
Undergraduate Topics in Computer Science

Laura Igual · Santi Seguí

Introduction to
Data Science
A Python Approach to Concepts,
Techniques and Applications

Undergraduate Topics in Computer
Science

Series editor
Ian Mackie

Advisory Board
Samson Abramsky, University of Oxford, Oxford, UK

Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

Chris Hankin, Imperial College London, London, UK

Dexter Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark

Steven Skiena, Stony Brook University, Stony Brook, USA

Iain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instructional

content for undergraduates studying in all areas of computing and information science.

From core foundational and theoretical material to final-year topics and applications, UTiCS

books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or

two-semester course. The texts are all authored by established experts in their fields,

reviewed by an international advisory board, and contain numerous examples and problems.

Many include fully worked solutions.

More information about this series at http://www.springer.com/series/7592

Laura Igual • Santi Seguí

Introduction to Data
Science

A Python Approach to Concepts,
Techniques and Applications

123

With contributions from Jordi Vitrià, Eloi Puertas

Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí

and Lluís Garrido

Laura Igual
Departament de Matemàtiques i Informàtica
Universitat de Barcelona
Barcelona
Spain

Santi Seguí
Departament de Matemàtiques i Informàtica
Universitat de Barcelona
Barcelona
Spain

With contributions from Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio
Escalera, Francesc Dantí and Lluís Garrido

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-319-50016-4 ISBN 978-3-319-50017-1 (eBook)
DOI 10.1007/978-3-319-50017-1

Library of Congress Control Number: 2016962046

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Subject Area of the Book

In this era, where a huge amount of information from different fields is gathered and

stored, its analysis and the extraction of value have become one of the most

attractive tasks for companies and society in general. The design of solutions for the

new questions emerged from data has required multidisciplinary teams. Computer

scientists, statisticians, mathematicians, biologists, journalists and sociologists, as

well as many others are now working together in order to provide knowledge from

data. This new interdisciplinary field is called data science.

The pipeline of any data science goes through asking the right questions,

gathering data, cleaning data, generating hypothesis, making inferences, visualizing

data, assessing solutions, etc.

Organization and Feature of the Book

This book is an introduction to concepts, techniques, and applications in data

science. This book focuses on the analysis of data, covering concepts from statistics

to machine learning, techniques for graph analysis and parallel programming, and

applications such as recommender systems or sentiment analysis.

All chapters introduce new concepts that are illustrated by practical cases using

real data. Public databases such as Eurostat, different social networks, and

MovieLens are used. Specific questions about the data are posed in each chapter.

The solutions to these questions are implemented using Python programming

language and presented in code boxes properly commented. This allows the reader

to learn data science by solving problems which can generalize to other problems.

This book is not intended to cover the whole set of data science methods neither

to provide a complete collection of references. Currently, data science is an

increasing and emerging field, so readers are encouraged to look for specific

methods and references using keywords in the net.

v

Target Audiences

This book is addressed to upper-tier undergraduate and beginning graduate students

from technical disciplines. Moreover, this book is also addressed to professional

audiences following continuous education short courses and to researchers from

diverse areas following self-study courses.

Basic skills in computer science, mathematics, and statistics are required. Code

programming in Python is of benefit. However, even if the reader is new to Python,

this should not be a problem, since acquiring the Python basics is manageable in a

short period of time.

Previous Uses of the Materials

Parts of the presented materials have been used in the postgraduate course of Data

Science and Big Data from Universitat de Barcelona. All contributing authors are

involved in this course.

Suggested Uses of the Book

This book can be used in any introductory data science course. The problem-based

approach adopted to introduce new concepts can be useful for the beginners. The

implemented code solutions for different problems are a good set of exercises for

the students. Moreover, these codes can serve as a baseline when students face

bigger projects.

Supplemental Resources

This book is accompanied by a set of IPython Notebooks containing all the codes

necessary to solve the practical cases of the book. The Notebooks can be found on

the following GitHub repository: https://github.com/DataScienceUB/introduction-

datascience-python-book.

