Ved Antani, Simon Timms,
Dan Mantyla

JavaScript:

Functional Programming
for JavaScript Developers

Learning Patn

Leverage the power of functional programming with
modern JavasScript techniques to build faster and
reliable web applications

L[] [=o Packt

Table of Contents

JavaScript: Functional Programming for JavaScript Developers
JavaScript: Functional Programming for JavaScript Developers
Credits
Preface
What this learning path covers
What you need for this learning path
Who this learning path is for
Reader feedback
Customer support
Downloading theexample code
Errata
Piracy
Questions
1. Module 1
1. JavaScript Primer
A little bit of history
How to use this book
Hello World
An overview of JavaScript
Comments
Variables
Constants
Number
String
Undefined values
Booleans
The instanceof operator
Date objects
The + operator
The ++ and -- operators
Boolean operators
Equality
Strict equality using ===
Weak equality using ==
JavaScript types
Automatic semicolon insertion
JavaScript style guide
Whitespaces
Parentheses, line breaks, and braces
Quotes
End of lines and empty lines
Type checking
Type casting

Conditional evaluation
Naming
The eval() method is evil
The strict mode
Enabling the strict mode for an existing code can break it
Package with care
Variables must be declared in strict mode
The eval() function is cleaner in strict mode
Features that are blocked in strict mode
Running JSHint
Summary
2. Functions, Closures, and Modules
A function literal
A function declaration
Functions as data
Scoping
Global scope
Local scope
Function-level scope versus block-level scope
Inline function expressions
Block scopes
Function declarations versus function expressions
The arguments parameter
The this parameter
Invocation as a function
Invocation as a method
Invocation as a constructor
Invocation using apply() and call() methods
Anonymous functions
Anonymous functions while creating an object
Anonymous functions while creating a list
Anonymous functions as a parameter to another function
Anonymous functions in conditional logic
Closures
Timers and callbacks
Private variables
Loops and closures
Modules
Stylistic considerations
Summary
3. Data Structures and Manipulation
Regular expressions
Exact match
Match from a class of characters
Repeated occurrences
Alternatives — OR
Beginning and end
Backreferences
Greedy and lazy quantifiers

Arrays
Maps
Sets
A matter of style
Summary
4. Object-Oriented JavaScript
Understanding objects
Behavior of JavaScript objects
Prototypes
Instance properties versus prototype properties
Inheritance
Getters and setters
Summary
5. Testing and Debugging
Unit testing
Test-driven development
Behavior-driven development
JavaScript debugging
Syntax errors
Using strict
Runtime exceptions
Console.log and asserts
Chrome DevTools
Summary
6. ECMAScript 6
Shims or polyfills
Transpilers
ES6 syntax changes
Block scoping
Default parameters
Spread and rest
Destructuring
Object literals
Template literals
Maps and Sets
Symbols
Iterators
For..of loops
Arrow functions
Summary
7. DOM Manipulation and Events
DOM
Accessing DOM elements
Accessing specific nodes
Chaining
Traversal and manipulation
Working with browser events
Propagation
jQuery event handling and propagation

Event delegation
The event object
Summary
8. Server-Side JavaScript
An asynchronous evented-model in a browser
Callbacks
Timers
EventEmitters
Modules
Creating modules
npm
Installing packages
JavaScript performance
JavaScript profiling
The CPU profile
The Timeline view
Summary
2. Module 2
1. Designing for Fun and Profit
The road to JavaScript
The early days
A pause
The way of GMail
JavaScript everywhere
What is a design pattern?
Anti-patterns
Summary
2. Organizing Code
Chunks of code
What's the matter with global scope anyway?
Objects in JavaScript
Build me a prototype
Inheritance
Modules
ECMAScript 2015 classes and modules
Best practices and troubleshooting
Summary
3. Creational Patterns
Abstract factory
Implementation
Builder
Implementation
Factory method
Implementation
Singleton
Implementation
Disadvantages
Prototype
Implementation

Tips and tricks
Summary
4. Structural Patterns
Adapter
Implementation
Bridge
Implementation
Composite
Example
Implementation
Decorator
Implementation
Facade
Implementation
Flyweight
Implementation
Proxy
Implementation
Hints and tips
Summary
5. Behavioral Patterns
Chain of responsibility
Implementation
Command
Command message
Invoker
Receiver
Interpreter
Example
Implementation
Iterator
Implementation
ECMAScript 2015 iterators
Mediator
Implementation
Memento
Implementation
Observer
Implementation
State
Implementation
Strategy
Implementation
Template method
Implementation
Visitor
Hints and tips
Summary
Part 2

6. Functional Programming
Functional functions are side-effect-free
Function passing

Implementation
Filters and pipes
Implementation
Accumulators
Implementation
Memoization
Implementation
Immutability
Lazy instantiation
Implementation
Hints and tips
Summary

7. Reactive Programming
Application state changes
Streams
Filtering streams
Merging streams
Streams for multiplexing
Hints and tips
Summary

8. Application Patterns
First, some history
Model View Controller
MVC code
Model View Presenter
MVP code
Model View ViewModel
MVVM code
A better way to transfer changes between the model and the view
Observing view changes
Tips and tricks
Summary
9. Web Patterns
Sending JavaScript
Combining files
Minification
Content Delivery Networks
Plugins
jQuery
d3
Doing two things at once — multithreading
Circuit breaker pattern
Back-off
Degraded application behavior
Promise pattern
Hints and tips

Summary
10. Messaging Patterns
What's a message anyway?
Commands
Events
Request-reply
Publish-subscribe
Fan out and in
Dead letter queues
Message replay
Pipes and filters
Versioning messages
Hints and tips
Summary
11. Microservices
Facade
Service selector
Aggregate services
Pipeline
Message upgrader
Failure patterns
Service degradation
Message storage
Message replay
Indempotence of message handling
Hints and tips
Summary
12. Patterns for Testing
The testing pyramid
Testing in the small with unit tests
Arrange-Act-Assert
Assert
Fake objects
Test spies
Stubs
Mock
Monkey patching
Interacting with the user interface
Browser testing
Faking the DOM
Wrapping the manipulation
Tips and tricks
Summary
13. Advanced Patterns
Dependency injection
Live post processing
Aspect oriented programming
Mixins
Macros

Tips and tricks
Summary
14. ECMASCcript-2015/2016 Solutions Today
TypeScript
Decorators
Async/Await
Typing
BabelJS
Classes
Default parameters
Template literals
Block bindings with let
In production
Tips and tricks
Summary
3. Module 3
1. The Powers of JavaScript's Functional Side — a Demonstration
Introduction
The demonstration
The application — an e-commerce website
Imperative methods
Functional programming
Summary
2. Fundamentals of Functional Programming
Functional programming languages
What makes a language functional?
Advantages
Cleaner code
Modularity
Reusability
Reduced coupling
Mathematically correct
Functional programming in a nonfunctional world
Is JavaScript a functional programming language?
Working with functions
Self-invoking functions and closures
Higher-order functions
Pure functions
Anonymous functions
Method chains
Recursion
Divide and conquer
Lazy evaluation
The functional programmer's toolkit
Callbacks
Array.prototype.map()
Array.prototype.filter()
Array.prototype.reduce()
Honorable mentions

Array.prototype.forEach
Array.prototype.concat
Array.prototype.reverse
Array.prototype.sort
Array.prototype.every and Array.prototype.some
Summary
3. Setting Up the Functional Programming Environment
Introduction
Functional libraries for JavaScript
Underscore.js
Fantasy Land
Bilby.js
Lazy.js
Bacon.js
Honorable mentions
Development and production environments
Browsers
Server-side JavaScript
A functional use case in the server-side environment
CLI
Using functional libraries with other JavaScript modules
Functional languages that compile into JavaScript
Summary
4. Implementing Functional Programming Technigues in JavaScript
Partial function application and currying
Function manipulation
Apply, call, and the this keyword
Binding arguments
Function factories
Partial application
Partial application from the left
Partial application from the right
Currying
Function composition
Compose
Sequence — compose in reverse
Compositions versus chains
Programming with compose
Mostly functional programming
Handling events
Functional reactive programming
Reactivity
Putting it all together
Summary
5. Category Theory
Category theory
Category theory in a nutshell
Type safety
Object identities

Functors
Creating functors
Arrays and functors
Function compositions, revisited
Monads
Maybes
Promises
Lenses
jQuery is a monad
Implementing categories
Summary
6. Advanced Topics and Pitfalls in JavaScript
Recursion
Tail recursion
The Tail-call elimination
Trampolining
The Y-combinator
Memoization
Variable scope
Scope resolutions
Global scope
Local scope
Object properties
Closures
Gotchas
Function declarations versus function expressions versus the function
constructor
Function declarations
Function expressions
The function constructor
Unpredictable behavior
Summary
7. Functional and Object-oriented Programming in JavaScript
JavaScript — the multi-paradigm language
JavaScript's object-oriented implementation — using prototypes
Inheritance
JavaScript's prototype chain
Inheritance in JavaScript and the Object.create() method
Mixing functional and object-oriented programming in JavaScript
Functional inheritance
Strategy Pattern
Mixins
Classical mixins
Functional mixins
Summary
A. Common Functions for Functional Programming in JavaScript
B. Glossary of Terms
A. Bibliography
Index

JavaScript: Functional
Programming for JavaScript
Developers

JavaScript: Functional
Programming for JavaScript
Developers

Unlock the powers of functional programming hidden
within JavaScript to build smarter, cleaner, and more
reliable web apps

A course in three modules

Packt

BIRMINGHAM - MUMBAI

JavaScript: Functional
Programming for JavaScript
Developers

Copyright © 2016 Packt Publishing All rights reserved.
No part of this course may be reproduced, stored in a
retrieval system, or transmitted in any form or by any
means, without the prior written permission of the
publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this
course to ensure the accuracy of the information
presented. However, the information contained in this
course is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing, and
its dealers and distributors will be held liable for any
damages caused or alleged to be caused directly or
indirectly by this course.

Packt Publishing has endeavored to provide trademark
information about all of the companies and products
mentioned in this course by the appropriate use of
capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Published on: August 2016

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78712-466-0

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Ved Antani

Simon Timms

Dan Mantyla
Reviewers

lvano Malavolta
Dobrin Ganev

Dom Derrien

Joe Dorocak

Peter Ehrlich

Edward E. Griebel Jr.
Content Development Editor
Pooja Mhapsekar
Graphics

Disha Haria

Production Coordinator

Aparna Bhagat

Preface

Functional programming is a style that emphasizes and
enables smarter code that minimizes complexity and
increases modularity. It's a way of writing cleaner code
through clever ways of mutating, combining and using
functions. And JavaScript provides an excellent medium
for this approach. JavaScript, the internet's scripting
language, is actually a functional language at heart. By
learning how to expose JavaScript's true identity as a
functional language, we can implement web apps that
are more powerful, easier to maintain and more reliable.
JavaScript's odd quirks and pitfalls will suddenly become
clear and the language as a whole will make infinitely
more sense. Learning how to use functional
programming will make you a better programmer for life.

This course is a guide for both new and experienced
JavaScript developers who are interested in learning
functional programming. With a focus on the progression
of functional programming techniques and styles in
JavaScript, detailed information of JavaScript libraries,
this course will help you to write smarter code and
become a better programmer.

Module 1, Mastering JavaScript, provides a detailed
overview of the language fundamentals and some of the
modern tools and libraries — like jQuery, underscore.js
and jasmine.

Module 2, Mastering JavaScript Design Patterns-Second
Edition, is divided into two main parts. The first part
covers the classical design patterns, which are found in
the GoF book whereas the second part looks at patterns,
which are either not covered in the GoF book or ones
that are more specific to JavaScript.

Module 3, Functional Programming in JavaScript,
explores the core concepts of functional programming
common to all functional languages, with examples of
their use in JavaScript.

All the examples in this course can be run on any of the
modern browsers. For the last chapter from first module,
you will need Node.js. You will need the following to run
the examples and samples from this course:

e A computer with Windows 7 or higher, Linux or Mac OSX installed
e Latest version of Google Chrome or Mozilla Firefox browser

e A texteditor of your choice. Sublime Text, Vi, Atom or Notepad++
would be ideal. The choice is entirely yours.

There are standalone JavaScript engines written in C++
(V8) and Java (Rhino) and these are used to power all
sorts of tools such as nodejs, couchdb and even
elasticsearch. These patterns can be applied to any of
these technologies.

If you are a JavaScript developer interested in learning
functional programming, looking for the quantum leap
towards mastering the JavaScript language, or just want
to become a better programmer in general, then this
course is ideal for you. This guide is aimed at
programmers, involved in developing reactive front-end
apps, server-side apps that wrangle with reliability and
concurrency, and everything in between.

Feedback from our readers is always welcome. Let us
know what you think about this course—what you liked
or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most
out of.

To send us general feedback, simply e-mail
<feedback@packtpub.com>, and mention the
course's title in the subject of your message.

If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, see
our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Now that you are the proud owner of a Packtproduct, we
have a number of things to help you to get the most from
your purchase.

Downloading theexample code

You can download the example code files for this course
from your account at http://www.packtpub.com. If you
purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files emailed directly to you.

You can download the code files by following these
steps:

1. Log in or register to our website using your e-mail address and
password.

Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enterthe name of the course in the Search box.

Select the course for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this course
from.

7. Click on Code Download.

o0k wN

You can also download the code files by clicking on
theCode Filesbutton on the course's webpage at the
Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please
note that you need to be logged into your Packt account.

http://www.packtpub.com
http://www.packtpub.com/support

Once the file is downloaded, please make sure that you
unzip or extract the folder using the latest version of:

e WInRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac

e 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub
at https://github.com/PacktPublishing/JavaScript--
Functional-Programming-for-JavaScript-Developers.We
also have other code bundles from our rich catalog of
books, courses and videos available at
https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the
accuracy of our content, mistakes do happen. If you find
a mistake in one of our courses—maybe a mistake in the
text or the code—we would be grateful if you could
report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent
versions of this course. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-
errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the
Errata section of that title.

https://github.com/PacktPublishing/JavaScript--Functional-Programming-for-JavaScript-Developers
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and
enter the name of the coursein the search field. The
required information will appear under the Errata
section.

Piracy

Piracy of copyrighted material on the Internet is an
ongoing problem across all media. At Packt, we take the
protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any
form on the Internet, please provide us with the location
address or website name immediately so that we can
pursue a remedy.

Please contact us at <copyright@packtpub.com>
with a link to the suspected pirated material.

We appreciate your help in protecting our authors and
our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this course, you
can contact us at <questions@packtpub.com>, and
we will do our best to address the problem.

https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Part 1. Module 1

Mastering JavaScript

Explore and master modern JavaScript techniques in
order to build large-scale web applications

Chapter 1. JavaScript
Primer

It is always difficult to pen the first few words, especially
on a subject like JavaScript. This difficulty arises
primarily because so many things have been said about
this language. JavaScript has been the Language of the
Web—Ilingua franca, if you will, since the earliest days of
the Netscape Navigator. JavaScript went from a tool of
the amateur to the weapon of the connoisseur in a
shockingly short period of time.

JavaScript is the most popular language on the web and
open source ecosystem. http://githut.info/ charts the
number of active repositories and overall popularity of
the language on GitHub for the last few years.
JavaScript's popularity and importance can be attributed
to its association with the browser. Google's V8 and
Mozilla's SpiderMonkey are extremely optimized
JavaScript engines that power Google Chrome and
Mozilla Firefox browsers, respectively.

Although web browsers are the most widely used
platforms for JavaScript, modern databases such as
MongoDB and CouchDB use JavaScript as their
scripting and query language. JavaScript has become an
important platform outside browsers as well. Projects
such as Node.js and io.js provide powerful platforms to

http://githut.info/

develop scalable server environments using JavaScript.
Several interesting projects are pushing the language
capabilities to its limits, for example, Emscripten
(http://kripken.github.io/emscripten-site/) is a Low-Level
Virtual Machine (LLVM)-based project that compiles C
and C++ into highly optimizable JavaScript in an asm.js
format. This allows you to run C and C++ on the web at
near native speed.

JavaScript is built around solid foundations regarding, for
example, functions, dynamic objects, loose typing,
prototypal inheritance, and a powerful object literal
notation.

While JavaScript is built on sound design principles,
unfortunately, the language had to evolve along with the
browser. Web browsers are notorious in the way they
support various features and standards. JavaScript tried
to accommodate all the whims of the browsers and
ended up making some very bad design decisions.
These bad parts (the term made famous by Douglas
Crockford) overshadowed the good parts of the
language for most people. Programmers wrote bad
code, other programmers had nightmares trying to
debug that bad code, and the language eventually got a
bad reputation. Unfortunately, JavaScript is one of the
most misunderstood programming languages
(http://javascript.crockford.com/javascript.html).

Another criticism leveled at JavaScript is that it lets you
get things done without you being an expert in the

http://kripken.github.io/emscripten-site/
http://javascript.crockford.com/javascript.html

language. | have seen programmers write exceptionally
bad JavaScript code just because they wanted to get the
things done quickly and JavaScript allowed them to do
just this. | have spent hours debugging very bad quality
JavaScript written by someone who clearly was not a
programmer. However, the language is a tool and cannot
be blamed for sloppy programming. Like all crafts,
programming demands extreme dedication and
discipline.

In 1993, the Mosaic browser of National Center for
Supercomputing Applications (NCSA) was one of the
first popular web browsers. A year later, Netscape
Communications created the proprietary web browser,
Netscape Navigator. Several original Mosaic authors
worked on Navigator.

In 1995, Netscape Communications hired Brendan Eich
with the promise of letting him implement Scheme (a
Lisp dialect) in the browser. Before this happened,
Netscape got in touch with Sun Microsystems (now
Oracle) to include Java in the Navigator browser.

Due to the popularity and easy programming of Java,
Netscape decided that a scripting language had to have
a syntax similar to that of Java. This ruled out adopting
existing languages such as Python, Tool Command
Language (TCL), or Scheme. Eich wrote the initial

prototype in just 10 days
(http://lwww.computer.org/csdl/mags/co/2012/02/mco201
2020007.pdf), in May 1995. JavaScript's first code name
was Mocha, coined by Marc Andreessen. Netscape later
changed it to LiveScript, for trademark reasons. In early
December 1995, Sun licensed the trademark Java to
Netscape. The language was renamed to its final name,
JavaScript.

http://www.computer.org/csdl/mags/co/2012/02/mco2012020007.pdf

This book is not going to help if you are looking to get
things done quickly. This book is going to focus on the
correct ways to code in JavaScript. We are going to
spend a lot of time understanding how to avoid the bad
parts of the language and build reliable and readable
code in JavaScript. We will skirt away from sloppy
features of the language just to make sure that you are
not getting used to them—if you have already learned to
code using these habits, this book will try to nudge you
away from this. There will be a lot of focus on the correct
style and tools to make your code better.

Most of the concepts in this book are going to be
examples and patterns from real-world problems. | will
insist that you code each of the snippets to make sure
that your understanding of the concept is getting
programmed into your muscle memory. Trust me on this,
there is no better way to learn programming than writing
a lot of code.

Typically, you will need to create an HTML page to run
an embedded JavaScript code as follows:

<!DOCTYPE html>
<html>
<head>
<script type="text/javascript"
src="script.js"></script>

<script type="text/javascript">
var x = "Hello World";
console.log(x);
</script>
</head>
<body>
</body>
</html>

This sample code shows two ways in which JavaScript is
embedded into the HTML page. First, the <script> tag
in <head> imports JavaScript, while the second
<script>tag is used to embed inline JavaScript.

TP

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

You can save this HTML page locally and open itin a
browser. On Firefox, you can open the Developer
console (Firefox menu | Developer | Web Console) and
you can see the "Hello World" text on the Console tab.
Based on your OS and browser version, the screen may
look different:

T~ 3 Inspector > Console ®
® Net @ CS8 @ JS @ Security
"Hello World"

You can run the page and inspect it using Chrome's

http://www.packtpub.com
http://www.packtpub.com/support

Developer Tool:

Console | Search Emulation Rendering
Q W <topframe> ¥ PBreserve log

B Failed to load resource! files///Users/B2E8, tefoer 5
net; :ERA_FILE_NOT_FOUND
Helle Warld 1.htnl:8

¥

A very interesting thing to notice here is that there is an
error displayed on the console regarding the missing

. j s file that we are trying to import using the following
line of code:

<script type="text/javascript"
src="script.js"></script>

Using browser developer consoles or an extension such
as Firebug can be very useful in debugging error
conditions in the code. We will discuss in detail the
debugging techniques in later chapters.

Creating such HTML scaffolds can be tedious for every
exercise in this book. Instead, we want to use a Read-
Eval-Print-Loop (REPL) for JavaScript. Unlike Python,
JavaScript does not come packaged with an REPL. We
can use Node.js as an REPL. If you have Node.js
installed on your machine, you can just type node on the
command line and start experimenting with it. You will
observe that Node REPL errors are not very elegantly
displayed.

Let's see the following example:

EN-VedA:~$ node
>function greeter(){
x="world"1l

SyntaxError: Unexpected identifier
at Object.exports.createScript

(vim.js:44:10)

at REPLServer.defaultEval

(repl.js:117:23)

at bound (domain.js:254:14)

After this error, you will have to restart. Still, it can help
you try out small fragments of code a lot faster.

Another tool that | personally use a lot is JS Bin
(http://jsbin.com/). JS Bin provides you with a great set of
tools to test JavaScript, such as syntax highlighting and
runtime error detection. The following is a screenshot of

JS Bin:

HW“ Add [brary Shere

Javafiept «

functinn tost(){
var underterminedValuc = "elephant”;
1T (1sHab {parseInt{underterminedialue,2)))
[
conso'a, log("handle not a numper cese");
1
#lse
{
console. log("hande number case");
}
t

a5ty

HTML CES JeveSeripd

Canaole
"Hardle nob o nuwher case”
"handle not a number case”

“handla not & number case"

Based on your preference, you can pick the tool that
makes it easier to try out the code samples. Regardless

http://jsbin.com/

of which tool you use, make sure that you type out every
exercise in this book.

No programming language should be published without
a customary Hello World program—why should this book
be any different?

Type (don't copy and paste) the following code in JS Bin:

function sayHello(what) {
return "Hello " + what;

}
console.log(sayHello("world"));

Your screen should look something as follows:

H Filg= Addlibrary Shame HTML €33 JavaScript Corsole Quiput
JavaScript - Console
function sayHella(what) { "Hella world"

retura "Hello " + what;

i % }
conscle. Log(sayHello("world"} };

An overview of JavaScript

In a nutshell, JavaScript is a prototype-based scripting
language with dynamic typing and first-class function
support. JavaScript borrows most of its syntax from
Java, but is also influenced by Awk, Perl, and Python.
JavaScript is case-sensitive and white space-agnostic.

COMMENTS

JavaScript allows single line or multiple line comments.
The syntax is similar to C or Java:

// a one line comment

/* this is a longer,
multiline comment

You can't /* nest comments / SyntaxError
/

VARIABLES

Variables are symbolic names for values. The names of
variables, or identifiers, must follow certain rules.

A JavaScript variable name must start with a letter,
underscore (_), or dollar sign ($); subsequent characters
can also be digits (0-9). As JavaScript is case sensitive,
letters include the characters A through Z (uppercase)
and the characters a through z (lowercase).

You can use ISO 8859-1 or Unicode letters in variable
names.

New variables in JavaScript should be defined with the
var keyword. If you declare a variable without assigning
a value to it, its type is undefined by default. One terrible
thing is that if you don't declare your variable with the var
keyword, they become implicit globals. Let me reiterate
that implicit globals are a terrible thing—we will discuss

this in detail later in the book when we discuss variable
scopes and closures, but it's important to remember that
you should always declare a variable with the var
keyword unless you know what you are doing:

var a; //declares a variable but its
undefined

var b = 0;

console.log(b); //0

console.log(a); //undefined

console.log(a+b); //NaN

The NaN value is a special value that indicates that the
entity is not a number.

CONSTANTS

You can create a read-only named constant with the
const keyword. The constant name must start with a
letter, underscore, or dollar sign and can contain
alphabetic, numeric, or underscore characters:

const area_code = '515"';

A constant cannot change the value through assignment
or be redeclared, and it has to be initialized to a value.

JavaScript supports the standard variations of types:

e Number
e String
e Boolean

e Symbol (new in ECMAScript 6)

e Object:

e Function

e Array

e Date

e RegEXxp
e Null

e Undefined

NUMBER

The Number type can represent both 32-bit integer and
64-bit floating point values. For example, the following
line of code declares a variable to hold an integer value,
which is defined by the literal 555:

var aNumber = 555;

To define a floating point value, you need to include a
decimal point and one digit after the decimal point:

var aFloat = 555.0;

Essentially, there's no such thing as an integer in
JavaScript. JavaScript uses a 64-bit floating point
representation, which is the same as Java's double.

Hence, you would see something as follows:

EN-VedA:~$ node

> 0.1+0.2
0.30000000000000004
> (0.1+0.2)===0.3

false

| recommend that you read the exhaustive answer on
Stack Overflow
(http://stackoverflow.com/questions/588004/is-floating-
point-math-broken) and (http://floating-point-gui.de/),
which explains why this is the case. However, it is
important to understand that floating point arithmetic
should be handled with due care. In most cases, you will
not have to rely on extreme precision of decimal points
but if you have to, you can try using libraries such as
big.js (https://github.com/MikeMcl/big.js) that try to solve
this problem.

If you intend to code extremely precise financial
systems, you should represent $ values as cents to
avoid rounding errors. One of the systems that | worked
on used to round off the Value Added Tax (VAT)
amount to two decimal points. With thousands of orders
a day, this rounding off amount per order became a
massive accounting headache. We needed to overhaul
the entire Java web service stack and JavaScript
frontend for this.

A few special values are also defined as part of the
Number type. The first two are Number . MAX_VALUE
and Number .MIN_VALUE, which define the outer
bounds of the Number value set. All ECMAScript
numbers must fall between these two values, without
exception. A calculation can, however, result in a
number that does not fall in between these two numbers.

http://stackoverflow.com/questions/588004/is-floating-point-math-broken
http://floating-point-gui.de/
https://github.com/MikeMcl/big.js

When a calculation results in a number greater than
Number .MAX_VALUE, it is assigned a value of

Number .POSITIVE_INFINITY, meaning that it has no
numeric value anymore. Likewise, a calculation that
results in a number less than Number .MIN_VALUE is
assigned a value of Number .NEGATIVE_INFINITY,
which also has no numeric value. If a calculation returns
an infinite value, the result cannot be used in any further
calculations. You can use the isInfinite() method to
verify if the calculation result is an infinity.

Another peculiarity of JavaScript is a special value called
NaN (short for Not a Number). In general, this occurs
when conversion from another type (String, Boolean,
and so on) fails. Observe the following peculiarity of
NaN:

EN-VedA:~ $ node

> isNaN(NaN);

true

> NaN==NaN;

false

> isNaN("elephant");
true

> NaN+5;

NaN

The second line is strange—NaN is not equal to NaN. If
NaN is part of any mathematical operation, the result
also becomes NaN. As a general rule, stay away from
using NaN in any expression. For any advanced
mathematical operations, you can use the Math global
object and its methods:

Math.E
.718281828459045
Math.SQRT2
.4142135623730951
Math.abs(-900)
900

> Math.pow(2,3)

8

V B V. N V

You can use the parseInt() and parseFloat()
methods to convert a string expression to an integer or
float:

> parseInt("230",10);

230

> parseInt("010",10);

10

> parseInt("e10",8); //octal base
8

> parseInt("010",2); //binary

2

S 4+ 'Iyn

4

With parseInt(), you should provide an explicit base
to prevent nasty surprises on older browsers. The last
trick is just using a + sign to auto-convert the "42" string
to a number, 42. It is also prudent to handle the
parselInt () result with isNaN(). Let's see the
following example:

var underterminedValue = "elephant";
if (isNaN(parseInt(underterminedVvalue,?2)))
{

console.log("handle not a number
case");

b

else

{

console.log("handle number case");

In this example, you are not sure of the type of the value
that the underterminedValue variable can hold if the
value is being set from an external interface. If isNaN()
is not handled, parseInt () will cause an exception
and the program can crash.

STRING

In JavaScript, strings are a sequence of Unicode
characters (each character takes 16 bits). Each
character in the string can be accessed by its index. The
first character index is zero. Strings are enclosed inside
" or '—both are valid ways to represent strings. Let's
see the following:

> console.log("Hippopotamus chewing gum");
Hippopotamus chewing gum
> console.log('Single quoted
hippopotamus');
Single quoted hippopotamus
> console.log("Broken \n lines");
Broken
lines

The last line shows you how certain character literals
when escaped with a backslash \ can be used as
special characters. The following is a list of such special
characters:

e \n: Newline

e \t: Tab

e \b: Backspace

e \r: Carriage return
e \\: Backslash

e \': Single quote

e \': Double quote

You get default support for special characters and
Unicode literals with JavaScript strings:

> "\xA9'
I©I

> '"\u00A9'
I©I

One important thing about JavaScript Strings, Numbers,
and Booleans is that they actually have wrapper objects
around their primitive equivalent. The following example
shows the usage of the wrapper objects:

var s = new String("dummy"); //Creates a
String object

console.log(s); //"dummy"
console.log(typeof s); //"object"

var nonObject = "1" + "2"; //Create a
String primitive

console.log(typeof nonObject); //"string"
var objString = new String("1" + "2");
//Creates a String object
console.log(typeof objString); //"object"
//Helper functions
console.log("Hello".length); //5
console.log("Hello".charAt(@)); //"H"
console.log("Hello".charAt(1)); //"e"

console.log("Hello".index0f("e")); //1
console.log("Hello".lastIndexOf("1")),; //3
console.log("Hello".startswith("H"));
//true

console.log("Hello".endswith("o")); //true
console.log("Hello".includes("X"));
//false

var splitStringByWords = "Hello
World".split(" ");
console.log(splitStringByWords);
//["Hello", "world"]

var splitStringByChars = "Hello
World".split("");
console.log(splitStringByChars); //["H",
"e", "1", "1", "o", "™ ", "w", "o", "r",
"1, "d"]
console.log("lowercasestring".toUpperCase(
)); //"LOWERCASESTRING"
console.log("UPPPERCASESTRING".toLowerCase
()); //"upppercasestring"
console.log("There are no spaces in the
end ".trim()); //"There are no spaces
in the end"

JavaScript allows multiline strings also. Strings enclosed
within = (Grave accent
—https://en.wikipedia.org/wiki/Grave_accent) are
considered multiline. Let's see the following example:

> console.log(string text on first line
string text on second line 7);

"string text on first line

string text on second line "

This kind of string is also known as a template string and
can be used for string interpolation. JavaScript allows
Python-like string interpolation using this syntax.

https://en.wikipedia.org/wiki/Grave_accent

Normally, you would do something similar to the
following:

var a=1, b=2;
console.log("Sum of values is :" + (a+b) +
" and multiplication is :" + (a*bh));

However, with string interpolation, things become a bit
clearer:

console.log(Sum of values is :${a+b} and
multiplication is : ${a*b}’);

UNDEFINED VALUES

JavaScript indicates an absence of meaningful values by
two special values—null, when the non-value is
deliberate, and undefined, when the value is not
assigned to the variable yet. Let's see the following
example:

> var x1;

> console.log(typeof x1);
undefined

> console.log(null==undefined);
true

BOOLEANS

JavaScript Boolean primitives are represented by true
and false keywords. The following rules govern what
becomes false and what turns out to be true:

e False, 0, the empty string ("), NaN, null, and undefined are

represented as false

e Everything else is true

JavaScript Booleans are tricky primarily because the
behavior is radically different in the way you create them.

There are two ways in which you can create Booleans in
JavaScript:

e You can create primitive Booleans by assigning a true or false literal
to a variable. Consider the following example:

var pBooleanTrue = true;
var pBooleanFalse = false;

e Use the Boolean() function; this is an ordinary function that returns
a primitive Boolean:

var fBooleanTrue = Boolean(true);
var fBooleanFalse = Boolean(false);

Both these methods return expected truthy or falsy
values. However, if you create a Boolean object using
the new operator, things can go really wrong.

Essentially, when you use the new operator and the
Boolean(value) constructor, you don't get a primitive
true or false in return, you get an object instead—and
unfortunately, JavaScript considers an object as truthy:

var oBooleanTrue = new Boolean(true);
var oBooleanFalse = new Boolean(false);
console.log(oBooleanTrue); //true
console.log(typeof oBooleanTrue); //object
if (oBooleanFalse){

console.log("I am seriously truthy, don't

believe me");

}

>"I am seriously truthy, don't believe me"

if(oBooleanTrue){
console.log("I am also truthy, see ?");

}

>"I am also truthy, see ?"

//Use valueOf() to extract real value
within the Boolean object
if(oBooleanFalse.valueOf()){
console.log("With valueOf, I am false");
}else{
console.log("Without valueOf, I am still
truthy");

}
>"Without valueOf, I am still truthy"

So, the smart thing to do is to always avoid Boolean
constructors to create a new Boolean object. It breaks
the fundamental contract of Boolean logic and you
should stay away from such difficult-to-debug buggy
code.

