known	as	dirty	checking.	In	this
approach,	after	every	interaction	with	the	view	model	we
loop	over	all	of	its	properties	looking	for	changes.	When

changes	are	found,	the	related	value	in	the	view	is
updated	with	the	new	value.	For	changes	to	values	in	the
view	change,	actions	are	attached	to	all	the	controls.
These	then	trigger	updates	to	the	view	model.

This	approach	can	be	slow	for	large	models	as	it	is
expensive	to	iterate	over	all	the	properties	of	a	large
model.	The	number	of	things	which	can	cause	a	model
to	change	is	high	and	there	is	no	real	way	to	tell	if	a
distant	field	in	a	model	has	been	changed	by	changing
another	without	going	and	validating	it.	On	the	upside,
dirty	checking	allows	you	to	use	plain	old	JavaScript
objects.	There	is	no	need	to	write	your	code	any
differently	than	before.	The	same	is	not	true	of	the	other
approach:	container	objects.

With	a	container	object	a	special	interface	is	provided	to
wrap	existing	objects	so	that	changes	to	the	object	may
be	directly	observed.	Basically	this	is	an	application	of
the	observer	pattern	but	applied	dynamically	so	the
underlying	object	has	no	idea	it	is	being	observed.	The
spy	pattern,	perhaps?

An	example	might	be	helpful	here.	Let	us	say	that	we
have	the	model	object	we've	been	using	up	until	now:

var	CreateCastleModel	=	(function	()	{

		function	CreateCastleModel(name,

description,	outerWallThickness,

numberOfTowers,	moat)	{

				this.name	=	name;

				this.description	=	description;

				this.outerWallThickness	=

outerWallThickness;

				this.numberOfTowers	=	numberOfTowers;

				this.moat	=	moat;

		}

		return	CreateCastleModel;

})();

Then,	instead	of	model.name	being	a	simple	string,	we
would	wrap	some	function	around	it.	In	the	case	of	the
Knockout	library	this	would	look	like	the	following:

var	CreateCastleModel	=	(function	()	{

		function	CreateCastleModel(name,

description,	outerWallThickness,

numberOfTowers,	moat)	{

				this.name	=	ko.observable(name);

				this.description	=

ko.observable(description);

				this.outerWallThickness	=

ko.observable(outerWallThickness);

				this.numberOfTowers	=

ko.observable(numberOfTowers);

				this.moat	=	ko.observable(moat);

		}

		return	CreateCastleModel;

})();

In	the	highlighted	code,	the	various	properties	of	the
model	are	being	wrapped	with	an	observable.	This
means	that	they	must	now	be	accessed	differently:

var	model	=	new	CreateCastleModel();

model.name("Winterfell");	//set

model.name();	//get

This	approach	obviously	adds	some	friction	to	your	code
and	makes	changing	frameworks	quite	involved.

Current	MVVM	frameworks	are	split	on	their	approach	to
container	objects	versus	dirty	checking.	AngularJS	uses
dirty	checking	while	Backbone,	Ember,	and	Knockout	all
make	use	of	container	objects.	There	is	currently	no
clear	winner.

Observing	view	changes
Fortunately,	the	pervasiveness	of	MV*	patterns	on	the
web	and	the	difficulties	with	observing	model	changes
has	not	gone	unnoticed.	You	might	be	expecting	me	to
say	that	this	will	be	solved	in	ECMAScript-2015	as	is	my
normal	approach.	Weirdly,	the	solution	to	all	of	this,
Object.observe,	is	a	feature	under	discussion	for
ECMAScript-2016.	However,	at	the	time	of	writing,	at
least	one	major	browser	already	supports	it.

It	can	be	used	like	the	following:

var	model	=	{	};

Object.observe(model,	function(changes){

		changes.forEach(function(change)	{

				console.log("A	"	+	change.type	+	"

occured	on	"	+		change.name	+	".");

				if(change.type=="update")

						console.log("\tOld	value	was	"	+

change.oldValue);

		});

});

model.item	=	7;

model.item	=	8;

delete	model.item;

Having	this	simple	interface	to	monitor	changes	to

objects	removes	much	of	the	logic	provided	by	large	MV*
frameworks.	It	will	be	easier	to	roll	your	own	functionality
for	MV*	and	there	may,	in	fact,	be	no	need	to	use
external	frameworks.

Tips	and	tricks
The	different	layers	of	the	various	MV*	patterns	need	not
all	be	on	the	browser,	nor	do	they	all	need	to	be	written
in	JavaScript.	Many	popular	frameworks	allow	for
maintaining	a	model	on	the	server	and	communicating
with	it	using	JSON.

Object.observe	may	not	be	available	on	all	browsers
yet,	but	there	are	polyfills	that	can	be	used	to	create	a
similar	interface.	The	performance	is	not	as	good	as	the
native	implementation,	but	it	is	still	usable.

Summary
Separating	concerns	to	a	number	of	layers	ensures	that
changes	to	the	application	are	isolated	like	a	ripstop.	The
various	MV*	patterns	allow	for	separating	the	concerns
in	a	graphical	application.	The	differences	between	the
various	patterns	come	down	to	how	the	responsibilities
are	separated	and	how	information	is	communicated.

In	the	next	chapter	we'll	look	at	a	number	of	patterns	and
techniques	to	improve	the	experience	of	developing	and
deploying	JavaScript	to	the	Web.

Chapter	9.	Web	Patterns
The	rise	of	Node.js	has	proven	that	JavaScript	has	a
place	on	web	servers,	even	very	high	throughput
servers.	There	is	no	denying	that	JavaScript's	pedigree
remains	in	the	browser	for	client	side	programming.

In	this	chapter	we're	going	to	look	at	a	number	of
patterns	to	improve	the	performance	and	usefulness	of
JavaScript	on	the	client.	I'm	not	sure	that	all	of	these	can
be	thought	of	as	patterns	in	the	strictest	sense.	They	are,
however,	important	and	worth	mentioning.

The	concepts	we'll	examine	in	this	chapter	are	as
follows:

Sending	JavaScript

Plugins

Multithreading

Circuit	breaker	pattern

Back-off

Promises

Sending	JavaScript
Communicating	JavaScript	to	the	client	seems	to	be	a
simple	proposition:	so	long	as	you	can	get	the	code	to
the	client	it	doesn't	matter	how	that	happens,	right?	Well
not	exactly.	There	are	actually	a	number	of	things	that

need	to	be	considered	when	sending	JavaScript	to	the
browser.

Combining	files
Way	back	in	Chapter	2,	Organizing	Code,	we	looked	at
how	to	build	objects	using	JavaScript,	although	opinions
on	this	vary.	I	consider	it	to	be	good	form	to	have	a	one-
class-to-one-file	organization	of	my	JavaScript	or	really
any	of	my	object	oriented	code.	By	doing	this,	it	makes
finding	code	easy.	Nobody	needs	to	hunt	through	a	9000
line	long	JavaScript	file	to	locate	that	one	method.	It	also
allows	for	a	hierarchy	to	be	established	again	allowing
for	good	code	organization.	However,	good	organization
for	a	developer	is	not	necessarily	good	organization	for	a
computer.	In	our	case	having	a	lot	of	small	files	is
actually	highly	detrimental.	To	understand	why,	you	need
to	know	a	little	bit	about	how	browsers	ask	for	and
receive	content.

When	you	type	a	URL	into	the	address	bar	of	a	browser
and	hit	Enter,	a	cascading	series	of	events	happens.	The
first	thing	is	that	the	browser	will	ask	the	operating
system	to	resolve	the	website	name	to	an	IP	address.
On	both	Windows	and	Linux	(and	OSX)	the	standard	C
library	function	gethostbyname	is	used.	This	function
will	check	the	local	DNS	cache	to	see	if	the	mapping
from	name	to	address	is	already	known.	If	it	is,	then	that
information	is	returned.	If	not,	then	the	computer	makes
a	request	to	the	DNS	server	one	step	up	from	it.
Typically,	this	is	the	DNS	server	provided	by	the	ISP	but

on	a	larger	network	it	could	also	be	a	local	DNS	server.
The	path	of	a	query	between	DNS	servers	can	be	seen
here:

If	a	record	doesn't	exist	on	that	server	then	the	request	is
propagated	up	a	chain	of	DNS	servers	in	an	attempt	to
find	one	that	knows	about	the	domain.	Eventually	the
propagation	stops	at	the	root	servers.	These	root	servers
are	the	stopping	point	for	queries	–	if	they	don't	know
who	is	responsible	for	DNS	information	for	a	domain

then	the	lookup	is	deemed	to	have	failed.

Once	the	browser	has	an	address	for	the	site	it	opens	up
a	connection	and	sends	a	request	for	the	document.	If
no	document	is	provided,	then	a	/	is	sent.	Should	the
connection	be	a	secure	one,	then	negotiation	of
SSL/TSL	is	performed	at	this	time.	There	is	some
computational	expense	to	setting	up	an	encrypted
connection	but	this	is	slowly	being	fixed.

The	server	will	respond	with	a	blob	of	HTML.	As	the
browser	receives	this	HTML	it	starts	to	process	it;	the
browser	does	not	wait	for	the	entire	HTML	document	to
be	downloaded	before	it	goes	to	work.	If	the	browser
encounters	a	resource	that	is	external	to	the	HTML	it	will
kick	off	a	new	request	to	open	another	connection	to	the
web	server	and	download	that	resource.	The	maximum
number	of	connections	to	a	single	domain	is	limited	so
that	the	web	server	isn't	flooded.	It	should	also	be
mentioned	that	setting	up	a	new	connection	to	the	web
server	carries	overhead.	The	flow	of	data	between	a	web
client	and	server	can	be	seen	in	this	illustration:

Connections	to	the	web	server	should	be	limited	to	avoid
paying	the	connection	setup	costs	repeatedly.	This
brings	us	to	our	first	concept:	combining	files.

If	you've	followed	the	advice	to	leverage	namespaces
and	classes	in	your	JavaScript,	then	putting	all	of	your
JavaScript	together	in	a	single	file	is	a	trivial	step.	One
need	only	concatenate	the	files	together	and	everything
should	continue	to	work	as	normal.	Some	minor	care
and	attention	may	need	to	be	paid	to	the	order	of
inclusion,	but	not	typically.

The	previous	code	we've	written	has	been	pretty	much
one	file	per	pattern.	If	there	is	a	need	for	multiple
patterns	to	be	used,	then	we	could	simply	concatenate
the	files	together.	For	instance,	the	combined	builder	and
factory	method	patterns	might	look	like	the	following:

var	Westeros;

(function	(Westeros)	{

		(function	(Religion)	{

						…

		})(Westeros.Religion	||

(Westeros.Religion	=	{}));

		var	Religion	=	Westeros.Religion;

})(Westeros	||	(Westeros	=	{}));

(function	(Westeros)	{

		var	Tournament	=	(function	()	{

				function	Tournament()	{

		}

		return	Tournament;

})();

Westeros.Tournament	=	Tournament;

…

})();

Westeros.Attendee	=	Attendee;

})(Westeros	||	(Westeros	=	{}));

The	question	may	arise	as	to	how	much	of	your

JavaScript	should	be	combined	and	loaded	at	once.	It	is
a	surprisingly	difficult	question	to	answer.	On	one	hand	it
is	desirable	to	front	load	all	the	JavaScript	for	the	entire
site	when	users	first	arrive	at	the	site.	This	means	that
users	will	pay	a	price	initially	but	will	not	have	to
download	any	additional	JavaScript	as	they	travel	about
the	site.	This	is	because	the	browser	will	cache	the	script
and	reuse	it	instead	of	downloading	it	from	the	server
again.	However,	if	users	only	visit	a	small	subset	of	the
pages	on	the	site	then	they	will	have	loaded	a	great	deal
of	JavaScript	that	was	not	needed.

On	the	other	hand,	splitting	up	the	JavaScript	means	that
additional	page	visits	incur	a	penalty	for	retrieving
additional	JavaScript	files.	There	is	a	sweet	spot
somewhere	in	the	middle	of	these	two	approaches.
Script	can	be	organized	into	blocks	that	map	to	different
sections	of	the	website.	This	can	be	a	place	where	using
proper	name	spacing	will	come	in	handy	once	again.
Each	namespace	can	be	combined	into	a	single	file	and
then	loaded	as	users	visit	that	part	of	the	site.

In	the	end,	the	only	approach	that	makes	sense	is	to
maintain	statistics	about	how	users	move	about	the	site.
Based	on	this	information	an	optimal	strategy	for	finding
the	sweet	spot	can	be	established.

Minification
Combining	JavaScript	into	a	single	file	solves	the
problem	of	limiting	the	number	of	requests.	However,

each	request	may	still	be	large.	Again	we	come	to	a
schism	between	what	makes	code	fast	and	readable	by
humans	and	what	makes	it	fast	and	readable	by
computers.

We	humans	like	descriptive	variable	names,	bountiful
whitespace,	and	proper	indentation.	Computers	don't
care	about	descriptive	names,	whitespace,	or	proper
indentation.	In	fact,	these	things	increase	the	size	of	the
file	and	thus	decrease	the	speed	at	which	the	code	can
be	read.

Minification	is	a	compile	step	that	transforms	the	human
readable	code	into	smaller,	but	equivalent,	code.
External	variables'	names	remain	the	same,	as	the
minifier	has	no	way	to	know	what	other	code	may	be
relying	on	the	variable	names	remaining	unchanged.

As	an	example,	if	we	start	with	the	composite	code	from
Chapter	4,	Structural	Patterns,	the	minified	code	looks
like	the	following:

var	Westros;(function(Westros)

{(function(Food){var	SimpleIngredient=

(function(){function

SimpleIngredient(name,calories,ironContent

,vitaminCContent)

{this.name=name;this.calories=calories;thi

s.ironContent=ironContent;this.vitaminCCon

tent=vitaminCContent}SimpleIngredient.prot

otype.GetName=function(){return

this.name};SimpleIngredient.prototype.GetC

alories=function(){return

this.calories};SimpleIngredient.prototype.

GetIronContent=function(){return

GetIronContent=function(){return

this.ironContent};SimpleIngredient.prototy

pe.GetVitaminCContent=function(){return

this.vitaminCContent};return

SimpleIngredient})

();Food.SimpleIngredient=SimpleIngredient;

var	CompoundIngredient=(function()

{function	CompoundIngredient(name)

{this.name=name;this.ingredients=new

Array()}CompoundIngredient.prototype.AddIn

gredient=function(ingredient)

{this.ingredients.push(ingredient)};Compou

ndIngredient.prototype.GetName=function()

{return

this.name};CompoundIngredient.prototype.Ge

tCalories=function(){var	total=0;for(var

i=0;i<this.ingredients.length;i++)

{total+=this.ingredients[i].GetCalories()}

return

total};CompoundIngredient.prototype.GetIro

nContent=function(){var	total=0;for(var

i=0;i<this.ingredients.length;i++)

{total+=this.ingredients[i].GetIronContent

()}return

total};CompoundIngredient.prototype.GetVit

aminCContent=function(){var

total=0;for(var

i=0;i<this.ingredients.length;i++)

{total+=this.ingredients[i].GetVitaminCCon

tent()}return	total};return

CompoundIngredient})

();Food.CompoundIngredient=CompoundIngredi

ent})(Westros.Food||(Westros.Food={}));var

Food=Westros.Food})(Westros||(Westros=

{}));

You'll	notice	that	all	the	spacing	has	been	removed	and
that	any	internal	variables	have	been	replaced	with
smaller	versions.	At	the	same	time,	you	can	spot	some

well-known	variable	names	have	remained	unchanged.

Minification	saved	this	particular	piece	of	code	40%.
Compressing	the	content	stream	from	the	server	using
gzip,	a	popular	approach,	is	lossless	compression.	That
means	that	there	is	a	perfect	bijection	between
compressed	and	uncompressed.	Minification,	on	the
other	hand,	is	a	lossy	compression.	There	is	no	way	to
get	back	to	the	unminified	code	from	just	the	minified
code	once	it	has	been	minified.

NOTENOTE
You	can	read	more	about	gzip	compression	at	http://betterexplained.com/articles/how-to-
optimize-your-site-with-gzip-compression/.

If	there	is	a	need	to	return	to	the	original	code,	then
source	maps	can	be	used.	A	source	map	is	a	file	that
provides	a	translation	from	one	format	of	code	to
another.	It	can	be	loaded	by	the	debugging	tools	in
modern	browsers	to	allow	you	to	debug	the	original	code
instead	of	unintelligible	minified	code.	Multiple	source
maps	can	be	combine	to	allow	for	translation	from,	say,
minified	code	to	unminified	JavaScript	to	TypeScript.

There	are	numerous	tools	which	can	be	used	to
construct	minified	and	combined	JavaScript.	Gulp	and
Grunt	are	JavaScript-based	tools	for	building	a	pipeline
which	manages	JavaScript	assets.	Both	these	tools	call
out	to	external	tools	such	as	Uglify	to	do	the	actual	work.
Gulp	and	Grunt	are	the	equivalent	to	GNU	Make	or	Ant.

http://betterexplained.com/articles/how-to-optimize-your-site-with-gzip-compression/

Content	Delivery	Networks
The	final	delivery	trick	is	to	make	use	of	Content
Delivery	Networks	(CDNs).	CDNs	are	distributed
networks	of	hosts	whose	only	purpose	is	to	serve	out
static	content.	In	much	the	same	way	that	the	browser
will	cache	JavaScript	between	pages	on	the	site,	it	will
also	cache	JavaScript	that	is	shared	between	multiple
web	servers.	Thus,	if	your	site	makes	use	of	jQuery,
pulling	jQuery	from	a	well-known	CDN	such	as
https://code.jquery.com/	or	Microsoft's	ASP.net	CDN
may	be	faster	as	it	is	already	cached.	Pulling	from	a
CDN	also	means	that	the	content	is	coming	from	a
different	domain	and	doesn't	count	against	the	limited
connections	to	your	server.	Referencing	a	CDN	is	as
simple	as	setting	the	source	of	the	script	tag	to	point	at
the	CDN.

Once	again,	some	metrics	will	need	to	be	gathered	to
see	whether	it	is	better	to	use	a	CDN	or	simply	roll
libraries	into	the	JavaScript	bundle.	Examples	of	such
metrics	may	include	the	added	time	to	perform	additional
DNS	lookup	and	the	difference	in	the	download	sizes.
The	best	approach	is	to	use	the	timing	APIs	in	the
browser.

The	long	and	short	of	distributing	JavaScript	to	the
browser	is	that	experimentation	is	required.	Testing	a
number	of	approaches	and	measuring	the	results	will
give	the	best	result	for	end	users.

https://code.jquery.com/

Plugins
There	are	a	great	number	of	really	impressive	JavaScript
libraries	in	the	wild.	For	me	the	library	that	changed	how
I	look	at	JavaScript	was	jQuery.	For	others	it	may	have
been	one	of	the	other	popular	libraries	such	as	MooTool,
Dojo,	Prototype,	or	YUI.	However,	jQuery	has	exploded
in	popularity	and	has,	at	the	time	of	writing,	won	the
JavaScript	library	wars.	78.5%	of	the	top	ten	thousand
websites,	by	traffic,	on	the	internet	make	use	of	some
version	of	jQuery.	None	of	the	rest	of	the	libraries	even
breaks	1%.

Many	developers	have	seen	fit	to	implement	their	own
libraries	on	top	of	these	foundational	libraries	in	the	form
of	plugins.	A	plugin	typically	modifies	the	prototype
exposed	by	the	library	and	adds	additional	functionality.
The	syntax	is	such	that,	to	the	end	developer,	it	appears
to	be	part	of	the	core	library.

How	plugins	are	built	varies	depending	on	the	library
you're	trying	to	extend.	Nonetheless,	let's	take	a	look	at
how	we	can	build	a	plugin	for	jQuery	and	then	for	one	of
my	favourite	libraries,	d3.	We'll	see	if	we	can	extract
some	commonalities.

jQuery
At	jQuery's	core	is	the	CSS	selector	library	called

sizzle.js.	It	is	sizzle	that	is	responsible	for	all	the
really	nifty	ways	jQuery	can	select	items	on	a	page	using
CSS3	selectors.	Use	jQuery	to	select	elements	on	a
page	like	so:

$(":input").css("background-color",

"blue");

Here,	a	jQuery	object	is	returned.	The	jQuery	object	acts
a	lot	like,	although	not	completely	like,	an	array.	This	is
achieved	by	creating	a	series	of	keys	on	the	jQuery
object	numbered	0	through	to	n-1	where	n	is	the	number
of	elements	matched	by	the	selector.	This	is	actually
pretty	smart	as	it	enables	array	like	accessors:

$($(":input")[2]).css("background-color",

"blue");

While	providing	a	bunch	of	additional	functions,	the	items
at	the	indices	are	plain	HTML	Elements	and	not	wrapped
with	jQuery,	hence	the	use	of	the	second	$().

For	jQuery	plugins,	we	typically	want	to	make	our	plugins
extend	this	jQuery	object.	Because	it	is	dynamically
created	every	time	the	selector	is	fired	we	actually
extend	an	object	called	$.fn.	This	object	is	used	as	the
basis	for	creating	all	jQuery	objects.	Thus	creating	a
plugin	that	transforms	all	the	text	in	inputs	on	the	page
into	uppercase	is	nominally	as	simple	as	the	following:

$.fn.yeller	=	function(){

		this.each(function(_,	item){

				

				

$(item).val($(item).val().toUpperCase());

				return	this;

		});

};

This	plugin	is	particularly	useful	for	posting	to	bulletin
boards	and	for	whenever	my	boss	fills	in	a	form.	The
plugin	iterates	over	all	the	objects	selected	by	the
selector	and	converts	their	content	to	uppercase.	It	also
returns	this.	By	doing	so	we	allow	for	chaining	of
additional	functions.	You	can	use	the	function	like	so:

$(function(){$("input").yeller();});

It	does	rather	depend	on	the	$	variable	being	assigned
to	jQuery.	This	isn't	always	the	case	as	$	is	a	popular
variable	in	JavaScript	libraries,	likely	because	it	is	the
only	character	that	isn't	a	letter	or	a	number	and	doesn't
already	have	special	meaning.

To	combat	this,	we	can	use	an	immediately	evaluated
function	in	much	the	same	way	we	did	way	back	in
Chapter	2,	Organizing	Code:

(function($){

		$.fn.yeller2	=	function(){

				this.each(function(_,	item){

						

$(item).val($(item).val().toUpperCase());

						return	this;

				});

		};

})(jQuery);

The	added	advantage	here	is	that,	should	our	code
require	helper	functions	or	private	variables,	they	can	be
set	inside	the	same	function.	You	can	also	pass	in	any
options	required.	jQuery	provides	a	very	helpful
$.extend	function	that	copies	properties	between
objects,	making	it	ideal	for	extending	a	set	of	default
options	with	those	passed	in.	We	looked	at	this	in	some
detail	in	a	previous	chapter.

The	jQuery	plugin	documentation	recommends	that	the
jQuery	object	be	polluted	as	little	as	possible	with
plugins.	This	is	to	avoid	conflicts	between	multiple
plugins	that	want	to	use	the	same	names.	Their	solution
is	to	have	a	single	function	that	has	different	behaviours
depending	on	the	parameters	passed	in.	For	instance,
the	jQuery	UI	plugin	uses	this	approach	for	dialog:

$(«.dialog»).dialog(«open»);

$(«.dialog»).dialog(«close»);

I	would	much	rather	call	these	like	the	following:

$(«.dialog»).dialog().open();

$(«.dialog»).dialog().close();

With	dynamic	languages	there	really	isn't	a	great	deal	of
difference	but	I	would	much	rather	have	well	named
functions	that	can	be	discovered	by	tooling	than	magic
strings.

d3

d3	is	a	great	JavaScript	library	that	is	used	for	creating
and	manipulating	visualizations.	For	the	most	part,
people	use	d3	in	conjunction	with	scalable	vector
graphics	to	produce	graphics	such	as	this	hexbin	graph
by	Mike	Bostock:

d3	attempts	to	be	non-opinionated	about	the	sorts	of
visualizations	it	creates.	Thus	there	is	no	built-in	support
for	creating	such	things	as	bar	charts.	There	is,	however,
a	collection	of	plugins	that	can	be	added	to	d3	to	enable
a	wide	variety	of	graphs	including	the	hexbin	one	shown
in	the	preceding	figure.

Even	more,	the	jQuery	d3	places	emphasis	on	creating
chainable	functions.	For	example,	this	code	is	a	snippet
that	creates	a	column	chart.	You	can	see	that	all	the
attributes	are	being	set	through	chaining:

var	svg	=	

d3.select(containerId).append("svg")

var	bar	=	

svg.selectAll("g").data(data).enter().appe

nd("g");

bar.append("rect")

.attr("height",	

yScale.rangeBand()).attr("fill",	function	

(d,)	{

		return	colorScale.getColor(d);

})

.attr("stroke",	function	(d,)	{

		return	colorScale.getColor(d);

})

.attr("y",	function	(d,	i)	{

		return	yScale(d.Id)	+	margins.height;

})

The	core	of	d3	is	the	d3	object.	Off	that	object	hang	a
number	of	namespaces	for	layouts,	scales,	geometry,
and	numerous	others.	As	well	as	whole	namespaces,
there	are	functions	for	doing	array	manipulation	and
loading	data	from	external	sources.

Creating	a	plugin	for	d3	starts	with	deciding	where	we're
going	to	plug	into	the	code.	Let's	build	a	plugin	that
creates	a	new	color	scale.	A	color	scale	is	used	to	map	a
domain	of	values	to	a	range	of	colors.	For	instance,	we
might	wish	to	map	the	domain	of	the	following	four
values	onto	a	range	of	four	colors:

Let's	plug	in	a	function	to	provide	a	new	color	scale,	in
this	case	one	that	supports	grouping	elements.	A	scale
is	a	function	that	maps	a	domain	to	a	range.	For	a	color
scale,	the	range	is	a	set	of	colors.	An	example	might	be
a	function	that	maps	all	even	numbers	to	red	and	all	odd
to	white.	Using	this	scale	on	a	table	would	result	in	zebra
striping:

d3.scale.groupedColorScale	=	function	()	{

		var	domain,	range;

	

		function	scale(x)	{

				var	rangeIndex	=	0;

				domain.forEach(function	(item,	index)

{

						if	(item.indexOf(x)	>	0)

								rangeIndex	=	index;

				});

				return	range[rangeIndex];

		}

	

		scale.domain	=	function	(x)	{

				if	(!arguments.length)

						return	domain;

				domain	=	x;

				return	scale;

		};

	

		scale.range	=	function	(x)	{

				if	(!arguments.length)

						return	range;

				range	=	x;

				return	scale;

		};

		return	scale;

};

We	simply	attach	this	plugin	to	the	existing	d3.scale
object.	This	can	be	used	by	simply	giving	an	array	of
arrays	as	a	domain	and	an	array	as	a	range:

var	s	=

d3.scale.groupedColorScale().domain([[1,

2,	3],	[4,	5]]).range(["#111111",

"#222222"]);

s(3);	//#111111

s(4);	//#222222

This	simple	plugin	extends	the	functionality	of	d3's	scale.
We	could	have	replaced	existing	functionality	or	even
wrapped	it	such	that	calls	into	existing	functionality	would
be	proxied	through	our	plugin.

Plugins	are	generally	not	that	difficult	to	build	but	they	do
vary	from	library	to	library.	It	is	important	to	keep	an	eye
on	the	existing	variable	names	in	libraries	so	we	don't

end	up	clobbering	them	or	even	clobbering	functionality
provided	by	other	plugins.	Some	suggest	prefixing
functions	with	a	string	to	avoid	clobbering.

If	the	library	has	been	designed	with	it	in	mind	there	may
be	additional	places	into	which	we	can	hook.	A	popular
approach	is	to	provide	an	options	object	that	contains
optional	fields	for	hooking	in	our	own	functions	as	event
handlers.	If	nothing	is	provided	the	function	continues	as
normal.

Doing	two	things	at	once	–
multithreading
Doing	two	things	at	once	is	hard.	For	many	years	the
solution	in	the	computer	world	was	to	use	either	multiple
processes	or	multiple	threads.	The	difference	between
the	two	is	fuzzy	due	to	implementation	differences	on
different	operating	systems	but	threads	are	typically
lighter-weight	versions	of	processes.	JavaScript	on	the
browser	supports	neither	of	these	approaches.

Historically,	there	has	been	no	real	need	for
multithreading	on	a	browser.	JavaScript	was	used	to
manipulate	the	user	interface.	When	manipulating	a	UI,
even	in	other	languages	and	windowing	environments,
only	one	thread	is	permitted	to	act	at	a	time.	This	avoids
race	conditions	that	would	be	very	obvious	to	users.

However,	as	JavaScript	grows	in	popularity,	more	and
more	complicated	software	is	being	written	to	run	inside
the	browser.	Sometimes	that	software	could	really
benefit	from	performing	complex	calculations	in	the
background.

Web	workers	provide	a	mechanism	for	doing	two	things
at	once	in	a	browser.	Although	a	fairly	recent	innovation,
web	workers	now	have	good	support	in	mainstream
browsers.	In	effect	a	worker	is	a	background	thread	that

can	communicate	with	the	main	thread	using	messages.
Web	workers	must	be	self-contained	in	a	single
JavaScript	file.

To	make	use	of	web	workers	is	fairly	easy.	We'll	revisit
our	example	from	a	few	chapters	ago	when	we	looked	at
the	fibonacci	sequence.	The	worker	process	listens	for
messages	like	so:

self.addEventListener('message',

function(e)	{

		var	data	=	e.data;

		if(data.cmd	==	'startCalculation'){

				self.postMessage({event:

'calculationStarted'});

				var	result	=

fib(data.parameters.number);

				self.postMessage({event:

'calculationComplete',	result:	result});

		};

},	false);

Here	we	start	a	new	instance	of	fib	any	time	we	get	a
startCalculation	message.	fib	is	simply	the	naive
implementation	from	earlier.

The	main	thread	loads	the	worker	process	from	its
external	file	and	attaches	a	number	of	listeners:

function	startThread(){

		worker	=		new	Worker("worker.js");

		worker.addEventListener('message',

function(message)	{

				logEvent(message.data.event);

				if(message.data.event	==

"calculationComplete"){

"calculationComplete"){

						writeResult(message.data.result);

				}

				if(message.data.event	==

"calculationStarted"){

						

document.getElementById("result").innerHTM

L	=	"working";

				}

		});

};

In	order	to	start	the	calculation,	all	that	is	needed	is	to
send	a	command:

worker.postMessage({cmd:

'startCalculation',	parameters:	{	number:

40}});

Here	we	pass	the	number	of	the	term	in	the	sequence
we	want	to	calculate.	While	the	calculation	is	running	in
the	background	the	main	thread	is	free	to	do	whatever	it
likes.	When	the	message	is	received	back	from	the
worker	it	is	placed	in	the	normal	event	loop	to	be
processed:

Web	workers	may	be	useful	to	you	if	you	have	to	do	any
time	consuming	calculations	in	JavaScript.

If	you're	making	use	of	server-side	JavaScript	through
the	use	of	Node.js	then	there	is	a	different	approach	to
doing	more	than	one	thing	at	a	time.	Node.js	offers	the
ability	to	fork	child	processes	and	provides	an	interface
not	dissimilar	to	the	web	worker	one	to	communicate
between	the	child	and	parent	processes.	This	method
forks	an	entire	process	though,	which	is	much	more

resource	intensive	than	using	lightweight	threads.

Some	other	tools	exist	that	create	lighter-weight
background	workers	in	Node.js.	These	are	probably	a
closer	parallel	to	what	exists	on	the	web	side	than
forking	a	child	process.

Circuit	breaker	pattern
Systems,	even	the	best	designed	systems,	fail.	The
larger	and	more	distributed	a	system,	the	higher	the
probability	of	failure.	Many	large	systems	such	as	Netflix
or	Google	have	extensive	built-in	redundancies.	The
redundancies	don't	decrease	the	chance	of	a	failure	of	a
component	but	they	do	provide	a	backup.	Switching	to
the	backup	is	frequently	transparent	to	the	end	user.

The	circuit	breaker	pattern	is	a	common	component	of	a
system	that	provides	this	sort	of	redundancy.	Let's	say
that	your	application	queries	an	external	data	source
every	five	seconds,	perhaps	you're	polling	for	some	data
that	you're	expecting	to	change.	What	happens	when
this	polling	fails?	In	many	cases	the	failure	is	simply
ignored	and	the	polling	continues.	This	is	actually	a
pretty	good	behaviour	on	the	client	side	as	data	updates
are	not	always	crucial.	In	some	cases,	a	failure	will
cause	the	application	to	retry	the	request	immediately.
Retrying	server	requests	in	a	tight	loop	can	be
problematic	for	both	the	client	and	the	server.	The	client
may	become	unresponsive	as	it	spends	more	time	in	a
loop	requesting	data.

On	the	server	side,	a	system	that	is	attempting	to
recover	from	a	failure	is	being	slammed	every	five
seconds	by	what	could	be	thousands	of	clients.	If	the
failure	is	due	to	the	system	being	overloaded,	then

continuing	to	query	it	will	only	make	matters	worse.

The	circuit	breaker	pattern	stops	attempting	to
communicate	with	a	system	that	is	failing	once	a	certain
number	of	failures	have	been	reached.	Basically,
repeated	failures	result	in	the	circuit	being	broken	and
the	application	ceasing	to	query.	You	can	see	the
general	pattern	of	a	circuit	breaker	in	this	illustration:

For	the	server,	having	the	number	of	clients	drop	off	as
failures	pile	up	allows	for	some	breathing	room	to
recover.	The	chances	of	a	storm	of	requests	coming	in
and	keeping	the	system	down	is	minimized.

Of	course	we	would	like	the	circuit	breaker	to	reset	at
some	point	so	that	service	can	be	restored.	The	two
approaches	for	this	are	that,	either	the	client	polls
periodically	(less	frequently	than	before)	and	resets	the
breaker,	or	that	the	external	system	communicates	back
to	its	clients	that	service	has	been	restored.

Back-off
A	variation	on	the	circuit	breaker	pattern	is	to	use	some
form	of	back-off	instead	of	cutting	out	communication	to
the	server	completely.	This	is	an	approach	that	is
suggested	by	many	database	vendors	and	cloud
providers.	If	our	original	polling	was	at	five	second
intervals,	then	when	a	failure	is	detected	change	the
interval	to	every	10	seconds.	Repeat	this	process	using
longer	and	longer	intervals.

When	requests	start	to	work	again	then	the	pattern	of
changing	the	time	interval	is	reversed.	Requests	are	sent
closer	and	closer	together	until	the	original	polling
interval	is	resumed.

Monitoring	the	status	of	the	external	resource	availability
is	a	perfect	place	to	use	background	worker	roles.	The
work	is	not	complex	but	it	is	totally	detached	from	the
main	event	loop.

Again	this	reduces	the	load	on	the	external	resource
giving	it	more	breathing	room.	It	also	keeps	the	clients
unburdened	by	too	much	polling.

An	example	using	jQuery's	ajax	function	looks	like	the
following:

$.ajax({

		url	:	'someurl',

		type	:	'POST',

		data	:	,

		tryCount	:	0,

		retryLimit	:	3,

		success	:	function(json)	{

				//do	something

		},

		error	:	function(xhr,	textStatus,	

errorThrown)	{

				if	(textStatus	==	'timeout')	{

						this.tryCount++;

						if	(this.tryCount	<=	

this.retryLimit)	{

									//try	again

									$.ajax(this);

									return;

						}

						return;

				}

				if	(xhr.status	==	500)	{

						//handle	error

				}	else	{

						//handle	error

				}

		}

});

You	can	see	that	the	highlighted	section	retries	the
query.

This	style	of	back-off	is	actually	used	in	Ethernet	to	avoid
repeated	packet	collisions.

Degraded	application	behavior
There	is	likely	a	very	good	reason	that	your	application	is
calling	out	to	external	resources.	Backing	off	and	not
querying	the	data	source	is	perfectly	reasonable	but	it	is
still	desirable	that	users	have	some	ability	to	interact	with

the	site.	One	solution	to	this	problem	is	to	degrade	the
behavior	of	the	application.

For	instance,	if	your	application	shows	real-time	stock
quote	information,	but	the	system	for	delivering	stock
information	is	broken,	then	a	less	than	real	time	service
could	be	swapped	in.	Modern	browsers	have	a	whole
raft	of	different	technologies	that	allow	for	storing	small
quantities	of	data	on	the	client	computer.	This	storage
space	is	ideal	for	caching	old	versions	of	some	data
should	the	latest	versions	be	unavailable.

Even	in	cases	where	the	application	is	sending	data	to
the	server,	it	is	possible	to	degrade	behaviour.	Saving
the	data	updates	locally	and	then	sending	them
altogether	when	the	service	is	restored	is	generally
acceptable.	Of	course,	once	a	user	leaves	a	page,	then
any	background	works	will	terminate.	If	the	user	never
again	returns	to	the	site,	then	whatever	updates	they	had
queued	to	send	to	the	server	will	be	lost.

NOTENOTE
A	word	of	warning:	if	this	is	an	approach	you	take	it	might	be	best	to	warn	users	that	their
data	is	old,	especially	if	your	application	is	a	stock	trading	application.

Promise	pattern
I	said	earlier	that	JavaScript	is	single	threaded.	This	is
not	entirely	accurate.	There	is	a	single	event	loop	in
JavaScript.	Blocking	this	event	loop	with	a	long	running
process	is	considered	to	be	bad	form.	Nothing	else	can
happen	while	your	greedy	algorithm	is	taking	up	all	the
CPU	cycles.

When	you	launch	an	asynchronous	function	in
JavaScript,	such	as	fetching	data	from	a	remote	server,
then	much	of	this	activity	happens	in	a	different	thread.
The	success	or	failure	handler	functions	are	executed	in
the	main	event	thread.	This	is	part	of	the	reason	that
success	handlers	are	written	as	functions:	it	allows	them
to	be	easily	passed	back	and	forth	between	contexts.

Thus	there	are	activities	which	truly	do	happen	in	an
asynchronous,	parallel	fashion.	When	the	async	method
has	completed	then	the	result	is	passed	into	the	handler
we	provided	and	the	handler	is	put	into	the	event	queue
to	be	picked	up	next	time	the	event	loop	repeats.
Typically,	the	event	loop	runs	many	hundreds	or
thousands	of	times	a	second,	depending	on	how	much
work	there	is	to	do	on	each	iteration.

Syntactically,	we	write	the	message	handlers	as
functions	and	hook	them	up:

var	xmlhttp	=	new	XMLHttpRequest();

var	xmlhttp	=	new	XMLHttpRequest();

xmlhttp.onreadystatechange	=	function()	{

		if	(xmlhttp.readyState	===	4){

				alert(xmlhttp.readyState);

		}

;};

This	is	reasonable	if	the	situation	is	simple.	However,	if
you	would	like	to	perform	some	additional	asynchronous
actions	with	the	results	of	the	callback	then	you	end	up
with	nested	callbacks.	If	you	need	to	add	error	handling
that	too	is	done	using	callbacks.	The	complexity	of
waiting	for	multiple	callbacks	to	return	and	orchestrating
your	response	rises	quickly.

The	promise	pattern	provides	some	syntactic	help	to
clean	up	the	asynchronous	difficulties.	If	we	take	a
common	asynchronous	operation	such	as	retrieving	data
over	XMLHttp	Request	using	jQuery,	then	the	code
takes	both	an	error	and	a	success	function.	It	might	look
something	like	the	following:

$.ajax("someurl",

{	success:	function(data,	status){},

		error:	function(jqXHR,	status){}

});

Using	a	promise	instead	would	transform	the	code	to
look	more	like	the	following:

$.ajax("someurl").then(successFunction,	

errorFunction);

In	this	case	the	$.ajax	method	returns	a	promise	object

that	contains	a	value	and	a	state.	The	value	is	populated
when	the	async	call	completes.	The	status	provides
some	information	about	the	current	state	of	the	request:
has	it	completed,	was	it	successful?

The	promise	also	has	a	number	of	functions	called	on	it.
The	then()	function	takes	a	success	and	an	error
function	and	it	returns	an	additional	promise.	Should	the
success	function	run	synchronously,	then	the	promise
returns	as	already	fulfilled.	Otherwise	it	remains	in	a
working	state,	known	as	pending,	until	the	asynchronous
success	has	fired.

In	my	mind,	the	method	in	which	jQuery	implements
promises	is	not	ideal.	Their	error	handing	doesn't
properly	distinguish	between	a	promise	that	has	failed	to
be	fulfilled	and	a	promise	that	has	failed	but	has	been
handled.	This	renders	jQuery	promises	incompatible	with
the	general	idea	of	promises.	For	instance,	it	is	not
possible	to	do	the	following:

$.ajax("someurl").then(

		function(data,	status){},

		function(jqXHR,	status){

				//handle	the	error	here	and	return	a	

new	promise

		}

).then(/*continue*/);

Even	though	the	error	has	been	handed	and	a	new
promise	returned,	processing	will	discontinue.	It	would
be	much	better	if	the	function	could	be	written	as	the
following:

$.ajax("someurl").then(function(data,	

status){})

.catch(function(jqXHR,	status){

		//handle	the	error	here	and	return	a	new	

promise

})

.then(/*continue*/);

There	has	been	much	discussion	about	the
implementation	of	promises	in	jQuery	and	other	libraries.
As	a	result	of	this	discussion	the	current	proposed
promise	specification	is	different	from	jQuery's	promises
and	is	incompatible.	Promises/A+	are	the	certification
that	is	met	by	numerous	promise	libraries	such	as
when.js	and	Q.	It	also	forms	the	foundation	of	the
promises	specification	that	came	with	ECMAScript-2015.

Promises	provide	a	bridge	between	synchronous	and
asynchronous	functions,	in	effect	turning	the
asynchronous	functions	into	something	that	can	be
manipulated	as	if	it	were	synchronous.

If	promise	sounds	a	lot	like	the	lazy	evaluation	pattern
we	saw	some	chapters	ago	then	you're	exactly	correct.
Promises	are	constructed	using	lazy	evaluation,	the
actions	called	on	them	are	queued	inside	the	object
rather	than	being	evaluated	at	once.	This	is	a	wonderful
application	of	a	functional	pattern	and	even	enables
scenarios	like	the	following:

when(function(){return	2+2;})

.delay(1000)

.then(function(promise){

console.log(promise());})

console.log(promise());})

Promises	greatly	simplify	asynchronous	programming	in
JavaScript	and	should	certainly	be	considered	for	any
project	that	is	heavily	asynchronous	in	nature.

Hints	and	tips
ECMAScript	2015	promises	are	well	supported	on	most
browsers.	Should	you	need	to	support	an	older	browser
then	there	are	some	great	shims	out	there	that	can	add
the	functionality	with	a	minimum	of	overhead.

When	examining	the	performance	of	retrieving
JavaScript	from	a	remote	server,	there	are	tools
provided	in	most	modern	browsers	for	viewing	a	timeline
of	resource	loading.	This	timeline	will	show	when	the
browser	is	waiting	for	scripts	to	be	downloaded	and
when	it	is	parsing	the	scripts.	Using	this	timeline	allows
for	experimenting	to	find	the	best	way	to	load	a	script	or
series	of	scripts.

Summary
In	this	chapter	we've	looked	at	a	number	of	patterns	or
approaches	that	improve	the	experience	of	developing
JavaScript.	We	looked	at	a	number	of	concerns	around
delivery	to	the	browser.	We	also	looked	at	how	to
implement	plugins	against	a	couple	of	libraries	and
extrapolated	general	practices.	Next	we	took	a	look	at
how	to	work	with	background	processes	in	JavaScript.
Circuit	breakers	were	suggested	as	a	method	of	keeping
remote	resource-fetching	sane.	Finally,	we	examined
how	promises	can	improve	the	writing	of	asynchronous
code.

In	the	next	chapter	we'll	spend	quite	a	bit	more	time
looking	at	messaging	patterns.	We	saw	a	little	about
messing	with	web	workers	but	we'll	expand	quite	heavily
on	them	in	the	next	section.

Chapter	10.	Messaging
Patterns
When	Smalltalk,	the	first	real	object	oriented
programming	language,	was	first	developed,	the
communication	between	classes	was	envisioned	as
being	messages.	Somehow	we've	moved	away	from	this
pure	idea	of	messages.	We	spoke	a	bit	about	how
functional	programming	avoids	side	effects,	well,	much
the	same	is	true	of	messaging-based	systems.

Messaging	also	allows	for	impressive	scalability	as
messages	can	be	fanned	out	to	dozens,	or	even
hundreds,	of	computers.	Within	a	single	application,
messaging	promotes	low-coupling	and	eases	testing.

In	this	chapter	we're	going	to	look	at	a	number	of
patterns	related	to	messaging.	By	the	end	of	the	chapter
you	should	be	aware	of	how	messages	work.	When	I
first	learned	about	messaging	I	wanted	to	rewrite
everything	using	it.

We	will	be	covering	the	following	topics:

What's	a	message	anyway?

Commands

Events

Request-reply

Publish-subscribe

Fan	out

Dead	letter	queues

Message	replay

Pipes	and	filters

What's	a	message	anyway?
In	the	simplest	definition	a	message	is	a	collection	of
related	bits	of	data	that	have	some	meaning	together.
The	message	is	named	in	a	way	that	provides	some
additional	meaning	to	it.	For	instance,	both	an	AddUser
and	a	RenameUser	message	might	have	the	following
fields:

User	ID

Username

But	the	fact	that	the	fields	exist	inside	a	named	container
gives	them	different	meaning.

Messages	are	usually	related	to	some	action	in	the
application	or	some	action	in	the	business.	A	message
contains	all	the	information	needed	for	a	receiver	to	act
upon	the	action.	In	the	case	of	the	RenameUser
message,	the	message	contains	enough	information	for
any	component	that	keeps	track	of	a	relationship
between	a	user	ID	and	a	username	to	update	its	value
for	username.

Many	messaging	systems,	especially	those	that

communicate	between	application	boundaries,	also
define	an	envelope.	The	envelope	has	metadata	on	it
that	could	help	with	message	auditing,	routing,	and
security.	The	information	on	the	envelope	is	not	part	of
the	business	process	but	is	part	of	the	infrastructure.	So
having	a	security	annotation	on	the	envelope	is	fine,	as
security	exists	outside	of	the	normal	business	workflow
and	is	owned	by	a	different	part	of	the	application.	The
contents	on	the	envelope	look	like	the	one	shown	in	the
following	diagram:

Messages	should	be	sealed	so	that	no	changes	can	be
made	to	them	once	they	have	been	created.	This	makes
certain	operations	like	auditing	and	replaying	much
easier.

Messaging	can	be	used	to	communicate	inside	a	single
process	or	it	can	be	used	between	applications.	For	the
most	part	there	is	no	difference	to	sending	a	message
within	an	application	and	between	applications.	One
difference	is	the	treatment	of	synchronicity.	Within	a
single	process,	messages	can	be	handled	in	a

synchronous	fashion.	This	means	that	the	main
processing	effectively	waits	for	the	handling	of	the
message	to	complete	before	continuing.

In	an	asynchronous	scenario,	the	handling	of	the
message	may	occur	at	a	later	date.	Sometimes	the	later
date	is	far	in	the	future.	When	calling	out	to	an	external
server,	asynchronous	will	certainly	be	the	correct
approach	–	this	is	due	to	the	inherit	latency	associated
with	network	I/O.	Even	within	a	single	process,	the	single
threaded	nature	of	JavaScript	encourages	using
asynchronous	messaging.	While	using	asynchronous
messaging,	some	additional	care	and	attention	needs	to
be	taken	as	some	of	the	assumptions	made	for
synchronous	messaging	cease	to	be	safe.	For	instance,
assuming	the	messages	will	be	replied	to	in	the	same
order	in	which	they	were	sent	is	no	longer	safe.

There	are	two	different	flavors	of	messages:	commands
and	events.	Commands	instruct	things	to	happen	while
events	notify	about	something	which	has	happened.

Commands
A	command	is	simply	an	instruction	from	one	part	of	a
system	to	another.	It	is	a	message	so	it	is	really	just	a
simple	data	transfer	object.	If	you	think	back	to	the
command	pattern	introduced	in	Chapter	5,	Behavioral
Patterns,	this	is	exactly	what	it	uses.

As	a	matter	of	convention,	commands	are	named	using

the	imperative.	The	format	is	usually	<verb><object>.
Thus	a	command	might	be	called	InvadeCity.
Typically,	when	naming	a	command,	you	want	to	avoid
generic	names	and	focus	on	exactly	what	is	causing	the
command.

As	an	example,	consider	a	command	that	changes	the
address	of	a	user.	You	might	be	tempted	to	simply	call
the	command	ChangeAddress	but	doing	so	does	not
add	any	additional	information.	It	would	be	better	to	dig
deeper	and	see	why	the	address	is	being	changed.	Did
the	person	move	or	was	the	original	address	entered
incorrectly?	Intent	is	as	important	as	the	actual	data
changes.	For	instance,	altering	an	address	due	to	a
mistake	might	trigger	a	different	behavior	from	a	person
who	has	moved.	Users	that	have	moved	could	be	sent	a
moving	present,	while	those	correcting	their	address
would	not.

Messages	should	have	a	component	of	business
meaning	to	increase	their	utility.	Defining	messages	and
how	they	can	be	constructed	within	a	complex	business
is	a	whole	field	of	study	on	its	own.	Those	interested
might	do	well	to	investigate	domain	driven	design
(DDD).

Commands	are	an	instruction	targeted	at	one	specific
component	giving	it	instructions	to	perform	a	task.

Within	the	context	of	a	browser	you	might	consider	that	a
command	would	be	the	click	that	is	fired	on	a	button.

The	command	is	transformed	into	an	event	and	that
event	is	what	is	passed	to	your	event	listeners.

Only	one	end	point	should	receive	a	specific	command.
This	means	that	only	one	component	is	responsible	for
an	action	taking	place.	As	soon	as	a	command	is	acted
upon	by	more	than	one	end	point	any	number	of	race
conditions	are	introduced.	What	if	one	of	the	end	points
accepts	the	command	and	another	rejects	it	as	invalid?
Even	in	cases	where	several	near	identical	commands
are	issued	they	should	not	be	aggregated.	For	instance,
sending	a	command	from	a	king	to	all	his	generals
should	send	one	command	to	each	general.

Because	there	is	only	one	end	point	for	a	command	it	is
possible	for	that	end	point	to	validate	and	even	cancel
the	command.	The	cancellation	of	the	command	should
have	no	impact	on	the	rest	of	the	application.

When	a	command	is	acted	upon,	then	one	or	more
events	may	be	published.

Events
An	event	is	a	special	message	that	notifies	that
something	has	happened.	There	is	no	use	in	trying	to
change	or	cancel	an	event	because	it	is	simply	a
notification	that	something	has	happened.	You	cannot
change	the	past	unless	you	own	a	Delorian.

The	naming	convention	for	events	is	that	they	are	written

in	the	past	tense.	You	might	see	a	reversal	of	the
ordering	of	the	words	in	the	command,	so	we	could	end
up	with	CityInvaded	once	the	InvadeCity	command
has	succeeded.

Unlike	commands,	events	may	be	received	by	any
number	of	components.	There	are	not	real	race
conditions	presented	by	this	approach.	As	no	message
handler	can	change	the	message	nor	interfere	with	the
delivery	of	other	copies	of	the	message,	each	handler	is
siloed	away	from	all	others.

You	may	be	familiar	with	events	from	having	done	user
interface	work.	When	a	user	clicks	a	button	then	an
event	is	"raised".	In	effect	the	event	is	broadcast	to	a
series	of	listeners.	You	subscribe	to	a	message	by
hooking	into	that	event:

document.getElementById("button1").addEven

tListener("click",	doSomething);

The	events	in	browsers	don't	quite	meet	the	definition	of
an	event	I	gave	in	the	preceding	paragraph.	This	is
because	event	handlers	in	the	browser	can	cancel
events	and	stop	them	from	propagating	to	the	next
handler.	That	is	to	say,	when	there	are	a	series	of	event
handlers	for	the	same	message	one	of	them	can
completely	consume	the	message	and	not	pass	it	on	to
subsequent	handlers.	There	is	certainly	utility	to	an
approach	like	this	but	it	does	introduce	some	confusion.
Fortunately	for	UI	messages,	the	number	of	handlers	is

typically	quite	small.

In	some	systems,	events	can	be	polymorphic	in	nature.
That	is	to	say	that	if	I	had	an	event	called
IsHiredSalary	that	is	fired	when	somebody	is	hired	in
a	salaried	role,	I	could	make	it	a	descendant	of	the
message	IsHired.	Doing	so	would	allow	for	both
handlers	subscribed	to	IsHiredSalary	and	IsHired
to	be	fired	upon	receipt	of	an	IsHiredSalary	event.
JavaScript	doesn't	have	polymorphism	in	the	true	sense,
so	such	things	aren't	particularly	useful.	You	can	add	a
message	field	that	takes	the	place	of	polymorphism	but	it
looks	somewhat	messy:

var	IsHiredSalary	=	{	__name:

"isHiredSalary",

		__alsoCall:	["isHired"],

		employeeId:	77,

		…

}

In	this	case	I've	used	__	to	denote	fields	that	are	part	of
the	envelope.	You	could	also	construct	the	message	with
separate	fields	for	message	and	envelope,	it	really
doesn't	matter	all	that	much.

Let's	take	a	look	at	a	simple	operation	like	creating	a
user	so	we	can	see	how	commands	and	events	interact:

Here	a	user	enters	data	into	a	form	and	submits	it.	The
web	server	takes	in	the	input,	validates	it	and,	if	it	is
correct,	creates	a	command.	The	command	is	now	sent
to	the	command	handler.	The	command	handler
performs	some	action,	perhaps	writes	to	a	database,	it
then	publishes	an	event	that	is	consumed	by	a	number
of	event	listeners.	These	event	listeners	might	send
confirmation	e-mails,	notify	system	administrators,	or	any
number	of	things.

All	of	this	looks	familiar	because	systems	already	contain
commands	and	events.	The	difference	is	that	we	are
now	modeling	the	commands	and	events	explicitly.

Request-reply
The	simplest	pattern	you'll	see	with	messaging	is	the
request-reply	pattern.	Also	known	as	request-response,
this	is	a	method	of	retrieving	data	that	is	owned	by
another	part	of	the	application.

In	many	cases	the	sending	of	a	command	is	an
asynchronous	operation.	A	command	is	fired	and	the
application	flow	continues	on.	Because	of	this,	there	is
no	easy	way	to	do	things	like	lookup	a	record	by	ID.
Instead	one	needs	to	send	a	command	to	retrieve	a
record	and	then	wait	for	the	associated	event	to	be
returned.	A	normal	workflow	looks	like	the	following
diagram:

Most	events	can	be	subscribed	to	by	any	number
listeners.	While	it	is	possible	to	have	multiple	event
listeners	for	a	request-response	pattern,	it	is	unlikely	and
is	probably	not	advisable.

We	can	implement	a	very	simple	request-response
pattern	here.	In	Westeros	there	are	some	issues	with

sending	messages	in	a	timely	fashion.	Without
electricity,	sending	messages	over	long	distances	rapidly
can	really	only	be	accomplished	by	attaching	tiny
messages	to	the	legs	of	crows.	Thus	we	have	a	Crow
Messaging	System.

We'll	start	with	building	out	what	we'll	call	the	bus.	A	bus
is	simply	a	distribution	mechanism	for	messages.	It	can
be	implemented	in	process,	as	we've	done	here,	or	out
of	process.	If	implementing	it	out	of	process,	there	are
many	options	from	0mq,	a	lightweight	message	queue,
to	RabbitMQ,	a	more	fully	featured	messaging	system,	to
a	wide	variety	of	systems	built	on	top	of	databases	and
in	the	cloud.	Each	of	these	systems	exhibit	some
different	behaviors	when	it	comes	to	message	reliability
and	durability.	It	is	important	to	do	some	research	into
the	way	that	the	message	distribution	systems	work	as
they	may	dictate	how	the	application	is	constructed.
They	also	implement	different	approaches	to	dealing
with	the	underlying	unreliability	of	applications:

class	CrowMailBus	{

		constructor(requestor)	{

				this.requestor	=	requestor;

				this.responder	=	new

CrowMailResponder(this);

		}

		Send(message)	{

				if	(message.__from	==	"requestor")	{

						

this.responder.processMessage(message);

				}

				else	{

						

this.requestor.processMessage(message);

this.requestor.processMessage(message);

				}

		}

}

One	thing	which	is	a	potential	trip-up	is	that	the	order	in
which	messages	are	received	back	on	the	client	is	not
necessarily	the	order	in	which	they	were	sent.	To	deal
with	this	it	is	typical	to	include	some	sort	of	a	correlation
ID.	When	the	event	is	raised	it	includes	a	known	ID	from
the	sender	so	that	the	correct	event	handler	is	used.

This	bus	is	a	highly	naïve	one	as	it	has	its	routing	hard
coded.	A	real	bus	would	probably	allow	the	sender	to
specify	the	address	of	the	end	point	for	delivery.
Alternately,	the	receivers	could	register	themselves	as
interested	in	a	specific	sort	of	message.	The	bus	would
then	be	responsible	for	doing	some	limited	routing	to
direct	the	message.	Our	bus	is	even	named	after	the
messages	it	deals	with	–	certainly	not	a	scalable
approach.

Next	we'll	implement	the	requestor.	The	requestor
contains	only	two	methods:	one	to	send	a	request	and
the	other	to	receive	a	response	from	the	bus:

class	CrowMailRequestor	{

		Request()	{

				var	message	=	{	__messageDate:	new

Date(),

				__from:	"requestor",

				__corrolationId:	Math.random(),

				body:	"Hello	there.	What	is	the	square

root	of	9?"	};

				var	bus	=	new	CrowMailBus(this);

				var	bus	=	new	CrowMailBus(this);

				bus.Send(message);

				console.log("message	sent!");

		}

		processMessage(message)	{

				console.dir(message);

		}

}

The	process	message	function	currently	just	logs	the
response	but	it	would	likely	do	more	in	a	real	world
scenario	such	as	updating	the	UI	or	dispatching	another
message.	The	correlation	ID	is	invaluable	for
understanding	which	sent	message	the	reply	is	related
to.