vi Preface

Acknowledgements

We acknowledge all the contributing authors: J. Vitrià, E. Puertas, P. Radeva,

O. Pujol, S. Escalera, L. Garrido, and F. Dantí.

Barcelona, Spain Laura Igual

Santi Seguí

Preface vii

Contents

1 Introduction to Data Science . 1

1.1 What is Data Science? . 1

1.2 About This Book . 3

2 Toolboxes for Data Scientists . 5

2.1 Introduction . 5

2.2 Why Python? . 6

2.3 Fundamental Python Libraries for Data Scientists 6

2.3.1 Numeric and Scientific Computation: NumPy

and SciPy . 7

2.3.2 SCIKIT-Learn: Machine Learning in Python 7

2.3.3 PANDAS: Python Data Analysis Library 7

2.4 Data Science Ecosystem Installation . 7

2.5 Integrated Development Environments (IDE) 8

2.5.1 Web Integrated Development Environment (WIDE):

Jupyter . 9

2.6 Get Started with Python for Data Scientists 10

2.6.1 Reading . 14

2.6.2 Selecting Data. 16

2.6.3 Filtering Data . 17

2.6.4 Filtering Missing Values . 17

2.6.5 Manipulating Data . 18

2.6.6 Sorting . 22

2.6.7 Grouping Data . 23

2.6.8 Rearranging Data . 24

2.6.9 Ranking Data . 25

2.6.10 Plotting . 26

2.7 Conclusions . 28

3 Descriptive Statistics . 29

3.1 Introduction . 29

3.2 Data Preparation. 30

3.2.1 The Adult Example. 30

ix

3.3 Exploratory Data Analysis . 32

3.3.1 Summarizing the Data . 32

3.3.2 Data Distributions . 36

3.3.3 Outlier Treatment . 38

3.3.4 Measuring Asymmetry: Skewness and Pearson’s

Median Skewness Coefficient . 41

3.3.5 Continuous Distribution . 42

3.3.6 Kernel Density . 44

3.4 Estimation . 46

3.4.1 Sample and Estimated Mean, Variance

and Standard Scores . 46

3.4.2 Covariance, and Pearson’s and Spearman’s

Rank Correlation. 47

3.5 Conclusions . 50

References . 50

4 Statistical Inference . 51

4.1 Introduction . 51

4.2 Statistical Inference: The Frequentist Approach 52

4.3 Measuring the Variability in Estimates. 52

4.3.1 Point Estimates . 53

4.3.2 Confidence Intervals . 56

4.4 Hypothesis Testing. 59

4.4.1 Testing Hypotheses Using Confidence Intervals 60

4.4.2 Testing Hypotheses Using p-Values 61

4.5 But Is the Effect E Real? . 64

4.6 Conclusions . 64

References . 65

5 Supervised Learning. 67

5.1 Introduction . 67

5.2 The Problem . 68

5.3 First Steps . 69

5.4 What Is Learning? . 78

5.5 Learning Curves. 79

5.6 Training, Validation and Test. 82

5.7 Two Learning Models . 86

5.7.1 Generalities Concerning Learning Models 86

5.7.2 Support Vector Machines . 87

5.7.3 Random Forest . 90

5.8 Ending the Learning Process . 91

5.9 A Toy Business Case . 92

5.10 Conclusion . 95

Reference . 96

x Contents

6 Regression Analysis . 97

6.1 Introduction . 97

6.2 Linear Regression . 98

6.2.1 Simple Linear Regression . 98

6.2.2 Multiple Linear Regression and Polynomial

Regression . 103

6.2.3 Sparse Model . 104

6.3 Logistic Regression . 110

6.4 Conclusions . 113

References . 114

7 Unsupervised Learning . 115

7.1 Introduction . 115

7.2 Clustering. 116

7.2.1 Similarity and Distances . 117

7.2.2 What Constitutes a Good Clustering? Defining

Metrics to Measure Clustering Quality 117

7.2.3 Taxonomies of Clustering Techniques 120

7.3 Case Study . 132

7.4 Conclusions . 138

References . 139

8 Network Analysis . 141

8.1 Introduction . 141

8.2 Basic Definitions in Graphs . 142

8.3 Social Network Analysis . 144

8.3.1 Basics in NetworkX . 144

8.3.2 Practical Case: Facebook Dataset 145

8.4 Centrality . 147

8.4.1 Drawing Centrality in Graphs . 152

8.4.2 PageRank . 154

8.5 Ego-Networks . 157

8.6 Community Detection . 162

8.7 Conclusions . 163

References . 164

9 Recommender Systems . 165

9.1 Introduction . 165

9.2 How Do Recommender Systems Work? 166

9.2.1 Content-Based Filtering . 166

9.2.2 Collaborative Filtering . 167

9.2.3 Hybrid Recommenders . 167

9.3 Modeling User Preferences . 167

9.4 Evaluating Recommenders . 168

Contents xi

9.5 Practical Case. 169

9.5.1 MovieLens Dataset . 169

9.5.2 User-Based Collaborative Filtering 171

9.6 Conclusions . 179

References . 179

10 Statistical Natural Language Processing for Sentiment

Analysis . 181

10.1 Introduction . 181

10.2 Data Cleaning . 182

10.3 Text Representation . 185

10.3.1 Bi-Grams and n-Grams . 190

10.4 Practical Cases . 191

10.5 Conclusions . 196

References . 196

11 Parallel Computing. 199

11.1 Introduction . 199

11.2 Architecture . 200

11.2.1 Getting Started . 201

11.2.2 Connecting to the Cluster (The Engines) 202

11.3 Multicore Programming . 203

11.3.1 Direct View of Engines . 203

11.3.2 Load-Balanced View of Engines. 206

11.4 Distributed Computing . 207

11.5 A Real Application: New York Taxi Trips 208

11.5.1 A Direct View Non-Blocking Proposal. 209

11.5.2 Results . 212

11.6 Conclusions . 214

References . 215