THE INSTANCEOF OPERATOR

One of the problems with using reference types to store
values has been the use of the typeof operator, which
returns object no matter what type of object is being
referenced. To provide a solution, you can use the
instanceof operator. Let's see some examples:

var aStringObject = new String("string");
console.log(typeof aStringObject);
//"object"

console.log(aStringObject instanceof
String); //true

var aString = "This is a string";
console.log(aString instanceof String);
//false

The third line returns false. We will discuss why this is
the case when we discuss prototype chains.

DATE OBJECTS

JavaScript does not have a date data type. Instead, you
can use the Date object and its methods to work with
dates and times in your applications. A Date object is
pretty exhaustive and contains several methods to
handle most date-and time-related use cases.

JavaScript treats dates similarly to Java. JavaScript
store dates as the number of milliseconds since January
1, 1970, 00:00:00.

You can create a Date object using the following
declaration:

var dataObject = new Date([parameters]);

The parameters for the Date object constructors can be
as follows:

e No parameters creates today's date and time. For example, var
today = new Date();.

e A String representing a date as Month day, year
hours:minutes:seconds. For example, var
twoThousandFifteen = new Date('"December 31, 2015

23:59:59");. If you omit hours, minutes, or seconds, the value will
be set to 0.

e A set of integer values for the year, month, and day. For example,
var christmas = new Date(2015, 11, 25);.

e A set of integer values for the year, month, day, hour, minute, and
seconds. For example, var christmas = new Date(2015, 11,
25, 21, 00, 0);.

Here are some examples on how to create and
manipulate dates in JavaScript:

var today = new Date();
console.log(today.getDate()); //27
console.log(today.getMonth()); //4
console.log(today.getFullYear()); //2015
console.log(today.getHours()),; //23
console.log(today.getMinutes()); //13
console.log(today.getSeconds()); //10
//number of milliseconds since January 1,
1970, 00:00:00 UTC
console.log(today.getTime());
//1432748611392
console.log(today.getTimezoneOffset());
//-330 Minutes

//Calculating elapsed time

var start = Date.now();

// loop for a long time

for (var i=0;i<100000;i++);

var end = Date.now();

var elapsed = end - start; // elapsed time
in milliseconds

console.log(elapsed); //71

For any serious applications that require fine-grained
control over date and time objects, we recommend using
libraries such as Moment.js

(https://github.com/moment/moment), Timezone.js
(https://github.com/mde/timezone-js), or date.js
(https://github.com/MatthewMueller/date). These libraries
simplify a lot of recurrent tasks for you and help you
focus on other important things.

THE + OPERATOR

The + operator, when used as a unary, does not have
any effect on a number. However, when applied to a
String, the + operator converts it to numbers as follows:

var a=25;
a=+a; //No impact on a's value
console.log(a); //25

var b="70";

console.log(typeof b); //string
b=+b; //converts string to
number

console.log(b); //70
console.log(typeof b); //number

The + operator is used often by a programmer to quickly
convert a numeric representation of a String to a
number. However, if the String literal is not something
that can be converted to a number, you get slightly
unpredictable results as follows:

var c="foo";

c=+cC; //Converts foo to number
console.log(c); //NaN

console.log(typeof c); //number

var zero="";

https://github.com/moment/moment
https://github.com/mde/timezone-js
https://github.com/MatthewMueller/date

zero=+zero; //empty sStrings are converrted
to 0

console.log(zero);

console.log(typeof zero);

We will discuss the effects of the + operator on several
other data types later in the text.

THE ++ AND -- OPERATORS

The ++ operator is a shorthand version of adding 1 to a
value and -- is a shorthand to subtract 1 from a value.
Java and C have equivalent operators and most will be
familiar with them. How about this?

var a= 1;

var b= a++;
console.log(a); //2
console.log(b); //1

Err, what happened here? Shouldn't the b variable have
the value 2? The ++ and -- operators are unary
operators that can be used either prefix or postfix. The
order in which they are used matters. When ++ is used
in the prefix position as ++a, it increments the value
before the value is returned from the expression rather
than after as with a++. Let's see the following code:

var a= 1;

var b= ++a;
console.log(a); //2
console.log(b); //2

Many programmers use the chained assignments to

assign a single value to multiple variables as follows:

var a, b, c;
a=b=c=0;

This is fine because the assignment operator (=) results
in the value being assigned. In this case, c=0 is
evaluated to 0; this would result in b=0, which also
evaluates to 0, and hence, a=0 is evaluated.

However, a slight change to the previous example yields
extraordinary results. Consider this:

var a = b = 0;

In this case, only the a variable is declared with var,
while the b variable is created as an accidental global. (If
you are in the strict mode, you will get an error for this.)
With JavaScript, be careful what you wish for, you might
get it.

BOOLEAN OPERATORS

There are three Boolean operators in JavaScript—
AND(&), OR(]), and NOT().

Before we discuss logical AND and OR operators, we
need to understand how they produce a Boolean result.
Logical operators are evaluated from left to right and
they are tested using the following short-circuit rules:

e Logical AND: If the first operand determines the result, the second
operand is not evaluated.

In the following example, | have highlighted the right-hand side
expression if it gets executed as part of short-circuit evaluation rules:

console.log(true && true); // true
AND true returns true
console.log(true && false);// true
AND false returns false
console.log(false && true);// false
AND true returns false
console.log("Foo" && "Bar");//
Foo(true) AND Bar(true) returns Bar
console.log(false && "Foo");// false
&& Foo(true) returns false
console.log("Foo" && false);//
Foo(true) && false returns false
console.log(false && (1 == 2));//
false && false(1==2) returns false

e Logical OR: If the first operand is true, the second operand is not

evaluated:
console.log(true || true); // true
AND true returns true
console.log(true || false);// true
AND false returns true
console.log(false || true);// false
AND true returns true
console.log("Foo" || "Bar");//
Foo(true) AND Bar(true) returns Foo
console.log(false || "Foo");// false
&& Foo(true) returns Foo
console.log("Foo" || false);//

Foo(true) && false returns Foo
console.log(false || (1 == 2)),;//
false && false(1==2) returns false

However, both logical AND and logical OR can also be used for non-
Boolean operands. When either the left or right operand is not a
primitive Boolean value, AND and OR do not return Boolean values.

Now we will explain the three logical Boolean operators:

e Logical AND(&&): If the first operand object is falsy, it returns that
object. If its truthy, the second operand object is returned:

console.log (0 && "Foo"); //First
operand is falsy - return it
console.log ("Foo" && "Bar"); //First
operand is truthy, return the second
operand

e Logical OR(]|): If the first operand is truthy, it's returned. Otherwise,
the second operand is returned:

console.log (0 || "Foo"); //First
operand is falsy - return second
operand

console.log ("Foo" || "Bar"); //First

operand is truthy, return it
console.log (0 || false); //First
operand is falsy, return second
operand

The typical use of a logical OR is to assign a default value to a
variable:

function greeting(name){
name = name || "John";
console.log("Hello " + name);

greeting("Johnson"); // alerts "Hi
Johnson";
greeting(); //alerts "Hello John"

You will see this pattern frequently in most professional JavaScript
libraries. You should understand how the defaulting is done by using
a logical OR operator.

e |ogical NOT: This always returns a Boolean value. The value
returned depends on the following:

//If the operand is an object, false
is returned.
var s = new String("string");

console.log(!s); //false

//If the operand is the number 0, true
is returned.

var t = 0;

console.log(!'t); //true

//If the operand is any number other
than 0, false is returned.

var x = 11;

console.log(!x); //false

//If operand is null or NaN, true is
returned

var y =null;

var z = NaN;

console.log(!y); //true
console.log(!z); //true
//If operand is undefined, you get
true

var foo;

console.log(!foo0); //true

Additionally, JavaScript supports C-like ternary operators
as follows:

var allowedToDrive = (age > 21) ? "yes"
Ilnoll;

If (age>21), the expression after ? will be assigned to
the allowedToDrive variable and the expression after
: Is assigned otherwise. This is equivalent to an if-else
conditional statement. Let's see another example:

function isAllowedToDrive(age){
if(age>21){
return true;
lalce!

J oL

return false;

}

}
console.log(isAllowedToDrive(22));

In this example, the isAllowedToDrive() function
accepts one integer parameter, age. Based on the value
of this variable, we return true or false to the calling
function. This is a well-known and most familiar if-else
conditional logic. Most of the time, if-else keeps the code
easier to read. For simpler cases of single conditions,
using the ternary operator is also okay, but if you see
that you are using the ternary operator for more
complicated expressions, try to stick with if-else because
it is easier to interpret if-else conditions than a very
complex ternary expression.

If-else conditional statements can be nested as follows:

if (conditionl) {
statementl

} else if (condition2) {
statement2

} else if (condition3) {
statement3

} else {
statementN

Purely as a matter of taste, you can indent the nested
else if as follows:

if (econdition1) £

statementl
} else
if (condition2) {

Do not use assignments in place of a conditional
statement. Most of the time, they are used because of a
mistake as follows:

if(a=b) {
//do something
}

Mostly, this happens by mistake; the intended code was
if(a==b), or better, 1f (a===b). When you make this
mistake and replace a conditional statement with an
assignment statement, you end up committing a very
difficult-to-find bug. However, if you really want to use an
assignment statement with an if statement, make sure
that you make your intentions very clear.

One way is to put extra parentheses around your
assignment statement:

if((a=b)){
//this is really something you want to
do

}

Another way to handle conditional execution is to use
switch-case statements. The switch-case construct in
JavaScript is similar to that in C or Java. Let's see the
following example:

FiinAatainn caviNAaw/l AAaw\ T

LUliLLLUIl dayvay\uay)i

switch(day){

case 1: console.log("Sunday");
break;

case 2: console.log("Monday");
break;

default:
console.log("We live in a binary

world. Go to Pluto");

}
}

sayDay(1); //Sunday
sayDay(3); //We live in a binary world. Go
to Pluto

One problem with this structure is that you have break
out of every case; otherwise, the execution will fall
through to the next level. If we remove the break
statement from the first case statement, the output will
be as follows:

>sayDay(1);
Sunday
Monday

As you can see, if we omit the break statement to break
the execution immediately after a condition is satisfied,
the execution sequence follows to the next level. This
can lead to difficult-to-detect problems in your code.
However, this is also a popular style of writing
conditional logic if you intend to fall through to the next
level:

function debug(level,msg){
switch(level){

case "INFO": //intentional fall-
through
case "WARN" :
case "DEBUG": console.log(level+ ": "
+ msg);
break;
case "ERROR": console.error(msg);

}
}

debug("INFO", "Info Message");
debug("DEBUG", "Debug Message");
debug("ERROR", "Fatal Exception");

In this example, we are intentionally letting the execution
fall through to write a concise switch-case. If levels are
either INFO, WARN, or DEBUG, we use the switch-case
to fall through to a single point of execution. We omit the
break statement for this. If you want to follow this
pattern of writing switch statements, make sure that you
document your usage for better readability.

Switch statements can have a default case to handle
any value that cannot be evaluated by any other case.

JavaScript has a while and do-while loop. The while loop
lets you iterate a set of expressions till a condition is met.
The following first example iterates the statements
enclosed within {} till the 1<10 expression is true.
Remember that if the value of the i counter is already
greater than 10, the loop will not execute at all:

var 1i=0;
while(i<10){
i=i+1;

console.log(1l);

}

The following loop keeps executing till infinity because
the condition is always true—this can lead to disastrous
effects. Your program can use up all your memory or
something equally unpleasant:

//infinite loop
while(true){

//keep doing this
}

If you want to make sure that you execute the loop at
least once, you can use the do-while loop (sometimes
known as a post-condition loop):

var choice;

do {
choice=getChoiceFromUserInput();
} while(!isInputValid(choice));

In this example, we are asking the user for an input till
we find a valid input from the user. While the user types
invalid input, we keep asking for an input to the user. Itis
always argued that, logically, every do-while loop can be
transformed into a while loop. However, a do-while loop
has a very valid use case like the one we just saw where
you want the condition to be checked only after there
has been one execution of the loop block.

JavaScript has a very powerful loop similar to C or Java
—the for loop. The for loop is popular because it allows
you to define the control conditions of the loop in a single

line.

The following example prints Hello five times:

for (var i=0;i<5;i++){
console.log("Hello");
}

Within the definition of the loop, you defined the initial
value of the loop counter 1 to be 0, you defined the 1<5
exit condition, and finally, you defined the increment
factor.

All three expressions in the previous example are
optional. You can omit them if required. For example, the
following variations are all going to produce the same
result as the previous loop:

var x=0;

//0mit initialitzation

for (;x<5;x++){
console.log("Hello");

}

//0mit exit condition
for (var j=0;;j++){
//exit condition
if(j>=5){
break;
}else{
console.log("Hello");
}
}

//0mit increment
for (var k=0; k<5;){
console.log("Hello");

k++:

}

You can also omit all three of these expressions and
write for loops. One interesting idiom used frequently is
to use for loops with empty statements. The following
loop is used to set all the elements of the array to 100.
Notice how there is no body to the for-loop:

var arr = [10, 20, 30];

// Assign all array values to 100

for (1 = 0; 1 < arr.length; arr[i++] =
100);

console.log(arr);

The empty statement here is just the single that we see
after the for loop statement. The increment factor also
modifies the array content. We will discuss arrays later in
the book, but here it's sufficient to see that the array
elements are set to the 100 value within the loop
definition itself.

EQUALITY

JavaScript offers two modes of equality—strict and
loose. Essentially, loose equality will perform the type
conversion when comparing two values, while strict
equality will check the values without any type
conversion. A strict equality check is performed by ===
while a loose equality check is performed by ==.

ECMAScript 6 also offers the Object.is method to do
a strict equality check like ===. However, Object.1is

has a special handling for NaN: -0 and +0. When
NaN===NaN and NaN==NaN evaluates to false,
Object.is(NaN, NaN) will return true.

Strict equality using ===

Strict equality compares two values without any implicit
type conversions. The following rules apply:

e [f the values are of a different type, they are unequal.

e For non-numerical values of the same type, they are equal if their
values are the same.

e For primitive numbers, strict equality works for values. If the values
are the same, === results in true. However, a NaN doesn't equal to
any number and NaN===<a number> would be a false.

Strict equality is always the correct equality check to use.

Make it a rule to always use === instead of ==:
Condition Output
nno——— ngn false
@ === "n false
@ === "@" false
false === "false" false

false === "Q@" false
false === undefined false
false === null false
null === undefined false

In case of comparing objects, we get results as follows:

Condition Output
{3 === {}; false
new String('bah') === 'bah'; false
new Number (1) === 1; false
var bar = {}; true
bar === bar;

The following are further examples that you should try on
either JS Bin or Node REPL.:

var n = 0;

var o = new String("e");

var s = "0";

var b = false;

console.log(n === n); // true - same

values for numbers

console.log(o === 0); // true - non

numbers are compared for their values

console.log(s === s); // true - ditto

console.log(n === 0); // false - no

implicit type conversion, types are

different

console.log(n === s); // false - types are

different

console.log(o === s); // false - types are

different

console.log(null === undefined); // false

console.log(o === null); // false

console.log(o === undefined); // false
You can use !==to handle the Not Equal To case while

doing strict equality checks.

Weak equality using ==

Nothing should tempt you to use this form of equality.
Seriously, stay away from this form. There are many bad
things with this form of equality primarily due to the weak
typing in JavaScript. The equality operator, ==, first tries
to coerce the type before doing a comparison. The
following examples show you how this works:

Condition Output
"=z "e" false
o =="" true
o =="o" true
false == "false" false
false == "o@" true
false == undefined false
false == null false
null == undefined true

From these examples, it's evident that weak equality can
result in unexpected outcomes. Also, implicit type
coercion is costly in terms of performance. So, in
general, stay away from weak equality in JavaScript.

JavaScript types

We briefly discussed that JavaScript is a dynamic
language. If you have a previous experience of strongly
typed languages such as Java, you may feel a bit
uncomfortable about the complete lack of type checks
that you are used to. Purists argue that JavaScript
should claim to have tags or perhaps subtypes, but not
types. Though JavaScript does not have the traditional
definition of types, it is absolutely essential to
understand how JavaScript handles data types and
coercion internally. Every nontrivial JavaScript program
will need to handle value coercion in some form, so it's
important that you understand the concept well.

Explicit coercion happens when you modify the type
yourself. In the following example, you will convert a
number to a String using the toString() method and
extract the second character out of it:

var fortyTwo = 42;
console.log(fortyTwo.toString()[1]);
//prints "2"

This is an example of an explicit type conversion. Again,
we are using the word type loosely because type was
not enforced anywhere when you declared the
fortyTwo variable.

However, there are many different ways in which such
coercion can happen. Coercion happening explicitly can

be easy to understand and mostly reliable; but if you're
not careful, coercion can happen in very strange and
surprising ways.

Confusion around coercion is perhaps one of the most
talked about frustrations for JavaScript developers. To
make sure that you never have this confusion in your
mind, let's revisit types in JavaScript. We talked about
some concepts earlier:

typeof 1 === "number"; //
true
typeof "1" === "string"; //
true
typeof { age: 39 } === "object"; //
true
typeof Symbol() === "symbol"; //
true
typeof undefined === "undefined"; //
true
typeof true === "boolean"; //
true

So far, so good. We already knew this and the examples
that we just saw reinforce our ideas about types.

Conversion of a value from one type to another is called
casting or explicit coercion. JavaScript also does implicit
coercion by changing the type of a value based on
certain guesses. These guesses make JavaScript work
around several cases and unfortunately make it fail
quietly and unexpectedly. The following snippet shows
cases of explicit and implicit coercion:

var t=1;

var u=""+t; //implicit coercion
console.log(typeof t); //"number"
console.log(typeof u); //"string"
var v=String(t); //Explicit coercion
console.log(typeof v); //"string"
var x=null

console.log(""+x); //"null"

It is easy to see what is happening here. When you use
"""+t to a numeric value of t (1, in this case), JavaScript
figures out that you are trying to concatenate something
with a "" string. As only strings can be concatenated
with other strings, JavaScript goes ahead and converts a
numeric 1 to a "1" string and concatenates both into a
resulting string value. This is what happens when
JavaScript is asked to convert values implicitly.

However, String(t) is a very deliberate call to convert
a number to a String. This is an explicit conversion of
types. The last bit is surprising. We are concatenating
null with ""—shouldn't this fail?

So how does JavaScript do type conversions? How will
an abstract value become a String or number or
Boolean? JavaScript relies on toString(),
toNumber (), and toBoolean() methods to do this
internally.

When a non-String value is coerced into a String,
JavaScript uses the toString() method internally to
do this. All primitives have a natural string form—null has
a string form of "null", undefined has a string form of
"undefined", and so on. For Java developers, this is

analogous to a class having a toString() method that
returns a string representation of the class. We will see
exactly how this works in case of objects.

So essentially you can do something similar to the
following:

var a="abc";
console.log(a.length);
console.log(a.toUpperCase());

If you are keenly following and typing all these little
snippets, you would have realized something strange in
the previous snippet. How are we calling properties and
methods on primitives? How come primitives have
objects such as properties and methods? They don't.

As we discussed earlier, JavaScript kindly wraps these
primitives in their wrappers by default thus making it
possible for us to directly access the wrapper's methods
and properties as if they were of the primitives
themselves.

When any non-number value needs to be coerced into a
number, JavaScript uses the toNumber () method
internally: true becomes 1, undefined becomes NaN,
false becomes 0, and null becomes 0. The
toNumber () method on strings works with literal
conversion and if this fails, the method returns NaN.

What about some other cases?

typeof null ==="object" //true

Well, null is an object? Yes, an especially long-lasting
bug makes this possible. Due to this bug, you need to be
careful while testing if a value is null:

var x = null;

if (!x && typeof x === "object"){
console.log("100% null");

}

What about other things that may have types, such as
functions?

f = function test() {
return 12;

}

console.log(typeof f === "function");
//prints "true"

What about arrays?

console.log (typeof [1,2,3,4]); //"object"

Sure enough, they are also objects. We will take a
detailed look at functions and arrays later in the book.

In JavaScript, values have types, variables don't. Due to
the dynamic nature of the language, variables can hold
any value at any time.

JavaScript doesn't does not enforce types, which means
that the language doesn't insist that a variable always
hold values of the same initial type that it starts out with.

A variable can hold a String, and in the next assignment,
hold a number, and so on:

var a = 1;
typeof a; // "number"
a = false;
typeof a; // "boolean"

The typeof operator always returns a String:

typeof typeof 1; // "string"

Automatic semicolon insertion

Although JavaScript is based on the C style syntax, it
does not enforce the use of semicolons in the source
code.

However, JavaScript is not a semicolon-less language. A
JavaScript language parser needs the semicolons in
order to understand the source code. Therefore, the
JavaScript parser automatically inserts them whenever it
encounters a parse error due to a missing semicolon. It's
important to note that automatic semicolon insertion
(ASI) will only take effect in the presence of a newline
(also known as a line break). Semicolons are not
inserted in the middle of a line.

Basically, if the JavaScript parser parses a line where a
parser error would occur (a missing expected ;) and it
can insert one, it does so. What are the criteria to insert
a semicolon? Only if there's nothing but white space

and/or comments between the end of some statement
and that line's newline/line break.

There have been raging debates on ASl—a feature
justifiably considered to be a very bad design choice.
There have been epic discussions on the Internet, such
as https://github.com/twbs/bootstrap/issues/3057 and
https://brendaneich.com/2012/04/the-infernal-semicolon/.

Before you judge the validity of these arguments, you
need to understand what is affected by ASI. The
following statements are affected by ASI:

e An empty statement

e A var statement

e An expression statement
e A do-while statement

e A continue statement

e A break statement

e A return statement

e A throw statement

The idea behind ASI is to make semicolons optional at
the end of a line. This way, ASI helps the parser to
determine when a statement ends. Normally, it ends with
a semicolon. ASI dictates that a statement also ends in
the following cases:

e A line terminator (for example, a newline) is followed by an illegal
token

e A closing brace is encountered

https://github.com/twbs/bootstrap/issues/3057
https://brendaneich.com/2012/04/the-infernal-semicolon/

e The end of the file has been reached

Let's see the following example:

if (a < 1) a = 1 console.log(a)

The console token is illegal after 1 and triggers ASI as
follows:

if (a < 1) a = 1; console.log(a);

In the following code, the statement inside the braces is
not terminated by a semicolon:

function add(a,b) { return atb }

ASI creates a syntactically correct version of the
preceding code:

function add(a,b) { return atb; }

JavaScript style guide

Every programming language develops its own style and
structure. Unfortunately, new developers don't put much
effort in learning the stylistic nuances of a language. It is
very difficult to develop this skill later once you have
acquired bad practices. To produce beautiful, readable,
and easily maintainable code, it is important to learn the
correct style. There are a ton of style suggestions. We
will be picking the most practical ones. Whenever
applicable, we will discuss the appropriate style. Let's set

some stylistic ground rules.

WHITESPACES

Though whitespace is not important in JavaScript, the
correct use of whitespace can make the code easy to
read. The following guidelines will help in managing
whitespaces in your code:

e Never mix spaces and tabs.

e Before you write any code, choose between soft indents (spaces) or
real tabs. For readability, | always recommend that you set your
editor's indent size to two characters—this means two spaces or two
spaces representing a real tab.

e Always work with the show invisibles setting turned on. The benefits
of this practice are as follows:

e Enforced consistency.

e Eliminates the end-of-line white spaces.
e Eliminates blank line white spaces.

e Commits and diffs that are easier to read.

e Uses EditorConfig (http://editorconfig.org/) when possible.

PARENTHESES, LINE BREAKS, AND
BRACES

If, else, for, while, and try always have spaces and
braces and span multiple lines. This style encourages
readability. Let's see the following code:

//Cramped style (Bad)
if(condition) doSomeTask();

while(condition) i++;

http://editorconfig.org/

for(var 1=0;i<10;i++) iterate();

//Use whitespace for better readability
(Good)
//Place 1 space before the leading brace.
if (condition) {

// statements

while (condition) {
// statements

for (var 1 = 0; i < 100; i++) {
// statements

}
// Better:
var 1i,

length = 100;

for (1 =0; i < length; i++) {

// statements

// Or...

var i1 = 0,
length = 100;

for (; 1 < length; i++) {

// statements

var value;

for (value in object) {
// statements

if (true) {
// statements
} else {
// statements

//Set off operators with spaces.
// bad
var x=y+5;

// good
var x =y + 5;

//End files with a single newline
character.
// bad
(function(global) {
// ...stuff...

})(this);

// bad
(function(global) {
// ...stuff...

})(this);ea

P

// good
(function(global) {
// ...stuff...

})(this);«a

QUOTES

Whether you prefer single or double quotes shouldn't
matter; there is no difference in how JavaScript parses
them. However, for the sake of consistency, never mix

guotes in the same project. Pick one style and stick with
it.

END OF LINES AND EMPTY LINES

Whitespace can make it impossible to decipher code
diffs and changelists. Many editors allow you to
automatically remove extra empty lines and end of lines
—you should use these.

TYPE CHECKING

Checking the type of a variable can be done as follows:

//String:

typeof variable === "string"
//Number :

typeof variable === "number"
//Boolean:

typeof variable === "boolean"
//0bject:

typeof variable === "object"
//null:

variable === null

//null or undefined:
variable == null

TYPE CASTING

Perform type coercion at the beginning of the statement
as follows:

// bad
const totalScore = this.reviewScore + '';
// good

const totalScore

String(this.reviewScore);

Use parseInt() for Numbers and always with a radix
for the type casting:

const inputValue = '4';

// bad

const val = new Number(inputValue);
// bad

const val = +inputValue;

// bad

const val = inputValue >> 0;

// bad

const val = parseInt(inputValue);
// good

const val = Number(inputValue);
// good

const val = parseInt(inputValue, 10);

The following example shows you how to type cast using
Booleans:

const age = 0@; // bad

const hasAge new Boolean(age); // good
const hasAge = Boolean(age); // good
const hasAge Ilage;

| I~

CONDITIONAL EVALUATION

There are various stylistic guidelines around conditional
statements. Let's study the following code:

// When evaluating that array has length,
// WRONG:
if (array.length > 0)

// evaluate truthiness(GOOD):

if (array.length)

// When evaluating that an array is empty,
// (BAD):
if (array.length === 0)

// evaluate truthiness(GOOD):
if ('array.length)

// When checking if string is not empty,
// (BAD):
if (string !== "")

// evaluate truthiness (GOOD):
if (string)

// When checking if a string is empty,
// BAD:
if (string === "")

// evaluate falsy-ness (GOOD):
if (!string)

// When checking if a reference is true,
// BAD:
if (foo === true)

// GOOD
if (foo)

// When checking if a reference is false,
// BAD:
if (foo === false)

// GOOD
if (!'foo)

// this will also match: 0, "", null,
undefined, NaN

// If you MUST test for a boolean false,
then use

if (foo === false)

// a reference that might be null or

undefined, but NOT false, "" or O,

// BAD:

if (foo === null || foo === undefined)
// GOOD

if (foo == null)

// Don't complicate matters

return x === 0 ? 'sunday' : x === 1 ?
"Monday' : 'Tuesday';
// Better:
if (x === 0) {
return 'Sunday';
} else if (x === 1) {
return 'Monday';
} else {

return 'Tuesday';

// Even Better:
switch (x) {
case 0:
return 'Sunday';
case 1:
return 'Monday';
default:
return 'Tuesday';

NAMING

Naming is super important. | am sure that you have
encountered code with terse and undecipherable
naming. Let's study the following lines of code:

//Avoid single letter names. Be
descriptive with your naming.
// bad

function q() {

// good
function query() {

}

//Use camelCase when naming objects,
functions, and instances.

// bad

const OBJECT = {};

const this_is_object = {};

function c() {}

// good
const thisIsObject = {};
function thisIsFunction() {}

//Use PascalCase when naming constructors
or classes.
// bad
function user(options) {
this.name = options.name;

const bad = new user({
name: 'nope',

¥

// good
class User {
constructor(options) {
this.name = options.name;

const good = new User({
name: 'yup',

¥

// Use a leading underscore when naming
private properties.

// bad

this._firstName__ = 'Panda';
this.firstName_ = 'Panda’;
// good

this._firstName = 'Panda’;

THE EVAL() METHOD IS EVIL

The eval () method, which takes a String containing
JavaScript code, compiles it and runs it, is one of the
most misused methods in JavaScript. There are a few
situations where you will find yourself using eval(), for
example, when you are building an expression based on
the user input.

However, most of the time, eval() is used is just
because it gets the job done. The eval () method is too
hacky and makes the code unpredictable. It's slow,
unwieldy, and tends to magnify the damage when you
make a mistake. If you are considering using eval(),
then there is probably a better way.

The following snippet shows the usage of eval():

console.log(typeof eval(new
String("1+1"))); // "object"
console.log(eval(new String("1+1")));
//1+1

nnnnn TAa TanlAvaT /M4 LAY

LulIdUlLT.Luy|\cval| 1Ti)),

// 2

console.log(typeof eval("1+1"));

// returns "number"

var expression = new String("1+1");
console.log(eval(expression.toString()));
//2

| will refrain from showing other uses of eval() and
make sure that you are discouraged enough to stay
away from it.

THE STRICT MODE

ECMAScript 5 has a strict mode that results in cleaner
JavaScript, with fewer unsafe features, more warnings,
and more logical behavior. The normal (non-strict) mode
is also called sloppy mode. The strict mode can help
you avoid a few sloppy programming practices. If you
are starting a new JavaScript project, | would highly
recommend that you use the strict mode by default.

You switch on the strict mode by typing the following line
first in your JavaScript file or in your <script> element:

'use strict';

Note that JavaScript engines that don't support
ECMAScript 5 will simply ignore the preceding statement
and continue as non-strict mode.

If you want to switch on the strict mode per function, you
can do it as follows:

function foo() {
'use strict';

}

This is handy when you are working with a legacy code
base where switching on the strict mode everywhere
may break things.

If you are working on an existing legacy code, be careful
because using the strict mode can break things. There
are caveats on this:

Enabling the strict mode for an existing code can break it

The code may rely on a feature that is not available
anymore or on behavior that is different in a sloppy mode
than in a strict mode. Don't forget that you have the
option to add single strict mode functions to files that are
in the sloppy mode.

Package with care

When you concatenate and/or minify files, you have to
be careful that the strict mode isn't switched off where it
should be switched on or vice versa. Both can break
code.

The following sections explain the strict mode features in
more detail. You normally don't need to know them as
you will mostly get warnings for things that you shouldn't
do anyway.

Variables must be declared in strict mode

All variables must be explicitly declared in strict mode.
This helps to prevent typos. In the sloppy mode,
assigning to an undeclared variable creates a global
variable:

function sloppyFunc() {

sloppyvar = 123;
} sloppyFunc(); // creates global
variable “sloppyvar’
console.log(sloppyvar); // 123

In the strict mode, assigning to an undeclared variable
throws an exception:

function strictFunc() {
'use strict';
strictvar = 123;

}
strictFunc(); // ReferenceError:
strictvar is not defined

The eval() function is cleaner in strict mode

In strict mode, the eval () function becomes less quirky:
variables declared in the evaluated string are not added
to the scope surrounding eval() anymore.

Features that are blocked in strict mode

The with statement is not allowed. (We will discuss this
in the book later.) You get a syntax error at compile time
(when loading the code).

In the sloppy mode, an integer with a leading zero is
interpreted as octal (base 8) as follows:

> 010 === 8 true

In strict mode, you get a syntax error if you use this kind
of literal:

function f() {
'use strict';
return 010

}

//SyntaxError: Octal literals are not
allowed in

RUNNING JSHINT

JSHint is a program that flags suspicious usage in
programs written in JavaScript. The core project consists
of a library itself as well as a command line interface
(CLI) program distributed as a Node module.

If you have Node.js installed, you can install JSHint
using npm as follows:

npm install jshint -g

Once JSHint is installed, you can lint a single or multiple
JavaScript files. Save the following JavaScript code
snippet in the test. js file:

function f(condition) {
switch (condition) {
case 1:
console.log(1);
case 2:
console.log(1);

}

When we run the file using JSHint, it will warn us of a
missing break statement in the switch case as follows:

>jshint test.js

test.js: line 4, col 19, Expected a
'break' statement before 'case'.

1 error

JSHint is configurable to suit your needs. Check the
documentation at http://jshint.com/docs/ to see how you
can customize JSHint according to your project needs. |
use JSHint extensively and suggest you start using it.
You will be surprised to see how many hidden bugs and
stylistic issues you will be able to fix in your code with
such a simple tool.

You can run JSHint at the root of your project and lint the
entire project. You can place JSHint directives in the
.jshintrc file. This file may look something as follows:

"asi": false,
"expr": true,
"loopfunc": true,
"curly": false,
"evil": true,
"white": true,
"undef": true,
"indent": 4

http://jshint.com/docs/

In this chapter, we set some foundations around
JavaScript grammar, types, and stylistic considerations.
We have consciously not talked about other important
aspects such as functions, variable scopes, and closures
primarily because they deserve their own place in this
book. | am sure that this chapter helps you understand
some of the primary concepts of JavaScript. With these
foundations in place, we will take a look at how we can
write professional quality JavaScript code.