Finally,	the	responder	simply	takes	in	the	message	and
replies	to	it	with	another	message:

class	CrowMailResponder	{

		constructor(bus)	{

				this.bus	=	bus;

		}

		processMessage(message)	{

				var	response	=	{	__messageDate:	new

Date(),

				__from:	"responder",

				__corrolationId:

message.__corrolationId,

				body:	"Okay	invaded."	};

				this.bus.Send(response);

				console.log("Reply	sent");

		}

}

Everything	in	our	example	is	synchronous	but	all	it	would
take	to	make	it	asynchronous	is	to	swap	out	the	bus.	If

we're	working	in	node	then	we	can	do	this	using
process.nextTick	which	simply	defers	a	function	to
the	next	time	through	the	event	loop.	If	we're	in	a	web
context,	then	web	workers	may	be	used	to	do	the
processing	in	another	thread.	In	fact,	when	starting	a
web	worker,	the	communication	back	and	forth	to	it	takes
the	form	of	a	message:

class	CrowMailBus	{

		constructor(requestor)	{

				this.requestor	=	requestor;

				this.responder	=	new

CrowMailResponder(this);

		}

		Send(message)	{

				if	(message.__from	==	"requestor")	{

						process.nextTick(()	=>

this.responder.processMessage(message));

				}

				else	{

						process.nextTick(()	=>

this.requestor.processMessage(message));

				}

		}

}

This	approach	now	allows	other	code	to	run	before	the
message	is	processed.	If	we	weave	in	some	print
statements	after	each	bus	send,	then	we	get	output	like
the	following:

Request	sent!

Reply	sent

{	__messageDate:	Mon	Aug	11	2014	22:43:07

GMT-0600	(MDT),

		__from:	'responder',

		__corrolationId:	0.5604551520664245,

		__corrolationId:	0.5604551520664245,

		body:	'Okay,	invaded.'	}

You	can	see	that	the	print	statements	are	executed
before	the	message	processing	as	that	processing
happens	on	the	next	iteration.

Publish-subscribe
I've	alluded	to	the	publish-subscribe	model	elsewhere	in
this	chapter.	Publish-subscribe	is	a	powerful	tool	for
decoupling	events	from	processing	code.

At	the	crux	of	the	pattern	is	the	idea	that,	as	a	message
publisher,	my	responsibility	for	the	message	should	end
as	soon	as	I	send	it.	I	should	not	know	who	is	listening	to
messages	or	what	they	will	do	with	the	messages.	So
long	as	I	am	fulfilling	a	contract	to	produce	correctly
formatted	messages,	the	rest	shouldn't	matter.

It	is	the	responsibility	of	the	listener	to	register	its	interest
in	the	message	type.	You'll,	of	course,	wish	to	register
some	sort	of	security	to	disallow	registration	of	rogue
services.

We	can	update	our	service	bus	to	do	more,	to	do	a
complete	job	of	routing	and	sending	multiple	messages.
Let's	call	our	new	method	Publish	instead	of	Send.
We'll	keep	Send	around	to	do	the	sending	functionality:

The	crow	mail	analogy	we	used	in	the	previous	section
starts	to	fall	apart	here	as	there	is	no	way	to	broadcast	a
message	using	crows.	Crows	are	too	small	to	carry	large
banners	and	it	is	very	difficult	to	train	them	to	do	sky
writing.	I'm	unwilling	to	totally	abandon	the	idea	of	crows
so	let's	assume	that	there	exists	a	sort	of	crow	broadcast
centre.	Sending	a	message	here	allows	for	it	to	be
fanned	out	to	numerous	interested	parties	who	have
signed	up	for	updates.	This	centre	will	be	more	or	less
synonymous	with	a	bus.

We'll	write	our	router	so	that	it	works	as	a	function	of	the
name	of	the	message.	One	could	route	a	message	using
any	of	its	attributes.	For	instance,	a	listener	could
subscribe	to	all	the	messages	called	invoicePaid
where	the	amount	field	is	greater	than	$10000.	Adding
this	sort	of	logic	to	the	bus	will	slow	it	down	and	make	it

far	harder	to	debug.	Really	this	is	more	the	domain	of
business	process	orchestration	engines	than	a	bus.	We'll
continue	on	without	that	complexity.

The	first	thing	to	set	up	is	the	ability	to	subscribe	to
published	messages:

CrowMailBus.prototype.Subscribe	=	function

(messageName,	subscriber)	{

		this.responders.push({	messageName:

messageName,	subscriber:	subscriber	});

};

The	Subscribe	function	just	adds	a	message	handler
and	the	name	of	a	message	to	consume.	The
responders	array	is	simply	an	array	of	handlers.

When	a	message	is	published	we	loop	over	the	array
and	fire	each	of	the	handlers	that	have	registered	for
messages	with	that	name:

Publish(message)	{

		for	(let	i	=	0;	i	<

this.responders.length;	i++)	{

				if	(this.responders[i].messageName	==

message.__messageName)	{

						(function	(b)	{

								process.nextTick(()	=>

b.subscriber.processMessage(message));

						})(this.responders[i]);

				}

		}

}

The	execution	here	is	deferred	to	the	next	tick.	This	is

done	using	a	closure	to	ensure	that	the	correctly	scoped
variables	are	passed	through.	We	can	now	change	our
CrowMailResponder	to	use	the	new	Publish	method
instead	of	Send:

processMessage(message)	{

		var	response	=	{	__messageDate:	new

Date(),

		__from:	"responder",

		__corrolationId:

message.__corrolationId,

		__messageName:	"SquareRootFound",

		body:	"Pretty	sure	it	is	3."	};

		this.bus.Publish(response);

		console.log("Reply	published");

}

Instead	of	allowing	the	CrowMailRequestor	object	to
create	its	own	bus	as	earlier,	we	need	to	modify	it	to
accept	an	instance	of	bus	from	outside.	We	simply
assign	it	to	a	local	variable	in	CrowMailRequestor.
Similarly,	CrowMailResponder	should	also	take	in	an
instance	of	bus.

In	order	to	make	use	of	this	we	simply	need	to	create	a
new	bus	instance	and	pass	it	into	the	requestor:

var	bus	=	new	CrowMailBus();

bus.Subscribe("KingdomInvaded",	new

TestResponder1());

bus.Subscribe("KingdomInvaded",	new

TestResponder2());

var	requestor	=	new

CrowMailRequestor(bus);

requestor.Request();

Here	we've	also	passed	in	two	other	responders	that	are
interested	in	knowing	about	KingdomInvaded
messages.	They	look	like	the	following:

var	TestResponder1	=	(function	()	{

		function	TestResponder1()	{}

		TestResponder1.prototype.processMessage

=	function	(message)	{

				console.log("Test	responder	1:	got	a

message");

		};

		return	TestResponder1;

})();

Running	this	code	will	now	get	the	following:

Message	sent!

Reply	published

Test	responder	1:	got	a	message

Test	responder	2:	got	a	message

Crow	mail	responder:	got	a	message

You	can	see	that	the	messages	are	sent	using	Send.
The	responder	or	handler	does	its	work	and	publishes	a
message	that	is	passed	onto	each	of	the	subscribers.

There	are	some	great	JavaScript	libraries	which	make
publish	and	subscribe	even	easier.	One	of	my	favorites
is	Radio.js.	It	has	no	external	dependencies	and	its
name	is	an	excellent	metaphor	for	publish	subscribe.	We
could	rewrite	our	preceding	subscribe	example	like	so:

radio("KingdomInvalid").subscribe(new

TestResponder1().processMessage);

radio("KingdomInvalid").subscribe(new

TestResponder2().processMessage);

TestResponder2().processMessage);

Then	publish	a	message	using	the	following:

radio("KingdomInvalid").broadcast(message)

;

Fan	out	and	in
A	fantastic	use	of	the	publish	subscribe	pattern	is
allowing	you	to	fan	out	a	problem	to	a	number	of
different	nodes.	Moore's	law	has	always	been	about	the
doubling	of	the	number	of	transistors	per	square	unit	of
measure.	If	you've	been	paying	attention	to	processor
clock	speeds	you	may	have	noticed	that	there	hasn't
really	been	any	significant	change	in	clock	speeds	for	a
decade.	In	fact,	clock	speeds	are	now	lower	than	they
were	in	2005.

This	is	not	to	say	that	processors	are	"slower"	than	they
once	were.	The	work	that	is	performed	in	each	clock	tick
has	increased.	The	number	of	cores	has	also	jumped	up.
It	is	now	unusual	to	see	a	single	core	processor;	even	in
cellular	phones	dual	core	processors	are	becoming
common.	It	is	the	rule,	rather	than	the	exception,	to	have
computers	that	are	capable	of	doing	more	than	one	thing
at	a	time.

At	the	same	time,	cloud	computing	is	taking	off.	The
computers	you	purchase	outright	are	faster	than	the
ones	available	to	rent	from	the	cloud.	The	advantage	of
cloud	computing	is	that	you	can	scale	it	out	easily.	It	is

nothing	to	provision	a	hundred	or	even	a	thousand
computers	to	form	a	cloud	provider.

Writing	software	that	can	take	advantage	of	multiple
cores	is	the	great	computing	problem	of	our	time.
Dealing	directly	with	threads	is	a	recipe	for	disaster.
Locking	and	contention	is	far	too	difficult	a	problem	for
most	developers:	me	included!	For	a	certain	class	of
problems,	they	can	easily	be	divided	up	into	sub
problems	and	distributed.	Some	call	this	class	of
problems	"embarrassingly	parallelizable".

Messaging	provides	a	mechanism	for	communicating	the
inputs	and	outputs	from	a	problem.	If	we	had	one	of
these	easily	parallelized	problems,	such	as	searching,
then	we	would	bundle	up	the	inputs	into	one	message.	In
this	case	it	would	contain	our	search	terms.	The
message	might	also	contain	the	set	of	documents	to
search.	If	we	had	10,000	documents	then	we	could
divide	the	search	space	up	into,	say,	four	collections	of
2500	documents.	We	would	publish	five	messages	with
the	search	terms	and	the	range	of	documents	to	search
as	can	be	seen	here:

Different	search	nodes	will	pick	up	the	messages	and
perform	the	search.	The	results	will	then	be	sent	back	to
a	node	that	will	collect	the	messages	and	combine	them
into	one.	This	is	what	will	be	returned	to	the	client.

Of	course	this	is	a	bit	of	an	over	simplification.	It	is	likely
that	the	receiving	nodes	themselves	would	maintain	a	list
of	documents	over	which	they	had	responsibility.	This
would	prevent	the	original	publishing	node	from	having
to	know	anything	about	the	documents	over	which	it	was
searching.	The	search	results	could	even	be	returned
directly	to	the	client	that	would	do	the	assembling.

Even	in	a	browser,	the	fan	out	and	in	approach	can	be
used	to	distribute	a	calculation	over	a	number	of	cores
through	the	use	of	web	workers.	A	simple	example	might
take	the	form	of	creating	a	potion.	A	potion	might	contain
a	number	of	ingredients	that	can	be	combined	to	create

a	final	product.	It	is	quite	computationally	complicated
combining	ingredients	so	we	would	like	to	farm	the
process	out	to	a	number	of	workers.

We	start	with	a	combiner	that	contains	a	combine()
method	as	well	as	a	complete()	function	that	is	called
once	all	the	distributed	ingredients	are	combined:

class	Combiner	{

		constructor()	{

				this.waitingForChunks	=	0;

		}

		combine(ingredients)	{

				console.log("Starting	combination");

				if	(ingredients.length	>	10)	{

						for	(let	i	=	0;	i	<

Math.ceil(ingredients.length	/	2);	i++)	{

								this.waitingForChunks++;

								console.log("Dispatched	chunks

count	at:	"	+	this.waitingForChunks);

								var	worker	=	new

Worker("FanOutInWebWorker.js");

								worker.addEventListener('message',

(message)	=>	this.complete(message));

								worker.postMessage({	ingredients:

ingredients.slice(i,	i	*	2)	});

						}

				}

		}

		complete(message)	{

				this.waitingForChunks--;

				console.log("Outstanding	chunks	count

at:	"	+	this.waitingForChunks);

				if	(this.waitingForChunks	==	0)

						console.log("All	chunks	received");

		}

};

In	order	to	keep	track	of	the	number	of	workers
outstanding,	we	use	a	simple	counter.	Because	the	main
section	of	code	is	single	threaded	we	have	no	risk	of
race	conditions.	Once	the	counter	shows	no	remaining
workers	we	can	take	whatever	steps	are	necessary.	The
web	worker	looks	like	the	following:

self.addEventListener('message',	function

(e)	{

		var	data	=	e.data;

		var	ingredients	=	data.ingredients;

		combinedIngredient	=	new

Westeros.Potion.CombinedIngredient();

		for	(let	i	=	0;	i	<	ingredients.length;

i++)	{

				

combinedIngredient.Add(ingredients[i]);

		}

		console.log("calculating	combination");

		setTimeout(combinationComplete,	2000);

},	false);

	

function	combinationComplete()	{

		console.log("combination	complete");

		(self).postMessage({	event:

'combinationComplete',	result:

combinedIngredient	});

}

In	this	case	we	simply	put	in	a	timeout	to	simulate	the
complex	calculation	needed	to	combine	ingredients.

The	sub	problems	that	are	farmed	out	to	a	number	of
nodes	don't	have	to	be	identical	problems.	However,
they	should	be	sufficiently	complicated	that	the	cost
savings	of	farming	them	out	are	not	consumed	by	the

overhead	of	sending	out	a	message.

Dead	letter	queues
No	matter	how	hard	I	try	I	have	yet	to	write	any
significant	block	of	code	that	does	not	contain	any	errors.
Nor	have	I	been	very	good	at	predicting	the	wide	range
of	crazy	things	users	do	with	my	applications.	Why	would
anybody	click	that	link	73	times	in	a	row?	I'll	never	know.

Dealing	with	failures	in	a	messaging	scenario	is	very
easy.	The	core	of	the	failure	strategy	is	to	embrace
errors.	We	have	exceptions	for	a	reason	and	to	spend	all
of	our	time	trying	to	predict	and	catch	exceptions	is
counter-productive.	You'll	invariably	spend	time	building
in	catches	for	errors	that	never	happen	and	miss	errors
that	happen	frequently.

In	an	asynchronous	system,	errors	need	not	be	handled
as	soon	as	they	occur.	Instead,	the	message	that
caused	an	error	can	be	put	aside	to	be	examined	by	an
actual	human	later.	The	message	is	stored	in	a	dead
letter,	or	error,	queue.	From	there	the	message	can
easily	be	reprocessed	after	it	has	been	corrected	or	the
handler	has	been	corrected.	Ideally	the	message	handler
is	changed	to	deal	with	messages	exhibiting	whatever
property	caused	the	errors.	This	prevents	future	errors
and	is	preferable	to	fixing	whatever	generates	the
message	as	there	is	no	guarantee	that	other	messages
with	the	same	problem	aren't	lurking	somewhere	else	in
the	system.	The	workflow	of	a	message	through	the

queue	and	error	queue	can	be	seen	here:

As	more	and	more	errors	are	caught	and	fixed,	the
quality	of	the	message	handlers	increases.	Having	an
error	queue	of	messages	ensures	that	nothing	important,
such	as	a	BuySimonsBook	message	is	missed.	This
means	that	getting	to	a	correct	system	becomes	a
marathon	instead	of	a	sprint.	There	is	no	need	to	rush	a
fix	into	production	before	it	is	properly	tested.	Progress
towards	a	correct	system	is	constant	and	reliable.

Using	a	dead	letter	queue	also	improves	the	catching	of
intermittent	errors.	These	are	errors	that	result	from	an
external	resource	being	unavailable	or	incorrect.	Imagine
a	handler	that	calls	out	to	an	external	web	service.	In	a
traditional	system,	a	failure	in	the	web	service
guarantees	failure	in	the	message	handler.	However,
with	a	message	based	system,	the	command	can	be
moved	back	to	the	end	of	the	input	queue	and	tried

again	whenever	it	reaches	the	front	of	the	queue.	On	the
envelope	we	write	down	the	number	of	times	the
message	has	been	dequeued	(processed).	Once	this
dequeue	count	reaches	a	limit,	like	five,	only	then	is	the
message	moved	into	the	true	error	queue.

This	approach	improves	the	overall	quality	of	the	system
by	smoothing	over	the	small	failures	and	stopping	them
from	becoming	large	failures.	In	effect,	the	queues
provide	failure	bulkheads	to	prevent	small	errors	from
overflowing	and	becoming	large	errors	that	might	have
an	impact	on	the	system	as	a	whole.

Message	replay
When	developers	are	working	with	a	set	of	messages
that	produce	an	error,	the	ability	to	reprocess	messages
is	also	useful.	Developers	can	take	a	snapshot	of	the
dead	letter	queue	and	reprocess	it	in	debug	mode	again
and	again	until	they	have	correctly	processed	the
messages.	A	snapshot	of	a	message	can	also	make	up
a	part	of	the	testing	for	a	message	handler.

Even	without	there	being	an	error,	the	messages	sent	to
a	service	on	a	daily	basis	are	representative	of	the
normal	workflows	of	users.	These	messages	can	be
mirrored	to	an	audit	queue	as	they	enter	into	the	system.
The	data	from	the	audit	queue	can	be	used	for	testing.	If
a	new	feature	is	introduced,	then	a	normal	day's
workload	can	be	played	back	to	ensure	that	there	has
been	no	degradation	in	either	correct	behavior	or

performance.

Of	course	if	the	audit	queue	contains	a	list	of	every
message,	then	it	becomes	trivial	to	understand	how	the
application	arrived	at	its	current	state.	Frequently	people
implement	history	by	plugging	in	a	lot	of	custom	code	or
by	using	triggers	and	audit	tables.	Neither	of	these
approaches	do	as	good	of	a	job	as	messaging	at
understanding	not	only	which	data	has	changed,	but	why
it	has	changed.	Consider	again	the	address	change
scenario,	without	messaging	we	will	likely	never	know
why	an	address	for	a	user	is	different	from	the	previous
day.

Maintaining	a	good	history	of	changes	to	system	data	is
storage	intensive	but	that	cost	is	easily	paid	by	allowing
auditors	to	see	how	and	why	each	change	was	made.
Well-constructed	messages	also	allow	for	the	history	to
contain	the	intent	of	the	user	making	the	change.

While	it	is	possible	to	implement	this	sort	of	messaging
system,	in	a	single	process	it	is	difficult.	Ensuring	that
messages	are	properly	saved	in	the	event	of	errors	is
difficult,	as	the	entire	process	that	deals	with	messages
may	crash,	taking	the	internal	message	bus	with	it.
Realistically	if	the	replaying	of	messages	sounds	like
something	worth	investigating	then	external	message
busses	are	the	solution.

Pipes	and	filters

I	mentioned	earlier	that	messages	should	be	considered
immutable.	This	is	not	to	say	that	messages	cannot	be
rebroadcast	with	some	properties	changed	or	even
broadcast	as	a	new	type	of	message.	In	fact,	many
message	handlers	may	consume	an	event	and	then
publish	a	new	event	after	having	performed	some	task.

As	an	example,	you	might	consider	the	workflow	for
adding	a	new	user	to	a	system:

In	this	case,	the	CreateUser	command	triggers	a
UserCreated	event.	That	event	is	consumed	by	a
number	of	different	services.	One	of	these	services

passes	on	user	information	to	a	select	number	of
affiliates.	As	this	service	runs,	it	publishes	its	own	set	of
events,	one	for	each	affiliate	that	receives	the	new	user's
details.	These	events	may,	in	turn,	be	consumed	by
other	services	which	could	trigger	their	own	events.	In
this	way	changes	can	ripple	through	the	entire
application.	However,	no	service	knows	more	than	what
starts	it	and	what	events	it	publishes.	This	system	has
very	low	coupling.	Plugging	in	new	functionality	is	trivial
and	even	removing	functionality	is	easy:	certainly	easier
than	a	monolithic	system.

Systems	constructed	using	messaging	and	autonomous
components	are	frequently	referred	to	as	using	Service
Oriented	Architecture	(SOA)	or	Microservices.	There
remains	a	great	deal	of	debate	as	to	the	differences,	if
indeed	there	are	any,	between	SOA	and	Microservices.

The	altering	and	rebroadcasting	of	messages	can	be
thought	of	as	being	a	pipe	or	a	filter.	A	service	can	proxy
messages	through	to	other	consumers	just	as	a	pipe
would	do	or	can	selectively	republish	messages	as
would	be	done	by	a	filter.

Versioning	messages
As	systems	evolve,	the	information	contained	in	a
message	may	also	change.	In	our	user	creation
example,	we	might	have	originally	been	asking	for	a
name	and	e-mail	address.	However,	the	marketing
department	would	like	to	be	able	to	send	e-mails

addressed	to	Mr.	Jones	or	Mrs.	Jones	so	we	need	to
also	collect	the	user's	title.	This	is	where	message
versioning	comes	in	handy.

We	can	now	create	a	new	message	that	extends	the
previous	message.	The	message	can	contain	additional
fields	and	might	be	named	using	the	version	number	or	a
date.	Thus	a	message	like	CreateUser	might	become
CreateUserV1	or	CreateUser20140101.	Earlier	I
mentioned	polymorphic	messages.	This	is	one	approach
to	versioning	messages.	The	new	message	extends	the
old	so	all	the	old	message	handlers	still	fire.	However,
we	also	talked	about	how	there	are	no	real	polymorphic
capabilities	in	JavaScript.

Another	option	is	to	use	upgrading	message	handlers.
These	handlers	will	take	in	a	version	of	the	new
message	and	modify	it	to	be	the	old	version.	Obviously
the	newer	messages	need	to	have	at	least	as	much	data
in	them	as	the	old	version	or	have	data	that	permits
converting	one	message	type	to	another.

Consider	a	v1	message	that	looked	like	the	following:

class	CreateUserv1Message	implements

IMessage{

		__messageName:	string

		UserName:	string;

		FirstName:	string;

		LastName:	string;

		EMail:	string;

}

Consider	a	v2	message	that	extended	it	adding	a	user
title:

class	CreateUserv2Message	extends

CreateUserv1Message	implements	IMessage{

		UserTitle:	string;

}

Then	we	would	be	able	to	write	a	very	simple	upgrader
or	downgrader	that	looks	like	the	following:

var	CreateUserv2tov1Downgrader	=	(function

()	{

		function	CreateUserv2tov1Downgrader

(bus)	{

				this.bus	=	bus;

		}

		

CreateUserv2tov1Downgrader.prototype.proce

ssMessage	=	function	(message)	{

				message.__messageName	=

"CreateUserv1Message";

				delete	message.UserTitle;

				this.bus.publish(message);

		};

		return	CreateUserv2tov1Downgrader;

})();

You	can	see	that	we	simply	modify	the	message	and
rebroadcast	it.

Hints	and	tips
Messages	create	a	well-defined	interface	between	two
different	systems.	Defining	messages	should	be	done	by
members	of	both	teams.	Establishing	a	common
language	can	be	tricky	especially	as	terms	are
overloaded	between	different	business	units.	What	a
sales	department	considers	a	customer	may	be	totally
different	from	what	a	shipping	department	considers	a
customer.	Domain	driven	design	provides	some	hints	as
to	how	boundaries	can	be	established	to	avoid	mixing
terms.

There	is	a	huge	preponderance	of	queue	technologies
available.	Each	of	them	have	a	bunch	of	different
properties	around	reliability,	durability,	and	speed.	Some
of	the	queues	support	reading	and	writing	JSON	over
HTTP:	ideal	for	those	interested	in	building	JavaScript
applications.	Which	queue	is	appropriate	for	your
application	is	a	topic	for	some	research.

Summary
Messaging	and	the	associated	patterns	are	large	topics.
Delving	too	deeply	into	messages	will	bring	you	in
contact	with	domain	driven	design	(DDD)	and
command	query	responsibility	segregation	(CQRS)
as	well	as	touching	on	high	performance	computing
solutions.

There	is	substantial	research	and	discussion	ongoing	as
to	the	best	way	to	build	large	systems.	Messaging	is	one
possible	solution	that	avoids	creating	a	big	ball	of	mud
that	is	difficult	to	maintain	and	fragile	to	change.
Messaging	provides	natural	boundaries	between
components	in	a	system	and	the	messages	themselves
provide	for	a	consistent	API.

Not	every	application	benefits	from	messaging.	There	is
additional	overhead	to	building	a	loosely	coupled
application	such	as	this.	Applications	that	are
collaborative,	ones	where	losing	data	is	especially
undesirable,	and	those	that	benefit	from	a	strong	history
story	are	good	candidates	for	messaging.	In	most	cases
a	standard	CRUD	application	will	be	sufficient.	It	is	still
worthwhile	to	know	about	messaging	patterns,	as	they
will	offer	alternative	thinking.

In	this	chapter	we've	taken	a	look	at	a	number	of
different	messaging	patterns	and	how	they	can	be

applied	to	common	scenarios.	The	differences	between
commands	and	events	were	also	explored.

In	the	next	chapter	we'll	look	at	some	patterns	for	making
testing	code	a	little	bit	easier.	Testing	is	jolly	important	so
read	on!

Chapter	11.	Microservices
It	seems	like	no	book	on	programming	these	days	is
complete	without	at	least	some	mention	of
microservices.	For	fear	that	this	book	could	be	singled
out	for	ridicule	as	a	non-conformant	publication,	a
chapter	has	been	included	on	microservices.

Microservices	are	billed	as	the	solution	to	the	problems
of	monolithic	applications.	Likely	every	application	you've
dealt	with	has	been	a	monolith:	that	is,	the	application
has	a	single	logical	executable	and	is	perhaps	split	into
layers	such	as	a	user	interface,	a	service	or	application
layer,	and	a	data	store.	In	many	applications	these
layers	might	be	a	web	page,	a	server	side	application,
and	a	database.	Monoliths	have	their	issues	as	I'm	sure
you've	encountered.

Maintaining	a	monolithic	application	quickly	becomes	an
exercise	in	limiting	the	impact	of	change.	Frequently	in
such	applications	a	change	to	one,	seemingly	isolated,
corner	of	the	application	has	an	unintended	effect	on
some	other	part	of	the	application.	Although	there	are
many	patterns	and	approaches	to	describe	well	isolated
components,	these	often	fall	by	the	wayside	inside	a
monolith.	Often	we	take	shortcuts	which	may	save	time
now	but	will	return	to	make	our	lives	terrible	down	the
road.

Monolithic	applications	are	also	difficult	to	scale.
Because	we	tend	to	have	only	three	layers,	we	are
limited	to	scaling	each	one	of	those	layers.	We	can	add
more	application	servers	if	the	middle	tier	is	becoming
slow	or	more	web	servers	if	the	web	tier	is	laggy.	If	the
database	is	slow	then	we	can	increase	the	power	of	the
database	server.	These	scaling	approaches	are	very
large	operations.	If	the	only	part	of	the	application	which
is	slow	is	signing	up	new	users,	then	we	really	have	no
way	to	simply	scale	that	one	component.	This	means
that	components	which	are	not	frequently	used	(one
might	call	these	cold	or	cool	components)	must	be	able
to	scale	as	the	whole	application	scales.	This	sort	of
scaling	doesn't	come	for	free.

Consider	that	scaling	from	a	single	web	server	to
multiple	web	servers	introduces	the	problem	of	sharing
sessions	between	many	web	servers.	If	we	were,
instead,	to	divide	our	application	into	a	number	of
services,	of	which	each	acts	as	the	canonical	source	of
truth	for	a	piece	of	data,	then	we	could	scale	these
sections	independently.	A	service	for	logging	users	in,
another	service	for	saving	and	retrieving	their
preferences,	yet	another	for	sending	out	reminder	e-
mails	about	abandoned	shopping	carts,	each	one
responsible	for	its	own	functions	and	own	data.	Each
service	stands	alone	as	a	separate	application	and	may
run	on	a	separate	machine.	In	effect	we	have	taken	our
monolithic	application	and	sharded	it	into	many
applications.	Not	only	does	each	service	have	an
isolated	function	but	it	also	has	its	own	datastore	and

could	be	implemented	using	its	own	technology.	The
difference	between	a	monolith	and	microservices	can	be
seen	here:

Applications	are	written	more	by	composing	services
than	by	writing	singular	monolithic	applications.	The	UI	of
an	application	can	even	be	created	by	asking	a	number
of	services	to	provide	visual	components	to	be	slotted
into	a	composite	UI	by	some	form	of	composing	service.

Node.js'	lightweight	approach	to	building	applications
with	just	the	required	components	makes	it	an	ideal
platform	to	build	lightweight	microservices.	Many
microservice	deployments	make	heavy	use	of	HTTP	to
communicate	between	services	while	others	rely	more
heavily	on	messaging	systems	such	as	RabbitMQ	or
ZeroMQ.	These	two	communication	methods	may	be
mixed	in	deployments.	One	might	split	the	technology
used	along	the	lines	of	using	HTTP	against	services
which	are	query-only,	and	messaging	against	services
which	perform	some	action.	This	is	because	messaging
is	more	reliable	(depending	on	your	messaging	system
and	configuration)	than	sending	HTTP	requests.

While	it	may	seem	that	we've	introduced	a	great	deal	of
complexity	into	the	system	it	is	a	complexity	that	is
easier	to	manage	with	modern	tooling.	Very	good	tooling
exists	for	managing	distributed	log	files	and	for
monitoring	the	performance	of	applications	for
performance	issues.	Isolating	and	running	many
applications	with	virtualization	is	more	approachable
than	ever	with	containerization	technologies.

Microservices	may	not	be	the	solution	to	all	our
maintenance	and	scalability	issues	but	they	are	certainly
an	approach	that	is	viable	for	consideration.	In	this
chapter	we'll	explore	some	of	the	patterns	that	may
assist	in	using	microservices:

Façade

Aggregate	services

Pipeline

Message	upgrader

Service	selector

Failure	patterns

Because	microservices	are	a	relatively	new
development,	there	are	likely	to	be	many	more	patterns
which	emerge	as	more	and	more	applications	are
created	with	the	microservice	approach.	There	is	some
similarity	between	the	Microservices	approach	and
Service	Oriented	Architecture	(SOA).	This	means	that
there	are	likely	some	patterns	from	the	SOA	world	which
will	be	applicable	in	the	microservices	world.

Façade
If	you	feel	that	you	recognize	the	name	of	this	pattern,
then	you're	correct.	We	discussed	this	pattern	way	back
in	Chapter	4,	Structural	Patterns.	In	that	application	of
the	pattern	we	created	a	class	which	could	direct	the
actions	of	a	number	of	other	classes	providing	a	simpler
API.	Our	example	was	that	of	an	admiral	who	directed	a
fleet	of	ships.	In	the	microservices	world	we	can	simply
replace	the	concept	of	classes	with	that	of	services.	After
all,	the	functionality	of	a	service	is	not	that	different	from
a	microservice	–	they	both	perform	a	single	action.

We	might	make	use	of	a	façade	to	coordinate	the	use	of
a	number	of	other	services.	This	pattern	is	a	base
pattern	for	many	of	the	other	patterns	listed	in	this
chapter.	Coordinating	services	can	be	difficult,	but	by

putting	them	behind	a	façade	we	can	make	the	entire
application	much	simpler.	Let	us	consider	a	service
which	sends	e-mails.	Sending	e-mails	is	quite	a	complex
process	which	may	involve	a	number	of	other	services:	a
username	to	e-mail	address	translator,	an	anti-malware
scanner,	a	spam	checker,	a	formatter	to	message	the	e-
mail	body	for	various	e-mail	clients,	and	so	forth.

Most	clients	who	want	to	send	e-mail	don't	want	to
concern	themselves	with	all	of	these	other	services	so	a
façade	e-mail-sending	service	can	be	put	in	place	which
holds	the	responsibility	of	coordinating	other	services.
The	coordination	pattern	can	be	seen	here:

Service	selector
Along	the	same	lines	as	a	façade	we	have	the	service
selector	pattern.	In	this	pattern	we	have	a	service	which
fronts	a	number	of	other	services.	Depending	on	the
message	which	arrives,	a	different	service	could	be
selected	to	respond	to	the	initial	request.	This	pattern	is
useful	in	upgrade	scenarios	and	for	experimentation.	If
you're	rolling	out	a	new	service	and	want	to	ensure	that	it
will	function	correctly	under	load	then	you	could	make
use	of	the	service	selector	pattern	to	direct	a	small
portion	of	your	production	traffic	to	the	new	service	while
monitoring	it	closely.	Another	application	might	be	for
directing	specific	customers	or	groups	of	customers	to	a
different	service.	The	distinguishing	factor	could	be
anything	from	directing	people	who	have	paid	for	your
service	toward	faster	end	points,	to	directing	traffic	from
certain	countries	to	country-specific	services.	The
service	selector	pattern	can	be	seen	in	this	illustration:	

Aggregate	services
Data	in	a	microservice	architecture	is	owned	by	a	single
service,	but	there	are	many	times	when	we	might	need
to	retrieve	data	from	a	number	of	different	sources	at
once.	Consider,	again,	a	member	of	the	Small	Council	in
the	land	of	Westeros.	They	may	have	a	number	of
informants	from	whom	they	gather	information	about	the
workings	of	the	kingdom.	You	can	consider	each
informant	to	be	its	own	microservice.

TIPTIP
Informants	are	a	fantastic	metaphor	for	microservices	as	each	one	is	independent	and
holds	its	own	data.	Services	may	also	fail	from	time	to	time	just	as	informants	may	be
captured	and	terminated.	Messages	are	passed	between	informants	just	as	they	are
among	a	collection	of	microservices.	Each	informant	should	know	very	little	about	how	the
rest	of	the	informants	work,	and	even,	who	they	are	–	an	abstraction	which	works	for
microservices	too.

With	the	aggregate	service	pattern,	we	ask	each	one	of
a	collection	of	nodes	to	perform	some	action	or	return
some	piece	of	data.	This	is	a	fairly	common	pattern	even
outside	the	microservice	world	and	is	a	special	case	of
the	façade	or	even	adapter	pattern.	The	aggregator
requests	information	from	a	number	of	other	services
and	then	waits	for	them	to	return.	Once	all	the	data	has
been	returned,	then	the	aggregator	may	perform	some
additional	tasks	such	as	summarizing	the	data	or
counting	records.	The	information	is	then	passed	back	to
the	caller.	The	aggregator	can	be	seen	in	this	illustration:

This	pattern	may	also	have	some	provision	for	dealing	with
slow-to-return	services	or	failures	of	services.	The	aggregator
service	may	return	partial	results	or	return	data	from	a	cache	in
the	event	that	one	of	the	child	services	reaches	a	timeout.	In
certain	architectures,	the	aggregator	could	return	a	partial
result	and	then	return	additional	data	to	the	caller	when	it
becomes	available.

Pipeline
A	pipeline	is	another	example	of	a	microservice
connecting	pattern.	If	you	have	made	use	of	the	shell	on
a	NIX	system,	then	you	have	certainly	piped	the	output
of	one	command	to	another	command.	The	programs	on
a	NIX	system	such	as	ls,	sort,	uniq,	and	grep	are
designed	to	perform	just	one	task;	their	power	comes
from	the	ability	to	chain	the	tools	together	to	build	quite
complex	workflows.	For	instance,	this	command:

ls	-1|	cut	-d	\.	-f	2	-s	|	sort	|uniq

This	command	will	list	all	the	unique	file	extensions	in
the	current	directory.	It	does	this	by	taking	the	list	of	files,
then	cutting	them	and	taking	the	extension;	this	is	then
sorted	and	finally	passed	to	uniq	which	removes
duplicates.	While	I	wouldn't	suggest	having	a
microservice	for	such	trivial	actions	as	sorting	or
deduplicating,	you	might	have	a	series	of	services	which
build	up	more	and	more	information.

Let's	imagine	a	query	service	that	returns	a	collection	of
company	records:

|	Company	Id|	Name	|	Address	|	City	|	

Postal	Code	|	Phone	Number	|

This	record	is	returned	by	our	company	lookup	service.

Now	we	can	pass	this	record	onto	our	sales	accounting
service	which	will	add	a	sales	total	to	the	record:

|	Company	Id|	Name	|	Address	|	City	|	

Postal	Code	|	Phone	Number	|	2016	orders	

Total	|

Now	that	record	can	be	passed	onto	a	sales	estimate
service,	which	further	enhances	the	record	with	an
estimate	of	2017	sales:

|	Company	Id|	Name	|	Address	|	City	|	

Postal	Code	|	Phone	Number	|	2016	orders	

Total	|	2017	Sales	Estimate	|

This	sort	of	progressive	enhancement	could	be	reversed
too	by	a	service	that	stripped	out	information	which
shouldn't	be	presented	to	the	users.	The	record	might
now	become	the	following:

|	Name	|	Address	|	City	|	Postal	Code	|	

Phone	Number	|	2016	orders	Total	|	2017	

Sales	Estimate	|

Here	we	have	dropped	the	company	identifier	because	it
is	an	internal	identifier.	A	microservice	pipeline	should	be
bidirectional	so	that	a	quantum	of	information	is	passed
into	each	step	in	the	pipeline	and	then	passed	back	out
again	through	each	step.	This	affords	services	the
opportunity	to	act	upon	the	data	twice,	manipulating	it	as
they	see	fit.	This	is	the	same	approach	used	in	many
web	servers	where	modules	such	as	PHP	are	permitted
to	act	upon	the	request	and	the	response.	A	pipeline	can

be	seen	illustrated	here:

Message	upgrader
One	of	the	highest-risk	activities	with	some	monolithic
applications	is	upgrading.	To	do	so	you	basically	need	to
upgrade	the	entire	application	at	once.	With	even	a
medium-sized	application	there	are	far	too	many	aspects
to	reasonably	test.	Thus	at	some	point	you	simply	need
to	cut	over	from	the	old	system	to	the	new	system.	With
a	microservice	approach,	the	cutover	can	be	done	for
each	individual	service.	Smaller	services	mean	that	the
risk	can	be	spread	out	over	a	long	time	and,	should
something	go	wrong,	the	source	of	the	error	can	be	more
quickly	pinpointed:	the	singular	new	component.

At	issue	are	the	services	which	are	still	talking	to	the	old
version	of	the	upgraded	service.	How	can	we	continue	to
serve	these	services	without	having	to	update	all	those
services	too?	If	the	interface	to	the	service	remains
unchanged,	say	our	service	calculates	the	distance
between	two	points	on	the	earth	and	we	change	it	from
using	a	simple	Pythagorean	approach	to	using	haversine
(a	formula	to	find	the	distance	between	two	spots	on	a
sphere),	then	there	may	be	no	need	to	make	changes	to
the	input	and	output	formats.	Frequently,	however,	this
approach	isn't	available	to	us	as	the	message	format
must	change.	Even	in	the	previous	example	there	is	a
possibility	of	changing	the	output	message.	Haversine	is
more	accurate	than	a	Pythagorean	approach	so	we
could	have	more	significant	digits	requiring	a	larger	data

type.	There	are	two	good	approaches	to	deal	with	this:

1.	 Continue	to	use	the	old	version	of	our	service	and	the	new	version.
We	can	then	slowly	move	the	client	services	over	to	the	new	service
as	time	permits.	There	are	problems	with	this	approach:	we	now	need
to	maintain	more	code.	Also,	if	the	reason	we	change	the	service	out
was	one	which	would	not	permit	us	to	continue	to	run	it	(a	security
problem,	termination	of	a	dependent	service,	and	so	on)	then	we	are
at	something	of	an	impasse.

2.	 Upgrade	messages	and	pass	them	on.	In	this	approach	we	take	the
old	message	format	and	upgrade	it	to	the	new	format.	This	is	done	by,
you	guessed	it,	another	service.	This	service's	responsibility	is	to	take
in	the	old	message	format	and	emit	the	new	message	format.	At	the
other	end	you	might	need	an	equivalent	service	to	downgrade
messages	back	to	the	expected	output	format	for	older	services.

Upgrader	services	should	have	a	limited	lifespan.	Ideally
we	would	want	to	make	updates	to	the	services	which
depend	on	deprecated	services	as	quickly	as	possible.
The	small	code	footprint	of	microservices,	coupled	with
the	ability	to	rapidly	deploy	services,	should	make	these
sorts	of	upgrade	much	easier	than	those	used	to	a
monolithic	approach	might	expect.	An	example	message
upgrader	service	can	be	seen	here:

Failure	patterns
We	have	already	touched	upon	some	of	the	ways	of
dealing	with	failures	in	microservices	in	this	chapter.
There	are,	however,	a	couple	of	more	interesting
approaches	we	should	consider.	The	first	of	these	is
service	degradation.

Service	degradation
This	pattern	could	also	be	called	graceful	degradation
and	is	related	to	progressive	enhancement.	Let	us	hark
back	to	the	example	of	replacing	the	Pythagorean
distance	function	with	the	haversine	equivalent.	If	the
haversine	service	is	down	for	some	reason,	the	less
demanding	function	could	be	used	in	its	place	without	a
huge	impact	on	users.	In	fact,	they	may	not	notice	it	at
all.	It	isn't	ideal	that	users	have	a	worse	version	of	the
service	but	it	is	certainly	more	desirable	than	simply
showing	the	user	an	error	message.	When	the	haversine
service	returns	to	life	then	we	can	stop	using	the	less
desirable	service.	We	could	have	multiple	levels	of
fallback	allowing	several	different	services	to	fail	while
we	continue	to	present	a	fully	functional	application	to
the	end	user.

Another	good	application	of	this	form	of	degradation	is	to
fall	back	to	more	expensive	services.	I	once	had	an
application	that	sent	SMS	messages.	It	was	quite

important	that	these	messages	actually	be	sent.	We
used	our	preferred	SMS	gateway	provider	the	majority	of
the	time	but,	if	our	preferred	service	was	unavailable,
something	we	monitored	closely,	then	we	would	fail	over
to	using	a	different	provider.

Message	storage
We've	already	drawn	a	bit	of	a	distinction	between
services	which	are	query-only	and	those	which	actually
perform	some	lasting	data	change.	When	one	of	these
updating	services	fails	there	is	still	a	need	to	run	the	data
change	code	at	some	point	in	the	future.	Storing	these
requests	in	a	message	queue	allows	them	to	be	run	later
without	risk	of	losing	any	of	the	ever-so	important
messages.	Typically,	when	a	message	causes	an
exception	it	is	returned	to	the	processing	queue	where	it
can	be	retried.

There	is	an	old	saying	that	insanity	is	doing	the	same
thing	over	again	and	expecting	a	different	outcome.
However,	there	are	many	transient	errors	which	can	be
solved	by	simply	performing	the	same	action	over	again.
Database	deadlocks	are	a	prime	example	of	this.	Your
transaction	may	be	killed	to	resolve	a	deadlock,	in	which
case	performing	it	again	is,	in	fact,	the	recommended
approach.	However,	one	cannot	retry	messages	ad
infinitum	so	it	is	best	to	choose	some	relatively	small
number	of	retry	attempts,	three	or	five.	Once	this	number
has	been	reached	then	the	message	can	be	sent	to	a
dead	letter	or	poison	message	queue.

Poison	messages,	or	dead	letters	as	some	call	them,	are
messages	which	have	actual	legitimate	reasons	for
failing.	It	is	important	to	keep	these	messages	around
not	only	for	debugging	purposes	but	because	the
messages	may	represent	a	customer	order	or	a	change
to	a	medical	record:	not	data	you	can	afford	to	lose.
Once	the	message	handler	has	been	corrected	these
messages	can	be	replayed	as	if	the	error	never
happened.	A	storage	queue	and	message	reprocessor
can	be	seen	illustrated	here:

Message	replay
Although	not	a	real	production	pattern,	a	side-effect	of
having	a	message-based	architecture	around	all	the
services	which	change	data	is	that	you	can	acquire	the

messages	for	later	replay	outside	of	production.	Being
able	to	replay	messages	is	very	handy	for	debugging
complex	interactions	between	numerous	services	as	the
messages	contain	almost	all	the	information	to	set	up	a
tracing	environment	identical	to	production.	Replay
capabilities	are	also	very	useful	for	environments	where
one	must	be	able	to	audit	any	data	changes	to	the
system.	There	are	other	methods	to	address	such	audit
requirements	but	a	very	solid	message	log	is	simply	a
delight	to	work	with.

Indempotence	of	message
handling
The	final	failure	pattern	we'll	discuss	is	idempotence	of
message	handling.	As	systems	grow	larger	it	is	almost
certain	that	a	microservices	architecture	will	span	many
computers.	This	is	even	more	certain	due	to	the	growing
importance	of	containers,	which	can,	ostensibly,	be
thought	of	as	computers.	Communicating	between
computers	in	a	distributed	system	is	unreliable;	thus,	a
message	may	end	up	being	delivered	more	than	once.
To	handle	such	an	eventuality	one	might	wish	to	make
messaging	handling	idempotent.

TIPTIP
For	more	about	the	unreliability	of	distributed	computing,	I	cannot	recommend	any	paper
more	worth	reading	than	Falacies	of	Distributed	Computing	Explained	by	Arnon	Rotem-
Gal-Oz	at	http://rgoarchitects.com/Files/fallacies.pdf.

Idempotence	means	that	a	message	can	be	processed

http://rgoarchitects.com/Files/fallacies.pdf

many	times	without	changing	the	outcome.	This	can	be
harder	to	achieve	than	one	might	realize,	especially	with
services	which	are	inherently	non-transactional	such	as
sending	e-mails.	In	these	cases,	one	may	need	to	write	a
record	that	an	e-mail	has	been	sent	to	a	database.	There
are	some	scenarios	in	which	the	e-mail	will	be	sent	more
than	once,	but	a	service	crashing	in	the	critical	section
between	the	e-mail	being	sent	and	the	record	of	it	being
written	is	unlikely.	The	decision	will	have	to	be	made:	is	it
better	to	send	an	e-mail	more	than	once	or	not	send	it	at
all?

Hints	and	tips
If	you	think	of	a	microservice	as	a	class	and	your
microservice	web	as	an	application,	then	it	rapidly
becomes	apparent	that	many	of	the	same	patterns	we've
seen	elsewhere	in	the	book	are	applicable	to
microservices.	Service	discovery	could	be	synonymous
with	dependency	injection.	Singleton,	decorator,	proxy;
all	of	them	could	be	applicable	to	the	microservice	world
just	as	they	are	within	the	boundaries	of	a	process.

One	thing	to	keep	in	mind	is	that	many	of	these	patterns
are	somewhat	chatty,	sending	significant	data	back	and
forth.	Within	a	process	there	is	no	overhead	to	passing
around	pointers	to	data.	The	same	is	not	true	of
microservices.	Communicating	over	the	network	is	likely
to	incur	a	performance	penalty.

Summary
Microservices	are	a	fascinating	idea	and	one	which	is
more	likely	to	be	realized	in	the	next	few	years.	It	is	too
early	to	tell	if	this	is	simply	another	false	turn	on	the	way
to	properly	solving	software	engineering	or	a	major	step
in	the	right	direction.	In	this	chapter	we've	explored	a	few
patterns	which	may	be	of	use	should	you	embark	upon	a
journey	into	the	microservices	world.	Because	we're	only
on	the	cusp	of	microservices	becoming	mainstream,	it	is
likely	that,	more	than	any	other	chapter	of	this	book,	the
patterns	here	will	quickly	become	dated	and	found	to	be
suboptimal.	Remaining	vigilant	with	regard	to
developments	and	being	aware	of	the	bigger	picture
when	you're	developing	is	highly	advisable.

Chapter	12.	Patterns	for
Testing
Throughout	this	book	we've	been	pushing	the	idea	that
JavaScript	is	no	longer	a	toy	language	with	which	we
can't	do	useful	things.	Real	world	software	is	being
written	in	JavaScript	right	now	and	the	percentage	of
applications	using	JavaScript	is	only	likely	to	grow	over
the	next	decade.

With	real	software	comes	concerns	about	correctness.
Manually	testing	software	is	painful	and,	weirdly,	error-
prone.	It	is	far	cheaper	and	easier	to	produce	unit	and
integration	tests	that	run	automatically	and	test	various
aspects	of	the	application.

There	are	countless	tools	available	for	testing
JavaScript,	from	test	runners	to	testing	frameworks;	the
ecosystem	is	a	rich	one.	We'll	try	to	maintain	a	more	or
less	tool-agnostic	approach	to	testing	in	this	chapter.
This	book	does	not	concern	itself	with	which	framework
is	the	best	or	friendliest.	There	are	overarching	patterns
that	are	common	to	testing	as	a	whole.	It	is	those	that
we'll	examine.	We	will	touch	on	some	specific	tools	but
only	as	a	shortcut	to	having	to	write	all	our	own	testing
tools.

In	this	chapter	we'll	look	at	the	following	topics:

Fake	objects

Monkey	patching

Interacting	with	the	user	interface

The	testing	pyramid
We	computer	programmers	are,	as	a	rule,	highly
analytical	people.	This	means	that	we're	always	striving
to	categorize	and	understand	concepts.	This	has	led	to
our	developing	some	very	interesting	global	techniques
that	can	be	applied	outside	computer	programming.	For
instance,	agile	development	has	applications	in	general
society	but	can	trace	its	roots	back	to	computing.	One
might	even	argue	that	the	idea	of	patterns	owes	much	of
its	popularity	to	it	being	used	by	computer	programmers
in	other	walks	of	life.

This	desire	to	categorize	has	led	to	the	concept	of
testing	code	being	divided	up	into	a	number	of	different
types	of	tests.	I've	seen	as	many	as	eight	different
categories	of	tests	from	unit	tests,	right	the	way	up	to
workflow	tests	and	GUI	tests.	This	is,	perhaps,	an
overkill.	It	is	much	more	common	to	think	about	having
three	different	categories	of	test:	unit,	integration,	and
user	interface:

Unit	tests	form	the	foundation	of	the	pyramid.	They	are
the	most	numerous,	the	easiest	to	write,	and	the	most
granular	in	the	errors	they	give.	An	error	in	a	unit	test	will
allow	you	to	find	the	individual	method	that	has	an	error
in	it.	As	we	move	up	the	pyramid,	the	number	of	tests
falls	along	with	the	granularity	while	the	complexity	of
each	test	increases.	At	a	higher	level,	when	a	test	fails
we	might	only	be	able	to	say:	"There	is	an	issue	with
adding	an	order	to	the	system".

Testing	in	the	small	with
unit	tests
To	many,	unit	testing	is	a	foreign	concept.	This	is
understandable	as	it	is	a	topic	which	is	poorly	taught	in
many	schools.	I	know	that	I've	done	six	years	of	higher
education	in	computing	science	without	it	being
mentioned.	It	is	unfortunate	because	delivering	a	quality
product	is	a	pretty	important	part	of	any	project.

For	those	who	know	about	unit	testing,	there	is	a	big
barrier	to	adoption.	Managers,	and	even	developers,
frequently	see	unit	testing,	and	automated	testing	as	a
whole,	as	a	waste	of	time.	After	all	you	cannot	ship	a	unit
test	to	your	customer	nor	do	most	customers	care
whether	their	product	has	been	properly	unit	tested.

Unit	testing	is	notoriously	difficult	to	define.	It	is	close
enough	to	integration	testing	that	people	slip	back	and
forth	between	the	two	easily.	In	the	seminal	book;	The
Art	of	Unit	Testing,	Roy	Osherove,	the	author	defines	a
unit	test	as:

A	unit	test	is	an	automated	piece	of	code	that	invokes	a
unit	of	work	in	the	system	and	then	checks	a	single
assumption	about	the	behavior	of	that	unit	of	work.

The	exact	size	of	a	unit	of	work	is	up	for	some	debate.

Some	people	restrict	it	to	a	single	function	or	a	single
class,	while	others	allow	a	unit	of	work	to	span	multiple
classes.	I	tend	to	think	that	a	unit	of	work	that	spans
multiple	classes	can	actually	be	broken	into	smaller,
testable	units.

The	key	to	unit	testing	is	that	it	tests	a	small	piece	of
functionality	and	it	quickly	tests	the	functionality	in	a
repeatable,	automated	fashion.	Unit	tests	written	by	one
person	should	be	easily	runnable	by	any	other	member
of	the	team.

For	unit	testing	we	want	to	test	small	pieces	of
functionality	because	we	believe	that	if	all	the
components	of	a	system	work	correctly	then	the	system
as	a	whole	will	work.	This	is	not	the	whole	truth.	The
communication	between	modules	is	just	as	likely	to	fail
as	a	function	within	the	unit.	This	is	why	we	want	to	write
tests	on	several	levels.	Unit	tests	check	that	the	code
we're	writing	right	now	is	correct.	Integration	testing	tests
entire	workflows	through	the	application	and	will	uncover
problems	in	the	interaction	of	units.

The	test-driven	development	approach	suggests	writing
tests	at	the	same	time	as	we	write	code.	While	this	gives
us	great	confidence	that	the	code	we're	writing	is	correct,
the	real	advantage	is	that	it	helps	drive	good
architecture.	When	code	has	too	many
interdependencies	it	is	far	harder	to	test	than	well-
separated	modular	code.	A	lot	of	the	code	that
developers	write	goes	unread	by	anybody	ever	again.

Unit	tests	provide	a	useful	way	of	keeping	developers	on
the	right	path	even	in	cases	where	they	know	that
nobody	will	ever	see	their	code.	There	is	no	better	way
to	produce	a	quality	product	than	to	tell	people	they	are
going	to	be	checked	on	it,	even	if	the	checker	happens
to	be	an	automated	test.

Tests	can	be	run	both	while	developing	new	code	and	in
an	automatic	fashion	on	the	build	machines.	If	every	time
a	developer	checks	in	a	change,	the	entire	project	is	built
and	tested,	then	some	reassurance	can	be	provided	that
the	newly	checked-in	code	is	correct.	From	time	to	time
the	build	will	break	and	that	will	be	a	flag	that	something
that	was	just	added	was	in	error.	Often	the	code	that	is
broken	may	not	even	be	proximal	to	the	code	changed.
An	altered	return	value	may	percolate	through	the
system	and	manifest	itself	somewhere	wholly
unexpected.	Nobody	can	keep	anything	more	than	the
most	trivial	system	in	their	mind	at	any	one	time.	Testing
acts	as	a	sort	of	second	memory,	checking	and
rechecking	assumptions	made	previously.

Failing	the	build	as	soon	as	an	error	occurs	shortens	the
time	it	takes	between	an	error	being	made	in	the	code
and	it	being	found	and	fixed.	Ideally	the	problem	will	still
be	fresh	in	the	developer's	mind	so	the	fix	can	easily	be
found.	If	the	errors	were	not	discovered	until	months
down	the	road,	the	developer	will	certainly	have
forgotten	what	s/he	was	working	on	at	the	time.	The
developer	may	not	even	be	around	to	help	solve	the
problem,	throwing	somebody	who	has	never	seen	the

code	in	to	fix	it.

Arrange-Act-Assert
When	building	tests	for	any	piece	of	code,	a	very
common	approach	to	follow	is	that	of	Arrange-Act-
Assert.	This	describes	the	different	steps	that	take	place
inside	a	single	unit	test.

The	first	thing	we	do	is	set	up	a	test	scenario	(arrange).
This	step	can	consist	of	a	number	of	actions	and	may
involve	putting	in	place	fake	objects	to	simulate	real
objects	as	well	as	creating	new	instances	of	the	subject
under	test.	If	you	find	that	your	test	setup	code	is	long	or
involved,	it	is	likely	a	smell	and	you	should	consider
refactoring	your	code.	As	mentioned	in	the	previous
section,	testing	is	helpful	for	driving	not	just	correctness
but	also	architecture.	Difficult-to-write	tests	are	indicative
that	the	architecture	is	not	sufficiently	modular.

Once	the	test	is	set	up	then	the	next	step	is	to	actually
execute	the	function	we	would	like	to	test	(act).	The	act
step	is	usually	very	short,	in	many	cases	no	more	than	a
single	line	of	code.

The	final	part	is	to	check	to	make	sure	that	the	result	of
the	function	or	the	state	of	the	world	is	as	you	would
expect	(assert).

A	very	simple	example	of	this	might	be	a	castle	builder:

class	CastleBuilder	{

class	CastleBuilder	{

		buildCastle(size)	{

				var	castle	=	new	Castle();

				castle.size	=	size;

				return	castle;

		}

}

This	class	simply	builds	a	new	castle	of	a	specific	size.
We	want	to	make	sure	that	no	shenanigans	are	going	on
and	that	when	we	build	a	castle	of	size	10	we	get	a
castle	of	size	10:

function

When_building_a_castle_size_should_be_corr

ectly_set()	{

		var	castleBuilder	=	new	CastleBuilder();

		var	expectedSize	=	10;

		var	builtCastle	=

castleBuilder.buildCastle(10);

		assertEqual(expectedSize,

builtCastle.size);

}

Assert
You	may	have	noticed	that	in	the	last	example	we	made
use	of	a	function	called	assertEquals.	An	assert	is	a
test	that,	when	it	fails,	throws	an	exception.	There	is
currently	no	built-in	assert	functionality	in	JavaScript,
although	there	is	a	proposal	in	the	works	to	add	it.

Fortunately,	building	an	assert	is	pretty	simple:

function	assertEqual(expected,	actual){

		if(expected	!==	actual)

		throw	"Got	"	+	actual	+	"	but	expected	"

		throw	"Got	"	+	actual	+	"	but	expected	"

+	expected;

}

It	is	helpful	to	mention,	in	the	error,	the	actual	value	as
well	as	the	expected	value.

There	is	a	great	number	of	assertion	libraries	in
existence.	Node.js	ships	with	one,	creatively	called
assert.js.	If	you	end	up	using	a	testing	framework	for
JavaScript	it	is	likely	that	it	will	also	contain	an	assertion
library.

Fake	objects
If	we	think	of	the	interdependencies	between	objects	in
an	application	as	a	graph	it	becomes	quickly	apparent
that	there	are	a	number	of	nodes	that	have
dependencies	on,	not	just	one,	but	many	other	objects.
Attempting	to	place	an	object	with	a	lot	of	dependencies
under	test	is	challenging.	Each	of	the	dependent	objects
must	be	constructed	and	included	in	the	test.	When
these	dependencies	interact	with	external	resources
such	as	the	network	or	file	system,	the	problem	becomes
intractable.	Pretty	soon	we're	testing	the	entire	system	at
a	time.	This	is	a	legitimate	testing	strategy,	known	as
integration	testing,	but	we're	really	just	interested	in
ensuring	that	the	functionality	of	a	single	class	is	correct.

Integration	testing	tends	to	be	slower	to	execute	than
unit	tests.

The	subject	of	a	test	can	have	a	large	dependency	graph
that	makes	testing	it	difficult.	You	can	see	an	example
here:

We	need	to	find	a	way	to	isolate	the	class	under	test	so
that	we	don't	have	to	recreate	all	the	dependencies,
including	the	network.	We	can	think	of	this	approach	as
adding	bulkheads	to	our	code.	We	will	insert	bulkheads
to	stop	tests	from	flowing	over	from	one	class	to	many.
These	bulkheads	are	similar	to	how	oil	tankers	maintain
separation	to	limit	the	impact	of	spills	and	maintain
weight	distribution	as	can	be	seen	here:

*Image	courtesy	of	http://www.reactivemanifesto.org/.