Index . 217

xii Contents

Authors and Contributors

About the Authors

Dr. Laura Igual is an associate professor from the Department of Mathematics

and Computer Science at the Universitat de Barcelona. She received a degree in

mathematics from Universitat de Valencia (Spain) in 2000 and a Ph.D. degree from

the Universitat Pompeu Fabra (Spain) in 2006. Her particular areas of interest

include computer vision, medical imaging, machine learning, and data science.

Dr. Laura Igual is coauthor of Chaps. 3, 6, and 8.

Dr. Santi Seguí is an assistant professor from the Department of Mathematics and

Computer Science at the Universitat de Barcelona. He is a computer science

engineer by the Universitat Autònoma de Barcelona (Spain) since 2007. He

received his Ph.D. degree from the Universitat de Barcelona (Spain) in 2011. His

particular areas of interest include computer vision, applied machine learning, and

data science.

Dr. Santi Seguí is coauthor of Chaps. 8–10.

Contributors

Francesc Dantí is an adjunct professor and system administrator from the

Department of Mathematics and Computer Science at the Universitat de Barcelona.

He is a computer science engineer by the Universitat Oberta de Catalunya (Spain).

His particular areas of interest are HPC and grid computing, parallel computing,

and cybersecurity.

Francesc Dantí is coauthor of Chaps. 2 and 11.

Dr. Sergio Escalera is an associate professor from the Department of Mathematics

and Computer Science at the Universitat de Barcelona. He is a computer science

engineer by the Universitat Autònoma de Barcelona (Spain) since 2003. He

received his Ph.D. degree from the Universitat Autònoma de Barcelona (Spain) in

2008. His research interests include, between others, statistical pattern recognition,

xiii

visual object recognition, with special interest in human pose recovery and behavior

analysis from multimodal data.

Dr. Sergio Escalera is coauthor of Chaps. 4 and 10.

Dr. Lluís Garrido is an associate professor from the Department of Mathematics

and Computer Science at the Universitat de Barcelona. He is a telecommunications

engineer by the Universitat Politècnica de Catalunya (UPC) since 1996. He

received his Ph.D. degree from the same university in 2002. His particular areas of

interest include computer vision, image processing, numerical optimization, parallel

computing, and data science.

Dr. Lluís Garrido is coauthor of Chap. 11.

Dr. Eloi Puertas is an assistant professor from the Department of Mathematics and

Computer Science at the Universitat de Barcelona. He is a computer science

engineer by the Universitat Autònoma de Barcelona (Spain) since 2002. He

received his Ph.D. degree from the Universitat de Barcelona (Spain) in 2014. His

particular areas of interest include artificial intelligence, software engineering, and

data science.

Dr. Eloi Puertas is coauthor of Chaps. 2 and 9.

Dr. Oriol Pujol is a tenured associate professor from the Department of Mathe-

matics and Computer Science at the Universitat de Barcelona. He received his

Ph.D. degree from the Universitat Autònoma de Barcelona (Spain) in 2004 for his

work in machine learning and computer vision. His particular areas of interest

include machine learning, computer vision, and data science.

Dr. Oriol Pujol is coauthor of Chaps. 5 and 7.

Dr. Petia Radeva is a tenured associate professor and senior researcher from the

Universitat de Barcelona. She graduated in applied mathematics and computer

science in 1989 at the University of Sofia, Bulgaria, and received her Ph.D. degree

in Computer Vision for Medical Imaging in 1998 from the Universitat Autònoma

de Barcelona, Spain. She is Icrea Academia Researcher from 2015, head of the

Consolidated Research Group “Computer Vision at the Universitat of Barcelona,”

and head of MiLab of Computer Vision Center. Her present research interests are

on the development of learning-based approaches for computer vision, deep

learning, egocentric vision, lifelogging, and data science.

Dr. Petia Radeva is coauthor of Chaps. 3, 5, and 7.

Dr. Jordi Vitrià is a full professor from the Department of Mathematics and

Computer Science at the Universitat de Barcelona. He received his Ph.D. degree

from the Universitat Autònoma de Barcelona in 1990. Dr. Jordi Vitrià has published

more than 100 papers in SCI-indexed journals and has more than 25 years of

experience in working on computer vision and artificial intelligence and its appli-

cations to several fields. He is now leader of the “Data Science Group at UB,” a

technology transfer unit that performs collaborative research projects between the

Universitat de Barcelona and private companies.