Chapter 2. Functions,
Closures, and Modules

In the previous chapter, we deliberately did not discuss
certain aspects of JavaScript. These are some of the
features of the language that give JavaScript its power
and elegance. If you are an intermediate-or advanced-
level JavaScript programmer, you may be actively using
objects and functions. In many cases, however,
developers stumble at these fundamental levels and
develop a half-baked or sometimes wrong understanding
of the core JavaScript constructs. There is generally a
very poor understanding of the concept of closures in
JavaScript, due to which many programmers cannot use
the functional aspects of JavaScript very well. In
JavaScript, there is a strong interconnection between
objects, functions, and closures. Understanding the
strong relationship between these three concepts can
vastly improve our JavaScript programming ability, giving
us a strong foundation for any type of application
development.

Functions are fundamental to JavaScript. Understanding
functions in JavaScript is the single most important
weapon in your arsenal. The most important fact about
functions is that in JavaScript, functions are first-class
objects. They are treated like any other JavaScript
object. Just like other JavaScript data types, they can be

referenced by variables, declared with literals, and even
passed as function parameters.

As with any other object in JavaScript, functions have
the following capabilities:

e They can be created via literals

e They can be assigned to variables, array entries, and properties of
other objects

e They can be passed as arguments to functions
e They can be returned as values from functions
e They can possess properties that can be dynamically created and

assigned

We will talk about each of these unique abilities of a
JavaScript function in this chapter and the rest of the
book.

One of the most important concepts in JavaScript is that
the functions are the primary unit of execution. Functions
are the pieces where you will wrap all your code, hence
they will give your programs a structure.

JavaScript functions are declared using a function literal.

Function literals are composed of the following four
parts:

e The function keyword.

e An optional name that, if specified, must be a valid JavaScript

identifier.

e A list of parameter names enclosed in parentheses. If there are no
parameters to the function, you need to provide empty parentheses.

e The body of the function as a series of JavaScript statements
enclosed in braces.

A function declaration

The following is a very trivial example to demonstrate all
the components of a function declaration:

function add(a,b){
return a+b;

}
c = add(1,2);
console.log(c); //prints 3

The declaration begins with a function keyword
followed by the function name. The function name is
optional. If a function is not given a name, it is said to be
anonymous. We will see how anonymous functions are
used. The third part is the set of parameters of the
function, wrapped in parentheses. Within the
parentheses is a set of zero or more parameter names
separated by commas. These names will be defined as
variables in the function, and instead of being initialized
to undefined, they will be initialized to the arguments
supplied when the function is invoked. The fourth part is
a set of statements wrapped in curly braces. These
statements are the body of the function. They are
executed when the function is invoked.

This method of function declaration is also known as

function statement. When you declare functions like
this, the content of the function is compiled and an object
with the same name as the function is created.

Another way of function declaration is via function
expressions:

var add = function(a,b){
return a+b;

}
c = add(1,2);
console.log(c); //prints 3

Here, we are creating an anonymous function and
assigning it to an add variable; this variable is used to
invoke the function as in the earlier example. One
problem with this style of function declaration is that we
cannot have recursive calls to this kind of function.
Recursion is an elegant style of coding where the
function calls itself. You can use named function
expressions to solve this limitation. As an example, refer
to the following function to compute the factorial of a
given number, n:

var facto = function factorial(n) {
if (n <= 1)
return 1;
return n * factorial(n - 1);

iy
console.log(facto(3)); //prints 6

Here, instead of creating an anonymous function, you
are creating a named function. Now, because the

function has a name, it can call itself recursively.

Finally, you can create self-invoking function expressions
(we will discuss them later):

(function sayHello() {
console.log("hello!");

10O

Once defined, a function can be called in other
JavaScript functions. After the function body is executed,
the caller code (that executed the function) continues to
execute. You can also pass a function as a parameter to
another function:

function changeCase(val) {
return val.toUpperCase();

}

function demofunc(a, passfunction) {
console.log(passfunction(a));

}

demofunc("smallcase", changeCase);

In the preceding example, we are calling the
demofunc () function with two parameters. The first
parameter is the string that we want to convert to
uppercase and the second one is the function reference
to the changeCase() function. In demofunc(), we call
the changeCase() function via its reference passed to
the passfunction argument. Here we are passing a
function reference as an argument to another function.
This powerful concept will be discussed in detail later in
the book when we discuss callbacks.

A function may or may not return a value. In the previous
examples, we saw that the add function returned a value
to the calling code. Apart from returning a value at the
end of the function, calling return explicitly allows you
to conditionally return from a function:

var looper = function(x){
if (x%5===0) {
return;

}

console.log(x)

}
for(var i=1;i<10;i++){
looper(i);

}

This code snippet prints 1, 2, 3, 4, 6, 7, 8, and 9, and
not 5. When the 1f (x%5===0) condition is evaluated
to true, the code simply returns from the function and the
rest of the code is not executed.

In JavaScript, functions can be assigned to variables,
and variables are data. You will shortly see that this is a
powerful concept. Let's see the following example:

var say = console.log;
say("I can also say things");

In the preceding example, we assigned the familiar
console.log() function to the say variable. Any
function can be assigned to a variable as shown in the
preceding example. Adding parentheses to the variable
will invoke it. Moreover, you can pass functions in other
functions as parameters. Study the following example
carefully and type it in JS Bin:

var validateDataForAge = function(data) {
person = data();
console.log(person);
if (person.age <1 || person.age > 99){
return true;
}else{
return false;
}
iy

var errorHandlerForAge = function(error) {
console.log("Error while processing
age");

I 7

function

parseRequest(data,validateData, errorHandle
r) {
var error = validateData(data);
if (lerror) {
console.log("no errors");
} else {
errorHandler();

}
}

var generateDataForScientist = function()
{
return {
name: "Albert Einstein",
age : Math.floor(Math.random() (100 -
1)) + 1,
};
};
var generateDataForComposer = function() {
return {
name: "J S Bach",
age : Math.floor(Math.random() (100 -
1)) + 1,
iy
Iy

//parse request
parseRequest(generateDataForScientist,
validateDataForAge, errorHandlerForAge);
parseRequest(generateDataForComposer,
validateDataForAge, errorHandlerForAge);

In this example, we are passing functions as parameters
to a parseRequest () function. We are passing
different functions for two different calls,
generateDataForScientist and
generateDataForComposers, while the other two
functions remain the same. You can observe that we

defined a generic parseRequest (). It takes three
functions as arguments, which are responsible for
stitching together the specifics: the data, validator, and
error handler. The parseRequest () function is fully
extensible and customizable, and because it will be
invoked by every request, there is a single, clean
debugging point. | am sure that you have started to
appreciate the incredible power that JavaScript functions
provide.

For beginners, JavaScript scoping is slightly confusing.
These concepts may seem straightforward; however,
they are not. Some important subtleties exist that must
be understood in order to master the concept. So what is
Scope? In JavaScript, scope refers to the current context
of code.

A variable's scope is the context in which the variable
exists. The scope specifies from where you can access a
variable and whether you have access to the variable in
that context. Scopes can be globally or locally defined.

Global scope

Any variable that you declare is by default defined in
global scope. This is one of the most annoying language
design decisions taken in JavaScript. As a global
variable is visible in all other scopes, a global variable
can be modified by any scope. Global variables make it
harder to run loosely coupled subprograms in the same
program/module. If the subprograms happen to have
global variables that share the same names, then they
will interfere with each other and likely fail, usually in
difficult-to-diagnose ways. This is sometimes known as
namespace clash. We discussed global scope in the
previous chapter but let's revisit it briefly to understand
how best to avoid this.

You can create a global variable in two ways:

e The first way is to place a var statement outside any function.
Essentially, any variable declared outside a function is defined in the
global scope.

e The second way is to omit the var statement while declaring a
variable (also called implied globals). | think this was designed as a
convenience for new programmers but turned out to be a nightmare.
Even within a function scope, if you omit the var statement while
declaring a variable, it's created by default in the global scope. This is
nasty. You should always run your program against ESLint or JSHint
to let them flag such violations. The following example shows how
global scope behaves:

//Global Scope

var a = 1;

function scopeTest() {
console.log(a);

}
scopeTest(); //prints 1

Here we are declaring a variable outside the function
and in the global scope. This variable is available in the
scopeTest () function. If you assign a new value to a
global scope variable within a function scope (local), the
original value in the global scope is overwritten:

//Global Scope
var a = 1;
function scopeTest() {
a = 2, //0Overwrites global variable 2,
you omit 'var'
console.log(a);
}
console.log(a); //prints 1
scopeTest(); //prints 2
console.log(a); //prints 2 (global value
is overwritten)

Local scope

Unlike most programming languages, JavaScript does
not have block-level scope (variables scoped to
surrounding curly brackets); instead, JavaScript has
function-level scope. Variables declared within a function
are local variables and are only accessible within that
function or by functions inside that function:

var scope_name = "Global";
function showScopeName () {

// local variable; only accessible in
this function

var scope_name = "Local";

console.log (scope_name); // Local
}
console.log (scope_name); //prints -
Global
showScopeName () ; //prints -
Local

Function-level scope versus block-
level scope

JavaScript variables are scoped at the function level.
You can think of this as a small bubble getting created
that prevents the variable to be visible from outside this
bubble. A function creates such a bubble for variables
declared inside the function. You can visualize the
bubbles as follows:

var g =0;

function foo(a) { ------------“cccomm--- |

var b = 1; |

|
//code |

function bar() { ------ | |

|
/o | ScopeBar |

ScopeFoo

Y | |

|
// code |

var ¢ = 2; |

foo(); //WORKS

|
bar(); //FAILS

JavaScript uses scope chains to establish the scope for
a given function. There is typically one global scope, and
each function defined has its own nested scope. Any
function defined within another function has a local
scope that is linked to the outer function. It's always the
position in the source that defines the scope. When
resolving a variable, JavaScript starts at the innermost
scope and searches outwards. With this, let's look at
various scoping rules in JavaScript.

In the preceding crudely drawn visual, you can see that
the foo () function is defined in the global scope. The
foo() function has its local scope and access to the g
variable because it's in the global scope. The a, b, and ¢
variables are available in the local scope because they
are defined within the function scope. The bar ()
function is also declared within the function scope and is
available within the foo () function. However, once the
function scope is over, the bar () function is not
available. You cannot see or call the bar () function
from outside the foo() function—a scope bubble.

Now that the bar () function also has its own function
scope (bubble), what is available in here? The bar ()
function has access to the foo() function and all the
variables created in the parent scope of the foo()
function—a, b, and c. The bar () function also has
access to the global scoped variable, g.

This is a powerful idea. Take a moment to think about it.
We just discussed how rampant and uncontrolled global
scope can get in JavaScript. How about we take an
arbitrary piece of code and wrap it around with a
function? We will be able to hide and create a scope
bubble around this piece of code. Creating the correct
scope using function wrapping will help us create correct
code and prevent difficult-to-detect bugs.

Another advantage of the function scope and hiding
variables and functions within this scope is that you can

avoid collisions between two identifiers. The following
example shows such a bad case:

function foo() {
function bar(a) {
i =2; // changing the 'i' in the
enclosing scope's for-loop
console.log(a+i);

}

for (var i=0; i<10; i++) {
bar(i); // infinite loop

}

}
foo();

In the bar () function, we are inadvertently modifying
the value of 1=2. When we call bar () from within the
for loop, the value of the i variable is set to 2 and we
never come out of an infinite loop. This is a bad case of
namespace collision.

So far, using functions as a scope sounds like a great
way to achieve modularity and correctness in JavaScript.
Well, though this technique works, it's not really ideal.
The first problem is that we must create a named
function. If we keep creating such functions just to
introduce the function scope, we pollute the global scope
or parent scope. Additionally, we have to keep calling
such functions. This introduces a lot of boilerplate, which
makes the code unreadable over time:

var a = 1;
//Lets introduce a function -scope
//1. Add a named function foo() into the

global scope

function foo() {
var a = 2;
console.log(a); // 2

}
//2. Now call the named function foo()

foo();
console.log(a); // 1

We introduced the function scope by creating a new
function foo () to the global scope and called this
function later to execute the code.

In JavaScript, you can solve both these problems by
creating functions that immediately get executed.
Carefully study and type the following example:

var a = 1;
//Lets introduce a function -scope
//1. Add a named function foo() into the
global scope
(function foo() {
var a = 2;
console.log(a); // 2
})(); //<---this function executes
immediately
console.log(a); // 1

Notice that the wrapping function statement starts with
function. This means that instead of treating the
function as a standard declaration, the function is treated
as a function expression.

The (function foo(){ }) statementas an
expression means that the identifier foo is found only in

the scope of the foo () function, not in the outer scope.
Hiding the name foo in itself means that it does not
pollute the enclosing scope unnecessarily. This is so
useful and far better. We add () after the function
expression to execute it immediately. So the complete
pattern looks as follows:

(function foo(){ /* code */ })();

This pattern is so common that it has a name: IIFE,
which stands for Immediately Invoked Function
Expression. Several programmers omit the function
name when they use IIFE. As the primary use of IIFE is
to introduce function-level scope, naming the function is
not really required. We can write the earlier example as
follows:

var a = 1;

(function() {
var a = 2;
console.log(a); // 2

DIOF
console.log(a); // 1

Here we are creating an anonymous function as IIFE.
While this is identical to the earlier named IIFE, there are
a few drawbacks of using anonymous IIFEs:

e As you can't see the function name in the stack traces, debugging
such code is very difficult

e You cannot use recursion on anonymous functions (as we discussed
earlier)

e Overusing anonymous IIFEs sometimes results in unreadable code

Douglas Crockford and a few other experts recommend
a slight variation of IIFE:

(function(){ /* code */ }());

Both these IIFE forms are popular and you will see a lot
of code using both these variations.

You can pass parameters to IIFEs. The following
example shows you how to pass parameters to IIFEs:

(function foo(b) {
var a = 2;
console.log(a + b);
})(3); //prints 5

Inline function expressions

There is another popular usage of inline function
expressions where the functions are passed as
parameters to other functions:

function setActiveTab(activeTabHandler,
tab){
//set active tab
//call handler
activeTabHandler();
}
setActiveTab(function (){
console.log("Setting active tab");
1)

//prints "Setting active tab"

Again, you can name this inline function expression to

make sure that you get a correct stack trace while you
are debugging the code.

Block scopes

As we discussed earlier, JavaScript does not have the
concept of block scopes. Programmers familiar with
other languages such as Java or C find this very
uncomfortable. ECMAScript 6 (ES6) introduces the let
keyword to introduce traditional block scope. This is so
incredibly convenient that if you are sure your
environment is going to support ES6, you should always
use the let keyword. See the following code:

var foo = true;
if (foo) {

let bar = 42; //variable bar is local in
this block { }

console.log(bar);

}

console.log(bar); // ReferenceError

However, as things stand today, ES6 is not supported by
default in most popular browsers.

This chapter so far should have given you a fair
understanding of how scoping works in JavaScript. If you
are still unclear, | would suggest that you stop here and
revisit the earlier sections of this chapter. Research your
doubts on the Internet or put your questions on Stack
Overflow. In short, make sure that you have no doubts
related to the scoping rules.

It is very natural for us to think of code execution
happening from top to bottom, line by line. This is how
most of JavaScript code is executed but with some
exceptions.

Consider the following code:

console.log(a);
var a = 1;

If you said this is an invalid code and will result in
undefined when we call console.log(), you are
absolutely correct. However, what about this?

a=1;
var a;
console.log(a);

What should be the output of the preceding code? It is
natural to expect undefined as the var a statement
comes aftera = 1, and it would seem natural to
assume that the variable is redefined and thus assigned
the default undefined. However, the output will be 1.

When you see var a = 1, JavaScript splits it into two
statements: var a and a = 1. The first statement, the
declaration, is processed during the compilation phase.
The second statement, the assignment, is left in place
for the execution phase.

So the preceding snippet would actually be executed as
follows:

var a; //----Compilation phase

a=1; //------ execution phase
console.log(a);

The first snippet is actually executed as follows:

var a; //----- Compilation phase

console.log(a);
a=1; //------ execution phase

So, as we can see, variable and function declarations
are moved up to the top of the code during compilation
phase—this is also popularly known as hoisting. It is
very important to remember that only the declarations
themselves are hoisted, while any assignments or other
executable logic are left in place. The following snippet
shows you how function declarations are hoisted:

foo();

function foo() {
console.log(a); // undefined
var a = 1;

}

The declaration of the foo() function is hoisted such
that we are able to execute the function before defining
it. One important aspect of hoisting is that it works per
scope. Within the foo () function, declaration of the a
variable will be hoisted to the top of the foo () function,
and not to the top of the program. The actual execution
of the foo () function with hoisting will be something as
follows:

function foo() {
var a;
console.log(a); // undefined
a=1;

We saw that function declarations are hoisted but
function expressions are not. The next section explains
this case.

We saw two ways by which functions are defined.
Though they both serve identical purposes, there is a
difference between these two types of declarations.
Check the following example:

//Function expression
functionOne();

//Error

//"TypeError: functionOne is not a
function

var functionOne = function() {
console.log("functionOne");

iy

//Function declaration

functionTwo();

//No error

//Prints - functionTwo

function functionTwo() {
console.log("functionTwo");

}

A function declaration is processed when execution
enters the context in which it appears before any step-
by-step code is executed. The function that it creates is
given a proper name (functionTwo() in the preceding
example) and this name is put in the scope in which the
declaration appears. As it's processed before any step-

by-step code in the same context, calling
functionTwo () before defining it works without an
error.

However, functionOne() is an anonymous function
expression, evaluated when it's reached in the step-by-
step execution of the code (also called runtime
execution); we have to declare it before we can invoke it.

So essentially, the function declaration of
functionTwo () was hoisted while the function
expression of functionOne () was executed when line-
by-line execution encountered it.

NOTE

Both function declarations and variable declarations are hoisted but functions are hoisted
first, and then variables.

One thing to remember is that you should never use
function declarations conditionally. This behavior is non-
standardized and can behave differently across
platforms. The following example shows such a snippet
where we try to use function declarations conditionally.
We are trying to assign different function body to function
sayMoo() but such a conditional code is not guaranteed
to work across all browsers and can result in
unpredictable results:

// Never do this - different browsers will
behave differently
if (true) {
function sayMoo() {
return 'trueMoo';

}
}

else {
function sayMoo() {
return 'falseMoo';

}

}
foo();

However, it's perfectly safe and, in fact, smart to do the
same with function expressions:

var sayMoo;
if (true) {
sayMoo = function() {
return 'trueMoo';

I 7
}

else {
sayMoo = function() {
return 'falseMoo';

}i
}
foo();

If you are curious to know why you should not use
function declarations in conditional blocks, read on;
otherwise, you can skip the following paragraph.

Function declarations are allowed to appear only in the
program or function body. They cannot appear in a block
({ ... }).Blocks can only contain statements and not
function declarations. Due to this, almost all
implementations of JavaScript have behavior different
from this. It is always advisable to never use function
declarations in a conditional block.

Function expressions, on the other hand, are very
popular. A very common pattern among JavaScript
programmers is to fork function definitions based on
some kind of a condition. As such forks usually happen
in the same scope, it is almost always necessary to use
function expressions.

The arguments parameter is a collection of all the
arguments passed to the function. The collection has a
property named length that contains the count of
arguments, and the individual argument values can be
obtained using an array indexing notation. Okay, we lied
a bit. The arguments parameter is not a JavaScript
array, and if you try to use array methods on arguments,
you'll fail miserably. You can think of arguments as an
array-like structure. This makes it possible to write
functions that take an unspecified number of parameters.
The following snippet shows you how you can pass a
variable number of arguments to the function and iterate
through them using an arguments array:

var sum = function () {
var i, total = 0;
for (i = 0; 1 < arguments.length; i +=
1) {
total += arguments[i];

}

return total;
iy
console.log(sum(1,2,3,4,5,6,7,8,9)); //
prints 45
console.log(sum(1,2,3,4,5)); // prints 15

As we discussed, the arguments parameter is not really
an array; it is possible to convert it to an array as follows:

var args =

Array.prototype.slice.call(arguments);

Once converted to an array, you can manipulate the list
as you wish.

The this parameter

Whenever a function is invoked, in addition to the
parameters that represent the explicit arguments that
were provided on the function call, an implicit parameter
named this is also passed to the function. It refers to
an object that's implicitly associated with the function
invocation, termed as a function context. If you have
coded in Java, the this keyword will be familiar to you;
like Java, this points to an instance of the class in
which the method is defined.

Equipped with this knowledge, let's talk about various
invocation methods.

INVOCATION AS A FUNCTION

If a function is not invoked as a method, constructor, or
via apply() orcall(), it's simply invoked as a
function:

function add() {}
add();
var substract = function() {

I 7

substract();

When a function is invoked with this pattern, this is
bound to the global object. Many experts believe this to
be a bad design choice. It is natural to assume that this
would be bound to the parent context. When you are in a
situation such as this, you can capture the value of this
in another variable. We will focus on this pattern later.

INVOCATION AS A METHOD

A method is a function tied to a property on an object.
For methods, this is bound to the object on invocation:

var person = {
name: 'Albert Einstein’,
age: 66,
greet: function () {
console.log(this.name);

}
I 7

person.greet();

In this example, this is bound to the person object on
invoking greet because greet is a method of person.
Let's see how this behaves in both these invocation
patterns.

Let's prepare this HTML and JavaScript harness:

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>This test</title>
<script type="text/javascript">

function testF(){ return this; }
console.log(testF());
var testFCopy = testF;
console.log(testFCopy());
var testobj = {
testObjFunc: testF
};
console.log(testObj.testObjFunc ());
</script>
</head>
<body>
</body>
</html>

In the Firebug console, you can see the following
output:

% ¢))= comoler HIML CSS Script DOM Net Cookies

@ Cleer Perast Profile ﬂ Emors Wamings Into Uebugirte Gookies

Window raystest atml
Window ‘ristest. fitmi
Object { testObjFunciestF{) }

The first two method invocations were invocation as a
function; hence, the this parameter pointed to the
global context (Window, in this case).

Next, we define an object with a testObj variable with a
property named testObjFunc that receives a reference
to testF()—don't fret if you are not really aware of
object creation yet. By doing this, we created a
testObjMethod() method. Now, when we invoke this
method, we expect the function context to be displayed

when we display the value of this.

INVOCATION AS A CONSTRUCTOR

Constructor functions are declared just like any other
functions and there's nothing special about a function

that's going to be used as a constructor. However, the
way in which they are invoked is very different.

To invoke the function as a constructor, we precede the
function invocation with the new keyword. When this
happens, this is bound to the new object.

Before we discuss more, let's take a quick introduction to
object orientation in JavaScript. We will, of course,
discuss the topic in great detail in the next chapter.
JavaScript is a prototypal inheritance language. This
means that objects can inherit properties directly from
other objects. The language is class-free. Functions that
are designed to be called with the new prefix are called
constructors. Usually, they are named using
PascalCase as opposed to CamelCase for easier
distinction. In the following example, notice that the
greet function uses this to access the name property.
The this parameter is bound to Person:

var Person = function (name) {
this.name = name;

Iy

Person.prototype.greet = function () {
return this.name;

Iy

var albert = new Person('Albert

Einstein');
console.log(albert.greet());

We will discuss this particular invocation method when
we study objects in the next chapter.

INVOCATION USING APPLY() AND
CALL() METHODS

We said earlier that JavaScript functions are objects.
Like other objects, they also have certain methods. To
invoke a function using its apply () method, we pass
two parameters to apply(): the object to be used as
the function context and an array of values to be used as
the invocation arguments. The call() method is used
in a similar manner, except that the arguments are
passed directly in the argument list rather than as an
array.

We introduced you to anonymous functions a bit earlier
in this chapter, and as they're a crucial concept, we will
take a detailed look at them. For a language inspired by
Scheme, anonymous functions are an important logical
and structural construct.

Anonymous functions are typically used in cases where
the function doesn't need to have a name for later
reference. Let's look at some of the most popular usages
of anonymous functions.

Anonymous functions while
creating an object

An anonymous function can be assigned to an object
property. When we do that, we can call that function with
a dot (.) operator. If you are coming from a Java or other
OO language background, you will find this very familiar.
In such languages, a function, which is part of a class is
generally called with a notation—Class.function().
Let's consider the following example:

var santa = {
say :function(){
console.log("ho ho ho");

}
}

santa.say();

In this example, we are creating an object with a say
property, which is an anonymous function. In this
particular case, this property is known as a method and
not a function. We don't need to name this function
because we are going to invoke it as the object property.
This is a popular pattern and should come in handy.

Anonymous functions while
creating a list

Here, we are creating two anonymous functions and
adding them to an array. (We will take a detailed look at
arrays later.) Then, you loop through this array and
execute the functions in a loop:

<script type="text/javascript">
var things = [
function() { alert("ThingOne") 1},
function() { alert("ThingTwo") },

17

for(var x=0; x<things.length; x++) {
things[x]();

}

</script>

Anonymous functions as a
parameter to another function

This is one of the most popular patterns and you will find
such code in most professional libraries:

// function statement

function eventHandler (event){
event();

}

eventHandler (function(){
//do a lot of event related things
console.log("Event fired");

¥

You are passing the anonymous function to another
function. In the receiving function, you are executing the
function passed as a parameter. This can be very
convenient if you are creating single-use functions such
as object methods or event handlers. The anonymous
function syntax is more concise than declaring a function
and then doing something with it as two separate steps.

Anonymous functions in
conditional logic

You can use anonymous function expressions to
conditionally change behavior. The following example
shows this pattern:

var shape;
if(shape_name === "SQUARE") {
shape = function() {
return "drawing square";

}

}
else {

shape = function() {
return "drawing square";

}
}

alert(shape());

Here, based on a condition, we are assigning a different
implementation to the shape variable. This pattern can
be very useful if used with care. Overusing this can
result in unreadable and difficult-to-debug code.

Later in this book, we will look at several functional tricks
such as memoization and caching function calls. If you
have reached here by quickly reading through the entire
chapter, | would suggest that you stop for a while and
contemplate on what we have discussed so far. The last
few pages contain a ton of information and it will take
some time for all this information to sink in. | would
suggest that you reread this chapter before proceeding
further. The next section will focus on closures and the
module pattern.

Traditionally, closures have been a feature of purely
functional programming languages. JavaScript shows its
affinity with such functional programming languages by
considering closures integral to the core language
constructs. Closures are gaining popularity in
mainstream JavaScript libraries and advanced
production code because they let you simplify complex
operations. You will hear experienced JavaScript
programmers talking almost reverently about closures—
as if they are some magical construct far beyond the
reach of the intellect that common men possess.
However, this is not so. When you study this concept,
you will find closures to be very obvious, almost matter-
of-fact. Till you reach closure enlightenment, | suggest
you read and reread this chapter, research on the
Internet, write code, and read JavaScript libraries to
understand how closures behave—nbut do not give up.

The first realization that you must have is that closure is
everywhere in JavaScript. It is not a hidden special part
of the language.

Before we jump into the nitty-gritty, let's quickly refresh
the lexical scope in JavaScript. We discussed in great
detail how lexical scope is determined at the function
level in JavaScript. Lexical scope essentially determines
where and how all identifiers are declared and predicts

how they will be looked up during execution.

In a nutshell, closure is the scope created when a
function is declared that allows the function to access
and manipulate variables that are external to this
function. In other words, closures allow a function to
access all the variables, as well as other functions, that
are in scope when the function itself is declared.

Let's look at some example code to understand this
definition:

var outer = 'I am outer'; //Define a value

in global scope

function outerFn() { //Declare a a

function in global scope
console.log(outer);

}

outerFn(); //prints - I am outer

Were you expecting something shiny? No, this is really
the most ordinary case of a closure. We are declaring a
variable in the global scope and declaring a function in
the global scope. In the function, we are able to access
the variable declared in the global scope—outer. So
essentially, the outer scope for the outerFn () function
is a closure and always available to outerFn(). This is
a good start but perhaps then you are not sure why this
is such a great thing.

Let's make things a bit more complex:

var outer = 'Outer'; //Variable declared

in global scope

var copy;

function outerFn(){ //Function declared
in global scope

var inner = 'Inner'; //Variable has
function scope only, can not be
//accessed from outside

function innerFn(){ //Inner function
within Outer function,
//both global context and outer
//context are available hence can
access
//'outer' and 'inner'
console.log(outer);
console.log(inner);
}
copy=innerFn; //Store reference
to inner function,
//because 'copy' itself is declared
//in global context, it will be
available
//outside also
}
outerFn();
copy(); //Cant invoke innerFn() directly
but can invoke via a
//variable declared in global scope

Let's analyze the preceding example. In innerFn(), the
outer variable is available as it's part of the global
context. We're executing the inner function after the
outer function has been executed via copying a
reference to the function to a global reference variable,
copy. When innerFn() executes, the scope in
outerFn() is gone and not visible at the point at which
we're invoking the function through the copy variable. So

shouldn't the following line fail?

console.log(inner);

Should the inner variable be undefined? However, the
output of the preceding code snippet is as follows:

"Outer"
"Inner"

What phenomenon allows the inner variable to still be
available when we execute the inner function, long after
the scope in which it was created has gone away? When
we declared innerFn() in outerFn(), not only was
the function declaration defined, but a closure was also
created that encompasses not only the function
declaration, but also all the variables that are in scope at
the point of the declaration. When innerFn() executes,
even if it's executed after the scope in which it was
declared goes away, it has access to the original scope
in which it was declared through its closure.

Let's continue to expand this example to understand how
far you can go with closures:

var outer='outer';
var copy;
function outerFn() {
var inner='inner';
function innerFn(param){
console.log(outer);
console.log(inner);
console.log(param);

console.log(magic);

}

copy=innerFn;

3
console.log(magic); //ERROR: magic not

defined

var magic="Magic";
outerFn();
copy("copy");

In the preceding example, we have added a few more
things. First, we added a parameter to innerFn()—just
to illustrate that parameters are also part of the closure.
There are two important points that we want to highlight.

All variables in an outer scope are included even if they
are declared after the function is declared. This makes it
possible for the line, console.log(magic), in
innerFn(), to work.

However, the same line, console.log(magic), in the
global scope will fail because even within the same
scope, variables not yet defined cannot be referenced.

All these examples were intended to convey a few
concepts that govern how closures work. Closures are a
prominent feature in the JavaScript language and you
can see them in most libraries.

Let's look at some popular patterns around closures.

In implementing timers or callbacks, you need to call the
handler asynchronously, mostly at a later point in time.
Due to the asynchronous calls, we need to access
variables from outside the scope in such functions.
Consider the following example:

function delay(message) {
setTimeout(function timerFn(){
console.log(message);
}, 1000);

}
delay("Hello World");

We pass the inner timerFn() function to the built-in
library function, setTimeout (). However, timerFn()
has a scope closure over the scope of delay(), and
hence it can reference the variable message.

Closures are frequently used to encapsulate some
information as private variables. JavaScript does not
allow such encapsulation found in programming
languages such as Java or C++, but by using closures,
we can achieve similar encapsulation:

function privateTest(){
var points=0;
this.getPoints=function(){
return points;
iy
this.score=function(){
points++;

I 7

var private = new privateTest();
private.score();
console.log(private.points); // undefined
console.log(private.getPoints());

In the preceding example, we are creating a function that
we intend to call as a constructor. In this

privateTest () function, we are creating a var
points=0 variable as a function-scoped variable. This
variable is available only in privateTest ().
Additionally, we create an accessor function (also called
a getter)—getPoints()—this method allows us to
read the value of only the points variable from outside
privateTest (), making this variable private to the

function. However, another method, score(), allows us
to modify the value of the private point variable without
directly accessing it from outside. This makes it possible
for us to write code where a private variable is updated
in a controlled fashion. This pattern can be very useful
when you are writing libraries where you want to control
how variables are accessed based on a contract and
pre-established interface.

Consider the following example of using functions inside
loops:

for (var i=1; i<=5; i++) {
setTimeout(function delay()({
console.log(i);
}, 1*100);
}

This snippet should print 1, 2, 3, 4, and 5 on the console
at an interval of 100 ms, right? Instead, it prints 6, 6, 6,
6, and 6 at an interval of 100 ms. Why is this happening?
Here, we encounter a common issue with closures and
looping. The 1 variable is being updated after the
function is bound. This means that every bound function
handler will always print the last value stored in 1. In
fact, the timeout function callbacks are running after the
completion of the loop. This is such a common problem
that JSLint will warn you if you try to use functions this
way inside a loop.

How can we fix this behavior? We can introduce a
function scope and local copy of the 1 variable in that
scope. The following snippet shows you how we can do
this:

for (var i=1; i<=5; i++) {
(function(j){
setTimeout(function delay(){

console.log(j);
}, 1%100);
HDC1i);
}

We pass the i variable and copy it to the j variable local
to the IIFE. The introduction of an IIFE inside each
iteration creates a new scope for each iteration and
hence updates the local copy with the correct value.