To	this	end	we	can	use	fake	objects	that	have	a	limited
set	of	functionalities	in	place	of	the	real	objects.	We'll
look	at	three	different	methods	of	creating	fake	objects.

The	first	is	the,	rather	niftily	named,	test	spy.

http://www.reactivemanifesto.org/

Test	spies
A	spy	is	an	approach	that	wraps	all	the	methods	of	an
object	and	records	the	inputs	and	outputs	from	that
method	as	well	as	the	number	of	calls.	By	wrapping	the
calls,	it	is	possible	to	examine	exactly	what	was	passed
in	and	what	came	out	of	the	function.	Test	spies	can	be
used	when	the	exact	inputs	into	a	function	are	not	known
beforehand.

In	other	languages,	building	test	spies	requires	reflection
and	can	be	quite	complicated.	We	can	actually	get	away
with	making	a	basic	test	spy	in	no	more	than	a	couple	of
lines	of	code.	Let's	experiment.

To	start	we'll	need	a	class	to	intercept:

var	SpyUpon	=	(function	()	{

		function	SpyUpon()	{

		}

		SpyUpon.prototype.write	=	function

(toWrite)	{

				console.log(toWrite);

		};

		return	SpyUpon;

})();

Now	we	would	like	to	spy	on	this	function.	Because
functions	are	first	class	objects	in	JavaScript	we	can
simply	rejigger	the	SpyUpon	object:

var	spyUpon	=	new	SpyUpon();

var	spyUpon	=	new	SpyUpon();

spyUpon._write	=	spyUpon.write;

spyUpon.write	=	function	(arg1)	{

		console.log("intercepted");

		this.called	=	true;

		this.args	=	arguments;

		this.result	=	this._write(arg1,	arg2,

arg3,	arg4,	arg5);

		return	this.result;

};

Here	we	take	the	existing	function	and	give	it	a	new
name.	Then	we	create	a	new	function	that	calls	the
renamed	function	and	also	records	some	things.	After
the	function	has	been	called	we	can	examine	the	various
properties:

console.log(spyUpon.write("hello	world"));

console.log(spyUpon.called);

console.log(spyUpon.args);

console.log(spyUpon.result);

Running	this	code	in	node	gets	us	the	following:

hello	world

7

true

{	'0':	'hello	world'	}

7

Using	this	technique,	it	is	possible	to	get	all	sorts	of
insight	into	how	a	function	is	used.	There	are	a	number
of	libraries	that	support	creating	test	spies	in	a	more
robust	way	than	our	simple	version	here.	Some	provide
tools	for	recording	exceptions,	the	number	of	times
called,	and	the	arguments	for	each	call.

Stubs
A	stub	is	another	example	of	a	fake	object.	We	can	use
stubs	when	we	have	some	dependencies	in	the	subject
under	test	that	need	to	be	satisfied	with	an	object	that
returns	a	value.	They	can	also	be	used	to	provide	a
bulkhead	to	stop	computationally	expensive	or	I/O	reliant
functions	from	being	run.

Stubs	can	be	implemented	in	much	the	same	way	that
we	implemented	spies.	We	just	need	to	intercept	the	call
to	the	method	and	replace	it	with	a	version	that	we
wrote.	However,	with	stubs	we	actually	don't	call	the
replaced	function.	It	can	be	useful	to	keep	the	replaced
function	around	just	in	case	we	need	to	restore	the
functionality	of	the	stubbed	out	class.

Let's	start	with	an	object	that	depends	on	another	object
for	part	of	its	functionality:

class	Knight	{

		constructor(credentialFactory)	{

				this.credentialFactory	=

credentialFactory;

		}

		presentCredentials(toRoyalty)	{

				console.log("Presenting	credentials	to

"	+	toRoyalty);

				

toRoyalty.send(this.credentialFactory.Crea

te());

				return	{};

		}

		}

}

This	knight	object	takes	a	credentialFactory
argument	as	part	of	its	constructor.	By	passing	in	the
object	we	exteriorize	the	dependency	and	remove	the
responsibility	for	creating	credentialFactory	from
the	knight.	We've	seen	this	sort	of	inversion	of	control
previously	and	we'll	look	at	it	in	more	detail	in	the	next
chapter.	This	makes	our	code	more	modular	and	testing
far	easier.

Now	when	we	want	to	test	the	knight	without	worrying
about	how	a	credential	factory	works,	we	can	use	a	fake
object,	in	this	case	a	stub:

class	StubCredentialFactory	{

		constructor()	{

				this.callCounter	=	0;

		}

		Create()	{

				//manually	create	a	credential

		};

}

This	stub	is	a	very	simple	one	that	simply	returns	a
standard	new	credential.	Stubs	can	be	made	quite
complicated	if	there	need	to	be	multiple	calls	to	it.	For
instance,	we	could	rewrite	our	simple	stub	as	the
following:

class	StubCredentialFactory	{

		constructor()	{

				this.callCounter	=	0;

		}

		}

		Create()	{

				if	(this.callCounter	==	0)

						return	new	SimpleCredential();

				if	(this.callCounter	==	1)

						return	new	CredentialWithSeal();

				if	(this.callCounter	==	2)

						return	null;

				this.callCounter++;

		}

}

This	version	of	the	stub	returns	a	different	sort	of
credential	every	time	it	is	called.	On	the	third	call	it
returns	null.	As	we	set	up	the	class	using	an	inversion	of
control,	writing	a	test	is	as	simple	as	the	following:

var	knight	=	new	Knight(new

StubCredentialFactory());

knight.presentCredentials("Queen	Cersei");

We	can	now	execute	the	test:

var	knight	=	new	Knight(new

StubCredentialFactory());

var	credentials	=

knight.presentCredentials("Lord	Snow");

assert(credentials.type	===

"SimpleCredentials");

credentials	=

knight.presentCredentials("Queen	Cersei");

assert(credentials.type	===

"CredentialWithSeal");

credentials	=

knight.presentCredentials("Lord	Stark");

assert(credentials	==	null);

Because	there	is	no	hard	typing	system	in	JavaScript,

we	can	build	stubs	without	worrying	about	implementing
interfaces.	There	is	also	no	need	to	stub	an	entire	object
but	only	the	function	in	which	we're	interested.

Mock
The	final	type	of	fake	object	is	a	mock.	The	difference
between	a	mock	and	a	stub	is	where	the	verification	is
done.	With	a	stub,	our	test	must	check	if	the	state	is
correct	after	the	act.	With	a	mock	object,	the
responsibility	for	testing	the	asserts	falls	to	the	mock
itself.	Mocks	are	another	place	where	it	is	useful	to
leverage	a	mocking	library.	We	can,	however,	build	the
same	sort	of	thing,	simply,	ourselves:

class	MockCredentialFactory	{

		constructor()	{

				this.timesCalled	=	0;

		}

		Create()	{

				this.timesCalled++;

		}

		Verify()	{

				assert(this.timesCalled	==	3);

		}

}

This	mockCredentialsFactory	class	takes	on	the
responsibility	of	verifying	the	correct	functions	were	called.
This	is	a	very	simple	sort	of	approach	to	mocking	and	can	be
used	as	such:

var	credentialFactory	=	new

MockCredentialFactory();

var	knight	=	new

Knight(credentialFactory);

var	credentials	=

This	is	a	static	mock	that	keeps	the	same	behavior	every	time	it	is	used.	It	is
possible	to	build	mocks	that	act	as	recording	devices.	You	can	instruct	the	mock
object	to	expect	certain	behaviors	and	then	have	it	automatically	play	them	back.

The	syntax	for	this	is	taken	from	the	documentation	for	the	mocking	library;
Sinon.	It	looks	like	the	following:

var	mock	=	sinon.mock(myAPI);

mock.expects("method").once().throws();

var	credentials	=

knight.presentCredentials("Lord	Snow");

credentials	=

knight.presentCredentials("Queen	Cersei");

credentials	=

knight.presentCredentials("Lord	Stark");

credentialFactory.Verify();

Monkey	patching
We've	seen	a	number	of	methods	for	creating	fake
objects	in	JavaScript.	When	creating	the	spy,	we	made
use	of	a	method	called	monkey	patching.	Monkey
patching	allows	you	to	dynamically	change	the	behavior
of	an	object	by	replacing	its	functions.	We	can	use	this
sort	of	approach	without	having	to	revert	to	full	fake
objects.	Any	existing	object	can	have	its	behavior
changed	in	isolation	using	this	approach.	This	includes
built-in	objects	such	as	strings	and	arrays.

Interacting	with	the	user
interface
A	great	deal	of	the	JavaScript	in	use	today	is	used	on
the	client	and	is	used	to	interact	with	elements	that	are
visible	on	the	screen.	Interacting	with	the	page	flows
through	a	model	of	the	page	known	as	Document
Object	Model	(DOM).

Every	element	on	the	page	is	represented	in	the	DOM.
Whenever	a	change	is	made	to	the	page,	the	DOM	is
updated.	If	we	add	a	paragraph	to	the	page,	then	a
paragraph	is	added	to	the	DOM.	Thus	if	our	JavaScript
code	adds	a	paragraph,	checking	that	it	does	so	is
simply	a	function	of	checking	the	DOM.

Unfortunately,	this	requires	that	a	DOM	actually	exists
and	that	it	is	formed	in	the	same	way	that	it	is	on	the
actual	page.	There	are	a	number	of	approaches	to
testing	against	a	page.

Browser	testing
The	most	naïve	approach	is	to	simply	automate	the
browser.	There	are	a	few	projects	out	there	that	can	help
with	this	task.	One	can	either	automate	a	fully-fledged
browser	such	as	Firefox,	Internet	Explorer,	or	Chrome,
or	one	can	pick	a	browser	that	is	headless.	The	fully-

fledged	browser	approach	requires	that	a	browser	be
installed	on	the	test	machine	and	that	the	machine	be
running	in	a	mode	that	has	a	desktop	available.

Many	Unix-based	build	servers	will	not	have	been	set	up
to	show	a	desktop	as	it	isn't	needed	for	most	build	tasks.
Even	if	your	build	machine	is	a	Windows	one,	the	build
account	frequently	runs	in	a	mode	that	has	no	ability	to
open	a	window.	Tests	using	full	browsers	also	have	a
tendency	to	break,	to	my	mind.	Subtle	timing	issues	crop
up	and	tests	are	easily	interrupted	by	unexpected
changes	to	the	browser.	It	is	a	frequent	occurrence	that
manual	intervention	will	be	required	to	unstick	a	browser
that	has	ended	up	in	an	incorrect	state.

Fortunately,	efforts	have	been	made	to	decouple	the
graphical	portions	of	a	web	browser	from	the	DOM	and
JavaScript.	For	Chrome	this	initiative	has	resulted	in
PhantomJS	and	for	Firefox	SlimerJS.

Typically,	the	sorts	of	test	that	require	a	full	browser
require	some	navigation	of	the	browser	across	several
pages.	This	is	provided	for	in	the	headless	browsers
through	an	API.	I	tend	to	think	of	tests	at	this	scale	as
integration	tests	rather	than	unit	tests.

A	typical	test	using	PhantomJS	and	the	CasperJS	library
that	sits	on	top	of	the	browser	might	look	like	the
following:

var	casper	=	require('casper').create();

casper.start('http://google.com',

casper.start('http://google.com',

function()	{

		assert.false($("#gbqfq").attr("aria-

haspopup"));

		$("#gbqfq").val("redis");

		assert.true($("#gbqfq").attr("aria-

haspopup"));

});

This	would	test	that	entering	a	value	into	the	search	box
on	Google	changes	the	aria-haspopup	property	from
false	to	true.

Testing	things	this	way	puts	a	great	deal	of	reliance	on
the	DOM	not	changing	too	radically.	Depending	on	the
selectors	used	to	find	elements	on	the	page,	a	simple
change	to	the	style	of	the	page	could	break	every	test.	I
like	to	keep	tests	of	this	sort	away	from	the	look	of	that
page	by	never	using	CSS	properties	to	select	elements.
Instead	make	use	of	IDs	or,	better	yet,	data-*	attributes.
We	don't	necessarily	have	the	luxury	of	that	when	it
comes	to	testing	existing	pages	but	certainly	for	new
pages	it	is	a	good	plan.

Faking	the	DOM
Much	of	the	time,	we	don't	need	a	full	page	DOM	to
perform	our	tests.	The	page	elements	we	need	to	test
are	part	of	a	section	on	the	page	instead	of	the	entire
page.	A	number	of	initiatives	exist	that	allow	for	the
creation	of	a	chunk	of	the	document	in	pure	JavaScript.
jsdom	for	instance	is	a	method	for	injecting	a	string	of
HTML	and	receiving	back	a	fake	window.

In	this	example,	modified	slightly	from	their	README,
they	create	some	HTML	elements,	load	JavaScript,	and
test	that	it	returns	correctly:

var	jsdom	=	require("jsdom");

jsdom.env('<p><a	class="the-link"

ref="https://github.com/tmpvar/jsdom">jsdo

m!</p>',

["http://code.jquery.com/jquery.js"],

		function	(errors,	window)	{

				assert.equal(window.$("a.the-

link").text(),	"jsdom!");

		}

);

If	your	JavaScript	is	focused	on	a	small	section	of	the
page,	perhaps	you're	building	custom	controls	or	web
components,	then	this	is	an	ideal	approach.

Wrapping	the	manipulation
The	final	approach	to	dealing	with	graphical	JavaScript	is
to	stop	interacting	directly	with	elements	on	the	page.
This	is	the	approach	that	many	of	the	more	popular
JavaScript	frameworks	of	today	use.	One	simply	updates
a	JavaScript	model	and	this	model	then	updates	the
page	through	the	use	of	some	sort	of	MV*	pattern.	We
looked	at	this	approach	in	some	detail	some	chapters
ago.

Testing	in	this	case	becomes	quite	easy.	Our
complicated	JavaScript	can	simply	be	tested	by	building
a	model	state	prior	to	running	the	code	and	then	testing

to	see	if	the	model	state	after	running	the	code	is	as	we
expect.

As	an	example	we	could	have	a	model	that	looks	like	the
following:

class	PageModel{

		titleVisible:	boolean;

		users:	Array<User>;

}

The	test	code	for	it	might	look	as	simple	as	the	following:

var	model	=	new	PageModel();

model.titleVisible	=	false;

var	controller	=	new

UserListPageController(model);

controller.AddUser(new	User());

assert.true(model.titleVisible);

As	everything	on	the	page	is	manipulated,	through	the
bindings	to	the	model,	we	can	be	confident	that	changes
in	the	model	are	correctly	updating	the	page.

Some	would	argue	that	we've	simply	shifted	the	problem.
Now	the	only	place	for	errors	is	if	the	binding	between
the	HTML	and	the	model	is	incorrect.	So	we	also	need	to
test	if	we	have	bindings	correctly	applied	to	the	HTML.
This	falls	to	higher-level	testing	that	can	be	done	more
simply.	We	can	cover	far	more	with	a	higher-level	test
than	with	a	lower-level	one,	although	at	the	cost	of
knowing	exactly	where	the	error	occurred.

You're	never	going	to	be	able	to	test	everything	about	an
application	but	the	smaller	you	can	make	the	untested
surface,	the	better.

Tips	and	tricks
I	have	seen	tests	where	people	split	up	the	Arrange-Act-
Assert	by	putting	in	place	comments:

function	testMapping(){

		//Arrange

		…

		//Act

		…

		//Assert

		…

}

You're	going	to	wear	your	fingers	to	the	bone	typing
those	comments	for	every	single	test.	Instead	I	just	split
them	up	with	a	blank	line.	The	separation	is	clear	and
anybody	who	knows	Arrange-Act-Assert	will	instantly
recognize	what	it	is	that	you're	doing.	You'll	have	seen
the	example	code	in	this	chapter	split	up	in	this	fashion.

There	are	countless	JavaScript	testing	libraries	available
to	make	your	life	easier.	Choosing	one	may	depend	on
your	preferred	style.	If	you	like	a	gherkin-style	syntax
then	cuumber.js	might	be	for	you.	Otherwise	try	mocha,
either	on	its	own,	or	with	the	chai	BDD	style	assertion
library	,	which	is	is	fairly	nice.	There	are	also	testing
frameworks	such	as	Protractor	which	are	specific	to
Angular	apps	(although	you	can	use	it	to	test	other
frameworks	with	a	bit	of	work).	I'd	suggest	taking	a	day
and	playing	with	a	few	to	find	your	sweet	spot.

When	writing	tests,	I	tend	to	name	them	in	a	way	that
makes	it	obvious	that	they	are	tests	and	not	production
code.	For	most	JavaScript	I	follow	camel	case	naming
conventions	such	as	testMapping.	However,	for	test
methods	I	follow	an	underscored	naming	pattern
When_building_a_castle_size_should_be_corr

ectly_set.	In	this	way	the	test	reads	more	like	a
specification.	Others	have	different	approaches	to
naming	and	there	is	no	"right"	answer,	so	feel	free	to
experiment.

Summary
Producing	a	quality	product	is	always	going	to	require
extensive	and	repeated	testing;	this	is	exactly	the	sort	of
thing	computers	are	really	good	at.	Automate	as	much
as	possible.

Testing	JavaScript	code	is	an	up-and-coming	thing.	The
tooling	around,	mocking	out	objects,	and	even	the	tools
for	running	tests	are	undergoing	constant	changes.
Being	able	to	use	tools	such	as	Node.js	to	run	tests
quickly	and	without	having	to	boot	up	an	entire	browser
is	stunningly	helpful.	This	is	an	area	that	is	only	going	to
improve	over	the	next	few	years.	I	am	enthused	to	see
what	changes	come	from	it.

In	the	next	chapter	we'll	take	a	look	at	some	advanced
patterns	in	JavaScript	that	you	might	not	want	to	use
every	day	but	are	very	handy.

Chapter	13.	Advanced
Patterns
I	hesitated	when	naming	this	chapter,	Advanced
Patterns.	This	isn't	really	about	patterns	that	are	more
complicated	or	sophisticated	than	other	patterns.	It	is
about	patterns	that	you	wouldn't	use	very	frequently.
Frankly,	coming	from	a	static	programming	language
background,	some	of	them	seem	crazy.	Nonetheless
they	are	completely	valid	patterns	and	are	in	use	within
big	name	projects	everywhere.

In	this	chapter	we'll	be	looking	at	the	following	topics:

Dependency	injection

Live	post	processing

Aspect	oriented	programming

Macros

Dependency	injection
One	of	the	topics	we've	been	talking	about	continuously
during	this	book	is	the	importance	of	making	your	code
modular.	Small	classes	are	easier	to	test,	provide	better
reuse,	and	promote	better	collaboration	for	teams.
Modular,	loosely	coupled	code	is	easier	to	maintain,	as
changes	can	be	limited.	You	may	remember	the
example	of	a	ripstop	we	used	earlier.

With	modular	code	of	this	sort	we	see	a	lot	of	inversion
of	control.	Classes	have	functionality	inserted	into	them
through	passing	additional	classes	by	their	creators.	This
moves	the	responsibility	for	how	some	portions	of	the
child	class	work	to	the	parent.	For	small	projects,	this	is
a	pretty	reasonable	approach.	As	projects	get	more
complicated	and	dependency	graphs	get	more
complicated,	manually	injecting	the	functionality
becomes	more	and	more	difficult.	We	are	still	creating
objects	all	over	the	code	base,	passing	them	into	created
objects	so	the	coupling	problem	still	exists,	we've	just
shifted	it	up	a	level.

If	we	think	of	object	creation	as	a	service,	then	a	solution
to	this	problem	presents	itself.	We	can	defer	the	object
creation	to	a	central	location.	This	allows	us	to	change
the	implementations	for	a	given	interface	in	one	place,
simply	and	easily.	It	also	allows	us	to	control	object
lifetime	so	that	we	can	reuse	objects	or	recreate	them
every	time	they	are	used.	If	we	need	to	replace	one
implementation	of	an	interface	with	another
implementation,	then	we	can	be	confident	that	we	need
to	only	change	it	in	one	location.	Because	the	new
implementation	still	fulfils	the	contract,	that	is	the
interface,	then	all	the	classes	that	make	use	of	the
interface	can	remain	ignorant	of	the	change.

What's	more	is	that	by	centralizing	object	creation	it
becomes	easier	to	construct	objects	that	depend	on
other	objects.	If	we	look	at	a	dependency	graph	for	a
module	such	as	the	UserManager	variable,	it	is	clear

that	it	has	a	number	of	dependencies.	These
dependencies	may	have	additional	dependencies	and	so
forth.	To	build	a	UserManager	variable,	we	not	only
need	to	pass	in	the	database,	but	also
ConnectionStringProvider,
CredentialProvider,	and
ConfigFileConnectionStringReader.	Goodness,
that	is	going	to	be	a	lot	of	work	to	create	instances	of	all
of	these.	If	we,	instead,	register	implementations	of	each
of	these	interfaces	in	a	registry,	then	we	need	only	go	to
the	registry	to	look	up	how	to	make	them.	This	can	be
automated	and	the	dependencies	automatically	get
injected	to	all	dependencies	without	a	need	to	explicitly
create	any	of	them.	This	method	of	solving
dependencies	is	commonly	referred	to	as	'solving	the
transitive	closure'.

A	dependency	injection	framework	handles	the
responsibility	of	constructing	objects.	On	application	set
up	the	dependency	injection	framework	is	primed	with	a
combination	of	names	and	objects.	From	this,	it	creates
a	registry	or	a	container.	When	constructing	an	object
through	the	container,	the	container	looks	at	the
signature	of	the	constructor	and	attempts	to	satisfy	the
arguments	on	the	constructor.	Here	is	an	illustration	of	a
dependency	graph:

In	more	statically	typed	languages	such	as	C#	or	Java,
dependency	injection	frameworks	are	commonplace.
They	usually	work	by	using	reflection,	a	method	of	using
code	to	extract	structural	information	from	other	code.
When	building	the	container,	one	specifies	an	interface
and	one	or	more	concrete	classes	that	can	satisfy	the
interface.	Of	course	using	interfaces	and	reflection	to

perform	dependency	injection	requires	that	the	language
support	both	interfaces	and	introspection.

There	is	no	way	to	do	this	in	JavaScript.	JavaScript	has
neither	direct	introspection	nor	a	traditional	object
inheritance	model.	A	common	approach	is	to	use
variable	names	to	solve	the	dependency	problem.
Consider	a	class	that	has	a	constructor	like	so:

var	UserManager	=	(function	()	{

		function	UserManager(database,

userEmailer)	{

				this.database	=	database;

				this.userEmailer	=	userEmailer;

		}

		return	UserManager;

})();

The	constructor	takes	two	arguments	that	are	very
specifically	named.	When	we	construct	this	class
through	the	dependency	injection,	these	two	arguments
are	satisfied	by	looking	through	the	names	registered
with	the	container	and	passing	them	into	the	constructor.
However,	without	introspection	how	can	we	extract	the
names	of	the	parameters	so	we	know	what	to	pass	into
the	constructor?

The	solution	is	actually	amazingly	simple.	The	original
text	of	any	function	in	JavaScript	is	available	by	simply
calling	toString	on	it.	So,	for	the	constructor	given	in
the	preceding	code,	we	can	do	just	do	this:

UserManager.toString()

Now	we	can	parse	the	string	returned	to	extract	the
names	of	the	parameters.	Care	must	be	taken	to	parse
the	text	correctly,	but	it	is	possible.	The	popular
JavaScript	framework,	Angular,	actually	uses	this
method	to	do	its	dependency	injection.	The	result
remains	relatively	preformat.	The	parsing	really	only
needs	to	be	done	once	and	the	results	cached,	so	no
additional	penalty	is	incurred.

I	won't	go	through	how	to	actually	implement	the
dependency	injection,	as	it	is	rather	tedious.	When
parsing	the	function,	you	can	either	parse	it	using	a
string-matching	algorithm	or	build	a	lexer	and	parser	for
the	JavaScript	grammar.	The	first	solution	seems	easier
but	it	is	likely	a	better	decision	to	try	to	build	up	a	simple
syntax	tree	for	the	code	into	which	you're	injecting.
Fortunately,	the	entire	method	body	can	be	treated	as	a
single	token,	so	it	is	vastly	easier	than	building	a	fully-
fledged	parser.

If	you're	willing	to	impose	a	different	syntax	on	the	user
of	your	dependency	injection	framework	then	you	can
even	go	so	far	as	to	create	your	own	syntax.	The
Angular	2.0	dependency	injection	framework,	di.js,
supports	a	custom	syntax	for	denoting	both	places
where	objects	should	be	injected	and	for	denoting	which
objects	satisfy	some	requirement.

Using	it	as	a	class	into	which	some	code	needs	to	be
injected,	looks	like	this	code,	taken	from	the	di.js
examples	page:

@Inject(CoffeeMaker,	Skillet,	Stove,

Fridge,	Dishwasher)

export	class	Kitchen	{

		constructor(coffeeMaker,	skillet,	stove,

fridge,	dishwasher)	{

				this.coffeeMaker	=	coffeeMaker;

				this.skillet	=	skillet;

				this.stove	=	stove;

				this.fridge	=	fridge;

				this.dishwasher	=	dishwasher;

		}

}

The	CoffeeMaker	instance	might	look	like	the	following
code:

@Provide(CoffeeMaker)

@Inject(Filter,	Container)

export	class	BodumCoffeeMaker{

		constructor(filter,	container){

		…

		}

}

You	might	have	also	noticed	that	this	example	makes
use	of	the	class	keyword.	This	is	because	the	project	is
very	forward	looking	and	requires	the	use	of
traceur.js	to	provide	for	ES6	class	support.	We'll
learn	about	traceur.js	file	in	the	next	chapter.

Live	post	processing
It	should	be	apparent	now	that	running	toString	over	a
function	in	JavaScript	is	a	valid	way	to	perform	tasks.	It
seems	odd	but,	really,	writing	code	that	emits	other	code
is	as	old	as	Lisp	or	possibly	older.	When	I	first	came
across	how	dependency	injection	works	in	AngularJS,	I
was	both	disgusted	at	the	hack	and	impressed	by	the
ingenuity	of	the	solution.

If	it	is	possible	to	do	dependency	injection	by	interpreting
code	on	the	fly,	then	what	more	could	we	do	with	it?	The
answer	is:	quite	a	lot.	The	first	thing	that	comes	to	mind
is	that	you	could	write	domain	specific	languages.

We	talked	about	DSLs	in	Chapter	5,	Behavioral	Patterns,
and	even	created	a	very	simple	one.	With	the	ability	to
load	and	rewrite	JavaScript,	we	can	take	advantage	of	a
syntax	that	is	close	to	JavaScript	but	not	wholly
compatible.	When	interpreting	the	DSL,	our	interpreter
would	write	out	additional	tokens	needed	to	convert	the
code	to	actual	JavaScript.

One	of	the	nice	features	of	TypeScript	that	I've	always
liked	is	that	parameters	to	the	constructors	that	are
marked	as	public	are	automatically	transformed	into
properties	on	the	object.	For	instance,	the	TypeScript
code	that	follows:

class	Axe{

class	Axe{

		constructor(public	handleLength,	public

headHeight){}

}

Compiles	to	the	following	code:

var	Axe	=	(function	()	{

		function	Axe(handleLength,	headHeight)	{

				this.handleLength	=	handleLength;

				this.headHeight	=	headHeight;

		}

		return	Axe;

})();

We	could	do	something	similar	in	our	DSL.	Starting	with
the	Axe	definition	that	follows:

class	Axe{

		constructor(handleLength,	/*public*/

headHeight){}

}

We've	used	a	comment	here	to	denote	that
headHeight	should	be	public.	Unlike	the	TypeScript
version,	we	would	like	our	source	code	to	be	valid
JavaScript.	Because	comments	are	included	in	the
toString	function	this	works	just	fine.

The	next	thing	to	do	is	to	actually	emit	new	JavaScript
from	this.	I've	taken	a	naïve	approach	and	used	regular
expressions.	This	approach	would	quickly	get	out	of
hand	and	probably	only	works	with	the	well-formed
JavaScript	in	the	Axe	class:

function	publicParameters(func){

		var	stringRepresentation	=	

func.toString();

		var	parameterString	=	

stringRepresentation.match(/^function	

.*\((.*)\)/)[1];

		var	parameters	=	

parameterString.split(",");

		var	setterString	=	"";

		for(var	i	=	0;	i	<	parameters.length;	

i++){

				if(parameters[i].indexOf("public")	>=	

0){

						var	parameterName	=	

parameters[i].split('')[parameters[i].spli

t('').length-1].trim();

						setterString	+=	"this."	+		

parameterName	+	"	=	"	+	parameterName	+	

";\n";

				}

		}

		var	functionParts	=	

stringRepresentation.match(/(^.*{)([\s\S]*

)/);

		return	functionParts[1]	+	setterString	+	

functionParts[2];

}

console.log(publicParameters(Axe));

Here	we	extract	the	parameters	to	the	function	and
check	for	those	that	have	the	public	annotation.	The
result	of	this	function	can	be	passed	back	into	eval	for
use	in	the	current	object	or	written	out	to	a	file	if	we're
using	this	function	in	a	pre-processor.	Typically	use	of
eval	in	JavaScript	is	discouraged.

There	are	tons	of	different	things	that	can	be	done	using

this	sort	of	processing.	Even	without	string	post-
processing	there	are	some	interesting	programming
concept	we	can	explore	by	just	wrapping	methods.

Aspect	oriented
programming
Modularity	of	software	is	a	great	feature,	the	majority	of
this	book	has	been	about	modularity	and	its	advantages.
However,	there	are	some	features	of	software	that	span
the	entire	system.	Security	is	a	great	example	of	this.

We	would	like	to	have	similar	security	code	in	all	the
modules	of	the	application	to	check	that	people	are,	in
fact,	authorized	to	perform	some	action.	So	if	we	have	a
function	of	the	sort:

var	GoldTransfer	=	(function	()	{

		function	GoldTransfer()	{

		}

		GoldTransfer.prototype.SendPaymentOfGold

=	function	(amountOfGold,	destination)	{

				var	user	=	Security.GetCurrentUser();

				if	(Security.IsAuthorized(user,

"SendPaymentOfGold"))	{

						//send	actual	payment

				}	else	{

						return	{	success:	0,	message:

"Unauthorized"	};

				}

		};

		return	GoldTransfer;

})();

We	can	see	that	there	is	a	fair	bit	of	code	in	place	to
check	if	a	user	is	authorized.	This	same	boilerplate	code

is	used	elsewhere	in	the	application.	In	fact,	with	this
being	a	high	security	application,	the	security	checks	are
in	place	in	every	public	function.	All	is	well	until	we	need
to	make	a	change	to	the	common	security	code.	This
change	needs	to	take	place	in	every	single	public
function	in	the	application.	We	can	refactor	our
application	all	we	want,	but	the	truth	remains:	we	need	to
have	at	least	some	code	in	each	of	the	public	methods	to
perform	a	security	check.	This	is	known	as	a	cross-
cutting	concern.

There	are	other	instances	of	cross-cutting	concerns	in
most	large	applications.	Logging	is	a	great	example,	as
is	database	access	and	performance	instrumenting.
Aspect	oriented	programming	(AOP)	presents	a	way
to	minimize	the	repeated	code	through	a	process	known
as	weaving.

An	aspect	is	a	piece	of	code	that	can	intercept	method
calls	and	change	them.	On	the	.Net	platform	there	is	a
tool	called	PostSharp	that	does	aspect	weaving	and,	on
the	Java	platform,	one	called	AspectJ.	These	tools	hook
into	the	build	pipeline	and	modify	the	code	after	it	has
been	transformed	into	instructions.	This	allows	code	to
be	injected	wherever	needed.	The	source	code	appears
unchanged	but	the	compiled	output	now	includes	calls	to
the	aspect.	Aspects	solve	the	cross	cutting	concern	by
being	injected	into	existing	code.	Here	you	can	see	the
application	of	an	aspect	to	a	method	through	a	weaver:

Of	course	we	don't	have	the	luxury	of	a	design-time
compile	step	in	most	JavaScript	workflows.	Fortunately,
we've	already	seen	some	approaches	that	would	allow
us	to	implement	cross	cuts	using	JavaScript.	The	first
thing	we	need	is	the	wrapping	of	methods	that	we	saw	in
the	testing	chapter.	The	second	is	the	tostring
abilities	from	earlier	in	this	chapter.

There	are	some	AOP	libraries	already	in	existence	for
JavaScript	that	may	be	a	good	bet	to	explore.	However,
we	can	implement	a	simple	interceptor	here.	First	let's
decide	on	the	grammar	for	requesting	injection.	We'll	use
the	same	idea	of	comments	from	earlier	to	denote
methods	that	require	interception.	We'll	just	make	the
first	line	in	the	method	a	comment	that	reads
aspect(<name	of	aspect>).

To	start	we'll	take	a	slightly	modified	version	of	our	same

GoldTransfer	class	from	earlier:

class	GoldTransfer	{

		SendPaymentOfGold(amountOfGold,

destination)	{

				var	user	=	Security.GetCurrentUser();

				if	(Security.IsAuthorized(user,

"SendPaymentOfGold"))	{

				}

				else	{

					return	{	success:	0,	message:

"Unauthorized"	};

				}

		}

}

We've	stripped	out	all	the	security	stuff	that	used	to	exist
in	it	and	added	a	console	log	so	we	can	see	that	it
actually	works.	Next	we'll	need	an	aspect	to	weave	into
it:

class	ToWeaveIn	{

			BeforeCall()	{

				console.log("Before!");

		}

		AfterCall()	{

				console.log("After!");

		}

}

For	this	we	use	a	simple	class	that	has	a	BeforeCall
and	AfterCall	method,	one	which	is	called	before	and
one	which	is	called	after	the	original	method.	We	don't
need	to	use	eval	in	this	case	so	the	interceptions	are
safer:

function	weave(toWeave,	toWeaveIn,	

toWeaveInName)	{

		for	(var	property	in	toWeave.prototype)	

{

				var	stringRepresentation	=	

toWeave.prototype[property].toString();

				console.log(stringRepresentation);

				if	

(stringRepresentation.indexOf("@aspect("	+	

toWeaveInName	+	")")>=	0)	{

						toWeave.prototype[property	+	

"wrapped"]	=	toWeave.prototype[property];

						toWeave.prototype[property]	=	

function	()	{

						toWeaveIn.BeforeCall();

						toWeave.prototype[property	+	

"wrapped"]();

						toWeaveIn.AfterCall();

				};

				}

		}

}

This	interceptor	can	easily	be	modified	to	a	shortcut	and
return	something	before	the	main	method	body	is	called.
It	can	also	be	changed	so	that	the	output	of	the	function
can	be	modified	by	simply	tracking	the	output	from	the
wrapped	method	and	then	modifying	it	in	the
AfterCall	method.

This	is	a	fairly	lightweight	example	of	AOP.	There	are
some	frameworks	in	existence	for	JavaScript	AOP,	but
perhaps	the	best	approach	is	to	make	use	of	a
precompiler	or	macro	language.

Mixins
As	we	saw	much	earlier	in	this	book,	the	inheritance
pattern	for	JavaScript	is	different	from	the	typical	pattern
seen	in	languages	like	C#	and	Java.	JavaScript	uses
prototype	inheritance	that	allows	adding	functions	to	a
class	quite	easily	and	from	multiple	sources.	Prototype
inheritance	allows	for	adding	methods	from	multiple
sources	in	a	similar	fashion	to	the	much-maligned
multiple-inheritance.	The	primary	criticism	of	multiple
inheritance	is	that	it	is	difficult	to	understand	which
overload	of	a	method	will	be	called	in	a	situation.	This
problem	is	somewhat	alleviated	in	a	prototype
inheritance	model.	Thus	we	can	feel	comfortable	using
the	approach	of	adding	functionality	from	several
sources,	which	is	known	as	mixins.

A	mixin	is	a	chunk	of	code	which	can	be	added	to
existing	classes	to	expand	their	functionality.	They	make
the	most	sense	in	scenarios	where	the	functions	need	to
be	shared	between	disparate	classes	where	an
inheritance	relationship	is	too	strong.

Let's	imagine	a	scenario	where	this	sort	of	functionality
would	be	handy.	In	the	land	of	Westeros,	death	is	not
always	as	permanent	as	in	our	world.	However,	those
who	return	from	the	dead	may	not	be	exactly	as	they
were	when	they	were	alive.	While	much	of	the
functionality	is	shared	between	Person	and

ReanimatedPerson,	they	are	not	close	enough	to	have
an	inheritance	relationship.	In	this	code	you	can	see	the
extend	function	of	underscore	used	to	add	mixins	to	our
two	people	classes.	It	is	possible	to	do	this	without
underscore	but,	as	mentioned	earlier,	there	are	some
complex	edge	cases	around	extends	which	make	using
a	library	handy:

var		=	require("underscore");

export	class	Person{

}

export	class	ReanimatedPerson{

}

export	class	RideHorseMixin{

		public	Ride(){

				console.log("I'm	on	a	horse!");

		}

}

var	person	=	new	Person();

var	reanimatedPerson	=	new	

ReanimatedPerson();

.extend(person,	new	RideHorseMixin());

_.extend(reanimatedPerson,	new	

RideHorseMixin());

person.Ride();

reanimatedPerson.Ride();

Mixins	provide	a	mechanism	to	share	functionality	between
diverse	objects	but	do	pollute	the	prototype	structure.

Macros
Preprocessing	code	through	macros	is	not	a	new	idea.	It
was,	and	probably	still	is,	very	popular	for	C	and	C++.	In
fact,	if	you	take	a	look	at	some	of	the	source	code	for	the
Gnu	utilities	for	Linux	they	are	written	almost	entirely	in
macros.	Macros	are	notorious	for	being	hard	to
understand	and	debug.	For	a	time,	newly-created
languages	like	Java	and	C#	did	not	support	macros	for
exactly	this	reason.

That	being	said,	even	more	recent	languages	like	Rust
and	Julia	have	brought	the	idea	of	macros	back.	These
languages	were	influenced	by	the	macros	from	the
Scheme	language,	a	dialect	of	Lisp.	The	difference
between	C	macros	and	Lisp/Scheme	macros	is	that	the
C	versions	are	textual	while	the	Lisp/Scheme	ones	are
structural.	This	means	that	C	macros	are	just	glorified
find/replace	tools	while	Scheme	macros	are	aware	of	the
abstract	syntax	tree	(AST)	around	them,	allowing	them
to	be	much	more	powerful.

The	AST	for	Scheme	is	a	far	simpler	construct	than	that
of	JavaScript.	Nonetheless,	there	is	a	very	interesting
project	called	Sweet.js	that	tries	to	create	structural
macros	for	JavaScript.

Sweet.js	plugs	into	the	JavaScript	build	pipeline	and
modified	JavaScript	source	code	using	one	or	more

macros.	There	are	a	number	of	fully-fledged	JavaScript
transpilers,	that	is	compilers	that	emit	JavaScript.	These
compilers	are	problematic	for	sharing	code	between
multiple	projects.	Their	code	is	so	different	that	there	is
no	real	way	to	share	it.	Sweet.js	supports	multiple
macros	being	expanded	in	a	single	step.	This	allows	for
much	better	code	sharing.	The	reusable	bits	are	a
smaller	size	and	more	easy	to	run	together.

A	simple	example	of	Sweet.js	is	as	follows:

let	var	=	macro	{

		rule	{	[$var	(,)	...]	=	$obj:expr	}	=>	{

				var	i	=	0;

				var	arr	=	$obj;

				$(var	$var	=	arr[i++])	(;)	...

		}

	

		rule	{	$id	}	=>	{

				var	$id

		}

}

The	macro	here	provides	ECMAScript-2015-style
deconstructors	that	split	an	array	into	tree	fields.	The
macro	matches	an	array	assignment	and	also	regular
assignment.	For	regular	assignment	the	macro	simply
returns	the	identity,	while	for	assignment	of	an	array	it
will	explode	the	text	and	replace	it.

For	instance,	if	you	run	it	over	the	following:

var	[foo,	bar,	baz]	=	arr;

Then,	the	result	will	be	the	following:

var	i	=	0;

var	arr$2	=	arr;

var	foo	=	arr$2[i++];

var	bar	=	arr$2[i++];

var	baz	=	arr$2[i++];

This	is	just	one	example	macro.	The	power	of	macros	is
really	quite	spectacular.	Macros	can	create	an	entirely
new	language	or	change	very	minor	things.	They	can	be
easily	plugged	in	to	fit	any	sided	requirement.

Tips	and	tricks
Using	name-based	dependency	injection	allows	for
conflicts	between	names.	In	order	to	avoid	conflicts	it
may	be	worth	prefacing	your	injected	arguments	with	a
special	character.	For	instance,	AngularJS	uses	the	$
sign	to	denote	an	injected	term.

Several	times	in	this	chapter	I've	mentioned	the
JavaScript	build	pipeline.	It	may	seem	odd	that	we	have
to	build	an	interpreted	language.	However,	there	are
certain	optimizations	and	process	improvements	that
may	result	from	building	JavaScript.	There	are	a	number
of	tools	that	can	be	used	to	help	building	JavaScript.
Tools	such	as	Grunt	and	Gulp	are	specifically	designed
to	perform	JavaScript	and	web	tasks	but	you	can	also
make	use	of	traditional	build	tools	such	as	Rake,	Ant,	or
even	Make.

Summary
In	this	chapter	we	covered	a	number	of	advanced
JavaScript	patterns.	Of	these	patterns	it's	my	belief	that
dependency	injection	and	macros	are	the	most	useful	to
us.	You	may	not	necessarily	want	to	use	them	on	every
project.	When	approaching	problems	simply	being	aware
of	the	possible	solutions	may	change	your	approach	to
the	problem.

Throughout	this	book	I	have	talked	extensively	about	the
next	versions	of	JavaScript.	However,	you	don't	need	to
wait	until	some	future	time	to	make	use	of	many	of	these
tools.	Today,	there	are	ways	to	compile	newer	versions
of	JavaScript	down	to	the	current	version	of	JavaScript.
The	final	chapter	will	explore	a	number	of	these	tools
and	techniques.

Chapter	14.	ECMAScript-
2015/2016	Solutions	Today
I	cannot	count	the	number	of	times	I	have	mentioned
upcoming	versions	of	JavaScript	in	this	book,	rest
assured	that	it's	a	large	number.	It	is	somewhat
frustrating	that	the	language	is	not	keeping	pace	with	the
requirements	of	application	developers.	Many	of	the
approaches	we've	discussed	become	unnecessary	with
a	newer	version	of	JavaScript.	There	are,	however,
some	ways	to	get	the	next	version	of	JavaScript	working
today.

In	this	chapter	we'll	look	at	a	couple	of	these,	specifically:

Typescript

BabelJS

TypeScript
There	is	no	shortage	of	languages	that	compile	to
JavaScript.	CoffeeScript	is	perhaps	the	best	known
example	of	one	of	these	languages,	although	the	Google
web	toolkit	that	compiles	Java	to	JavaScript	was	also
once	very	popular.	Never	ones	to	be	left	behind	or	use
somebody	else's	solution,	Microsoft	released	a	language
called	TypeScript	in	2012.	It	is	designed	to	be	a	superset
of	JavaScript	in	the	same	way	that	C++	is	a	superset	of

C.	This	means	that	all	syntactically	valid	JavaScript	code
is	also	syntactically	valid	TypeScript	code.

Microsoft	itself	is	making	heavy	use	of	TypeScript	in
some	of	its	larger	web	properties.	Both	Office	365	and
Visual	Studio	Online	have	significant	code	bases	written
in	TypeScript.	These	projects	actually	predate
TypeScript	by	a	significant	margin.	The	transition	from
JavaScript	to	TypeScript	was	reportedly	quite	easy	due
to	the	fact	that	it	is	a	superset	of	JavaScript.

One	of	the	design	goals	for	TypeScript	was	to	make	it	as
compatible	as	possible	with	ECMAScript-2015	and	future
versions.	This	means	that	TypeScript	supports	some,
although	certainly	not	all,	of	the	features	of	ECMAScript-
2016,	as	well	as	a	healthy	chunk	of	ECMAScript-2015.
Two	significant	features	from	ECMAScript-2016	which
are	partially	supported	by	Typescript	are	decorators	and
async/await.

Decorators
In	an	earlier	chapter	we	explored	aspect	oriented
programming	(AOP).	With	AOP	we	wrap	function	with
interceptors.	Decorators	offer	an	easy	way	of	doing	this.
Let's	say	that	we	have	a	class	which	dispatches
messages	in	Westeros.	Obviously	there	are	no	phones
or	internet	there,	so	messages	are	dispatched	via	crows.
It	would	be	very	helpful	if	we	could	spy	on	these
messages.	Our	CrowMessenger	class	looks	like	the
following:

class	CrowMessenger	{

		@spy

		public	SendMessage(message:	string)	{

				console.log(`Send	message	is

${message}`);

		}

}

var	c	=	new	CrowMessenger();

var	r	=	c.SendMessage("Attack	at	dawn");

You	may	note	the	@spy	annotation	on	the
SendMessage	method.	This	is	simply	another	function
which	intercepts	and	wraps	the	function.	Inside	of	the
spy	we	have	access	to	the	function	descriptor.	As	you
can	see	in	the	following	code,	we	take	the	descriptor	and
manipulate	it	to	capture	the	argument	sent	to	the
CrowMessenger	class:

function	spy(target:	any,	key:	string,

descriptor?:	any)	{

		if(descriptor	===	undefined)	{

				descriptor	=

Object.getOwnPropertyDescriptor(target,

key);

		}

		var	originalMethod	=	descriptor.value;

	

		descriptor.value	=		function	(...args:

any[])	{

				var	arguments	=	args.map(a	=>

JSON.stringify(a)).join();

				var	result	=

originalMethod.apply(this,	args);

				console.log(`Message	sent	was:

${arguments}`);

				return	result;

		}

		return	descriptor;

		return	descriptor;

}

Spys	would	obviously	be	very	useful	for	testing
functions.	Not	only	can	we	spy	on	the	values	here	but	we
could	replace	the	input	and	output	to	the	function.
Consider	the	following:

descriptor.value	=		function	(...args:	

any[])	{

		var	arguments	=	args.map(a	=>	

JSON.stringify(a)).join();

		var	result	=	"Retreat	at	once";

		console.log(`Message	sent	was:	

${arguments}`);

		return	result;

}

Decorators	can	be	used	for	purposes	other	than	AOP.
For	instance,	you	could	annotate	the	properties	on	an
object	as	serializable	and	use	the	annotations	to	control
custom	JSON	serialization.	It	is	my	suspicion	that
decorators	will	become	more	useful	and	powerful	as
decorators	become	supported.	Already	Angular	2.0	is
making	extensive	use	of	decorators.

Async/Await
In	Chapter	7,	Reactive	Programming,	we	spoke	about
how	the	callback	nature	of	JavaScript	programming
makes	code	very	confusing.	Nowhere	is	this	more
apparent	than	trying	to	chain	together	a	series	of
asynchronous	events.	We	rapidly	fall	into	a	trap	of	code,
which	looks	like	the	following:

$.post("someurl",	function(){

		$.post("someotherurl",	function(){

				$.get("yetanotherurl",	function(){

						

navigator.geolocation.getCurrentPosition(f

unction(location){

								...

						})

				})

		})

})

Not	only	is	this	code	difficult	to	read,	it	is	nearly
impossible	to	understand.	The	async/await	syntax,	which
is	borrowed	from	C#,	allows	for	writing	your	code	in	a
much	more	succinct	fashion.	Behind	the	scenes
generators	are	used	(or	abused,	if	you	like)	to	create	the
impression	of	true	async/await.	Let's	look	at	an	example.
In	the	preceding	code	we	made	use	of	the	geolocation
API	which	returns	the	location	of	a	client.	It	is
asynchronous	as	it	performs	some	IO	with	the	user's
machine	to	get	a	real	world	location.	Our	specification
calls	for	us	to	get	the	user's	location,	post	it	back	to	the
server,	and	then	get	an	image:

navigator.geolocation.getCurrentPosition(f

unction(location){

		$.post("posturl",	function(result){

				$.get("geturl",	function(){

			});

		});

});

If	we	now	introduce	async/await,	this	can	become	the
following:

async	function	getPosition(){

		return	await	

navigator.geolocation.getCurrentPosition()

;

}

async	function	postUrl(geoLocationResult){

		return	await	$.post("posturl");

}

async	function	getUrl(postResult){

		return	await	$.get("geturl");

}

async	function	performAction(){

		var	position	=	await	getPosition();

		var	postResult	=	await	

postUrl(position);

		var	getResult	=	await	

getUrl(postResult);

}

This	code	assumes	that	all	async	responses	return
promises	which	are	a	construct	that	contains	a	status
and	a	result.	As	it	stands,	most	async	operations	do	not
return	promises	but	there	are	libraries	and	utilities	to
convert	callbacks	to	promises.	As	you	can	see,	the
syntax	is	much	cleaner	and	easier	to	follow	than	the
callback	mess.

Typing
As	well	as	the	ECMAScript-2016	features	we've
mentioned	in	the	preceding	section,	TypeScript	has	a
rather	intriguing	typing	system	incorporated	into	it.	One
of	the	nicest	parts	of	JavaScript	is	that	it	is	a	dynamically
typed	language.	We've	seen,	repeatedly,	how,	not	being
burdened	by	types	has	saved	us	time	and	code.	The

typing	system	in	TypeScript	allows	you	to	use	as	much
or	as	little	typing	as	you	deem	to	be	necessary.	You	can
give	variables	a	type	by	declaring	them	with	the	following
syntax:

var	a_number:	number;

var	a_string:	string;

var	an_html_element:	HTMLElement;

Once	a	variable	has	a	type	assigned	to	it,	the	TypeScript
compiler	will	use	that	not	only	to	check	that	variable's
usage,	but	also	to	infer	what	other	types	may	be	derived
from	that	class.	For	example,	consider	the	following
code:

var	numbers:	Array<number>	=	[];

numbers.push(7);

numbers.push(9);

var	unknown	=	numbers.pop();

Here,	the	TypeScript	compiler	will	know	that	unknown	is
a	number.	If	you	attempt	to	use	it	as	something	else,	say
as	the	following	string:

console.log(unknown.substr(0,1));

Then	the	compiler	will	throw	an	error.	However,	you	don't
need	to	assign	a	type	to	any	variable.	This	means	that
you	can	tune	the	degree	to	which	the	type	checking	is
run.	While	it	sounds	odd,	it	is	actually	a	brilliant	solution
for	introducing	the	rigour	of	type	checking	without	losing
the	pliability	of	JavaScript.	The	typing	is	only	enforced
during	compilation,	once	the	code	is	compiled	to

JavaScript,	any	hint	that	there	was	typing	information
associated	with	a	field	disappears.	As	a	result,	the
emitted	JavaScript	is	actually	very	clean.

If	you're	interested	in	typing	systems	and	know	words
like	contravariant	and	can	discuss	the	various	levels	of
gradual	typing,	then	TypeScript's	typing	system	may	be
well	worth	your	time	to	investigate.

All	the	examples	in	this	book	were	originally	written	in
TypeScript	and	then	compiled	to	JavaScript.	This	was
done	to	improve	the	accuracy	of	the	code	and	generally
to	save	me	from	messing	up	quite	so	frequently.	I'm
horribly	biased	but	I	think	that	TypeScript	is	really	well
done	and	certainly	better	than	writing	pure	JavaScript.

There	is	no	support	for	typing	in	future	versions	of
JavaScript.	Thus,	even	with	all	the	changes	coming	to
future	versions	of	JavaScript,	I	still	believe	that
TypeScript	has	its	place	in	providing	compile	time	type
checking.	I	never	cease	to	be	amazed	by	the	number	of
times	that	the	type	checker	has	saved	me	from	making
silly	mistakes	when	writing	TypeScript.

BabelJS
An	alternative	to	TypeScript	is	to	use	the	BabelJS
compiler.	This	is	an	open	source	project	ECMAScript-
2015	and	beyond	to	the	equivalent	ECMAScript	5
JavaScript.	A	lot	of	the	changes	put	in	place	for
ECMAScript-2015	are	syntactic	niceties,	so	they	can
actually	be	represented	in	ECMAScript	5	JavaScript,
although	not	as	succinctly	or	as	pleasantly.	We've	seen
that	already	using	class-like	structures	in	ES	5.	BabelJS
is	written	in	JavaScript,	which	means	that	the
compilation	from	ECMAScript-2015	to	ES	5	is	possible
directly	on	a	web	page.	Of	course,	as	seems	to	be	the
trend	with	compilers,	the	source	code	for	BabelJS	makes
use	of	ES	6	constructs,	so	BabelJS	must	be	used	to
compile	BabelJS.

At	the	time	of	writing,	the	list	of	ES6	functions	that	are
supported	by	BabelJS	are	extensive:

Arrow	functions

Classes

Computed	property	names

Default	parameters

Destructuring	assignment

Iterators	and	for	of

Generator	comprehension

Generators

Modules

Numeric	literals

Property	method	assignment

Object	initializer	shorthand

Rest	parameters

Spread

Template	literals

Promises

BabelJS	is	multi-purpose	JavaScript	compiler,	so
compiling	ES-2015	code	is	simply	one	of	the	many
things	it	can	do.	There	are	numerous	plugins	which
provide	a	wide	array	of	interesting	functionality.	For
instance,	the	"Inline	environmental	variable"	plugin
inserts	compile	time	variables,	allowing	for	conditional
compilation	based	on	environments.

There	is	already	a	fair	bit	of	documentation	available	on
how	each	of	these	features	work	so	we	won't	go	over	all
of	them.

Setting	up	Babel	JS	is	a	fairly	simple	exercise	if	you
already	have	node	and	npm	installed:

npm	install	–g	babel-cli

This	will	create	a	BabelJS	binary	which	can	do
compilation	like	so:

babel		input.js	--o	output.js

For	most	use	cases	you'll	want	to	investigate	using	build
tools	such	as	Gulp	or	Grunt,	which	can	compile	many
files	at	once	and	perform	any	number	of	post-compilation
steps.

Classes
By	now	you	should	be	getting	sick	of	reading	about
different	ways	to	make	classes	in	JavaScript.
Unfortunately	for	you	I'm	the	one	writing	this	book	so
let's	look	at	one	final	example.	We'll	use	the	same	castle
example	from	earlier.

Modules	within	files	are	not	supported	in	BabelJS.
Instead,	files	are	treated	as	modules,	which	allows	for
dynamic	loading	of	modules	in	a	fashion	not	unlike
require.js.	Thus	we'll	drop	the	module	definition	from
our	castle	and	stick	to	just	the	classes.	One	other	feature
that	exists	in	TypeScript	and	not	ES	6	is	prefacing	a
parameter	with	public	to	make	it	a	public	property	on	a
class.	Instead	we	make	use	of	the	export	directive.

Once	we've	made	these	changes,	the	source	ES6	file
looks	like	the	following:

export	class	BaseStructure	{

		constructor()	{

				console.log("Structure	built");

		}

}

	

export	class	Castle	extends	BaseStructure

{

		constructor(name){

				this.name	=	name;

				super();

		}

		Build(){

				console.log("Castle	built:	"	+

this.name);

		}

}

The	resulting	ES	5	JavaScript	looks	like	the	following:

"use	strict";

var	createClass	=	function	()	{	function	

defineProperties(target,	props)	{	for	(var	

i	=	0;	i	<	props.length;	i++)	{	var	

descriptor	=	props[i];	

descriptor.enumerable	=	

descriptor.enumerable	||	false;	

descriptor.configurable	=	true;	if	

("value"	in	descriptor)	

descriptor.writable	=	true;	

Object.defineProperty(target,	

descriptor.key,	descriptor);	}	}	return	

function	(Constructor,	protoProps,	

staticProps)	{	if	(protoProps)	

defineProperties(Constructor.prototype,	

protoProps);	if	(staticProps)	

defineProperties(Constructor,	

staticProps);	return	Constructor;	};	}();

Object.defineProperty(exports,	

"_esModule",	{

		value:	true

});

function	possibleConstructorReturn(self,	

call)	{	if	(!self)	{	throw	new	

ReferenceError("this	hasn't	been	

initialised	-	super()	hasn't	been	

called");	}	return	call	&&	(typeof	call	

===	"object"	||	typeofcall	===	"function")	

?	call	:	self;	}

function	inherits(subClass,	superClass)	{	

if	(typeof	superClass	!==	"function"	&&	

superClass	!==	null)	{	throw	new	

TypeError("Super	expression	must	either	be	

null	or	a	function,	not	"	+	typeof	

superClass);	}	subClass.prototype	=	

Object.create(superClass	&&	

superClass.prototype,	{	constructor:	{	

value:	subClass,	enumerable:	false,	

writable:	true,	configurable:	true	}	});	

if	(superClass)	Object.setPrototypeOf	?	

Object.setPrototypeOf(subClass,	

superClass)	:	subClass.__proto__	=	

superClass;	}

function	classCallCheck(instance,	

Constructor)	{	if	(!(instance	instanceof	

Constructor))	{	throw	new	

TypeError("Cannot	call	a	class	as	a	

function");	}	}

var	BaseStructure	=	exports.BaseStructure	

=	function	BaseStructure()	{

		classCallCheck(this,	BaseStructure);

		console.log("Structure	built");

};

var	Castle	=	exports.Castle	=	function	

(_BaseStructure)	{

		inherits(Castle,	BaseStructure);

		function	Castle(name)	{

				classCallCheck(this,	Castle);

				var	this	=	

possibleConstructorReturn(this,	

Object.getPrototypeOf(Castle).call(this));

				this.name	=	name;

				return	this;

		}

		createClass(Castle,	[{

				key:	"Build",

				value:	function	Build()	{

						console.log("Castle	built:	"	+	

this.name);

				}

		}]);

		return	Castle;

}(BaseStructure);

Right	away	it	is	apparent	that	the	code	produced	by
BabelJS	is	not	as	clean	as	the	code	from	TypeScript.
You	may	also	have	noticed	that	there	are	some	helper
functions	employed	to	handle	inheritance	scenarios.
There	are	also	a	number	of	mentions	of	"use
strict";.	This	is	an	instruction	to	the	JavaScript
engine	that	it	should	run	in	strict	mode.

Strict	mode	prevents	a	number	of	dangerous	JavaScript
practices.	For	instance,	in	some	JavaScript	interpreters	it
is	legal	to	use	a	variable	without	declaring	it	first:

x	=	22;

This	will	throw	an	error	if	x	has	not	previously	been
declared:

var	x	=	22;

Duplicating	properties	in	objects	is	disallowed,	as	well	as
double	declaring	a	parameter.	There	are	a	number	of

other	practises	that	"use	strict";	will	treat	as	errors.
I	like	to	think	of	"use	strict";	as	being	similar	to
treating	all	warnings	as	errors.	It	isn't,	perhaps,	as
complete	as	–Werror	in	GCC	but	it	is	still	a	good	idea	to
use	strict	mode	on	new	JavaScript	code	bases.	BabelJS
simply	enforces	that	for	you.