Dr. Jordi Vitrià is coauthor of Chaps. 1, 4, and 6.

xiv Authors and Contributors

1Introduction to Data Science

1.1 What is Data Science?

You have, no doubt, already experienced data science in several forms. When you are

looking for information on the web by using a search engine or asking your mobile

phone for directions, you are interacting with data science products. Data science

has been behind resolving some of our most common daily tasks for several years.

Most of the scientific methods that power data science are not new and they have

been out there, waiting for applications to be developed, for a long time. Statistics is

an old science that stands on the shoulders of eighteenth-century giants such as Pierre

Simon Laplace (1749–1827) and Thomas Bayes (1701–1761). Machine learning is

younger, but it has already moved beyond its infancy and can be considered a well-

established discipline. Computer science changed our lives several decades ago and

continues to do so; but it cannot be considered new.

So, why is data science seen as a novel trend within business reviews, in technology

blogs, and at academic conferences?

The novelty of data science is not rooted in the latest scientific knowledge, but in a

disruptive change in our society that has been caused by the evolution of technology:

datification. Datification is the process of rendering into data aspects of the world that

have never been quantified before. At the personal level, the list of datified concepts

is very long and still growing: business networks, the lists of books we are reading,

the films we enjoy, the food we eat, our physical activity, our purchases, our driving

behavior, and so on. Even our thoughts are datified when we publish them on our

favorite social network; and in a not so distant future, your gaze could be datified by

wearable vision registering devices. At the business level, companies are datifying

semi-structured data that were previously discarded: web activity logs, computer

network activity, machinery signals, etc. Nonstructured data, such as written reports,

e-mails, or voice recordings, are now being stored not only for archive purposes but

also to be analyzed.

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_1

1

2 1 Introduction to Data Science

However, datification is not the only ingredient of the data science revolution. The

other ingredient is the democratization of data analysis. Large companies such as

Google, Yahoo, IBM, or SAS were the only players in this field when data science

had no name. At the beginning of the century, the huge computational resources of

those companies allowed them to take advantage of datification by using analytical

techniques to develop innovative products and even to take decisions about their

own business. Today, the analytical gap between those companies and the rest of

the world (companies and people) is shrinking. Access to cloud computing allows

any individual to analyze huge amounts of data in short periods of time. Analytical

knowledge is free and most of the crucial algorithms that are needed to create a

solution can be found, because open-source development is the norm in this field. As

a result, the possibility of using rich data to take evidence-based decisions is open

to virtually any person or company.

Data science is commonly defined as a methodology by which actionable insights

can be inferred from data. This is a subtle but important difference with respect to

previous approaches to data analysis, such as business intelligence or exploratory

statistics. Performing data science is a task with an ambitious objective: the produc-

tion of beliefs informed by data and to be used as the basis of decision-making. In

the absence of data, beliefs are uninformed and decisions, in the best of cases, are

based on best practices or intuition. The representation of complex environments by

rich data opens up the possibility of applying all the scientific knowledge we have

regarding how to infer knowledge from data.

In general, data science allows us to adopt four different strategies to explore the

world using data:

1. Probing reality. Data can be gathered by passive or by active methods. In the

latter case, data represents the response of the world to our actions. Analysis of

those responses can be extremely valuable when it comes to taking decisions

about our subsequent actions. One of the best examples of this strategy is the

use of A/B testing for web development: What is the best button size and color?

The best answer can only be found by probing the world.

2. Pattern discovery. Divide and conquer is an old heuristic used to solve complex

problems; but it is not always easy to decide how to apply this common sense to

problems. Datified problems can be analyzed automatically to discover useful

patterns and natural clusters that can greatly simplify their solutions. The use

of this technique to profile users is a critical ingredient today in such important

fields as programmatic advertising or digital marketing.

3. Predicting future events. Since the early days of statistics, one of the most impor-

tant scientific questions has been how to build robust data models that are capa-

ble of predicting future data samples. Predictive analytics allows decisions to

be taken in response to future events, not only reactively. Of course, it is not

possible to predict the future in any environment and there will always be unpre-

dictable events; but the identification of predictable events represents valuable

knowledge. For example, predictive analytics can be used to optimize the tasks

1.1 What is Data Science? 3

planned for retail store staff during the following week, by analyzing data such

as weather, historic sales, traffic conditions, etc.

4. Understanding people and the world. This is an objective that at the moment

is beyond the scope of most companies and people, but large companies and

governments are investing considerable amounts of money in research areas

such as understanding natural language, computer vision, psychology and neu-

roscience. Scientific understanding of these areas is important for data science

because in the end, in order to take optimal decisions, it is necessary to know the

real processes that drive people’s decisions and behavior. The development of

deep learning methods for natural language understanding and for visual object

recognition is a good example of this kind of research.