Modules are used to mimic classes and focus on public
and private access to variables and functions. Modules
help in reducing the global scope pollution. Effective use
of modules can reduce name collisions across a large
code base. A typical format that this pattern takes is as
follows:

Var moduleName=function() {
//private state
//private functions
return {
//public state
//public variables

There are two requirements to implement this pattern in
the preceding format:

e There must be an outer enclosing function that needs to be executed
at least once

e This enclosing function must return at least one inner function. This is
necessary to create a closure over the private state—without this, you
can't access the private state at all.

Check the following example of a module:

var superModule = (function (){
var secret = 'supersecretkey';
var passcode = 'nuke';

FiinAatain~nn AA+CAanvAa+ /N T

LUlILLLUIl yTLoTuLITL) 1

console.log(secret);

}

function getPassCode() {
console.log(passcode);

}

return {
getSecret: getSecret,
getPassCode: getPassCode
iy
1O
superModule.getSecret();

superModule.getPassCode();

This example satisfies both the conditions. Firstly, we
create an IIFE or a named function to act as an outer
enclosure. The variables defined will remain private
because they are scoped in the function. We return the
public functions to make sure that we have a closure
over the private scope. Using IIFE in the module pattern
will actually result in a singleton instance of this function.
If you want to create multiple instances, you can create
named function expressions as part of the module as
well.

We will keep exploring various facets of functional
aspects of JavaScript and closures in particular. There
can be a lot of imaginative uses of such elegant
constructs. An effective way to understand various
patterns is to study the code of popular libraries and
practice writing these patterns in your code.

Stylistic considerations

As in the previous chapter, we will conclude this
discussion with certain stylistic considerations. Again,
these are generally accepted guidelines and not rules—
feel free to deviate from them if you have reason to
believe otherwise:

e Use function declarations instead of function expressions:

// bad
const foo = function () {

I 7

// good
function foo() {

}

e Never declare a function in a non-function block (if, while, and so on).
Assign the function to a variable instead. Browsers allow you to do it,
but they all interpret it differently.

e Never name a parameter arguments. This will take precedence over
the arguments object that is given to every function scope.

In this chapter, we studied JavaScript functions. In
JavaScript, functions play a critical role. We discussed
how functions are created and used. We also discussed
important ideas of closures and the scope of variables in
terms of functions. We discussed functions as a way to
create visibility classes and encapsulation.

In the next chapter, we will look at various data
structures and data manipulation techniques in
JavaScript.

Chapter 3. Data Structures
and Manipulation

Most of the time that you spend in programming, you do
something to manipulate data. You process properties of
data, derive conclusions based on the data, and change
the nature of the data. In this chapter, we will take an
exhaustive look at various data structures and data
manipulation techniques in JavaScript. With the correct
usage of these expressive constructs, your programs will
be correct, concise, easy to read, and most probably
faster. This will be explained with the help of the
following topics:

e Regular expressions

e Exact match

e Match from a class of characters
e Repeated occurrences

e Beginning and end

e Backreferences

e Greedy and lazy quantifiers

e Arrays

e Maps

e Sets

e A matter of style

If you are not familiar with regular expressions, | request
you to spend time learning them. Learning and using
regular expressions effectively is one of the most
rewarding skills that you will gain. During most of the
code review sessions, the first thing that | comment on is
how a piece of code can be converted to a single line of
regular expression (or RegEXx). If you study popular
JavaScript libraries, you will be surprised to see how
ubiquitous RegEx are. Most seasoned engineers rely on
RegEXx primarily because once you know how to use
them, they are concise and easy to test. However,
learning RegEx will take a significant amount of effort
and time. A regular expression is a way to express a
pattern to match strings of text. The expression itself
consists of terms and operators that allow us to define
these patterns. We'll see what these terms and operators
consist of shortly.

In JavaScript, there are two ways to create a regular
expression: via a regular expression literal and
constructing an instance of a RegExp object.

For example, if we wanted to create a RegEx that
matches the string test exactly, we could use the
following RegEXx literal:

var pattern = test;

RegEXx literals are delimited using forward slashes.
Alternatively, we could construct a RegExp instance,
passing the RegEx as a string:

var pattern = new RegExp("test");

Both of these formats result in the same RegEXx being
created in the variable pattern. In addition to the
expression itself, there are three flags that can be
associated with a RegEXx:

e 1i: This makes the RegEx case-insensitive, so testi matches not
only test, but also Test, TEST, tEsT, and so on.

e g: This matches all the instances of the pattern as opposed to the
default of local, which matches the first occurrence only. More on this
later.

e m: This allows matches across multiple lines that might be obtained
from the value of a textarea element.

These flags are appended to the end of the literal (for
example, testig) or passed in a string as the second
parameter to the RegExp constructor (new
RegExp("test", "ig")).

The following example illustrates the various flags and
how they affect the pattern match:

var pattern = orange;
console.log(pattern.test("orange")); //
true

var patternIgnoreCase = orangei;
console.log(patternIgnoreCase.test("Orange
"Y); // true

var patternGlobal = orangeig;
console.log(patternGlobal.test("Orange
Juice")); // true

It isn't very exciting if we can just test whether the pattern
matches a string. Let's see how we can express more
complex patterns.

Any sequence of characters that's not a special RegEx
character or operator represents a character literal:

var pattern = orange;

We mean o followed by r followed by a followed by n
followed by ...—you get the point. We rarely use exact
match when using RegEx because that is the same as
comparing two strings. Exact match patterns are
sometimes called simple patterns.

If you want to match against a set of characters, you can
place the set inside []. For example, [abc] would
mean any character a, b, or c:

var pattern = [abc];
console.log(pattern.test('a')); //true
console.log(pattern.test('d')); //false

You can specify that you want to match anything but the
pattern by adding a » (caret sign) at the beginning of the
pattern:

var pattern = [ANabc];
console.log(pattern.test('a')); //false
console.log(pattern.test('d')); //true

One critical variation of this pattern is a range of values.
If we want to match against a sequential range of
characters or numbers, we can use the following pattern:

var pattern = [0-5];
console.log(pattern.test(3)); //true
console.log(pattern.test(12345)); //true
console.log(pattern.test(9)); //false
console.log(pattern.test(6789)); //false
console.log(/[0123456789]/.test("This is
year 2015")); //true

Special characters such as $ and period (.) characters
either represent matches to something other than
themselves or operators that qualify the preceding term.
In fact, we've already seen how [,], -, and /A characters
are used to represent something other than their literal
values.

How do we specify that we want to match a literal [or $
or A or some other special character? Within a RegEX,
the backslash character escapes whatever character
follows it, making it a literal match term. So \[specifies
a literal match to the [character rather than the opening
of a character class expression. A double backslash (\\)
matches a single backslash.

In the preceding examples, we saw the test () method
that returns true or false based on the pattern matched.
There are times when you want to access occurrences
of a particular pattern. The exec() method comes in
handy in such situations.

The exec () method takes a string as an argument and
returns an array containing all matches. Consider the
following example:

var strToMatch = 'A Toyota! Race fast,
safe car! A Toyota!';

var regeExAt = Toy;

var arrMatches = regExAt.exec(strToMatch);
console.log(arrMatches);

The output of this snippet would be ['Toy']; if you want

all the instances of the pattern Toy, you can use the g
(global) flag as follows:

var strToMatch = 'A Toyota! Race fast,
safe car! A Toyota!';

var regExAt = Toyg;

var arrMatches = regExAt.exec(strToMatch);
console.log(arrMatches);

This will return all the occurrences of the word oyo from
the original text. The String object contains the match ()
method that has similar functionality of the exec ()
method. The match() method is called on a String
object and the RegEx is passed to it as a parameter.
Consider the following example:

var strToMatch = 'A Toyota! Race fast,
safe car! A Toyota!';

var regeExAt = Toy;

var arrMatches =
strToMatch.match(regExAt);
console.log(arrMatches);

In this example, we are calling the match () method on
the String object. We pass the RegEx as a parameter to
the match() method. The results are the same in both

these cases.

The other String object method is replace(). It
replaces all the occurrences of a substring with a
different string:

var strToMatch = 'Blue is your favorite

color ?';

var regExAt = Blue;
console.log(strToMatch.replace(regExAt,
"Red"));

//0utput- "Red is your favorite color ?"

It is possible to pass a function as a second parameter of
the replace() method. The replace() function takes
the matching text as a parameter and returns the text
that is used as a replacement:

var strToMatch = 'Blue is your favorite
color ?';
var regExAt = Blue;
console.log(strToMatch.replace(regExAt,
function(matchingText){

return 'Red';

1))

//0utput- "Red is your favorite color ?"

The String object's split () method also takes a RegEXx
parameter and returns an array containing all the
substrings generated after splitting the original string:

var sColor = 'sun,moon,stars';

var reComma = \, ;
console.log(sColor.split(reComma));
//0utput - ["sun", "moon", "stars"]

We need to add a backslash before the comma because
a comma is treated specially in RegEx and we need to
escape it if we want to use it literally.

Using simple character classes, you can match multiple
patterns. For example, if you want to match cat, bat,

and fat, the following snippet shows you how to use
simple character classes:

var strToMatch = 'wooden bat, smelly Cat,a
fat cat';

var re = [bcf]atgi;

var arrMatches = strToMatch.match(re);
console.log(arrMatches);

//["bat", "Cat", "fat", "cat"]

As you can see, this variation opens up possibilities to
write concise RegEx patterns. Take the following
example:

var strToMatch =
'i1,i2,i3,i4,1i5,1i6,17,18,19";

var re = 1i[0-5]gi;

var arrMatches = strToMatch.match(re);
console.log(arrMatches);

//["ix", "i2", "i3", "i4", "ibB"]

In this example, we are matching the numeric part of the
matching string with a range [0-5], hence we get a
match from 10 to 15. You can also use the negation
class A to filter the rest of the matches:

var strToMatch =
'i1,i2,i3,i4,1i5,1i6,17,18,19";

var re = i[70-5]gi;

var arrMatches = strToMatch.match(re);
console.log(arrMatches);

//["ie", "ir", "ig8", "i9"]

Observe how we are negating only the range clause and
not the entire expression.

Several character groups have shortcut notations. For
example, the shortcut \d means the same thing as [0-
9]:

Notation |Meaning
\d Any digit character
\w An alphanumeric character (word character)
\s Any whitespace character (space, tab, newline, and similar)
\D A character that is not a digit
\W A non-alphanumeric character
\S A non-whitespace character
Any character except for newline

These shortcuts are valuable in writing concise RegEX.
Consider this example:

var strToMatch = '123-456-7890"';

var re = [0-9][0-9][0-9]-[0-9][06-9][0-9],;
var arrMatches = strToMatch.match(re);
console.log(arrMatches);

//["123-456"]

This expression definitely looks a bit strange. We can
replace [0-9] with \d and make this a bit more
readable:

var strToMatch = '123-456-7890"';

var re = \d\d\d-\d\d\d;

var arrMatches = strToMatch.match(re);
console.log(arrMatches);

//["123-456"]

However, you will soon see that there are even better
ways to do something like this.

So far, we saw how we can match fixed characters or
numeric patterns. Most often, you want to handle certain
repetitive natures of patterns also. For example, if | want
to match 4 as, | can write aaaa, but what if | want to
specify a pattern that can match any number of as?

Regular expressions provide you with a wide variety of
repetition quantifiers. Repetition quantifiers let us specify
how many times a particular pattern can occur. We can
specify fixed values (characters should appear n times)
and variable values (characters can appear at least n
times till they appear m times). The following table lists
the various repetition quantifiers:

?: Either 0 or 1 occurrence (marks the occurrence as optional)

*: 0 or more occurrences

e +:1 or more occurrences

{n}: Exactly n occurrences

{n, m}: Occurrences between n and m

{n, }: At least an n occurrence

{, n}: 0to n occurrences

In the following example, we create a pattern where the
character u is optional (has 0 or 1 occurrence):

var str = behaviou?r;
console.log(str.test("behaviour"));

// true
console.log(str.test("behavior"));
// true

It helps to read the behaviou?r expressionas O or 1
occurrences of character u. The repetition quantifier
succeeds the character that we want to repeat. Let's try
out some more examples:

console.log(/'\d+'.test("'123'")),; / true

You should read and interpret the \d+ expression as ' is
a literal character match, \d matches characters [0-9],
the + quantifier will allow one or more occurrences, and

' is a literal character match.

You can also group character expressions using ().
Observe the following example:

var heartylLaugh = Ha+(Ha+)+i;
console.log(heartyLaugh.test("HaHaHaHaHaHa
Haaaaaaaaaaa"));

//true

Let's break the preceding expression into smaller chunks
to understand what is going on in here:

H: literal character match

e a+: 1 or more occurrences of character a

(: start of the expression group

H: literal character match

e a+: 1 or more occurrences of character a

e): end of expression group

e +: 1 or more occurrences of expression group (Ha+)

Now it is easier to see how the grouping is done. If we
have to interpret the expression, it is sometimes helpful
to read out the expression, as shown in the preceding
example.

Often, you want to match a sequence of letters or
numbers on their own and not just as a substring. This is
a fairly common use case when you are matching words
that are not just part of any other words. We can specify
the word boundaries by using the \b pattern. The word
boundary with \b matches the position where one side is
a word character (letter, digit, or underscore) and the
other side is not. Consider the following examples.

The following is a simple literal match. This match will
also be successful if cat is part of a substring:

console.log(/cat/.test('a black cat'));
//true

However, in the following example, we define a word
boundary by indicating \b before the word cat—this
means that we want to match only if cat is a word and
not a substring. The boundary is established before cat,
and hence a match is found on the text, a black cat:

console.log(/\bcat/.test('a black cat'));
//true

When we use the same boundary with the word tomcat,
we get a failed match because there is no word
boundary before cat in the word tomcat:

console.log(/\bcat/.test('tomcat'));
//false

There is a word boundary after the string cat in the word
tomcat, hence the following is a successful match:

console.log(/cat\b/.test('tomcat'));
//true

In the following example, we define the word boundary
before and after the word cat to indicate that we want
cat to be a standalone word with boundaries before and
after:

console.log(/\bcat\b/.test('a black
cat')),; //true

Based on the same logic, the following match fails
because there are no boundaries before and after cat in
the word concatenate:

console.log(/\bcat\b/.test("concatenate"))
; //false

The exec () method is useful in getting information
about the match found because it returns an object with
information about the match. The object returned from
exec() has an index property that tells us where the

successful match begins in the string. This is useful in
many ways:

var match = \d+.exec("There are 100 ways
to do this");

console.log(match);

// ["100"]

console.log(match.index);

// 10

Alternatives - OR

Alternatives can be expressed using the | (pipe)
character. For example, a | b matches either the a or b
character, and (ab)+| (cd)+ matches one or more
occurrences of either ab or cd.

Frequently, we may wish to ensure that a pattern
matches at the beginning of a string or perhaps at the
end of a string. The caret character, when used as the
first character of the RegEXx, anchors the match at the
beginning of the string such that Atest matches only if
the test substring appears at the beginning of the string
being matched. Similarly, the dollar sign ($) signifies that
the pattern must appear at the end of the string: test$.

Using both A and $ indicates that the specified pattern
must encompass the entire candidate string: "test$.

After an expression is evaluated, each group is stored
for later use. These values are known as
backreferences. Backreferences are created and
numbered by the order in which opening parenthesis
characters are encountered going from left to right. You
can think of backreferences as the portions of a string
that are successfully matched against terms in the
regular expression.

The notation for a backreference is a backslash followed
by the number of the capture to be referenced, beginning
with 1, such as \1, \2, and so on.

An example could be /A ([XYZ])a\1/, which matches
a string that starts with any of the X, Y, or Z characters
followed by an a and followed by whatever character
matched the first capture. This is very different from
[XYZ] a[XYZ]. The character following a can't be any
of X, or Y, or Z, but must be whichever one of those that
triggered the match for the first character.
Backreferences are used with String's replace()
method using the special character sequences, $1, $2,
and so on. Suppose that you want to change the 1234
5678 string to 5678 1234. The following code
accomplishes this:

var orig = "1234 5678";

var re = (\d{4}) (\d{4});

var modifiedStr = orig.replace(re, "$2
$1");

console.log(modifiedStr); //outputs "5678
1234"

In this example, the regular expression has two groups
each with four digits. In the second argument of the
replace() method, $2 is equal to 5678 and $1 is
equal to 1234, corresponding to the order in which they
appear in the expression.

All the quantifiers that we discussed so far are greedy. A
greedy quantifier starts looking at the entire string for a
match. If there are no matches, it removes the last
character in the string and reattempts the match. If a
match is not found again, the last character is again
removed and the process is repeated until a match is
found or the string is left with no characters.

The \d+ pattern, for example, will match one or more
digits. For example, if your string is 123, a greedy match
would match 1, 12, and 123. Greedy pattern h.+1 would
match hell in a string hello—which is the longest
possible string match. As \d+ is greedy, it will match as
many digits as possible and hence the match would be
123.

In contrast to greedy quantifiers, a lazy quantifier
matches as few of the quantified tokens as possible. You
can add a question mark (?) to the regular expression to
make it lazy. A lazy pattern h.?1 would match hel in
the string hello—which is the shortest possible string.

The \w*?X pattern will match zero or more words and
then match an X. However, a question mark after *
indicates that as few characters as possible should be
matched. For an abcXXX string, the match can be abcX,
abcXX, or abecXXX. Which one should be matched? As

*? is lazy, as few characters as possible are matched
and hence the match is abcX.

With this necessary information, let's try to solve some
common problems using regular expressions.

Removing extra white space from the beginning and end
of a string is a very common use case. As a String object
did not have the trim() method until recently, several
JavaScript libraries provide and use an implementation
of string trimming for older browsers that don't have the
String.trim() method. The most commonly used
approach looks something like the following code:

function trim(str) {

return (str || "").replace(/A\s+|\s+$/g,
Illl);
}
console.log("--"+trim(" test 1D Wi
")
//"--test--"

What if we want to replace repeated whitespaces with a
single whitespace?

re=/\s+/q;

console.log('There are a lot of
spaces'.replace(re,"' "));

//"There are a lot of spaces"

In the preceding snippet, we are trying to match one or
more space character sequences and replacing them
with a single space.

As you can see, regular expressions can prove to be a
Swiss army knife in your JavaScript arsenal. Careful
study and practice will be extremely rewarding for you in
the long run.

An array is an ordered set of values. You can refer to the
array elements with a name and index. These are the
three ways to create arrays in JavaScript:

var arr = new Array(1,2,3);
var arr = Array(1,2,3);
var arr [1,2,3];

When these values are specified, the array is initialized
with them as the array's elements. An array's length
property is equal to the number of arguments. The
bracket syntax is called an array literal. It's a shorter and
preferred way to initialize arrays.

You have to use the array literal syntax if you want to
initialize an array with a single element and the element
happens to be a number. If you pass a single number
value to the Array () constructor or function, JavaScript
considers this parameter as the length of the array, not
as a single element:

var arr = [10];

var arr = Array(10); // Creates an array
with no element, but with arr.length set
to 10

// The above code is equivalent to

var arr = [];

arr.length = 10;

JavaScript does not have an explicit array data type.
However, you can use the predefined Array object and
its methods to work with arrays in your applications. The
Array object has methods to manipulate arrays in
various ways, such as joining, reversing, and sorting
them. It has a property to determine the array length and
other properties for use with regular expressions.

You can populate an array by assigning values to its
elements:

var days = [];
days[0] = "Sunday";
days[1] = "Monday";

You can also populate an array when you create it:

var arr_generic = new Array("A String",
myCustomvalue, 3.14);
var fruits = ["Mango", "Apple", "Orange"]

In most languages, the elements of an array are all
required to be of the same type. JavaScript allows an
array to contain any type of values:

var arr = [

'string', 42.0, true, false, null,
undefined,

['sub', 'array'], {object: true}, NaN
17

You can refer to elements of an Array using the
element's index number. For example, suppose you

define the following array:

var days = ["Sunday", "Monday", "Tuesday"]

You then refer to the first element of the array as
colors[0] and the second element of the array as
colors[1]. The index of the elements starts with 0.

JavaScript internally stores array elements as standard
object properties, using the array index as the property
name. The length property is different. The length
property always returns the index of the last element
plus one. As we discussed, JavaScript array indexes are
0-based: they start at 0, not 1. This means that the
length property will be one more than the highest index
stored in the array:

var colors [1;
colors[30] ['Green'];
console.log(colors.length); // 31

You can also assign to the 1ength property. Writing a
value that is shorter than the number of stored items
truncates the array; writing © empties it entirely:

var colors = ['Red', 'Blue', 'Yellow'];
console.log(colors.length); // 3
colors.length = 2;

console.log(colors); // ["Red","Blue"] -
Yellow has been removed

colors.length = 0;

console.log(colors); // [] the colors
array is empty

colors.length = 3;

console.log(colors); // [undefined,
undefined, undefined]

If you query a non-existent array index, you get
undefined.

A common operation is to iterate over the values of an
array, processing each one in some way. The simplest
way to do this is as follows:

var colors = ['red', 'green', 'blue'];
for (var i = 0; 1 < colors.length; i++) {
console.log(colors[i]);

}

The forEach () method provides another way of
iterating over an array:

var colors = ['red', 'green', 'blue'];
colors.forEach(function(color) {
console.log(color);

¥

The function passed to forEach() is executed once for
every item in the array, with the array item passed as the
argument to the function. Unassigned values are not
iterated in a forEach () loop.

The Array object has a bunch of useful methods. These
methods allow the manipulation of the data stored in the
array.

The concat () method joins two arrays and returns a

new array.

var myArray = new Array("33", "44", "55");
myArray = myArray.concat("3", "2", "1");
console.log(myArray);

// [||33H, H44||, H55||, ||3||, ||2||, "1"]

The join() method joins all the elements of an array
into a string. This can be useful while processing a list.
The default delimiter is a comma (,):

var myArray = new
Array('Red', 'Blue', 'Yellow');
var list = myArray.join(" ");
console.log(list),

//"Red Blue ~ Yellow"

The pop () method removes the last element from an
array and returns that element. This is analogous to the
pop () method of a stack:

var myArray = new Array("1", "2", "3"),
var last = myArray.pop();
// myArray = ["1", "2"], last = "3"

The push() method adds one or more elements to the
end of an array and returns the resulting length of the
array:

var myArray = new Array("1", "2");
myArray.push("3");
// myArray = ["1", ||2||, ||3||]

The shift () method removes the first element from an

array and returns that element:

var myArray = new Array ("1", "2", "3"),
var first = myArray.shift();
// myArray = ["2", "3"], first = "1"

The unshift () method adds one or more elements to
the front of an array and returns the new length of the
array:

var myArray = new Array ("1", "2", "3");
myArray.unshift("4", "5");
// myArray = [||4||, ||5||, ||1||, ||2||, ||3||]

The reverse() method reverses or transposes the
elements of an array—the first array element becomes
the last and the last becomes the first:

var myArray = new Array ("1", "2", "3"),
myArray.reverse();

// transposes the array so that myArray =
[||3||, ||2||, ||1||]

The sort () method sorts the elements of an array:

var myArray = new Array("A", "C", "B"),
myArray.sort();

// sorts the array so that myArray = [
HAH,HBH,HCH]

The sort () method can optionally take a callback
function to define how the elements are compared. The
function compares two values and returns one of three
values. Let us study the following functions:

e indexO0f(searchElement[, fromIndex]): This searches the
array for searchElement and returns the index of the first match:

var a = ['a', 'b', 'a', 'b',
'a','c','a'];
console.log(a.index0f('b')); // 1

// Now try again, starting from after
the last match
console.log(a.index0f('b', 2)); // 3
console.log(a.index0f('1')); // -1,
'q"' is not found

e lastIndexOf(searchElement[, fromIndex]): This works like
indexO0f (), but only searches backwards

var a = ['a', 'b', 'c¢', 'd', 'a',
'b'];
console.log(a.lastIndexO0f('b"')); // 5
// Now try again, starting from before
the last match
console.log(a.lastIndexOf('b', 4)),; //
1
console.log(a.lastIndex0f('z")); //
-1

Now that we have covered JavaScript arrays in depth, let
me introduce you to a fantastic library called
Underscore.js (http://underscorejs.org/). Underscore.js
provides a bunch of exceptionally useful functional
programming helpers to make your code even more
clear and functional.

We will assume that you are familiar with Node.js; in this
case, install Underscore.js via npm:

npm install underscore

http://underscorejs.org/

As we are installing Underscore as a Node module, we
will test all the examples by typing them in a . js file and
running the file on Node.js. You can install Underscore
using Bower also.

Like jQuery's $ module, Underscore comes with a __
module defined. You will call all functions using this
module reference.

Type the following code in a text file and name it
test_.js:

var _ = require('underscore');
function print(n){
console.log(n);

}
_.each([1, 2, 3], print);
//prints 1 2 3

This can be written as follows, without using each ()
function from underscore library:

var myArray = [1,2,3];

var arrayLength = myArray.length;

for (var i = 0; 1 < arrayLength; i++) {
console.log(myArray[i]);

}

What you see here is a powerful functional construct that
makes the code much more elegant and concise. You
can clearly see that the traditional approach is verbose.
Many languages such as Java suffer from this verbosity.
They are slowly embracing functional paradigms. As

JavaScript programmers, it is important for us to
incorporate these ideas into our code as much as
possible.

The each () function we saw in the preceding example
iterates over a list of elements, yielding each to an
iteratee function in turn. Each invocation of iteratee is
called with three arguments (element, index, and list). In
the preceding example, the each () function iterates
over the array [1, 2, 3], and for each element in the
array, the print function is called with the array
element as the parameter. This is a convenient
alternative to the traditional looping mechanism to
access all the elements in an array.

The range() function creates lists of integers. The start
value, if omitted, defaults to @ and step defaults to 1. If
you'd like a negative range, use a negative step:

var = require('underscore');
console.log(.range(10));

// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
console.log(_.range(1, 11));

//[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
console.log(_.range(0, 30, 5));

//[©, 5, 10, 15, 20, 25]
console.log(_.range(0, -10, -1)),;
//[©, -1, -2, -3, -4, -5, -6, -7, -8, -9
]

console.log(_.range(0));

//1]

By default, range () populates the array with integers,
but with a little trick, you can populate other data types

also:

console.log(_.range(3).map(function () {
return 'a' }));
['a', 'a', Ial]

This is a fast and convenient way to create and initialize
an array with values. We frequently do this by traditional
loops.

The map() function produces a new array of values by
mapping each value in the list through a transformation
function. Consider the following example:

var _ = require('underscore');
console.log(_.map([1, 2, 3], function(num)
{ return num * 3; }));

//[3,6,9]

The reduce() function reduces a list of values to a
single value. The initial state is passed by the iteratee
function and each successive step is returned by the
iteratee. The following example shows the usage:

var = require('underscore');

var sum = .reduce([1, 2, 3],
function(memo,

num){console.log(memo, num);return memo +
num; }, 0);

console.log(sum);

In this example, the line, console.log(memo, num) ;,
Is just to make the idea clear. The output will be as
follows:

The final output is a sum of 1+2+3=6. As you can see,
two values are passed to the iteratee function. On the
first iteration, we call the iteratee function with two values
(0, 1)—the value of the memo is defaulted in the call to
the reduce() function and 1 is the first element of the
list. In the function, we sum memo and num and return the
intermediate sum, which will be used by the iterate()
function as a memo parameter—eventually, the memo will
have the accumulated sum. This concept is important to
understand how the intermediate states are used to
calculate eventual results.

The filter () function iterates through the entire list
and returns an array of all the elements that pass the
condition. Take a look at the following example:

var = require('underscore');
var evens = .filter([1, 2, 3, 4, 5, 6],
function(num){ return num % 2 == 0; }),;

console.log(evens);

The filter () function's iteratee function should return
a truth value. The resulting evens array contains all the
elements that satisfy the truth test.

The opposite of the filter () functionis reject(). As
the name suggests, it iterates through the list and

ignores elements that satisfy the truth test:

var = require('underscore');

var odds = .reject([1, 2, 3, 4, 5, 6],
function(num){ return num % 2 == 0; }),;
console.log(odds);

//[1, 3, 5]

We are using the same code as the previous example
but using the reject () method instead of filter()—
the result is exactly the opposite.

The contains() function is a useful little function that
returns true if the value is present in the list; otherwise,
returns false:

var = require('underscore');
console.log(.contains([1, 2, 3], 3));
//true

One very useful function that | have grown fond of is
invoke(). It calls a specific function on each element in
the list. | can't tell you how many times | have used it
since | stumbled upon it. Let us study the following
example:

var = require('underscore');
console.log(.invoke([[5, 1, 7], [3, 2,
11], 'sort'));

//[[1,5, 77, [1, 2, 3]]

In this example, the sort () method of the Array object
is called for each element in the array. Note that this

would fail:

var = require('underscore');
console.log(.invoke(["new", "o0ld",6 "cat"],
'sort'));

//[undefined, undefined, undefined]

This is because the sort method is not part of the String
object. This, however, would work perfectly:

var = require('underscore');
console.log(.invoke(["new", "o0ld",6 "cat"],
'toUpperCase'));

//['"NEW', 'OLD', 'CAT']

This is because toUpperCase() is a String object
method and all elements of the list are of the String type.

The uniq() function returns the array after removing all
duplicates from the original one:

var = require('underscore');

var unigArray = .uniq([1,1,2,2,3]);
console.log(unigArray);

//[1,2,3]

The partition() function splits the array into two; one
whose elements satisfy the predicate and the other
whose elements don't satisfy the predicate:

var = require('underscore');
function isodd(n){
return n%2==0,
}
console.log(.partition([0®, 1, 2, 3, 4, 5],

is0dd));
/7o, 2 41, [1, 3, 5]]

The compact () function returns a copy of the array
without all falsy values (false, null, 0, ", undefined, and
NaN):

console.log(_.compact([0, 1, false, 2, '',

31));

This snippet will remove all falsy values and return a new
array with elements [1, 2, 3]—this is a helpful method
to eliminate any value from a list that can cause runtime
exceptions.

The without () function returns a copy of the array with
all instances of the specific values removed:

var = require('underscore');
console.log(.without([2,2,3,4,5,6,7,8,9,0,
1,2,0,0,1,1],0,1,2));

//[3, 4, 5, 6, 7, 8, 9]

ECMAScript 6 introduces maps. A map is a simple key-
value map and can iterate its elements in the order of
their insertion. The following snippet shows some
methods of the Map type and their usage:

var founders = new Map();
founders.set("facebook", "mark");
founders.set("google", "larry");
founders.size; // 2
founders.get("twitter"); // undefined
founders.has("yahoo"); // false

for (var [key, value] of founders) {
console.log(key + " founded by " +

value);

}

// "facebook founded by mark"

// "google founded by larry"

ECMAScript 6 introduces sets. Sets are collections of
values and can be iterated in the order of the insertion of
their elements. An important characteristic about sets is
that a value can occur only once in a set.

The following snippet shows some basic operations on
sets:

var mySet = new Set();
mySet.add(1);
mySet.add("Howdy");
mySet.add("foo");

mySet.has(1); // true
mySet.delete("foo");
mySet.size; // 2

for (let item of mySet) console.log(item);
// 1
// "Howdy"

We discussed briefly that JavaScript arrays are not really
arrays in a traditional sense. In JavaScript, arrays are
objects that have the following characteristics:

e The length property

e The functions that inherit from Array.prototype (we will discuss
this in the next chapter)

e Special handling for keys that are numeric keys

When we write an array index as numbers, they get

converted to strings—arr [0] internally becomes
arr["0"]. Due to this, there are a few things that we
need to be aware of when we use JavaScript arrays:

e Accessing array elements by an index is not a constant time operation
as itisin, say, C. As arrays are actually key-value maps, the access
will depend on the layout of the map and other factors (collisions and
others).

e JavaScript arrays are sparse (most of the elements have the default
value), which means that the array can have gaps in it. To understand
this, look at the following snippet:

var testArr=new Array(3);
console.log(testArr);

You will see the output as [undefined, undefined,
undefined]—undefined is the default value stored on the array
element.

Consider the following example:

var testArr=[];

testArr[3] = 10;

testArr[10] = 3;

console.log(testArr);

// [undefined, undefined, undefined, 10,
undefined, undefined, undefined,
undefined, undefined, undefined, 3]

You can see that there are gaps in this array. Only two
elements have elements and the rest are gaps with the
default value. Knowing this helps you in a couple of
things. Using the for. . .1in loop to iterate an array can
result in unexpected results. Consider the following
example:

\viar a — 1>

var a —]|y

a[5] = 5;

for (var i=0; i<a.length; i++) {
console.log(a[i]);

}

// Iterates over numeric indexes from 0 to

5

//

[undefined, undefined, undefined, undefined, u

ndefined, 5]

for (var x in a) {
console.log(x);
}
// Shows only the explicitly set index of
"5", and ignores 0-4

Like the previous chapters, we will spend some time
discussing the style considerations while creating arrays.

e Use the literal syntax for array creation:

// bad
const items = new Array();
// good

const items

[1;

e Use Array#push instead of a direct assignment to add items to an
array:

const stack = [];

// bad

stack[stack.length] = 'pushme';
// good

stack.push('pushme');

As JavaScript matures as a language, its tool chain also
becomes more robust and effective. It is rare to see
seasoned programmers staying away from libraries such
as Underscore.js. As we see more advanced topics, we
will continue to explore more such versatile libraries that
can make your code compact, more readable, and
performant. We looked at regular expressions—they are
first-class objects in JavaScript. Once you start
understanding RegExp, you will soon find yourself using
more of them to make your code concise. In the next
chapter, we will look at JavaScript Object notation and
how JavaScript prototypal inheritance is a new way of
looking at object-oriented programming.