Default	parameters
Not	a	huge	feature	but	a	real	nicety	in	ES	6	is	the
introduction	of	default	parameters.	It	has	always	been
possible	to	call	a	function	in	JavaScript	without
specifying	all	the	parameters.	Parameters	are	simply
populated	from	left	to	right	until	there	are	no	more	values
and	all	remaining	parameters	are	given	undefined.

Default	parameters	allow	setting	a	value	other	than
undefined	for	parameters	that	aren't	filled	out:

function	CreateFeast(meat,	drink	=	"wine")

{

		console.log("The	meat	is:	"	+	meat);

		console.log("The	drink	is:	"	+	drink);

}

CreateFeast("Boar",	"Beer");

CreateFeast("Venison");

This	will	output	the	following:

The	meat	is:	Boar

The	drink	is:	Beer

The	meat	is:	Venison

The	drink	is:	wine

The	JavaScript	code	produced	is	actually	very	simple:

"use	strict";

function	CreateFeast(meat)	{

		var	drink	=	arguments.length	<=	1	||

arguments[1]	===	undefined	?	"wine"	:

arguments[1];

		console.log("The	meat	is:	"	+	meat);

		console.log("The	drink	is:	"	+	drink);

}

CreateFeast("Boar",	"Beer");

CreateFeast("Venison");

Template	literals
On	the	surface,	template	literals	seem	to	be	a	solution
for	the	lack	of	string	interpolation	in	JavaScript.	In	some
languages,	such	as	Ruby	and	Python,	you	can	inject
substitutions	from	the	surrounding	code	directly	into	a
string	without	having	to	pass	them	into	some	sort	of
string	formatting	function.	For	instance,	in	Ruby	you	can
do	the	following:

name=	"Stannis";

print	"The	one	true	king	is	${name}"

This	will	bind	the	${name}	parameter	to	the	name	from
the	surrounding	scope.

ES6	supports	template	literals	that	allow	something
similar	in	JavaScript:

var	name	=	"Stannis";

console.log(`The	one	true	king	is

${name}`);

${name}`);

It	may	be	difficult	to	see	but	that	string	is	actually
surrounded	by	backticks	and	not	quotation	marks.
Tokens	to	bind	to	the	scope	are	denoted	by	${}.	Within
the	braces	you	can	put	complex	expressions	such	as:

var	army1Size	=	5000;

var	army2Size	=	3578;

console.log(`The	surviving	army	will	be

${army1Size	>	army2Size	?	"Army	1":	"Army

2"}`);

The	BabelJS	compiled	version	of	this	code	simply
substitutes	appending	strings	for	the	string	interpolation:

var	army1Size	=	5000;

var	army2Size	=	3578;

console.log(("The	surviving	army	will	be	"

+	(army1Size	>	army2Size	?	"Army	1"	:

"Army	2")));

Template	literals	also	solve	a	number	of	other	problems.
New	line	characters	inside	of	a	template	literal	are	legal,
meaning	that	you	can	use	template	literals	to	create
multiline	strings.

With	the	multiline	string	idea	in	mind,	it	seems	like
template	literals	might	be	useful	for	building	domain
specific	languages:	a	topic	we've	seen	a	number	of	times
already.	The	DSL	can	be	embedded	in	a	template	literal
and	then	values	from	outside	plugged	in.	An	example
might	be	using	it	to	hold	HTML	strings	(certainly	a	DSL)
and	inserting	values	in	from	a	model.	These	could,

perhaps,	take	the	place	of	some	of	the	template	tools	in
use	today.

Block	bindings	with	let
The	scoping	of	variables	in	JavaScript	is	weird.	If	you
define	a	variable	inside	a	block,	say	inside	an	if
statement,	then	that	variable	is	still	available	outside	of
the	block.	For	example,	see	the	following	code:

if(true)

{

		var	outside	=	9;

}

console.log(outside);

This	code	will	print	9,	even	though	the	variable	outside	is
clearly	out	of	scope.	At	least	it	is	out	of	scope	if	you
assume	that	JavaScript	is	like	other	C-syntax	languages
and	supports	block	level	scoping.	The	scoping	in
JavaScript	is	actually	function	level.	Variables	declared
in	code	blocks	like	those	found	attached	to	if	and	for
loop	statements	are	hoisted	to	the	beginning	of	the
function.	This	means	that	they	remain	in	scope	for	the
entirety	of	the	function.

ES	6	introduces	a	new	keyword,	let,	which	scopes
variables	to	the	block	level.	This	sort	of	variable	is	ideal
for	use	in	loops	or	to	maintain	proper	variable	values
inside	an	if	statement.	Traceur	implements	support	for
block	scoped	variables.	However,	the	support	is
experimental	at	the	moment	due	to	performance

implications.

Consider	the	following	code:

if(true)

{

		var	outside	=	9;

		et	inside	=	7;

}

console.log(outside);

console.log(inside);

This	will	compile	to	the	following:

var	inside$__0;

if	(true)	{

		var	outside	=	9;

		inside$__0	=	7;

}

console.log(outside);

console.log(inside);

You	can	see	that	the	inner	variable	is	replaced	with	a
renamed	one.	Once	outside	the	block,	the	variable	is	no
longer	replaced.	Running	this	code	will	report	that	inside
is	undefined	when	the	console.log	method	occurs.

In	production
BabelJS	is	a	very	powerful	tool	for	replicating	many	of
the	structures	and	features	of	the	next	version	of
JavaScript	today.	However,	the	code	generated	is	never
going	to	be	quite	as	efficient	as	having	native	support	for
the	constructs.	It	may	be	worth	benchmarking	the

generated	code	to	ensure	that	it	continues	to	meet	the
performance	requirements	of	your	project.

Tips	and	tricks
There	are	two	excellent	libraries	for	working	with
collections	functionally	in	JavaScript:	Underscore.js	and
Lo-Dash.	Used	in	combination	with	TypeScript	or
BabelJS	they	have	a	very	pleasant	syntax	and	provide
immense	power.

For	instance,	finding	all	the	members	of	a	collection	that
satisfy	a	condition	using	Underscore	looks	like	the
following:

_.filter(collection,	(item)	=>	item.Id	>

3);

This	code	will	find	all	the	items	where	the	ID	is	greater
than	3.

Either	of	these	libraries	is	one	of	the	first	things	I	add	to	a
new	project.	Underscore	is	actually	bundled	with
backbone.js,	an	MVVM	framework.

Tasks	for	Grunt	and	Gulp	exist	for	compiling	code	written
in	TypeScript	or	BabelJS.	There	is,	of	course,	also	good
support	for	TypeScript	in	much	of	Microsoft's
development	tool	chain,	although	BabelJS	is	currently
not	supported	directly.

Summary
As	the	functionality	of	JavaScript	expands,	the	need	for
third	party	frameworks	and	even	transpilers	starts	to
drop	off.	The	language	itself	replaces	many	of	these
tools.	The	end	game	for	tools	like	jQuery	is	that	they	are
no	longer	required	as	they	have	been	absorbed	into	the
ecosystem.	For	many	years	the	velocity	of	web	browsers
has	been	unable	to	keep	pace	with	the	rate	of	change	of
people's	desires.

There	is	a	large	effort	behind	the	next	version	of
AngularJS	but	great	efforts	are	being	made	to	align	the
new	components	with	the	upcoming	web	component
standards.	Web	components	won't	fully	replace
AngularJS	but	Angular	will	end	up	simply	enhancing	web
components.

Of	course	the	idea	that	there	won't	be	a	need	for	any
frameworks	or	tools	is	ridiculous.	There	is	always	going
to	be	a	new	method	of	solving	a	problem	and	new
libraries	and	frameworks	will	show	up.	The	opinions	of
people	on	how	to	solve	problems	is	also	going	to	differ.
That's	why	there	is	space	in	the	market	for	the	wide
variety	of	MVVM	frameworks	that	exist.

Working	with	JavaScript	can	be	a	much	more	pleasant
experience	if	you	make	use	of	ES6	constructs.	There	are
a	couple	of	possible	approaches	to	doing	so,	which	of

these	is	best	suited	to	your	specific	problem	is	a	matter
for	closer	investigation.

Part	3.	Module	3
Functional	Programming	in	JavaScript

Unlock	the	powers	of	functional	programming	hidden
within	JavaScript	to	build	smarter,	cleaner,	and	more

reliable	web	apps

Chapter	1.	The	Powers	of
JavaScript's	Functional	Side
–	a	Demonstration

Introduction
For	decades,	functional	programming	has	been	the
darling	of	computer	science	aficionados,	prized	for	its
mathematical	purity	and	puzzling	nature	that	kept	it
hidden	in	dusty	computer	labs	occupied	by	data
scientists	and	PhD	hopefuls.	But	now,	it	is	going	through
a	resurgence,	thanks	to	modern	languages	such	as
Python,	Julia,	Ruby,	Clojure	and—last	but	not	least
—JavaScipt.

JavaScript,	you	say?	The	web's	scripting	language?	Yes!

JavaScript	has	proven	to	be	an	important	technology
that	isn't	going	away	for	quite	a	while.	This	is	largely	due
to	the	fact	that	it	is	capable	of	being	reborn	and	extended
with	new	frameworks	and	libraries,	such	as
backbone.js,	jQuery,	Dojo,	underscore.js,	and	many
more.	This	is	directly	related	to	JavaScript's	true	identity
as	a	functional	programming	language.	An
understanding	of	functional	programming	with	JavaScript
will	be	welcome	and	useful	for	a	long	time	for
programmers	of	any	skill	level.

Why	so?	Functional	programming	is	very	powerful,
robust,	and	elegant.	It	is	useful	and	efficient	on	large
data	structures.	It	can	be	very	advantageous	to	use
JavaScript—a	client-side	scripting	language,	as	a
functional	means	to	manipulate	the	DOM,	sort	API
responses	or	perform	other	tasks	on	increasingly
complex	websites.

In	this	book,	you	will	learn	everything	you	need	to	know
about	functional	programming	with	JavaScript:	how	to
empower	your	JavaScript	web	applications	with
functional	programming,	how	to	unlock	JavaScript's
hidden	powers,	and	how	to	write	better	code	that	is	both
more	powerful	and—because	it	is	smaller—easier	to
maintain,	faster	to	download,	and	takes	less	overhead.
You	will	also	learn	the	core	concepts	of	functional
programming,	how	to	apply	them	to	JavaScript,	how	to
side-step	the	caveats	and	issues	that	may	arise	when
using	JavaScript	as	a	functional	language,	and	how	to
mix	functional	programming	with	object-oriented
programming	in	JavaScript.

But	before	we	begin,	let's	perform	an	experiment.

The	demonstration
Perhaps	a	quick	demonstration	will	be	the	best	way	to
introduce	functional	programming	with	JavaScript.	We
will	perform	the	same	task	using	JavaScript—once	using
traditional,	native	methods,	and	once	with	functional
programming.	Then,	we	will	compare	the	two	methods.

The	application	–	an	e-
commerce	website
In	pursuit	of	a	real-world	application,	let's	say	we	need
an	e-commerce	web	application	for	a	mail-order	coffee
bean	company.	They	sell	several	types	of	coffee	and	in
different	quantities,	both	of	which	affect	the	price.

Imperative	methods
First,	let's	go	with	the	procedural	route.	To	keep	this
demonstration	down	to	earth,	we'll	have	to	create	objects
that	hold	the	data.	This	allows	the	ability	to	fetch	the
values	from	a	database	if	we	need	to.	But	for	now,	we'll
assume	they're	statically	defined:

//	create	some	objects	to	store	the	data.

var	columbian	=	{

		name:	'columbian',

		basePrice:	5

};

var	frenchRoast	=	{

		name:	'french	roast',

		basePrice:	8

};

var	decaf	=	{

		name:	'decaf',

		basePrice:	6

};

	

//	we'll	use	a	helper	function	to

calculate	the	cost

//	according	to	the	size	and	print	it	to

//	according	to	the	size	and	print	it	to

an	HTML	list

function	printPrice(coffee,	size)	{

		if	(size	==	'small')	{

				var	price	=	coffee.basePrice	+	2;

		}

		else	if	(size	==	'medium')	{

				var	price	=	coffee.basePrice	+	4;

		}

		else	{

				var	price	=	coffee.basePrice	+	6;

		}

	

//	create	the	new	html	list	item

		var	node	=	document.createElement("li");

		var	label	=	coffee.name	+	'	'	+	size;

		var	textnode	=

document.createTextNode(label+'	price:

$'+price);

		node.appendChild(textnode);

		

document.getElementById('products').append

Child(node);

}

	

//	now	all	we	need	to	do	is	call	the

printPrice	function

//	for	every	single	combination	of	coffee

type	and	size

printPrice(columbian,	'small');

printPrice(columbian,	'medium');

printPrice(columbian,	'large');

printPrice(frenchRoast,	'small');

printPrice(frenchRoast,	'medium');

printPrice(frenchRoast,	'large');

printPrice(decaf,	'small');

printPrice(decaf,	'medium');

printPrice(decaf,	'large');

TIPTIP
Downloading	the	example	code

You	can	download	example	code	files	for	all	Packt	books	you	have	purchased	from	your
account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

As	you	can	see,	this	code	is	very	basic.	What	if	there
were	many	more	coffee	styles	than	just	the	three	we
have	here?	What	if	there	were	20?	50?	What	if,	in
addition	to	size,	there	were	organic	and	non-organic
options.	That	could	increase	the	lines	of	code	extremely
quickly!

Using	this	method,	we	are	telling	the	machine	what	to
print	for	each	coffee	type	and	for	each	size.	This	is
fundamentally	what	is	wrong	with	imperative	code.

http://www.packtpub.com
http://www.packtpub.com/support

Functional	programming
While	imperative	code	tells	the	machine,	step-by-step,
what	it	needs	to	do	to	solve	the	problem,	functional
programming	instead	seeks	to	describe	the	problem
mathematically	so	that	the	machine	can	do	the	rest.

With	a	more	functional	approach,	the	same	application
can	be	written	as	follows:

//	separate	the	data	and	logic	from	the

interface

var	printPrice	=	function(price,	label)	{

		var	node	=	document.createElement("li");

		var	textnode	=

document.createTextNode(label+'	price:

$'+price);

		node.appendChild(textnode);

		document.getElementById('products

2').appendChild(node);

}

	

//	create	function	objects	for	each	type

of	coffee

var	columbian	=	function(){

		this.name	=	'columbian';

		this.basePrice	=	5;

};

var	frenchRoast	=	function(){

		this.name	=	'french	roast';

		this.basePrice	=	8;

};

var	decaf	=	function(){

		this.name	=	'decaf';

		this.basePrice	=	6;

};

};

	

//	create	object	literals	for	the

different	sizes

var	small	=	{

		getPrice:	function(){return

this.basePrice	+	2},

		getLabel:	function(){return	this.name	+

'	small'}

};

var	medium	=	{

		getPrice:	function(){return

this.basePrice	+	4},

		getLabel:	function(){return	this.name	+

'	medium'}

};

var	large	=	{

		getPrice:	function(){return

this.basePrice	+	6},

		getLabel:	function(){return	this.name	+

'	large'}

};

	

//	put	all	the	coffee	types	and	sizes	into

arrays

var	coffeeTypes	=	[columbian,	frenchRoast,

decaf];

var	coffeeSizes	=	[small,	medium,	large];

	

//	build	new	objects	that	are	combinations

of	the	above

//	and	put	them	into	a	new	array

var	coffees	=

coffeeTypes.reduce(function(previous,

current)	{

		var	newCoffee	=

coffeeSizes.map(function(mixin)	{

				//	`plusmix`	function	for	functional

mixins,	see	Ch.7

				var	newCoffeeObj	=	plusMixin(current,

mixin);

				return	new	newCoffeeObj();

		});

		return	previous.concat(newCoffee);

},[]);

	

//	we've	now	defined	how	to	get	the	price

and	label	for	each

//	coffee	type	and	size	combination,	now

we	can	just	print	them

coffees.forEach(function(coffee){

		

printPrice(coffee.getPrice(),coffee.getLab

el());

});

The	first	thing	that	should	be	obvious	is	that	it	is	much
more	modular.	This	makes	adding	a	new	size	or	a	new
coffee	type	as	simple	as	shown	in	the	following	code
snippet:

var	peruvian	=	function(){

		this.name	=	'peruvian';

		this.basePrice	=	11;

};

	

var	extraLarge	=	{

		getPrice:	function(){return

this.basePrice	+	10},

		getLabel:	function(){return	this.name	+

'	extra	large'}

};

	

coffeeTypes.push(Peruvian);

coffeeSizes.push(extraLarge);

Arrays	of	coffee	objects	and	size	objects	are	"mixed"
together,—that	is,	their	methods	and	member	variables
are	combined—with	a	custom	function	called

plusMixin	(see	Chapter	7,	Functional	and	Object-
oriented	Programming	in	JavaScript).	The	coffee	type
classes	contain	the	member	variables	and	the	sizes
contain	methods	to	calculate	the	name	and	price.	The
"mixing"	happens	within	a	map	operation,	which	applies
a	pure	function	to	each	element	in	an	array	and	returns	a
new	function	inside	a	reduce()	operation—another
higher-order	function	similar	to	the	map	function,	except
that	all	the	elements	in	the	array	are	combined	into	one.
Finally,	the	new	array	of	all	possible	combinations	of
types	and	sizes	is	iterated	through	with	the	forEach()
method	The	forEach()	method	is	yet	another	higher-
order	function	that	applies	a	callback	function	to	each
object	in	an	array.	In	this	example,	we	provide	it	as	an
anonymous	function	that	instantiates	the	objects	and
calls	the	printPrice()	function	with	the	object's
getPrice()	and	getLabel()	methods	as	arguments.

Actually,	we	could	make	this	example	even	more
functional	by	removing	the	coffees	variable	and
chaining	the	functions	together—another	little	trick	in
functional	programming.

coffeeTypes.reduce(function(previous,

current)	{

		var	newCoffee	=

coffeeSizes.map(function(mixin)	{

				//	`plusMixin`	function	for	functional

mixins,	see	Ch.7

				var	newCoffeeObj	=	plusMixin(current,

mixin);

				return	new	newCoffeeObj();

		});

		return	previous.concat(newCoffee);

		return	previous.concat(newCoffee);

},[]).forEach(function(coffee)	{

		

printPrice(coffee.getPrice(),coffee.getLab

el());

});

Also,	the	control	flow	is	not	as	top-to-bottom	as	the
imperative	code	was.	In	functional	programming,	the
map()	function	and	other	higher-order	functions	take	the
place	of	for	and	while	loops	and	very	little	importance
is	placed	on	the	order	of	execution.	This	makes	it	a	little
trickier	for	newcomers	to	the	paradigm	to	read	the	code
but,	once	you	get	the	hang	of	it,	it's	not	hard	at	all	to
follow	and	you'll	see	that	it	is	much	better.

This	example	barely	touched	on	what	functional
programming	can	do	in	JavaScript.	Throughout	this
book,	you	will	see	even	more	powerful	examples	of	the
functional	approach.

Summary
First,	the	benefits	of	adopting	a	functional	style	are	clear.

Second,	don't	be	scared	of	functional	programming.	Yes,
it	is	often	thought	of	as	pure	logic	in	the	form	of	computer
language,	but	we	don't	need	to	understand	Lambda
calculus	to	be	able	to	apply	it	to	everyday	tasks.	The
fact	is,	by	allowing	our	programs	to	be	broken	down	into
smaller	pieces,	they're	easier	to	understand,	simpler	to
maintain,	and	more	reliable.	map()	and	reduce()
function's	are	lesser-known	built-in	functions	in
JavaScript,	but	we'll	look	at	them.

JavaScript	is	a	scripting	language,	interactive	and
approachable.	No	compiling	is	necessary.	We	don't	even
need	to	download	any	development	software,	your
favorite	browser	works	as	the	interpreter	and	as	the
development	environment.

Interested?	Alright,	let's	get	started!

Chapter	2.	Fundamentals	of
Functional	Programming
By	now,	you've	seen	a	small	glimpse	of	what	functional
programming	can	do.	But	what	exactly	is	functional
programming?	What	makes	one	language	functional	and
not	another?	What	makes	one	programming	style
functional	and	not	another?

In	this	chapter,	we	will	first	answer	these	questions	and
then	cover	the	core	concepts	of	functional	programming:

Using	functions	and	arrays	for	control	flow

Writing	pure	functions,	anonymous	functions,	recursive	functions,	and
more

Passing	functions	around	like	objects

Utilizing	the	map(),	filter(),	and	reduce()	functions

Functional	programming
languages
Functional	programming	languages	are	languages	that
facilitate	the	functional	programming	paradigm.	At	the
risk	of	oversimplifying,	we	could	say	that,	if	a	language
includes	the	features	required	for	functional
programming,	then	it	is	a	functional	language—as	simple
as	that.	In	most	cases,	it's	the	programming	style	that
truly	determines	whether	a	program	is	functional	or	not.

What	makes	a	language
functional?
Functional	programming	cannot	be	performed	in	C.
Functional	programming	cannot	be	performed	in	Java
(without	a	lot	of	cumbersome	workarounds	for	"almost"
functional	programming).	Those	and	many	more
languages	simply	don't	contain	the	constructs	to	support
it.	They	are	purely	object-oriented	and	strictly
nonfunctional	languages.

At	the	same	time,	object-oriented	programming	cannot
be	performed	on	purely	functional	languages,	such	as
Scheme,	Haskell,	and	Lisp,	just	to	name	a	few.

However,	there	are	certain	languages	that	support	both
models.	Python	is	a	famous	example,	but	there	are
others:	Ruby,	Julia,	and—here's	the	one	we're	interested
in—JavaScript.	How	can	these	languages	support	two
design	patterns	that	are	very	different	from	each	other?
They	contain	the	features	required	for	both	programming
paradigms.	However,	in	the	case	of	JavaScript,	the
functional	features	are	somewhat	hidden.

But	really,	it's	a	little	more	involved	than	that.	So	what
makes	a	language	functional?

	
Characte
ristic
	
	

	
Imperative
	
	

	
Functional
	
	

	 	 	

	
Program
ming	
Style
	
	

	
Perform	step-by-step	
tasks	and	manage	
changes	in	state
	
	

	
Define	what	the	problem	is	and	what	
data	transformations	are	needed	to	
achieve	the	solution
	
	

	
State	
Changes
	
	

	
Important
	
	

	
Non-existent
	
	

	
Order	of	
Execution
	
	

	
Important
	
	

	
Not	as	important
	
	

	
Primary	
Flow	
Control
	
	

	
Loops,	conditionals,	
and	function	calls
	
	

	
Function	calls	and	recursion
	
	

	
Primary	
Manipulati
on	Unit
	
	

	
Structures	and	class	
objects
	
	

	
Functions	as	first-class	objects	and	
data	sets
	
	

The	syntax	of	the	language	must	allow	for	certain	design
patterns,	such	as	an	inferred	type	system,	and	the	ability
to	use	anonymous	functions.	Essentially,	the	language
must	implement	Lambda	calculus.	Also,	the	interpreter's
evaluation	strategy	should	be	non-strict	and	call-by-need
(also	known	as	deferred	execution),	which	allows	for
immutable	data	structures	and	non-strict,	lazy
evaluation.

Advantages
You	could	say	that	the	profound	enlightenment	you
experience	when	you	finally	"get	it"	will	make	learning
functional	programming	worth	it.	An	experience	such	as
this	will	make	you	a	better	programmer	for	the	rest	of
your	life,	whether	you	actually	become	a	full-time
functional	programmer	or	not.

But	we're	not	talking	about	learning	to	meditate;	we're
talking	about	learning	an	extremely	useful	tool	that	will
make	you	a	better	programmer.

Formally	speaking,	what	exactly	are	the	practical
advantages	of	using	functional	programming?

CLEANER	CODE
Functional	programs	are	cleaner,	simpler,	and	smaller.
This	simplifies	debugging,	testing,	and	maintenance.

For	example,	let's	say	we	need	a	function	that	converts	a
two-dimensional	array	into	a	one-dimensional	array.
Using	only	imperative	techniques,	we	could	write	it	the
following	way:

function	merge2dArrayIntoOne(arrays)	{

		var	count	=	arrays.length;

		var	merged	=	new	Array(count);

		var	c	=	0;

		for	(var	i	=	0;	i	<	count;	++i)	{

				for	(var	j	=	0,	jlen	=

arrays[i].length;	j	<	jlen;	++j)	{

						merged[c++]	=	arrays[i][j];

						merged[c++]	=	arrays[i][j];

				}

		}

		return	merged

}

And	using	functional	techniques,	it	could	be	written	as
follows:

varmerge2dArrayIntoOne2	=	function(arrays)

{

		return	arrays.reduce(function(p,n){

				return	p.concat(n);

		});

};

Both	of	these	functions	take	the	same	input	and	return
the	same	output.	However,	the	functional	example	is
much	more	concise	and	clean.

MODULARITY
Functional	programming	forces	large	problems	to	be
broken	down	into	smaller	instances	of	the	same	problem
to	be	solved.	This	means	that	the	code	is	more	modular.
Programs	that	are	modular	are	clearly	specified,	easier
to	debug,	and	simpler	to	maintain.	Testing	is	easier
because	each	piece	of	modular	code	can	potentially	be
checked	for	correctness.

REUSABILITY
Functional	programs	share	a	variety	of	common	helper
functions,	due	to	the	modularity	of	functional
programming.	You'll	find	that	many	of	these	functions

can	be	reused	for	a	variety	of	different	applications.

Many	of	the	most	common	functions	will	be	covered	later
in	this	chapter.	However,	as	you	work	as	a	functional
programmer,	you	will	inevitably	compile	your	own	library
of	little	functions	that	can	be	used	over	and	over	again.
For	example,	a	well-designed	function	that	searches
through	the	lines	of	a	configuration	file	could	also	be
used	to	search	through	a	hash	table.

REDUCED	COUPLING
Coupling	is	the	amount	of	dependency	between	modules
in	a	program.	Because	the	functional	programmer	works
to	write	first-class,	higher-order,	pure	functions	that	are
completely	independent	of	each	other	with	no	side
effects	on	global	variables,	coupling	is	greatly	reduced.
Certainly,	functions	will	unavoidably	rely	on	each	other.
But	modifying	one	function	will	not	change	another,	so
long	as	the	one-to-one	mapping	of	inputs	to	outputs
remains	correct.

MATHEMATICALLY	CORRECT
This	last	one	is	on	a	more	theoretical	level.	Thanks	to	its
roots	in	Lambda	calculus,	functional	programs	can	be
mathematically	proven	to	be	correct.	This	is	a	big
advantage	for	researchers	who	need	to	prove	the	growth
rate,	time	complexity,	and	mathematical	correctness	of	a
program.

Let's	look	at	Fibonacci's	sequence.	Although	it's	rarely

used	for	anything	other	than	a	proof-of-concept,	it
illustrates	this	concept	quite	well.	The	standard	way	of
evaluating	a	Fibonacci	sequence	is	to	create	a	recursive
function	that	expresses	fibonnaci(n)	=
fibonnaci(n-2)	+	fibonnaci(n–1)	with	a	base
case	to	return	1	when	n	<	2,	which	makes	it
possible	to	stop	the	recursion	and	begin	adding	up	the
values	returned	at	each	step	in	the	recursive	call	stack.

This	describes	the	intermediary	steps	involved	in
calculating	the	sequence.

var	fibonacci	=	function(n)	{

		if	(n	<	2)	{

				return	1;

		}

		else	{

				return	fibonacci(n	-	2)	+	fibonacci(n

-	1);

		}

}

console.log(fibonacci(8));

//	Output:	34

However,	with	the	help	of	a	library	that	implements	a
lazy	execution	strategy,	an	indefinite	sequence	can	be
generated	that	states	the	mathematical	equation	that
defines	the	entire	sequence	of	numbers.	Only	as	many
numbers	as	needed	will	be	computed.

var	fibonacci2	=	Lazy.generate(function()

{

		var	x	=	1,

		y	=	1;

		return	function()	{

		return	function()	{

				var	prev	=	x;

				x	=	y;

				y	+=	prev;

				return	prev;

		};

}());

	

console.log(fibonacci2.length());//

Output:	undefined

	

console.log(fibonacci2.take(12).toArray())

;//	Output:	[1,	1,	2,	3,	5,	8,	13,	21,	34,

55,	89,	144]

	

var	fibonacci3	=	Lazy.generate(function()

{

		var	x	=	1,

		y	=	1;

		return	function()	{

				var	prev	=	x;

				x	=	y;

				y	+=	prev;

				return	prev;

		};

}());

	

console.log(fibonacci3.take(9).reverse().f

irst(1).toArray());//	Output:	[34]

The	second	example	is	clearly	more	mathematically
sound.	It	relies	on	the	Lazy.js	library	of	JavaScript.
There	are	other	libraries	that	can	help	here	as	well,	such
as	Sloth.js	and	wu.js.	These	will	be	covered	in
Chapter	3,	Setting	Up	the	Functional	Programming
Environment.

Functional	programming	in	a

nonfunctional	world
Can	functional	and	nonfunctional	programming	be	mixed
together?	Although	this	is	the	subject	of	Chapter	7,
Functional	&	Object-oriented	Programming	in	JavaScript,
it	is	important	to	get	a	few	things	straight	before	we	go
any	further.

This	book	is	not	intended	to	teach	you	how	to	implement
an	entire	application	that	strictly	adheres	to	the	rigors	of
pure	functional	programming.	Such	applications	are
rarely	appropriate	outside	Academia.	Rather,	this	book
will	teach	you	how	to	use	functional	programming	design
strategies	within	your	applications	to	complement	the
necessary	imperative	code.

For	example,	if	you	need	the	first	four	words	that	only
contain	letters	out	of	some	text,	they	could	naively	be
written	like	this:

var	words	=	[],	count	=	0;

text	=	myString.split('	');

for	(i=0;	count<4,	i<text.length;	i++)	{

		if	(!text[i].match(/[0-9]/))	{

				words	=	words.concat(text[i]);

				count++;

		}

}

console.log(words);

In	contrast,	a	functional	programmer	might	write	them	as
follows:

var	words	=	[];

var	words	=	[];

var	words	=	myString.split('

').filter(function(x){

		return	(!	x.match(/[1-9]+/));

}).slice(0,4);

console.log(words);

Or,	with	a	library	of	functional	programming	utilities,	they
can	be	simplified	even	further:

var	words	=

toSequence(myString).match(/[a-zA-

Z]+/).first(4);

The	key	to	identifying	functions	that	can	be	written	in	a
more	functional	way	is	to	look	for	loops	and	temporary
variables,	such	as	words	and	count	instances	in	the
preceding	example.	We	can	usually	do	away	with	both
temporary	variables	and	loops	by	replacing	them	with
higher-order	functions,	which	we	will	explore	later	in	this
chapter.

IS	JAVASCRIPT	A	FUNCTIONAL
PROGRAMMING	LANGUAGE?
There	is	one	last	question	we	must	ask	ourselves.	Is
JavaScript	a	functional	language	or	a	nonfunctional
language?

JavaScript	is	arguably	the	world's	most	popular	and	least
understood	functional	programming	language.
JavaScript	is	a	functional	programming	language	in	C-
like	clothing.	Its	syntax	is	undeniably	C-like,	meaning	it
uses	C's	block	syntax	and	in-fix	ordering.	And	it's	one	of

the	worst	named	languages	in	existence.	It	doesn't	take
a	lot	of	imagination	to	see	how	so	many	people	can
confuse	JavaScript	as	being	related	to	Java;	somehow,
its	name	implies	that	it	should	be!	But	in	reality	it	has
very	little	in	common	with	Java.	And,	to	really	cement	the
idea	that	JavaScript	is	an	object-oriented	language,
libraries	and	frameworks	such	as	Dojo	and	ease.js	have
been	hard	at	work	attempting	to	abstract	it	and	make	it
suitable	for	object-oriented	programming.	JavaScript
came	of	age	in	the	1990s	when	OOP	was	all	the	buzz,
and	we've	been	told	that	JavaScript	is	object-oriented
because	we	want	it	to	be	so	badly.	But	it	is	not.

Its	true	identity	is	much	more	aligned	with	its	ancestors:
Scheme	and	Lisp,	two	classic	functional	languages.
JavaScript	is	a	functional	language,	all	the	way.	Its
functions	are	first-class	and	can	be	nested,	it	has
closures	and	compositions,	and	it	allows	for	currying	and
monads.	All	of	these	are	key	to	functional	programming.
Here	are	a	few	more	reasons	why	JavaScript	is	a
functional	language:

JavaScript's	lexical	grammar	includes	the	ability	to	pass	functions	as
arguments,	has	an	inferred	type	system,	and	allows	for	anonymous
functions,	higher-order	functions,	closures	and	more.	These	facts	are
paramount	to	achieving	the	structure	and	behavior	of	functional
programming.

It	is	not	a	pure	object-oriented	language,	with	most	object-oriented
design	patterns	achieved	by	copying	the	Prototype	object,	a	weak
model	for	object-oriented	programming.	European	Computer
Manufacturers	Association	Script	(ECMAScript),	JavaScript's
formal	and	standardized	specifications	for	implementation,	states	the
following	in	specification	4.2.1:

"ECMAScript	does	not	contain	proper	classes	such	as	those	in	C++,
Smalltalk,	or	Java,	but	rather,	supports	constructors	which	create

objects.	In	a	class-based	object-oriented	language,	in	general,	state	is
carried	by	instances,	methods	are	carried	by	classes,	and	inheritance

is	only	of	structure	and	behavior.	In	ECMAScript,	the	state	and
methods	are	carried	by	objects,	and	structure,	behavior	and	state	are

all	inherited."

It	is	an	interpreted	language.	Sometimes	called	"engines",	JavaScript
interpreters	often	closely	resemble	Scheme	interpreters.	Both	are
dynamic,	both	have	flexible	datatypes	that	easily	combine	and
transform,	both	evaluate	the	code	into	blocks	of	expressions,	and
both	treat	functions	similarly.

That	being	said,	it	is	true	that	JavaScript	is	not	a	pure
functional	language.	What's	lacking	is	lazy	evaluation
and	built-in	immutable	data.	This	is	because	most
interpreters	are	call-by-name	and	not	call-by-need.
JavaScript	also	isn't	very	good	with	recursion	due	to	the
way	it	handles	tail	calls.	However,	all	of	these	issues	can
be	mitigated	with	a	little	bit	of	attention.	Non-strict
evaluation,	required	for	infinite	sequences	and	lazy
evaluation,	can	be	achieved	with	a	library	called
Lazy.js.	Immutable	data	can	be	achieved	simply	by
programming	technique,	but	this	requires	more
programmer	discipline	rather	than	relying	on	the
language	to	take	care	of	it.	And	recursive	tail	call
elimination	can	be	achieved	with	a	method	called
Trampolining.	These	issues	will	be	addressed	in
Chapter	6,	Advanced	Topics	&	Pitfalls	in	JavaScript.

Many	debates	have	been	waged	over	whether	or	not
JavaScript	is	a	functional	language,	an	object-oriented
language,	both,	or	neither.	And	this	won't	be	the	last

debate.

In	the	end,	functional	programming	is	way	of	writing
cleaner	code	through	clever	ways	of	mutating,
combining,	and	using	functions.	And	JavaScript	provides
an	excellent	medium	for	this	approach.	If	you	really	want
to	use	JavaScript	to	its	full	potential,	you	must	learn	how
to	use	it	as	a	functional	language.

Working	with	functions
		
Sometimes,	the	elegant	implementation	is	a	function.	Not	a	method.	Not	a	
class.	Not	a	framework.	Just	a	function.
	

	

	 --John	Carmack,	lead	programmer	of	the	Doom	video	game

Functional	programming	is	all	about	decomposing	a
problem	into	a	set	of	functions.	Often,	functions	are
chained	together,	nested	within	each	other,	passed
around,	and	treated	as	first-class	citizens.	If	you've	used
frameworks	such	as	jQuery	and	Node.js,	you've	probably
used	some	of	these	techniques,	you	just	didn't	realize	it!

Let's	start	with	a	little	JavaScript	dilemma.

Say	we	need	to	compile	a	list	of	values	that	are	assigned
to	generic	objects.	The	objects	could	be	anything:	dates,
HTML	objects,	and	so	on.

var

		obj1	=	{value:	1},

		obj2	=	{value:	2},

		obj3	=	{value:	3};

	

var	values	=	[];

function	accumulate(obj)	{

		values.push(obj.value);

}

accumulate(obj1);

accumulate(obj2);

console.log(values);	//	Output:

[obj1.value,	obj2.value]

It	works	but	it's	volatile.	Any	code	can	modify	the
values	object	without	calling	the	accumulate()
function.	And	if	we	forget	to	assign	the	empty	set,	[],	to
the	values	instance	then	the	code	will	not	work	at	all.

But	if	the	variable	is	declared	inside	the	function,	it	can't
be	mutated	by	any	rogue	lines	of	code.

function	accumulate2(obj)	{

		var	values	=	[];

		values.push(obj.value);

		return	values;

}

console.log(accumulate2(obj1));	//

Returns:	[obj1.value]

console.log(accumulate2(obj2));	//

Returns:	[obj2.value]

console.log(accumulate2(obj3));	//

Returns:	[obj3.value]

It	does	not	work!	Only	the	value	of	the	object	last	passed
in	is	returned.

We	could	possibly	solve	this	with	a	nested	function
inside	the	first	function.

var	ValueAccumulator	=	function(obj)	{

		var	values	=	[]

		var	accumulate	=	function()	{

				values.push(obj.value);

		};

		accumulate();

		return	values;

};

But	it's	the	same	issue,	and	now	we	cannot	reach	the
accumulate	function	or	the	values	variable.

What	we	need	is	a	self-invoking	function.

Self-invoking	functions	and
closures
What	if	we	could	return	a	function	expression	that	in-turn
returns	the	values	array?	Variables	declared	in	a
function	are	available	to	any	code	within	the	function,
including	self-invoking	functions.

By	using	a	self-invoking	function,	our	dilemma	is	solved.

var	ValueAccumulator	=	function()	{

		var	values	=	[];

		var	accumulate	=	function(obj)	{

				if	(obj)	{

						values.push(obj.value);

						return	values;

				}

				else	{

						return	values;

				}

		};

		return	accumulate;

};

	

//This	allows	us	to	do	this:

var	accumulator	=	ValueAccumulator();

accumulator(obj1);

accumulator(obj2);

console.log(accumulator());

//	Output:	[obj1.value,	obj2.value]

It's	all	about	variable	scoping.	The	values	variable	is
available	to	the	inner	accumulate()	function,	even
when	code	outside	the	scope	calls	the	functions.	This	is
called	a	closure.

NOTENOTE
Closures	in	JavaScript	are	functions	that	have	access	to	the	parent	scope,	even	when	the
parent	function	has	closed.

Closures	are	a	feature	of	all	functional	languages.
Traditional	imperative	languages	do	not	allow	them.

Higher-order	functions
Self-invoking	functions	are	actually	a	form	of	higher-
order	functions.	Higher-order	functions	are	functions	that
either	take	another	function	as	the	input	or	return	a
function	as	the	output.

Higher-order	functions	are	not	common	in	traditional
programming.	While	an	imperative	programmer	might
use	a	loop	to	iterate	an	array,	a	functional	programmer
would	take	another	approach	entirely.	By	using	a	higher-
order	function,	the	array	can	be	worked	on	by	applying
that	function	to	each	item	in	the	array	to	create	a	new
array.

This	is	the	central	idea	of	the	functional	programming
paradigm.	What	higher-order	functions	allow	is	the	ability
to	pass	logic	to	other	functions,	just	like	objects.

Functions	are	treated	as	first-class	citizens	in	JavaScript,

a	distinction	JavaScript	shares	with	Scheme,	Haskell,
and	the	other	classic	functional	languages.	This	may
sound	bizarre,	but	all	this	really	means	is	that	functions
are	treated	as	primitives,	just	like	numbers	and	objects.	If
numbers	and	objects	can	be	passed	around,	so	can
functions.

To	see	this	in	action,	let's	use	a	higher-order	function
with	our	ValueAccumulator()	function	from	the
previous	section:

//	using	forEach()	to	iterate	through	an

array	and	call	a

//	callback	function,	accumulator,	for

each	item

var	accumulator2	=	ValueAccumulator();

var	objects	=	[obj1,	obj2,	obj3];	//	could

be	huge	array	of	objects

objects.forEach(accumulator2);

console.log(accumulator2());

Pure	functions
Pure	functions	return	a	value	computed	using	only	the
inputs	passed	to	it.	Outside	variables	and	global	states
may	not	be	used	and	there	may	be	no	side	effects.	In
other	words,	it	must	not	mutate	the	variables	passed	to	it
for	input.	Therefore,	pure	functions	are	only	used	for
their	returned	value.

A	simple	example	of	this	is	a	math	function.	The
Math.sqrt(4)	function	will	always	return	2,	does	not
use	any	hidden	information	such	as	settings	or	state,

and	will	never	inflict	any	side	effects.

Pure	functions	are	the	true	interpretation	of	the
mathematical	term	for	'function',	a	relation	between
inputs	and	an	output.	They	are	simple	to	think	about	and
are	readily	re-usable.	Because	they	are	totally
independent,	pure	functions	are	more	capable	of	being
used	again	and	again.

To	illustrate	this,	compare	the	following	non-pure
function	to	the	pure	one.

//	function	that	prints	a	message	to	the

center	of	the	screen

var	printCenter	=	function(str)	{

		var	elem	=

document.createElement("div");

		elem.textContent	=	str;

		elem.style.position	=	'absolute';

		elem.style.top	=

window.innerHeight/2+"px";

		elem.style.left	=

window.innerWidth/2+"px";

		document.body.appendChild(elem);

};

printCenter('hello	world');

//	pure	function	that	accomplishes	the

same	thing

var	printSomewhere	=	function(str,	height,

width)	{

		var	elem	=

document.createElement("div");

		elem.textContent	=	str;

		elem.style.position	=	'absolute';

		elem.style.top	=	height;

		elem.style.left	=	width;

		return	elem;

};

};

document.body.appendChild(printSomewhere('

hello	world',

window.innerHeight/2)+10+"px",window.inner

Width/2)+10+"px")

);

While	the	non-pure	function	relies	on	the	state	of	the
window	object	to	compute	the	height	and	width,	the	pure,
self-sufficient	function	instead	asks	that	those	values	be
passed	in.	What	this	actually	does	is	allow	the	message
to	be	printed	anywhere,	and	this	makes	the	function
much	more	versatile.

And	while	the	non-pure	function	may	seem	like	the
easier	option	because	it	performs	the	appending	itself
instead	of	returning	an	element,	the	pure	function
printSomewhere()	and	its	returned	value	play	better
with	other	functional	programming	design	techniques.

var	messages	=	['Hi',	'Hello',	'Sup',

'Hey',	'Hola'];

messages.map(function(s,i){

		return	printSomewhere(s,	100*i*10,

100*i*10);

}).forEach(function(element)	{

		document.body.appendChild(element);

});

NOTENOTE
When	the	functions	are	pure	and	don't	rely	on	state	or	environment,	then	we	don't	care
about	when	or	where	they	actually	get	computed.	We'll	see	this	later	with	lazy	evaluation.

Anonymous	functions

Another	benefit	of	treating	functions	as	first-class	objects
is	the	advent	of	anonymous	functions.

As	the	name	might	imply,	anonymous	functions	are
functions	without	names.	But	they	are	more	than	that.
What	they	allow	is	the	ability	to	define	ad-hoc	logic,	on-
the-spot	and	as	needed.	Usually,	it's	for	the	benefit	of
convenience;	if	the	function	is	only	referred	to	once,	then
a	variable	name	doesn't	need	to	be	wasted	on	it.

Some	examples	of	anonymous	functions	are	as	follows:

//	The	standard	way	to	write	anonymous

functions

function(){return	"hello	world"};

	

//	Anonymous	function	assigned	to	variable

var	anon	=	function(x,y){return	x+y};

	

//	Anonymous	function	used	in	place	of	a

named	callback	function,

//	this	is	one	of	the	more	common	uses	of

anonymous	functions.

setInterval(function(){console.log(new

Date().getTime())},	1000);

//	Output:		1413249010672,	1413249010673,

1413249010674,	...

	

//	Without	wrapping	it	in	an	anonymous

function,	it	immediately	//	execute	once

and	then	return	undefined	as	the	callback:

setInterval(console.log(new

Date().getTime()),	1000)

//	Output:		1413249010671

A	more	involved	example	of	anonymous	functions	used

within	higher-order	functions:

function	powersOf(x)	{

		return	function(y)	{

				//	this	is	an	anonymous	function!

				return	Math.pow(x,y);

		};

}

powerOfTwo	=	powersOf(2);

console.log(powerOfTwo(1));	//	2

console.log(powerOfTwo(2));	//	4

console.log(powerOfTwo(3));	//	8

	

powerOfThree	=	powersOf(3);

console.log(powerOfThree(3));		//	9

console.log(powerOfThree(10));	//	59049

The	function	that	is	returned	doesn't	need	to	be	named;
it	can't	be	used	anywhere	outside	the	powersOf()
function,	and	so	it	is	an	anonymous	function.

Remember	our	accumulator	function?	It	can	be	re-
written	using	anonymous	functions.

var

		obj1	=	{value:	1},

		obj2	=	{value:	2},

		obj3	=	{value:	3};

	

var	values	=	(function()	{

		//	anonymous	function

		var	values	=	[];

		return	function(obj)	{

				//	another	anonymous	function!

				if	(obj)	{

						values.push(obj.value);

						return	values;

				}

				}

				else	{

						return	values;

				}

		}

})();	//	make	it	self-executing

console.log(values(obj1));	//	Returns:

[obj.value]

console.log(values(obj2));	//	Returns:

[obj.value,	obj2.value]

Right	on!	A	pure,	high-order,	anonymous	function.	How
did	we	ever	get	so	lucky?	Actually,	it's	more	than	that.
It's	also	self-executing	as	indicated	by	the	structure,
(function(){...})();.	The	pair	of	parentheses
following	the	anonymous	function	causes	the	function	to
be	called	right	away.	In	the	above	example,	the	values
instance	is	assigned	to	the	output	of	the	self-executing
function	call.

NOTENOTE
Anonymous	functions	are	more	than	just	syntactical	sugar.	They	are	the	embodiment	of
Lambda	calculus.	Stay	with	me	on	this…	Lambda	calculus	was	invented	long	before
computers	or	computer	languages.	It	was	just	a	mathematical	notion	for	reasoning	about
functions.	Remarkably,	it	was	discovered	that—despite	the	fact	that	it	only	defines	three
kinds	of	expressions:	variable	references,	function	calls,	and	anonymous	functions—it	was
Turing-complete.	Today,	Lambda	calculus	lies	at	the	core	of	all	functional	languages	if	you
know	how	to	find	it,	including	JavaScript.

For	this	reason,	anonymous	functions	are	often	called	lambda	expressions.

One	drawback	to	anonymous	functions	remains.	They're
difficult	to	identify	in	call	stacks,	which	makes	debugging
trickier.	They	should	be	used	sparingly.

Method	chains

Chaining	methods	together	in	JavaScript	is	quit
common.	If	you've	used	jQuery,	you've	likely	performed
this	technique.	It's	sometimes	called	the	"Builder
Pattern".

It's	a	technique	that	is	used	to	simplify	code	where
multiple	functions	are	applied	to	an	object	one	after
another.

//	Instead	of	applying	the	functions	one

per	line...

arr	=	[1,2,3,4];

arr1	=	arr.reverse();

arr2	=	arr1.concat([5,6]);

arr3	=	arr2.map(Math.sqrt);

//	...they	can	be	chained	together	into	a

one-liner

console.log([1,2,3,4].reverse().concat([5,

6]).map(Math.sqrt));

//	parentheses	may	be	used	to	illustrate

console.log(((([1,2,3,4]).reverse()).conca

t([5,6])).map(Math.sqrt));

This	only	works	when	the	functions	are	methods	of	the
object	being	worked	on.	If	you	created	your	own	function
that,	for	example,	takes	two	arrays	and	returns	an	array
with	the	two	arrays	zipped	together,	you	must	declare	it
as	a	member	of	the	Array.prototype	object.	Take	a
look	at	the	following	code	snippet:

Array.prototype.zip	=	function(arr2)	{

		//	...

}

This	would	allow	us	to	the	following:

arr.zip([11,12,13,14).map(function(n)

{return	n*2});

//	Output:	2,	22,	4,	24,	6,	26,	8,	28

Recursion
Recursion	is	likely	the	most	famous	functional
programming	technique.	If	you	don't	know	by	now,	a
recursive	function	is	a	function	that	calls	itself.

When	a	functions	calls	itself,	something	strange
happens.	It	acts	both	as	a	loop,	in	that	it	executes	the
same	code	multiple	times,	and	as	a	function	stack.

Recursive	functions	must	be	very	careful	to	avoid	an
infinite	loop	(rather,	infinite	recursion	in	this	case).	So
just	like	loops,	a	condition	must	be	used	to	know	when	to
stop.	This	is	called	the	base	case.

An	example	is	as	follows:

var	foo	=	function(n)	{

		if	(n	<	0)	{

				//	base	case

				return	'hello';

		}

		else	{

				//	recursive	case

				foo(n-1);

		}

}

console.log(foo(5));

It's	possible	to	convert	any	loop	to	a	recursive	algorithm

and	any	recursive	algorithm	to	a	loop.	But	recursive
algorithms	are	more	appropriate,	almost	necessary,	for
situations	that	differ	greatly	from	those	where	loops	are
appropriate.

A	good	example	is	tree	traversal.	While	it's	not	too	hard
to	traverse	a	tree	using	a	recursive	function,	a	loop
would	be	much	more	complex	and	would	need	to
maintain	a	stack.	And	that	would	go	against	the	spirit	of
functional	programming.

var	getLeafs	=	function(node)	{

		if	(node.childNodes.length	==	0)	{

				//	base	case

				return	node.innerText;

		}

		else	{

				//	recursive	case:

				return	node.childNodes.map(getLeafs);

		}

}

DIVIDE	AND	CONQUER
Recursion	is	more	than	an	interesting	way	to	iterate
without	for	and	while	loops.	An	algorithm	design,
known	as	divide	and	conquer,	recursively	breaks
problems	down	into	smaller	instances	of	the	same
problem	until	they're	small	enough	to	solve.

The	historical	example	of	this	is	the	Euclidan	algorithm
for	finding	the	greatest	common	denominator	for	two
numbers.

function	gcd(a,	b)	{

		if	(b	==	0)	{

				//	base	case	(conquer)

				return	a;

		}

		else	{

				//	recursive	case	(divide)

				return	gcd(b,	a	%	b);

		}

}

	

console.log(gcd(12,8));

console.log(gcd(100,20));

So	in	theory,	divide	and	conquer	works	quite	eloquently,
but	does	it	have	any	use	in	the	real	world?	Yes!	The
JavaScript	function	for	sorting	arrays	is	not	very	good.
Not	only	does	it	sort	the	array	in	place,	which	means	that
the	data	is	not	immutable,	but	it	is	unreliable	and
inflexible.	With	divide	and	conquer,	we	can	do	better.

The	merge	sort	algorithm	uses	the	divide	and	conquer
recursive	algorithm	design	to	efficiently	sort	an	array	by
recursively	dividing	the	array	into	smaller	sub-arrays	and
then	merging	them	together.

The	full	implementation	in	JavaScript	is	about	40	lines	of
code.	However,	pseudocode	is	as	follows:

var	mergeSort	=	function(arr){

		if	(arr.length	<	2)	{

				//	base	case:	0	or	1	item	arrays	don't	

need	sorting

				return	items;

		}

		else	{

				//	recursive	case:	divide	the	array,	

sort,	then	merge

				var	middle	=	Math.floor(arr.length		

2);

				/	divide

				var	left	=	mergeSort(arr.slice(0,	

middle));

				var	right	=	

mergeSort(arr.slice(middle));

				//	conquer

				//	merge	is	a	helper	function	that	

returns	a	new	array

				//	of	the	two	arrays	merged	together

				return	merge(left,	right);

		}

}

Lazy	evaluation
Lazy	evaluation,	also	known	as	non-strict	evaluation,
call-by-need	and	deffered	execution,	is	an	evaluation
strategy	that	waits	until	the	value	is	needed	to	compute
the	result	of	a	function	and	is	particularly	useful	for
functional	programming.	It's	clear	that	a	line	of	code	that
states	x	=	func()	is	calling	for	x	to	be	assigned	to	the
returned	value	by	func().	But	what	x	actually	equates
to	does	not	matter	until	it	is	needed.	Waiting	to	call
func()	until	x	is	needed	is	known	as	lazy	evaluation.

This	strategy	can	result	in	a	major	increase	in
performance,	especially	when	used	with	method	chains
and	arrays,	the	favorite	program	flow	techniques	of	the
functional	programmer.

One	exciting	benefit	of	lazy	evaluation	is	the	existence	of

infinite	series.	Because	nothing	is	actually	computed
until	it	can't	be	delayed	any	further,	it's	possible	to	do
this:

//	wishful	JavaScript	pseudocode:

var	infinateNums	=	range(1	to	infinity);

var	tenPrimes	=

infinateNums.getPrimeNumbers().first(10);

This	opens	the	door	for	many	possibilities:	asynchronous
execution,	parallelization,	and	composition,	just	to	name
a	few.

However,	there's	one	problem:	JavaScript	does	not
perform	Lazy	evaluation	on	its	own.	That	being	said,
there	exist	libraries	for	JavaScript	that	simulate	lazy
evaluation	very	well.	That	is	the	subject	of	Chapter	3,
Setting	Up	the	Functional	Programming	Environment.

The	functional
programmer's	toolkit
If	you've	looked	closely	at	the	few	examples	presented
so	far,	you'll	notice	a	few	methods	being	used	that	you
may	not	be	familiar	with.	They	are	the	map(),
filter(),	and	reduce()	functions,	and	they	are
crucial	to	every	functional	program	of	any	language.
They	enable	you	to	remove	loops	and	statements,
resulting	in	cleaner	code.

The	map(),	filter(),	and	reduce()	functions	make
up	the	core	of	the	functional	programmer's	toolkit,	a
collection	of	pure,	higher-order	functions	that	are	the
workhorses	of	the	functional	method.	In	fact,	they're	the
epitome	of	what	a	pure	function	and	what	a	higher-order
function	should	be	like;	they	take	a	function	as	input	and
return	an	output	with	zero	side	effects.

While	they're	standard	for	browsers	that	implement
ECMAScript	5.1,	they	only	work	on	arrays.	Each	time	it's
called,	a	new	array	is	created	and	returned.	The	existing
array	is	not	modified.	But	there's	more,	they	take
functions	as	inputs,	often	in	the	form	of	anonymous
functions	referred	to	as	callback	functions;	they	iterate
over	the	array	and	apply	the	function	to	each	item	in	the
array!

myArray	=	[1,2,3,4];

myArray	=	[1,2,3,4];

newArray	=	myArray.map(function(x)	{return

x*2});

console.log(myArray);		//	Output:

[1,2,3,4]

console.log(newArray);	//	Output:

[2,4,6,8]

One	more	thing.	Because	they	only	work	on	arrays,	they
do	not	work	on	other	iterable	data	structures,	like	certain
objects.	Fret	not,	libraries	such	as	underscore.js,
Lazy.js,	stream.js,	and	many	more	all	implement
their	own	map(),	filter(),	and	reduce()	methods
that	are	more	versatile.

Callbacks
If	you've	never	worked	with	callbacks	before,	you	might
find	the	concept	a	little	puzzling.	This	is	especially	true	in
JavaScript,	given	the	several	different	ways	that
JavaScript	allows	you	to	declare	functions.

A	callback()	function	is	used	for	passing	to	other
functions	for	them	to	use.	It's	a	way	to	pass	logic	just	as
you	would	pass	an	object:

var	myArray	=	[1,2,3];

function	myCallback(x){return	x+1};

console.log(myArray.map(myCallback));

To	make	it	simpler	for	easy	tasks,	anonymous	functions
can	be	used:

console.log(myArray.map(function(x){return

x+1}));

x+1}));

They	are	not	only	used	in	functional	programming,	they
are	used	for	many	things	in	JavaScript.	Purely	for
example,	here's	a	callback()	function	used	in	an
AJAX	call	made	with	jQuery:

function	myCallback(xhr){

		console.log(xhr.status);

		return	true;

}

$.ajax(myURI).done(myCallback);

Notice	that	only	the	name	of	the	function	was	used.	And
because	we're	not	calling	the	callback	and	are	only
passing	the	name	of	it,	it	would	be	wrong	to	write	this:

$.ajax(myURI).fail(myCallback(xhr));

//	or

$.ajax(myURI).fail(myCallback());

What	would	happen	if	we	did	call	the	callback?	In	that
case,	the	myCallback(xhr)	method	would	try	to
execute—'undefined'	would	be	printed	to	the	console
and	it	would	return	True.	When	the	ajax()	call
completes,	it	will	have	'true'	as	the	name	of	the	callback
function	to	use,	and	that	will	throw	an	error.

What	this	also	means	is	that	we	cannot	specify	what
arguments	are	passed	to	the	callback	functions.	If	we
need	different	parameters	from	what	the	ajax()	call	will
pass	to	it,	we	can	wrap	the	callback	function	in	an
anonymous	function:

function	myCallback(status){

		console.log(status);

		return	true;

}

$.ajax(myURI).done(function(xhr)

{myCallback(xhr.status)});

Array.prototype.map()
The	map()	function	is	the	ringleader	of	the	bunch.	It
simply	applies	the	callback	function	on	each	item	in	the
array.

NOTENOTE
Syntax:	arr.map(callback	[,	thisArg]);

Parameters:

callback():	This	function	produces	an	element	for	the	new	array,

receiving	these	arguments:

currentValue:	This	argument	gives	the	current	element

being	processed	in	the	array

index:	This	argument	gives	the	index	of	the	current	element	in

the	array

array:	This	argument	gives	the	array	being	processed

thisArg():	This	function	is	optional.	The	value	is	used	as	this

when	executing	callback.

Examples:

var

		integers	=	[1,-0,9,-8,3],

		numbers	=	[1,2,3,4],

		str	=	'hello	world	how	ya	doing?';

//	map	integers	to	their	absolute	values

//	map	integers	to	their	absolute	values

console.log(integers.map(Math.abs));

	

//	multiply	an	array	of	numbers	by	their

position	in	the	array

console.log(numbers.map(function(x,	i)

{return	x*i}));

	

//	Capitalize	every	other	word	in	a

string.

console.log(str.split('	').map(function(s,

i){

		if	(i%2	==	0)	{

				return	s.toUpperCase();

		}

		else	{

				return	s;

		}

}));

NOTENOTE
While	the	Array.prototype.map	method	is	a	standard	method	for	the	Array	object	in
JavaScript,	it	can	be	easily	extended	to	your	custom	objects	as	well.