1.2 About This Book

Data science is definitely a cool and trendy discipline that routinely appears in the

headlines of very important newspapers and on TV stations. Data scientists are

presented in those forums as a scarce and expensive resource. As a result of this

situation, data science can be perceived as a complex and scary discipline that is

only accessible to a reduced set of geniuses working for major companies. The main

purpose of this book is to demystify data science by describing a set of tools and

techniques that allows a person with basic skills in computer science, mathematics,

and statistics to perform the tasks commonly associated with data science.

To this end, this book has been written under the following assumptions:

• Data science is a complex, multifaceted field that can be approached from sev-

eral points of view: ethics, methodology, business models, how to deal with big

data, data engineering, data governance, etc. Each point of view deserves a long

and interesting discussion, but the approach adopted in this book focuses on ana-

lytical techniques, because such techniques constitute the core toolbox of every

data scientist and because they are the key ingredient in predicting future events,

discovering useful patterns, and probing the world.

• You have some experience with Python programming. For this reason, we do not

offer an introduction to the language. But even if you are new to Python, this should

not be a problem. Before reading this book you should start with any online Python

course. Mastering Python is not easy, but acquiring the basics is a manageable task

for anyone in a short period of time.

• Data science is about evidence-based storytelling and this kind of process requires

appropriate tools. The Python data science toolbox is one, not the only, of the

most developed environments for doing data science. You can easily install all you

need by using Anaconda1: a free product that includes a programming language

1https://www.continuum.io/downloads.

https://www.continuum.io/downloads

4 1 Introduction to Data Science

(Python), an interactive environment to develop and present data science projects

(Jupyter notebooks), and most of the toolboxes necessary to perform data analysis.

• Learning by doing is the best approach to learn data science. For this reason all the

code examples and data in this book are available to download at https://github.

com/DataScienceUB/introduction-datascience-python-book.

• Data science deals with solving real-world problems. So all the chapters in the

book include and discuss practical cases using real data.

This book includes three different kinds of chapters. The first kind is about Python

extensions. Python was originally designed to have a minimum number of data

objects (int, float, string, etc.); but when dealing with data, it is necessary to extend

the native set to more complex objects such as (numpy) numerical arrays or (pandas)

data frames. The second kind of chapter includes techniques and modules to per-

form statistical analysis and machine learning. Finally, there are some chapters that

describe several applications of data science, such as building recommenders or sen-

timent analysis. The composition of these chapters was chosen to offer a panoramic

view of the data science field, but we encourage the reader to delve deeper into these

topics and to explore those topics that have not been covered: big data analytics, deep

learning techniques, and more advanced mathematical and statistical methods (e.g.,

computational algebra and Bayesian statistics).

Acknowledgements This chapter was co-written by Jordi Vitrià.

https://github.com/DataScienceUB/introduction-datascience-python-book
https://github.com/DataScienceUB/introduction-datascience-python-book

2Toolboxes for Data Scientists

2.1 Introduction

In this chapter, first we introduce some of the tools that data scientists use. The toolbox

of any data scientist, as for any kind of programmer, is an essential ingredient for

success and enhanced performance. Choosing the right tools can save a lot of time

and thereby allow us to focus on data analysis.

The most basic tool to decide on is which programming language we will use.

Many people use only one programming language in their entire life: the first and

only one they learn. For many, learning a new language is an enormous task that, if

at all possible, should be undertaken only once. The problem is that some languages

are intended for developing high-performance or production code, such as C, C++,

or Java, while others are more focused on prototyping code, among these the best

known are the so-called scripting languages: Ruby, Perl, and Python. So, depending

on the first language you learned, certain tasks will, at the very least, be rather tedious.

The main problem of being stuck with a single language is that many basic tools

simply will not be available in it, and eventually you will have either to reimplement

them or to create a bridge to use some other language just for a specific task.

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_2

5

6 2 Toolboxes for Data Scientists

In conclusion, you either have to be ready to change to the best language for each

task and then glue the results together, or choose a very flexible language with a rich

ecosystem (e.g., third-party open-source libraries). In this book we have selected

Python as the programming language.

2.2 Why Python?

Python1 is a mature programming language but it also has excellent properties for

newbie programmers, making it ideal for people who have never programmed before.

Some of the most remarkable of those properties are easy to read code, suppression

of non-mandatory delimiters, dynamic typing, and dynamic memory usage. Python

is an interpreted language, so the code is executed immediately in the Python con-

sole without needing the compilation step to machine language. Besides the Python

console (which comes included with any Python installation) you can find other in-

teractive consoles, such as IPython,2 which give you a richer environment in which

to execute your Python code.

Currently, Python is one of the most flexible programming languages. One of its

main characteristics that makes it so flexible is that it can be seen as a multiparadigm

language. This is especially useful for people who already know how to program with

other languages, as they can rapidly start programming with Python in the same way.