Chapter 4. Object-Oriented
JavaScript

JavaScript's most fundamental data type is the Object
data type. JavaScript objects can be seen as mutable
key-value-based collections. In JavaScript, arrays,
functions, and RegExp are objects while numbers,
strings, and Booleans are object-like constructs that are
immutable but have methods. In this chapter, you will
learn the following topics:

e Understanding objects
e Instance properties versus prototype properties
e |nheritance

e Getters and setters

Before we start looking at how JavaScript treats objects,
we should spend some time on an object-oriented
paradigm. Like most programming paradigms, object-
oriented programming (OOP) also emerged from the
need to manage complexity. The main idea is to divide
the entire system into smaller pieces that are isolated
from each other. If these small pieces can hide as many
implementation details as possible, they become easy to
use. A classic car analogy will help you understand this
very important point about OOP.

When you drive a car, you operate on the interface—the
steering, clutch, brake, and accelerator. Your view of
using the car is limited by this interface, which makes it
possible for us to drive the car. This interface is
essentially hiding all the complex systems that really
drive the car, such as the internal functioning of its
engine, its electronic system, and so on. As a driver, you
don't bother about these complexities. A similar idea is
the primary driver of OOP. An object hides the
complexities of how to implement a particular
functionality and exposes a limited interface to the
outside world. All other systems can use this interface
without really bothering about the internal complexity that
is hidden from view. Additionally, an object usually hides
its internal state from other objects and prevents its
direct modification. This is an important aspect of OOP.

In a large system where a lot of objects call other
objects' interfaces, things can go really bad if you allow
them to modify the internal state of such objects. OOP
operates on the idea that the state of an object is
inherently hidden from the outside world and it can be
changed only via controlled interface operations.

OOP was an important idea and a definite step forward
from the traditional structured programming. However,
many feel that OOP is overdone. Most OOP systems
define complex and unnecessary class and type
hierarchies. Another big drawback was that in the pursuit
of hiding the state, OOP considered the object state
almost immaterial. Though hugely popular, OOP was

clearly flawed in many areas. Still, OOP did have some
very good ideas, especially hiding the complexity and
exposing only the interface to the outside world.
JavaScript picked up a few good ideas and built its
object model around them. Luckily, this makes
JavaScript objects very versatile. In their seminal work,
Design Patterns: Elements of Reusable Object-Oriented
Software, the Gang of Four gave two fundamental
principles of a better object-oriented design:

e Program to an interface and not to an implementation

e Object composition over class inheritance

These two ideas are really against how classical OOP
operates. The classical style of inheritance operates on
inheritance that exposes parent classes to all child
classes. Classical inheritance tightly couples children to
its parents. There are mechanisms in classical
inheritance to solve this problem to a certain extent. If
you are using classical inheritance in a language such as
Java, it is generally advisable to program to an interface,
not an implementation. In Java, you can write a
decoupled code using interfaces:

//programming to an interface 'List' and
not implementation 'ArraylList'
List thelList = new ArraylList();

Instead of programming to an implementation, you can
perform the following:

ArraylList theList = new ArraylList();

How does programming to an interface help? When you
program to the List interface, you can call methods
only available to the List interface and nothing specific
to ArrayList can be called. Programming to an
interface gives you the liberty to change your code and
use any other specific child of the List interface. For
example, | can change my implementation and use
LinkedList instead of ArrayList. You can change
your variable to use LinkedList instead:

List thelList = new LinkedList();

The beauty of this approach is that if you are using the
List at 100 places in your program, you don't have to
worry about changing the implementation at all these
places. As you were programming to the interface and
not to the implementation, you were able to write a
loosely coupled code. This is an important principle
when you are using classical inheritance.

Classical inheritance also has a limitation where you can
only enhance the child class within the limit of the parent
classes. You can't fundamentally differ from what you
have got from the ancestors. This inhibits reuse.
Classical inheritance has several other problems as
follows:

e |nheritance introduces tight coupling. Child classes have knowledge
about their ancestors. This tightly couples a child class with its parent.

e When you subclass from a parent, you don't have a choice to select
what you want to inherit and what you don't. Joe Armstrong (the
inventor of Erlang) explains this situation very well—his now famous

quote:

"The problem with object-oriented languages is they've got all this
implicit environment that they carry around with them. You wanted a
banana but what you got was a gorilla holding the banana and the
entire jungle.”

Behavior of JavaScript objects

With this background, let's explore how JavaScript
objects behave. In broad terms, an object contains
properties, defined as a key-value pair. A property key
(name) can be a string and the value can be any valid
JavaScript value. You can create objects using object
literals. The following snippet shows you how object
literals are created:

var nothing = {};

var author = {
"firstname": "Douglas",
"lastname": "Crockford"

A property's name can be any string or an empty string.
You can omit quotes around the property name if the
name is a legal JavaScript name. So quotes are required
around firstname but are optional around
firstname. Commas are used to separate the pairs.
You can nest objects as follows:

var author = {
firstname : "Douglas",
lastname : "Crockford",
book : {

title:"JavaScript-The Good Parts",
pages:"172"

}
I 7

Properties of an object can be accessed by using two
notations: the array-like notation and dot notation.
According to the array-like notation, you can retrieve the
value from an object by wrapping a string expression in
[]. If the expression is a valid JavaScript name, you can
use the dot notation using . instead. Using . is a
preferred method of retrieving values from an object:

console.log(author['firstname']);
//Douglas
console.log(author.lastname);
//Crockford
console.log(author.book.title); //
JavaScript-The Good Parts

You will get an undefined error if you attempt to
retrieve a non-existent value. The following would return
undefined:

console.log(author.age);

A useful trick is to use the | | operator to fill in default
values in this case:

console.log(author.age || "No Age Found");

You can update values of an object by assigning a new
value to the property:

author.book.pages = 190;
console.log(author.book.pages); //190

If you observe closely, you will realize that the object
literal syntax that you see is very similar to the JSON
format.

Methods are properties of an object that can hold
function values as follows:

var meetingRoom = {};
meetingRoom.book = function(roomId){

console.log("booked meeting room -
"+roomId);

}

meetingRoom.book("VL");

Prototypes

Apart from the properties that we add to an object, there
is one default property for almost all objects, called a
prototype. When an object does not have a requested
property, JavaScript goes to its prototype to look for it.
The Object.getPrototypeOf () function returns the
prototype of an object.

Many programmers consider prototypes closely related
to objects' inheritance—they are indeed a way of
defining object types—but fundamentally, they are
closely associated with functions.

Prototypes are used as a way to define properties and
functions that will be applied to instances of objects. The

prototype's properties eventually become properties of
the instantiated objects. Prototypes can be seen as
blueprints for object creation. They can be seen as
analogous to classes in object-oriented languages.
Prototypes in JavaScript are used to write a classical
style object-oriented code and mimic classical
inheritance. Let's revisit our earlier example:

var author = {};
author.firstname = 'Douglas’';
author.lastname = 'Crockford';

In the preceding code snippet, we are creating an empty
object and assigning individual properties. You will soon
realize that this is not a very standard way of building
objects. If you know OOP already, you will immediately
see that there is no encapsulation and the usual class
structure. JavaScript provides a way around this. You
can use the new operator to instantiate an object via
constructors. However, there is no concept of a class in
JavaScript, and it is important to note that the new
operator is applied to the constructor function. To clearly
understand this, let's look at the following example:

//A function that returns nothing and
creates nothing
function Player() {}

//Add a function to the prototype property

of the function

Player.prototype.usesBat = function() {
return true;

//We call player() as a function and prove

that nothing happens

var crazyBob = Player();

if(crazyBob === undefined){
console.log("CrazyBob is not defined");

}

//Now we call player() as a constructor
along with 'new'
//1. The instance is created
//2. method usesBat() is derived from the
prototype of the function
var swingJay = new Player();
if(swingJay && swingJay.usesBat &&
swingJay.usesBat()){

console.log("SwingJay exists and can use
bat");

}

In the preceding example, we have a player () function
that does nothing. We invoke it in two different ways.
The first call of the function is as a normal function and
second call is as a constructor—note the use of the
new() operator in this call. Once the function is defined,
we add a usesBat () method to it. When this function is
called as a normal function, the object is not instantiated
and we see undefined assigned to crazyBob.
However, when we call this function with the new
operator, we get a fully instantiated object, swingJay.

Instance properties are the properties that are part of the
object instance itself, as shown in the following example:

function Player() {
this.isAvailable = function() {
return "Instance method says - he is
hired";
iy
}
Player.prototype.isAvailable = function()

{

return "Prototype method says - he is
Not hired";

iy
var crazyBob = new Player();
console.log(crazyBob.isAvailable());

When you run this example, you will see that Instance
method says - he is hired is printed. The
isAvailable() function defined in the Player ()
function is called an instance of Player. This means
that apart from attaching properties via the prototype,
you can use the this keyword to initialize properties in a
constructor. When we have the same functions defined
as an instance property and also as a prototype, the
instance property takes precedence. The rules governing
the precedence of the initialization are as follows:

e Properties are tied to the object instance from the prototype

e Properties are tied to the object instance in the constructor function

This example brings us to the use of the this keyword.
It is easy to get confused by the this keyword because
it behaves differently in JavaScript. In other OO
languages such as Java, the this keyword refers to the
current instance of the class. In JavaScript, the value of
this is determined by the invocation context of a
function and where it is called. Let's see how this
behavior needs to be carefully understood:

e When this is used in a global context: When this is called in a
global context, it is bound to the global context. For example, in the
case of a browser, the global context is usually window. This is true
for functions also. If you use this in a function that is defined in the
global context, it is still bound to the global context because the
function is part of the global context:

function globalAlias(){
return this;
}
console.log(globalAlias()); //[object
Window]

e When this is used in an object method: In this case, this is
assigned or bound to the enclosing object. Note that the enclosing
object is the immediate parent if you are nesting the objects:

var f = {
name: "f",
func: function () {
return this;

}
iy
console.log(f.func());
//prints -
//[object Object] {

// FiinAas FriinAatain~An Y

/7 / 1Uliv . rurniveivuir ()

// return this;
/7%,

// name: "f"

//}

e \When there is no context: A function, when invoked without any
object, does not get any context. By default, it is bound to the global
context. When you use this in such a function, it is also bound to the
global context.

e \When this is used in a constructor function: As we saw earlier, when
a function is called with a new keyword, it acts as a constructor. In the
case of a constructor, this points to the object being constructed. In
the following example, f () is used as a constructor (because it's
invoked with a new keyword) and hence, this is pointing to the new
object being created. So when we say this.member = "f", the
new member is added to the object being created, in this case, that
object happens to be o:

var member = "global";
function f()
{
this.member = "f";
}

var o= new f();
console.log(o.member); // f

We saw that instance properties take precedence when
the same property is defined both as an instance
property and prototype property. It is easy to visualize
that when a new object is created, the properties of the
constructor's prototype are copied over. However, this is
not a correct assumption. What actually happens is that
the prototype is attached to the object and referred when
any property of this object is referred. Essentially, when
a property is referenced on an object, either of the
following occur:

e The object is checked for the existence of the property. If it's found,
the property is returned.

e The associated prototype is checked. If the property is found, it is
returned; otherwise, an undefined error is returned.

This is an important understanding because, in
JavaScript, the following code actually works perfectly:

function Player() {
isAvailable=false;

}

var crazyBob = new Player();
Player.prototype.isAvailable = function()

{

return isAvailable;
iy
console.log(crazyBob.isAvailable());
//false

This code is a slight variation of the earlier example. We
are creating the object first and then attaching the
function to its prototype. When you eventually call the
isAvailable() method on the object, JavaScript goes
to its prototype to search for it if it's not found in the
particular object (crazyBob, in this case). Think of this
as hot code loading—when used properly, this ability can
give you incredible power to extend the basic object
framework even after the object is created.

If you are familiar with OOP already, you must be
wondering whether we can control the visibility and
access of the members of an object. As we discussed
earlier, JavaScript does not have classes. In
programming languages such as Java, you have access

modifiers such as private and public that let you
control the visibility of the class members. In JavaScript,
we can achieve something similar using the function
scope as follows:

e You can declare private variables using the var keyword in a

function. They can be accessed by private functions or privileged
methods.

e Private functions may be declared in an object's constructor and can
be called by privileged methods.

e Privileged methods can be declared with
this.method=function() {}.

e Public methods are declared with
Class.prototype.method=function(){}.

e Public properties can be declared with this.property and
accessed from outside the object.

The following example shows several ways of doing this:

function Player(name, sport,age,country){
this.constructor.noOfPlayers++;

// Private Properties and Functions

// Can only be viewed, edited or invoked
by privileged members

var retirementAge = 40;

var available=true;

var playerAge = age?age:18;

function isAvailable(){ return available
&& (playerAge<retirementAge); }

var playerName=name ? name :'"Unknown";

var playerSport = sport ? sport
"Unknown";

// Privileged Methods
// Can be invoked from outside and can

access private members
// Can be replaced with public
counterparts
this.book=function(){
if (!isAvailable()){
this.available=false;
} else {
console.log("Player is
unavailable");

}

iy

this.getSport=function(){ return
playerSport; };

// Public properties, modifiable from
anywhere

this.batPreference="Lefty";

this.hasCelebGirlfriend=false;

this.endorses="Super Brand";

}

// Public methods - can be read or written
by anyone

// Can only access public and prototype
properties

Player.prototype.switchHands = function(){
this.batPreference="righty"; };
Player.prototype.dateCeleb = function(){
this.hasCelebGirlfriend=true; } ;
Player.prototype.fixEyes = function(){
this.wearGlasses=false; };

// Prototype Properties - can be read or
written by anyone (or overridden)
Player.prototype.wearsGlasses=true;

// Static Properties - anyone can read or

write
Player.noOfPlayers = 0O;

(function PlayerTest(){

//New instance of the Player object
created.

var cricketer=new
Player("Vivian", "Cricket", 23, "England");

var golfer =new
Player("Pete", "Golf",6 32, "USA");

console.log("So far there are " +
Player.noOfPlayers + " in the guild");

//Both these functions share the common
'Player.prototype.wearsGlasses' variable

cricketer.fixEyes();

golfer.fixEyes();

cricketer.endorses="0ther
Brand";//public variable can be updated

//Both Player's public method is now
changed via their prototype

Player.prototype.fixEyes=function(){
this.wearGlasses=true;

iy

//0nly Cricketer's function is changed

cricketer.switchHands=function(){
this.batPreference="undecided";

I 7
O,

Let's understand a few important concepts from this
example:

e The retirementAge variable is a private variable that has no
privileged method to get or set its value.

e The country variable is a private variable created as a constructor
argument. Constructor arguments are available as private variables to
the object.

e When we called cricketer.switchHands(), it was only applied to
the cricketer and not to both the players, although it's a prototype
function of the Player itself.

e Private functions and privileged methods are instantiated with each
new object created. In our example, new copies of isAvailable()
and book () would be created for each new player instance that we
create. On the other hand, only one copy of public methods is created
and shared between all instances. This can mean a bit of
performance gain. If you don't really need to make something private,
think about keeping it public.

Inheritance is an important concept of OOP. It is
common to have a bunch of objects implementing the
same methods. It is also common to have an almost
similar object definition with differences in a few
methods. Inheritance is very useful in promoting code
reuse. We can look at the following classic example of
inheritance relation:

Animal

Mammal Bird

Deg

Here, you can see that from the generic Animal class,
we derive more specific classes such as Mammal and
Bird based on specific characteristics. Both the Mammal
and Bird classes do have the same template of an

Animal; however, they also define behaviors and
attributes specific to them. Eventually, we derive a very
specific mammal, Dog. A Dog has common attributes
and behaviors from an Animal class and Mammal class,
while it adds specific attributes and behaviors of a Dog.
This can go on to add complex inheritance relationships.

Traditionally, inheritance is used to establish or describe
an IS-A relationship. For example, a dog IS-A mammal.
This is what we know as classical inheritance. You
would have seen such relationships in object-oriented
languages such as C++ and Java. JavaScript has a
completely different mechanism to handle inheritance.
JavaScript is classless language and uses prototypes for
inheritance. Prototypal inheritance is very different in
nature and needs thorough understanding. Classical and
prototypal inheritance are very different in nature and
need careful study.

In classical inheritance, instances inherit from a class
blueprint and create subclass relationships. You can't
invoke instance methods on a class definition itself. You
need to create an instance and then invoke methods on
this instance. In prototypal inheritance, on the other
hand, instances inherit from other instances.

As far as inheritance is concerned, JavaScript uses only
objects. As we discussed earlier, each object has a link
to another object called its prototype. This prototype
object, in turn, has a prototype of its own, and so on until
an object is reached with null as its prototype; null,

by definition, has no prototype, and acts as the final link
in this prototype chain.

To understand prototype chains better, let's consider the
following example:

function Person() {}
Person.prototype.cry = function() {
console.log("Crying");

}
function Child() {}

Child.prototype = {cry:
Person.prototype.cry};

var aChild = new Child();
console.log(aChild instanceof Child);
//true

console.log(aChild instanceof Person);
//false

console.log(aChild instanceof Object);
//true

Here, we define a Person and then Child—a child IS-
A person. We also copy the cry property of a Person to
the cry property of Child. When we try to see this
relationship using instanceof, we soon realize that
just by copying a behavior, we could not really make
Child an instance of Person; aChild instanceof
Person fails. This is just copying or masquerading, not
inheritance. Even if we copy all the properties of Person
to Child, we won't be inheriting from Person. This is
usually a bad idea and is shown here only for illustrative
purposes. We want to derive a prototype chain—an IS-A
relationship, a real inheritance where we can say that
child IS-A person. We want to create a chain: a child IS-

A person IS-A mammal IS-A animal I1S-A object. In
JavaScript, this is done using an instance of an object as
a prototype as follows:

SubClass.prototype = new SuperClass();
Child.prototype = new Person();

Let's modify the earlier example:

function Person() {}
Person.prototype.cry = function() {
console.log("Crying");

}
function Child() {}

Child.prototype = new Person();

var aChild = new Child();
console.log(aChild instanceof Child);
//true

console.log(aChild instanceof Person);
//true

console.log(aChild instanceof Object);
//true

The changed line uses an instance of Person as the
prototype of Child. This is an important distinction from
the earlier method. Here we are declaring that child I1S-A
person.

We discussed about how JavaScript looks for a property
up the prototype chain till it reaches
Object.prototype. Let's discuss the concept of
prototype chains in detail and try to design the following
employee hierarchy:

Employee

e ey

Manaaer Individual
J Contributor
Team Lead
Engineer

This is a typical pattern of inheritance. A manager IS-
A(n) employee. Manager has common properties
inherited from an Employee. It can have an array of
reportees. An Individual Contributor is also based on
an employee but he does not have any reportees. A
Team Lead is derived from a Manager with a few
functions that are different from a Manager. What we are
doing essentially is that each child is deriving properties
from its parent (Manager being the parent and Team
Lead being the child).

Let's see how we can create this hierarchy in JavaScript.
Let's define our Employee type:

function Employee() {
this.name = '';
this.dept

"None"';

this.salary = 0.00;
}

There is nothing special about these definitions. The
Employee object contains three properties—name,
salary, and department. Next, we define Manager. This
definition shows you how to specify the next object in the
inheritance chain:

function Manager() {
Employee.call(this);
this.reports = [];

}

Manager.prototype =
Object.create(Employee.prototype);

In JavaScript, you can add a prototypical instance as the
value of the prototype property of the constructor
function. You can do so at any time after you define the
constructor. In this example, there are two ideas that we
have not explored earlier. First, we are calling
Employee.call(this). If you come from a Java
background, this is analogous to the super () method
call in the constructor. The call() method calls a
function with a specific object as its context (in this case,
it is the given the this value), in other words, call allows
to specify which object will be referenced by the this
keyword when the function will be executed. Like
super () in Java, calling parentObject.call(this)
IS necessary to correctly initialize the object being
created.

The other thing we see is Object.create() instead of
calling new. Object.create() creates an object with a
specified prototype. When we do new Parent(), the
constructor logic of the parent is called. In most cases,
what we want is for Child.prototype to be an object
that is linked via its prototype to Parent.prototype. If
the parent constructor contains additional logic specific
to the parent, we don't want to run this while creating the
child object. This can cause very difficult-to-find bugs.
Object.create() creates the same prototypal link
between the child and parent as the new operator
without calling the parent constructor.

To have a side effect-free and accurate inheritance
mechanism, we have to make sure that we perform the
following:

e Setting the prototype to an instance of the parent initializes the
prototype chain (inheritance); this is done only once (as the prototype
object is shared)

e Calling the parent's constructor initializes the object itself; this is done
with every instantiation (you can pass different parameters each time
you construct it)

With this understanding in place, let's define the rest of
the objects:

function IndividualContributor() {
Employee.call(this);
this.active_projects = [];

}

IndividualContributor.prototype =

Object.create(Employee.prototype);

function TeamLead() {
Manager.call(this);
this.dept = "Software";
this.salary = 100000;

}
TeamLead.prototype =

Object.create(Manager.prototype);

function Engineer() {
TeamLead.call(this);
this.dept = "JavaScript";
this.desktop_id = "8822" ;
this.salary = 80000;

}
Engineer.prototype =
Object.create(TeamLead.prototype);

Based on this hierarchy, we can instantiate these
objects:

var genericEmployee = new Employee();
console.log(genericEmployee);

You can see the following output for the preceding code
snippet:

[object Object] {
dept: "None",

name: ,
salary: 0
}

A generic Employee has a department assigned to
None (as specified in the default value) and the rest of
the properties are also assigned as the default ones.

Next, we instantiate a manager; we can provide specific

values as follows:

var karen = new Manager();
karen.name = "Karen";
karen.reports = [1,2,3];
console.log(karen);

You will see the following output:

[object Object] {
dept: "None",
name: "Karen",
reports: [1, 2, 3],
salary: 0

For TeamLead, the reports property is derived from
the base class (Manager in this case):

var jason = new TeamLead();
jason.name = "Json";
console.log(jason);

You will see the following output:

[object Object] {
dept: "Software",
name: "Json",
reports: [],
salary: 100000

When JavaScript processes the new operator, it creates
a new object and passes this object as the value of this
to the parent—the TeamLead constructor. The

constructor function sets the value of the projects
property and implicitly sets the value of the internal
__proto___ property to the value of
TeamLead.prototype. The __proto___ property
determines the prototype chain used to return property
values. This process does not set values for properties
inherited from the prototype chain in the jason object.
When the value of a property is read, JavaScript first
checks to see whether the value exists in that object. If
the value does exist, this value is returned. If the value is
not there, JavaScript checks the prototype chain using
the __proto__ property. Having said this, what
happens when you do the following:

Employee.prototype.name = "Undefined";

It does not propagate to all the instances of Employee.
This is because when you create an instance of the
Employee object, this instance gets a local value for the
name. When you set the TeamLead prototype by
creating a new Employee object,
TeamLead.prototype has a local value for the name
property. Therefore, when JavaScript looks up the name
property of the jason object, which is an instance of
TeamLead), it finds the local value for this property in
TeamLead.prototype. It does not try to do further
lookups up the chain to Employee.prototype.

If you want the value of a property changed at runtime
and have the new value be inherited by all the

descendants of the object, you cannot define the
property in the object's constructor function. To achieve
this, you need to add it to the constructor's prototype. For
example, let's revisit the earlier example but with a slight
change:

function Employee() {
this.dept = 'None';
this.salary = 0.00;

}

Employee.prototype.name = '';

function Manager() {
this.reports = [];

}

Manager .prototype = new Employee();

var sandy = new Manager();

var karen = new Manager();

Employee.prototype.name = "Junk";

console.log(sandy.name);
console.log(karen.name);

You will see that the name property of both sandy and
karen has changed to Junk. This is because the name
property is declared outside the constructor function. So,
when you change the value of name in the Employee's
prototype, it propagates to all the descendants. In this
example, we are modifying Employee's prototype after
the sandy and karen objects are created. If you
changed the prototype before the sandy and karen
objects were created, the value would still have changed
to Junk.

All native JavaScript objects—Object, Array, String,
Number, RegExp, and Function—have prototype
properties that can be extended. This means that we can
extend the functionality of the language itself. For
example, the following snippet extends the String
object to add a reverse () method to reverse a string.
This method does not exist in the native String object but
by manipulating String's prototype, we add this method
to String:

String.prototype.reverse = function() {
return

Array.prototype.reverse.apply(this.split("'

')).join('");

iy

var str = 'JavaScript';

console.log(str.reverse()); //"tpircSaval"

Though this is a very powerful technique, care should be
taken not to overuse it. Refer to
http://perfectionkills.com/extending-native-builtins/ to
understand the pitfalls of extending native builtins and
what care should be taken if you intend to do so.

http://perfectionkills.com/extending-native-builtins/

Getters are convenient methods to get the value of
specific properties; as the name suggests, setters are
methods that set the value of a property. Often, you may
want to derive a value based on some other values.
Traditionally, getters and setters used to be functions
such as the following:

var person = {

firstname: "Albert",

lastname: "Einstein",

setLastName: function(_lastname){
this.lastname= lastname,

}

setFirstName: function (firstname){
this.firstname= _firstname;

3
getFullName: function (){
return this.firstname + ' '+
this.lastname;
}
iy

person.setLastName('Newton');
person.setFirstName('Issac');
console.log(person.getFullName());

As you can see, setLastName(), setFirstName(),
and getFullName() are functions used to do get and
set of properties. Fullname is a derived property by
concatenating the firstname and lastname
properties. This is a very common use case and
ECMAScript 5 now provides you with a default syntax for

getters and setters.

The following example shows you how getters and
setters are created using the object literal syntax in
ECMAScript 5:

var person = {
firstname: "Albert",
lastname: "Einstein",
get fullname() {
return this.firstname +"
"+this.lastname;
3
set fullname(_name){
var words = _name.toString().split('
")
this.firstname = words[0];
this.lastname = words[1];

}
iy
person.fullname = "Issac Newton";
console.log(person.firstname); //"Issac"
console.log(person.lastname); //"Newton"
console.log(person.fullname); //"Issac
Newton"

Another way of declaring getters and setters is using the
Object.defineProperty() method:

var person = {
firstname: "Albert",
lastname: "Einstein",

iy
Object.defineProperty(person, 'fullname',
{

get: function() {

return this.firstname + ' ' +
this.lastname:

i

set: function(name) {
var words = name.split(' ');
this.firstname = words[0];
this.lastname = words[1];
}
});

person.fullname = "Issac Newton";
console.log(person.firstname); //"Issac"
console.log(person.lastname); //"Newton"
console.log(person.fullname); //"Issac
Newton"

In this method, you can call
Object.defineProperty() even after the object is

created.

Now that you have tasted the object-oriented flavor of
JavaScript, we will go through a bunch of very useful
utility methods provided by Underscore.js. We
discussed the installation and basic usage of
Underscore.js in the previous chapter. These methods
will make common operations on objects very easy:

e keys(): This method retrieves the names of an object's own
enumerable properties. Note that this function does not traverse up
the prototype chain:

var = require('underscore');
var testobj = {
name: 'Albert',
age : 90,
profession: 'Physicist'
};
console.log(.keys(testobj));
//['name', 'age', 'profession']

e allKeys(): This method retrieves the names of an object's own and
inherited properties:

var _ = require('underscore');
function Scientist() {

this.name = 'Albert';
}
Scientist.prototype.married = true;
aScientist = new Scientist();
console.log(_.keys(aScientist)); //[
"name']
console.log(_.allKeys(aScientist));//[
'name', 'married']

e values(): This method retrieves the values of an object's own
properties:

var = require('underscore');
function Scientist() {

this.name = 'Albert';
}
Scientist.prototype.married = true;
aScientist = new Scientist();
console.log(.values(aScientist)); //[
'"Albert']

e mapObject(): This method transforms the value of each property in
the object:

var = require('underscore');

function Scientist() {
this.name = 'Albert’';
this.age = 90,

}

aScientist = new Scientist();
var 1st = .mapObject(aScientist,
function(val, key){
if(key==="age"){
return val + 10;
} else {
return val;

}

});
console.log(lst); //{ name: 'Albert',
age: 100 }

e functions(): This returns a sorted list of the names of every
method in an object—the name of every function property of the
object.

e pick(): This function returns a copy of the object, filtered to just the
values of the keys provided:

var = require('underscore');
var testobj = {

name: 'Albert',

age : 90,

profession: 'Physicist'
};
console.log(.pick(testobj,
'name', 'age')); //{ name: 'Albert',
age: 90 }
console.log(_.pick(testobj,
function(val, key, object){

return _.isNumber(val);

3)); //7{ age: 90 }

e omit(): This function is an invert of pick ()—it returns a copy of the
object, filtered to omit the values for the specified keys.

JavaScript applications can improve in clarity and quality
by allowing for the greater degree of control and
structure that object-orientation can bring to the code.
JavaScript object-orientation is based on the function
prototypes and prototypal inheritance. These two ideas
can provide an incredible amount of wealth to
developers.

In this chapter, we saw basic object creation and
manipulation. We looked at how constructor functions
are used to create objects. We dived into prototype
chains and how inheritance operates on the idea of
prototype chains. These foundations will be used to build
your knowledge of JavaScript patterns that we will
explore in the next module. We will discuss various
testing and debugging techniques in the next chapter.

Chapter 5. Testing and
Debugging

As you write JavaScript applications, you will soon
realize that having a sound testing strategy is
indispensable. In fact, not writing enough tests is almost
always a bad idea. It is essential to cover all the non-
trivial functionality of your code to make sure of the
following points:

e The existing code behaves as per the specifications

e Any new code does not break the behavior defined by the
specifications

Both these points are very important. Many engineers
consider only the first point the sole reason to cover your
code with enough tests. The most obvious advantage of
test coverage is to really make sure that the code being
pushed to the production system is mostly error-free.
Writing test cases to smartly cover the maximum
functional areas of the code generally gives you a good
indication about the overall quality of the code. There
should be no arguments or compromises around this
point. It is unfortunate though that many production
systems are still bereft of adequate code coverage. Itis
very important to build an engineering culture where
developers think about writing tests as much as they
think about writing code.

The second point is even more important. Legacy
systems are usually very difficult to manage. When you
are working on code written either by someone else or a
large distributed team, it is fairly easy to introduce bugs
and break things. Even the best engineers make
mistakes. When you are working on a large code base
that you are unfamiliar with and if there is no sound test
coverage to help you, you will introduce bugs. As you
won't have the confidence in the changes that you are
making (because there are no test cases to confirm your
changes), your code releases will be shaky, slow, and
obviously full of hidden bugs.

You will refrain from refactoring or optimizing your code
because you won't really be sure what changes to the
code base would potentially break something (again,
because there are no test cases to confirm your
changes)—all this is a vicious circle. It's like a civil
engineer saying, "though | have constructed this bridge, |
have no confidence in the quality of the construction. It
may collapse immediately or never."” Though this may
sound like an exaggeration, | have seen a lot of high
impact production code being pushed with no test
coverage. This is risky and should be avoided. When
you are writing enough test cases to cover majority of
your functional code and when you make a change to
these pieces, you immediately realize if there is a
problem with this new change. If your changes make the
test case fail, you realize the problem. If your refactoring
breaks the test scenario, you realize the problem—all
this happens much before the code is pushed to

production.

In recent years, ideas such as test-driven development
and self-testing code are gaining prominence, especially
in agile methodology. These are fundamentally sound
ideas and will help you write robust code—code that you
are confident of. We will discuss all these ideas in this
chapter. You will understand how to write good test
cases in modern JavaScript. We will also look at several
tools and methods to debug your code. JavaScript has
been traditionally a bit difficult to test and debug primarily
due to lack of tools, but modern tools make both of these
easy and natural.

When we talk about test cases, we mostly mean unit
tests. It is incorrect to assume that the unit that we want
to test is always a function. The unit (or unit of work) is a
logical unit that constitutes a single behavior. This unit
should be able to be invoked via a public interface and
should be testable independently.

Thus, a unit test performs the following functions:

e |t tests a single logical function

e |t can be run without a specific order of execution

e |t takes care of its own dependencies and mock data
e [t always returns the same result for the same input

e [t should be self-explanatory, maintainable, and readable

NOTE

Martin Fowler advocates the test pyramid (http://martinfowler.com/bliki/TestPyramid.html)
strategy to make sure that we have a high number of unit tests to ensure maximum code
coverage. The test pyramid says that you should write many more low-level unit tests than
higher level integration and Ul tests.