MyObject.prototype.map	=	function(f)	{

		return	new	MyObject(f(this.value));

};

Array.prototype.filter()
The	filter()	function	is	used	to	take	elements	out	of
an	array.	The	callback	must	return	True	(to	include	the
item	in	the	new	array)	or	False	(to	drop	it).	Something
similar	could	be	achieved	by	using	the	map()	function
and	returning	a	null	value	for	items	you	want	dropped,
but	the	filter()	function	will	delete	the	item	from	the
new	array	instead	of	inserting	a	null	value	in	its	place.

NOTENOTE
Syntax:	arr.filter(callback	[,	thisArg]);

Parameters:

callback():	This	function	is	used	to	test	each	element	in	the	array.

Return	True	to	keep	the	element,	False	otherwise.	With	these

parameters:

currentValue:	This	parameter	gives	the	current	element

being	processed	in	the	array

index:	This	parameter	gives	the	index	of	the	current	element	in

the	array

array:	This	parameter	gives	the	array	being	processed.

thisArg():	This	function	is	optional.	Value	is	used	as	this	when

executing	callback.

Examples:

var	myarray	=	[1,2,3,4]

words	=	'hello	123	world	how	345	ya

doing'.split('	');

re	=	'[a-zA-Z]';

//	remove	all	negative	numbers

console.log([-2,-1,0,1,2].filter(function(

x){return	x>0}));

//	remove	null	values	after	a	map

operation

console.log(words.filter(function(s){

		return	s.match(re);

}));

//	remove	random	objects	from	an	array

console.log(myarray.filter(function(){

		return	Math.floor(Math.random()*2)})

);

Array.prototype.reduce()
Sometimes	called	fold,	the	reduce()	function	is	used	to
accumulate	all	the	values	of	the	array	into	one.	The
callback	needs	to	return	the	logic	to	be	performed	to
combine	the	objects.	In	the	case	of	numbers,	they're
usually	added	together	to	get	a	sum	or	multiplied
together	to	get	a	product.	In	the	case	of	strings,	the
strings	are	often	appended	together.

NOTENOTE
Syntax:	arr.reduce(callback	[,	initialValue]);

Parameters:

callback():	This	function	combines	two	objects	into	one,	which	is

returned.	With	these	parameters:

previousValue:	This	parameter	gives	the	value	previously

returned	from	the	last	invocation	of	the	callback,	or	the
initialValue,	if	supplied

currentValue:	This	parameter	gives	the	current	element

being	processed	in	the	array

index:	This	parameter	gives	the	index	of	the	current	element	in

the	array

array:	This	parameter	gives	the	array	being	processed

initialValue():	This	function	is	optional.	Object	to	use	as	the	first

argument	to	the	first	call	of	the	callback.

Examples:

var	numbers	=	[1,2,3,4];

//	sum	up	all	the	values	of	an	array

console.log([1,2,3,4,5].reduce(function(x,

console.log([1,2,3,4,5].reduce(function(x,

y){return	x+y},	0));

//	sum	up	all	the	values	of	an	array

console.log([1,2,3,4,5].reduce(function(x,

y){return	x+y},	0));

	

//	find	the	largest	number

console.log(numbers.reduce(function(a,b){

		return	Math.max(a,b)})	//	max	takes	two

arguments

);

Honorable	mentions
The	map(),	filter(),	and	reduce()	functions	are
not	alone	in	our	toolbox	of	helper	functions.	There	exist
many	more	functions	that	can	be	plugged	into	nearly	any
functional	application.

ARRAY.PROTOTYPE.FOREACH
Essentially	the	non-pure	version	of	map(),	forEach()
iterates	over	an	array	and	applies	a	callback()
function	over	each	item.	However,	it	doesn't	return
anything.	It's	a	cleaner	way	of	performing	a	for	loop.

NOTENOTE
Syntax:	arr.forEach(callback	[,	thisArg]);

Parameters:

callback():	This	function	is	to	be	performed	for	each	value	of	the

array.	With	these	parameters:

currentValue:	This	parameter	gives	the	current	element

being	processed	in	the	array

index:	This	parameter	gives	the	index	of	the	current	element	in

the	array

array:	This	parameter	gives	the	array	being	processed

thisArg:	This	function	is	optional.	Value	is	used	as	this	when

executing	callback.

Examples:

var	arr	=	[1,2,3];

var	nodes	=	arr.map(function(x)	{

		var	elem	=

document.createElement("div");

		elem.textContent	=	x;

		return	elem;

});

	

//	log	the	value	of	each	item

arr.forEach(function(x){console.log(x)});

	

//	append	nodes	to	the	DOM

nodes.forEach(function(x)

{document.body.appendChild(x)});

ARRAY.PROTOTYPE.CONCAT
When	working	with	arrays	instead	of	for	and	while
loops,	often	you	will	need	to	join	multiple	arrays	together.
Another	built-in	JavaScript	function,	concat(),	takes
care	of	this	for	us.	The	concat()	function	returns	a	new
array	and	leaves	the	old	arrays	untouched.	It	can	join	as
many	arrays	as	you	pass	to	it.

console.log([1,	2,

3].concat(['a','b','c'])	//	concatenate

two	arrays);

//	Output:	[1,	2,	3,	'a','b','c']

The	original	array	is	untouched.	It	returns	a	new	array
with	both	arrays	concatenated	together.	This	also	means
that	the	concat()	function	can	be	chained	together.

var	arr1	=	[1,2,3];

var	arr2	=	[4,5,6];

var	arr3	=	[7,8,9];

var	x	=	arr1.concat(arr2,	arr3);

var	y	=	arr1.concat(arr2).concat(arr3));

var	z	=	arr1.concat(arr2.concat(arr3)));

console.log(x);

console.log(y);

console.log(z);

Variables	x,	y	and	z	all	contain
[1,2,3,4,5,6,7,8,9].

ARRAY.PROTOTYPE.REVERSE
Another	native	JavaScript	function	helps	with	array
transformations.	The	reverse()	function	inverts	an
array,	such	that	the	first	element	is	now	the	last	and	the
last	is	now	the	first.

However,	it	does	not	return	a	new	array;	instead	it
mutates	the	array	in	place.	We	can	do	better.	Here's	an
implementation	of	a	pure	method	for	reversing	an	array:

var	invert	=	function(arr)	{

		return	arr.map(function(x,	i,	a)	{

				return	a[a.length	-	(i+1)];

		});

};

var	q	=	invert([1,2,3,4]);

console.log(q);

console.log(q);

ARRAY.PROTOTYPE.SORT
Much	like	our	map(),	filter(),	and	reduce()
methods,	the	sort()	method	takes	a	callback()
function	that	defines	how	the	objects	within	an	array
should	be	sorted.	But,	like	the	reverse()	function,	it
mutates	the	array	in	place.	And	that's	no	bueno.

arr	=	[200,	12,	56,	7,	344];

console.log(arr.sort(function(a,b){return

a–b}));

//	arr	is	now:	[7,	12,	56,	200,	344];

We	could	write	a	pure	sort()	function	that	doesn't
mutate	the	array,	but	sorting	algorithms	is	the	source	of
much	grief.	Significantly	large	arrays	that	need	to	be
sorted	really	should	be	organized	in	data	structures	that
are	designed	just	for	that:	quickStort,	mergeSort,
bubbleSort,	and	so	on.

ARRAY.PROTOTYPE.EVERY	AND
ARRAY.PROTOTYPE.SOME
The	Array.prototype.every()	and
Array.prototype.some()	functions	are	both	pure
and	high-order	functions	that	are	methods	of	the	Array
object	and	are	used	to	test	the	elements	of	an	array
against	a	callback()	function	that	must	return	a
Boolean	representing	the	respective	input.	The	every()
function	returns	True	if	the	callback()	function
returns	True	for	every	element	in	the	array,	and	the

some()	function	returns	True	if	some	elements	in	the
array	are	True.

Example:

function	isNumber(n)	{

		return	!isNaN(parseFloat(n))	&&

isFinite(n);

}

	

console.log([1,	2,	3,	4].every(isNumber));

//	Return:	true

console.log([1,	2,	'a'].every(isNumber));

//	Return:	false

console.log([1,	2,	'a'].some(isNumber));

//	Return:	true

Summary
In	order	to	develop	an	understanding	of	functional
programming,	this	chapter	covered	a	fairly	broad	range
of	topics.	First	we	analyzed	what	it	means	for	a
programming	language	to	be	functional,	then	we
evaluated	JavaScript	for	its	functional	programming
capabilities.	Next,	we	applied	the	core	concepts	of
functional	programming	using	JavaScript	and
showcased	some	of	JavaScript's	built-in	functions	for
functional	programming.

Although	JavaScript	does	have	a	few	tools	for	functional
programming,	its	functional	core	remains	mostly	hidden
and	much	is	to	be	desired.	In	the	next	chapter,	we	will
explore	several	libraries	for	JavaScript	that	expose	its
functional	underbelly.

Chapter	3.	Setting	Up	the
Functional	Programming
Environment

Introduction
Do	we	need	to	know	advanced	math—category	theory,
Lambda	calculus,	polymorphisms—just	to	write
applications	with	functional	programming?	Do	we	need
to	reinvent	the	wheel?	The	short	answer	to	both	these
questions	is	no.

In	this	chapter,	we	will	do	our	best	to	survey	everything
that	can	impact	the	way	we	write	our	functional
applications	in	JavaScript.

Libraries

Toolkits

Development	environments

Functional	language	that	compiles	to	JavaScript

And	more

Please	understand	that	the	current	landscape	of
functional	libraries	for	JavaScript	is	a	very	fluid	one.	Like
all	aspects	of	computer	programming,	the	community
can	change	in	a	heartbeat;	new	libraries	can	be	adopted
and	old	ones	can	be	abandoned.	For	instance,	during

the	writing	process	of	this	very	book,	the	popular	and
stable	Node.js	platform	for	I/O	has	been	forked	by	its
open	source	community.	Its	future	is	vague.

Therefore,	the	most	important	concept	to	be	gained	from
this	chapter	is	not	how	to	use	the	current	libraries	for
functional	programming,	but	how	to	use	any	library	that
enhances	JavaScript's	functional	programming	method.
This	chapter	will	not	focus	on	just	one	or	two	libraries,
but	will	explore	as	many	as	possible	with	the	goal	of
surveying	all	the	many	styles	of	functional	programming
that	exist	within	JavaScript.

Functional	libraries	for
JavaScript
It's	been	said	that	every	functional	programmer	writes
their	own	library	of	functions,	and	functional	JavaScript
programmers	are	no	exception.	With	today's	open
source	code-sharing	platforms	such	as	GitHub,	Bower,
and	NPM,	it's	easier	to	share,	collaborate,	and	grow
these	libraries.	Many	libraries	exist	for	functional
programming	with	JavaScript,	ranging	from	tiny	toolkits
to	monolithic	module	libraries.

Each	library	promotes	its	own	style	of	functional
programming.	From	a	rigid,	math-based	style	to	a
relaxed,	informal	style,	each	library	is	different	but	they
all	share	one	common	feature:	they	all	have	abstract
JavaScript	functional	capabilities	to	increase	code	re-
use,	readability,	and	robustness.

At	the	time	of	writing,	however,	a	single	library	has	not
established	itself	as	the	de-facto	standard.	Some	might
argue	that	underscore.js	is	the	one	but,	as	you'll	see
in	the	following	section,	it	might	be	advisable	to	avoid
underscore.js.

Underscore.js
Underscore	has	become	the	standard	functional

JavaScript	library	in	the	eyes	of	many.	It	is	mature,
stable,	and	was	created	by	Jeremy	Ashkenas,	the	man
behind	the	Backbone.js	and	CoffeeScript	libraries.
Underscore	is	actually	a	reimplementation	of	Ruby's
Enumerable	module,	which	explains	why	CoffeeScript
was	also	influenced	by	Ruby.

Similar	to	jQuery,	Underscore	doesn't	modify	native
JavaScript	objects	and	instead	uses	a	symbol	to	define
its	own	object:	the	underscore	character	"_".	So,	using
Underscore	would	work	like	this:

var	x	=	_.map([1,2,3],	Math.sqrt);	//

Underscore's	map	function

console.log(x.toString());

We've	already	seen	JavaScrip's	native	map()	method
for	the	Array	object,	which	works	like	this:

var	x	=	[1,2,3].map(Math.sqrt);

The	difference	is	that,	in	Underscore,	both	the	Array
object	and	the	callback()	function	are	passed	as
parameters	to	the	Underscore	object's	map()	method
(_.map),	as	opposed	to	passing	only	the	callback	to	the
array's	native	map()	method
(Array.prototype.map).

But	there's	way	more	than	just	map()	and	other	built-in
functions	to	Underscore.	It's	full	of	super	handy	functions
such	as	find(),	invoke(),	pluck(),	sortyBy(),

groupBy(),	and	more.

var	greetings	=	[{origin:	'spanish',

value:	'hola'},

{origin:	'english',	value:	'hello'}];

console.log(_.pluck(greetings,	'value')

);

//	Grabs	an	object's	property.

//	Returns:	['hola',	'hello']

console.log(_.find(greetings,	function(s)

{return	s.origin	==

'spanish';}));

//	Looks	for	the	first	obj	that	passes	the

truth	test

//	Returns:	{origin:	'spanish',	value:

'hola'}

greetings	=

greetings.concat(_.object(['origin','value

'],

['french','bonjour']));

console.log(greetings);

//	_.object	creates	an	object	literal	from

two	merged	arrays

//	Returns:	[{origin:	'spanish',	value:

'hola'},

//{origin:	'english',	value:	'hello'},

//{origin:	'french',	value:	'bonjour'}]

And	it	provides	a	way	of	chaining	methods	together:

var	g	=	_.chain(greetings)

		.sortBy(function(x)	{return

x.value.length})

		.pluck('origin')

		.map(function(x){return

x.charAt(0).toUpperCase()+x.slice(1)})

		.reduce(function(x,	y){return	x	+	'	'	+

y},	'')

		.value();

//	Applies	the	functions

//	Applies	the	functions

//	Returns:	'Spanish	English	French'

console.log(g);

NOTENOTE
The	_.chain()	method	returns	a	wrapped	object	that	holds	all	the	Underscore	functions.
The	_.value	method	is	then	used	to	extract	the	value	of	the	wrapped	object.	Wrapped
objects	are	also	very	useful	for	mixing	Underscore	with	object-oriented	programming.

Despite	its	ease	of	use	and	adaptation	by	the
community,	the	underscore.js	library	has	been
criticized	for	forcing	you	to	write	overly	verbose	code	and
for	encouraging	the	wrong	patterns.	Underscore's
structure	may	not	be	ideal	or	even	function!

Until	version	1.7.0,	released	shortly	after	Brian
Lonsdorf's	talk	entitled	Hey	Underscore,	you're	doing	it
wrong!,	landed	on	YouTube,	Underscore	explicitly
prevented	us	from	extending	functions	such	as	map(),
reduce(),	filter(),	and	more.

_.prototype.map	=	function(obj,	iterate,

[context])	{

		if	(Array.prototype.map	&&	obj.map	===

Array.prototype.map)	return

obj.map(iterate,	context);

		//	...

};

NOTENOTE
You	can	watch	the	video	of	Brian	Lonsdorf's	talk	at	www.youtube.com/watch?
v=m3svKOdZij.

Map,	in	terms	of	category	theory,	is	a	homomorphic
functor	interface	(more	on	this	in	Chapter	5,	Category

http://www.youtube.com/watch?v=m3svKOdZij

Theory).	And	we	should	be	able	to	define	map	as	a
functor	for	whatever	we	need	it	for.	So	that's	not	very
functional	of	Underscore.

And	because	JavaScript	doesn't	have	built-in	immutable
data,	a	functional	library	should	be	careful	to	not	allow	its
helper	functions	to	mutate	the	objects	passed	to	it.	A
good	example	of	this	problem	is	shown	below.	The
intention	of	the	snippet	is	to	return	a	new	selected	list
with	one	option	set	as	the	default.	But	what	actually
happens	is	that	the	selected	list	is	mutated	in	place.

function	getSelectedOptions(id,	value)	{

		options	=	document.querySelectorAll('#'

+	id	+	'	option');

		var	newOptions	=	_.map(options,

function(opt){

				if	(opt.text	==	value)	{

						opt.selected	=	true;

						opt.text	+=	'	(this	is	the

default)';

				}

				else	{

						opt.selected	=	false;

				}

				return	opt;

		});

		return	newOptions;

}

var	optionsHelp	=

getSelectedOptions('timezones',

'Chicago');

We	would	have	to	insert	the	line	opt	=
opt.cloneNode();	to	the	callback()	function	to

make	a	copy	of	each	object	within	the	list	being	passed
to	the	function.	Underscore's	map()	function	cheats	to
boost	performance,	but	it	is	at	the	cost	of	functional	feng
shui.	The	native	Array.prototype.map()	function
wouldn't	require	this	because	it	makes	a	copy,	but	it	also
doesn't	work	on	nodelist	collections.

Underscore	may	be	less	than	ideal	for	mathematically-
correct,	functional	programming,	but	it	was	never
intended	to	extend	or	transform	JavaScript	into	a	pure
functional	language.	It	defines	itself	as	a	JavaScript
library	that	provides	a	whole	mess	of	useful	functional
programming	helpers.	It	may	be	a	little	more	than	a
spurious	collection	of	functional-like	helpers,	but	it's	no
serious	functional	library	either.

Is	there	a	better	library	out	there?	Perhaps	one	that	is
based	on	mathematics?

Fantasy	Land
Sometimes,	the	truth	is	stranger	than	fiction.

Fantasy	Land	is	a	collection	of	functional	base	libraries
and	a	formal	specification	for	how	to	implement
"algebraic	structures"	in	JavaScript.	More	specifically,
Fantasy	Land	specifies	the	interoperability	of	common
algebraic	structures,	or	algebras	for	short:	monads,
monoids,	setoids,	functors,	chains,	and	more.	Their
names	may	sound	scary,	but	they're	just	a	set	of	values,
a	set	of	operators,	and	some	laws	it	must	obey.	In	other

words,	they're	just	objects.

Here's	how	it	works.	Each	algebra	is	a	separate	Fantasy
Land	specification	and	may	have	dependencies	on	other
algebras	that	need	to	be	implemented.

Some	of	the	algebra	specifications	are:

Setoids:

Implement	the	reflexivity,	symmetry	and	transitivity	laws

Define	the	equals()	method

Semigroups

Implement	the	associativity	law

Define	the	concat()	method

Monoid

Implement	right	identity	and	left	identity

Define	the	empty()	method

Functor

Implement	the	identity	and	composition	laws

Define	the	map()	method

The	list	goes	on	and	on.

We	don't	necessarily	need	to	know	exactly	what	each
algebra	is	for	but	it	certainly	helps,	especially	if	you're
writing	your	own	library	that	conforms	to	the
specifications.	It's	not	just	abstract	nonsense,	it	outlines
a	means	of	implementing	a	high-level	abstraction	called
category	theory.	A	full	explanation	of	category	theory	can
be	found	in	Chapter	5,	Category	Theory.

Fantasy	Land	doesn't	just	tell	us	how	to	implement
functional	programming,	it	does	provide	a	set	of
functional	modules	for	JavaScript.	However,	many	are
incomplete	and	documentation	is	pretty	sparse.	But
Fantasy	Land	isn't	the	only	library	out	there	to	implement
its	open	source	specifications.	Others	have	too,	namely:
Bilby.js.

Bilby.js
What	the	heck	is	a	bilby?	No,	it's	not	a	mythical	creature
that	might	exist	in	Fantasy	Land.	It	exists	here	on	Earth
as	a	freaky/cute	cross	between	a	mouse	and	a	rabbit.
Nonetheless,	bibly.js	library	is	compliant	with
Fantasy	Land	specifications.

In	fact,	bilby.js	is	a	serious	functional	library.	As	its
documentation	states,	it	is,	Serious,	meaning	it	applies
category	theory	to	enable	highly	abstract	code.
Functional,	meaning	it	enables	referentially	transparent
programs.	Wow,	that	is	pretty	serious.	The

documentation	located	at	http://bilby.brianmckenna.org/
goes	on	to	say	that	it	provides:

Immutable	multimethods	for	ad-hoc	polymorphism

Functional	data	structures

Operator	overloading	for	functional	syntax

Automated	specification	testing	(ScalaCheck,	QuickCheck)

By	far	the	most	mature	library	that	conforms	to	the
Fantasy	Land	specifications	for	algebraic	structures,
Bilby.js	is	a	great	resource	for	fully	committing	to	the
functional	style.

Let's	try	an	example:

//	environments	in	bilby	are	immutable	

structure	for	multimethods

var	shapes1	=	bilby.environment()

		//	can	define	methods

		.method(

				'area',	//	methods	take	a	name

				function(a){return	typeof(a)	==	

'rect'},	//	a	predicate

				function(a){return	a.x		a.y}	//	and	an	

implementation

)

		//	and	properties,	like	methods	with	

predicates	that	always

		//	return	true

		.property(

					'name',			//	takes	a	name

					'shape');	//	and	a	function

//	now	we	can	overload	it

var	shapes2	=	shapes1

		.method(

				'area',	function(a){return	typeof(a)	

http://bilby.brianmckenna.org/

==	'circle'},

				function(a){return	a.r		a.r		Math.PI}	

);

var	shapes3	=	shapes2

		.method(

				'area',	function(a){return	typeof(a)	

==	'triangle'},

				function(a){return	a.height		a.base		

2});

/	and	now	we	can	do	something	like	this

var	objs	=	[{type:'circle',	r:5},	

{type:'rect',	x:2,	y:3}];

var	areas	=	objs.map(shapes3.area);

//	and	this

var	totalArea	=	

objs.map(shapes3.area).reduce(add);

This	is	category	theory	and	ad-hoc	polymorphism	in
action.	Again,	category	theory	will	be	covered	in	full	in
Chapter	5,	Category	Theory.

NOTENOTE
Category	theory	is	a	recently	invigorated	branch	of	mathematics	that	functional
programmers	use	to	maximize	the	abstraction	and	usefulness	of	their	code.	But	there	is	a
major	drawback:	it's	difficult	to	conceptualize	and	quickly	get	started	with.

The	truth	is	that	Bilby	and	Fantasy	Land	are	really
stretching	the	possibilities	of	functional	programming	in
JavaScript.	Although	it's	exciting	to	see	the	evolution	of
computer	science,	the	world	may	just	not	be	ready	for
the	kind	of	hard-core	functional	style	that	Bibly	and
Fantasy	Land	are	pushing.

Maybe	such	a	grandiose	library	on	the	bleeding-edge	of

functional	JavaScript	is	not	our	thing.	After	all,	we	set	out
to	explore	the	functional	techniques	that	complement
JavaScript,	not	to	build	functional	programming	dogma.
Let's	turn	our	attention	to	another	new	library,	Lazy.js.

Lazy.js
Lazy	is	a	utility	library	more	along	the	lines	of	the
underscore.js	library	but	with	a	lazy	evaluation
strategy.	Because	of	this,	Lazy	makes	the	impossible
possible	by	functionally	computing	results	of	series	that
won't	be	available	with	immediate	interpretation.	It	also
boasts	a	significant	performance	boost.

The	Lazy.js	library	is	still	very	young.	But	it	has	a	lot	of
momentum	and	community	enthusiasm	behind	it.

The	idea	is	that,	in	Lazy,	everything	is	a	sequence	that
we	can	iterate	over.	Owing	to	the	way	the	library	controls
the	order	in	which	methods	are	applied,	many	really	cool
things	can	be	achieved:	asynchronous	iteration	(parallel
programming),	infinite	sequences,	functional	reactive
programming,	and	more.

The	following	examples	show	off	a	bit	of	everything:

//	Get	the	first	eight	lines	of	a	song's

lyrics

var	lyrics	=	"Lorem	ipsum	dolor	sit	amet,

consectetur	adipiscing	eli

//	Without	Lazy,	the	entire	string	is

first	split	into	lines

console.log(lyrics.split('\n').slice(0,3))

console.log(lyrics.split('\n').slice(0,3))

;

	

//	With	Lazy,	the	text	is	only	split	into

the	first	8	lines

//	The	lyrics	can	even	be	infinitely	long!

console.log(Lazy(lyrics).split('\n').take(

3));

	

//First	10	squares	that	are	evenly

divisible	by	3

var	oneTo1000	=	Lazy.range(1,

1000).toArray();

var	sequence	=	Lazy(oneTo1000)

		.map(function(x)	{	return	x	*	x;	})

		.filter(function(x)	{	return	x	%	3	===

0;	})

		.take(10)

		.each(function(x)	{	console.log(x);	});

	

//	asynchronous	iteration	over	an	infinite

sequence

var	asyncSequence	=

Lazy.generate(function(x){return	x++})

		.async(100)	//	0.100s	intervals	between

elements

		.take(20)	//	only	compute	the	first	20

		.each(function(e)	{	//	begin	iterating

over	the	sequence

				console.log(new

Date().getMilliseconds()	+	":	"	+	e);

		});

More	examples	and	use-cases	are	covered	in	Chapter	4,
Implementing	Functional	Programming	Techniques	in
JavaScript.

But	its	not	entirely	correct	to	fully	credit	the	Lazy.js
library	with	this	idea.	One	of	its	predecessors,	the

Bacon.js	library,	works	in	much	the	same	way.

Bacon.js
The	logo	of	Bacon.js	library	is	as	follows:

The	mustachioed	hipster	of	functional	programming
libraries,	Bacon.js	is	itself	a	library	for	functional
reactive	programming.	Functional	reactive	programming
just	means	that	functional	design	patterns	are	used	to
represent	values	that	are	reactive	and	always	changing,
like	the	position	of	the	mouse	on	the	screen,	or	the	price
of	a	company's	stock.	In	the	same	way	that	Lazy	can	get
away	with	creating	infinite	sequences	by	not	calculating
the	value	until	it's	needed,	Bacon	can	avoid	having	to
calculate	ever-changing	values	until	the	very	last
second.

What	are	called	sequences	in	Lazy	are	known	as
EventStreams	and	Properties	in	Bacon	because	they're
more	suited	for	working	with	events	(onmouseover,
onkeydown,	and	so	on)	and	reactive	properties	(scroll
position,	mouse	position,	toggles,	and	so	on).

Bacon.fromEventTarget(document.body,

Bacon.fromEventTarget(document.body,

"click")

		.onValue(function()	{	alert("Bacon!")

});

Bacon	is	a	little	bit	older	than	Lazy	but	its	feature	set	is
about	half	the	size	and	its	community	enthusiasm	is
about	equal.

Honorable	mentions
There	are	simply	too	many	libraries	out	there	to	do	them
all	justice	within	the	scope	of	this	book.	Let's	look	at	a
few	more	libraries	for	functional	programming	in
JavaScript.

Functional

Possibly	the	first	library	for	functional	programming	in
JavaScript,	Functional	is	a	library	that	includes

comprehensive	higher-order	function	support	as	well	as
string	lambdas

wu.js

Especially	prized	for	its	curryable()	function,	wu.js	library

is	a	very	nice	Library	for	functional	programming.	It	was	the	first
library	(that	I	know	of)	to	implement	lazy	evaluation,	getting	the
ball	rolling	for	Bacon.js,	Lazy.js	and	other	libraries

Yes,	it	is	named	after	the	infamous	rap	group	Wu	Tang	Clan

sloth.js

Very	similar	to	the	Lazy.js	libraries,	but	much	smaller

stream.js

The	stream.js	library	supports	infinite	streams	and	not	much

else

Absolutely	tiny	in	size

Lo-Dash.js

As	the	name	might	imply,	the	lo-dash.js	library	was	inspired

by	the	underscore.js	library

Highly	optimized

Sugar

Sugar	is	a	support	library	for	functional	programming

techniques	in	JavaScript,	like	Underscore,	but	with	some	key
differences	in	how	it's	implemented.

Instead	of	doing	_.pluck(myObjs,	'value')	in

Underscore,	it's	just	myObjs.map('value')	in	Sugar.	This

means	that	it	modifies	native	JavaScript	objects,	so	there	is	a
small	risk	of	it	not	playing	nicely	with	other	libraries	that	do	the
same	such	as	Prototype.

Very	good	documentation,	unit	tests,	analyzers,	and	more.

from.js

A	new	functional	library	and	LINQ	(Language	Integrated
Query)	engine	for	JavaScript	that	supports	most	of	the	same
LINQ	functions	that	.NET	provides

100%	lazy	evaluation	and	supports	lambda	expressions

Very	young	but	documentation	is	excellent

JSLINQ

Another	functional	LINQ	engine	for	JavaScript

Much	older	and	more	mature	than	from.js	library

Boiler.js

Another	utility	library	that	extends	JavaScript's	functional
methods	to	more	primitives:	strings,	numbers,	objects,
collections	and	arrays

Folktale

Like	the	Bilby.js	library,	Folktale	is	another	new	library	that

implements	the	Fantasy	Land	specifications.	And	like	its
forefather,	Folktale	is	also	a	collection	of	libraries	for	functional
programming	in	JavaScript.	It's	very	young	but	could	have	a
bright	future.

jQuery

Surprised	to	see	jQuery	mentioned	here?	Although	jQuery	is
not	a	tool	used	to	perform	functional	programming,	it
nevertheless	is	functional	itself.	jQuery	might	be	one	of	the	most
widely	used	libraries	that	has	its	roots	in	functional
programming.

The	jQuery	object	is	actually	a	monad.	jQuery	uses	the	monadic
laws	to	enable	method	chaining:

$('#mydiv').fadeIn().css('left':

50).alert('hi!');

A	full	explanation	of	this	can	be	found	in	Chapter	30,
Functional	and	Object-oriented	Programming	in
JavaScript.

And	some	of	its	methods	are	higher-order:

$('li').css('left':	function(index)

{return	index*50});

As	of	jQuery	1.8,	the	deferred.then	parameter	implements	a

functional	concept	known	as	Promises.

jQuery	is	an	abstraction	layer,	mainly	for	the	DOM.	It's	not	a
framework	or	a	toolkit,	just	a	way	to	use	abstraction	to	increase	code-
reuse	and	reduce	ugly	code.	And	isn't	that	what	functional
programming	is	all	about?

Development	and
production	environments
It	does	not	matter	in	terms	of	programming	style	what
type	of	environment	the	application	is	being	developed	in
and	will	be	deployed	in.	But	it	does	matter	to	the	libraries
a	lot.

Browsers
The	majority	of	JavaScript	applications	are	designed	to
run	on	the	client	side,	that	is,	in	the	client's	browser.
Browser-based	environments	are	excellent	for
development	because	browsers	are	ubiquitous,	you	can
work	on	the	code	right	on	your	local	machine,	the
interpreter	is	the	browser's	JavaScript	engine,	and	all
browsers	have	a	developer	console.	Firefox's	FireBug
provides	very	useful	error	messages	and	allows	for
break-points	and	more,	but	it's	often	helpful	to	run	the
same	code	in	Chrome	and	Safari	to	cross-reference	the
error	output.	Even	Internet	Explorer	contains	developer
tools.

The	problem	with	browsers	is	that	they	evaluate
JavaScript	differently!	Though	it's	not	common,	it	is
possible	to	write	code	that	returns	very	different	results
in	different	browsers.	But	usually	the	differences	are	in
the	way	they	treat	the	document	object	model	and	not

how	prototypes	and	functions	work.	Obviously,
Math.sqrt(4)	method	returns	2	to	all	browsers	and
shells.	But	the	scrollLeft	method	depends	on	the
browser's	layout	policies.

Writing	browser-specific	code	is	a	waste	of	time,	and
that's	another	reason	why	libraries	should	be	used.

Server-side	JavaScript
The	Node.js	library	has	become	the	standard	platform
for	creating	server-side	and	network-based	applications.
Can	functional	programming	be	used	for	server-side
application	programming?	Yes!	Ok,	but	do	there	exist
any	functional	libraries	that	are	designed	for	this
performance-critical	environment?	The	answer	to	that	is
also:	yes.

All	the	functional	libraries	outlined	in	this	chapter	will
work	in	the	Node.js	library,	and	many	depend	on	the
browserify.js	module	to	work	with	browser
elements.

A	FUNCTIONAL	USE	CASE	IN	THE
SERVER-SIDE	ENVIRONMENT
In	our	brave	new	world	of	network	systems,	server-side
application	developers	are	often	concerned	with
concurrency,	and	rightly	so.	The	classic	example	is	an
application	that	allows	multiple	users	to	modify	the	same
file.	But	if	they	try	to	modify	it	at	the	same	time,	you	will

get	into	an	ugly	mess.	This	is	the	maintenance	of	state
problem	that	has	plagued	programmers	for	decades.

Assume	the	following	scenario:

1.	 One	morning,	Adam	opens	a	report	for	editing	but	he	doesn't	save	it
before	leaving	for	lunch.

2.	 Billy	opens	the	same	report,	adds	his	notes,	and	then	saves	it.
3.	 Adam	comes	back	from	lunch,	adds	his	notes	to	the	report,	and	then

saves	it,	unknowingly	overwriting	Billy's	notes.
4.	 The	next	day,	Billy	finds	out	that	his	notes	are	missing.	His	boss	yells

at	him;	everybody	gets	mad	and	they	gang	up	on	the	misguided
application	developer	who	unfairly	loses	his	job.

For	a	long	time,	the	solution	to	this	problem	was	to
create	a	state	about	the	file.	Toggle	a	lock	status	to	on
when	someone	begins	editing	it,	which	prevents	others
from	being	able	to	edit	it,	and	then	toggle	it	to	off	once
they	save	it.	In	our	scenario,	Billy	would	not	be	able	to	do
his	work	until	Adam	gets	back	from	lunch.	And	if	it's
never	saved	(if,	say,	Adam	decided	to	quit	his	job	in	the
middle	of	the	lunch	break),	then	no	one	will	ever	be	able
to	edit	it.

This	is	where	functional	programming's	ideas	about
immutable	data	and	state	(or	lack	thereof)	can	really	be
put	to	work.	Instead	of	having	users	modify	the	file
directly,	with	a	functional	approach	they	would	modify	a
copy	of	the	file,	which	is	a	new	revision.	If	they	go	to
save	the	revision	and	a	new	revision	already	exists,	then
we	know	that	someone	else	has	already	modified	the	old
one.	Crisis	averted.

Now	the	scenario	from	before	would	unfold	like	this:

1.	 One	morning,	Adam	opens	a	report	for	editing.	But	he	doesn't	save	it
before	going	to	lunch.

2.	 Billy	opens	the	same	report,	adds	his	notes,	and	saves	it	as	a	new
revision.

3.	 Adam	returns	from	lunch	to	add	his	notes.	When	he	attempts	to	save
the	new	revision,	the	application	tells	him	that	a	newer	revision	now
exists.

4.	 Adam	opens	the	new	revisions,	adds	his	notes	to	it,	and	saves
another	new	revision.

5.	 By	looking	at	the	revision	history,	the	boss	sees	that	everything	is
working	smoothly.	Everyone	is	happy	and	the	application	developer
gets	a	promotion	and	a	raise.

This	is	known	as	event	sourcing.	There	is	no	explicit
state	to	be	maintained,	only	events.	The	process	is	much
cleaner	and	there	is	a	clear	history	of	events	that	can	be
reviewed.

This	idea	and	many	others	are	why	functional
programming	in	server-side	environments	is	on	the	rise.

CLI
Although	web	and	the	node.js	library	are	the	two	main
JavaScript	environments,	some	pragmatic	and
adventurous	users	are	finding	ways	to	use	JavaScript	in
the	command	line.

Using	JavaScript	as	a	Command	Line	Interface	(CLI)
scripting	language	might	be	one	of	the	best	opportunities
to	apply	function	programming.	Imagine	being	able	to
use	lazy	evaluation	when	searching	for	local	files	or	to
rewrite	an	entire	bash	script	into	a	functional	JavaScript
one-liner.

Using	functional	libraries	with
other	JavaScript	modules
Web	applications	are	made	up	of	all	sorts	of	things:
frameworks,	libraries,	APIs	and	more.	They	can	work
along	side	each	other	as	dependents,	plugins,	or	just	as
coexisting	objects.

Backbone.js

An	MVP	(model-view-provider)	framework	with	a	RESTful
JSON	interface

Requires	the	underscore.js	library,	Backbone's	only	hard

dependency

jQuery

The	Bacon.js	library	has	bindings	for	mixing	with	jQuery

Underscore	and	jQuery	complement	each	other	very	well

Prototype	JavaScript	Framework

Provides	JavaScript	with	collection	functions	in	the	manner
closest	to	Ruby's	Enumerable

Sugar.js

Modifies	native	objects	and	their	methods

Must	be	careful	when	mixing	with	other	libraries,	especially
Prototype

Functional	languages	that	compile
into	JavaScript
Sometimes	the	thick	veneer	of	C-like	syntax	over
JavaScript's	inner	functionality	can	be	enough	to	make

you	want	to	switch	to	another	functional	language.	Well,
you	can!

Clojure	and	ClojureScript

Closure	is	a	modern	Lisp	implementation	and	a	full-featured
functional	language

ClojureScript	trans-compiles	Clojure	into	JavaScript

CoffeeScript

CoffeeScript	is	the	name	of	both	a	functional	language	and	a
compiler	for	trans-compiling	the	language	into	JavaScript

1-to-1	mapping	between	expressions	in	CoffeeScript	and
expression	in	JavaScript

There	are	many	more	out	there,	including	Pyjs,	Roy,
TypeScript,	UHC	and	more.

Summary
Which	library	you	choose	to	use	depends	on	what	your
needs	are.	Need	functional	reactive	programming	to
handle	events	and	dynamic	values?	Use	the	Bacon.js
library.	Only	need	infinite	streams	and	nothing	else?	Use
the	stream.js	library.	Want	to	complement	jQuery	with
functional	helpers?	Try	the	underscore.js	library.
Need	a	structured	environment	for	serious	ad	hoc
polymorphism?	Check	out	the	bilby.js	library.	Need	a
well-rounded	tool	for	functional	programming?	Use	the
Lazy.js	library.	Not	happy	with	any	of	these	options?
Write	your	own!

Any	library	is	only	as	good	as	the	way	it's	used.	Although
a	few	of	the	libraries	outlined	in	this	chapter	have	a	few
flaws,	most	faults	occur	somewhere	between	the
keyboard	and	the	chair.	It's	up	to	you	to	use	the	libraries
correctly	and	to	suit	your	needs.

And	if	we're	importing	code	libraries	into	our	JavaScript
environment,	then	maybe	we	can	import	ideas	and
principles	too.	Maybe	we	can	channel	The	Zen	of
Python,	by	Tim	Peter:

Beautiful	is	better	than	ugly

Explicit	is	better	than	implicit.

Simple	is	better	than	complex.

Complex	is	better	than	complicated.

Flat	is	better	than	nested.

Sparse	is	better	than	dense.

Readability	counts.

Special	cases	aren't	special	enough	to	break	the	rules.

Although	practicality	beats	purity.

Errors	should	never	pass	silently.

Unless	explicitly	silenced.

In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.

There	should	be	one—and	preferably	only	one—obvious
way	to	do	it.

Although	that	way	may	not	be	obvious	at	first	unless
you're	Dutch.

Now	is	better	than	never.

Although	never	is	often	better	than	"right"	now.

If	the	implementation	is	hard	to	explain,	it's	a	bad	idea.

If	the	implementation	is	easy	to	explain,	it	may	be	a	good
idea.

Namespaces	are	one	honking	great	idea—let's	do	more

of	those!

Chapter	4.	Implementing
Functional	Programming
Techniques	in	JavaScript
Hold	on	to	your	hats	because	we're	really	going	to	get
into	the	functional	mind-set	now.

In	this	chapter,	we're	going	to	do	the	following:

Put	all	the	core	concepts	together	into	a	cohesive	paradigm

Explore	the	beauty	that	functional	programming	has	to	offer	when	we
fully	commit	to	the	style

Step	through	the	logical	progression	of	functional	patterns	as	they
build	upon	each	other

All	the	while,	we	will	build	up	a	simple	application	that	does	some
pretty	cool	stuff

You	may	have	noticed	a	few	concepts	that	were	brought
up	in	the	last	chapter	when	dealing	with	functional
libraries	for	JavaScript,	but	not	in	Chapter	2,
Fundamentals	of	Functional	Programming.	Well,	that
was	for	a	reason!	Compositions,	currying,	partial
application,	and	more.	Let's	explore	why	and	how	these
libraries	implemented	those	concepts.

Functional	programming	can	come	in	a	variety	of	flavors
and	patterns.	This	chapter	will	cover	many	different
styles	of	functional	programming:

Data	generic	programming

Mostly	functional	programming

Functional	reactive	programming	and	more

This	chapter,	however,	will	be	as	style-unbiased	as
possible.	Without	leaning	too	hard	on	one	style	of
functional	programming	over	another,	the	overall	goal	is
to	show	that	there	are	better	ways	to	write	code	than
what	is	often	accepted	as	the	correct	and	only	way.
Once	you	free	your	mind	about	the	preconceptions	of
what	is	the	right	way	and	what	is	not	the	right	way	to
write	code,	you	can	do	whatever	you	want.	When	you
just	write	code	with	childlike	abandon	for	no	reason	other
than	the	fact	that	you	like	it	and	when	you're	not
concerned	about	conforming	to	the	traditional	way	of
doing	things,	then	the	possibilities	are	endless.

Partial	function	application
and	currying
Many	languages	support	optional	arguments,	but	not	in
JavaScript.	JavaScript	uses	a	different	pattern	entirely
that	allows	for	any	number	of	arguments	to	be	passed	to
a	function.	This	leaves	the	door	open	for	some	very
interesting	and	unusual	design	patterns.	Functions	can
be	applied	in	part	or	in	whole.

Partial	application	in	JavaScript	is	the	process	of	binding
values	to	one	or	more	arguments	of	a	function	that
returns	another	function	that	accepts	the	remaining,

unbound	arguments.	Similarly,	currying	is	the	process	of
transforming	a	function	with	many	arguments	into	a
function	with	one	argument	that	returns	another	function
that	takes	more	arguments	as	needed.

The	difference	between	the	two	may	not	be	clear	now,
but	it	will	be	obvious	in	the	end.

Function	manipulation
Actually,	before	we	go	any	further	and	explain	just	how
to	implement	partial	application	and	currying,	we	need	a
review.	If	we're	going	to	tear	JavaScript's	thick	veneer	of
C-like	syntax	right	off	and	expose	it's	functional
underbelly,	then	we're	going	to	need	to	understand	how
primitives,	functions,	and	prototypes	in	JavaScript	work;
we	would	never	need	to	consider	these	if	we	just	wanted
to	set	some	cookies	or	validate	some	form	fields.

APPLY,	CALL,	AND	THE	THIS	KEYWORD
In	pure	functional	languages,	functions	are	not	invoked;
they're	applied.	JavaScript	works	the	same	way	and
even	provides	utilities	for	manually	calling	and	applying
functions.	And	it's	all	about	the	this	keyword,	which,	of
course,	is	the	object	that	the	function	is	a	member	of.

The	call()	function	lets	you	define	the	this	keyword
as	the	first	argument.	It	works	as	follows:

console.log(['Hello',	'world'].join('	'))

//	normal	way

console.log(Array.prototype.join.call(['He

console.log(Array.prototype.join.call(['He

llo',	'world'],	'	'));	//	using	call

The	call()	function	can	be	used,	for	example,	to
invoke	anonymous	functions:

console.log((function()

{console.log(this.length)}).call([1,2,3]))

;

The	apply()	function	is	very	similar	to	the	call()
function,	but	a	little	more	useful:

console.log(Math.max(1,2,3));	//	returns	3

console.log(Math.max([1,2,3]));	//	won't

work	for	arrays	though

console.log(Math.max.apply(null,

[1,2,3]));	//	but	this	will	work

The	fundamental	difference	is	that,	while	the	call()
function	accepts	a	list	of	arguments,	the	apply()
function	accepts	an	array	of	arguments.

The	call()	and	apply()	functions	allow	you	to	write	a
function	once	and	then	inherit	it	in	other	objects	without
writing	the	function	over	again.	And	they	are	both
members	themselves	of	the	Function	argument.

NOTENOTE
This	is	bonus	material,	but	when	you	use	the	call()	function	on	itself,	some	really	cool
things	can	happen:

//	these	two	lines	are	equivalent

func.call(thisValue);

Function.prototype.call.call(func,	thisValue);

BINDING	ARGUMENTS
The	bind()	function	allows	you	to	apply	a	method	to
one	object	with	the	this	keyword	assigned	to	another.
Internally,	it's	the	same	as	the	call()	function,	but	it's
chained	to	the	method	and	returns	a	new	bounded
function.

It's	especially	useful	for	callbacks,	as	shown	in	the
following	code	snippet:

function	Drum(){

		this.noise	=	'boom';

		this.duration	=	1000;

		this.goBoom	=	function()

{console.log(this.noise)};

}

var	drum	=	new	Drum();

setInterval(drum.goBoom.bind(drum),

drum.duration);

This	solves	a	lot	of	problems	in	object-oriented
frameworks,	such	as	Dojo,	specifically	the	problems	of
maintaining	the	state	when	using	classes	that	define
their	own	handler	functions.	But	we	can	use	the	bind()
function	for	functional	programming	too.

TIPTIP
The	bind()	function	actually	does	partial	application	on	its	own,	though	in	a	very	limited
way.

FUNCTION	FACTORIES
Remember	our	section	on	closures	in	Chapter	2,

Fundamentals	of	Functional	Programming?	Closures	are
the	constructs	that	makes	it	possible	to	create	a	useful
JavaScript	programming	pattern	known	as	function
factories.	They	allow	us	to	manually	bind	arguments	to
functions.

First,	we'll	need	a	function	that	binds	an	argument	to
another	function:

function	bindFirstArg(func,	a)	{

		return	function(b)	{

				return	func(a,	b);

		};

}

Then	we	can	use	this	to	create	more	generic	functions:

var	powersOfTwo	=	bindFirstArg(Math.pow,

2);

console.log(powersOfTwo(3));	//	8

console.log(powersOfTwo(5));	//	32

And	it	can	work	on	the	other	argument	too:

function	bindSecondArg(func,	b)	{

		return	function(a)	{

				return	func(a,	b);

		};

}

var	squareOf	=	bindSecondArg(Math.pow,	2);

var	cubeOf	=	bindSecondArg(Math.pow,	3);

console.log(squareOf(3));	//	9

console.log(squareOf(4));	//	16

console.log(cubeOf(3));			//	27

console.log(cubeOf(4));			//	64

The	ability	to	create	generic	functions	is	very	important	in
functional	programming.	But	there's	a	clever	trick	to
making	this	process	even	more	generalized.	The
bindFirstArg()	function	itself	takes	two	arguments,
the	first	being	a	function.	If	we	pass	the	bindFirstArg
function	as	a	function	to	itself,	we	can	create	bindable
functions.	This	can	be	best	described	with	the	following
example:

var	makePowersOf	=

bindFirstArg(bindFirstArg,	Math.pow);

var	powersOfThree	=	makePowersOf(3);

console.log(powersOfThree(2));	//	9

console.log(powersOfThree(3));	//	27

This	is	why	they're	called	function	factories.

Partial	application
Notice	that	our	function	factory	example's
bindFirstArg()	and	bindSecondArg()	functions
only	work	for	functions	that	have	exactly	two	arguments.
We	could	write	new	ones	that	work	for	different	numbers
of	arguments,	but	that	would	work	away	from	our	model
of	generalization.

What	we	need	is	partial	application.

NOTENOTE
Partial	application	is	the	process	of	binding	values	to	one	or	more	arguments	of	a	function
that	returns	a	partially-applied	function	that	accepts	the	remaining,	unbound	arguments.

Unlike	the	bind()	function	and	other	built-in	methods	of

the	Function	object,	we'll	have	to	create	our	own
functions	for	partial	application	and	currying.	There	are
two	distinct	ways	to	do	this.

As	a	stand-alone	function,	that	is,	var	partial	=

function(func){...

As	a	polyfill,	that	is,	Function.prototype.partial	=
function(){...

Polyfills	are	used	to	augment	prototypes	with	new
functions	and	will	allow	us	to	call	our	new	functions	as
methods	of	the	function	that	we	want	to	partially	apply.
Just	like	this:	myfunction.partial(arg1,	arg2,
…);

PARTIAL	APPLICATION	FROM	THE
LEFT
Here's	where	JavaScript's	apply()	and	call()	utilities
become	useful	for	us.	Let's	look	at	a	possible	polyfill	for
the	Function	object:

Function.prototype.partialApply	=

function(){

		var	func	=	this;

		var	args	=

Array.prototype.slice.call(arguments);

		return	function(){

				return	func.apply(this,	args.concat(

						

Array.prototype.slice.call(arguments)

));

		};

};

As	you	can	see,	it	works	by	slicing	the	arguments
special	variable.

NOTENOTE
Every	function	has	a	special	local	variable	called	arguments	that	is	an	array-like	object	of
the	arguments	passed	to	it.	It's	technically	not	an	array.	Therefore	it	does	not	have	any	of
the	Array	methods	such	as	slice	and	forEach.	That's	why	we	need	to	use	Array's
slice.call	method	to	slice	the	arguments.

And	now	let's	see	what	happens	when	we	use	it	in	an
example.	This	time,	let's	get	away	from	the	math	and	go
for	something	a	little	more	useful.	We'll	create	a	little
application	that	converts	numbers	to	hexadecimal
values.

function	nums2hex()	{

		function	componentToHex(component)	{

				var	hex	=	component.toString(16);

				//	make	sure	the	return	value	is	2	

digits,	i.e.	0c	or	12

				if	(hex.length	==	1)	{

						return	"0"	+	hex;

				}

				else	{

						return	hex;

				}

		}

		return	

Array.prototype.map.call(arguments,	

componentToHex).join('');

}

//	the	function	works	on	any	number	of	

inputs

console.log(nums2hex());	//	''

console.log(nums2hex(100,200));	//	'64c8'

console.log(nums2hex(100,	200,	255,	0,	

123));	//	'64c8ff007b'

//	but	we	can	use	the	partial	function	to	

partially	apply

//	arguments,	such	as	the	OUI	of	a	mac	

address

var	myOUI	=	123;

var	getMacAddress	=	

nums2hex.partialApply(myOUI);

console.log(getMacAddress());	//	'7b'

console.log(getMacAddress(100,	200,	2,	

123,	66,	0,	1));	//	'7b64c8027b420001'

//	or	we	can	convert	rgb	values	of	red	

only	to	hexadecimal

var	shadesOfRed	=	

nums2hex.partialApply(255);

console.log(shadesOfRed(123,	0));			//	

'ff7b00'

console.log(shadesOfRed(100,	200));	//	

'ff64c8'

This	example	shows	that	we	can	partially	apply
arguments	to	a	generic	function	and	get	a	new	function
in	return.	This	first	example	is	left-to-right,	which	means
that	we	can	only	partially	apply	the	first,	left-most
arguments.

PARTIAL	APPLICATION	FROM	THE
RIGHT
In	order	to	apply	arguments	from	the	right,	we	can	define
another	polyfill.

Function.prototype.partialApplyRight	=

function(){

		var	func	=	this;

		var	args	=

		var	args	=

Array.prototype.slice.call(arguments);

		return	function(){

				return	func.apply(

						this,

						[].slice.call(arguments,	0)

						.concat(args));

		};

};

	

var	shadesOfBlue	=

nums2hex.partialApplyRight(255);

console.log(shadesOfBlue(123,	0));			//

'7b00ff'

console.log(shadesOfBlue(100,	200));	//

'64c8ff'

	

var	someShadesOfGreen	=

nums2hex.partialApplyRight(255,	0);

console.log(shadesOfGreen(123));			//

'7bff00'

console.log(shadesOfGreen(100));			//

'64ff00'

Partial	application	has	allowed	us	to	take	a	very	generic
function	and	extract	more	specific	functions	out	of	it.	But
the	biggest	flaw	in	this	method	is	that	the	way	in	which
the	arguments	are	passed,	as	in	how	many	and	in	what
order,	can	be	ambiguous.	And	ambiguity	is	never	a	good
thing	in	programming.	There's	a	better	way	to	do	this:
currying.

Currying
Currying	is	the	process	of	transforming	a	function	with
many	arguments	into	a	function	with	one	argument	that
returns	another	function	that	takes	more	arguments	as

needed.	Formally,	a	function	with	N	arguments	can	be
transformed	into	a	function	chain	of	N	functions,	each
with	only	one	argument.

A	common	question	is:	what	is	the	difference	between
partial	application	and	currying?	While	it's	true	that
partial	application	returns	a	value	right	away	and
currying	only	returns	another	curried	function	that	takes
the	next	argument,	the	fundamental	difference	is	that
currying	allows	for	much	better	control	of	how	arguments
are	passed	to	the	function.	We'll	see	just	how	that's	true,
but	first	we	need	to	create	function	to	perform	the
currying.

Here's	our	polyfill	for	adding	currying	to	the	Function
prototype:

Function.prototype.curry	=	function

(numArgs)	{

		var	func	=	this;

		numArgs	=	numArgs	||	func.length;

	

		//	recursively	acquire	the	arguments

		function	subCurry(prev)	{

				return	function	(arg)	{

						var	args	=	prev.concat(arg);

						if	(args.length	<	numArgs)	{

								//	recursive	case:	we	still	need

more	args

								return	subCurry(args);

						}

						else	{

								//	base	case:	apply	the	function

								return	func.apply(this,	args);

						}

				};

				};

		}

		return	subCurry([]);

};

The	numArgs	argument	lets	us	optionally	specify	the
number	of	arguments	the	function	being	curried	needs	if
it's	not	explicitly	defined.

Let's	look	at	how	to	use	it	within	our	hexadecimal
application.	We'll	write	a	function	that	converts	RGB
values	to	a	hexadecimal	string	that	is	appropriate	for
HTML:

function	rgb2hex(r,	g,	b)	{

		//	nums2hex	is	previously	defined	in

this	chapter

		return	'#'	+	nums2hex(r)	+	nums2hex(g)	+

nums2hex(b);

}

var	hexColors	=	rgb2hex.curry();

console.log(hexColors(11))	//	returns	a

curried	function

console.log(hexColors(11,12,123))	//

returns	a	curried	function

console.log(hexColors(11)(12)(123))	//

returns	#0b0c7b

console.log(hexColors(210)(12)(0))		//

returns	#d20c00

It	will	return	the	curried	function	until	all	needed
arguments	are	passed	in.	And	they're	passed	in	the
same	left-to-right	order	as	defined	by	the	function	being
curried.

But	we	can	step	it	up	a	notch	and	define	the	more

specific	functions	that	we	need	as	follows:

var	reds	=	function(g,b){return

hexColors(255)(g)(b)};

var	greens	=	function(r,b){return

hexColors(r)(255)(b)};

var	blues		=	function(r,g){return

hexColors(r)(g)(255)};

console.log(reds(11,	12))			//	returns

#ff0b0c

console.log(greens(11,	12))	//	returns

#0bff0c

console.log(blues(11,	12))		//	returns

#0b0cff

So	that's	a	nice	way	to	use	currying.	But	if	we	just	want
to	curry	our	nums2hex()	function	directly,	we	run	into	a
little	bit	of	trouble.	And	that's	because	the	function
doesn't	define	any	arguments,	it	just	lets	you	pass	as
many	arguments	in	as	you	want.	So	we	have	to	define
the	number	of	arguments.	We	do	that	with	the	optional
parameter	to	the	curry	function	that	allows	us	to	set	the
number	of	arguments	of	the	function	being	curried.

var	hexs	=	nums2hex.curry(2);

console.log(hexs(11)(12));					//	returns

0b0c

console.log(hexs(11));									//	returns

function

console.log(hexs(110)(12)(0));	//

incorrect

Therefore	currying	does	not	work	well	with	functions	that
accept	variable	numbers	of	arguments.	For	something
like	that,	partial	application	is	preferred.

All	of	this	isn't	just	for	the	benefit	of	function	factories	and
code	reuse.	Currying	and	partial	application	play	into	a
bigger	pattern	known	as	composition.

Function	composition
Finally,	we	have	arrived	at	function	composition.

In	functional	programming,	we	want	everything	to	be	a
function.	We	especially	want	unary	functions	if	possible.
If	we	can	convert	all	functions	to	unary	functions,	then
magical	things	can	happen.

NOTENOTE
Unary	functions	are	functions	that	take	only	a	single	input.	Functions	with	multiple	inputs
are	polyadic,	but	we	usually	say	binary	for	functions	that	accept	two	inputs	and	ternary	for
three	inputs.	Some	functions	don't	accept	a	specific	number	of	inputs;	we	call	those
variadic.

Manipulating	functions	and	their	acceptable	number	of
inputs	can	be	extremely	expressive.	In	this	section,	we
will	explore	how	to	compose	new	functions	from	smaller
functions:	little	units	of	logic	that	combine	into	whole
programs	that	are	greater	than	the	sum	of	the	functions
on	their	own.

Compose
Composing	functions	allows	us	to	build	complex
functions	from	many	simple,	generic	functions.	By
treating	functions	as	building	blocks	for	other	functions,
we	can	build	truly	modular	applications	with	excellent
readability	and	maintainability.

Before	we	define	the	compose()	polyfill,	you	can	see
how	it	all	works	with	these	following	examples:

var	roundedSqrt	=

Math.round.compose(Math.sqrt)

console.log(roundedSqrt(5));	//	Returns:

2

	

var	squaredDate	=

roundedSqrt.compose(Date.parse)

console.log(squaredDate("January	1,

2014"));	//	Returns:	1178370

In	math,	the	composition	of	the	f	and	g	variables	is
defined	as	f(g(x)).	In	JavaScript,	this	can	be	written
as:

var	compose	=	function(f,	g)	{

		return	function(x)	{

				return	f(g(x));

		};

};

But	if	we	left	it	at	that,	we	would	lose	track	of	the	this
keyword,	among	other	problems.	The	solution	is	to	use
the	apply()	and	call()	utilities.	Compared	to	curry,
the	compose()	polyfill	is	quite	simple.