For example, Java programmers will feel comfortable using Python as it supports

the object-oriented paradigm, or C programmers could mix Python and C code using

cython. Furthermore, for anyone who is used to programming in functional languages

such as Haskell or Lisp, Python also has basic statements for functional programming

in its own core library.

In this book, we have decided to use Python language because, as explained

before, it is a mature language programming, easy for the newbies, and can be used

as a specific platform for data scientists, thanks to its large ecosystem of scientific

libraries and its high and vibrant community. Other popular alternatives to Python

for data scientists are R and MATLAB/Octave.

2.3 Fundamental Python Libraries for Data Scientists

The Python community is one of the most active programming communities with a

huge number of developed toolboxes. The most popular Python toolboxes for any

data scientist are NumPy, SciPy, Pandas, and Scikit-Learn.

1https://www.python.org/downloads/.
2http://ipython.org/install.html.

https://www.python.org/downloads/
http://ipython.org/install.html

2.3 Fundamental Python Libraries for Data Scientists 7

2.3.1 Numeric and Scientific Computation: NumPy and SciPy

NumPy3 is the cornerstone toolbox for scientific computing with Python. NumPy

provides, among other things, support for multidimensional arrays with basic oper-

ations on them and useful linear algebra functions. Many toolboxes use the NumPy

array representations as an efficient basic data structure. Meanwhile, SciPy provides

a collection of numerical algorithms and domain-specific toolboxes, including signal

processing, optimization, statistics, and much more. Another core toolbox in SciPy

is the plotting library Matplotlib. This toolbox has many tools for data visualization.

2.3.2 SCIKIT-Learn: Machine Learning in Python

Scikit-learn4 is a machine learning library built from NumPy, SciPy, and Matplotlib.

Scikit-learn offers simple and efficient tools for common tasks in data analysis such

as classification, regression, clustering, dimensionality reduction, model selection,

and preprocessing.

2.3.3 PANDAS: Python Data Analysis Library

Pandas5 provides high-performance data structures and data analysis tools. The key

feature of Pandas is a fast and efficient DataFrame object for data manipulation with

integrated indexing. The DataFrame structure can be seen as a spreadsheet which

offers very flexible ways of working with it. You can easily transform any dataset in

the way you want, by reshaping it and adding or removing columns or rows. It also

provides high-performance functions for aggregating, merging, and joining dataset-

s. Pandas also has tools for importing and exporting data from different formats:

comma-separated value (CSV), text files, Microsoft Excel, SQL databases, and the

fast HDF5 format. In many situations, the data you have in such formats will not

be complete or totally structured. For such cases, Pandas offers handling of miss-

ing data and intelligent data alignment. Furthermore, Pandas provides a convenient

Matplotlib interface.

2.4 Data Science Ecosystem Installation

Before we can get started on solving our own data-oriented problems, we will need to

set up our programming environment. The first question we need to answer concerns

3http://www.scipy.org/scipylib/download.html.
4http://www.scipy.org/scipylib/download.html.
5http://pandas.pydata.org/getpandas.html.

http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://pandas.pydata.org/getpandas.html

8 2 Toolboxes for Data Scientists

Python language itself. There are currently two different versions of Python: Python

2.X and Python 3.X. The differences between the versions are important, so there is

no compatibility between the codes, i.e., code written in Python 2.X does not work

in Python 3.X and vice versa. Python 3.X was introduced in late 2008; by then, a lot

of code and many toolboxes were already deployed using Python 2.X (Python 2.0

was initially introduced in 2000). Therefore, much of the scientific community did

not change to Python 3.0 immediately and they were stuck with Python 2.7. By now,

almost all libraries have been ported to Python 3.0; but Python 2.7 is still maintained,

so one or another version can be chosen. However, those who already have a large

amount of code in 2.X rarely change to Python 3.X. In our examples throughout this

book we will use Python 2.7.

Once we have chosen one of the Python versions, the next thing to decide is

whether we want to install the data scientist Python ecosystem by individual tool-

boxes, or to perform a bundle installation with all the needed toolboxes (and a lot

more). For newbies, the second option is recommended. If the first option is chosen,

then it is only necessary to install all the mentioned toolboxes in the previous section,

in exactly that order.

However, if a bundle installation is chosen, the Anaconda Python distribution6

is then a good option. The Anaconda distribution provides integration of all the

Python toolboxes and applications needed for data scientists into a single directory

without mixing it with other Python toolboxes installed on the machine. It contain-

s, of course, the core toolboxes and applications such as NumPy, Pandas, SciPy,

Matplotlib, Scikit-learn, IPython, Spyder, etc., but also more specific tools for other

related tasks such as data visualization, code optimization, and big data processing.