There are two important testing strategies that we will
discuss in this chapter.

Test-driven development

Test-driven development (TDD) has gained a lot of
prominence in the last few years. The concept was first
proposed as part of the Extreme Programming
methodology. The idea is to have short repetitive
development cycles where the focus is on writing the test
cases first. The cycle looks as follows:

1. Add a test case as per the specifications for a specific unit of code.

2. Run the existing suite of test cases to see if the new test case that
you wrote fails—it should (because there is no code for this unit yet).
This step ensures that the current test harness works well.

3. Write the code that serves mainly to confirm the test case. This code
is not optimized or refactored or even entirely correct. However, this is
fine at the moment.

4. Rerun the tests and see if all the test cases pass. After this step, you
will be confident that the new code is not breaking anything.

5. Refactor the code to make sure that you are optimizing the unit and
handling all corner cases.

These steps are repeated for all the new code that you
add. This is an elegant strategy that works really well for
the agile methodology. TDD will be successful only if the
testable units of code are small and confirm only to the
test case and nothing more. It is important to write small,

http://martinfowler.com/bliki/TestPyramid.html

modular, and precise code units that have input and
output confirming the test case.

Behavior-driven development

A very common problem while trying to follow TDD is
vocabulary and the definition of correctness. BDD tries to
introduce a ubiquitous language while writing the test
cases when you are following TDD. This language
makes sure that both the business and engineering
teams are talking about the same thing.

We will use Jasmine as the primary BDD framework and
explore various testing strategies.

NOTE

You can install Jasmine by downloading the standalone package from
https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip.

When you unzip this package, you will have the following
directory structure:

https://github.com/jasmine/jasmine/releases/download/v2.3.4/jasmine-standalone-2.3.4.zip

v jasmine-standalone-2.3.4
v lib

v jasmine-2.3.4
boot.js
console.js
@ jasmine_favicon.png
jasmine-html.js
jasmine.css

jasmine.js
v spec
PlayerSpec.js
SpecHelper.js
v Src
Player.js
Song.js

B MIT.LICENSE

_____R) SpecRunnechtml _______

The 1ib directory contains the JavaScript files that you
need in your project to start writing Jasmine test cases. If
you open SpecRunner . html, you will find the following
JavaScript files included in it:

<script src="lib/jasmine-
2.3.4/jasmine.js"></script>

<script src="lib/jasmine-2.3.4/jasmine-
html.js"></script>

<script src="lib/jasmine-2.3.4/boot.js">
</script>

<!-- include source files here... -->
<script src="src/Player.js"></script>
<script src="src/Song.js"></script>

<!-- include spec files here... -->
<script src="spec/SpecHelper.js"></script>
<script src="spec/PlayerSpec.js"></script>

The first three are Jasmine's own framework files. The
next section includes the source files that we want to test
and the actual test specifications.

Let's experiment with Jasmine with a very ordinary
example. Create a bigfatjavascriptcode. js file
and place it in the src/ directory. We will test the
following function:

function capitalizeName(name){
return name.toUpperCase();

}

This is a simple function that does one single thing. It
receives a string and returns a capitalized string. We will
test various scenarios around this function. This is the
unit of code that we discussed earlier.

Next, create the test specifications. Create one
JavaScript file, test.spec.js, and place it in the
spec/ directory. The file should contain the following.
You will need to add the following two lines to
SpecRunner . html:

<script src="src/bigfatjavascriptcode.js">
</script>
<script src="spec/test.spec.js"></script>

The order of this inclusion does not matter. When we run
SpecRunner.html, you will see something as follows:

@Jasmine

1 spec, @ failures

TestStringUtilities
converts to capital

This is the Jasmine report that shows the details about
the number of tests that were executed and the count of
failures and successes. Now, let's make the test case
fail. We want to test a case where an undefined variable
is passed to the function. Add one more test case as
follows:

it("can handle undefined", function() {
var str= undefined;

expect(capitalizeName(str)).toEqual(undefi
ned);

1)

Now, when you run SpecRunner .html, you will see the
following result:

{8 Jasmine
LR

2 specs, 1 failure

Spac List | Totlures

Testatringltilitias cn Eandle dndefined

[ypemenes nome 5 undrefined in £l £l e &SR mn T andsjesnine standnlmn -2 3 see g fat moserd e, 35 Cine £

As you can see, the failure is displayed for this test case
in a detailed error stack. Now, we go about fixing this. In
your original JavaScript code, we can handle an
undefined condition as follows:

function capitalizeName(name){
if(name){
return name.toUpperCase();

}
}

With this change, your test case will pass and you will
see the following in the Jasmine report:

@ Jasmine

2 specs, @ failures

TestStringUtilities
converts to capital
can handle undefined

This is very similar to what a test-driven development
would look. You write test cases, you then fill in the
necessary code to confirm to the specifications, and

rerun the test suite. Let's understand the structure of the
Jasmine tests.

Our test specification looks as follows:

describe("TestStringUtilities", function()
{

it("converts to capital", function() {

var Str = "alpert’,

expect(capitalizeName(str)).toEqual("ALBER
™);
3);

it("can handle undefined", function() {
var str= undefined;

expect(capitalizeName(str)).toEqual(undefi
ned);

1);
1);
The describe("TestStringUtilities" is atest
suite. The name of the test suite should describe the unit
of code that we are testing—this can be a function or
group of related functionality. In the specifications, you
call the global Jasmine it function to which you pass the
title of the specification and test function used by the test
case. This function is the actual test case. You can catch
one or more assertions or the general expectations using
the expect function. When all expectations are true,
your specification is passed. You can write any valid
JavaScript code in the describe and it functions. The
values that you verify as part of the expectations are
matched using a matcher. In our example, toEqual()

is the matcher that matches two values for equality.
Jasmine contains a rich set of matches to suit most of
the common use cases. Some common matchers
supported by Jasmine are as follows:

e toBe(): This matcher checks whether two objects being compared
are equal. This is the same as the === comparison, as shown in the
following code:

var a = £ value* 11

v o — L vewios -7

var b = { value: 1 };

expect(a).toEqual(b); // success,
same as == comparison
expect(b).toBe(b); // failure,
same as === comparison
expect(a).toBe(a); // success,
same as === comparison

e not: You can negate a matcher with a not prefix. For example,
expect(1).not.toEqual(2); will negate the match made by
toEqual().

e toContain(): This checks whether an element is part of an array.
This is not an exact object match as toBe(). For example, look at
the following code:

expect([1, 2, 3]).toContain(3);
expect("astronomy is a
science").toContain("science");

e toBeDefined() and toBeUndefined(): These two matches are
handy to check whether a variable is undefined (or not).

e toBeNull(): This checks whether a variable's value is null

e toBeGreaterThan() and toBeLessThan(): These matchers
perform numeric comparisons (they work on strings too):

expect(2).toBeGreaterThan(1);
expect(1).toBelLessThan(2);
expect("a").toBeLessThan("b");

One interesting feature of Jasmine is the spies. When
you are writing a large system, it is not possible to make
sure that all systems are always available and correct. At
the same time, you don't want your unit tests to fail due
to a dependency that may be broken or unavailable. To
simulate a situation where all dependencies are
available for a unit of code that we want to test, we mock

these dependencies to always give the response that we
expect. Mocking is an important aspect of testing and
most testing frameworks provide support for the
mocking. Jasmine allows mocking using a feature called
a spy. Jasmine spies essentially stub the functions that
we may not have ready; at the time of writing the test
case but as part of the functionality, we need to track
that we are executing these dependencies and not
ignoring them. Consider the following example:

describe("mocking configurator",
function() {

var configurator = null;

var responseJSON {},;

beforeEach(function() {
configurator = {
submitPOSTRequest: function(payload)

//This is a mock service that will
eventually be replaced

//by a real service

console.log(payload);

return {"status": "200"},;

}
iy
spyon(configurator,
'submitPOSTRequest').and.returnvValue({"sta
tus": "200"});
configurator.submitPOSTRequest({
"port":"8000",
"client-encoding" :"UTF-8"
3);
3);

it("the spy was called", function() {

expect(configurator.submitPOSTRequest).toH
aveBeenCalled();

¥

it("the arguments of the spy's call are
tracked", function() {

expect(configurator.submitPOSTRequest).toH
aveBeenCalledwith({"port":"8000", "client-e
ncoding":"UTF-8"});

1);

1);
In this example, while we are writing this test case, we
either don't have the real implementation of the
configurator.submitPOSTRequest () dependency
or someone is fixing this particular dependency. In any
case, we don't have it available. For our test to work, we
need to mock it. Jasmine spies allow us to replace a
function with its mock and track its execution.

In this case, we need to ensure that we called the
dependency. When the actual dependency is ready, we
will revisit this test case to make sure that it fits the
specifications, but at this time, all that we need to ensure
is that the dependency is called. The Jasmine
tohaveBeenCalled() function lets us track the
execution of a function, which may be a mock. We can
use toHaveBeenCalledwith() that allows us to
determine if the stub function was called with the correct
parameters. There are several other interesting
scenarios that you can create using Jasmine spies. The
scope of this chapter won't permit us to cover them all,
but | would encourage you to discover these areas on

your own.

NOTE

You can refer to the user manual for Jasmine for more information on Jasmine spies at
http://jasmine.github.io/2.0/introduction.html.

TP

Mocha, Chai, and Sinon

Though Jasmine is the most prominent JavaScript testing framework, Mocha and Chai are
gaining prominence in the Node.js environment. Mocha is the testing framework used to
describe and run test cases. Chai is the assertion library supported by Mocha. Sinon.JS
comes in handy while creating mocks and stubs for your tests. We won't discuss these
frameworks in this book, but experience on Jasmine will be handy if you want to experiment
with these frameworks.

http://jasmine.github.io/2.0/introduction.html

If you are not a completely new programmer, | am sure
you must have spent some amount of time debugging
your or someone else's code. Debugging is almost like
an art form. Every language has different methods and
challenges around debugging. JavaScript has
traditionally been a difficult language to debug. | have
personally spent days and nights of misery trying to
debug badly-written JavaScript code using alert ()
functions. Fortunately, modern browsers such as Mozilla
Firefox and Google Chrome have excellent developer
tools to help debug JavaScript in the browser. There are
IDEs like Intellid WebStorm with great debugging
support for JavaScript and Node.js. In this chapter, we
will focus primarily on Google Chrome's built-in
developer tool. Firefox also supports the Firebug
extension and has excellent built-in developer tools, but
as they behave more or less the same as Google
Chrome's Developer Tools (DevTools), we will discuss
common debugging approaches that work in both of
these tools.

Before we talk about the specific debugging techniques,
let's understand the type of errors that we would be
interested in while we try to debug our code.

Syntax errors

When your code has something that does not confirm to
the JavaScript language grammar, the interpreter rejects
this piece of code. These are easy to catch if your IDE is
helping you with syntax checking. Most modern IDEs
help with these errors. Earlier, we discussed the
usefulness of the tools such as JSLint and JSHint
around catching syntax issues with your code. They
analyze the code and flag errors in the syntax. JSHint
output can be very illuminating. For example, the
following output shows up so many things that we can
change in the code. This snippet is from one of my
existing projects:

temp git:(dev_branch) x jshint test.js
test.js: line 1, col 1, Use the function
form of "use strict".

test.js: line 4, col 1, 'destructuring
expression' is available in ES6 (use
esnext option) or Mozilla JS extensions
(use moz).

test.js: line 44, col 70, 'arrow function
syntax (=>)' is only available in ES6 (use
esnext option).

test.js: line 61, col 33, 'arrow function
syntax (=>)' is only available in ES6 (use
esnext option).

test.js: line 200, col 29, Expected ')' to
match '(' from line 200 and instead saw
test.js: line 200, col 29, 'function
closure expressions' is only available in
Mozilla JavaScript extensions (use moz
option).

test.js: line 200, col 37, Expected '}' to
match '{' from line 36 and instead saw

I)I.

test.js: line 200, col 39, Expected ')'
and instead saw '{'.

test.js: line 200, col 40, Missing
semicolon.

Using strict

We briefly discussed the strict mode in earlier chapters.
The strict mode in JavaScript flags or eliminates some of
the JavaScript silent errors. Rather than silently failing,
the strict mode makes these failures throw errors
instead. The strict mode also helps in converting
mistakes to actual errors. There are two ways of
enforcing the strict mode. If you want the strict mode for
the entire script, you can just add the use strict
statement as the first line of your JavaScript program. If
you want a specific function to conform with the strict
mode, you can add the directive as the first line of a
function:

function strictFn(){
// This line makes EVERYTHING under this

strict mode
'use strict';

function nestedStrictFn() {
//Everything in this function is also
nested

}
}

Runtime exceptions

These errors appear when you execute the code and try
to refer to an undefined variable or process a null. When
a runtime exception occurs, any code after that particular
line (which caused the exception) does not get executed.
It is essential to handle such exceptional scenarios
correctly in the code. While exception handling can help
prevent crashes, they also aid in debugging. You can
wrap the code that may encounter a runtime exception in
a try{ } block. When any code in this block generates
a runtime exception, a corresponding handler captures it.
The handler is defined by a catch(exception){}
block. Let's clarify this using an example:

try {
var a = doesnotexist; // throws a

runtime exception
} catch(e) {

console.log(e.message); //handle the
exception

//prints - "doesnotexist is not defined"

}

In this example, the var a = doesnotexist; line
tries to assign an undefined variable, doesnotexist, to
another variable, a. This causes a runtime exception.
When we wrap this problematic code in the try{}
catch(){} block and when the exception occurs (or is
thrown), the execution stops in the try{} block and
goes directly to the catch() {} handler. The catch
handler is responsible for handling the exceptional
scenario. In this case, we are displaying the error
message on the console for debugging purposes. You

can explicitly throw an exception to trigger an unhandled
scenario in the code. Consider the following example:

function engageGear(gear){

if(gear==="R"){ console.log
("Reversing");}

if(gear==="D"){ console.log
("Driving");}

if(gear==="N"){ console.log
("Neutral/Parking");}

throw new Error("Invalid Gear State");

try
{

engageGear ("R"); //Reversing
engageGear ("P"); //Invalid Gear State

}
catch(e){

console.log(e.message);

}

In this example, we are handling valid states of a gear
shift (R, N, and D), but when we receive an invalid state,
we are explicitly throwing an exception clearly stating the
reason. When we call the function that we think may
throw an exception, we wrap the code in the try{}
block and attach a catch () {} handler with it. When the
exception is caught by the catch() block, we handle
the exceptional condition appropriately.

CONSOLE.LOG AND ASSERTS

Displaying the state of execution on the console can be
very useful while debugging. However, modern
developer tools allow you to put breakpoints and halt

execution to inspect a particular value during runtime.
You can quickly detect small issues by logging some
variable state on the console.

With these concepts, let's see how we can use Chrome
Developer Tools to debug JavaScript code.

CHROME DEVTOOLS

You can start Chrome DevTools by navigating to menu |
More tools | Developer Tools:

Developer Tools El

View Source
JavaScript Console
Inspect Devices

N

Clear Browsing Data... {3&
Extensions |
Task Manager

Encoding >

T#U |

[Chrome is Out of Date

MNew Tab ¥T
New Window N
New Incognito Window {r3N
History &Y
Downloads {r38d
Recent Tabs >
Bookmarks >
Zoom [—] 100% [+ .. "
Print... P
Save Page As... 3#S
Find... ¥F
More tools [2
Edit Cut | Copy | Paste
Settings

About Google Chrome

Help >

Chrome DevTools opens up on the lower pane of your
browser and has a bunch of very useful sections:

0 {1 lments| Nobuerh Sertis mei Pl Btk Mt Conme) ﬂ a:
' Sy Uimpmls] Sien| Lynees
wentn] rlzmea'm-trh 13 |z s -
¥l i s 2o ...'l.". | "_ H)
v el elunnprg--aturiuibdl! Lo Womgoehilp finaenyforil s !l
LRI M S TR LTS Kiln'srrea bA [}
rﬂwcuﬂ'ﬂﬂmmﬁrﬂhr iy ¢ HENA P
Feeoler clasa'vile Tudler" eosfTraline font-tardly: Unlestizn eual mann-anrld;
LSBT YT) RO LA R PR A T, T U8 T | V1RO R TETG 1Y PR TR '|.HI LI Lhpn
aunedpb wyys Bt e, u.-ql.lllgmlqu b T T Sl T Pi-heigfs LRIy
Fanriptairyt "n i =T
el Blegle Teg *arager == i Wit
,mhjuﬁwﬁ, waltie! rylatlag,
LR TR E FIOE] .}
’| [16 008 TR Hatgen = | TR kst
...... bl Buubta, Kb bt
vwwmtmmﬂwh '
:'...:-‘Hl Tuiken [Hillinad nmmg
) § <ip rame: LA AT 1
i

The Elements panel helps you inspect and monitor the
DOM tree and associated style sheet for each of these
components.

The Network panel is useful to understand network
activity. For example, you can monitor the resources
being downloaded over the network in real time.

The most important pane for us is the Sources pane.
This pane is where the JavaScript source and debugger
are displayed. Let's create a sample HTML with the
following content:

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>This test</title>
<script type="text/javascript">
function engageGear(gear){

if(gear==="R"){ console.log
("Reversing");}

iflaear==="N"Y{ cnoncsnle Tnn

("Driving");}

if(gear==="N"){ console.log
("Neutral/Parking");}

throw new Error("Invalid Gear State");

try
{
engageGear ("R"); //Reversing
engageGear ("P"); //Invalid Gear State
}
catch(e){
console.log(e.message);
}
</script>
</head>
<body>
</body>
</html>

Save this HTML file and open it in Google Chrome.
Open DevTools in the browser and you will see the
following screen:

Q E] Elements Network | Sources Timeline Profiles Resowces Audits Console

dsplq;;.es_[l_:ﬂnum scripts Snippers . H:";hlmﬂ.hm‘ﬂ X
¥ D ile gy 3| <heads
v|_ Users/6288/Documents Eta charset="utt-4'>

ctitlesTnis teste/titles
& thistest heml

escript tyse="text/{avascript"s
function engageGearigear)!
{figear==="R"}{ console.log ("Reversing”))}
if{gear==="0"}{ console,log ("Oriving");}
18 iT{gear==="" }{ ronsnie.log E"NFL..'ral,'FH'king"I;}
1 throw new Error("Tovalid Gear State");

LN OER el T T e

3 try

Ul {

15 engeqeGear("A"); //Reversing

16 ! enqeqeGear("™); //Invalid Geer State

18 catehiel

19 console logle. message) s
M}

| <fscripts

{} Line 1 Column 1
Console ; Search [mulation Rendering

% «topframe> ¥ | Proserve log

Aeversing

Tovalid Gear State

This is the view of the Sources panel. You can see the
HTML and embedded JavaScript source in this panel.
You can see the Console window as well. You can see
that the file is executed and output is displayed in the
Console.

On the right-hand side, you will see the debugger
window:

o % 0O,
Bl s ¥t v @

» Watch + C
v Call Stack ~ Async
Not Paused

¥ Scope
Not Paused

v Breakpoints

No Breakpoints
» DOM Breakpoints

» XHR Breakpoints +
» Event Listener Breakpoints

In the Sources panel, click on the line numbers 8 and 15
to add a breakpoint. The breakpoints allow you to stop
the execution of the script at the specified point:

4 <meta charset="utf-8"=>

5 <title>This test</title>

6 <script type="text/javascript"=>
7 function engageGear(gear){

[8] if(gear==="R"){ console.log ("Reversi
g if(gear==="D"){ console.log ("Driving
10 if(gear==="N"){ console.log ("Neutral
11 throw new Error("Invalid Gear State")
12 }
13| try
14 A

ES engageGear("R"); //Reversing
16 : engageGear("P"); //Invalid Gear Stat
17

In the debugging pane, you can see all the existing
breakpoints:

¥ Breakpoints
thistest.html:8

@ thistest.html:15

ifl(gear==="R"){ console.log (.|

engageGear({"R"}); //Reversing

Now, when you rerun the same page, you will see that
the execution stops at the debug point. One very useful
technique is to inject code during the debugging phase.
While the debugger is running, you can add code in
order to help you understand the state of the code better:

[thistest.htmi X | lujp, A ¥ 1 @

1 » Watch + Q

2| <html> ' L

s v Call Stack Async

4| <meta charseta"urf-A"s {ananymaus thistest.hrml:15

51 «etitle=This test</title= function)

6| escripl Lype="lexl/ avascripl's

7 function engageledr|gear){ Paused on a favaSoript breakpeint,
B} if(gear=—="R"){ console.l0q ("Reversing"); S

9 if(gear==="0"){ console.log ("Driving");} | ¥ *%OPe

18 iflgear==="N"){ console.log ("Neutral/Park ¥ Clobal Window

;le throw new Errar(*Invalid Gear State"); v Breakocints

3 il‘}' thistest.html:8

14 iflgear==="R"}{ consale,log (.
IS0 engegeGear("R'); //Reversing S

16 enqsgecear("P'); //Invalid Gesr State | 0 (nistesthtmils

17l } engageGear ("R"); //Reversing

18! catehle){

This window now has all the action. You can see that the
execution is paused on line 15. In the debug window,
you can see which breakpoint is being triggered. You
can see the Call Stack also. You can resume execution
in several ways. The debug command window has a

bunch of actions:

+

[,

t v O |

You can resume execution (which will execute until the

| 2

e

next breakpoint) by clicking on the button. When
you do this, the execution continues until the next
breakpoint is encountered. In our case, we halt at line 8:

1 v Walch + C
2 <html=
3 <head> Na Watch Expressions
4 «<reta charset="utf-A"-
;n <title="his T:!f\:i;iﬂﬁ‘;ﬂ . v Call Stack ASW'IE
1 «script type="text/javascript"s
7 Tuncl_on engageGear (year){ gear = "3" - engageGear thistest.htm:8
D if{year=="3"){ vonsole.luy ("Reversing"); : .
9 if{gear=="0"){ console.log ("Criving™);} Eamr.y?".ws thistest.ntml: 15
10 if(gear=="N"){ console,log ("Neutral/Parp """
ﬂ: . throa new Error("Invalic Gear State"); Pausad an a favaScript breakpaint
13 :try ¥ Scope
2 1 v Local
B} engagebear("R"); //Reversing
16 engagebear ("P"); //Invelid Cear State gear: "R
17 F p this: Window
18 ca:chie_';{ b Global Window
19 console, log(e.message) ; :
0) ¥ Breakooints
fé ;:::EFLW # thistest,rml:8
sl 5 = o P— .1
23 <tody> if{gear=="R"]{ console.log (..
24 </body> € thistest, ;15
25 =/html= engagelear("R"); //Reversing

You can observe that the Call Stack window shows you
how we arrived at line 8. The Scope panel shows the
Local scope where you can see the variables in the
scope when the breakpoint was arrived at. You can also
step into or step over the next function.

There are other very useful mechanisms to debug and
profile your code using Chrome DevTools. | would
suggest you to go experiment with the tool and make it a
part of your regular development flow.

Both the testing and debugging phases are essential to
developing robust JavaScript code. TDD and BDD are
approaches closely associated with the agile
methodology and are widely embraced by the JavaScript
developer community. In this chapter, we reviewed the
best practices around TDD and usage of Jasmine as the
testing framework. We saw various methods of
debugging JavaScript using Chrome DevTools. In the
next chapter, we will explore the new and exciting world
of ES6, DOM manipulation, and cross-browser
strategies.

Chapter 6. ECMAScript 6

So far, we have taken a detailed tour of the JavaScript
programming language. | am sure that you must have
gained significant insight into the core of the language.
What we saw so far was as per the ECMAScript 5 (ES5)
standards. ECMAScript 6 (ES6) or ECMAScript 2015
(ES2015) is the latest version of the ECMAScript
standard. This standard is evolving and the last round of
modifications was done in June, 2015. ES2015 is
significant in its scope and the recommendations of
ES2015 are being implemented in most JavaScript
engines. This is great news. ES6 introduces a huge
number of features that add syntactic forms and helpers
that enrich the language significantly. The pace at which
ECMAScript standards keep evolving makes it a bit
difficult for browsers and JavaScript engines to support
new features. It is also a practical reality that most
programmers have to write code that can be supported
by older browsers. The notorious Internet Explorer 6 was
once the most widely used browser in the world. To
make sure that your code is compatible with the most
number of browsers is a daunting task. So, while you
want to jump to the next set of awesome ES6 features,
you will have to consider the fact that several ES6
features may not be supported by the most popular of
browsers or JavaScript frameworks.

This may look like a dire scenario, but things are not that

dark. Node.js uses the latest version of the V8 engine
that supports majority of ES6 features. Facebook's
React also supports them. Mozilla Firefox and Google
Chrome are two of the most used browsers today and
they support a majority of ES6 features.

To avoid such pitfalls and unpredictability, certain
solutions have been proposed. The most useful among
these are polyfills/shims and transpilers.

Polyfills (also known as shims) are patterns to define
behavior from a new version in a compatible form
supported by an older version of the environment.
There's a great collection of ES6 shims called ES6 shim
(https://github.com/paulmillr/es6-shim/); | would highly
recommend a study of these shims. From the ES6 shim
collection, consider the following example of a shim.

The Number .isFinite() method of the ECMAScript
2015 (ES6) standard determines whether the passed
value is a finite number. The equivalent shim for it would
look something as follows:

var numberIsFinite = Number.isFinite ||
function isFinite(value) {

return typeof value === 'number' &&
globallIsFinite(value);

I 7

The shim first checks if the Number .isFinite()

https://github.com/paulmillr/es6-shim/

method is available; if not, it fills it up with an
implementation. This is a pretty nifty technique to fill in
gaps in specifications. Shims are constantly upgraded
with newer features and, hence, it is a sound strategy to
keep the most updated shims in your project.

NOTE

The endsWith() polyfill is described in detail at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith.
String.endsWith() is part of ES6 but can be polyfilled easily for pre-ES6 environments.

Shims, however, cannot polyfill syntactical changes. For
this, we can consider transpilers as an option.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/endsWith

Transpiling is a technique that combines both
compilation and transformation. The idea is to write ES6-
compatible code and use a tool that transpiles this code
into a valid and equivalent ES5 code. We will be looking
at the most complete and popular transpiler for ES6
called Babel (https://babeljs.io/).

Babel can be used in various ways. You can install it as
a node module and invoke it from the command line or
import it as a script in your web page. Babel's setup is
exhaustive and well-documented at
https://babeljs.io/docs/setup/. Babel also has a great
Read-Eval-Print-Loop (REPL). We will Babel REPL for
most of the examples in this chapter. An in-depth
understanding of various ways in which Babel can be
used is out of the scope of this book. However, | would
urge you to start using Babel as part of your
development workflow.

We will cover the most important part of ES6
specifications in this chapter. You should explore all the
features of ES6 if possible and make them part of your
development workflow.

https://babeljs.io/
https://babeljs.io/docs/setup/

ES6 brings in significant syntactic changes to JavaScript.
These changes need careful study and some getting
used to. In this section, we will study some of the most
important syntax changes and see how you can use
Babel to start using these newer constructs in your code
right away.

Block scoping

We discussed earlier that the variables in JavaScript are
function-scoped. Variables created in a nested scope are
available to the entire function. Several programming
languages provide you with a default block scope where
any variable declared within a block of code (usually
delimited by {}) is scoped (available) only within this
block. To achieve a similar block scope in JavaScript, a
prevalent method is to use immediately-invoked
function expressions (IIFE). Consider the following
example:

var a = 1;
(function blockscope(){
var a = 2;

console.log(a); // 2

1O
console.log(a); // 1

Using the IIFE, we are creating a block scope for the a

variable. When a variable is declared in the IIFE, its
scope is restricted within the function. This is the
traditional way of simulating the block scope. ES6
supports block scoping without using IIFEs. In ES6, you
can enclose any statement(s) in a block defined by {}.
Instead of using var, you can declare a variable using
let to define the block scope. The preceding example
can be rewritten using ES6 block scopes as follows:

"use strict";

var a = 1;

{
let a = 2;
console.log(a); // 2

}
console.log(a); // 1

Using standalone brackets {} may seem unusual in
JavaScript, but this convention is fairly common to create
a block scope in many languages. The block scope kicks
in other constructs suchas if { } orfor (){ } as
well.

When you use a block scope in this way, it is generally
preferred to put the variable declaration on top of the
block. One difference between variables declared using
var and let is that variables declared with var are
attached to the entire function scope, while variables
declared using let are attached to the block scope and
they are not initialized until they appear in the block.
Hence, you cannot access a variable declared with let
earlier than its declaration, whereas with variables

declared using var, the ordering doesn't matter:

function fooey() {
console.log(foo); // ReferenceError
let foo = 5000;

}

One specific use of let is in for loops. When we use a
variable declared using var in a for loop, it is created in
the global or parent scope. We can create a blockscoped
variable in the for loop scope by declaring a variable
using let. Consider the following example:

for (let i = 0; i<5; i++) {
console.log(1i);

}

console.log(i); // i is not defined

As 1 is created using let, it is scoped in the for loop.
You can see that the variable is not available outside the
scope.

One more use of block scopes in ES6 is the ability to
create constants. Using the const keyword, you can
create constants in the block scope. Once the value is
set, you cannot change the value of such a constant:

if(true){

const a=1;

console.log(a);

a=100; ///"a" is read-only, you will
get a TypeError
}

A constant has to be initialized while being declared. The
same block scope rules apply to functions also. When a
function is declared inside a block, it is available only
within that scope.

Default parameters

Defaulting is very common. You always set some default
value to parameters passed to a function or variables
that you initialize. You may have seen code similar to the
following:

function sum(a,b){

a=a/|| o
b=Db|] 0;
return (at+b);

}
console.log(sum(9,9)); //18

console.log(sum(9)); /79

Here, we are using | | (the OR operator) to default
variables a and b to 0 if no value was supplied when this
function was invoked. With ES6, you have a standard
way of defaulting function arguments. The preceding
example can be rewritten as follows:

function sum(a=0, b=0){
return (at+b);

}

console.log(sum(9,9)); //18

console.log(sum(9)); /79

You can pass any valid expression or function call as

part of the default parameter list.

Spread and rest

ES6 has a new operator, ... Based on how it is used, it is
called either spread or rest. Let's look at a trivial
example:

function print(a, b){
console.log(a,b);

}
print(...[21,2]); //1,2

What's happening here is that when you add ... before an
array (or an iterable) it spreads the element of the array
in individual variables in the function parameters. The a
and b function parameters were assigned two values
from the array when it was spread out. Extra parameters
are ignored while spreading an array:

print(...[21,2,3 1); //1,2

This would still print 1 and 2 because there are only two
functional parameters available. Spreads can be used in
other places also, such as array assignments:

var a = [1,2];
var b=[0, ...a, 31;
console.log(b); //[0,1,2,3]

There is another use of the ... operator that is the very
opposite of the one that we just saw. Instead of

spreading the values, the same operator can gather
them into one:

function print (a,...b){
console.log(a,b);

}
console.log(print(1,2,3,4,5,6,7)); //1
[2,3,4,5,6,7]

In this case, the variable b takes the rest of the values.
The a variable took the first value as 1 and b took the
rest of the values as an array.

Destructuring

If you have worked on a functional language such as
Erlang, you will relate to the concept of pattern
matching. Destructuring in JavaScript is something very
similar. Destructuring allows you to bind values to
variables using pattern matching. Consider the following
example:

var [start, end] = [0,5];
for (let i=start; i<end; i++){
console.log(1i);

}
//prints - 0,1,2,3,4

We are assigning two variables with the help of array
destructuring:

var [start, end] = [0,5];

As shown in the preceding example, we want the pattern
to match when the first value is assigned to the first
variable (start) and the second value is assigned to
the second variable (end). Consider the following
snippet to see how the destructuring of array elements
works:

function fn() {

return [1,2,3];
}
var [a,b,c]=fn();
console.log(a,b,c); /7/1 2 3
//We can skip one of them
var [d,,f]=fn();
console.log(d, f); //1 3
//Rest of the values are not used
var [e,] = fn();
console.log(e); //1

Let's discuss how objects' destructuring works. Let's say
that you have a function f that returns an object as
follows:

function f() {

return {
a: 'a',
b: 'b',
c: 'c'
iy

}

When we destructure the object being returned by this
function, we can use the similar syntax as we saw
earlier; the difference is that we use {} instead of []:

var { a: a, b: b, c: ¢c } = f();
console.log(a,b,c); //a b c

Similar to arrays, we use pattern matching to assign
variables to their corresponding values returned by the
function. There is an even shorter way of writing this if
you are using the same variable as the one being
matched. The following example would do just fine:

var { a,b,c } = f();

However, you would mostly be using a different variable
name from the one being returned by the function. It is
important to remember that the syntax is source:
destination and not the usual destination: source.
Carefully observe the following example:

//this is target: source - which is
incorrect

var { x: a, x: b, x: ¢ } = f();
console.log(x,y,z); //x is undefined, y is
undefined z is undefined

//this is source: target correct

var { a: x, b: vy, c: z } = f();
console.log(x,y,z); // abc

This is the opposite of the target = source way of
assigning values and hence will take some time in
getting used to.