Function.prototype.compose	=

function(prevFunc)	{

		var	nextFunc	=	this;

		return	function()	{

				return

nextFunc.call(this,prevFunc.apply(this,arg

uments));

		}

}

To	show	how	it's	used,	let's	build	a	completely	contrived
example,	as	follows:

function	function1(a){return	a	+	'	1';}

function	function2(b){return	b	+	'	2';}

function	function3(c){return	c	+	'	3';}

var	composition	=

function3.compose(function2).compose(funct

ion1);

console.log(composition('count'));	//

returns	'count	1	2	3'

Did	you	notice	that	the	function3	parameter	was
applied	first?	This	is	very	important.	Functions	are
applied	from	right	to	left.

SEQUENCE	–	COMPOSE	IN	REVERSE
Because	many	people	like	to	read	things	from	the	left	to
the	right,	it	might	make	sense	to	apply	the	functions	in
that	order	too.	We'll	call	this	a	sequence	instead	of	a
composition.

To	reverse	the	order,	all	we	need	to	do	is	swap	the
nextFunc	and	prevFunc	parameters.

Function.prototype.sequence		=

function(prevFunc)	{

		var	nextFunc	=	this;

		return	function()	{

				return

prevFunc.call(this,nextFunc.apply(this,arg

uments));

		}

		}

}

This	allows	us	to	now	call	the	functions	in	a	more	natural
order.

var	sequences	=

function1.sequence(function2).sequence(fun

ction3);

console.log(sequences('count'));	//

returns	'count	1	2	3'

Compositions	versus	chains
Here	are	five	different	implementations	of	the	same
floorSqrt()	functional	composition.	They	seem	to	be
identical,	but	they	deserve	scrutiny.

function	floorSqrt1(num)	{

		var	sqrtNum	=	Math.sqrt(num);

		var	floorSqrt	=	Math.floor(sqrtNum);

		var	stringNum	=	String(floorSqrt);

		return	stringNum;

}

	

function	floorSqrt2(num)	{

		return

String(Math.floor(Math.sqrt(num)));

}

	

function	floorSqrt3(num)	{

		return

[num].map(Math.sqrt).map(Math.floor).toStr

ing();

}

var	floorSqrt4	=

String.compose(Math.floor).compose(Math.sq

rt);

var	floorSqrt5	=

Math.sqrt.sequence(Math.floor).sequence(St

ring);

	

//	all	functions	can	be	called	like	this:

floorSqrt<N>(17);	//	Returns:	4

But	there	are	a	few	key	differences	we	should	go	over:

Obviously	the	first	method	is	verbose	and	inefficient.

The	second	method	is	a	nice	one-liner,	but	this	approach	becomes
very	unreadable	after	only	a	few	functions	are	applied.

NOTENOTE
To	say	that	less	code	is	better	is	missing	the	point.	Code	is	more	maintainable
when	the	effective	instructions	are	more	concise.	If	you	reduce	the	number	of
characters	on	the	screen	without	changing	the	effective	instructions	carried	out,	this
has	the	complete	opposite	effect—code	becomes	harder	to	understand,	and
decidedly	less	maintainable;	for	example,	when	we	use	nested	ternary	operators,	or
we	chain	several	commands	together	on	a	single	line.	These	approaches	reduce
the	amount	of	'code	on	the	screen',	but	they	don't	reduce	the	number	of	steps
actually	being	specified	by	that	code.	So	the	effect	is	to	obfuscate	and	make	the
code	harder	to	understand.	The	kind	of	conciseness	that	makes	code	easier	to
maintain	is	that	which	effectively	reduces	the	specified	instructions	(for	example,	by
using	a	simpler	algorithm	that	accomplishes	the	same	result	with	fewer	and/or
simpler	steps),	or	when	we	simply	replace	code	with	a	message,	for	instance,
invoking	a	third-party	library	with	a	well-documented	API.

The	third	approach	is	a	chain	of	array	functions,	notably	the	map

function.	This	works	fairly	well,	but	it	is	not	mathematically	correct.

Here's	our	compose()	function	in	action.	All	methods	are	forced	to

be	unary,	pure	functions	that	encourage	the	use	of	better,	simpler,
and	smaller	functions	that	do	one	thing	and	do	it	well.

The	last	approach	uses	the	compose()	function	in	reverse

sequence,	which	is	just	as	valid.

Programming	with	compose
The	most	important	aspect	of	compose	is	that,	aside
from	the	first	function	that	is	applied,	it	works	best	with

pure,	unary	functions:	functions	that	take	only	one
argument.

The	output	of	the	first	function	that	is	applied	is	sent	to
the	next	function.	This	means	that	the	function	must
accept	what	the	previous	function	passed	to	it.	This	is
the	main	influence	behind	type	signatures.

NOTENOTE
Type	Signatures	are	used	to	explicitly	declare	what	types	of	input	the	function	accepts	and
what	type	it	outputs.	They	were	first	used	by	Haskell,	which	actually	used	them	in	the
function	definitions	to	be	used	by	the	compiler.	But,	in	JavaScript,	we	just	put	them	in	a
code	comment.	They	look	something	like	this:	foo	::	arg1	->	argN	->	output

Examples:

//	getStringLength	::	String	->	Intfunction

getStringLength(s){return	s.length};

//	concatDates	::	Date	->	Date	->	[Date]function

concatDates(d1,d2){return	[d1,	d2]};

//	pureFunc	::	(int	->	Bool)	->	[int]	->

[int]pureFunc(func,	arr){return	arr.filter(func)}

In	order	to	truly	reap	the	benefits	of	compose,	any
application	will	need	a	hefty	collection	of	unary,	pure
functions.	These	are	the	building	blocks	that	are
composed	into	larger	functions	that,	in	turn,	are	used	to
make	applications	that	are	very	modular,	reliable,	and
maintainable.

Let's	go	through	an	example.	First	we'll	need	many
building-block	functions.	Some	of	them	build	upon	the
others	as	follows:

//	stringToArray	::	String	->	[Char]

function	stringToArray(s)	{	return

s.split('');	}

	

//	arrayToString	::	[Char]	->	String

function	arrayToString(a)	{	return

a.join('');	}

	

//	nextChar	::	Char	->	Char

function	nextChar(c)	{

		return

String.fromCharCode(c.charCodeAt(0)	+	1);

}

	

//	previousChar	::	Char	->	Char

function	previousChar(c)	{

		return

String.fromCharCode(c.charCodeAt(0)-1);	}

	

//	higherColorHex	::	Char	->	Char

function	higherColorHex(c)	{return	c	>=

'f'	?	'f'	:

																																			c	==

'9'	?	'a'	:

																																			

nextChar(c)}

	

//	lowerColorHex	::	Char	->	Char

function	lowerColorHex(c)	{	return	c	<=

'0'	?	'0'	:

																																			c	==

'a'	?	'9'	:

																																			

previousChar(c);	}

	

//	raiseColorHexes	::	String	->	String

function	raiseColorHexes(arr)	{	return

arr.map(higherColorHex);	}

	

//	lowerColorHexes	::	String	->	String

function	lowerColorHexes(arr)	{	return

arr.map(lowerColorHex);	}

Now	let's	compose	some	of	them	together.

var	lighterColor	=	arrayToString

		.compose(raiseColorHexes)

		.compose(stringToArray)

		var	darkerColor	=	arrayToString

		.compose(lowerColorHexes)

		.compose(stringToArray)

	

console.log(lighterColor('af0189'));	//

Returns:	'bf129a'

console.log(darkerColor('af0189'));		//

Returns:	'9e0078'

We	can	even	use	compose()	and	curry()	functions
together.	In	fact,	they	work	very	well	together.	Let's	forge
together	the	curry	example	with	our	compose	example.
First	we'll	need	our	helper	functions	from	before.

//	component2hex	::	Ints	->	Int

function	componentToHex(c)	{

		var	hex	=	c.toString(16);

		return	hex.length	==	1	?	"0"	+	hex	:

hex;

}

	

//	nums2hex	::	Ints*	->	Int

function	nums2hex()	{

		return

Array.prototype.map.call(arguments,

componentToHex).join('');

}

First	we	need	to	make	the	curried	and	partial-applied
functions,	then	we	can	compose	them	to	our	other
composed	functions.

var	lighterColors	=

lighterColor.compose(nums2hex);

var	darkerRed	=	darkerColor

		.compose(nums2hex.partialApply(255));

Var	lighterRgb2hex	=	lighterColor

		.compose(nums2hex.partialApply());

	

console.log(lighterColors(123,	0,	22));

//	Returns:	8cff11

console.log(darkerRed(123,	0));	//

Returns:	ee6a00

console.log(lighterRgb2hex(123,200,100)

);	//	Returns:	8cd975

There	we	have	it!	The	functions	read	really	well	and
make	a	lot	of	sense.	We	were	forced	to	begin	with	little
functions	that	just	did	one	thing.	Then	we	were	able	to
put	together	functions	with	more	utility.

Let's	look	at	one	last	example.	Here's	a	function	that
lightens	an	RBG	value	by	a	variable	amount.	Then	we
can	use	composition	to	create	new	functions	from	it.

//	lighterColorNumSteps	::	string	->	num	-

>	string

function	lighterColorNumSteps(color,	n)	{

		for	(var	i	=	0;	i	<	n;	i++)	{

				color	=	lighterColor(color);

		}

		return	color;

}

	

//	now	we	can	create	functions	like	this:

var	lighterRedNumSteps	=

lighterColorNumSteps.curry().compose(reds)

(0,0);

	

//	and	use	them	like	this:

//	and	use	them	like	this:

console.log(lighterRedNumSteps(5));	//

Return:	'ff5555'

console.log(lighterRedNumSteps(2));	//

Return:	'ff2222'

In	the	same	way,	we	could	easily	create	more	functions
for	creating	lighter	and	darker	blues,	greens,	grays,
purples,	anything	you	want.	This	is	a	really	great	way	to
construct	an	API.

We	just	barely	scratched	the	surface	of	what	function
composition	can	do.	What	compose	does	is	take	control
away	from	JavaScript.	Normally	JavaScript	will	evaluate
left	to	right,	but	now	the	interpreter	is	saying	"OK,
something	else	is	going	to	take	care	of	this,	I'll	just	move
on	to	the	next."	And	now	the	compose()	function	has
control	over	the	evaluation	sequence!

This	is	how	Lazy.js,	Bacon.js	and	others	have	been
able	to	implement	things	such	as	lazy	evaluation	and
infinite	sequences.	Up	next,	we'll	look	into	how	those
libraries	are	used.

Mostly	functional
programming
What	is	a	program	without	side	effects?	A	program	that
does	nothing.

Complementing	our	code	with	functional	code	with
unavoidable	side-effects	can	be	called	"mostly	functional
programming."	Using	multiple	paradigms	in	the	same
codebase	and	applying	them	where	they	are	most
optimal	is	the	best	approach.	Mostly	functional
programming	is	how	even	the	pure,	traditional	functional
programs	are	modelled:	keep	most	of	the	logic	in	pure
functions	and	interface	with	imperative	code.

And	this	is	how	we're	going	to	write	a	little	application	of
our	own.

In	this	example,	we	have	a	boss	that	tells	us	that	we
need	a	web	application	for	our	company	that	tracks	the
status	of	the	employees'	availability.	All	the	employees	at
this	fictional	company	only	have	one	job:	using	our
website.	Staff	will	sign	in	when	they	get	to	work	and	sign
out	when	they	leave.	But	that's	not	enough,	it	also	needs
to	automatically	update	the	content	as	it	changes,	so	our
boss	doesn't	have	to	keep	refreshing	the	pages.

We're	going	to	use	Lazy.js	as	our	functional	library.

And	we're	also	going	to	be	lazy:	instead	of	worrying
about	handling	all	the	users	logging	in	and	out,
WebSockets,	databases,	and	more,	we'll	just	pretend
there's	a	generic	application	object	that	does	this	for	us
and	just	happens	to	have	the	perfect	API.

So	for	now,	let's	just	get	the	ugly	parts	out	of	the	way,
the	parts	that	interface	and	create	side-effects.

function	Receptor(name,	available){

		this.name	=	name;

		this.available	=	available;	//	mutable

state

		this.render	=	function(){

				output	=	'';

				output	+=	this.available	?

						this.name	+	'	is	available'	:

						this.name	+	'	is	not	available';

				output	+=	'';

				return	output;

		}

}

var	me	=	new	Receptor;

var	receptors	=

app.getReceptors().push(me);

app.container.innerHTML	=

receptors.map(function(r){

		return	r.render();

}).join('');

This	would	be	sufficient	for	just	displaying	a	list	of
availabilities,	but	we	want	it	to	be	reactive,	which	brings
us	to	our	first	obstacle.

By	using	the	Lazy.js	library	to	store	the	objects	in	a
sequence,	which	won't	actually	compute	anything	until

the	toArray()	method	is	called,	we	can	take
advantage	of	its	laziness	to	provide	a	sort	of	functional
reactive	programming.

var	lazyReceptors	=

Lazy(receptors).map(function(r){

		return	r.render();

});

app.container.innerHTML	=

lazyReceptors.toArray().join('');

Because	the	Receptor.render()	method	returns	new
HTML	instead	of	modifying	the	current	HTML,	all	we
have	to	do	is	set	the	innerHTML	parameter	to	its	output.

We'll	also	have	to	trust	that	our	generic	application	for
user	management	will	provide	callback	methods	for	us	to
use.

app.onUserLogin	=	function(){

		this.available	=	true;

		app.container.innerHTML	=

lazyReceptors.toArray().join('');

};

app.onUserLogout	=	function(){

		this.available	=	false;

		app.container.innerHTML	=

lazyReceptors.toArray().join('');

};

This	way,	any	time	a	user	logs	in	or	out,	the
lazyReceptors	parameter	will	be	computed	again	and
the	availability	list	will	be	printed	with	the	most	recent
values.

Handling	events
But	what	if	the	application	doesn't	provide	callbacks	for
when	the	user	logs	in	and	out?	Callbacks	are	messy	and
can	quickly	turn	a	program	into	spaghetti	code.	Instead,
we	can	determine	it	ourselves	by	observing	the	user
directly.	If	the	user	has	the	webpage	in	focus,	then
he/she	must	be	active	and	available.	We	can	use
JavaScript's	focus	and	blur	events	for	this.

window.addEventListener('focus',

function(event)	{

		me.available	=	true;

		app.setReceptor(me.name,	me.available);

//	just	go	with	it

		container.innerHTML	=

lazyReceptors.toArray().join('');

});

window.addEventListener('blur',

function(event)	{

		me.available	=	false;

		app.setReceptor(me.name,	me.available);

		container.innerHTML	=

lazyReceptors.toArray().join('');

});

Wait	a	second,	aren't	events	reactive	too?	Can	they	be
lazily	computed	as	well?	They	can	in	the	Lazy.js
library,	where	there's	even	a	handy	method	for	this.

var	focusedReceptors	=	Lazy.events(window,

"focus").each(function(e){

		me.available	=	true;

		app.setReceptor(me.name,	me.available);

		container.innerHTML	=

lazyReceptors.toArray().join('');

lazyReceptors.toArray().join('');

});

var	blurredReceptors	=	Lazy.events(window,

"blur").each(function(e){

		me.available	=	false;

		app.setReceptor(me.name,	me.available);

		container.innerHTML	=

lazyReceptors.toArray().join('');

});

Easy	as	pie.

NOTENOTE
By	using	the	Lazy.js	library	to	handle	events,	we	can	create	an	infinite	sequence	of
events.	Each	time	the	event	is	fired,	the	Lazy.each()	function	is	able	to	iterate	one	more
time.

Our	boss	likes	the	application	so	far,	but	she	points	out
that	if	an	employee	never	logs	out	before	leaving	for	the
day	without	closing	the	page,	then	the	application	says
the	employee	is	still	available.

To	figure	out	if	an	employee	is	active	on	the	website,	we
can	monitor	the	keyboard	and	mouse	events.	Let's	say
they're	considered	to	be	unavailable	after	30	minutes	of
no	activity.

var	timeout	=	null;

var	inputs	=	Lazy.events(window,

"mousemove").each(function(e){

		me.available	=	true;

		container.innerHTML	=

lazyReceptors.toArray().join('');

		clearTimeout(timeout);

		timeout	=	setTimeout(function(){

				me.available	=	false;

				container.innerHTML	=

lazyReceptors.toArray().join('');

lazyReceptors.toArray().join('');

		},	1800000);	//	30	minutes

});

The	Lazy.js	library	has	made	it	very	easy	for	us	to
handle	events	as	an	infinite	stream	that	we	can	map
over.	It	makes	this	possible	because	it	uses	function
composition	to	take	control	of	the	order	of	execution.

But	there's	a	little	problem	with	all	of	this.	What	if	there
are	no	user	input	events	that	we	can	latch	onto?	What	if,
instead,	there	is	a	property	value	that	changes	all	the
time?	In	the	next	section,	we'll	investigate	exactly	this
issue.

Functional	reactive
programming
Let's	build	another	kind	of	application	that	works	in	much
the	same	way;	one	that	uses	functional	programming	to
react	to	changes	in	state.	But,	this	time,	the	application
won't	be	able	to	rely	on	event	listeners.

Imagine	for	a	moment	that	you	work	for	a	news	media
company	and	your	boss	tells	you	to	create	a	web
application	that	tracks	government	election	results	on
Election	Day.	Data	is	continuously	flowing	in	as	local
precincts	turn	in	their	results,	so	the	results	to	display	on
the	page	are	very	reactive.	But	we	also	need	to	track	the
results	by	each	region,	so	there	will	be	multiple	objects
to	track.

Rather	than	creating	a	big	object-oriented	hierarchy	to
model	the	interface,	we	can	describe	it	declaratively	as
immutable	data.	We	can	transform	it	with	chains	of	pure
and	semi-pure	functions	whose	only	ultimate	side	effects
are	updating	whatever	bits	of	state	absolutely	must	be
held	onto	(ideally,	not	many).

And	we'll	use	the	Bacon.js	library,	which	will	allow	us
to	quickly	develop	Functional	Reactive	Programming
(FRP)	applications.	The	application	will	only	be	used	one
day	out	of	the	year	(Election	Day),	and	our	boss	thinks	it

should	take	a	proportional	amount	of	time.	With
functional	programming	and	a	library	such	as
Bacon.js,	we'll	get	it	done	in	half	the	time.

But	first,	we're	going	to	need	some	objects	to	represent
the	voting	regions,	such	as	states,	provinces,	districts,
and	so	on.

function	Region(name,	percent,	parties){

		//	mutable	properties:

		this.name	=	name;

		this.percent	=	percent;	//	%	of

precincts	reported

		this.parties	=	parties;	//	political

parties

	

		//	return	an	HTML	representation

		this.render	=	function(){

				var	lis	=	this.parties.map(function(p)

{

						return	''	+	p.name	+	':	'	+

p.votes	+	'';

				});

				var	output	=	'<h2>'	+	this.name	+

'</h2>';

				output	+=	''	+	lis.join('')	+

'';

				output	+=	'Percent	reported:	'	+

this.percent;

				return	output;

		}

}

function	getRegions(data)	{

		return

JSON.parse(data).map(function(obj){

				return	new	Region(obj.name,

obj.percent,	obj.parties);

		});

}

}

var	url	=	'http://api.server.com/election-

data?format=json';

var	data	=	jQuery.ajax(url);

var	regions	=	getRegions(data);

app.container.innerHTML	=

regions.map(function(r){

		return	r.render();

}).join('');

While	the	above	would	be	sufficient	for	just	displaying	a
static	list	of	election	results,	we	need	a	way	to	update	the
regions	dynamically.	It's	time	to	cook	up	some	Bacon
and	FRP.

Reactivity
Bacon	has	a	function,	Bacon.fromPoll(),	that	lets	us
create	an	event	stream,	where	the	event	is	just	a
function	that	is	called	on	the	given	interval.	And	the
stream.subscribe()	function	lets	us	subscribe	a
handler	function	to	the	stream.	Because	it's	lazy,	the
stream	will	not	actually	do	anything	without	a	subscriber.

var	eventStream	=	Bacon.fromPoll(10000,

function(){

		return	Bacon.Next;

});

var	subscriber	=

eventStream.subscribe(function(){

		var	url	=

'http://api.server.com/election-data?

format=json';

		var	data	=	jQuery.ajax(url);

		var	newRegions	=	getRegions(data);

		container.innerHTML	=

newRegions.map(function(r){

newRegions.map(function(r){

				return	r.render();

		}).join('');

});

By	essentially	putting	it	in	a	loop	that	runs	every	10
seconds,	we	could	get	the	job	done.	But	this	method
would	hammer-ping	the	network	and	is	incredibly
inefficient.	That	would	not	be	very	functional.	Instead,
let's	dig	a	little	deeper	into	the	Bacon.js	library.

In	Bacon,	there	are	EventStreams	and	Properties
parameters.	Properties	can	be	thought	of	as	"magic"
variables	that	change	over	time	in	response	to	events.
They're	not	really	magic	because	they	still	rely	on	a
stream	of	events.	The	Property	changes	over	time	in
relation	to	its	EventStream.

The	Bacon.js	library	has	another	trick	up	its	sleeve.
The	Bacon.fromPromise()	function	is	a	way	to	emit
events	into	a	stream	by	using	promises.	And	as	of
jQuery	version	1.5.0,	jQuery	AJAX	implements	the
promises	interface.	So	all	we	need	to	do	is	write	an
AJAX	search	function	that	emits	events	when	the
asynchronous	call	is	complete.	Every	time	the	promise	is
resolved,	it	calls	the	EvenStream's	subscribers.

var	url	=	'http://api.server.com/election-

data?format=json';

var	eventStream	=

Bacon.fromPromise(jQuery.ajax(url));

var	subscriber	=

eventStream.onValue(function(data){

		newRegions	=	getRegions(data);

		container.innerHTML	=

		container.innerHTML	=

newRegions.map(function(r){

				return	r.render();

		}).join('');

}

A	promise	can	be	thought	of	as	an	eventual	value;	with
the	Bacon.js	library,	we	can	lazily	wait	on	the	eventual
values.

Putting	it	all	together
Now	that	we	have	the	reactivity	covered,	we	can	finally
play	with	some	code.

We	can	modify	the	subscriber	with	chains	of	pure
functions	to	do	things	such	as	adding	up	a	total	and
filtering	out	unwanted	results,	and	we	do	it	all	within
onclick()	handler	functions	for	buttons	that	we	create.

//	create	the	eventStream	out	side	of	the	

functions

var	eventStream	=	

Bacon.onPromise(jQuery.ajax(url));

var	subscribe	=	null;

var	url	=	

'http://api.server.com/election-data?forma

t=json';

//	our	un-modified	subscriber

$('button#showAll').click(function()	{

		var	subscriber	=	

eventStream.onValue(function(data)	{

				var	newRegions	=	

getRegions(data).map(function(r)	{

						return	new	Region(r.name,	r.percent,	

r.parties);

				});

				container.innerHTML	=	

newRegions.map(function(r)	{

						return	r.render();

				}).join('');

		});

});

//	a	button	for	showing	the	total	votes

$('button#showTotal').click(function()	{

		var	subscriber	=	

eventStream.onValue(function(data)	{

				var	emptyRegion	=	new	Region('empty',	

0,	[{

						name:	'Republican',	votes:	0

				},	{

						name:	'Democrat',	votes:	0

				}]);

				var	totalRegions	=	

getRegions(data).reduce(function(r1,	r2)	{

						newParties	=	

r1.parties.map(function(x,	i)	{

						return	{

								name:	r1.parties[i].name,

								votes:	r1.parties[i].votes	+	

r2.parties[i].votes

						};

				});

				newRegion	=	new	Region('Total',	

(r1.percent	+	r2.percent)		2,	newParties);

				return	newRegion;

				},	emptyRegion);

				container.innerHTML	=	

totalRegions.render();

		});

});

/	a	button	for	only	displaying	regions	

that	are	reporting	>	50%

$('button#showMostlyReported').click(funct

ion()	{

		var	subscriber	=	

eventStream.onValue(function(data)	{

				var	newRegions	=	

getRegions(data).map(function(r)	{

						if	(r.percent	>	50)	return	r;

						else	return	null;

				}).filter(function(r)	{return	r	!=	

null;});

				container.innerHTML	=	

newRegions.map(function(r)	{

						return	r.render();

				}).join('');

		});

});

The	beauty	of	this	is	that,	when	users	click	between	the
buttons,	the	event	stream	doesn't	change	but	the
subscriber	does,	which	makes	it	all	work	smoothly.

Summary
JavaScript	is	a	beautiful	language.

Its	inner	beauty	really	shines	with	functional
programming.	It's	what	empowers	its	excellent
extendibility.	Just	the	fact	that	it	allows	first-class
functions	that	can	do	so	many	things	is	what	opens	the
functional	flood	gates.	Concepts	build	on	top	of	each
other,	stacking	up	higher	and	higher.

In	this	chapter,	we	dove	head-first	into	the	functional
paradigm	in	JavaScript.	We	covered	function	factories,
currying,	function	composition	and	everything	required	to
make	it	work.	We	built	an	extremely	modular	application
that	used	these	concepts.	And	then	we	showed	how	to
use	some	functional	libraries	that	use	these	same
concepts	themselves,	namely	function	composition,	to
manipulate	the	order	of	execution.

Throughout	the	chapter,	we	covered	several	styles	of
functional	programming:	data	generic	programming,
mostly-functional	programming,	and	functional	reactive
programming.	They're	all	not	that	different	from	each
other,	they're	just	different	patterns	for	applying
functional	programing	in	different	situations.

In	the	previous	chapter,	something	called	Category
Theory	was	briefly	mentioned.	In	the	next	chapter,	we're

going	to	learn	a	lot	more	about	what	it	is	and	how	to	use
it.

Chapter	5.	Category	Theory
Thomas	Watson	was	famously	quoted	as	saying,	"I	think
there	is	a	world	market	for	maybe	five	computers".	That
was	in	1948.	Back	then,	everybody	knew	that	computers
would	only	be	used	for	two	things:	math	and
engineering.	Not	even	the	biggest	minds	in	tech	could
predict	that,	one	day,	computers	would	be	able	to
translate	Spanish	to	English,	or	simulate	entire	weather
systems.	At	the	time,	the	fastest	machine	was	IBM's
SSEC,	clocking	in	at	50	multiplications	per	second,	the
display	terminal	wasn't	due	until	15	years	later	and
multiple-processing	meant	multiple	user	terminals
sharing	a	single	processor.	The	transistor	changed
everything,	but	tech's	visionaries	still	missed	the	mark.
Ken	Olson	made	another	famously	foolish	prediction
when,	in	1977,	he	said	"There	is	no	reason	anyone
would	want	a	computer	in	their	home".

It	seams	obvious	to	us	now	that	computers	are	not	just
for	scientists	and	engineers,	but	that's	hindsight.	The
idea	that	machines	can	do	more	than	just	math	was
anything	but	intuitive	70	years	ago.	Watson	didn't	just	fail
to	realize	how	computers	could	transform	a	society,	he
failed	to	realize	the	transformative	and	evolving	powers
of	mathematics.

But	the	potential	of	computers	and	math	was	not	lost	on
everybody.	John	McCarthy	invented	Lisp	in	1958,	a

revolutionary	algorithm-based	language	that	ushered	in
a	new	era	in	computing.	Since	its	inception,	Lisp	was
instrumental	in	the	idea	of	using	abstraction	layers—
compilers,	interpreters,	virtualization—to	push	forward
the	progression	of	computers	from	hardcore	math
machines	to	what	they	are	today.

From	Lisp	came	Scheme,	a	direct	ancestor	of
JavaScript.	Now	that	brings	us	full	circle.	If	computers
are,	at	their	core,	machines	that	just	do	math,	then	it
stands	to	reason	that	a	math-based	programming
paradigm	would	excel.

The	term	"math"	is	being	used	here	not	to	describe	the
"number	crunching"	that	computers	can	obviously	do,
but	to	describe	discrete	mathematics:	the	study	of
discrete,	mathematical	structures	such	as	statements	in
logic	or	the	instructions	of	a	computer	language.	By
treating	code	as	a	discrete	mathematical	structure,	we
can	apply	concepts	and	ideas	in	math	to	it.	This	is	what
has	made	functional	programming	so	instrumental	in
artificial	intelligence,	graph	search,	pattern	recognition
and	other	big	challenges	in	computer	science.

In	this	chapter,	we	will	experiment	with	some	of	these
concepts	and	their	applications	in	everyday
programming	challenges.	They	will	include:

Category	theory

Morphisms

Functors

Maybes

Promises

Lenses

Function	composition

With	these	concepts,	we'll	be	able	to	write	entire	libraries
and	APIs	very	easily	and	safely.	And	we'll	go	from
explaining	category	theory	to	formally	implementing	it	in
JavaScript.

Category	theory
Category	theory	is	the	theoretical	concept	that
empowers	function	composition.	Category	theory	and
function	composition	go	together	like	engine
displacement	and	horsepower,	like	NASA	and	the	space
shuttle,	like	good	beer	and	a	mug	to	pour	it	in.	Basically,
you	can't	have	one	without	the	other.

Category	theory	in	a	nutshell
Category	theory	really	isn't	too	difficult	a	concept.	Its
place	in	math	is	large	enough	to	fill	up	an	entire
graduate-level	college	course,	but	its	place	in	computer
programming	can	be	summed	up	quite	easily.

Einstein	once	said,	"If	you	can't	explain	it	to	a	6-year-old,
you	don't	know	it	yourself".	Thus,	in	the	spirit	of
explaining	it	to	a	6-year-old,	category	theory	is	just
connecting	the	dots.	Although	it	may	be	grossly	over-
simplifying	category	theory,	it	does	do	a	good	job	of

explaining	what	we	need	to	know	in	a	straightforward
manner.

First	you'll	need	to	know	some	terminology.	Categories
are	just	sets	with	the	same	type.	In	JavaScript,	they're
arrays	or	objects	that	contain	variables	that	are	explicitly
declared	as	numbers,	strings,	Booleans,	dates,	nodes,
and	so	on.	Morphisms	are	pure	functions	that,	when
given	a	specific	set	of	inputs,	always	return	the	same
output.	Homomorphic	operations	are	restricted	to	a
single	category,	while	polymorphic	operations	can
operate	on	multiple	categories.	For	example,	the
homomorphic	function	multiplication	only	works	on
numbers,	but	the	polymorphic	function	addition	can	work
on	strings	too.

The	following	diagram	shows	three	categories—A,	B,
and	C—and	two	morphisms—ƒ	and	ɡ.

Category	theory	tells	us	that,	when	we	have	two
morphisms	where	the	category	of	the	first	one	is	the

expected	input	of	the	other,	then	they	can	be	composed
to	the	following:

The	ƒ	o	g	symbol	is	the	composition	of	morphisms	ƒ	and
g.	Now	we	can	just	connect	the	dots.

And	that's	all	it	really	is,	just	connecting	dots.

Type	safety

Let's	connect	some	dots.	Categories	contain	two	things:

1.	 Objects	(in	JavaScript,	types).
2.	 Morphisms	(in	JavaScript,	pure	functions	that	only	work	on	types).

These	are	the	terms	given	to	category	theory	by
mathematicians,	so	there	is	some	unfortunate
nomenclature	overloading	with	our	JavaScript
terminology.	Objects	in	category	theory	are	more	like
variables	with	an	explicit	data	type	and	not	collections	of
properties	and	values	like	in	the	JavaScript	definition	of
objects.	Morphisms	are	just	pure	functions	that	use
those	types.

So	applying	the	idea	of	category	theory	to	JavaScript	is
pretty	easy.	Using	category	theory	in	JavaScript	means
working	with	one	certain	data	type	per	category.	Data
types	are	numbers,	strings,	arrays,	dates,	objects,
Booleans,	and	so	on.	But,	with	no	strict	type	system	in
JavaScript,	things	can	go	awry.	So	we'll	have	to
implement	our	own	method	of	ensuring	that	the	data	is
correct.

There	are	four	primitive	data	types	in	JavaScript:
numbers,	strings,	Booleans,	and	functions.	We	can
create	type	safety	functions	that	either	return	the	variable
or	throw	an	error.	This	fulfils	the	object	axiom	of
categories.

var	str	=	function(s)	{

		if	(typeof	s	===	"string")	{

				return	s;

		}

		else	{

		else	{

				throw	new	TypeError("Error:	String

expected,	"	+	typeof	s	+	"	given.");

		}

}

var	num	=	function(n)	{

		if	(typeof	n	===	"number")	{

				return	n;

		}

		else	{

				throw	new	TypeError("Error:	Number

expected,	"	+	typeof	n	+	"	given.");

		}

}

var	bool	=	function(b)	{

		if	(typeof	b	===	"boolean")	{

				return	b;

		}

		else	{

				throw	new	TypeError("Error:	Boolean

expected,	"	+	typeof	b	+	"	given.");

		}

}

var	func	=	function(f)	{

		if	(typeof	f	===	"function")	{

				return	f;

		}

		else	{

				throw	new	TypeError("Error:	Function

expected,	"	+	typeof	f	+	"	given.");

		}

}

However,	there's	a	lot	of	repeated	code	here	and	that
isn't	very	functional.	Instead,	we	can	create	a	function
that	returns	another	function	that	is	the	type	safety
function.

var	typeOf	=	function(type)	{

		return	function(x)	{

		return	function(x)	{

				if	(typeof	x	===	type)	{

						return	x;

				}

				else	{

						throw	new	TypeError("Error:	"+type+"

expected,	"+typeof	x+"	given.");

				}

		}

}

var	str	=	typeOf('string'),

		num	=	typeOf('number'),

		func	=	typeOf('function'),

		bool	=	typeOf('boolean');

Now,	we	can	use	them	to	ensure	that	our	functions
behave	as	expected.

//	unprotected	method:

var	x	=	'24';

x	+	1;	//	will	return	'241',	not	25

	

//	protected	method

//	plusplus	::	Int	->	Int

function	plusplus(n)	{

		return	num(n)	+	1;

}

plusplus(x);	//	throws	error,	preferred

over	unexpected	output

Let's	look	at	a	meatier	example.	If	we	want	to	check	the
length	of	a	Unix	timestamp	that	is	returned	by	the
JavaScript	function	Date.parse(),	not	as	a	string	but
as	a	number,	then	we'll	have	to	use	our	str()	function.

//	timestampLength	::	String	->	Int

function	timestampLength(t)	{	return	

num(str(t).length);	}

timestampLength(Date.parse('12/31/1999'));	

//	throws	error

timestampLength(Date.parse('12/31/1999')

		.toString());	//	returns	12

Functions	like	this	that	explicitly	transform	one	type	to
another	(or	to	the	same	type)	are	called	morphisms.	This
fulfils	the	morphism	axiom	of	category	theory.	These
forced	type	declarations	via	the	type	safety	functions	and
the	morphisms	that	use	them	are	everything	we	need	to
represent	the	notion	of	a	category	in	JavaScript.

OBJECT	IDENTITIES
There's	one	other	important	data	type:	objects.

var	obj	=	typeOf('object');

obj(123);	//	throws	error

obj({x:'a'});	//	returns	{x:'a'}

However,	objects	are	different.	They	can	be	inherited.
Everything	that	is	not	a	primitive—numbers,	strings,
Booleans,	and	functions—is	an	object,	including	arrays,
dates,	elements,	and	more.

There's	no	way	to	know	what	type	of	object	something	is,
as	in	to	know	what	sub-type	a	JavaScript	'object'	is,	from
the	typeof	keyword,	so	we'll	have	to	improvise.	Objects
have	a	toString()	function	that	we	can	hijack	for	this
purpose.

var	obj	=	function(o)	{

		if

(Object.prototype.toString.call(o)==="

[object	Object]")	{

				return	o;

		}

		else	{

				throw	new	TypeError("Error:	Object

expected,	something	else	given.");

		}

}

Again,	with	all	the	objects	out	there,	we	should
implement	some	code	re-use.

var	objectTypeOf	=	function(name)	{

		return	function(o)	{

				if	(Object.prototype.toString.call(o)

===	"[object	"+name+"]")	{

						return	o;

				}

				else	{

						throw	new	TypeError("Error:	'+name+'

expected,	something	else	given.");

				}

		}

}

var	obj	=	objectTypeOf('Object');

var	arr	=	objectTypeOf('Array');

var	date	=	objectTypeOf('Date');

var	div	=	objectTypeOf('HTMLDivElement');

These	will	be	very	useful	for	our	next	topic:	functors.

Functors
While	morphisms	are	mappings	between	types,	functors
are	mappings	between	categories.	They	can	be	thought
of	as	functions	that	lift	values	out	of	a	container,	morph
them,	and	then	put	them	into	a	new	container.	The	first
input	is	a	morphism	for	the	type	and	the	second	input	is
the	container.

NOTENOTE
The	type	signature	for	functors	looks	like	this:

//	myFunctor	::	(a	->	b)	->	f	a	->	f	b

This	says,	"give	me	a	function	that	takes	a	and	returns	b	and	a	box	that	contains	a(s),	and
I'll	return	a	box	that	contains	b(s).

Creating	functors
It	turns	out	we	already	have	one	functor:	map().	It	grabs
the	values	within	the	container,	an	array,	and	applies	a
function	to	it.

[1,	4,	9].map(Math.sqrt);	//	Returns:	[1,

2,	3]

However,	we'll	need	to	write	it	as	a	global	function	and
not	as	a	method	of	the	array	object.	This	will	allow	us	to
write	cleaner,	safer	code	later	on.

//	map	::	(a	->	b)	->	[a]	->	[b]

var	map	=	function(f,	a)	{

		return	arr(a).map(func(f));

}

This	example	seems	like	a	contrived	wrapper	because
we're	just	piggybacking	onto	the	map()	function.	But	it
serves	a	purpose.	It	provides	a	template	for	maps	of
other	types.

//	strmap	::	(str	->	str)	->	str	->	str

var	strmap	=	function(f,	s)	{

		return

str(s).split('').map(func(f)).join('');

}

	

//	MyObject#map	::	(myValue	->	a)	->	a

MyObject.prototype.map(f{

		return	func(f)(this.myValue);

}

Arrays	and	functors
Arrays	are	the	preferred	way	to	work	with	data	in
functional	JavaScript.

Is	there	an	easier	way	to	create	functors	that	are	already
assigned	to	a	morphism?	Yes,	and	it's	called	arrayOf.
When	you	pass	in	a	morphism	that	expects	an	integer
and	returns	an	array,	you	get	back	a	morphism	that
expects	an	array	of	integers	and	returns	an	array	of
arrays.

It	is	not	a	functor	itself,	but	it	allows	us	to	create	functors
from	morphisms.

//	arrayOf	::	(a	->	b)	->	([a]	->	[b])

//	arrayOf	::	(a	->	b)	->	([a]	->	[b])

var	arrayOf	=	function(f)	{

		return	function(a)	{

				return	map(func(f),	arr(a));

		}

}

Here's	how	to	create	functors	by	using	morphism:

var	plusplusall	=	arrayOf(plusplus);	//

plusplus	is	our	morphism

console.log(plusplusall([1,2,3]));	//

returns	[2,3,4]

console.log(plusplusall([1,'2',3]));	//

error	is	thrown

The	interesting	property	of	the	arrayOf	functor	is	that	it
works	on	type	safeties	as	well.	When	you	pass	in	the
type	safety	function	for	strings,	you	get	back	a	type
safety	function	for	an	array	of	strings.	The	type	safeties
are	treated	like	the	identity	function	morphism.	This	can
be	very	useful	for	ensuring	that	an	array	contains	all	the
correct	types.

var	strs	=	arrayOf(str);

console.log(strs(['a','b','c']));	//

returns	['a','b','c']

console.log(strs(['a',2,'c']));	//

throws	error

Function	compositions,	revisited
Functions	are	another	type	of	primitive	that	we	can
create	a	functor	for.	And	that	functor	is	called	fcompose.
We	defined	functors	as	something	that	takes	a	value

from	a	container	and	applies	a	function	to	it.	When	that
container	is	a	function,	we	just	call	it	to	get	its	inner
value.

We	already	know	what	function	compositions	are,	but
let's	look	at	what	they	can	do	in	a	category	theory-driven
environment.

Function	compositions	are	associative.	If	your	high
school	algebra	teacher	was	like	mine,	she	taught	you
what	the	property	is	but	not	what	it	can	do.	In	practice,
compose	is	what	the	associative	property	can	do.

We	can	do	any	inner-compose,	it	doesn't	matter	how	it's
grouped.	This	is	not	to	be	confused	with	the
commutative	property.	ƒ	o	g	does	not	always	equal	g	o
ƒ.	In	other	words,	the	reverse	of	the	first	word	of	a	string
is	not	the	same	as	the	first	word	of	the	reverse	of	a
string.

What	this	all	means	is	that	it	doesn't	matter	which
functions	are	applied	and	in	what	order,	as	long	as	the
input	of	each	functions	comes	from	the	output	of	the
previous	function.	But	wait,	if	the	function	on	the	right

relies	on	the	function	on	the	left,	then	can't	there	be	only
one	order	of	evaluation?	Left	to	right?	True,	but	if	it's
encapsulated,	then	we	can	control	it	however	we	feel	fit.
This	is	what	empowered	lazy	evaluation	in	JavaScript.

Let's	rewrite	function	composition,	not	as	an	extension	of
the	function	prototype,	but	as	a	stand-alone	function	that
will	allow	us	to	get	more	out	of	it.	The	basic	form	is	as
follows:

var	fcompose	=	function(f,	g)	{

		return	function()	{

				return	f.call(this,	g.apply(this,

arguments));

		};

};

But	we'll	need	it	to	work	on	any	number	of	inputs.

var	fcompose	=	function()	{

		//	first	make	sure	all	arguments	are

functions

		var	funcs	=	arrayOf(func)(arguments);

	

		//	return	a	function	that	applies	all

the	functions

		return	function()	{

				var	argsOfFuncs	=	arguments;

				for	(var	i	=	funcs.length;	i	>	0;	i	-=

1)	{

						argsOfFuncs		=	[funcs[i].apply(this,

args)];

args)];

				}

				return	args[0];

		};

};

	

//	example:

var	f	=	fcompose(negate,	square,	mult2,

add1);

f(2);	//	Returns:	-36

Now	that	we've	encapsulated	the	functions,	we	have
control	over	them.	We	could	rewrite	the	compose
function	such	that	each	function	accepts	another	function
as	input,	stores	it,	and	gives	back	an	object	that	does	the
same.	Instead	of	accepting	an	array	as	an	input,	doing
something	with	it,	and	then	giving	back	a	new	array	for
each	operation,	we	can	accept	a	single	array	for	each
element	in	the	source,	perform	all	operations	combined
(every	map(),	filter(),	and	so	on,	composed
together),	and	finally	store	the	results	in	a	new	array.
This	is	lazy	evaluation	via	function	composition.	No
reason	to	reinvent	the	wheel	here.	Many	libraries	have	a
nice	implementation	of	this	concept,	including	the
Lazy.js,	Bacon.js	and	wu.js	libraries.

There's	a	lot	more	we	can	do	as	a	result	of	this	different
model:	asynchronous	iteration,	asynchronous	event
handling,	lazy	evaluation,	and	even	automatic
parallelization.

NOTENOTE
Automatic	parallelization?	There's	a	word	for	that	in	the	computer	science	industry:
IMPOSSIBLE.	But	is	it	really	impossible?	The	next	evolutionary	leap	in	Moore's	law	might
be	a	compiler	that	parallelizes	our	code	for	us,	and	could	function	composition	be	it?

No,	it	doesn't	quite	work	that	way.	The	JavaScript	engine	is	what	is	really	doing	the
parallelization,	not	automatically	but	with	well	thought-out	code.	Compose	just	gives	the
engine	the	chance	to	split	it	into	parallel	processes.	But	that	in	itself	is	pretty	cool.

Monads
Monads	are	tools	that	help	you	compose	functions.

Like	primitive	types,	monads	are	structures	that	can	be
used	as	the	containers	that	functors	"reach	into".	The
functors	grab	the	data,	do	something	to	it,	put	it	into	a
new	monad,	and	return	it.

There	are	three	monads	we'll	focus	on:

Maybes

Promises

Lenses

So	in	addition	to	arrays	(map)	and	functions	(compose),
we'll	have	five	functors	(map,	compose,	maybe,	promise
and	lens).	These	are	just	some	of	the	many	other
functors	and	monads	that	are	out	there.

Maybes
Maybes	allow	us	to	gracefully	work	with	data	that	might
be	null	and	to	have	defaults.	A	maybe	is	a	variable	that
either	has	some	value	or	it	doesn't.	And	it	doesn't	matter
to	the	caller.

On	its	own,	it	might	seem	like	this	is	not	that	big	a	deal.
Everybody	knows	that	null-checks	are	easily
accomplished	with	an	if-else	statement:

if	(getUsername()	==	null)	{

		username	=	'Anonymous')	{

else	{

		username	=	getUsername();

}

But	with	functional	programming,	we're	breaking	away
from	the	procedural,	line-by-line	way	of	doing	things	and
instead	working	with	pipelines	of	functions	and	data.	If
we	had	to	break	the	chain	in	the	middle	just	to	check	if
the	value	existed	or	not,	we	would	have	to	create
temporary	variables	and	write	more	code.	Maybes	are
just	tools	to	help	us	keep	the	logic	flowing	through	the
pipeline.

To	implement	maybes,	we'll	first	need	to	create	some
constructors.

//	the	Maybe	monad	constructor,	empty	for

now

var	Maybe	=	function(){};

	

//	the	None	instance,	a	wrapper	for	an

object	with	no	value

var	None	=	function(){};

None.prototype	=

Object.create(Maybe.prototype);

None.prototype.toString	=	function()

{return	'None';};

	

//	now	we	can	write	the	`none`	function

//	saves	us	from	having	to	write	`new

None()`	all	the	time

var	none	=	function(){return	new	None()};

	

//	and	the	Just	instance,	a	wrapper	for	an

object	with	a	value

object	with	a	value

var	Just	=	function(x){return	this.x	=

x;};

Just.prototype	=

Object.create(Maybe.prototype);

Just.prototype.toString	=	function()

{return	"Just	"+this.x;};

var	just	=	function(x)	{return	new

Just(x)};

Finally,	we	can	write	the	maybe	function.	It	returns	a	new
function	that	either	returns	nothing	or	a	maybe.	It	is	a
functor.

var	maybe	=	function(m){

		if	(m	instanceof	None)	{

				return	m;

		}

		else	if	(m	instanceof	Just)	{

				return	just(m.x);

		}

		else	{

				throw	new	TypeError("Error:	Just	or

None	expected,	"	+	m.toString()	+	"

given.");

		}

}

And	we	can	also	create	a	functor	generator	just	like	we
did	with	arrays.

var	maybeOf	=	function(f){

		return	function(m)	{

				if	(m	instanceof	None)	{

						return	m;

				}

				else	if	(m	instanceof	Just)	{

						return	just(f(m.x));

				}

				}

				else	{

						throw	new	TypeError("Error:	Just	or

None	expected,	"	+	m.toString()	+	"

given.");

				}

		}

}

So	Maybe	is	a	monad,	maybe	is	a	functor,	and	maybeOf
returns	a	functor	that	is	already	assigned	to	a	morphism.

We'll	need	one	more	thing	before	we	can	move	forward.
We'll	need	to	add	a	method	to	the	Maybe	monad	object
that	helps	us	use	it	more	intuitively.

Maybe.prototype.orElse	=	function(y)	{

		if	(this	instanceof	Just)	{

				return	this.x;

		}

		else	{

				return	y;

		}

}

In	its	raw	form,	maybes	can	be	used	directly.

maybe(just(123)).x;	//	Returns	123

maybeOf(plusplus)(just(123)).x;	//	Returns

124

maybe(plusplus)(none()).orElse('none');	//

returns	'none'

Anything	that	returns	a	method	that	is	then	executed	is
complicated	enough	to	be	begging	for	trouble.	So	we
can	make	it	a	little	cleaner	by	calling	on	our	curry()

function.

maybePlusPlus	=	maybeOf.curry()(plusplus);

maybePlusPlus(just(123)).x;	//	returns	123

maybePlusPlus(none()).orElse('none');	//

returns	none

But	the	real	power	of	maybes	will	become	clear	when
the	dirty	business	of	directly	calling	the	none()	and
just()	functions	is	abstracted.	We'll	do	this	with	an
example	object	User,	that	uses	maybes	for	the
username.

var	User	=	function(){

		this.username	=	none();	//	initially	set

to	`none`

};

User.prototype.setUsername	=

function(name)	{

		this.username	=	just(str(name));	//	it's

now	a	`just

};

User.prototype.getUsernameMaybe	=

function()	{

		var	usernameMaybe	=	maybeOf.curry()

(str);

		return

usernameMaybe(this.username).orElse('anony

mous');

};

	

var	user	=	new	User();

user.getUsernameMaybe();	//	Returns

'anonymous'

	

user.setUsername('Laura');

user.getUsernameMaybe();	//	Returns

'Laura'

'Laura'

And	now	we	have	a	powerful	and	safe	way	to	define
defaults.	Keep	this	User	object	in	mind	because	we'll	be
using	it	later	on	in	this	chapter.

Promises

The	nature	of	promises	is	that	they	remain	immune	to
changing	circumstances.

-	Frank	Underwood,	House	of	Cards

In	functional	programming,	we're	often	working	with
pipelines	and	data	flows:	chains	of	functions	where	each
function	produces	a	data	type	that	is	consumed	by	the
next.	However,	many	of	these	functions	are
asynchronous:	readFile,	events,	AJAX,	and	so	on.
Instead	of	using	a	continuation-passing	style	and	deeply
nested	callbacks,	how	can	we	modify	the	return	types	of
these	functions	to	indicate	the	result?	By	wrapping	them
in	promises.

Promises	are	like	the	functional	equivalent	of	callbacks.
Obviously,	callbacks	are	not	all	that	functional	because,
if	more	than	one	function	is	mutating	the	same	data,	then
there	can	be	race	conditions	and	bugs.	Promises	solve
that	problem.

You	should	use	promises	to	turn	this:

fs.readFile("file.json",	function(err,

val)	{

val)	{

		if(err)	{

				console.error("unable	to	read	file");

		}

		else	{

				try	{

						val	=	JSON.parse(val);

						console.log(val.success);

				}

				catch(e)	{

						console.error("invalid	json	in

file");

				}

		}

});

Into	the	following	code	snippet:

fs.readFileAsync("file.json").then(JSON.pa

rse)

		.then(function(val)	{

				console.log(val.success);

		})

		.catch(SyntaxError,	function(e)	{

				console.error("invalid	json	in	file");

		})

		.catch(function(e){

				console.error("unable	to	read	file")

		});

The	preceding	code	is	from	the	README	for	bluebird:	a
full	featured	Promises/A+	implementation	with
exceptionally	good	performance.	Promises/A+	is	a
specification	for	implementing	promises	in	JavaScript.
Given	its	current	debate	within	the	JavaScript
community,	we'll	leave	the	implementations	up	to	the
Promises/A+	team,	as	it	is	much	more	complex	than

maybes.

But	here's	a	partial	implementation:

//	the	Promise	monad

var	Promise	=	require('bluebird');

	

//	the	promise	functor

var	promise	=	function(fn,	receiver)	{

		return	function()	{

				var	slice	=	Array.prototype.slice,

				args	=	slice.call(arguments,	0,

fn.length	-	1),

				promise	=	new	Promise();

				args.push(function()	{

						var	results	=	slice.call(arguments),

						error	=	results.shift();

						if	(error)	promise.reject(error);

						else	promise.resolve.apply(promise,

results);

				});

				fn.apply(receiver,	args);

				return	promise;

		};

};

Now	we	can	use	the	promise()	functor	to	transform
functions	that	take	callbacks	into	functions	that	return
promises.

var	files	=	['a.json',	'b.json',

'c.json'];

readFileAsync	=	promise(fs.readFile);

var	data	=	files

		.map(function(f){

				readFileAsync(f).then(JSON.parse)

		})

		.reduce(function(a,b){

				return	$.extend({},	a,	b)

		});

Lenses
Another	reason	why	programmers	really	like	monads	is
that	they	make	writing	libraries	very	easy.	To	explore
this,	let's	extend	our	User	object	with	more	functions	for
getting	and	setting	values	but,	instead	of	using	getters
and	setters,	we'll	use	lenses.

Lenses	are	first-class	getters	and	setters.	They	allow	us
to	not	just	get	and	set	variables,	but	also	to	run	functions
over	it.	But	instead	of	mutating	the	data,	they	clone	and
return	the	new	data	modified	by	the	function.	They	force
data	to	be	immutable,	which	is	great	for	security	and
consistency	as	well	for	libraries.	They're	great	for	elegant
code	no	matter	what	the	application,	so	long	as	the
performance-hit	of	introducing	additional	array	copies	is
not	a	critical	issue.

Before	we	write	the	lens()	function,	let's	look	at	how	it
works.

var	first	=	lens(

		function	(a)	{	return	arr(a)[0];	},	//

get

		function	(a,	b)	{	return

[b].concat(arr(a).slice(1));	}	//	set

);

first([1,	2,	3]);	//	outputs	1

first.set([1,	2,	3],	5);	//	outputs	[5,	2,

3]

function	tenTimes(x)	{	return	x	*	10	}

first.modify(tenTimes,	[1,2,3]);	//

first.modify(tenTimes,	[1,2,3]);	//

outputs	[10,2,3]

And	here's	how	the	lens()	function	works.	It	returns	a
function	with	get,	set	and	mod	defined.	The	lens()
function	itself	is	a	functor.

var	lens	=	fuction(get,	set)	{

		var	f	=	function	(a)	{return	get(a)};

		f.get	=	function	(a)	{return	get(a)};

		f.set	=	set;

		f.mod	=	function	(f,	a)	{return	set(a,

f(get(a)))};

		return	f;

};

Let's	try	an	example.	We'll	extend	our	User	object	from
the	previous	example.

//	userName	::	User	->	str

var	userName	=	lens(

		function	(u)	{return

u.getUsernameMaybe()},	//	get

		function	(u,	v)	{	//	set

				u.setUsername(v);

				return	u.getUsernameMaybe();

		}

);

	

var	bob	=	new	User();

bob.setUsername('Bob');

userName.get(bob);	//	returns	'Bob'

userName.set(bob,	'Bobby');	//return

'Bobby'

userName.get(bob);	//	returns	'Bobby'

userName.mod(strToUpper,	bob);	//	returns

'BOBBY'

strToUpper.compose(userName.set)(bob,

'robert');	//	returns	'ROBERT'

'robert');	//	returns	'ROBERT'

userName.get(bob);	//	returns	'robert'

jQuery	is	a	monad
If	you	think	all	this	abstract	babble	about	categories,
functors,	and	monads	has	no	real-world	application,
think	again.	jQuery,	the	popular	JavaScript	library	that
provides	an	enhanced	interface	for	working	with	HTML
is,	in-fact,	a	monadic	library.

The	jQuery	object	is	a	monad	and	its	methods	are
functors.	Really,	they're	a	special	type	of	functor	called
endofunctors.	Endofunctors	are	functors	that	return	the
same	category	as	the	input,	that	is,	F	::	X	->	X.	Each
jQuery	method	takes	a	jQuery	object	and	returns	a
jQuery	object,	which	allows	methods	to	be	chained,
and	they	will	have	the	type	signature	jFunc	::
jquery-obj	->	jquery-obj.

$('li').add('p.me-too').css('color',

'red').attr({id:'foo'});

This	is	also	what	empowers	jQuery's	plugin	framework.	If
the	plugin	takes	a	jQuery	object	as	input	and	returns
one	as	output,	then	it	can	be	inserted	into	the	chain.

Let's	look	at	how	jQuery	was	able	to	implement	this.

Monads	are	the	containers	that	the	functors	"reach	into"
to	get	the	data.	In	this	way,	the	data	can	be	protected
and	controlled	by	the	library.	jQuery	provides	access	to

the	underlying	data,	a	wrapped	set	of	HTML	elements,
via	its	many	methods.

The	jQuery	object	itself	is	written	as	the	result	of	an
anonymous	function	call.

var	jQuery	=	(function	()	{

		var	j	=	function	(selector,	context)	{

				var	jq-obj	=	new	j.fn.init(selector,

context);

				return	jq-obj;

		};

	

		j.fn	=	j.prototype	=	{

				init:	function	(selector,	context)	{

						if	(!selector)	{

								return	this;

						}

				}

		};

		j.fn.init.prototype	=	j.fn;

		return	j;

})();

In	this	highly	simplified	version	of	jQuery,	it	returns	a
function	that	defines	the	j	object,	which	is	actually	just
an	enhanced	init	constructor.

var	$	=	jQuery();	//	the	function	is

returned	and	assigned	to	`$`

var	x	=	$('#select-me');	//	jQuery	object

is	returned

In	the	same	way	that	functors	lift	values	out	of	a
container,	jQuery	wraps	the	HTML	elements	and
provides	access	to	them	as	opposed	to	modifying	the

HTML	elements	directly.

jQuery	doesn't	advertise	this	often,	but	it	has	its	own
map()	method	for	lifting	the	HTML	element	objects	out
of	the	wrapper.	Just	like	the	fmap()	method,	the
elements	are	lifted,	something	is	done	with	them,	and
then	they're	placed	back	into	the	container.	This	is	how
many	of	jQuery's	commands	work	in	the	backend.

$('li').map(function(index,	element)	{

		//	do	something	to	the	element

		return	element

});

Another	library	for	working	with	HTML	elements,
Prototype,	does	not	work	like	this.	Prototype	alters	the
HTML	elements	directly	via	helpers.	Consequently,	it	has
not	faired	as	well	in	the	JavaScript	community.

Implementing	categories
It's	about	time	we	formally	defined	category	theory	as
JavaScript	objects.	Categories	are	objects	(types)	and
morphisms	(functions	that	only	work	on	those	types).	It's
an	extremely	high-level,	totally-declarative	way	to
program,	but	it	ensures	that	the	code	is	extremely	safe
and	reliable—perfect	for	APIs	and	libraries	that	are
worried	about	concurrency	and	type	safety.