2.5 Integrated Development Environments (IDE)

For any programmer, and by extension, for any data scientist, the integrated de-

velopment environment (IDE) is an essential tool. IDEs are designed to maximize

programmer productivity. Thus, over the years this software has evolved in order to

make the coding task less complicated. Choosing the right IDE for each person is

crucial and, unfortunately, there is no “one-size-fits-all” programming environment.

The best solution is to try the most popular IDEs among the community and keep

whichever fits better in each case.

In general, the basic pieces of any IDE are three: the editor, the compiler, (or

interpreter) and the debugger. Some IDEs can be used in multiple programming

languages, provided by language-specific plugins, such as Netbeans7 or Eclipse.8

Others are only specific for one language or even a specific programming task. In

6http://continuum.io/downloads.
7https://netbeans.org/downloads/.
8https://eclipse.org/downloads/.

http://continuum.io/downloads
https://netbeans.org/downloads/
https://eclipse.org/downloads/

2.5 Integrated Development Environments (IDE) 9

the case of Python, there are a large number of specific IDEs, both commercial

(PyCharm,9 WingIDE10 …) and open-source. The open-source community helps

IDEs to spring up, thus anyone can customize their own environment and share it with

the rest of the community. For example, Spyder11 (Scientific Python Development

EnviRonment) is an IDE customized with the task of the data scientist in mind.

2.5.1 Web Integrated Development Environment (WIDE): Jupyter

With the advent of web applications, a new generation of IDEs for interactive lan-

guages such as Python has been developed. Starting in the academia and e-learning

communities, web-based IDEs were developed considering how not only your code

but also all your environment and executions can be stored in a server. One of the

first applications of this kind of WIDE was developed by William Stein in early 2005

using Python 2.3 as part of his SageMath mathematical software. In SageMath, a

server can be set up in a center, such as a university or school, and then students can

work on their homework either in the classroom or at home, starting from exactly the

same point they left off. Moreover, students can execute all the previous steps over

and over again, and then change some particular code cell (a segment of the docu-

ment that may content source code that can be executed) and execute the operation

again. Teachers can also have access to student sessions and review the progress or

results of their pupils.

Nowadays, such sessions are called notebooks and they are not only used in

classrooms but also used to show results in presentations or on business dashboards.

The recent spread of such notebooks is mainly due to IPython. Since December 2011,

IPython has been issued as a browser version of its interactive console, called IPython

notebook, which shows the Python execution results very clearly and concisely by

means of cells. Cells can contain content other than code. For example, markdown (a

wiki text language) cells can be added to introduce algorithms. It is also possible to

insert Matplotlib graphics to illustrate examples or even web pages. Recently, some

scientific journals have started to accept notebooks in order to show experimental

results, complete with their code and data sources. In this way, experiments can

become completely and absolutely replicable.

Since the project has grown so much, IPython notebook has been separated from

IPython software and now it has become a part of a larger project: Jupyter12. Jupyter

(for Julia, Python and R) aims to reuse the same WIDE for all these interpreted

languages and not just Python. All old IPython notebooks are automatically imported

to the new version when they are opened with the Jupyter platform; but once they

9https://www.jetbrains.com/pycharm/.
10https://wingware.com/.
11https://github.com/spyder-ide/spyder.
12http://jupyter.readthedocs.org/en/latest/install.html.

https://www.jetbrains.com/pycharm/
https://wingware.com/
https://github.com/spyder-ide/spyder
http://jupyter.readthedocs.org/en/latest/install.html

10 2 Toolboxes for Data Scientists

are converted to the new version, they cannot be used again in old IPython notebook

versions.

In this book, all the examples shown use Jupyter notebook style.

2.6 Get Started with Python for Data Scientists

Throughout this book, we will come across many practical examples. In this chapter,

we will see a very basic example to help get started with a data science ecosystem

from scratch. To execute our examples, we will use Jupyter notebook, although any

other console or IDE can be used.

The Jupyter Notebook Environment

Once all the ecosystem is fully installed, we can start by launching the Jupyter

notebook platform. This can be done directly by typing the following command on

your terminal or command line: $ jupyter notebook

If we chose the bundle installation, we can start the Jupyter notebook platform by

clicking on the Jupyter Notebook icon installed by Anaconda in the start menu or on

the desktop.

The browser will immediately be launched displaying the Jupyter notebook home-

page, whose URL is http://localhost:8888/tree. Note that a special port is used; by

default it is 8888. As can be seen in Fig. 2.1, this initial page displays a tree view of a

directory. If we use the command line, the root directory is the same directory where

we launched the Jupyter notebook. Otherwise, if we use the Anaconda launcher, the

root directory is the current user directory. Now, to start a new notebook, we only

need to press the New Notebooks Python 2 button at the top on the right of the

home page.

As can be seen in Fig. 2.2, a blank notebook is created called Untitled.