Object literals

Object literals are everywhere in JavaScript. You would
think that there is no scope of improvement there.

However, ES6 wants to improve this too. ES6 introduces
several shortcuts to create a concise syntax around
object literals:

var firstname = "Albert", lastname =
"Einstein",
person = {
firstname: firstname,
lastname: lastname

I 7

If you intend to use the same property name as the
variable that you are assigning, you can use the concise
property notation of ES6:

var firstname = "Albert", lastname =
"Einstein",
person = {
firstname,
lastname

I 7

Similarly, you are assigning functions to properties as
follows:

var person = {
getName: function(){
// ..
3
getAge: function(){
// ..

Instead of the preceding lines, you can say the following:

var person = {
getName(){
// ..

1
getAge(){
//..

}
}

Template literals

| am sure you have done things such as the following:

function SuperLogger(level, clazz, msg){
console.log(level+": Exception happened
in class:"+clazz+" - Exception :"+ msg);

}

This is a very common way of replacing variable values
to form a string literal. ES6 provides you with a new type
of string literal using the backtick () delimiter. You can
use string interpolation to put placeholders in a template
string literal. The placeholders will be parsed and
evaluated.

The preceding example can be rewritten as follows:

function SuperLogger(level, clazz, msg){
console.log(${level} : Exception

happened in class: ${clazz} - Exception :

{$msg} ");

}

We are using "~ around a string literal. Within this literal,
any expression of the ${. . } form is parsed

immediately. This parsing is called interpolation. While
parsing, the variable's value replaces the placeholder
within ${}. The resulting string is just a normal string
with the placeholders replaced with actual variable
values.

With string interpolation, you can split a string into
multiple lines also, as shown in the following code (very
similar to Python):

var quote =

"Good night, good night!
Parting is such sweet sorrow,
that I shall say good night
till it be morrow. ;
console.log(quote);

You can use function calls or valid JavaScript
expressions as part of the string interpolation:

function sum(a,b){

console.log(The sum seems to be ${a +
b}");
}

sum(1,2); //The sum seems to be 3

The final variation of the template strings is called
tagged template string. The idea is to modify the
template string using a function. Consider the following
example:

function emmy(key, ...values){
console.log(key);
console.log(values);

}

let category="Best Movie";

let movie="Adventures in ES6";

emmy And the award for ${category} goes to
${movie};

//["And the award for "," goes to ",""]
//["Best Movie", "Adventures in ES6"]

The strangest part is when we call the emmy function
with the template literal. It's not a traditional function call
syntax. We are not writing emmy (); we are just tagging
the literal with the function. When this function is called,
the first argument is an array of all the plain strings (the
string between interpolated expressions). The second
argument is the array where all the interpolated
expressions are evaluated and stored.

Now what this means is that the tag function can actually
change the resulting template tag:

function priceFilter(s, ...v){

//Bump up discount

return s[0]+ (v[0] + 5);
}
let default_discount = 20;
let greeting = priceFilter “Your purchase
has a discount of ${default_discount}
percent;
console.log(greeting); //Your purchase
has a discount of 25

As you can see, we modified the value of the discount in
the tag function and returned the modified values.

Maps and Sets

ES6 introduces four new data structures: Map,
WeakMap, Set, and WeakSet. We discussed earlier that
objects are the usual way of creating key-value pairs in
JavaScript. The disadvantage of objects is that you
cannot use non-string values as keys. The following
snippets demonstrate how Maps are created in ES6:

let m
let s

new Map();
{ 'seq' : 101 };

m.set('1', 'Albert');
m.set('MAX', 99);
m.set(s, 'Einstein');

console.log(m.has('1")); //true
console.log(m.get(s)); //Einstein
console.log(m.size); //3
m.delete(s);

m.clear();

You can initialize the map while declaring it:

let m = new Map([
[1, 'Albert' 1],
[2, 'Douglas'],
[3, 'Clive'],
1);

If you want to iterate over the entries in the Map, you can
use the entries() function that will return you an
iterator. You can iterate through all the keys using the
keys () function and you can iterate through the values

of the Map using the values () function:

let m2 = new Map([

[1, 'Albert' 1],
['Douglas' 1],
[3, 'Clive'],

~

1
2
3

1);
for (let a of m2.entries()){
console.log(a);

}

//[1,"Albert"] [2,"Douglas"][3,"Clive"]

for (let a of m2.keys()){
console.log(a);

}//1 23

for (let a of m2.values()){
console.log(a);

}
//Albert Douglas Clive

A variation of JavaScript Maps is a WeakMap—a
WeakMap does not prevent its keys from being garbage-
collected. Keys for a WeakMap must be objects and the
values can be arbitrary values. While a WeakMap
behaves in the same way as a normal Map, you cannot
iterate through it and you can't clear it. There are
reasons behind these restrictions. As the state of the
Map is not guaranteed to remain static (keys may get
garbage-collected), you cannot ensure correct iteration.

There are not many cases where you may want to use
WeakMap. Most uses of a Map can be written using
normal Maps.

While Maps allow you to store arbitrary values, Sets are
a collection of unique values. Sets have similar methods

as Maps; however, set () is replaced with add(), and
the get () method does not exist. The reason that the
get () method is not there is because a Set has unique
values, so you are interested in only checking whether
the Set contains a value or not. Consider the following
example:

let x {'first': 'Albert'};

let s new Set([1,2, 'Sunday"', x]);
//console.log(s.has(x)); //true
s.add(300);

//console.log(s); //[1,2,"Sunday",
{"first":"Albert"}, 300]

for (let a of s.entries()){
console.log(a);

}

//[1,1]

//[2,2]

//["Sunday", "Sunday"]

//[{"first":"Albert"}, {"first":"Albert"}]

//[300,300]

for (let a of s.keys()){
console.log(a);

}

//1

//2

//Sunday

//{"first":"Albert"}

//300

for (let a of s.values()){
console.log(a);

}

//1

//2

//Sunday

//{"first":"Albert"}

//300

The keys () and values() iterators both return a list of
the unique values in the Set. The entries() iterator
yields a list of entry arrays, where both items of the array
are the unique Set values. The default iterator for a Set
Is its values() iterator.

Symbols

ES6 introduces a new data type called Symbol. A
Symbol is guaranteed to be unique and immutable.
Symbols are usually used as an identifier for object
properties. They can be considered as uniquely
generated IDs. You can create Symbols with the
Symbol() factory method—remember that this is not a
constructor and hence you should not use a new
operator:

let s = Symbol();
console.log(typeof s); //symbol

Unlike strings, Symbols are guaranteed to be unique and
hence help in preventing name clashes. With Symbols,
we have an extensibility mechanism that works for
everyone. ES6 comes with a number of predefined built-
in Symbols that expose various meta behaviors on
JavaScript object values.

Iterators

lterators have been around in other programming

languages for quite some time. They give convenience
methods to work with collections of data. ES6 introduces
iterators for the same use case. ES6 iterators are objects
with a specific interface. Iterators have a next ()
method that returns an object. The returning object has
two properties—value (the next value) and done
(indicates whether the last result has been reached).
ES6 also defines an Iterable interface, which
describes objects that must be able to produce iterators.
Let's look at an array, which is an iterable, and the
iterator that it can produce to consume its values:

var a = [1,2];
var i = a[Symbol.iterator]();

console.log(i.next()); // { value: 1,
done: false }

console.log(i.next()); // { value: 2,
done: false }

console.log(i.next()); // { value:

undefined, done: true }

As you can see, we are accessing the array's iterator via
Symbol.iterator () and calling the next () method
on it to get each successive element. Both value and
done are returned by the next () method call. When
you call next () past the last element in the array, you
get an undefined value and done: true, indicating that
you have iterated over the entire array.

For..of loops

ES6 adds a new iteration mechanism in form of the

for..of loop, which loops over the set of values
produced by an iterator.

The value that we iterate over with for. .of is an
iterable.

Let's compare for..of to for..in:

var list = ['Sunday', 'Monday', 'Tuesday'];
for (let i in list){
console.log(i); //0 1 2
}
for (let i of list){
console.log(i); //Sunday Monday Tuesday

}

As you can see, using the for. .in loop, you can iterate
over indexes of the 1ist array, while the for. .of loop
lets you iterate over the values stored in the 1ist array.

Arrow functions

One of the most interesting new parts of ECMAScript 6

is arrow functions. Arrow functions are, as the name

suggests, functions defined with a new syntax that uses
an arrow (=>) as part of the syntax. Let's first see how

arrow functions look:

//Traditional Function

function multiply(a,b) {
return a*b;

}

//Arrow

var multiply = (a,b) => a*b;

console.log(multiply(1,2)); //2

The arrow function definition consists of a parameter list
(of zero or more parameters and surrounding (..) if
there's not exactly one parameter), followed by the =>
marker, which is followed by a function body.

The body of the function can be enclosed by { .. }if
there's more than one expression in the body. If there's
only one expression, and you omit the surrounding { ..
}, there's an implied return in front of the expression.
There are several variations of how you can write arrow
functions. The following are the most commonly used:

// single argument, single statement
//arg => expression;

var f1 = x => console.log("Just X");
f1(); //Just X

// multiple arguments, single statement
//(argl [, arg2]) => expression;

var f2 = (x,y) => x*y;
console.log(f2(2,2)); //4

// single argument, multiple statements
// arg => {
// statements;
//}
var f3 = x => {
if(x>5){
console.log(x);
}
else {
console.log(x+5);
}

}
£3(6); //6

// multiple arguments, multiple statements

// (larg] [, arg]) => {
// statements
// 3}
var f4 = (x,y) => {
if(x!=0 && y!=0){
return x*y;

}

}
console.log(f4(2,2));//4

// with no arguments, single statement
//() => expression;

var f5 = () => 2*2;

console.log(f5()); //4

//1IFE
console.log((x =>x * 3)(3)); // 9

It is important to remember that all the characteristics of
a normal function parameter are available to arrow
functions, including default values, destructuring, and
rest parameters.

Arrow functions offer a convenient and short syntax,
which gives your code a very functional programming
flavor. Arrow functions are popular because they offer an
attractive promise of writing concise functions by
dropping function, return, and { .. } from the code.
However, arrow functions are designed to fundamentally
solve a particular and common pain point with this-aware
coding. In normal ES5 functions, every new function
defined its own value of this (a new object in case of a
constructor, undefined in strict mode function calls,

context object if the function is called as an object
method, and so on). JavaScript functions always have
their own this and this prevents you from accessing the
this of, for example, a surrounding method from inside
a callback. To understand this problem, consider the
following example:

function CustomStr(str){
this.str = str;

}
CustomStr.prototype.add = function(s){
// -->1

'use strict';
return s.map(function (a){
/] --> 2
return this.str + a;
// -->3
1)
Iy

var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//Cannot read property 'str' of undefined

On the line marked with 3, we are trying to get
this.str, but the anonymous function also has its own
this, which shadows this from the method from line 1.
To fix this in ES5, we can assign this to a variable and
use the variable instead:

function CustomStr(str){
this.str = str;

}

CustomStr.prototype.add = function(s){
'use strict';
var that = this;

// -->1
return s.map(function (a){
/] --> 2
return that.str + a;
// -->3
1);
iy

var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//["Helloworld]

On the line marked with 1, we are assigning this to a
variable, that, and in the anonymous function we are
using the that variable, which will have a reference to
this from the correct context.

ES6 arrow functions have lexical this, meaning that the
arrow functions capture the this value of the enclosing
context. We can convert the preceding function to an
equivalent arrow function as follows:

function CustomStr(str){
this.str = str;
}
CustomStr.prototype.add = function(s){
return s.map((a)=> {
return this.str + a;
});
iy
var customStr = new CustomStr("Hello");
console.log(customStr.add(["World"]));
//["Helloworld]

In this chapter, we discussed a few important features
being added to the language in ESB6. It's an exciting
collection of new language features and paradigms and,
using polyfills and transpilers, you can start with them
right away. JavaScript is an ever growing language and
it is important to understand what the future holds. ES6
features make JavaScript an even more interesting and
mature language. In the next chapter, we will dive deep
into manipulating the browser's Document Object
Model (DOM) and events using JavaScript with jQuery.

Chapter 7. DOM
Manipulation and Events

The most important reason for JavaScript's existence is
the web. JavaScript is the language for the web and the
browser is the raison d'étre for JavaScript. JavaScript
gives dynamism to otherwise static web pages. In this
chapter, we will dive deep into this relationship between
the browser and language. We will understand the way
in which JavaScript interacts with the components of the
web page. We will look at the Document Object Model
(DOM) and JavaScript event model.

In this chapter, we will look at various aspects of
JavaScript with regard to the browser and HTML. HTML,
as | am sure you are aware, is the markup language
used to define web pages. Various forms of markups
exist for different uses. The popular marks are
Extensible Markup Language (XML) and Standard
Generalized Markup Language (SGML). Apart from
these generic markup languages, there are very specific
markup languages for specific purposes such as text
processing and image meta information. HyperText
Markup Language (HTML) is the standard markup
language that defines the presentation semantics of a
web page. A web page is essentially a document. The

DOM provides you with a representation of this
document. The DOM also provides you with a means of
storing and manipulating this document. The DOM is the
programming interface of HTML and allows structural
manipulation using scripting languages such as
JavaScript. The DOM provides a structural
representation of the document. The structure consists
of nodes and objects. Nodes have properties and
methods on which you can operate in order to
manipulate the nodes themselves. The DOM is just a
representation and not a programming construct. DOM
acts as a model for DOM processing languages such as
JavaScript.

Accessing DOM elements

Most of the time, you will be interested in accessing
DOM elements to inspect their values or processing
these values for some business logic. We will take a
detailed look at this particular use case. Let's create a
sample HTML file with the following content:

<html>
<head>
<title>DOM</title>
</head>
<body>
<p>Hello World!</p>
</body>
</html>

You can save this file as sample_dom.html; when you
open this in the Google Chrome browser, you will see

the web page displayed with the Hello World text
displayed. Now, open Google Chrome Developer Tools
by navigating to options | More Tools | Developer Tools
(this route may differ on your operating system and
browser version). In the Developer Tools window, you
will see the DOM structure:

Q, [] | Elements | Network Sources
¥ <head>
<title>D0M</title>
</head=>
¥ <body=>
<p=Hello World!</p=>
</body=>
</html=>

Next, we will insert some JavaScript into this HTML
page. We will invoke the JavaScript function when the
web page is loaded. To do this, we will call a function on
window.onload. You can place your script in the
<script> tag located under the <head> tag. Your page
should look as follows:

<html>
<head>
<title>DOM</title>
<script>
// run this function when the
document is loaded
window.onload = function() {
var doc =
document.documentElement;
var body = doc.body;
var head = doc.firstChild,;
var body doc.lastChild;

var head = doc.childNodes[0];

var title = head.firstChild,;

alert(head.parentNode === doc);
//true

}
</script>
</head>
<body>
<p>Hello World!</p>
</body>
</html>

The anonymous function is executed when the browser
loads the page. In the function, we are getting the nodes
of the DOM programmatically. The entire HTML
document can be accessed using the
document.documentElement function. We store the
document in a variable. Once the document is accessed,
we can traverse the nodes using several helper
properties of the document. We are accessing the
<body> element using doc.body. You can traverse
through the children of an element using the
childNodes array. The first and last children of a node
can be accessed using additional properties
—firstChild and lastChild.

NOTE

It is not recommended to use render-blocking JavaScript in the <head> tag. This slows
down the page render dramatically. Modern browsers support the async and defer
attributes to indicate to the browsers that the rendering can go on while the script is being
downloaded. You can use these tags in the <head> tag without worrying about
performance degradation. You can get more information at
http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-
html-markup.

Accessing specific nodes

http://stackoverflow.com/questions/436411/where-is-the-best-place-to-put-script-tags-in-html-markup

The core DOM defines the getElementsByTagName ()
method to return NodeList of all the element objects
whose tagName property is equal to a specific value.
The following line of code returns a list of all the <p/>
elements in a document:

var paragraphs =
document.getElementsByTagName('p');

The HTML DOM defines getElementsByName() to
retrieve all the elements that have their name attribute
set to a specific value. Consider the following snippet:

<html>
<head>
<title>DOM</title>
<script>
showFeelings = function() {
var feelings =
document .getElementsByName("feeling");

alert(feelings[0].getAttribute("value"));

alert(feelings[1].getAttribute("value"));
}
</script>
</head>
<body>
<p>Hello World!</p>
<form method="post" action="post">
<fieldset>
<p>How are you feeling today?<p>
<input type="radio" name="feeling"
value="Happy" > Happy

<input type="radio" name="feeling"
value="Sad" >Sad

</fieldset>

<input type="button" value="Submit"
onClick="showFeelings()">
<form>
</body>
</html>

In this example, we are creating a group of radio buttons
with the name attribute defined as feeling. In the
showFeelings function, we get all the elements with
the name attribute set to feeling and we iterate
through all these elements.

The other method defined by the HTML DOM is
getElementById(). Thisis a very useful method in
accessing a specific element. This method does the
lookup based on the id associated with an element. The
id attribute is unique for every element and, hence, this
kind of lookup is very fast and should be preferred over
getElementsByName(). -However, you should be
aware that the browser does not guarantee the
uniqueness of the id attribute. In the following example,
we are accessing a specific element using the ID.
Element IDs are unique as opposed to tags or name
attributes:

<html>
<head>
<title>DOM</title>
<script>
window.onload= function() {
var greeting =
document.getElementById("greeting");
alert(greeting.innerHTML); //shows
"Hello World" alert

}

</script>
</head>
<body>
<p id="greeting">Hello World!</p>
<p id="identify">Earthlings</p>
</body>
</html>

What we discussed so far was the basics of DOM
traversal in JavaScript. When the DOM gets complex
and you want sophisticated operations on the DOM,
these traversal and access functions seem limiting. With
this basic knowledge with us, it's time to get introduced
to a fantastic library for DOM traversal (among other
things) called jQuery.

jQuery is a lightweight library designed to make common
browser operations easier. Common operations such as
DOM traversal and manipulation, event handling,
animation, and Ajax can be tedious if done using pure
JavaScript. jQuery provides you with easy-to-use and
shorter helper mechanisms to help you develop these
common operations very easily and quickly. jQuery is a
feature-rich library, but as far as this chapter goes, we
will focus primarily on DOM manipulation and events.

You can add jQuery to your HTML by adding the script
directly from a content delivery network (CDN) or
manually downloading the file and adding it to the script
tag. The following example shows you how to download
jQuery from Google's CDN:

<ntmit~>

<head>

<script

src="https://ajax.googleapis.com/ajax/1libs
/jquery/2.1.4/jquery.min.js"></script>

</head>

<body>

</body>
</html>

The advantage of a CDN download is that Google's CDN
automatically finds the nearest download server for you
and keeps an updated stable copy of the jQuery library.
If you wish to download and manually host jQuery along
with your website, you can add the script as follows:

<script src="./lib/jquery.js"></script>

In this example, the jQuery library is manually
downloaded in the 1ib directory. With the jQuery setup
in the HTML page, let's explore the methods of
manipulating the DOM elements. Consider the following
example:

<html>
<head>
<script
src="https://ajax.googleapis.com/ajax/1libs
/jquery/2.1.4/jquery.min.js"></script>
<script>
$(document) .ready(function() {
$('#greeting').html('Hello World
Martian');
});
</script>
</head>

<body>
<p id="greeting">Hello World Earthling
I </p>
</body>
</html>

After adding jQuery to the HTML page, we write the
custom JavaScript that selects the element with a
greeting ID and changes its value. The strange-
looking code within $() is the jQuery in action. If you
read the jQuery source code (and you should, it's
brilliant) you will see the final line:

// Expose jQuery to the global object
window.jQuery = window.$ = jQuery;

The $ is just a function. It is an alias for the function
called jQuery. The $ is a syntactic sugar that makes the
code concise. In fact, you can use both $ and jQuery
interchangeably. For example, both
$('#greeting').html('Hello World
Martian'); and
jQuery('#greeting').html('Hello World
Martian'); are the same.

You can't use jQuery before the page is completely
loaded. As jQuery will need to know all the nodes of the
DOM structure, the entire DOM has to be in-memory. To
ensure that the page is completely loaded and in a state
where it's ready to be manipulated, we can use the
$(document) .ready() function. Here, the IIFE is
executed only after the entire documented is ready:

$(document).ready(function() {
$('#greeting').html('Hello World
Martian');

¥

This snippet shows you how we can associate a function
to jQuery's . ready () function. This function will be
executed once the document is ready. We are using
$(document) to create a jQuery object from our page's
document. We are calling the . ready () function on the
jQuery object and passing it the function that we want to
execute.

This is a very common thing to do when using jQuery—
so much so that it has its own shortcut. You can replace
the entire ready () call with a short $() call:

$(function() {
$('#greeting').html('Hello World
Martian');

¥

The most important function in jQuery is $(). This
function typically accepts a CSS selector as its sole
parameter and returns a new jQuery object pointing to
the corresponding elements on the page. The three
primary selectors are the tag name, ID, and class. They
can be used either on their own or in combination with
others. The following simple examples illustrate how
these three selectors appear in code:

Se

CSS |jQuery

le |Sele |Selecto
ct |ctor |r
or

Output from the selector

Ta|p{} |$('p") |This selects all the p tags from the document.

Id [#div|$('#d1 |This selects single elements that have a div_1 ID.
_1 |v_1") |[The symbol used to identify the ID is #.

Cl [.bol|$('.bo|This selects all the elements in the document that
as |d_fo|ld_fon |have the CSS class bold_fonts. The symbol used to
s |nts |ts') identify the class matchis".".

jQuery works on CSS selectors.

NOTE

As CSS selectors are not in the scope of this book, | would suggest that you go to
http://www.w3.0rg/TR/CSS2/selector.html to get a fair idea of the concept.

We also assume that you are familiar with HTML tags
and syntax. The following example covers the
fundamental idea of how jQuery selectors work:

<html>
<head>
<script
src="https://ajax.googleapis.com/ajax/1libs
/jquery/2.1.4/jquery.min.js"></script>
<script>

http://www.w3.org/TR/CSS2/selector.html

$(function() {
$('h1').html(function(index,
01dHTML) {
return oldHTML + "Finally?";
});
$('h1').addClass('highlight-
blue');
$('#header > hi
').css('background-color', 'cyan');
$('ul li:not(.highlight-
blue)').addClass('highlight-green');
$('tr:nth-
child(odd)').addClass('zebra');
});
</script>
<style>
.highlight-blue {
color: blue;
}
.highlight-green{
color: green;

}
.zebra{
background-color: #666666;
color: white;
}
</style>
</head>
<body>

<div id=header>
<hl>Are we there yet ? </h1>

<p>Journey to Mars</p>

First</1i>
Second</1i>
<li
class="highlight-blue">Third</1i>

<table>
<tr><th>Id</th><th>First
name</th><th>Last Name</th></tr>

<tr><td>1</td><td>Albert</td><td>Einstein<
/td></tr>

<tr><td>2</td><td>Issac</td><td>Newton</td
></tr>

<tr><td>3</td><td>Enrico</td><td>Fermi</td
></tr>

<tr><td>4</td><td>Richard</td><td>Feynman<
/td></tr>
</table>
</div>
</body>
</html>

In this example, we are selecting several DOM elements
in the HTML page using selectors. We have an H1
header with the text, Are we there yet ?;when the
page loads, our jQuery script accesses all H1 headers
and appends the text Finally? to them:

$('h1").html(function(index, oldHTML){
return oldHTML + "Finally ?";

¥

The $.html() function sets the HTML for the target
element—an H1 header in this case. Additionally, we
select all H1 headers and apply a specific CSS style
class, highlight-blue, to all of them. The
$('h1').addClass('highlight-blue') statement
selects all the H1 headers and uses the

$.addClass(<CSS class>) method to apply a CSS
class to all the elements selected using the selector.

We use the child combinator (>) to custom CSS styles
using the $.css() function. In effect, the selector in the
$() function is saying, "Find each header (h1) thatis a
child (>) of the element with an ID of header (#¥header)."
For each such element, we apply a custom CSS. The
next usage is interesting. Consider the following line:

$('ul li:not(.highlight-
blue)').addClass('highlight-green');

We are selecting "For all list elements (11) that do not
have the class highlight-blue applied to them, apply
CSS class highlight-green. The final line
—$('tr:nth-child(odd)').addClass('zebra')
—can be interpreted as: From all table rows (tr), for
every odd row, apply CSS style zebra. The nth-child
selector is a custom selector provided by jQuery. The
final output looks something similar to the following
(Though it shows several jQuery selector types, it is very
clear that knowledge of jQuery is not a substitute for bad
design taste.):

Are we there yet ? Finally?

Journey to Mars

e First
s Second
s Third

Id[First namelLast Name

1 Albert Einstein

Issac Newton

3 Enrwco Fernu

4 |Richard

Once you have made a selection, there are two broad
categories of methods that you can call on the selected
element. These methods are getters and setters.
Getters retrieve a piece of information from the selection,
and setters alter the selection in some way.

Getters usually operate only on the first element in a
selection while setters operate on all the elements in a
selection. Setters use implicit iteration to automatically
iterate over all the elements in the selection.

For example, we want to apply a CSS class to all list
items on the page. When we call the addClass method
on the selector, it is automatically applied to all elements
of this particular selection. This is implicit iteration in
action:

$('li').addClass(highlighted');

However, sometimes you just don't want to go through
all the elements via implicit iteration. You may want to

selectively modify only a few of the elements. You can
explicitly iterate over the elements using the .each()
method. In the following code, we are processing
elements selectively and using the index property of the
element:

$('1li').each(function(index, element)

{
if(index % 2 == 0)
$(elem).prepend('' + STATUS +
'');
3);

Chaining jQuery methods allows you to call a series of
methods on a selection without temporarily storing the
intermediate values. This is possible because every
setter method that we call returns the selection on which
it was called. This is a very powerful feature and you will
see it being used by many professional libraries.
Consider the following example:

$('#button_submit')
.click(function() {
$(this).addClass('submit_clicked'
)
1)
.find('#notification')
.attr('title', 'Message Sent');x

In this snippet, we are chaining click(), find(), and
attr () methods on a selector. Here, the click()
method is executed, and once the execution finishes, the
find() method locates the element with the
notification ID and changes its title attribute to a
string.

We discussed various methods of element selection
using jQuery. We will discuss several DOM traversal and
manipulation methods using jQuery in this section.
These tasks would be rather tedious to achieve using
native DOM manipulation. jQuery makes them intuitive
and elegant.

Before we delve into these methods, let's familiarize
ourselves with a bit of HTML terminology that we will be
using from now on. Consider the following HTML:

 <-This is the parent of both 'li' and
ancestor of everything in
 <-The first (1i) is a child of the
(ul)
 <-this is the descendent of
the 'ul'
<i>Hello</i>

</1i>
World</1li> <-both 'li' are siblings

Using jQuery traversal methods, we select the first
element and traverse through the DOM in relation to this
element. As we traverse the DOM, we alter the original
selection and we are either replacing the original
selection with the new one or we are modifying the
original selection.

For example, you can filter an existing selection to
include only elements that match a certain criterion.
Consider this example:

var list = $('1li'); //select all list
elements

// filter items that has a class
'highlight' associated

var highlighted = list.filter('.highlight
)

// filter items that doesn't have class
'highlight' associated

var not_highlighted = list.not(
'.highlight);

jQuery allows you to add and remove classes to
elements. If you want to toggle class values for
elements, you can use the toggleClass() method:

$('#usename').addClass('hidden');
$('#usename').removeClass('hidden');
$('#usename').toggleClass('hidden');

Most often, you may want to alter the value of elements.
You can use the val () method to alter the form of
element values. For example, the following line alters the
value of all the text type inputs in the form:

$('input[type="text"]').val('Enter
usename:');

To modify element attributes, you can use the attr ()
method as follows:

K'a'") attr('"title' 'Click' Y-

W\ W Jrmieer | e] o 77

jQuery has an incredible depth of functionality when it
comes to DOM manipulation—the scope of this book
restricts a detailed discussion of all the possibilities.

When are you developing for browsers, you will have to
deal with user interactions and events associated to
them, for example, text typed in the textbox, scrolling of
the page, mouse button press, and others. When the
user does something on the page, an event takes place.
Some events are not triggered by user interaction, for
example, 1oad event does not require a user input.

When you are dealing with mouse or keyboard events in
the browser, you can't predict when and in which order
these events will occur. You will have to constantly look
for a key press or mouse move to happen. It's like
running an endless background loop listening to some
key or mouse event to happen. In traditional
programming, this was known as polling. There were
many variations of these where the waiting thread used
to be optimized using queues; however, polling is still not
a great idea in general.

Browsers provide a much better alternative to polling.
Browsers provide you with programmatic means to react
when an event occurs. These hooks are generally called
listeners. You can register a listener that reacts to a
particular event and executes an associated callback
function when the event is triggered. Consider this

example:

<script>
addeEventListener("click", function() {

¥

</script>

The addEventListener function registers its second
argument as a callback function. This callback is
executed when the event specified in the first argument
IS triggered.

What we saw just now was a generic listener for the
click event. Similarly, every DOM element has its own
addEventListener method, which allows you to listen
specifically on this element:

<button>Submit</button>
<p>No handler here.</p>
<script>

var button =
document.getElementById("#Bigbutton");

button.addEventListener("click",
function() {

console.log("Button clicked.");

¥

</script>

In this example, we are using the reference to a specific
element—a button with a Bigbutton ID—Dby calling
getElementById(). On the reference of the button
element, we are calling addEventListener () to
assign a handler function for the click event. This is

perfectly legitimate code that works fine in modern
browsers such as Mozilla Firefox or Google Chrome. On
Internet Explorer prior to IE9, however, this is not a valid
code. This is because Microsoft implements its own
custom attachEvent () method as opposed to the
W3C standard addEventListener () prior to Internet
Explorer 9. This is very unfortunate because you will
have to write very bad hacks to handle browser-specific
quirks.

At this point, we should ask an important question—if an
element and one of its ancestors have a handler on the
same event, which handler will be fired first? Consider
the following figure:

Element1

Element2

onClick()

onClick()

For example, we have Element2 as a child of Elementl
and both have the onClick handler. When a user clicks
on Element2, onClick on both Element2 and Elementl
IS triggered but the question is which one is triggered
first. What should the event order be? Well, the answer,
unfortunately, is that it depends entirely on the browser.
When browsers first arrived, two opinions emerged,
naturally, from Netscape and Microsoft.

Netscape decided that the first event triggered should be
Elementl's onClick. This event ordering is known as
event capturing.

Microsoft decided that the first event triggered should be
Element2's onClick. This event ordering is known as

event bubbling.

These are two completely opposite views and
implementations of how browsers handled events. To
end this madness, World Wide Web Consortium
(W3C) decided a wise middle path. In this model, an
event is first captured until it reaches the target element
and then bubbles up again. In this standard behavior,
you can choose in which phase you want to register your
event handler—either in the capturing or bubbling phase.
If the last argument is true in addEventListener (),
the event handler is set for the capturing phase, if it is
false, the event handler is set for the bubbling phase.

There are times when you don't want the event to be
raised by the parents if it was already raised by the child.
You can call the stopPropagation() method on the
event object to prevent handlers further up from
receiving the event. Several events have a default action
associated with them. For example, if you click on a URL
link, you will be taken to the link's target. The JavaScript
event handlers are called before the default behavior is
performed. You can call the preventDefault()
method on the event object to stop the default behavior
from being triggered.

These are event basics when you are using plain
JavaScript on a browser. There is a problem here.
Browsers are notorious when it comes to defining event-
handling behavior. We will look at jQuery's event
handling. To make things easier to manage, jQuery

always registers event handlers for the bubbling phase
of the model. This means that the most specific elements
will get the first opportunity to respond to any event.

jQuery event handling takes care of many of these
browser quirks. You can focus on writing code that runs
on most supported browsers. jQuery's support for
browser events is simple and intuitive. For example, this
code listens for a user to click on any button element on
the page:

$('button').click(function(event) {
console.log('Mouse button clicked');

¥

Just like the c1ick () method, there are several other helper
methods to cover almost all kinds of browser event. The
following helpers exist:

e blur

e change

e click

e dblclick
e error

e focus

e keydown
e keypress
e keyup

e load

e mousedown
e mousemove
e mouseout
e mouseover
e mouseup

e resize

e scroll

e select

e submit

e unload

Alternatively, you can use the . on() method. There are a few
advantages of using the on() method as it gives you a lot
more flexibility. The on() method allows you to bind a
handler to multiple events. Using the on() method, you can

work on custom events as well.