First,	we'll	need	a	function	that	helps	us	create
morphisms.	We'll	call	it	homoMorph()	because	they'll	be
homomorphisms.	It	will	return	a	function	that	expects	a
function	to	be	passed	in	and	produces	the	composition
of	it,	based	on	the	inputs.	The	inputs	are	the	types	that
the	morphism	accepts	as	input	and	gives	as	output.	Just
like	our	type	signatures,	that	is,	//	morph	::	num	->
num	->	[num],	only	the	last	one	is	the	output.

var	homoMorph	=	function(/*	input1,

input2,...,	inputN,	output	*/)	{

		var	before	=	checkTypes(arrayOf(func)

(Array.prototype.slice.call(arguments,	0,

arguments.length-1)));

		var	after	=

func(arguments[arguments.length-1])

		return	function(middle)	{

				return	function(args)	{

						return	after(middle.apply(this,

before([].slice.apply(arguments))));

				}

		}

}

}

	

//	now	we	don't	need	to	add	type	signature

comments

//	because	now	they're	built	right	into

the	function	declaration

add	=	homoMorph(num,	num,	num)

(function(a,b){return	a+b})

add(12,24);	//	returns	36

add('a',	'b');	//	throws	error

homoMorph(num,	num,	num)(function(a,b){

		return	a+b;

})(18,	24);	//	returns	42

The	homoMorph()	function	is	fairly	complex.	It	uses	a
closure	(see	Chapter	2,	Fundamentals	of	Functional
Programming)	to	return	a	function	that	accepts	a	function
and	checks	its	input	and	output	values	for	type	safety.
And	for	that,	it	relies	on	a	helper	function:	checkTypes,
which	is	defined	as	follows:

var	checkTypes	=	function(typeSafeties)

{

		arrayOf(func)(arr(typeSafeties));

		var	argLength	=	typeSafeties.length;

		return	function(args)	{

				arr(args);

				if	(args.length	!=	argLength)	{

						throw	new	TypeError('Expected	'+

argLength	+	'	arguments');

				}

				var	results	=	[];

				for	(var	i=0;	i<argLength;	i++)	{

						results[i]	=	typeSafeties[i]

(args[i]);

				}

				return	results;

		}

}

}

Now	let's	formally	define	some	homomorphisms.

var	lensHM	=	homoMorph(func,	func,	func)

(lens);

var	userNameHM	=	lensHM(

		function	(u)	{return

u.getUsernameMaybe()},	//	get

		function	(u,	v)	{	//	set

				u.setUsername(v);

				return	u.getUsernameMaybe();

		}

)

var	strToUpperCase	=	homoMorph(str,	str)

(function(s)	{

		return	s.toUpperCase();

});

var	morphFirstLetter	=	homoMorph(func,

str,	str)(function(f,	s)	{

		return	f(s[0]).concat(s.slice(1));

});

var	capFirstLetter	=	homoMorph(str,	str)

(function(s)	{

		return	morphFirstLetter(strToUpperCase,

s)

});

Finally,	we	can	bring	it	on	home.	The	following	example
includes	function	composition,	lenses,	homomorphisms,
and	more.

//	homomorphic	lenses

var	bill	=	new	User();

userNameHM.set(bill,	'William');	//

Returns:	'William'

userNameHM.get(bill);	//	Returns:

'William'

	

//	compose

var	capatolizedUsername	=

fcompose(capFirstLetter,userNameHM.get);

capatolizedUsername(bill,	'bill');	//

Returns:	'Bill'

	

//	it's	a	good	idea	to	use	homoMorph	on

.set	and	.get	too

var	getUserName	=	homoMorph(obj,	str)

(userNameHM.get);

var	setUserName	=	homoMorph(obj,	str,	str)

(userNameHM.set);

getUserName(bill);	//	Returns:	'Bill'

setUserName(bill,	'Billy');	//	Returns:

'Billy'

	

//	now	we	can	rewrite	capatolizeUsername

with	the	new	setter

capatolizedUsername	=

fcompose(capFirstLetter,	setUserName);

capatolizedUsername(bill,	'will');	//

Returns:	'Will'

getUserName(bill);	//	Returns:	'will'

The	preceding	code	is	extremely	declarative,	safe,
reliable,	and	dependable.

NOTENOTE
What	does	it	mean	for	code	to	be	declarative?	In	imperative	programming,	we	write
sequences	of	instructions	that	tell	the	machine	how	to	do	what	we	want.	In	functional
programming,	we	describe	relationships	between	values	that	tell	the	machine	what	we	want
it	to	compute,	and	the	machine	figures	out	the	instruction	sequences	to	make	it	happen.
Functional	programming	is	declarative.

Entire	libraries	and	APIs	can	be	constructed	this	way
that	allow	programmers	to	write	code	freely	without
worrying	about	concurrency	and	type	safety	because
those	worries	are	handled	in	the	backend.

Summary
About	one	in	every	2,000	people	has	a	condition	known
as	synesthesia,	a	neurological	phenomenon	in	which
one	sensory	input	bleeds	into	another.	The	most
common	form	involves	assigning	colors	with	letters.
However,	there	is	an	even	rarer	form	where	sentences
and	paragraphs	are	associated	with	tastes	and	feelings.

For	these	people,	they	don't	read	word	by	word,
sentence	by	sentence.	They	look	at	the	whole
page/document/program	and	get	a	sense	for	how	it
tastes—not	in	the	mouth	but	in	the	mind.	Then	they	put
the	parts	of	the	text	together	like	the	pieces	of	a	puzzle.

This	is	what	it	is	like	to	write	fully	declarative	code:	code
that	describes	the	relationships	between	values	that	tells
the	machine	what	we	want	it	to	compute.	The	parts	of
the	program	are	not	instructions	in	line-by-line	order.
Synesthetics	may	be	able	to	do	it	naturally,	but	with	a
little	practice	anyone	can	learn	how	to	put	the	relational
puzzle	pieces	together.

In	this	chapter,	we	looked	at	several	mathematical
concepts	that	apply	to	functional	programming	and	how
they	allow	us	to	build	relationships	between	data.	Next,
we'll	explore	recursion	and	other	advanced	topics	in
JavaScript.

Chapter	6.	Advanced	Topics
and	Pitfalls	in	JavaScript
JavaScript	has	been	called	the	"assembly	language	of
the	web".	The	analogy	(it	isn't	perfect,	but	which	analogy
is?)	draws	from	the	fact	that	JavaScipt	is	often	a	target
for	compilation,	namely	from	Clojure	and	CoffeeScript,
but	also	from	many	other	sources	such	as	pyjamas
(python	to	JS)	and	Google	Web	Kit	(Java	to	JS).

But	the	analogy	also	references	the	foolish	idea	that
JavaScript	is	as	expressive	and	low-level	as	x86
assembly.	Perhaps	this	notion	stems	from	the	fact	that
JavaScript	has	been	bashed	for	its	design	flaws	and
oversights	ever	since	it	was	first	shipped	with	Netscape
back	in	1995.	It	was	developed	and	released	in	a	hurry,
before	it	could	be	fully	developed.	And	because	of	that,
some	questionable	design	choices	made	its	way	into
JavaScript,	the	language	that	soon	became	the	de-facto
scripting	language	of	the	web.	Semicolons	were	a	big
mistake.	So	were	its	ambiguous	methods	for	defining
functions.	Is	it	var	foo	=	function();	or	function
foo();?

Functional	programming	is	an	excellent	way	to	side-step
some	of	these	mistakes.	By	focusing	on	the	fact	that
JavaScript	is	truly	a	functional	language,	it	becomes
clear	that,	in	the	preceding	example	about	the	different

ways	to	declare	a	function,	it's	best	to	declare	functions
as	variables.	And	that	semicolons	are	mostly	just
syntactic	sugar	to	make	JavaScript	appear	more	C-like.

But	always	remember	the	language	you	are	working
with.	JavaScript,	like	any	other	language,	has	its	pitfalls.
And,	when	programming	in	a	style	that	often	skirts	the
bleeding	edge	of	what's	possible,	those	minor	stumbles
can	become	non-recoverable	gotchas.	Some	of	these
gotchas	include:

Recursion

Variable	scope	and	closures

Function	declarations	vs.	function	expressions

However,	these	issues	can	be	overcome	with	a	little
attention.

Recursion
Recursion	is	very	important	to	functional	programming	in
any	language.	Many	functional	languages	go	so	far	as	to
require	recursion	for	iteration	by	not	providing	for	and
while	loop	statements;	this	is	only	possible	when	tail-
call	elimination	is	guaranteed	by	the	language,	which	is
not	the	case	for	JavaScript.	A	quick	primer	on	recursion
was	given	in	Chapter	2,	Fundamentals	of	Functional
Programming.	But	in	this	section,	we'll	dig	deeper	into
exactly	how	recursion	works	in	JavaScript.

Tail	recursion

JavaScript's	routine	for	handling	recursion	is	known	as
tail	recursion,	a	stack-based	implementation	of
recursion.	This	means	that,	for	every	recursive	call,	there
is	a	new	frame	in	the	stack.

To	illustrate	the	problems	that	can	arise	from	this
method,	let's	use	the	classic	recursive	algorithm	for
factorials.

var	factorial	=	function(n)	{

		if	(n	==	0)	{

				//	base	case

				return	1;

		}

		else	{

				//	recursive	case

				return	n	*	factorial(n-1);

		}

}

The	algorithm	will	call	itself	n	times	to	get	the	answer.	It's
literally	computing	(1	x	1	x	2	x	3	x	…	x	N).	That
means	the	time	complexity	is	O(n).

NOTENOTE
O(n),	pronounced	"big	oh	to	the	n,"	means	that	the	complexity	of	the	algorithm	will	grow	at
a	rate	of	n	as	the	size	of	the	input	grows,	which	is	leaner	growth.	O(n2)	is	exponential
growth,	O(log(n))	is	logarithmic	growth,	and	so	on.	This	notation	can	be	used	for	time
complexity	as	well	as	space	complexity.

But,	because	a	new	frame	in	the	memory	stack	is
allocated	for	each	iteration,	the	space	complexity	is	also
O(n).	This	is	a	problem.	This	means	that	memory	will	be
consumed	at	such	a	rate	the	memory	limit	will	be

exceeded	far	too	easily.	On	my	laptop,
factorial(23456)	returns	Uncaught	Error:
RangeError:	Maximum	call	stack	size

exceeded.

While	calculating	the	factorial	of	23,456	is	a	frivolous
endeavor,	you	can	be	assured	that	many	problems	that
are	solved	with	recursion	will	grow	to	that	size	without
too	much	trouble.	Consider	the	case	of	data	trees.	The
tree	could	be	anything:	search	applications,	file	systems,
routing	tables,	and	so	on.	Below	is	a	very	simple
implementation	of	the	tree	traversal	function:

var	traverse	=	function(node)	{

		node.doSomething();	//	whatever	work

needs	to	be	done

		node.childern.forEach(traverse);	//	many

recursive	calls

}

With	just	two	children	per	node,	both	time	complexity
and	space	complexity,	(in	the	worst	case,	where	the
entire	tree	must	be	traversed	to	find	the	answer),	would
be	O(n2)	because	there	would	be	two	recursive	calls
each.	With	many	children	per	node,	the	complexity
would	be	O(nm)	where	m	is	the	number	of	children.	And
recursion	is	the	preferred	algorithm	for	tree	traversal;	a
while	loop	would	be	much	more	complex	and	would
require	the	maintenance	of	a	stack.

Exponential	growth	like	this	would	mean	that	it	would	not
take	a	very	large	tree	to	throw	a	RangeError	exception.

There	must	be	a	better	way.

THE	TAIL-CALL	ELIMINATION
We	need	a	way	to	eliminate	the	allocation	of	new	stack
frames	for	every	recursive	call.	This	is	known	as	tail-call
elimination.

With	tail-call	elimination,	when	a	function	returns	the
result	of	calling	itself,	the	language	doesn't	actually
perform	another	function	call.	It	turns	the	whole	thing	into
a	loop	for	you.

OK,	so	how	do	we	do	this?	With	lazy	evaluation.	If	we
could	rewrite	it	to	fold	over	a	lazy	sequence,	such	that
the	function	returns	a	value	or	it	returns	the	result	of
calling	another	function	without	doing	anything	with	that
result,	then	new	stack	frames	don't	need	to	be	allocated.

To	put	it	in	"tail	recursion	form",	the	factorial	function
would	have	to	be	rewritten	such	that	the	inner	procedure
fact	calls	itself	last	in	the	control	flow,	as	shown	in	the
following	code	snippet:

var	factorial	=	function(n)	{

		var	fact	=	function(x,	n)	{

				if	(n	==	0)	{

						//	base	case

						return	x;

				}

				else	{

						//	recursive	case

						return	fact(n*x,	n-1);

				}

		}

		return	fact(1,	n);

}

NOTENOTE
Instead	of	having	the	result	produced	by	the	first	function	in	the	recursion	tail	(like	in	n	*
factorial(n-1)),	the	result	is	computed	going	down	the	recursion	tail	(with	the	call	to
_fact(r*n,	n-1))	and	is	produced	by	the	last	function	in	this	tail	(with	return	r;).	The
computation	goes	only	one	way	down,	not	on	its	way	up.	It's	relatively	easy	to	process	it	as
an	iteration	for	the	interpreter.

However,	tail-call	elimination	does	not	work	in
JavaScript.	Put	the	above	code	into	your	favorite
JavaScript	engine	and	factorial(24567)	still	returns
Uncaught	Error:	RangeError:	Maximum	call

stack	size	exceeded	exception.	Tail-call	elimination
is	listed	as	a	new	feature	to	be	included	in	the	next
release	of	ECMAScript,	but	it	will	be	some	time	before	all
browsers	implement	it.

JavaScript	cannot	optimize	functions	that	are	put	into	tail
recursion	form.	It's	a	feature	of	the	language
specification	and	runtime	interpreter,	plain	and	simple.	It
has	to	do	with	how	the	interpreter	acquires	resources	for
stack	frames.	Some	languages	will	reuse	the	same	stack
frame	when	it	doesn't	need	to	remember	anything	new,
like	in	the	preceding	function.	This	is	how	tail-call
elimination	reduces	both	time	and	space	complexity.

Unfortunately,	JavaScript	does	not	do	this.	But	if	it	did,	it
would	reorganize	the	stack	frames	from	this:

call	factorial	(3)

		call	fact	(3	1)

				call	fact	(2	3)

				call	fact	(2	3)

						call	fact	(1	6)

								call	fact	(0	6)

								return	6

						return	6

				return	6

		return	6

return	6

into	the	following:

call	factorial	(3)

		call	fact	(3	1)

		call	fact	(2	3)

		call	fact	(1	6)

		call	fact	(0	6)

		return	6

return	6

Trampolining
The	solution?	A	process	known	as	trampolining.	It's	a
way	to	"hack"	the	concept	of	tail-call	elimination	into	a
program	by	using	thunks.

NOTENOTE
Thunks	are,	for	this	purpose,	expressions	with	arguments	that	wrap	anonymous	functions
with	no	arguments	of	their	own.	For	example:	function(str){return	function()
{console.log(str)}}.	This	prevents	the	expression	from	being	evaluated	until	a
receiving	function	calls	the	anonymous	function.

A	trampoline	is	a	function	that	takes	a	function	as	input
and	repeatedly	executes	its	returned	value	until
something	other	than	a	function	is	returned.	A	simple
implementation	is	shown	in	the	following	code	snippet:

var	trampoline	=	function(f)	{

var	trampoline	=	function(f)	{

		while	(f	&&	f	instanceof	Function)	{

				f	=	f.apply(f.context,	f.args);

		}

		return	f;

}

To	actually	implement	tail-call	elimination,	we	need	to
use	thunks.	For	this,	we	can	use	the	bind()	function
that	allows	us	to	apply	a	method	to	one	object	with	the
this	keyword	assigned	to	another.	Internally,	it's	the
same	as	the	call	keyword,	but	it's	chained	to	the
method	and	returns	a	new	bound	function.	The	bind()
function	actually	does	partial	application,	though	in	a
very	limited	way.

var	factorial	=	function(n)	{

		var	fact	=	function(x,	n)	{

				if	(n	==	0)	{

						//	base	case

						return	x;

				}

				else	{

						//	recursive	case

						return	fact.bind(null,	n*x,	n-1);

				}

		}

		return	trampoline(_fact.bind(null,	1,	

n));

}

But	writing	the	fact.bind(null,	...)	method	is
cumbersome	and	would	confuse	anybody	reading	the
code.	Instead,	let's	write	our	own	function	for	creating
thunks.	There	are	a	few	things	the	thunk()	function
must	do:

thunk()	function	must	emulate	the	_fact.bind(null,	n*x,	n-

1)	method	that	returns	a	non-evaluated	function

The	thunk()	function	should	enclose	two	more	functions:

For	processing	the	give	function,	and

For	processing	the	function	arguments	that	will	be	used	when
the	given	function	is	invoked

With	that,	we're	ready	to	write	the	function.	We	only	need
a	few	lines	of	code	to	write	it.

var	thunk	=	function	(fn)	{

		return	function()	{

				var	args	=

Array.prototype.slice.apply(arguments);

				return	function()	{	return

fn.apply(this,	args);	};

		};

};

Now	we	can	use	the	thunk()	function	in	our	factorial
algorithm	like	this:

var	factorial	=	function(n)	{

		var	fact	=	function(x,	n)	{

				if	(n	==	0)	{

						return	x;

				}

				else	{

						return	thunk(fact)(n	*	x,	n	-	1);

				}

		}

		return	trampoline(thunk(fact)(1,	n));

}

But	again,	we	can	simplify	it	just	a	bit	further	by	defining
the	_fact()	function	as	a	thunk()	function.	By

defining	the	inner	function	as	a	thunk()	function,	we're
relieved	of	having	to	use	the	thunk()	function	both
inside	the	inner	function	definition	and	in	the	return
statement.

var	factorial	=	function(n)	{

		var	fact	=	thunk(function(x,	n)	{

				if	(n	==	0)	{

						//	base	case

						return	x;

				}

				else	{

						//	recursive	case

						return	fact(n	*	x,	n	-	1);

				}

		});

		return	trampoline(_fact(1,	n));

}

The	result	is	beautiful.	What	seems	like	the	function
_fact()	being	recursively	called	for	a	tail-free	recursion
is	almost	transparently	processed	as	an	iteration!

Finally,	let's	see	how	the	trampoline()	and	thunk()
functions	work	with	our	more	meaningful	example	of	tree
traversal.	The	following	is	a	crude	example	of	how	a	data
tree	could	be	traversed	using	trampolining	and	thunks:

var	treeTraverse	=	function(trunk)	{

		var	_traverse	=	thunk(function(node)	{

				node.doSomething();

				node.children.forEach(_traverse);

		}

		trampoline(_traverse(trunk));

}

We've	solved	the	issue	of	tail	recursion.	But	is	there	an
even	better	way?	What	if	we	could	simply	convert	the
recursive	function	to	a	non-recursive	function?	Up	next,
we'll	look	at	how	to	do	just	that.

The	Y-combinator
The	Y-combinator	is	one	of	those	things	in	computer
science	that	amaze	even	the	deftest	of	programming
masterminds.	Its	ability	to	automatically	convert
recursive	functions	to	non-recursive	functions	is	why
Douglas	Crockford	calls	it	"one	of	the	most	strange	and
wonderful	artifacts	of	computer	science",	and	Sussman
and	Steele	once	said,	"That	this	manages	to	work	is	truly
remarkable".

So	a	truly-remarkable,	wonderfully	strange	artifact	of
computer	science	that	brings	recursive	functions	to	their
knees	must	be	massive	and	complex,	right?	No,	not
exactly.	Its	implementation	in	JavaScript	is	only	nine,
very	odd,	lines	of	code.	They	are	as	follows:

var	Y	=	function(F)	{

		return	(function	(f)	{

				return	f(f);

		}	(function	(f)	{

				return	F(function	(x)	{

						return	f(f)(x);

				});

		}));

}

Here's	how	it	works:	it	finds	the	"fixed	point"	of	the

function	passed	in	as	an	argument.	Fixed	points	offer
another	way	to	think	about	functions	rather	than
recursion	and	iteration	in	the	theory	of	computer
programming.	And	it	does	this	with	only	the	use	of
anonymous	function	expressions,	function	applications,
and	variable	references.	Note	that	Y	does	not	reference
itself.	In	fact,	all	those	functions	are	anonymous.

As	you	might	have	guessed,	the	Y-combinator	came	out
of	lambda	calculus.	It's	actually	derived	with	the	help	of
another	combinator	called	the	U-combinator.
Combinators	are	special	higher-order	functions	that	only
use	function	application	and	earlier	defined	combinators
to	define	a	result	from	its	input.

To	demonstrate	the	Y-combinator,	we'll	again	turn	to	the
factorial	problem,	but	we	need	to	define	the	factorial
function	a	little	differently.	Instead	of	writing	a	recursive
function,	we	write	a	function	that	returns	a	function	that	is
the	mathematical	definition	of	factorials.	Then	we	can
pass	this	into	the	Y-combinator.

var	FactorialGen	=	function(factorial)	{

		return	(function(n)	{

				if	(n	==	0)	{

						//	base	case

						return	1;

				}

				else	{

						//	recursive	case

						return	n	*	factorial(n	–	1);

				}

		});

};

Factorial	=	Y(FactorialGen);

Factorial(10);	//	3628800

However,	when	we	give	it	a	significantly	large	number,
the	stack	overflows	just	as	if	tail	recursion	without
trampolining	was	used.

Factorial(23456);	//	RangeError:	Maximum

call	stack	size	exceeded

But	we	can	use	trampolining	with	the	Y-combinator	as	in
the	following:

var	FactorialGen2	=	function	(factorial)	{

		return	function(n)	{

				var	factorial	=	thunk(function	(x,	n)

{

						if	(n	==	0)	{

								return	x;

						}

						else	{

								return	factorial(n	*	x,	n	-	1);

						}

				});

				return	trampoline(factorial(1,	n));

		}

};

	

var	Factorial2	=	Y(FactorialGen2)

Factorial2(10);	//	3628800

Factorial2(23456);	//	Infinity

We	can	also	rearrange	the	Y-combinator	to	perform
something	called	memoization.

MEMOIZATION

Memoization	is	the	technique	of	storing	the	result	of
expensive	function	calls.	When	the	function	is	later
called	with	the	same	arguments,	the	stored	result	is
returned	rather	than	computing	the	result	again.

Although	the	Y-combinator	is	much	faster	than	recursion,
it	is	still	relatively	slow.	To	speed	it	up,	we	can	create	a
memoizing	fixed-point	combinator:	a	Y-like	combinator
that	caches	the	results	of	intermediate	function	calls.

var	Ymem	=	function(F,	cache)	{

		if	(!cache)	{

				cache	=	{}	;	//	Create	a	new	cache.

		}

		return	function(arg)	{

				if	(cache[arg])	{

						//	Answer	in	cache

						return	cache[arg]	;

				}

				//	else	compute	the	answer

				var	answer	=	(F(function(n){

						return	(Ymem(F,cache))(n);

				}))(arg);	//	Compute	the	answer.

				cache[arg]	=	answer;	//	Cache	the

answer.

				return	answer;

		};

}

So	how	much	faster	is	it?	By	using	http://jsperf.com/,	we
can	compare	the	performance.

The	following	results	are	with	random	numbers	between
1	and	100.	We	can	see	that	the	memoizing	Y-combinator
is	much,	much	faster.	And	adding	trampolining	to	it	does

http://jsperf.com/

not	slow	it	down	by	much.	You	can	view	the	results	and
run	the	tests	yourself	at	this	URL:
http://jsperf.com/memoizing-y-combinator-vs-tail-call-
optimization/7.

The	bottom	line	is:	the	most	efficient	and	safest	method

http://jsperf.com/memoizing-y-combinator-vs-tail-call-optimization/7

of	performing	recursion	in	JavaScript	is	to	use	the
memoizing	Y-combinator	with	tail-call	elimination	via
trampolining	and	thunks.

Variable	scope
The	scope	of	variables	in	JavaScript	is	not	natural.	In
fact,	sometimes	it's	downright	counter-intuitive.	They	say
that	JavaScript	programmers	can	be	judged	by	how	well
they	understand	scope.

Scope	resolutions
First,	let's	go	over	the	different	scope	resolutions	in
JavaScript.

JavaScript	uses	scope	chains	to	establish	the	scope	of
variables.	When	resolving	a	variable,	it	starts	at	the
innermost	scope	and	searches	outwards.

GLOBAL	SCOPE
Variables,	functions,	and	objects	defined	at	this	level	are
available	to	any	code	in	the	entire	program.	This	is	the
outermost	scope.

var	x	=	'hi';

function	a()	{

		console.log(x);

}

a();	//	'hi'

LOCAL	SCOPE
Each	function	described	has	its	own	local	scope.	Any

function	defined	within	another	function	has	a	nested
local	scope	that	is	linked	to	the	outer	function.	Almost
always,	it's	the	position	in	the	source	that	defines	the
scope.

var	x	=	'hi';

function	a()	{

		console.log(x);

}

function	b()	{

		var	x	=	'hello';

		console.log(x);

}

b();	//	hello

a();	//	hi

Local	scope	is	only	for	functions	and	not	for	any
expression	statements	(if,	for,	while,	and	so	on),
which	is	different	from	how	most	languages	treat	scope.

function	c()	{

		var	y	=	'greetings';

		if	(true)	{

				var	y	=	'guten	tag';

		}

		console.log(y);

}

	

function	d()	{

		var	y	=	'greetings';

		function	e()	{

				var	y	=	'guten	tag';

		}

		console.log(y)

}

c();	//	'guten	tag'

d();	//	'greetings'

In	functional	programming,	this	isn't	as	much	of	a
concern	because	functions	are	used	more	often	and
expression	statements	less	often.	For	example:

function	e(){

		var	z	=	'namaste';

		[1,2,3].foreach(function(n)	{

				var	z	=	'aloha';

		}

		isTrue(function(){

				var	z	=	'good	morning';

		});

		console.log(z);

}

e();	//	'namaste'

OBJECT	PROPERTIES
Object	properties	have	their	own	scope	chains	as	well.

var	x	=	'hi';

var	obj	=	function(){

		this.x	=	'hola';

};

var	foo	=	new	obj();

console.log(foo.x);	//	'hola'

foo.x	=	'bonjour';

console.log(foo.x);	//	'bonjour'

The	object's	prototype	is	further	down	the	scope	chain.

obj.prototype.x	=	'greetings';

obj.prototype.y	=	'konnichi	ha';

var	bar	=	new	obj();

console.log(bar.x);	//	still	prints	'hola'

console.log(bar.y);	//	'konnichi	ha'

This	isn't	even	close	to	being	comprehensive,	but	these
three	types	of	scope	are	enough	to	get	started.

Closures
One	problem	with	this	scope	structure	is	that	it	leaves	no
room	for	private	variables.	Consider	the	following	code
snippet:

var	name	=	'Ford	Focus';

var	year	=	'2006';

var	millage	=	123456;

function	getMillage(){

		return	millage;

}

function	updateMillage(n)	{

		millage	=	n;

}

These	variables	and	functions	are	global,	which	means	it
would	be	too	easy	for	code	later	down	the	program	to
accidentally	overwrite	them.	One	solution	would	be	to
encapsulate	them	into	a	function	and	call	that	function
immediately	after	defining	it.

var	car	=	function(){

		var	name	=	'Ford	Focus';

		var	year	=	'2006';

		var	millage	=	123456;

		function	getMillage(){

				return	Millage;

		}

		function	updateMillage(n)	{

				millage	=	n;

		}

}();

}();

Nothing	is	happening	outside	the	function,	so	we	ought
to	discard	the	function	name	by	making	it	anonymous.

(function(){

		var	name	=	'Ford	Focus';

		var	year	=	'2006';

		var	millage	=	123456;

		function	getMillage(){

				return	millage;

		}

		function	updateMillage(n)	{

				millage	=	n;

		}

})();

To	make	the	functions	getValue()	and
updateMillage()	available	outside	the	anonymous
function,	we'll	need	to	return	them	in	an	object	literal	as
shown	in	the	following	code	snippet:

var	car	=	function(){

		var	name	=	'Ford	Focus';

		var	year	=	'2006';

		var	millage	=	123456;

		return	{

				getMillage:	function(){

						return	millage;

				},

				updateMillage:	function(n)	{

						millage	=	n;

				}

		}

}();

console.log(car.getMillage());	//	works

console.log(car.updateMillage(n));	//

also	works

console.log(car.millage);	//	undefined

console.log(car.millage);	//	undefined

This	gives	us	pseudo-private	variables,	but	the	problems
don't	stop	there.	The	following	section	explores	more
issues	with	variable	scope	in	JavaScript.

Gotchas
Many	variable	scope	nuances	can	be	found	throughout
JavaScript.	The	following	is	by	no	means	a
comprehensive	list,	but	it	covers	the	most	common
cases:

The	following	will	output	4,	not	'undefined'	as	one	would	expect:

for	(var	n	=	4;	false;)	{	}

console.log(n);

This	is	due	to	the	fact	that,	in	JavaScript,	variable	definition	happens
at	the	beginning	of	the	corresponding	scope,	not	just	when	it	is
declared.

If	you	define	a	variable	in	the	outer	scope,	and	then	have	an	if

statement	define	a	variable	inside	the	function	with	the	same	name,
even	if	that	if	branch	isn't	reached,	it	is	redefined.	An	example:

var	x	=	1;

function	foo()	{

		if	(false)	{

				var	x	=	2;

		}

		return	x;

}

foo();	//	Return	value:	'undefined',

expected	return	value:

2

Again,	this	is	caused	by	moving	the	variable	definition	at	the
beginning	of	the	scope	with	the	undefined	value.

In	the	browser,	global	variables	are	really	stored	in	the	window

object.

window.a	=	19;

console.log(a);	//	Output:	19

a	in	the	global	scope	means	a	as	an	attribute	of	the	current	context,

so	a===this.a	and	window	object	in	a	browser	act	as	an	equivalent

of	the	this	keyword	in	the	global	scope.

The	first	two	examples	are	a	result	of	a	feature	of
JavaScript	known	as	hoisting,	which	will	be	a	critical
concept	in	the	next	section	about	writing	functions.

Function	declarations
versus	function	expressions
versus	the	function
constructor
What	is	the	difference	between	these	three	statements?

function	foo(n){	return	n;	}

var	foo	=	function(n){	return	n;	};

var	foo	=	new	Function('n',	'return	n');

At	first	glance,	they're	merely	different	ways	to	write	the
same	function.	But	there's	a	little	more	going	on	here.
And	if	we're	to	take	full	advantage	of	functions	in
JavaScript	in	order	to	manipulate	them	into	a	functional
programming	style,	then	we'd	better	be	able	to	get	this
right.	If	there	is	a	better	way	to	do	something	in	computer
programming,	then	that	one	way	should	be	the	only	way.

Function	declarations
Function	declarations,	sometimes	called	function
statements,	define	a	function	by	using	the	function
keyword.

function	foo(n)	{

		return	n;

}

Functions	that	are	declared	with	this	syntax	are	hoisted
to	the	top	of	the	current	scope.	What	this	actually	means
is	that,	even	if	the	function	is	defined	several	lines	down,
JavaScript	knows	about	it	and	can	use	it	earlier	in	the
scope.	For	example,	the	following	will	correctly	print	6	to
the	console:

foo(2,3);

function	foo(n,	m)	{

		console.log(n*m);

}

Function	expressions
Named	functions	can	also	be	defined	as	an	expression
by	defining	an	anonymous	function	and	assigning	it	to	a
variable.

var	bar	=	function(n,	m)	{

		console.log(n*m);

};

They	are	not	hoisted	like	function	declarations	are.	This
is	because,	while	function	declarations	are	hoisted,
variable	declarations	are	not.	For	example,	this	will	not
work	and	will	throw	an	error:

bar(2,3);

var	bar	=	function(n,	m)	{

		console.log(n*m);

};

In	functional	programming,	we're	going	to	want	to	use

function	expressions	so	we	can	treat	the	functions	like
variables,	making	them	available	to	be	used	as	callbacks
and	arguments	to	higher-order	functions	such	as	map()
functions.	Defining	functions	as	expressions	makes	it
more	obvious	that	they're	variables	assigned	to	a
function.	Also,	if	we're	going	to	write	functions	in	one
style,	we	should	write	all	functions	in	that	style	for	the
sake	of	consistency	and	clarity.

The	function	constructor
JavaScript	actually	has	a	third	way	to	create	functions:
with	the	Function()	constructor.	Just	like	function
expressions,	functions	defined	with	the	Function()
constructor	are	not	hoisted.

var	func	=	new	Function('n','m','return

n+m');

func(2,3);	//	returns	5

But	the	Function()	constructor	is	not	only	confusing,	it
is	also	highly	dangerous.	No	syntax	correction	can
happen,	no	optimization	is	possible.	It's	far	easier,	safer,
and	less	confusing	to	write	the	same	function	as	follows:

var	func	=	function(n,m){return	n+m};

func(2,3);	//	returns	5

Unpredictable	behavior
So	the	difference	is	that	function	declarations	are	hoisted
while	function	expressions	are	not.	This	can	cause

unexpected	things	to	happen.	Consider	the	following:

function	foo()	{

		return	'hi';

}

console.log(foo());

function	foo()	{

		return	'hello';

}

What's	actually	printed	to	the	console	is	hello.	This	is
due	to	the	fact	that	the	second	definition	of	the	foo()
function	is	hoisted	to	the	top,	making	it	the	definition	that
is	actually	used	by	the	JavaScript	interpreter.

While	at	first	this	may	not	seem	like	a	critical	difference,
in	functional	programming	this	can	cause	mayhem.
Consider	the	following	code	snippet:

if	(true)	{

		function	foo(){console.log('one')};

}

else	{

		function	foo(){console.log('two')};

}

foo();

When	the	foo()	function	is	called,	two	is	printed	to	the
console,	not	one!

Finally,	there	is	a	way	to	combine	both	function
expressions	and	declarations.	It	works	as	follows:

var	foo	=	function	bar(){

console.log('hi');	};

foo();	//	'hi'

bar();	//	Error:	bar	is	not	defined

It	makes	very	little	sense	to	use	this	method	because	the
name	used	in	the	declaration	(the	bar()	function	in	the
preceding	example)	is	not	available	outside	the	function
and	causes	confusion.	It	would	only	be	appropriate	for
recursion,	for	example:

var	foo	=	function	factorial(n)	{

		if	(n	==	0)	{

				return	1;

		}

else	{

				return	n	*	factorial(n-1);

		}

};

foo(5);

Summary
JavaScript	has	been	called	the	"assembly	language	of
the	web,"	because	it's	as	ubiquitous	and	unavoidable	as
x86	assembly.	It's	the	only	language	that	runs	on	all
browsers.	It's	also	flawed,	yet	referring	to	it	as	a	low-level
language	is	missing	the	mark.

Instead,	think	of	JavaScript	as	the	raw	coffee	beans	of
the	web.	Sure,	some	of	the	beans	are	damaged	and	a
few	are	rotten.	But	if	the	good	ones	are	selected,
roasted,	and	brewed	by	a	skilled	barista,	the	beans	can
be	transformed	into	a	brilliant	jamocha	that	cannot	be
had	just	once	and	forgotten.	It's	consumption	becomes	a
daily	custom,	life	without	it	would	be	static,	harder	to
perform,	and	much	less	exciting.	Some	even	prefer	to
enhance	the	brew	with	plug-ins	and	add-ons	such	as
cream,	sugar,	and	cocoa,	which	complement	it	very	well.

One	of	JavaScript's	biggest	critics,	Douglas	Crawford,
was	quoted	as	saying	"There	are	certainly	a	lot	of	people
who	refuse	to	consider	the	possibility	that	JavaScript	got
anything	right.	I	used	to	be	one	of	those	guys.	But	now	I
continue	to	be	amazed	by	the	brilliance	that	is	in	there".

JavaScript	turned	out	to	be	pretty	awesome.

Chapter	7.	Functional	and
Object-oriented
Programming	in	JavaScript
You	will	often	hear	that	JavaScript	is	a	blank	language,
where	blank	is	either	object-oriented,	functional,	or
general-purpose.	This	book	has	focused	on	JavaScript
as	a	functional	language	and	has	gone	to	great	lengths
to	prove	that	it	is.	But	the	truth	is	that	JavaScript	is	a
general-purpose	language,	meaning	it's	fully	capable	of
multiple	programming	styles.	Like	Python	and	F#,
JavaScript	is	multi-paradigm.	But	unlike	those
languages,	JavaScript's	OOP	side	is	prototype-based
while	most	other	general-purpose	languages	are	class-
based.

In	this	final	chapter,	we	will	relate	both	functional	and
object-oriented	programming	to	JavaScript,	and	see	how
the	two	paradigms	can	complement	each	other	and
coexist	side-by-side.	In	this	chapter	the	following	topics
will	be	covered:

How	can	JavaScript	be	both	functional	and	OOP?

JavaScript's	OOP	–	using	prototypes

How	to	mix	functional	and	OOP	in	JavaScript

Functional	inheritance

Functional	mixins

Better	code	is	the	goal.	Functional	and	object-oriented
programming	are	just	means	to	this	end.

JavaScript	–	the	multi-
paradigm	language
If	object-oriented	programming	means	treating	all
variables	as	objects,	and	functional	programming	means
treating	all	functions	as	variables,	then	can't	functions	be
treated	like	objects?	In	JavaScript,	they	can.

But	saying	that	functional	programming	means	treating
functions	as	variables	is	somewhat	inaccurate.	A	better
way	to	put	it	is:	functional	programming	means	treating
everything	as	a	value,	especially	functions.

A	better	way	still	to	describe	functional	programming
may	be	to	call	it	declarative.	Independent	of	the
imperative	branch	of	programming	styles,	declarative
programming	expresses	the	logic	of	computation
required	to	solve	the	problem.	The	computer	is	told	what
the	problem	is	rather	than	the	procedure	for	how	to	solve
it.

Meanwhile,	object-oriented	programming	is	derived	from
the	imperative	programming	style:	the	computer	is	given
step-by-step	instructions	for	how	to	solve	the	problem.
OOP	mandates	that	the	instructions	for	computation
(methods)	and	the	data	they	work	on	(member	variables)
be	organized	into	units	called	objects.	The	only	way	to

access	that	data	is	through	the	object's	methods.

So	how	can	these	two	styles	be	integrated	together?

The	code	inside	the	object's	methods	is	typically	written	in	an
imperative	style.	But	what	if	it	was	in	a	functional	style?	After	all,	OOP
doesn't	exclude	immutable	data	and	higher-order	functions.

Perhaps	a	purer	way	to	mix	the	two	would	be	to	treat	objects	both	as
functions	and	as	traditional,	class-based	objects	at	the	same	time.

Maybe	we	can	simply	include	several	ideas	from	functional
programming—such	as	promises	and	recursion—into	our	object-
oriented	application.

OOP	covers	topics	such	as	encapsulation,	polymorphism,	and
abstraction.	So	does	functional	programming,	it	just	goes	about	it	in	a
different	way.	So	maybe	we	can	include	several	ideas	from	object-
oriented	programming	in	our	functional-oriented	application.

The	point	is:	OOP	and	FP	can	be	mixed	together	and
there	are	several	ways	to	do	it.	They're	not	exclusive	of
each	other.

JavaScript's	object-oriented
implementation	–	using
prototypes
JavaScript	is	a	class-less	language.	That's	not	to	mean	it
is	less	fashionable	or	more	blue-collar	than	other
computer	languages;	class-less	means	it	doesn't	have	a
class	structure	in	the	same	way	that	object-oriented
languages	do.	Instead,	it	uses	prototypes	for	inheritance.

Although	this	may	be	baffling	to	programmers	with
backgrounds	in	C++	and	Java,	prototype-based
inheritance	can	be	much	more	expressive	than
traditional	inheritance.	The	following	is	a	brief
comparison	between	the	differences	between	C++	and
JavaScript:

C++ JavaScript

Strongly	typed Loosely	typed

Static Dynamic

Class-based Prototype-based

Classes Functions

Constructors Functions

Methods Functions

Inheritance
Before	we	go	much	further,	let's	make	sure	we	fully
understand	the	concept	of	inheritance	in	object-oriented
programming.	Class-based	inheritance	is	demonstrated
in	the	following	pseudo-code:

class	Polygon	{

		int	numSides;

		function	init(n)	{

				numSides	=	n;

		}

}

class	Rectangle	inherits	Polygon	{

		int	width;

		int	length;

		int	length;

		function	init(w,	l)	{

				numSides	=	4;

				width	=	w;

				length	=	l;

		}

		function	getArea()	{

				return	w	*	l;

		}

}

class	Square	inherits	Rectangle	{

		function	init(s)	{

				numSides	=	4;

				width	=	s;

				length	=	s;

		}

}

The	Polygon	class	is	the	parent	class	the	other	classes	inherit
from.	It	defines	just	one	member	variable,	the	number	of	sides,
which	is	set	in	the	init()	function.	The	Rectangle
subclass	inherits	from	the	Polygon	class	and	adds	two	more
member	variables,	length	and	width,	and	a	method,
getArea().	It	doesn't	need	to	define	the	numSides
variable	because	it	was	already	defined	by	the	class	it	inherits
from,	and	it	also	overrides	the	init()	function.	The
Square	class	carries	on	this	chain	of	inheritance	even	further
by	inheriting	from	the	Rectangle	class	for	its	getArea()
method.	By	simply	overriding	the	init()	function	again
such	that	the	length	and	width	are	the	same,	the	getArea()
function	can	remain	unchanged	and	less	code	needs	to	be
written.

In	a	traditional	OOP	language,	this	is	what	inheritance	is	all
about.	If	we	wanted	to	add	a	color	property	to	all	the	objects,

JavaScript's	prototype	chain
Inheritance	in	JavaScript	comes	down	to	prototypes.	Each	object	has	an
internal	property	known	as	its	prototype,	which	is	a	link	to	another	object.
That	object	has	a	prototype	of	its	own.	This	pattern	can	repeat	until	an
object	is	reached	that	has	undefined	as	its	prototype.	This	is	known	as
the	prototype	chain,	and	it's	how	inheritance	works	in	JavaScript.	The
following	diagram	explain	the	inheritance	in	JavaScirpt:	

When	running	a	search	for	an	object's	function	definition,	JavaScript	"walks"	the
prototype	chain	until	it	finds	the	first	definition	of	a	function	with	the	right
name.	Therefore,	overriding	it	is	as	simple	as	providing	a	new	definition	on	the
prototype	of	the	subclass.

Inheritance	in	JavaScript	and	the
Object.create()	method
Just	as	there	are	many	ways	to	create	objects	in	JavaScript,	there	are
also	many	ways	to	replicate	class-based,	classical	inheritance.	But	the

all	we	would	have	to	do	is	add	it	to	the	Polygon	object
without	having	to	modify	any	of	the	objects	that	inherit	from
it.

one	preferred	way	to	do	it	is	with	the	Object.create()	method.

var	Polygon	=	function(n)	{

		this.numSides	=	n;

}

	

var	Rectangle	=	function(w,	l)	{

		this.width	=	w;

		this.length	=	l;

}

	

//	the	Rectangle's	prototype	is	redefined	with

Object.create

Rectangle.prototype	=	Object.create(Polygon.prototype);

	

//	it's	important	to	now	restore	the	constructor	attribute

//	otherwise	it	stays	linked	to	the	Polygon

Rectangle.prototype.constructor	=	Rectangle;

	

//	now	we	can	continue	to	define	the	Rectangle	class

Rectangle.prototype.numSides	=	4;

Rectangle.prototype.getArea	=	function()	{

		return	this.width	*	this.length;

}

	

var	Square	=	function(w)	{

		this.width	=	w;

		this.length	=	w;

}

Square.prototype	=	Object.create(Rectangle.prototype);

Square.prototype.constructor	=	Square;

	

var	s	=	new	Square(5);

console.log(s.getArea());	//	25

This	syntax	may	seem	unusual	to	many	but,	with	a	little	practice,	it	will
become	familiar.	The	prototype	keyword	must	be	used	to	gain	access
to	the	internal	property,	[[Prototype]],	which	all	objects	have.	The

Object.create()	method	declares	a	new	object	with	a	specified
object	for	its	prototype	to	inherit	from.	In	this	way,	classical	inheritance
can	be	achieved	in	JavaScript.

NOTENOTE
The	Object.create()	method	was	introduced	in	ECMAScript	5.1	in	2011,	and	it	was	billed	as	the	new	and
preferred	way	to	create	objects.	This	was	just	one	of	many	attempts	to	integrate	inheritance	into	JavaScript.
Thankfully,	this	method	works	pretty	well.

We	saw	this	structure	of	inheritance	when	building	the	Maybe	classes	in
Chapter	5,	Category	Theory.	Here	are	the	Maybe,	None,	and	Just
classes,	which	inherit	from	each	other	just	like	the	preceding	example.

var	Maybe	=	function(){};

	

var	None	=	function(){};

None.prototype	=	Object.create(Maybe.prototype);

None.prototype.constructor	=	None;

None.prototype.toString	=	function(){return	'None';};

	

var	Just	=	function(x){this.x	=	x;};

Just.prototype	=	Object.create(Maybe.prototype);

Just.prototype.constructor	=	Just;

Just.prototype.toString	=	function(){return	"Just

"+this.x;};

This	shows	that	class	inheritance	in	JavaScript	can	be	an	enabler	of
functional	programming.

A	common	mistake	is	to	pass	a	constructor	into	Object.create()
instead	of	a	prototype	object.	This	problem	is	compounded	by	the	fact
that	an	error	will	not	be	thrown	until	the	subclass	tries	to	use	an	inherited
member	function.

Foo.prototype	=	Object.create(Parent.prototype);	//

correct

correct

Bar.prototype	=	Object.create(Parent);	//	incorrect

Bar.inheritedMethod();	//	Error:	function	is	undefined

The	function	won't	be	found	if	the	inheritedMethod()	method	has
been	attached	to	the	Foo.prototype	class.	If	the
inheritedMethod()	method	is	attached	directly	to	the	instance	with
this.inheritedMethod	=	function(){...}	in	the	Bar
constructor,	then	this	use	of	Parent	as	an	argument	of
Object.create()could	be	correct.

Mixing	functional	and
object-oriented
programming	in	JavaScript
Object-oriented	programming	has	been	the	dominant
programming	paradigm	for	several	decades.	It	is	taught
in	Computer	Science	101	classes	around	the	world,
while	functional	programming	is	not.	It	is	what	software
architects	use	to	design	applications,	while	functional
programming	is	not.	And	it	makes	sense	too:	OOP
makes	it	easy	to	conceptualize	abstract	ideas.	It	makes	it
easier	to	write	code.

So,	unless	you	can	convince	your	boss	that	the
application	needs	to	be	all	functional,	we're	going	to	be
using	functional	programming	in	an	object-oriented
world.	This	section	will	explore	ways	to	do	this.

Functional	inheritance
Perhaps	the	most	accessible	way	to	apply	functional
programming	to	JavaScript	applications	is	to	use	a
mostly	functional	style	within	OOP	principles,	such	as
inheritance.

To	explore	how	this	might	work,	let's	build	a	simple
application	that	calculates	the	price	of	a	product.	First,
we'll	need	some	product	classes:

var	Shirt	=	function(size)	{

		this.size	=	size;

};

	

var	TShirt	=	function(size)	{

		this.size	=	size;

};

TShirt.prototype	=

Object.create(Shirt.prototype);

TShirt.prototype.constructor	=	TShirt;

TShirt.prototype.getPrice	=	function(){

		if	(this.size	==	'small')	{

				return	5;

		}

		else	{

				return	10;

		}

}

	

var	ExpensiveShirt	=	function(size)	{

		this.size	=	size;

}

ExpensiveShirt.prototype	=

Object.create(Shirt.prototype);

ExpensiveShirt.prototype.constructor	=

ExpensiveShirt;

ExpensiveShirt.prototype.getPrice	=

function()	{

		if	(this.size	==	'small')	{

				return	20;

		}

		else	{

				return	30;

		}

}

We	can	then	organize	them	within	a	Store	class	as
follows:

var	Store	=	function(products)	{

var	Store	=	function(products)	{

		this.products	=	products;

}

Store.prototype.calculateTotal	=

function(){

		return

this.products.reduce(function(sum,product)

{

				return	sum	+	product.getPrice();

		},	10)	*	TAX;	//	start	with	$10	markup,

times	global	TAX	var

};

	

var	TAX	=	1.08;

var	p1	=	new	TShirt('small');

var	p2	=	new	ExpensiveShirt('large');

var	s	=	new	Store([p1,p2]);

console.log(s.calculateTotal());	//

Output:	35

The	calculateTotal()	method	uses	the	array's
reduce()	function	to	cleanly	sum	together	the	prices	of
the	products.

This	works	just	fine,	but	what	if	we	need	a	dynamic	way
to	calculate	the	markup	value?	For	this,	we	can	turn	to	a
concept	called	Strategy	Pattern.

STRATEGY	PATTERN
Strategy	Pattern	is	a	method	for	defining	a	family	of
interchangeable	algorithms.	It	is	used	by	OOP
programmers	to	manipulate	behavior	at	runtime,	but	it	is
based	on	a	few	functional	programming	principles:

Separation	of	logic	and	data

Composition	of	functions

Functions	as	first-class	objects

And	a	couple	of	OOP	principles	as	well:

Encapsulation

Inheritance

In	our	example	application	for	calculating	product	cost,
explained	previously,	let's	say	we	want	to	give
preferential	treatment	to	certain	customers,	and	that	the
markup	will	have	to	be	adjusted	to	reflect	this.

So	let's	create	some	customer	classes:

var	Customer	=	function(){};

Customer.prototype.calculateTotal	=

function(products)	{

		return	products.reduce(function(total,

product)	{

				return	total	+	product.getPrice();

		},	10)	*	TAX;

};

	

var	RepeatCustomer	=	function(){};

RepeatCustomer.prototype	=

Object.create(Customer.prototype);

RepeatCustomer.prototype.constructor	=

RepeatCustomer;

RepeatCustomer.prototype.calculateTotal	=

function(products)	{

		return	products.reduce(function(total,

product)	{

				return	total	+	product.getPrice();

		},	5)	*	TAX;

};

	

var	TaxExemptCustomer	=	function(){};

TaxExemptCustomer.prototype	=

Object.create(Customer.prototype);

TaxExemptCustomer.prototype.constructor	=

TaxExemptCustomer;

TaxExemptCustomer.prototype.calculateTotal

=	function(products)	{

		return	products.reduce(function(total,

product)	{

				return	total	+	product.getPrice();

		},	10);

};

Each	Customer	class	encapsulates	the	algorithm.	Now
we	just	need	the	Store	class	to	call	the	Customer
class's	calculateTotal()	method.

var	Store	=	function(products)	{

		this.products	=	products;

		this.customer	=	new	Customer();

		//	bonus	exercise:	use	Maybes	from

Chapter	5	instead	of	a	default	customer

instance

}

Store.prototype.setCustomer	=

function(customer)	{

		this.customer	=	customer;

}

Store.prototype.getTotal	=	function(){

		return

this.customer.calculateTotal(this.products

);

};

	

var	p1	=	new	TShirt('small');

var	p2	=	new	ExpensiveShirt('large');

var	s	=	new	Store([p1,p2]);

var	c	=	new	TaxExemptCustomer();

s.setCustomer(c);

s.getTotal();	//	Output:	45

The	Customer	classes	do	the	calculating,	the	Product
classes	hold	the	data	(the	prices),	and	the	Store	class
maintains	the	context.	This	achieves	a	very	high	level	of
cohesion	and	a	very	good	mixture	of	object-oriented
programming	and	functional	programming.	JavaScript's
high	level	of	expressiveness	makes	this	possible	and
quite	easy.

Mixins
In	a	nutshell,	mixins	are	classes	that	can	allow	other
classes	to	use	their	methods.	The	methods	are	intended
to	be	used	solely	by	other	classes,	and	the	mixin	class
itself	is	never	to	be	instantiated.	This	helps	to	avoid
inheritance	ambiguity.	And	they're	a	great	means	of
mixing	functional	programming	with	object-oriented
programming.

Mixins	are	implemented	differently	in	each	language.
Thanks	to	JavaScript's	flexibility	and	expressiveness,
mixins	are	implemented	as	objects	with	only	methods.
While	they	can	be	defined	as	function	objects	(that	is,
var	mixin	=	function(){...};),	it	would	be
better	for	the	structural	discipline	of	the	code	to	define
them	as	object	literals	(that	is,	var	mixin	=	{...};).
This	will	help	us	to	distinguish	between	classes	and
mixins.	After	all,	mixins	should	be	treated	as	processes,
not	objects.

Let's	start	with	declaring	some	mixins.	We'll	extend	our

Store	application	from	the	previous	section,	using
mixins	to	expand	on	the	classes.

var	small	=	{

		getPrice:	function()	{

				return	this.basePrice	+	6;

		},

		getDimensions:	function()	{

				return	[44,63]

		}

}

var	large	=	{

		getPrice:	function()	{

				return	this.basePrice	+	10;

		},

		getDimensions:	function()	{

				return	[64,83]

		}

};

We're	not	limited	to	just	this.	Many	more	mixins	can	be
added,	like	colors	or	fabric	material.	We'll	have	to	rewrite
our	Shirt	classes	a	little	bit,	as	shown	in	the	following
code	snippet:

var	Shirt	=	function()	{

		this.basePrice	=	1;

};

Shirt.getPrice	=	function(){

		return	this.basePrice;

}

var	TShirt	=	function()	{

		this.basePrice	=	5;

};

TShirt.prototype	=

Object.create(Shirt.prototype);

TShirt..prototype.constructor	=	TShirt;

Now	we're	ready	to	use	mixins.

CLASSICAL	MIXINS
You're	probably	wondering	just	how	these	mixins	get
mixed	with	the	classes.	The	classical	way	to	do	this	is	by
copying	the	mixin's	functions	into	the	receiving	object.
This	can	be	done	with	the	following	extension	to	the
Shirt	prototype:

Shirt.prototype.addMixin	=	function

(mixin)	{

		for	(var	prop	in	mixin)	{

				if	(mixin.hasOwnProperty(prop))	{

						this.prototype[prop]	=	mixin[prop];

				}

		}

};

And	now	the	mixins	can	be	added	as	follows:

TShirt.addMixin(small);

var	p1	=	new	TShirt();

console.log(p1.getPrice());	//	Output:

11

	

TShirt.addMixin(large);

var	p2	=	new	TShirt();

console.log(p2.getPrice());	//	Output:

15

However,	there	is	a	major	problem.	When	the	price	of	p1
is	calculated	again,	it	comes	back	as	15,	the	price	of	a
large	item.	It	should	be	the	value	for	a	small	one!

console.log(p1.getPrice());	//	Output:

console.log(p1.getPrice());	//	Output:

15

The	problem	is	that	the	Shirt	object's
prototype.getPrice()	method	is	getting	rewritten
every	time	a	mixin	is	added	to	it;	this	is	not	very
functional	at	all	and	not	what	we	want.

FUNCTIONAL	MIXINS
There's	another	way	to	use	mixins,	one	that	is	more
aligned	with	functional	programming.

Instead	of	copying	the	methods	of	the	mixin	to	the	target
object,	we	need	to	create	a	new	object	that	is	a	clone	of
the	target	object	with	the	mixin's	methods	added	in.	The
object	must	be	cloned	first,	and	this	is	achieved	by
creating	a	new	object	that	inherits	from	it.	We'll	call	this
variation	plusMixin.

Shirt.prototype.plusMixin	=

function(mixin)	{

		//	create	a	new	object	that	inherits

from	the	old

		var	newObj	=	this;

		newObj.prototype	=

Object.create(this.prototype);

		for	(var	prop	in	mixin)	{

				if	(mixin.hasOwnProperty(prop))	{

						newObj.prototype[prop]	=

mixin[prop];

				}

		}

		return	newObj;

};

	

var	SmallTShirt	=	Tshirt.plusMixin(small);

var	SmallTShirt	=	Tshirt.plusMixin(small);

//	creates	a	new	class

var	smallT	=	new	SmallTShirt();

console.log(smallT.getPrice());		//

Output:	11

	

var	LargeTShirt	=	Tshirt.plusMixin(large);

var	largeT	=	new	LargeTShirt();

console.log(largeT.getPrice());	//

Output:	15

console.log(smallT.getPrice());	//

Output:	11	(not	effected	by	2nd	mixin

call)

Here	comes	the	fun	part!	Now	we	can	get	really
functional	with	the	mixins.	We	can	create	every	possible
combination	of	products	and	mixins.

//	in	the	real	world	there	would	be	way

more	products	and	mixins!

var	productClasses	=	[ExpensiveShirt,

Tshirt];

var	mixins	=	[small,	medium,	large];

	

//	mix	them	all	together

products	=

productClasses.reduce(function(previous,

current)	{

		var	newProduct	=

mixins.map(function(mxn)	{

				var	mixedClass	=

current.plusMixin(mxn);

				var	temp	=	new	mixedClass();

				return	temp;

		});

		return	previous.concat(newProduct);

},[]);

products.forEach(function(o)

{console.log(o.getPrice())});

To	make	it	more	object-oriented,	we	can	rewrite	the
Store	object	with	this	functionality.	We'll	also	add	a
display	function	to	the	Store	object,	not	the	products,	to
keep	the	interface	logic	and	the	data	separated.

//	the	store

var	Store	=	function()	{

		productClasses	=	[ExpensiveShirt,

TShirt];

		productMixins	=	[small,	medium,	large];

		this.products	=

productClasses.reduce(function(previous,

current)	{

				var	newObjs	=

productMixins.map(function(mxn)	{

						var	mixedClass	=

current.plusMixin(mxn);

						var	temp	=	new	mixedClass();

						return	temp;

				});

				return	previous.concat(newObjs);

		},[]);

}

Store.prototype.displayProducts	=

function(){

		this.products.forEach(function(p)	{

				

$('ul#products').append(''+p.getTitle(

)+':	$'+p.getPrice()+'');

		});

}

And	all	we	have	to	do	is	create	a	Store	object	and	call
its	displayProducts()	method	to	generate	a	list	of
products	and	prices!

<ul	id="products">

		small	premium	shirt:	$16

		small	premium	shirt:	$16

		medium	premium	shirt:	$18

		large	premium	shirt:	$20

		small	t-shirt:	$11

		medium	t-shirt:	$13

		large	t-shirt:	$15

These	lines	need	to	be	added	to	the	product	classes
and	mixins	to	get	the	preceding	output	to	work:

Shirt.prototype.title	=	'shirt';

TShirt.prototype.title	=	't-shirt';

ExpensiveShirt.prototype.title	=	'premium

shirt';

	

//	then	the	mixins	got	the	extra

'getTitle'	function:

var	small	=	{

		...

		getTitle:	function()	{

				return	'small	'	+	this.title;	//	small

or	medium	or	large

		}

}

And,	just	like	that,	we	have	an	e-commerce	application
that	is	highly	modular	and	extendable.	New	shirt	styles
can	be	added	absurdly	easily—just	define	a	new	Shirt
subclass	and	add	to	it	the	Store	class's	array	product
classes.	Mixins	are	added	in	just	the	same	way.	So	now
when	our	boss	says,	"Hey,	we	have	a	new	type	of	shirt
and	a	coat,	each	available	in	the	standard	colors,	and	we
need	them	added	to	the	website	before	you	go	home
today",	we	can	rest	assured	that	we'll	not	be	staying	late!

Summary
JavaScript	has	a	high	level	of	expressiveness.	This
makes	it	possible	to	mix	functional	and	object-oriented
programming.	Modern	JavaScript	is	not	solely	OOP	or
functional—it	is	a	mixture	of	the	two.	Concepts	such	as
Strategy	Pattern	and	mixins	are	perfect	for	JavaScript's
prototype	structure,	and	they	help	to	prove	that	today's
best	practices	in	JavaScript	share	equal	amounts	of
functional	programming	and	object-oriented
programming.

If	you	were	to	take	away	only	one	thing	from	this	book,	I
would	want	it	to	be	how	to	apply	functional	programming
techniques	to	real-world	applications.	And	this	chapter
showed	you	how	to	do	exactly	that.

Appendix	A.	Common
Functions	for	Functional
Programming	in	JavaScript
This	Appendix	covers	common	functions	for	functional
programming	in	JavaScript:

Array	Functions:

var	flatten	=	function(arrays)	{

	

		return	arrays.reduce(function(p,n){

	

				return	p.concat(n);

	

});

	

};

var	invert	=	function(arr)	{

	

		return	arr.map(function(x,	i,	a)	{

	

				return	a[a.length	-	(i+1)];	});

	

};

Binding	Functions:

var	bind	=

Function.prototype.call.bind(Function.

prototype.bind);	var	call	=

bind(Function.prototype.call,

Function.prototype.call);	var	apply	=

bind(Function.prototype.call,

Function.prototype.apply);

Category	Theory:

var	checkTypes	=	function(

typeSafeties)	{

	

		arrayOf(func)(arr(typeSafeties));

var	argLength	=	typeSafeties.length;

return	function(args)	{

	

				arr(args);

	

				if	(args.length	!=	argLength)	{

	

						throw	new	TypeError('Expected	'+

argLength	+	'	arguments');	}

	

				var	results	=	[];

	

				for	(var	i=0;	i<argLength;	i++)	{

	

						results[i]	=	typeSafeties[i]

(args[i]);	}

	

				return	results;

	

};

	

};

var	homoMorph	=	function(/*	arg1,

arg2,	...,	argN,	output	*/)	{

	

		var	before	=

checkTypes(arrayOf(func)

(Array.prototype.slice.call(arguments,

0,	arguments.length-1)));	var	after	=

func(arguments[arguments.length-1])

return	function(middle)	{

	

				return	function(args)	{

	

						return	after(middle.apply(this,

before([].slice.apply(arguments))));

};

	

};

	

};

Composition:

Function.prototype.compose	=

function(prevFunc)	{

	

		var	nextFunc	=	this;

	

		return	function()	{

	

				return

nextFunc.call(this,prevFunc.apply(this

,arguments));	};

	

};

Function.prototype.sequence		=

function(prevFunc)	{

	

		var	nextFunc	=	this;

	

		return	function()	{

	

				return

prevFunc.call(this,nextFunc.apply(this

,arguments));	};

	

};

Currying:

Function.prototype.curry	=	function

Function.prototype.curry	=	function

(numArgs)	{

	

		var	func	=	this;

	

		numArgs	=	numArgs	||	func.length;	//

recursively	acquire	the	arguments

function	subCurry(prev)	{

	

				return	function	(arg)	{

	

						var	args	=	prev.concat(arg);	if

(args.length	<	numArgs)	{

	

								//	recursive	case:	we	still

need	more	args	return	subCurry(args);

}

	

						else	{

	

								//	base	case:	apply	the

function	return	func.apply(this,

args);	}

	

};

	

};

	

		return	subCurry([]);

	

};

Functors:

//	map	::	(a	->	b)	->	[a]	->	[b]

	

var	map	=	function(f,	a)	{

	

		return	arr(a).map(func(f));	}

	

	

	

//	strmap	::	(str	->	str)	->	str	->

str	var	strmap	=	function(f,	s)	{

	

		return

str(s).split('').map(func(f)).join('')

;	}

	

	

	

//	fcompose	::	(a	->	b)*	->	(a	->	b)

var	fcompose	=	function()	{

	

		var	funcs	=	arrayOf(func)

(arguments);	return	function()	{

	

	

				var	argsOfFuncs	=	arguments;	for

(var	i	=	funcs.length;	i	>	0;	i	-=	1)

{

	

						argsOfFuncs		=

[funcs[i].apply(this,	args)];	}

	

				return	args[0];

	

};

	

};

Lenses:

var	lens	=	function(get,	set)	{

	

		var	f	=	function	(a)	{return

get(a)};	f.get	=	function	(a)	{return

get(a)};	f.set	=	set;

	

		f.mod	=	function	(f,	a)	{return

set(a,	f(get(a)))};	return	f;

	

};

//	usage:

	

var	first	=	lens(

var	first	=	lens(

	

		function	(a)	{	return	arr(a)[0];	},

//	get	function	(a,	b)	{	return

[b].concat(arr(a).slice(1));	}	//	set

);

Maybes:

var	Maybe	=	function(){};

Maybe.prototype.orElse	=	function(y)	{

	

		if	(this	instanceof	Just)	{

	

				return	this.x;

	

}

	

		else	{

	

				return	y;

	

}

	

};

var	None	=	function(){};

	

None.prototype	=

Object.create(Maybe.prototype);

Object.create(Maybe.prototype);

None.prototype.toString	=	function()

{return	'None';};	var	none	=

function(){return	new	None()};	//	and

the	Just	instance,	a	wrapper	for	an

object	with	a	value	var	Just	=

function(x){return	this.x	=	x;};

Just.prototype	=

Object.create(Maybe.prototype);

Just.prototype.toString	=	function()

{return	"Just	"+this.x;};	var	just	=

function(x)	{return	new	Just(x)};	var

maybe	=	function(m){

	

		if	(m	instanceof	None)	{

	

				return	m;

	

}

	

		else	if	(m	instanceof	Just)	{

	

				return	just(m.x);

	

}

	

		else	{

	

				throw	new	TypeError("Error:	Just

or	None	expected,	"	+	m.toString()	+	"

given.");	}

given.");	}

	

};

var	maybeOf	=	function(f){

	

		return	function(m)	{

	

				if	(m	instanceof	None)	{

	

						return	m;

	

}

	

				else	if	(m	instanceof	Just)	{

	

						return	just(f(m.x));

	

}

	

				else	{

	

						throw	new	TypeError("Error:	Just

or	None	expected,	"	+	m.toString()	+	"

given.");	}

	

};

};

	

};

Mixins:

Object.prototype.plusMixin	=

function(mixin)	{

	

		var	newObj	=	this;

	

		newObj.prototype	=

Object.create(this.prototype);

newObj.prototype.constructor	=	newObj;

for	(var	prop	in	mixin)	{

	

				if	(mixin.hasOwnProperty(prop))	{

	

						newObj.prototype[prop]	=

mixin[prop];	}

	

}

	

		return	newObj;

	

};

Partial	Application:

function	bindFirstArg(func,	a)	{

	

		return	function(b)	{

	

				return	func(a,	b);

	

};

	

};

Function.prototype.partialApply	=

function(){

	

		var	func	=	this;

	

		var	args	=

Array.prototype.slice.call(arguments);

return	function(){

	

				return	func.apply(this,

args.concat(

	

						

Array.prototype.slice.call(arguments)

));

	

};

	

};

Function.prototype.partialApplyRight	=

function(){

	

		var	func	=	this;

	

		var	args	=

Array.prototype.slice.call(arguments);

return	function(){

	

				return	func.apply(

	

						this,

	

						

Array.protype.slice.call(arguments,	0)

.concat(args));

	

};

	

};

Trampolining:

var	trampoline	=	function(f)	{

	

		while	(f	&&	f	instanceof	Function)	{

	

				f	=	f.apply(f.context,	f.args);	}

	

		return	f;

	

};

var	thunk	=	function	(fn)	{

	

		return	function()	{

	

				var	args	=

Array.prototype.slice.apply(arguments)

;	return	function()	{	return

fn.apply(this,	args);	};	};

	

};

Type	Safeties:

var	typeOf	=	function(type)	{

	

		return	function(x)	{

	

				if	(typeof	x	===	type)	{

	

						return	x;

	

}

	

				else	{

	

						throw	new	TypeError("Error:

"+type+"	expected,	"+typeof	x+"

given.");	}

	

};

	

};

var	str	=	typeOf('string'),

	

		num	=	typeOf('number'),

	

		func	=	typeOf('function'),

	

		bool	=	typeOf('boolean');

	

	

	

var	objectTypeOf	=	function(name)	{

	

		return	function(o)	{

	

				if

(Object.prototype.toString.call(o)	===

"[object	"+name+"]")	{

	

	

						return	o;

	

}

	

				else	{

	

						throw	new	TypeError("Error:

'+name+'	expected,	something	else

given.");	}

	

};

	

};

	

var	obj	=	objectTypeOf('Object');	var

arr	=	objectTypeOf('Array');	var	date

=	objectTypeOf('Date');	var	div	=

objectTypeOf('HTMLDivElement');

	

//	arrayOf	::	(a	->	b)	->	([a]	->	[b])

var	arrayOf	=	function(f)	{

	

		return	function(a)	{

	

				return	map(func(f),	arr(a));	}

	

};

Y-combinator:

var	Y	=	function(F)	{

	

		return	(function	(f)	{

	

				return	f(f);

	

		}(function	(f)	{

	

				return	F(function	(x)	{

	

						return	f(f)(x);

	

});

	

}));

	

};

//	Memoizing	Y-Combinator:

	

var	Ymem	=	function(F,	cache)	{

	

		if	(!cache)	{

	

				cache	=	{}	;	//	Create	a	new

cache.

	

}

	

		return	function(arg)	{

	

				if	(cache[arg])	{

	

						//	Answer	in	cache

	

						return	cache[arg]	;

	

}

	

				//	else	compute	the	answer	var

answer	=	(F(function(n){

	

						return	(Ymem(F,cache))(n);	}))

(arg);	//	Compute	the	answer.

	

				cache[arg]	=	answer;	//	Cache	the

answer.

	

				return	answer;

	

	

};

	

};

Appendix	B.	Glossary	of
Terms
This	appendix	covers	some	of	the	important	terms	that
are	used	in	this	book:

Anonymous	function:	A	function	that	has	no	name	and	is	not	bound
to	any	variables.	It	is	also	known	as	a	Lambda	Expression.

Callback:	A	function	that	can	be	passed	to	another	function	to	be
used	in	a	later	event.

Category:	In	terms	of	Category	Theory,	a	category	is	a	collection	of
objects	of	the	same	type.	In	JavaScript,	a	category	can	be	an	array	or
object	that	contains	objects	that	are	all	explicitly	declared	as	numbers,
strings,	Booleans,	dates,	objects,	and	so	on.

Category	Theory:	A	concept	that	organizes	mathematical	structures
into	collections	of	objects	and	operations	on	those	objects.	The	data
types	and	functions	used	in	computer	programs	form	the	categories
used	in	this	book.

Closure:	An	environment	such	that	functions	defined	within	it	can
access	local	variables	that	are	not	available	outside	it.

Coupling:	The	degree	to	which	each	program	module	relies	on	each
of	the	other	modules.	Functional	programming	reduces	the	amount	of
coupling	within	a	program.

Currying:	The	process	of	transforming	a	function	with	many
arguments	into	a	function	with	one	argument	that	returns	another
function	that	can	take	more	arguments,	as	needed.	Formally,	a
function	with	N	arguments	can	be	transformed	into	a	function	chain	of
N	functions,	each	with	only	one	argument.

Declarative	programming:	A	programming	style	that	expresses	the
computational	logic	required	to	solve	the	problem.	The	computer	is
told	what	the	problem	is	rather	than	the	procedure	required	to	solve	it.

Endofunctor:	A	functor	that	maps	a	category	to	itself.

Function	composition:	The	process	of	combining	many	functions
into	one	function.	The	result	of	each	function	is	passed	as	an
argument	to	the	next,	and	the	result	of	the	last	function	is	the	result	of
the	whole	composition.

Functional	language:	A	computer	language	that	facilitates	functional
programming.

Functional	programming:	A	declarative	programming	paradigm	that
focuses	on	treating	functions	as	mathematical	expressions	and	avoids
mutable	data	and	changes	in	state.

Functional	reactive	programming:	A	style	of	functional
programming	that	focuses	on	reactive	elements	and	variables	that
change	over	time	in	response	to	events.

Functor:	A	mapping	between	categories.

Higher-order	function:	A	function	that	takes	either	one	or	more
functions	as	input,	and	returns	a	function	as	its	output.

Inheritance:	An	object-oriented	programming	capability	that	allows
one	class	to	inherit	member	variables	and	methods	from	another
class.

Lambda	expressions:	See	Anonymous	function.

Lazy	evaluation:	A	computer	language	evaluation	strategy	that
delays	the	evaluation	of	an	expression	until	its	value	is	needed.	The
opposite	of	this	strategy	is	called	eager	evaluation	or	greedy
evaluation.	Lazy	evaluation	is	also	known	as	call	by	need.

Library:	A	set	of	objects	and	functions	that	have	a	well-defined
interface	that	allows	a	third-party	program	to	invoke	their	behavior.

Memoization:	The	technique	of	storing	the	results	of	expensive
function	calls.	When	the	function	is	called	later	with	the	same
arguments,	the	stored	result	is	returned	rather	than	computing	the
result	again.

Method	chain:	A	pattern	in	which	many	methods	are	invoked	side	by
side	by	directly	passing	the	output	of	one	method	to	the	input	of	the
next.	This	avoids	the	need	to	assign	the	intermediary	values	to
temporary	variables.

Mixin:	An	object	that	can	allow	other	objects	to	use	its	methods.	The
methods	are	intended	to	be	used	solely	by	other	objects,	and	the

mixin	object	itself	is	never	to	be	instantiated.

Modularity:	The	degree	to	which	a	program	can	be	broken	down	into
independent	modules	of	code.	Functional	programming	increases	the
modularity	of	programs.

Monad:	A	structure	that	provides	the	encapsulation	required	by
functors.

Morphism:	A	pure	function	that	only	works	on	a	certain	category	and
always	returns	the	same	output	when	given	a	specific	set	of	inputs.
Homomorphic	operations	are	restricted	to	a	single	category,	while
polymorphic	operations	can	operate	on	multiple	categories.

Partial	application:	The	process	of	binding	values	to	one	or	more
arguments	of	a	function.	It	returns	a	partially	applied	function,	which	in
turn	accepts	the	remaining,	unbound	arguments.

Polyfill:	A	function	used	to	augment	prototypes	with	new	functions.	It
allows	us	to	call	our	new	functions	as	methods	of	the	previous
function.

Pure	function:	A	function	whose	output	value	depends	only	on	the
arguments	that	are	the	input	to	the	function.	Thus,	calling	a	function,	f,
twice	with	the	same	value	of	an	argument,	x,	will	produce	the	same
result,	f(x),every	time.

Recursive	function:	A	function	that	calls	itself.	Such	functions
depend	on	solutions	to	smaller	instances	of	the	same	problem	to
compute	the	solution	to	the	larger	problem.	Like	iteration,	recursion	is
another	way	to	repeatedly	call	the	same	block	of	code.	But,	unlike
iteration,	recursion	requires	that	the	code	block	define	the	case	in
which	the	repeating	code	calls	should	terminate,	known	as	the	base
case.

Reusability:	The	degree	to	which	a	block	of	code,	usually	a	function
in	JavaScript,	can	be	reused	in	other	parts	of	the	same	program	or	in
other	programs.

Self-invoking	function:	An	anonymous	function	that	is	invoked
immediately	after	it	has	been	defined.	In	JavaScript,	this	is	achieved
by	placing	a	pair	of	parentheses	after	the	function	expression.

Strategy	pattern:	A	method	used	to	define	a	family	of
interchangeable	algorithms.

Tail	recursion:	A	stack-based	implementation	of	recursion.	For	every

recursive	call,	there	is	a	new	frame	in	the	stack.

Toolkit:	A	small	software	library	that	provides	a	set	of	functions	for
the	programmer	to	use.	Compared	to	a	library,	a	toolkit	is	simpler	and
requires	less	coupling	with	the	program	that	invokes	it.

Trampolining:	A	strategy	for	recursion	that	provides	tail-call
elimination	in	programming	languages	that	do	not	provide	this	feature,
such	as	JavaScript.

Y-combinator:	A	fixed-point	combinator	in	Lambda	calculus	that
eliminates	explicit	recursion.	When	it	is	given	as	input	to	a	function
that	returns	a	recursive	function,	the	Y-combinator	returns	the	fixed
point	of	that	function,	which	is	the	transformation	from	the	recursive
function	to	a	non-recursive	function.

Appendix	A.	Bibliography
This	learning	path	has	been	prepared	for	you	to	show
how	functional	programming	when	combined	with	other
techniques	makes	JavaScript	programming	more
efficient.	It	comprises	of	the	following	Packt	products:

Mastering	JavaScript,	Ved	Antani

Mastering	JavaScript	Design	Patterns	-	Second	Edition,	Simon	Timms

Functional	Programming	in	JavaScript,	Dan	Mantyla

Index

A
abstract	factory

about	/	Abstract	factory

implementing	/	Implementation

abstract	syntax	tree	(AST)	/	Macros

accumulators

about	/	Accumulators

implementing	/	Implementation

Act	Assert

arranging	/	Arrange-Act-Assert

assert	/	Assert

adapter	pattern

about	/	Adapter

implementing	/	Implementation

aggregate	services

about	/	Aggregate	services

anonymous	functions

about	/	Anonymous	functions

while	creating	object	/	Anonymous	functions	while	creating	an
object

while	creating	list	/	Anonymous	functions	while	creating	a	list

as	parameter	to	another	function	/	Anonymous	functions	as	a

parameter	to	another	function

in	conditional	logic	/	Anonymous	functions	in	conditional	logic

/	Anonymous	functions

anti-patterns

about	/	Anti-patterns

application	state	changes

about	/	Application	state	changes

apply()	function	/	Apply,	call,	and	the	this	keyword

arguments	parameter

about	/	The	arguments	parameter

this	parameter	/	The	this	parameter

arrayOf	functor	/	Arrays	and	functors

arrays

about	/	Arrays	and	functors

arrow	functions	/	Arrow	functions

arrrays

about	/	Arrays

aspect	oriented	programming

about	/	Aspect	oriented	programming

aspect	oriented	programming	(AOP)	/	Decorators

assert	/	Assert

asserts	/	Console.log	and	asserts

Async/Await	/	Async/Await

asynchronous	evented-model

in	browser	/	An	asynchronous	evented-model	in	a	browser

Asynchronous	JavaScript	and	XML	(AJAX)	/	The	way	of	GMail

automatic	semicolon	insertion	(ASI)

about	/	Automatic	semicolon	insertion

references	/	Automatic	semicolon	insertion

B
Babel

URL	/	Transpilers

about	/	Transpilers

BabelJS

about	/	BabelJS

classes	/	Classes

default	parameters	/	Default	parameters

template	literals	/	Template	literals

block	bindings,	with	let	/	Block	bindings	with	let

in	production	/	In	production

tips	and	tricks	/	Tips	and	tricks

backbone.js

about	/	Introduction

Backreferences

about	/	Backreferences

Bacon.js	/	Bacon.js

beginning	and	end

about	/	Beginning	and	end

Behavior-driven	development	/	Behavior-driven	development

Behavior-driven	development	(BDD)	/	Behavior-driven	development

big.js

URL	/	Number

Bilby.js	/	Bilby.js

bind()	function	/	Binding	arguments

block-level	scope

versus	function-level	scope	/	Function-level	scope	versus	block-
level	scope

block	bindings

with	let	/	Block	bindings	with	let

block	scopes	/	Block	scopes

block	scoping	/	Block	scoping

bluebird	/	Promises

Boolean	operators

about	/	Boolean	operators

Logical	AND	/	Boolean	operators

Logical	OR	/	Boolean	operators

Logical	NOT	/	Boolean	operators

example	/	Boolean	operators

Booleans

about	/	Booleans

Bower	/	Arrays

bridge	pattern

about	/	Bridge

implementing	/	Implementation

browser

asynchronous	evented-model	/	An	asynchronous	evented-
model	in	a	browser

browser	events

about	/	Working	with	browser	events

builder

implementing	/	Implementation

C
C++

versus	JavaScript	/	JavaScript's	object-oriented	implementation
–	using	prototypes

call()	function	/	Apply,	call,	and	the	this	keyword

callback	hell

about	/	Callbacks

callbacks

about	/	Timers	and	callbacks,	Callbacks

casting

about	/	JavaScript	types

categories

about	/	Category	theory	in	a	nutshell

implementing	/	Implementing	categories

category	theory

about	/	Category	theory,	Category	theory	in	a	nutshell

type	safety	functions,	creating	/	Type	safety

objects	/	Object	identities

Chai	/	Behavior-driven	development

chaining,	jQuery	methods

about	/	Chaining

chain	of	responsibility

about	/	Chain	of	responsibility

implementing	/	Implementation

Chrome	DevTools	/	Chrome	DevTools

circuit	breaker	pattern

about	/	Circuit	breaker	pattern

back-off	/	Back-off

degraded	application	behavior	/	Degraded	application	behavior

classical	inheritance	/	Understanding	objects

classical	mixins

about	/	Classical	mixins

Clojure

about	/	Introduction

closure

about	/	Self-invoking	functions	and	closures

using	/	Self-invoking	functions	and	closures

closures

about	/	Closures,	Loops	and	closures

code

about	/	Chunks	of	code

Command	Line	Interface	(CLI)	/	CLI

command	line	interface	(CLI)

about	/	Running	JSHint

command	pattern

about	/	Command

message	/	Command	message

invoker	/	Invoker

receiver	/	Receiver

comments

about	/	Comments

compose

programming	with	/	Programming	with	compose

composite	pattern

about	/	Composite

example	/	Example

implementing	/	Implementation

console.log	/	Console.log	and	asserts

constants

about	/	Constants

const	keyword

about	/	Constants

content	delivery	network	(CDN)

about	/	Accessing	specific	nodes

Content	Delivery	Networks	(CDNs)

about	/	Content	Delivery	Networks

CPU	profile

about	/	The	CPU	profile

CSS	selectors

URL	/	Accessing	specific	nodes

currying

about	/	Partial	function	application	and	currying,	Currying

D

D
d3	/	d3

date.js

URL	/	Date	objects

Date	object

about	/	Date	objects

dead	letter	queues

about	/	Dead	letter	queues

message	replay	/	Message	replay

pipes	and	filters	/	Pipes	and	filters

messages,	versioning	/	Versioning	messages

decorator	pattern

about	/	Decorator

implementing	/	Implementation

decorators	/	Decorators

dependency	injection

about	/	Dependency	injection

tips	and	tricks	/	Tips	and	tricks

design	pattern

about	/	What	is	a	design	pattern?

creational	/	What	is	a	design	pattern?

behavorial	/	What	is	a	design	pattern?

structural	/	What	is	a	design	pattern?

Developers	Tools	(DevTools)	/	JavaScript	debugging

development	console	/	What's	the	matter	with	global	scope	anyway?

development	environment

about	/	Development	and	production	environments

Document	Object	Model	(DOM)	/	Summary,	The	early	days

DOM	elements,	accessing	/	Accessing	DOM	elements

specific	nodes,	accessing	/	Accessing	specific	nodes

Dojo

about	/	Introduction

DOM

faking	/	Faking	the	DOM

domain	driven	design	(DDD)	/	Commands

Domain	specific	languages	(DSLs)	/	Interpreter

Dynamic	HTML	(DHTML)	drop	down	menu	/	The	early	days

E
e-commerce	website	application

about	/	The	application	–	an	e-commerce	website

imperative	methods	/	Imperative	methods

ease.js

about	/	Is	JavaScript	a	functional	programming	language?

ECMAScript	/	The	early	days

about	/	Is	JavaScript	a	functional	programming	language?

ECMAScript	6	(ES6)

about	/	Block	scopes

ECMAScript	6	(ES6),	syntax	changes

about	/	ES6	syntax	changes

block	scoping	/	Block	scoping

default	parameters	/	Default	parameters

spread	operator	/	Spread	and	rest

rest	operator	/	Spread	and	rest

destructuring	/	Destructuring

object	literals	/	Object	literals

template	literals	/	Template	literals

Maps	and	Sets	/	Maps	and	Sets

maps	and	sets	/	Maps	and	Sets

Maps	/	Maps	and	Sets

Sets	/	Maps	and	Sets

Symbols	/	Symbols

iterators	/	Iterators

For..of	loops	/	For..of	loops

arrow	functions	/	Arrow	functions

ECMAScript	2015

classes	/	ECMAScript	2015	classes	and	modules

modules	/	ECMAScript	2015	classes	and	modules

/	Hints	and	tips

EditorConfig

URL	/	Whitespaces

endofunctors

about	/	jQuery	is	a	monad

endsWith()	polyfill

URL	/	Shims	or	polyfills

engines

about	/	Is	JavaScript	a	functional	programming	language?

envelope	/	What's	a	message	anyway?

environments,	JavaScript	applications

browsers	/	Browsers

server-side	JavaScript	/	Server-side	JavaScript

Command	Line	Interface	(CLI)	/	CLI

equality

about	/	Equality

strict	equality,	with	===	/	Strict	equality	using	===

weak	equality,	with	==	/	Weak	equality	using	==

Erlang	/	Destructuring

ES6

syntax	changes	/	ES6	syntax	changes

ES6	shim

URL	/	Shims	or	polyfills

European	Computer	Manufacturers	Association	(ECMA)	/	The	early
days

eval()	method

about	/	The	eval()	method	is	evil

event	delegation

about	/	Event	delegation

EventEmitters

about	/	EventEmitters

event	object

about	/	The	event	object

exact	match	patterns

about	/	Exact	match

explicit	coercion

about	/	JavaScript	types

Extensible	Markup	Language	(XML)

about	/	DOM

Extreme	Programming	/	Test-driven	development

F
factory	method

about	/	Factory	method

implementing	/	Implementation

failure	patterns

about	/	Failure	patterns

service	degradation	/	Service	degradation

message	storage	/	Message	storage

message	replay	/	Message	replay

message	handling,	indempotence	/	Indempotence	of	message
handling

fake	objects

about	/	Fake	objects

Fantasy	Land	/	Fantasy	Land

Façade

about	/	Façade

façade	pattern

about	/	Façade

implementing	/	Implementation

filter()	function

parameters	/	Array.prototype.filter()

filters	and	pipes

about	/	Filters	and	pipes

implementing	/	Implementation

Firebug

about	/	How	to	use	this	book

flyweight	pattern

about	/	Flyweight

implementing	/	Implementation

For..of	loops	/	For..of	loops

forEach()	function

parameters	/	Array.prototype.forEach

function-level	scope

versus	block-level	scope	/	Function-level	scope	versus	block-
level	scope

functional	functions

about	/	Functional	functions	are	side-effect-free

functional	inheritance

about	/	Functional	inheritance

Strategy	Pattern	/	Functional	inheritance,	Strategy	Pattern

functional	language

compiling,	into	JavaScript	/	Functional	languages	that	compile
into	JavaScript

Functional	libraries

using	/	Using	functional	libraries	with	other	JavaScript	modules

Functional	libraries,	for	JavaScript

about	/	Functional	libraries	for	JavaScript

Underscore.js	/	Underscore.js

Fantasy	Land	/	Fantasy	Land

Bilby.js	/	Bilby.js

Lazy.js	/	Lazy.js

Bacon.js	/	Bacon.js

FFunctional	/	Honorable	mentions

wwu.js	/	Honorable	mentions

sloth.js	/	Honorable	mentions

stream.js	/	Honorable	mentions

Lo-Dash.js	/	Honorable	mentions

Ssugar	/	Honorable	mentions

from.js	/	Honorable	mentions

JSLINQ	/	Honorable	mentions

Boiler.js	/	Honorable	mentions

FFolktale	/	Honorable	mentions

jjQuery	/	Honorable	mentions

functional	mixins

about	/	Functional	mixins

functional	programming

about	/	Introduction,	Functional	programming,	Mostly	functional
programming

used,	in	nonfunctional	programming	/	Functional	programming
in	a	nonfunctional	world

events,	handling	/	Handling	events

and	object-oriented	programming,	mixing	/	Mixing	functional
and	object-oriented	programming	in	JavaScript

functional	programming,	using	object-oriented	programming

functional	inheritance	/	Functional	inheritance

mixins	/	Mixins

functional	programming	language

JavaScript	/	Is	JavaScript	a	functional	programming	language?

functional	programming	languages

about	/	Functional	programming	languages

performing	/	What	makes	a	language	functional?

characteristics	/	What	makes	a	language	functional?

advantages	/	Advantages,	Modularity,	Mathematically	correct

functional	reactive	programming

about	/	Functional	reactive	programming

reactivity	/	Reactivity

subscriber,	modifying	/	Putting	it	all	together

Functional	Reactive	Programming	(FRP)	/	Functional	reactive
programming

function	composition

about	/	Function	composition,	Function	compositions,	revisited

compose()	/	Compose

sequence,	using	/	Sequence	–	compose	in	reverse

compositions,	versus	chains	/	Compositions	versus	chains

rewriting	/	Function	compositions,	revisited

function	constructor

about	/	The	function	constructor

function	context	/	The	this	parameter

function	declarations

versus	function	expressions	/	Function	declarations	versus
function	expressions,	Function	expressions,	Unpredictable

behavior

about	/	Function	declarations

function	expressions	/	A	function	declaration

about	/	Function	expressions

versus	function	constructor	/	The	function	constructor

function	factories	/	Function	factories

function	literal

about	/	A	function	literal

function	declaration	/	A	function	declaration

function	manipulation

about	/	Function	manipulation

apply()	function	/	Apply,	call,	and	the	this	keyword

this	keyword	/	Apply,	call,	and	the	this	keyword

call()	function	/	Apply,	call,	and	the	this	keyword

bind()	function	/	Binding	arguments

function	factories	/	Function	factories

function	passing

about	/	Function	passing

implementing	/	Implementation

Functions

working	with	/	Working	with	functions

self-invoking	function,	using	/	Self-invoking	functions	and
closures

closures,	using	/	Self-invoking	functions	and	closures

higher-order	functions	/	Higher-order	functions

pure	functions	/	Pure	functions

anonymous	functions	/	Anonymous	functions

methods,	chaining	/	Method	chains

recursive	function	/	Recursion

lazy	evaluation	/	Lazy	evaluation

functions

as	data	/	Functions	as	data

function	statement	/	A	function	declaration

functors

about	/	Functors

creating	/	Creating	functors

function	compositions	/	Function	compositions,	revisited

G
getters

about	/	Getters	and	setters,	Accessing	specific	nodes

global	scope	/	Global	scope

about	/	What's	the	matter	with	global	scope	anyway?

global	scope,	variables

about	/	Global	scope

Grave	accent

reference	link	/	String

greedy	and	lazy	quantifiers

about	/	Greedy	and	lazy	quantifiers

H
Haskell

about	/	What	makes	a	language	functional?

Hello	World	program

writing	/	Hello	World

higher-order	functions	/	Higher-order	functions

hoisting	/	Block	scopes

homomorphic	operations

about	/	Category	theory	in	a	nutshell

HyperText	Markup	Language	(HTML)

about	/	DOM

I
identity	function	morphism	/	Arrays	and	functors

immediately-invoked	function	expressions	(IIFE)	/	Block	scoping

Immediately	Invoked	Function	Expression	(IIFE)	/	Function-level
scope	versus	block-level	scope

immutability

about	/	Immutability

inheritance

about	/	Inheritance,	Inheritance,	Inheritance

with	Object.create()	method	/	Inheritance	in	JavaScript	and	the
Object.create()	method

Input/Output	(I/O)

about	/	An	asynchronous	evented-model	in	a	browser

instanceof	operator

about	/	The	instanceof	operator

instance	properties

versus	prototype	properties	/	Instance	properties	versus
prototype	properties

integration	testing	/	Fake	objects

IntelliJ	WebStorm	/	JavaScript	debugging

interpreter	pattern

about	/	Interpreter

example	/	Example

implementing	/	Implementation

iterator

about	/	Iterator

implementing	/	Implementation

ECMAScript	2015	iterators	/	ECMAScript	2015	iterators

iterators	/	Iterators

J
Jasmine

URL	/	Behavior-driven	development

Jasmine	node	package

about	/	Installing	packages

JavaScript

history	/	A	little	bit	of	history

reference	link	/	A	little	bit	of	history

overview	/	An	overview	of	JavaScript

about	/	The	road	to	JavaScript,	JavaScript	everywhere,	Best
practices	and	troubleshooting,	Introduction,	Is	JavaScript	a
functional	programming	language?

early	days	/	The	early	days

GMail	/	The	way	of	GMail

Asynchronous	JavaScript	and	XML	(AJAX)	/	The	way	of	GMail

objects	/	Objects	in	JavaScript

sending	/	Sending	JavaScript

files,	combining	/	Combining	files

minification	/	Minification

recursion	/	Recursion

variable	scope	/	Variable	scope

function	declarations	/	Function	declarations	versus	function
expressions	versus	the	function	constructor

function	expressions	/	Function	declarations	versus	function
expressions	versus	the	function	constructor

function	constructor	/	Function	declarations	versus	function
expressions	versus	the	function	constructor

multi-paradigm	language	/	JavaScript	–	the	multi-paradigm
language

object-oriented	implementation	/	JavaScript's	object-oriented
implementation	–	using	prototypes

versus	C++	/	JavaScript's	object-oriented	implementation	–
using	prototypes

JavaScript	debugging

about	/	JavaScript	debugging

syntax	errors	/	Syntax	errors

strict,	using	/	Using	strict

runtime	exceptions	/	Runtime	exceptions

console.log	and	asserts	/	Console.log	and	asserts

Chrome	DevTools	/	Chrome	DevTools

JavaScript	Object	Notation	(JSON)	/	The	way	of	GMail

JavaScript	performance

analyzing	/	JavaScript	performance

profiling	/	JavaScript	profiling

jQuery	/	jQuery

about	/	Introduction

jQuery	event	handling

about	/	jQuery	event	handling	and	propagation

jQuery	object

about	/	jQuery	is	a	monad

implementing	/	jQuery	is	a	monad

JS	Bin

about	/	How	to	use	this	book

URL	/	How	to	use	this	book

using	/	How	to	use	this	book

JSHint

about	/	Running	JSHint

URL	/	Running	JSHint

running	/	Running	JSHint

/	Syntax	errors

JSLint	/	Syntax	errors

Julia

about	/	Introduction

L
Lazy.js	/	Lazy.js

lazy	evaluation

about	/	Lazy	evaluation

benefits	/	Lazy	evaluation

lazy	instantiation

about	/	Lazy	instantiation

implementing	/	Implementation

lens()	function

writing	/	Lenses

lenses

about	/	Lenses

libeio

URL	/	An	asynchronous	evented-model	in	a	browser

libev

URL	/	An	asynchronous	evented-model	in	a	browser

libuv

about	/	An	asynchronous	evented-model	in	a	browser

LINQ	(Language	Integrated	Query)

about	/	Honorable	mentions

Lisp

about	/	What	makes	a	language	functional?

live	post	processing

about	/	Live	post	processing

LiveScript

about	/	A	little	bit	of	history

local	scope	/	Local	scope

local	scope,	variables

about	/	Local	scope

Logical	AND	Boolean	operator

about	/	Boolean	operators

Logical	NOT	Boolean	operator

about	/	Boolean	operators

Logical	OR	Boolean	operator

about	/	Boolean	operators

loops

about	/	Loops	and	closures

M
macros

about	/	Macros

manipulation	methods

about	/	Traversal	and	manipulation

map()	function

parameters	/	Array.prototype.map()

Maps

about	/	Maps	and	Sets

WeakMap	/	Maps	and	Sets

maps

about	/	Maps

match

from	class	of	characters	/	Match	from	a	class	of	characters

maybes

about	/	Maybes

writing	/	Maybes

mediator

about	/	Mediator

implementing	/	Implementation

memento

about	/	Memento

originator	player	/	Memento

caretaker	player	/	Memento

player	/	Memento

implementing	/	Implementation

memoization

about	/	Memoization,	Memoization

implementing	/	Implementation

reference	link	/	Memoization

message

about	/	What's	a	message	anyway?

commands	/	Commands

events	/	Events

message	handling

indempotence	/	Indempotence	of	message	handling

messages

hints	and	tips	/	Hints	and	tips

message	storage	/	Message	storage

message	upgrader

about	/	Message	upgrader

microservices

hints	and	tips	/	Hints	and	tips

mixins

about	/	Mixins,	Mixins

classical	mixins	/	Classical	mixins

functional	mixins	/	Functional	mixins

Mocha

about	/	A	little	bit	of	history

/	Behavior-driven	development

mock

about	/	Mock

Model	View	Controller	(MVC)

about	/	Model	View	Controller

code	/	MVC	code

Model	View	Presenter	(MVP)

about	/	Model	View	Presenter

code	/	MVP	code

Model	View	ViewModel	(MVVM)

about	/	Model	View	ViewModel

code	/	MVVM	code

model	and	view,	changes	transfering	/	A	better	way	to	transfer
changes	between	the	model	and	the	view

view	changes,	observing	/	Observing	view	changes

tips	and	tricks	/	Tips	and	tricks

modules

about	/	Modules,	Modules,	Modules

creating	/	Creating	modules

Moment.js

URL	/	Date	objects

monads

about	/	Monads

maybes	/	Maybes

promises	/	Promises

lenses	/	Lenses

jQuery	object	/	jQuery	is	a	monad

monkey	patching

about	/	Creating	modules,	Monkey	patching

/	Build	me	a	prototype

morphisms

about	/	Category	theory	in	a	nutshell,	Type	safety

Mosaic	browser

about	/	A	little	bit	of	history

multithreading

about	/	Doing	two	things	at	once	–	multithreading

MVP	(model-view-provider)	/	Using	functional	libraries	with	other
JavaScript	modules

N
NaN	(Not	a	Number)

about	/	Number

native	built-ins

URL	/	Inheritance

Netscape	Navigator

about	/	A	little	bit	of	history

Node.js	/	Arrays

Node	Package	Manager	(npm)	repository

about	/	Modules

Not	Equal	To	(!==)

about	/	Strict	equality	using	===

npm

about	/	npm

packages,	installing	/	Installing	packages

Number

about	/	Number

O
++	operator

about	/	The	++	and	--	operators

+	operator

about	/	The	+	operator

--	operator

about	/	The	++	and	--	operators

object-oriented	implementation,	JavaScript

prototypes,	using	/	JavaScript's	object-oriented	implementation
–	using	prototypes

inheritance	/	Inheritance

prototype	chain	/	JavaScript's	prototype	chain

inheritance,	with	Object.create()	method	/	Inheritance	in
JavaScript	and	the	Object.create()	method

object-oriented	programming

and	functional	programming,	mixing	/	Mixing	functional	and

object-oriented	programming	in	JavaScript

object-oriented	programming	(OOP)	/	Understanding	objects

Object.create()	method

using	/	Inheritance	in	JavaScript	and	the	Object.create()	method

object	literals	/	Object	literals

object	properties,	variables

about	/	Object	properties

objects

about	/	Understanding	objects,	Type	safety

behavior	/	Behavior	of	JavaScript	objects

observer	pattern

about	/	Observer

implementing	/	Implementation

�	o	g	symbol

about	/	Category	theory	in	a	nutshell

P
Palo	Alto	Research	Center	(PARC)	/	Chunks	of	code

partial	application

about	/	Partial	function	application	and	currying,	Partial
application

left	arguments,	applying	/	Partial	application	from	the	left

right	arguments,	applying	/	Partial	application	from	the	right

pattern

hints	and	tips	/	Hints	and	tips,	Hints	and	tips

pipeline

about	/	Pipeline

plugins

about	/	Plugins

jQuery	/	jQuery

d3	/	d3

polyadic

about	/	Function	composition

polyfills

about	/	Shims	or	polyfills

polymorphic	operations

about	/	Category	theory	in	a	nutshell

private	variables

about	/	Private	variables

production	environment

about	/	Development	and	production	environments

profiling,	JavaScript

about	/	JavaScript	profiling

CPU	profile	/	The	CPU	profile

Timeline	view	/	The	Timeline	view

promise	pattern

about	/	Promise	pattern

promises

using	/	Promises

Promises/A+	implementation	/	Promises

propagation

about	/	Propagation

jQuery	event	handling	/	jQuery	event	handling	and	propagation

prototype

about	/	Prototypes,	Prototype

building	/	Build	me	a	prototype

implementing	/	Implementation

prototype	chain

about	/	JavaScript's	prototype	chain

prototype	properties

versus	instance	properties	/	Instance	properties	versus
prototype	properties

prototypes

using,	for	inheritance	/	JavaScript's	object-oriented
implementation	–	using	prototypes

proxy	pattern

about	/	Proxy

implementing	/	Implementation

publish-subscribe	model

about	/	Publish-subscribe

fan	out	and	in	/	Fan	out	and	in

pure	functions	/	Pure	functions

Pyjs	/	Functional	languages	that	compile	into	JavaScript

Python

about	/	Introduction

Q

QuickCheck

about	/	Bilby.js

R
Reactive	Extensions

URL	/	Streams

Read-Eval-Print-Loop	(REPL)

about	/	How	to	use	this	book

URL	/	Transpilers

recursion

about	/	Recursion

Y-Combinator	/	The	Y-combinator

recursive	function

about	/	Recursion

Divide	and	Conquer	/	Divide	and	conquer

reduce()	function

parameters	/	Array.prototype.reduce()

regular	expressions

about	/	Regular	expressions

repeated	occurrences

about	/	Repeated	occurrences

Alternatives	-	OR	/	Alternatives	–	OR

request-reply

about	/	Request-reply

Roy	/	Functional	languages	that	compile	into	JavaScript

Ruby

about	/	Introduction

S
<script>	tags

URL	/	Accessing	DOM	elements

===	strict	equality

about	/	Strict	equality	using	===

ScalaCheck

about	/	Bilby.js

Scheme

about	/	A	little	bit	of	history,	What	makes	a	language	functional?

scope	resolutions

about	/	Scope	resolutions

global	scope	/	Global	scope

local	scope	/	Local	scope

object	properties	/	Object	properties

scoping

about	/	Scoping

global	scope	/	Global	scope

local	scope	/	Local	scope

function-level	scope	versus	block-level	scope	/	Function-level
scope	versus	block-level	scope

inline	function	expressions	/	Inline	function	expressions

block	scopes	/	Block	scopes

self-invoking	function

using	/	Self-invoking	functions	and	closures

semantic	versioning

URL	/	Installing	packages

server-side	JavaScript

functional	use	case	/	A	functional	use	case	in	the	server-side
environment

service	degradation	/	Service	degradation

service	selector

about	/	Service	selector

Sets	/	Maps	and	Sets

sets

about	/	Sets

setters	/	Getters	and	setters

about	/	Accessing	specific	nodes

shims

about	/	Shims	or	polyfills

simple	patterns	/	Exact	match

Single	Page	Applications	(SPAs)	/	The	way	of	GMail

singleton

disadvantages	/	Disadvantages

singleton	pattern

about	/	Singleton

implementing	/	Implementation

Sinon.JS	/	Behavior-driven	development

sloppy	mode

about	/	The	strict	mode

special	characters

about	/	String

Spies	/	Behavior-driven	development

Stack	Overflow

URL	/	Number

Standard	Generalized	Markup	Language	(SGML)

about	/	DOM

state

about	/	State

implementing	/	Implementation

strategy

about	/	Strategy

implementing	/	Implementation

Strategy	Pattern

about	/	Strategy	Pattern

streams

about	/	Streams

filtering	/	Filtering	streams

merging	/	Merging	streams

for	multiplexing	/	Streams	for	multiplexing

hints	and	tips	/	Hints	and	tips

strict	/	Using	strict

strict	equality

about	/	Strict	equality	using	===

strict	mode

about	/	The	strict	mode

enabling	/	Enabling	the	strict	mode	for	an	existing	code	can
break	it

using	/	Package	with	care

variables,	declaring	/	Variables	must	be	declared	in	strict	mode

eval()	function	/	The	eval()	function	is	cleaner	in	strict	mode

blocked	features	/	Features	that	are	blocked	in	strict	mode

string

about	/	String

Structured	Query	Language	(SQL)	/	Interpreter

stub

about	/	Stubs

style	guide

about	/	JavaScript	style	guide

white	spaces	/	Whitespaces

parentheses	/	Parentheses,	line	breaks,	and	braces

line	breaks	/	Parentheses,	line	breaks,	and	braces

braces	/	Parentheses,	line	breaks,	and	braces

quotes	/	Quotes

empty	line	/	End	of	lines	and	empty	lines

end	of	line	/	End	of	lines	and	empty	lines

type,	checking	/	Type	checking

type,	casting	/	Type	casting

conditional	evaluation	/	Conditional	evaluation

naming	/	Naming

eval()	method	/	The	eval()	method	is	evil

strict	mode	/	The	strict	mode

JSHint	/	Running	JSHint

styling

considerations	/	Stylistic	considerations,	A	matter	of	style

subtypes

about	/	JavaScript	types

T
tagged	template	string	/	Template	literals

tags

about	/	JavaScript	types

tail-call	elimination

about	/	The	Tail-call	elimination

trampolining	/	Trampolining

tail	recursion

about	/	Tail	recursion

tail-call	elimination	/	The	Tail-call	elimination

template	literals	/	Template	literals,	Template	literals

template	method

about	/	Template	method

implementing	/	Implementation

ternary

about	/	Function	composition

Test-driven	development	(TDD)	/	Test-driven	development

testing	pyramid

about	/	The	testing	pyramid

TestPyramid

URL	/	Unit	testing

test	spies

about	/	Test	spies

this	keyword	/	Apply,	call,	and	the	this	keyword

this	parameter

invocation,	as	function	/	Invocation	as	a	function

invocation,	as	method	/	Invocation	as	a	method

invocation,	as	constructor	/	Invocation	as	a	constructor

invocation,	call()	methods	used	/	Invocation	using	apply()	and
call()	methods

thunks

about	/	Trampolining

Timeline	view

about	/	The	Timeline	view

timers

about	/	Timers	and	callbacks,	Timers

Timezone.js

URL	/	Date	objects

Tool	Command	Language	(TCL)

about	/	A	little	bit	of	history

toolkit,	functional	programmer

about	/	The	functional	programmer's	toolkit

callbacks,	using	/	Callbacks

Array.prototype.map()	/	Array.prototype.map()

Array.prototype.filter()	/	Array.prototype.filter()

Array.prototype.reduce()	/	Array.prototype.reduce()

Array.prototype.forEach	/	Array.prototype.forEach

Array.prototype.concat	/	Array.prototype.concat

Array.prototype.reverse	/	Array.prototype.reverse

Array.prototype.sort	/	Array.prototype.sort

Array.prototype.every	/	Array.prototype.every	and
Array.prototype.some

Array.prototype.some	/	Array.prototype.every	and
Array.prototype.some

trampolining

about	/	Trampolining

Trampolining

about	/	Is	JavaScript	a	functional	programming	language?

transpilers

about	/	Transpilers

traversal	methods

about	/	Traversal	and	manipulation

typeof	operator

about	/	The	instanceof	operator

types

about	/	JavaScript	types

TypeScript

about	/	TypeScript

decorators	/	Decorators

Async/Await	/	Async/Await

typing	/	Typing

/	Functional	languages	that	compile	into	JavaScript

typing	/	Typing

U
UHC	/	Functional	languages	that	compile	into	JavaScript

Unary	functions

about	/	Function	composition

undefined	values

about	/	Undefined	values

underscore.js

about	/	Introduction

Underscore.js

URL	/	Arrays

/	Getters	and	setters,	Underscore.js

unit	testing

about	/	Unit	testing

Test-driven	development	(TDD)	/	Test-driven	development

Behavior-driven	development	(BDD)	/	Behavior-driven
development

unit	tests

used,	for	testing	/	Testing	in	the	small	with	unit	tests

user	interface

about	/	Interacting	with	the	user	interface

browser	testing	/	Browser	testing

DOM,	faking	/	Faking	the	DOM

manipulation,	wrapping	/	Wrapping	the	manipulation

tips	and	tricks	/	Tips	and	tricks

V
Value	Added	Tax	(VAT)

about	/	Number

variables

about	/	Variables

variable	scope

about	/	Variable	scope

scope	resolutions	/	Scope	resolutions

issues	/	Closures

features	/	Gotchas

variadic

about	/	Function	composition

var	keyword

about	/	Variables

visitor	pattern

about	/	Visitor

W
==	weak	equality

about	/	Weak	equality	using	==

waterfall	graph

about	/	The	Timeline	view

weak	equality

	

about	/	Weak	equality	using	==

WeakMap	/	Maps	and	Sets

WeakSet	/	Maps	and	Sets

World	Wide	Web	Consortium	(W3C)

about	/	Propagation

Y
Y-Combinator

about	/	The	Y-combinator

memoization	/	Memoization

	JavaScript: Functional Programming for JavaScript Developers
	Table of Contents
	JavaScript: Functional Programming for JavaScript Developers
	JavaScript: Functional Programming for JavaScript Developers
	Credits
	Preface
	What this learning path covers
	What you need for this learning path
	Who this learning path is for
	Reader feedback
	Customer support
	Downloading theexample code
	Errata
	Piracy
	Questions

	1. Module 1
	1. JavaScript Primer
	A little bit of history
	How to use this book
	Hello World
	An overview of JavaScript
	Comments
	Variables
	Constants
	Number
	String
	Undefined values
	Booleans
	The instanceof operator
	Date objects
	The + operator
	The ++ and -- operators
	Boolean operators
	Equality
	Strict equality using ===
	Weak equality using ==

	JavaScript types
	Automatic semicolon insertion
	JavaScript style guide
	Whitespaces
	Parentheses, line breaks, and braces
	Quotes
	End of lines and empty lines
	Type checking
	Type casting
	Conditional evaluation
	Naming
	The eval() method is evil
	The strict mode
	Enabling the strict mode for an existing code can break it
	Package with care
	Variables must be declared in strict mode
	The eval() function is cleaner in strict mode

	Features that are blocked in strict mode

	Running JSHint

	Summary

	2. Functions, Closures, and Modules
	A function literal
	A function declaration

	Functions as data
	Scoping
	Global scope
	Local scope
	Function-level scope versus block-level scope
	Inline function expressions
	Block scopes

	Function declarations versus function expressions
	The arguments parameter
	The this parameter
	Invocation as a function
	Invocation as a method
	Invocation as a constructor
	Invocation using apply() and call() methods

	Anonymous functions
	Anonymous functions while creating an object
	Anonymous functions while creating a list
	Anonymous functions as a parameter to another function
	Anonymous functions in conditional logic

	Closures
	Timers and callbacks
	Private variables
	Loops and closures
	Modules
	Stylistic considerations

	Summary

	3. Data Structures and Manipulation
	Regular expressions
	Exact match
	Match from a class of characters
	Repeated occurrences
	Alternatives – OR

	Beginning and end
	Backreferences
	Greedy and lazy quantifiers
	Arrays
	Maps
	Sets
	A matter of style
	Summary

	4. Object-Oriented JavaScript
	Understanding objects
	Behavior of JavaScript objects
	Prototypes

	Instance properties versus prototype properties
	Inheritance
	Getters and setters
	Summary

	5. Testing and Debugging
	Unit testing
	Test-driven development
	Behavior-driven development

	JavaScript debugging
	Syntax errors
	Using strict
	Runtime exceptions
	Console.log and asserts
	Chrome DevTools

	Summary

	6. ECMAScript 6
	Shims or polyfills
	Transpilers
	ES6 syntax changes
	Block scoping
	Default parameters
	Spread and rest
	Destructuring
	Object literals
	Template literals
	Maps and Sets
	Symbols
	Iterators
	For..of loops
	Arrow functions

	Summary

	7. DOM Manipulation and Events
	DOM
	Accessing DOM elements
	Accessing specific nodes

	Chaining
	Traversal and manipulation
	Working with browser events
	Propagation
	jQuery event handling and propagation
	Event delegation
	The event object
	Summary

	8. Server-Side JavaScript
	An asynchronous evented-model in a browser
	Callbacks
	Timers
	EventEmitters
	Modules
	Creating modules

	npm
	Installing packages

	JavaScript performance
	JavaScript profiling
	The CPU profile
	The Timeline view

	Summary

	2. Module 2
	1. Designing for Fun and Profit
	The road to JavaScript
	The early days
	A pause
	The way of GMail
	JavaScript everywhere

	What is a design pattern?
	Anti-patterns
	Summary

	2. Organizing Code
	Chunks of code
	What's the matter with global scope anyway?
	Objects in JavaScript
	Build me a prototype
	Inheritance
	Modules
	ECMAScript 2015 classes and modules
	Best practices and troubleshooting
	Summary

	3. Creational Patterns
	Abstract factory
	Implementation

	Builder
	Implementation

	Factory method
	Implementation

	Singleton
	Implementation
	Disadvantages

	Prototype
	Implementation

	Tips and tricks
	Summary

	4. Structural Patterns
	Adapter
	Implementation

	Bridge
	Implementation

	Composite
	Example
	Implementation

	Decorator
	Implementation

	Façade
	Implementation

	Flyweight
	Implementation

	Proxy
	Implementation

	Hints and tips
	Summary

	5. Behavioral Patterns
	Chain of responsibility
	Implementation

	Command
	Command message
	Invoker
	Receiver

	Interpreter
	Example
	Implementation

	Iterator
	Implementation
	ECMAScript 2015 iterators

	Mediator
	Implementation

	Memento
	Implementation

	Observer
	Implementation

	State
	Implementation

	Strategy
	Implementation

	Template method
	Implementation

	Visitor
	Hints and tips
	Summary
	Part 2

	6. Functional Programming
	Functional functions are side-effect-free
	Function passing
	Implementation

	Filters and pipes
	Implementation

	Accumulators
	Implementation

	Memoization
	Implementation

	Immutability
	Lazy instantiation
	Implementation

	Hints and tips
	Summary

	7. Reactive Programming
	Application state changes
	Streams
	Filtering streams
	Merging streams
	Streams for multiplexing
	Hints and tips
	Summary

	8. Application Patterns
	First, some history
	Model View Controller
	MVC code

	Model View Presenter
	MVP code

	Model View ViewModel
	MVVM code
	A better way to transfer changes between the model and the view
	Observing view changes

	Tips and tricks
	Summary

	9. Web Patterns
	Sending JavaScript
	Combining files
	Minification
	Content Delivery Networks

	Plugins
	jQuery
	d3

	Doing two things at once – multithreading
	Circuit breaker pattern
	Back-off
	Degraded application behavior

	Promise pattern
	Hints and tips
	Summary

	10. Messaging Patterns
	What's a message anyway?
	Commands
	Events

	Request-reply
	Publish-subscribe
	Fan out and in

	Dead letter queues
	Message replay
	Pipes and filters
	Versioning messages

	Hints and tips
	Summary

	11. Microservices
	Façade
	Service selector
	Aggregate services
	Pipeline
	Message upgrader
	Failure patterns
	Service degradation
	Message storage
	Message replay
	Indempotence of message handling

	Hints and tips
	Summary

	12. Patterns for Testing
	The testing pyramid
	Testing in the small with unit tests
	Arrange-Act-Assert
	Assert

	Fake objects
	Test spies
	Stubs
	Mock
	Monkey patching
	Interacting with the user interface
	Browser testing
	Faking the DOM
	Wrapping the manipulation

	Tips and tricks
	Summary

	13. Advanced Patterns
	Dependency injection
	Live post processing
	Aspect oriented programming
	Mixins
	Macros
	Tips and tricks
	Summary

	14. ECMAScript-2015/2016 Solutions Today
	TypeScript
	Decorators
	Async/Await
	Typing

	BabelJS
	Classes
	Default parameters
	Template literals
	Block bindings with let
	In production

	Tips and tricks
	Summary

	3. Module 3
	1. The Powers of JavaScript's Functional Side – a Demonstration
	Introduction
	The demonstration
	The application – an e-commerce website
	Imperative methods

	Functional programming
	Summary

	2. Fundamentals of Functional Programming
	Functional programming languages
	What makes a language functional?
	Advantages
	Cleaner code
	Modularity
	Reusability
	Reduced coupling
	Mathematically correct

	Functional programming in a nonfunctional world
	Is JavaScript a functional programming language?

	Working with functions
	Self-invoking functions and closures
	Higher-order functions
	Pure functions
	Anonymous functions
	Method chains
	Recursion
	Divide and conquer

	Lazy evaluation

	The functional programmer's toolkit
	Callbacks
	Array.prototype.map()
	Array.prototype.filter()
	Array.prototype.reduce()
	Honorable mentions
	Array.prototype.forEach
	Array.prototype.concat
	Array.prototype.reverse
	Array.prototype.sort
	Array.prototype.every and Array.prototype.some

	Summary

	3. Setting Up the Functional Programming Environment
	Introduction
	Functional libraries for JavaScript
	Underscore.js
	Fantasy Land
	Bilby.js
	Lazy.js
	Bacon.js
	Honorable mentions

	Development and production environments
	Browsers
	Server-side JavaScript
	A functional use case in the server-side environment

	CLI
	Using functional libraries with other JavaScript modules
	Functional languages that compile into JavaScript

	Summary

	4. Implementing Functional Programming Techniques in JavaScript
	Partial function application and currying
	Function manipulation
	Apply, call, and the this keyword
	Binding arguments
	Function factories

	Partial application
	Partial application from the left
	Partial application from the right

	Currying

	Function composition
	Compose
	Sequence – compose in reverse

	Compositions versus chains
	Programming with compose

	Mostly functional programming
	Handling events

	Functional reactive programming
	Reactivity
	Putting it all together

	Summary

	5. Category Theory
	Category theory
	Category theory in a nutshell
	Type safety
	Object identities

	Functors
	Creating functors
	Arrays and functors
	Function compositions, revisited

	Monads
	Maybes
	Promises
	Lenses
	jQuery is a monad

	Implementing categories
	Summary

	6. Advanced Topics and Pitfalls in JavaScript
	Recursion
	Tail recursion
	The Tail-call elimination

	Trampolining
	The Y-combinator
	Memoization

	Variable scope
	Scope resolutions
	Global scope
	Local scope
	Object properties

	Closures
	Gotchas

	Function declarations versus function expressions versus the function constructor
	Function declarations
	Function expressions
	The function constructor
	Unpredictable behavior

	Summary

	7. Functional and Object-oriented Programming in JavaScript
	JavaScript – the multi-paradigm language
	JavaScript's object-oriented implementation – using prototypes
	Inheritance
	JavaScript's prototype chain
	Inheritance in JavaScript and the Object.create() method

	Mixing functional and object-oriented programming in JavaScript
	Functional inheritance
	Strategy Pattern

	Mixins
	Classical mixins
	Functional mixins

	Summary

	A. Common Functions for Functional Programming in JavaScript
	B. Glossary of Terms

	A. Bibliography
	Index