Event name is passed as the first parameter to the on ()

method just like the other methods that we saw:

$('button').on('click', function(event)

{

console.log(' Mouse button clicked');

¥

Once you've registered an event handler to an element, you
can trigger this event as follows:

$('button').trigger('click');

This event can also be triggered as follows:

$('button').click();

You can unbind an event using jQuery's . 0T () method. This will remove any

event handlers that were bound to the specified event:

$('button').off('click');

You can add more than one handler to an element:

$("#element")
.on("click", firstHandler)
.on("click", secondHandler);

When the event is fired, both the handlers will be invoked. If you want to
remove only the first handler, you can use the of f () method with the second

parameter indicating the handler that you want to remove:

$("#element).off("click", firstHandler);

This is possible if you have the reference to the handler. If you are using
anonymous functions as handlers, you can't get reference to them. In this case,
you can use namespaced events. Consider the following example:

$("#element").on("click.firstclick", function() {
console.log("first click");

¥

Now that you have a namespaced event handler registered with the element, you

can remove it as follows:

$("#element).off("click.firstclick");

A major advantage of using .on() is that you can bind to multiple events at
once. The .on() method allows you to pass multiple events in a space-

separated string. Consider the following example:

$('#inputBoxUserName').on('focus blur', function() {
console.log(Handling Focus or blur event');

¥

You can add multiple event handlers for multiple events as follows:

$("#heading").on({
mouseenter: function() {
console.log("mouse entered on heading");

i

mouseleave: function() {
console.log("mouse left heading");

i

click: function() {
console.log("clicked on heading");

}
¥

As of jQuery 1.7, all events are bound via the on () method, even if you call
helper methods such as click(). Internally, jQuery maps these calls to the
on() method. Due to this, it's generally recommended to use the on() method

for consistency and faster execution.

Event delegation allows us to attach a single event
listener to a parent element. This event will fire for all the
descendants matching a selector even if these
descendants will be created in the future (after the
listener was bound to the element).

We discussed event bubbling earlier. Event delegation in
jQuery works primarily due to event bubbling. Whenever
an event occurs on a page, the event bubbles up from
the element that it originated from, up to its parent, then
up to the parent's parent, and so on, until it reaches the
root element (window). Consider the following example:

<html>
<body>
<div id="container">
<ul id="1list">
Google</1i>
Myntra</1i>
Bing</1i>

</div>
</body>
</html>

Now let's say that we want to perform some common
action on any of the URL clicks. We can add an event

handler to all the a elements in the list as follows:

$("#list a").on("click", function(
event) {
console.log($(this).text());

¥

This works perfectly fine, but this code has a minor bug.
What will happen if there is an additional URL added to
the list as a result of some dynamic action? Let's say that
we have an Add button that adds new URLS to this list.
So, if the new list item is added with a new URL, the
earlier event handler will not be attached to it. For
example, if the following link is added to the list
dynamically, clicking on it will not trigger the handler that
we just added:

Yahoo
</1li>

This is because such events are registered only when
the on () method is called. In this case, as this new
element did not exist when .on () was called, it does not
get the event handler. With our understanding of event
bubbling, we can visualize how the event will travel up
the DOM tree. When any of the URLs are clicked on, the
travel will be as follows:

a(click)->1i->ul#list->div#container -
>body->html->root

We can create a delegated event as follows:

$("#list").on("click", "a", function(
event) {
console.log($(this).text());

¥

We moved a from the original selector to the second
parameter in the on() method. This second parameter
of the on () method tells the handler to listen to this
specific event and check whether the triggering element
was the second parameter (the a in our case). As the
second parameter matches, the handler function is
executed. With this delegate event, we are attaching a
single handler to the entire ul#1ist. This handler will
listen to the click event triggered by any descendent of
the ul element.

So far, we attached anonymous functions as event
handlers. To make our event handlers more generic and
useful, we can create named functions and assign them
to the events. Consider the following lines:

function handlesClicks(event){
//Handle click event

}
$("#bigButton").on('click',
handlesClicks);

Here, we are passing a named function instead of an
anonymous function to the on () method. Let's shift our
focus now to the event parameter that we pass to the
function. jQuery passes an event object with all the event
callbacks. An event object contains very useful
information about the event being triggered. In cases
where we don't want the default behavior of the element
to kick in, we can use the preventDefault () method
of the event object. For example, we want to fire an
AJAX request instead of a complete form submission or
we want to prevent the default location to be opened
when a URL anchor is clicked on. In these cases, you
may also want to prevent the event from bubbling up the
DOM. You can stop the event propagation by calling the
stopPropagation() method of the event object.
Consider this example:

$("#loginform").on("submit", function(
event) {

// Prevent the form's default
submission.

event.preventDefault();

// Prevent event from bubbling up DOM
tree, also stops any delegation

event.stopPropagation();

¥

Apart from the event object, you also get a reference to
the DOM object on which the event was fired. This
element can be referred by $(this). Consider the
following example:

$("a").click(function(event) {
var anchor = $(this);
if (anchor.attr("href").match(
"google")) {
event.preventDefault();
}
1);

This chapter was all about understanding JavaScript in
its most important role—that of browser language.
JavaScript plays the role of introducing dynamism on the
web by facilitating DOM manipulation and event
management on the browser. We discussed both of
these concepts with and without jQuery. As the demands
of the modern web are increasing, using libraries such
as jQuery is essential. These libraries significantly
improve the code quality and efficiency and, at the same
time, give you the freedom to focus on important things.

We will focus on another incarnation of JavaScript—
mainly on the server side. Node.js has become a popular
JavaScript framework to write scalable server-side
applications. We will take a detailed look at how we can
best utilize Node.js for server applications.

Chapter 8. Server-Side
JavaScript

We have been focusing so far on the versatility of
JavaScript as the language of the browser. It speaks
volumes about the brilliance of the language given that
JavaScript has gained significant popularity as a
language to program scalable server systems. In this
chapter, we will look at Node.js. Node.js is one of the
most popular JavaScript frameworks used for server-
side programming. Node.js is also one of the most
watched project on GitHub and has superb community
support.

Node uses V8, the virtual machine that powers Google
Chrome, for server-side programming. V8 gives a huge
performance benefit to Node because it directly compiles
the JavaScript into native machine code over executing
bytecode or using an interpreter as a middleware.

The versatility of V8 and JavaScript is a wonderful
combination—the performance, reach, and overall
popularity of JavaScript made Node an overnight
success. In this chapter, we will cover the following
topics:

e An asynchronous evented-model in a browser and Node.js

e Callbacks

e Timers
e EventEmitters

e Modules and npm

Before we try to understand Node, let's try to understand

JavaScript in a browser.

Node relies on event-driven and asynchronous platforms
for server-side JavaScript. This is very similar to how
browsers handle JavaScript. Both the browser and Node
are event-driven and non-blocking when they use I/0.

To dive deeper into the event-driven and asynchronous
nature of Node.js, let's first do a comparison of the
various kinds of operations and costs associated with

them:

L1 cache read

0.5 nanoseconds

L2 cache read

7 nanoseconds

RAM

100 nanoseconds

Read 4 KB randomly from SSD

150,000 ns

Read 1 MB sequentially from SSD 1,000,000 ns

Read 1 MB sequentially from disk 20,000,000 ns

These numbers are from
https://gist.github.com/jboner/2841832 and show how
costly Input/Output (1/O) can get. The longest
operations taken by a computer program are the 1/0O
operations and these operations slow down the overall
program execution if the program keeps waiting on these
I/O operations to finish. Let's see an example of such an
operation:

console.log("1");
var log =
fileSystemReader.read("./verybigfile.txt")

4

console.log("2");

When you call fileSystemReader.read(), you are
reading a file from the filesystem. As we just saw, I/O is
the bottleneck here and can take quite a while before the
read operation is completed. Depending on the kind of
hardware, filesystem, OS, and so on, this operation will
block the overall program execution quite a bit. The
preceding code does some I/O that will be a blocking
operation—the process will be blocked till I/O finishes
and the data comes back. This is the traditional 1/0

https://gist.github.com/jboner/2841832

model and most of us are familiar with this. However,
this is costly and can cause terribly latency. Every
process has associated memory and state—both these
will be blocked till I/O is complete.

If a program blocks 1/O, the Node server will refuse new
requests. There are several ways of solving this
problem. The most popular traditional approach is to use
several threads to process requests—this technique is
known as multithreading. If are you familiar with
languages such as Java, chances are that you have
written multithreaded code. Several languages support
threads in various forms—a thread essentially holds its
own memory and state. Writing multithreaded
applications on a large scale is tough. When multiple
threads are accessing a common shared memory or
values, maintaining the correct state across these
threads is a very difficult task. Threads are also costly
when it comes to memory and CPU utilization. Threads
that are used on synchronized resources may eventually
get blocked.

The browser handles this differently. 1/O in the browser
happens outside the main execution thread and an event
is emitted when 1/O finishes. This event is handled by the
callback function associated with that event. This type of
I/O is non-blocking and asynchronous. As I/O is not
blocking the main execution thread, the browser can
continue to process other events as they come without
waiting on any 1/O. This is a powerful idea.
Asynchronous I/O allows browsers to respond to several

events and allows a high level of interactivity.

Node uses a similar idea for asynchronous processing.
Node's event loop runs as a single thread. This means
that the application that you write is essentially single-
threaded. This does not mean that Node itself is single-
threaded. Node uses libuv and is multithreaded—
fortunately, these details are hidden within Node and you
don't need to know them while developing your
application.

Every call that involves an I/O call requires you to
register a callback. Registering a callback is also
asynchronous and returns immediately. As soon as an
I/O operation is completed, its callback is pushed on the
event loop. It is executed as soon as all the other
callbacks that were pushed on the event loop before are
executed. All operations are essentially thread-safe,
primarily because there is no parallel execution path in
the event loop that will require synchronization.

Essentially, there is only one thread running your code
and there is no parallel execution; however, everything
else except for your code runs in parallel.

Node.js relies on libev
(http://software.schmorp.de/pkg/libev.html) to provide the
event loop, which is supplemented by libeio
(http://software.schmorp.de/pkg/libeio.html) that uses
pooled threads to provide asynchronous I/O. To learn
even more, take a look at the libev documentation at

http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libeio.html

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod.

Consider the following example of asynchronous code
execution in Node.js:

var fs = require('fs');
console.log('1");
fs.readFile('./response.json', function
(error, data) {
if(lerror){
console.log(data);

¥

console.log('2");

In this program, we read the response. json file from
the disk. When the disk I/O is finished, the callback is
executed with parameters containing the argument's
error, if any error occurred, and data, which is the file
data. What you will see in the console is the output of
console.log('1"') and console.log('2") one
immediately after another:

http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod

el Loap

..... k 1. 10 ra U mata -
£.g.owiont 2 resouree fama UAL
§ Reegingge iecaivid
and calloack lunction ks ellad
Wb gitRakabeca™ L Furumserarse g, LT, i1
diimaeat bt ot
e iR 20 gue e
lik -;a:'..'m'.!l:r'“.':.:um.{'|||:i:!:."-':,-mr:.mr.f'nlmr"l.g' full%l:d'l:lrl',ﬂr.'.\]{ r;g.duwnhada resmurce ram a LR,
Pﬁn‘nl&ﬂf-;ﬂﬂi’lld‘[ﬂ:ﬂ‘, B Rsspomat rethnd
i ' and eadibak function is ealicd
i i
\
l\ 4, Ancdher VD & riggered
|
3, Andthar Cirt 8 frigiarad

Node.js does not need any additional server component
as it creates its own server process. A Node application
is essentially a server running on a designated port. In
Node, the server and application are the same.

Here is an example of a Node.js server responding with
the Hello Node string when the
http://localhost:3000/ URL is run from a
browser:

var http = require('http');
var server = http.createServer();
server.on('request', function (req, res) {
res.writeHead (200, {'Content-Type':
"text/plain'});
res.end('Hello Node\n');
3);

server.listen(3000);

In this example, we are using an http module. If you
recall our earlier discussions on the JavaScript module,
you will realize that this is the CommonJS module
implementation. Node has several modules compiled
into the binary. The core modules are defined within
Node's source. They can be located in the 1ib/ folder.

They are loaded first if their identifier is passed to
require(). For instance, require('http') will
always return the built-in HTTP module, even if there is a
file by this name.

After loading the module to handle HTTP requests, we
create a server object and use a listener for a
request event using the server.on() function. The
callback is called whenever there is a request to this
server on port 3000. The callback receives request
and response parameters. We are also setting the
Content-Type header and HTTP response code
before we send the response back. You can copy the
preceding code, save it in a plain text file, and name it
app.js. You can run the server from the command line
using Node.js as follows:

$ » node app.js

Once the server is started, you can open the
http://localhost:3000 URL in a browser and you
will be greeted with unexciting text:

&= C | localhost:3000

Hello Hode

If you want to inspect what's happening internally, you
can issue a curl command as follows:

~ » curl -v http://localhost:3000
Rebuilt URL to: http://localhost:3000/

Trying ::1...
Connected to localhost (::1) port 3000
(#0)

> GET HTTP1.1

Host: localhost:3000
User-Agent: curl/7.43.0
Accept: /*

HTTP/1.1 200 OK

Content-Type: text/plain

Date: Thu, 12 Nov 2015 05:31:44 GMT
Connection: keep-alive
Transfer-Encoding: chunked

AN NN N ANV V V V

Hello Node
* Connection #0 to host localhost left
intact

Curl shows a nice request (>) and response (<) dialog
including the request and response headers.

Callbacks in JavaScript usually take some time getting
used to. If you are coming from some other non-
asynchronous programming background, you will need
to understand carefully how callbacks work; you may feel
like you're learning programming for the first time. As
everything is asynchronous in Node, you will be using
callbacks for everything without trying to carefully
structure them. The most important part of the Node.js
project is sometimes the code organization and module
management.

Callbacks are functions that are executed
asynchronously at a later time. Instead of the code
reading top to bottom procedurally, asynchronous
programs may execute different functions at different
times based on the order and speed that earlier
functions such as HTTP requests or filesystem reads
happen.

Whether a function execution is sequential or
asynchronous depends on the context in which it is
executed:

var 1i=0;

function add(num){
console.log(1i);
i=i+num;

}

addl(1AM -

wuuy o
console.log(1i);

If you run this program using Node, you will see the
following output (assuming that your file is named

app.js):

~/Chapter9 » node app.js
0]
100

This is what we are all used to. This is traditional
synchronous code execution where each line is
executed in a sequence. The code here defines a
function and then on the next line calls this function,
without waiting for anything. This is sequential control
flow.

Things will be different if we introduced 1/O to this
sequence. If we try to read something from the file or call
a remote endpoint, Node will execute these operations in
an asynchronous fashion. For the next example, we are
going to use a Node.js module called request. We will
use this module to make HTTP calls. You can install the
module as follows:

npm install request

We will discuss the use of npm later in this chapter.
Consider the following example:

var request = require('request');
var status = undefined;
request('http://aooale.com', function

(error, response, body) {
if ('error && response.statusCode ==
200) {
status_code = response.statusCode;

}
¥

console.log(status);

When you execute this code, you will see that the value
of the status variable is still undefined. In this
example, we are making an HTTP call—this is an 1/0
operation. When we do an 1/O operation, the execution
becomes asynchronous. In the earlier example, we are
doing everything within the memory and there was no
I/O involved, hence, the execution was synchronous.
When we run this program, all of the functions are
immediately defined, but they don't all execute
immediately. The request () function is called and the
execution continues to the next line. If there is nothing to
execute, Node will either wait for 1/O to finish or it will
exit. When the request () function finishes its work, it
will execute the callback function (an anonymous
function as the second parameter to the request ()
function). The reason that we got undefined in the
preceding example is that nowhere in our code exists the
logic that tells the console.log() statement to wait
until the request () function has finished fetching the
response from the HTTP call.

Callbacks are functions that get executed at some later
time. This changes things in the way you organize your
code. The idea around reorganizing the code is as

follows:

e Wrapping the asynchronous code in a function

e Passing a callback function to the wrapper function

We will organize our previous example with these two
ideas in mind. Consider this modified example:

var request = require('request');
var status = undefined;
function getSiteStatus(callback){
request('http://google.com', function
(error, response, body) {
if ('error && response.statusCode ==

200) {
status_code = response.statusCode;
}
callback(status_code);
});
}

function showStatusCode(status){
console.log(status);

}
getSiteStatus(showStatusCode);

When you run this, you will get the following (correct)
output:

$node app.js
200

What we changed was to wrap the asynchronous code
ina getSiteStatus() function, pass a function
named callback() as a parameter to this function,
and execute this function on the last line of
getSiteStatus(). The showStatusCode() callback

function simply wraps around console.log() that we
called earlier. The difference, however, is in the way the
asynchronous execution works. The most important idea
to understand while learning how to program with
callbacks is that functions are first-class objects that can
be stored in variables and passed around with different
names. Giving simple and descriptive names to your
variables is important in making your code readable by
others. Now that the callback function is called once the
HTTP call is completed, the value of the status_code
variable will have a correct value. There are genuine
circumstances where you want an asynchronous task
executed only after another asynchronous task is
completed. Consider this scenario:

http.createServer(function (req, res) {
getURL(url, function (err, res) {
getURLContent(res.data,
function(err,res) {

¥
¥
¥

As you can see, we are nesting one asynchronous
function in another. This kind of nesting can result in
code that is difficult to read and manage. This style of
callback is sometimes known as callback hell. To avoid
such a scenario, if you have code that has to wait for
some other asynchronous code to finish, then you
express that dependency by putting your code in
functions that get passed around as callbacks. Another

important idea is to name your functions instead of
relying on anonymous functions as callbacks. We can
restructure the preceding example into a more readable
one as follows:

var urlContentProcessor = function(data){

}

var urlResponseProcessor = function(data){
getURLContent(data,urlContentProcessor);

}

var createServer = function(req,res){
getURL(url,urlResponseProcessor);

I 7

http.createServer(createServer);

This fragment uses two important concepts. First, we are
using named functions and using them as callbacks.
Second, we are not nesting these asynchronous
functions. If you are accessing closure variables within
the inner functions, the preceding would be a bit different
implementation. In such cases, using inline anonymous
functions is even more preferable.

Callbacks are most frequently used in Node. They are
usually preferred to define logic for one-off responses.
When you need to respond to repeating events, Node
provides another mechanism for this. Before going
further, we need to understand the function of timers and
events in Node.

Timers are used to schedule the execution of a particular
callback after a specific delay. There are two primary
methods to set up such delayed execution: setTimeout
and setInterval. The setTimeout () function is
used to schedule the execution of a specific callback
after a delay, while setInterval is used to schedule
the repeated execution of a callback. The setTimeout
function is useful to perform tasks that need to be
scheduled such as housekeeping. Consider the following
example:

setTimeout(function() {
console.log("This is just one time
delay");
},1000);
var count=0;
var t = setInterval(function() {
count++;
console.log(count);
if (count> 5){
clearInterval(t);

}
}, 2000);

First, we are using setTimeout () to execute a callback
(the anonymous function) after a delay of 1,000 ms. This
IS just a one-time schedule for this callback. We
scheduled the repeated execution of the callback using
setInterval(). Note that we are assigning the value

returned by setInterval() in a variable t—we can
use this reference in clearInterval() to clear this
schedule.

We discussed earlier that callbacks are great for the
execution of one-off logic. EventEmitters are useful in
responding to repeating events. EventEmitters fire
events and include the ability to handle these events
when triggered. Several important Node APIs are built
on EventEmitters.

Events raised by EventEmitters are handled through
listeners. A listener is a callback function associated with
an event—when the event fires, its associated listener is
triggered as well. The event .EventEmitter is a class
that is used to provide a consistent interface to emit
(trigger) and bind callbacks to events.

As a common style convention, event names are
represented by a camel-cased string; however, any valid
string can be used as an event name.

Use require('events') to access the
EventEmitter class:

var EventEmitter = require('events');

When an EventEmitter instance encounters an error, it
emits an error event. Error events are treated as a
special case in Node.js. If you don't handle these, the
program exits with an exception stack.

All EventEmitters emit the newListener event when
new listeners are added and removeListener when a
listener is removed.

To understand the usage of EventEmitters, we will build
a simplistic telnet server where different clients can log in
and enter certain commands. Based on these
commands, our server will respond accordingly:

var net = require('net');

var events = require ('events');

var emitter = new events.EventEmitter();

emitter.on('join', function(id,caller){
console.log(id+" - joined");

1);

emitter.on('quit', function(id,caller){
console.log(id+" - left");

iy

var server =
net.createServer(function(caller) {
var processid = caller.remoteAddress +
"' + caller.remotePort;
emitter.emit('join',id,caller);
caller.on('end', function() {
console.log("disconnected");
emitter.emit('quit',id,caller);
});
});

_server.listen(8124);

In this code snippet, we are using the net module from
Node. The idea here is to create a server and let the
client connect to it via a standard telnet command.
When a client connects, the server displays the client
address and port, and when the client quits, the server

logs this too.

When a client connects, we are emitting a join event,
and when the client disconnects, we are emitting a quit
event. We have listeners for both these events and they
log appropriate messages on the server.

You start this program and connect to our server using
telnet as follows:

telnet 127.0.0.1 8124

On the server console, you will see the server logging
which client joined the server:

» node app.js
i ffff:127.0.0.1:51000 - joined
i ffff:127.0.0.1:51001 - joined

If any client quits the session, an appropriate message
will appear as well.

When you are writing a lot of code, you soon reach a
point where you have to start thinking about how you
want to organize the code. Node modules are
CommonJS modules that we discussed earlier when we
discussed module patterns. Node modules can be
published to the Node Package Manager (npm)
repository. The npm repository is an online collection of
Node modules.

Creating modules

Node modules can be either single files or directories
containing one or more files. It's usually a good idea to
create a separate module directory. The file in the
module directory that will be evaluated is normally
named index. js. A module directory can look as
follows:

node_project/src/nav
--- >index.js

In your project directory, the nav module directory
contains the module code. Conventionally, your module
code needs to reside in the index. js file—you can
change this to another file if you want. Consider this
trivial module called geo. js:

exports.area = function (r) {
return 3.14 r r;

iy

exports.circumference = function (r) {
return 3.14 3.14 r,;

I 7

You are exporting two functions via exports. You can
use the module using the require function. This
function takes the name of the module or system path to
the module's code. You can use the module that we
created as follows:

var geo = require('./geo.js');
console.log(geo.area(2));

As we are exporting only two functions to the outside
world, everything else remains private. If you recollect,
we discussed the module pattern in detail—Node uses
CommonJS modules. There is an alternative syntax to
create modules as well. You can use
modules.exports to export your modules. Indeed,
exports is a helper created for modules.exports.
When you use exports, it attaches the exported
properties of a module to modules.exports. However,
if modules.exports already has some properties
attached to it, properties attached by exports are
ignored.

The geo module created earlier in this section can be
rewritten in order to return a single Geo constructor
function rather than an object containing functions. We

can rewrite the geo module and its usage as follows:

var Geo = function(PI) {
this.PI = PI;
}

Geo.prototype.area = function (r) {
return this.PI r r;
iy
Geo.prototype.circumference = function (r)

{
return this.PI this.PI r;

I 7

module.exports = Geo;

Consider a config. js module:

var db_config = {
server: "0.0.0.0",
port: "3306",
user: "mysql",
password: "mysql"
iy

module.exports = db_config;

If you want to access db_config from outside this
module, you can use require() to include the module
and refer the object as follows:

var config = require('./config.js');
console.log(config.user);

There are three ways to organize modules:

e Using a relative path, for example, config =
require('./1lib/config.js"')

e Using an absolute path, for example, config =

require('nodeprojectlib/config.js')

e Using a module search, for example, config =
require('config')

The first two are self-explanatory—they allow Node to
look for a module in a particular location in the
filesystem.

When you use the third option, you are asking Node to
locate the module using the standard look method. To
locate the module, Node starts at the current directory
and appends .node_modules to it. Node then attempts
to load the module from this location. If the module is not
found, then the search starts from the parent directory
until the root of the filesystem is reached.

For example, if require('config') is called in
projectsnode/, the following locations will be
searched until a match a found:

e projectsnode node_modulesconfig.js
e projectsnode_modules/config.js

e node_modulesconfig.js

For modules downloaded from npm, using this method is
relatively simple. As we discussed earlier, you can
organize your modules in directories as long as you
provide a point of entry for Node.

The easiest way to do this is to create the
.node_modulessupermodule/ directory, and insert
an index. js file in this directory. The index. js file

will be loaded by default. Alternatively, you can put a
package. json file in the mymodulename folder,
specifying the name and main file of the module:

{

"name": "supermodule",
"main": "./lib/config.js"

}

You have to understand that Node caches modules as
objects. If you have two (or more) files requiring a
specific module, the first require will cache the module
in memory so that the second require will not have to
reload the module source code. However, the second
require can alter the module functionality if it wishes
to. This is commonly called monkey patching and is
used to modify a module behavior without really
modifying or versioning the original module.

The npm is the package manager used by Node to
distribute modules. The npm can be used to install,
update, and manage modules. Package managers are
popular in other languages such as Python. The npm
automatically resolves and updates dependencies for a
package and hence makes your life easy.

Installing packages

There are two ways to install npm packages: locally or
globally. If you want to use the module's functionality
only for a specific Node project, you can install it locally
relative to the project, which is default behavior of npm
install. Alternatively, there are several modules that
you can use as a command-line tool; in this case, you
can install them globally:

npm install request

The install directive with npm will install a particular
module—request in this case. To confirm that npm
install worked correctly, check to see whether a
node_modules directory exists and verify that it
contains a directory for the package(s) that you installed.

As you start adding modules to your project, it becomes
difficult to manage the version/dependency of each

module. The best way to manage locally installed
packages is to create a package. json file in your
project.

A package. json file can help you in the following
ways:

e Defining versions of each module that you want to install. There are
times when your project depends on a specific version of a module. In
this case, your package. json helps you download and maintain the
correct version dependency.

e Serving as a documentation of all the modules that your project
needs.

e Deploying and packaging your application without worrying about
managing dependencies every time you deploy the code.

You can create package . json by issuing the following
command:

npm init

After answering basic questions about your project, a
blank package. json is created with content similar to
the following:

"name": "chapter9",

"version": "1.0.0",

"description": "chapter9 sample
project",

"main": "app.js",

"dependencies": {

"request": "A2.65.0"
3

"devDependencies": {3},

"errinte": [

Yvr ap Lo o L

"test": "echo \"Error: no test
specified\" && exit 1"
3
"keywords": [
"Chapter9",
"sample",
"project"
1
"author": "Ved Antani",
"license": "MIT"

You can manually edit this file in a text editor. An
important part of this file is the dependencies tag. To
specify the packages that your project depends on, you
need to list the packages you'd like to use in your
package. json file. There are two types of packages
that you can list:

e dependencies: These packages are required by your application in
production

e devDependencies: These packages are needed only for
development and testing (for example, using the Jasmine node
package)

In the preceding example, you can see the following
dependency:

"dependencies": {
"request": "A2.65.0"

i

This means that the project is dependent on the
request module.

NOTE

The version of the module is dependent on the semantic versioning rules
—https://docs.npmjs.com/getting-started/semantic-versioning.

Once your package. json file is ready, you can simply
use the npm install command to install all the
modules for your projects automatically.

There is a cool trick that | love to use. While installing
modules from the command line, we can add the - -
save flag to add that module's dependency to the
package. json file automatically:

npm install async --save

npm WARN package.json chapter9@1.0.0 No
repository field.

npm WARN package.json chapter9@1.0.0 No
README data

async@1.5.0 node_modules/async

In the preceding command, we installed the async
module with the normal npm command with a - -save
flag. There is a corresponding entry automatically
created in package. json:

"dependencies": {
"asynC": Il/\1.5.0||,
"request": "A2.65.0"

i

https://docs.npmjs.com/getting-started/semantic-versioning

Like any other language, writing correct JavaScript code
at scale is an involved task. As the language matures,
several of the inherent problems are being taken care of.
There are several exceptional libraries that aid in writing
good quality code. For most serious systems, good code
= correct code + high performance code. The demands
of new-generation software systems are high on
performance. In this section, we will discuss a few tools
that you can use to analyze your JavaScript code and
understand its performance metrics.

We will discuss the following two ideas in this section:

e Profiling: Timing various functions and operations during script-
profiling helps in identifying areas where you can optimize your code

e Network performance: Examining the loading of network resources
such as images, stylesheets, and scripts

JavaScript profiling

JavaScript profiling is critical to understand performance
aspects of various parts of your code. You can observe
timings of the functions and operations to understand
which operation is taking more time. With this
information, you can optimize the performance of time-
consuming functions and tune the overall performance of
your code. We will be focusing on the profiling options
provided by Chrome's Developer Tools. There are

comprehensive analysis tools that you can use to
understand the performance metrics of your code.

THE CPU PROFILE

The CPU profile shows the execution time spent by
various parts of your code. We have to inform DevTools
to record the CPU profile data. Let's take the profiler for
a spin.

You can enable the CPU profiler in DevTools as follows:

1. Open the Chrome DevTools Profiles panel.

2. Verify that Collect JavaScript CPU Profile is selected:
5 Work for the best startups

Q [] Hements Network Sources Timelne | Profiles| Resources Aucits Console

0

Select profiling type

8 Col act JavaScript CPU Profile

CPU profiles show where the execution time s spent

I Take Heap Snapshot
Heap snapshat profiles show memary distribution ai

| Record Heap Allocations

Record JavaScript object allocations over time, Use tl

Start - Load

For this chapter, we will be using Google's own benchmark
page, http://octane-
benchmark.googlecode.com/svn/latest/index.html. We will use

http://octane-benchmark.googlecode.com/svn/latest/index.html

this because it contains sample functions where we can see
various performance bottlenecks and benchmarks. To start
recording the CPU profile, open DevTools in Chrome, and in
the Profiles tab, click on the Start button or press Cmd/Ctrl +
E. Refresh the V8 Benchmark Suite page. When the page has
completed reloading, a score for the benchmark tests is shown.
Return to the Profiles panel and stop the recording by clicking
on the Stop button or pressing Cmd/Ctrl + E again.

The recorded CPU profile shows you a detailed view of the
functions and the execution time taken by them in the bottom-
up fashion, as shown in the following image:

Q U Clements Network Sources Timeline | Profiles’ Resources Audics Consgle
[I Heary BetlomUpl ¢ @ X €
: Gelf ¥ Tata Hinetian
ofles HIm Eom | i
P PROFILES JELSme T07E) FIRDSme ‘I"":.:Tln_t:-l".'l
FELSms A03E) A Sme TO9%| wpject
!T’WMH [T P2R05ms O] 3ESms 200%) Yuel swp
P0STS (00% 2ag0hms (00y | ¥ HucHeld updite
2805ms T.02%| 2380S5ms T00%| ¥ runhlavierSiokes
IR0 ms T0EH| 2380.5ms Il ¥ Weasure
AB0Sms ThEE| B85ms 04N v Genchmark Sy te fundingleBznchmark
Q3B05ms S09%| F3805me [(uN) b [A NextBenchimark
Loms 0.00% Lims 000%| wdiffuse

LITAMS bbIE| ZEAREmE 670 kmontiad.ce
J15Ims S70x| 19151ms S70%| (facnage collecror
W0E6Ime SO0X) 10683me 118%]| kbrabquereTs
BFAMS LA73 AOTAmE 267%) wCenerarayloadTees

THE TIMELINE VIEW

The Chrome DevTools Timeline tool is the first place you can start
looking at the overall performance of your code. It lets you record and
analyze all the activity in your application as it runs.

The Timeline provides you with a complete overview of where time is
spent when loading and using your site. A timeline recording includes a
record for each event that occurred and is displayed in a waterfall graph:

|l.'|_ : Tlereme Nerscrk Suecsy Tineles| Pelle Somrs el Darare

| a5 ¥ v dy = cowe Btune B85 mey i
dlng Liddtery | S we fu ALY FUTIEEY B 1iTTS el dlkivy 2 Kier. +'."||. iy E1Ter. ki Wil ¥ .- T iy
LB LN -
ok
{1 | i [|
bl L= 1] SEET [Tl SNETH ! AT .-\I.. T ARLET el 1 LA |
ki Tira Mred 11 L
PR EVERL INkap | F
Fanutien Sl Ukt as g 41
L L] T F
E Eenid oy k|
wl=anin R TR 1
ElFiw? (3
BRI LI 1
Dlmage Femie iSARAW B fy 1
BT e k]
Jaran
Fangs =116
Apgrigali lira T
B0 T Ll
Lk B UM
B 1A Bedenang
B 15550 =1 Pizakae)
T+l o5 Ther
W T

The preceding screen shows you the timeline view when we try to render

https://twitter.com/ in the browser. The timeline view gives you an overall view

of which operation took how much time in execution:

https://twitter.com/

500ms 1000ms 1500ms 2000ms 25CCrm anaau| |.1'.:|:-:um 200m 500w g

]

1]l i 11| ST g |

ms 1000 ms 250075 39001ms | |

® Composite Layers

O kastenze Fant

B Recalculate Style

B Update Lavyer Troo

Composite Layers
® = Timer Fired {5) kI

B Eeceive Recponse (owillercomd |

- e e =

B Receive Data (bwitter.oomy) |
i o Event (unload) ki
Furction Call textensions:unloae ave,,,
Furction Call 1extensions: urlodc ave... |
3 Furnction Call textensions; urloag ave ..
CC Event (1005 kB collectec)
Furcelon Call (extensions: unloac ave. .
Furction Call (extensions: urloac eve..,

In the preceding screenshot, we can see the