First of all, we are going to change the name of the notebook to something

more appropriate. To do this, just click on the notebook name and rename it:

DataScience-GetStartedExample.

Let us begin by importing those toolboxes that we will need for our program. In the

first cell we put the code to import the Pandas library as pd. This is for convenience;

every time we need to use some functionality from the Pandas library, we will write

pd instead of pandas. We will also import the two core libraries mentioned above:

the numpy library as np and the matplotlib library as plt.

In []:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

2.6 Get Started with Python for Data Scientists 11

Fig. 2.1 IPython notebook home page, displaying a home tree directory

Fig. 2.2 An empty new notebook

To execute just one cell, we press the ¸ button or click on Cell Run or press

the keys Ctrl + Enter . While execution is underway, the header of the cell shows the

* mark:

In [*]:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

12 2 Toolboxes for Data Scientists

While a cell is being executed, no other cell can be executed. If you try to execute

another cell, its execution will not start until the first cell has finished its execution.

Once the execution is finished, the header of the cell will be replaced by the next

number of execution. Since this will be the first cell executed, the number shown will

be 1. If the process of importing the libraries is correct, no output cell is produced.

In [1]:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

For simplicity, other chapters in this book will avoid writing these imports.

The DataFrame Data Structure

The key data structure in Pandas is theDataFrame object. A DataFrame is basically

a tabular data structure, with rows and columns. Rows have a specific index to access

them, which can be any name or value. In Pandas, the columns are called Series,

a special type of data, which in essence consists of a list of several values, where

each value has an index. Therefore, the DataFrame data structure can be seen as a

spreadsheet, but it is much more flexible. To understand how it works, let us see

how to create a DataFrame from a common Python dictionary of lists. First, we will

create a new cell by clicking Insert Insert Cell Below or pressing the keys Ctrl + B .

Then, we write in the following code:

In [2]:
data = {’year’: [

2010, 2011, 2012,

2010, 2011, 2012,

2010, 2011, 2012

],

’team’: [

’FCBarcelona ’, ’FCBarcelona ’,

’FCBarcelona ’, ’RMadrid ’,

’RMadrid ’, ’RMadrid ’,

’ValenciaCF ’, ’ValenciaCF ’,

’ValenciaCF ’

],

’wins’: [30, 28, 32, 29, 32, 26, 21, 17, 19],

’draws ’: [6, 7, 4, 5, 4, 7, 8, 10, 8],

’losses’: [2, 3, 2, 4, 2, 5, 9, 11, 11]

}

football = pd.DataFrame(data , columns = [

’year’, ’team’, ’wins’, ’draws ’, ’losses’

]

)

In this example, we use the pandas DataFrame object constructor with a dictionary

of lists as argument. The value of each entry in the dictionary is the name of the

column, and the lists are their values.

The DataFrame columns can be arranged at construction time by entering a key-

word columns with a list of the names of the columns ordered as we want. If the

2.6 Get Started with Python for Data Scientists 13

column keyword is not present in the constructor, the columns will be arranged in

alphabetical order. Now, if we execute this cell, the result will be a table like this:

Out[2]: year team wins draws losses

0 2010 FCBarcelona 30 6 2

1 2011 FCBarcelona 28 7 3

2 2012 FCBarcelona 32 4 2

3 2010 RMadrid 29 5 4

4 2011 RMadrid 32 4 2

5 2012 RMadrid 26 7 5

6 2010 ValenciaCF 21 8 9

7 2011 ValenciaCF 17 10 11

8 2012 ValenciaCF 19 8 11

where each entry in the dictionary is a column. The index of each row is created

automatically taking the position of its elements inside the entry lists, starting from 0.

Although it is very easy to create DataFrames from scratch, most of the time what

we will need to do is import chunks of data into a DataFrame structure, and we will

see how to do this in later examples.

Apart from DataFrame data structure creation, Panda offers a lot of functions

to manipulate them. Among other things, it offers us functions for aggregation,

manipulation, and transformation of the data. In the following sections, we will

introduce some of these functions.

Open Government Data Analysis Example Using Pandas

To illustrate how we can use Pandas in a simple real problem, we will start doing

some basic analysis of government data. For the sake of transparency, data produced

by government entities must be open, meaning that they can be freely used, reused,

and distributed by anyone. An example of this is the Eurostat, which is the home of

European Commission data. Eurostat’s main role is to process and publish compa-

rable statistical information at the European level. The data in Eurostat are provided

by each member state and it is free to reuse them, for both noncommercial and

commercial purposes (with some minor exceptions).

Since the amount of data in the Eurostat database is huge, in our first study we

are only going to focus on data relative to indicators of educational funding by the

member states. Thus, the first thing to do is to retrieve such data from Eurostat.

Since open data have to be delivered in a plain text format, CSV (or any other

delimiter-separated value) formats are commonly used to store tabular data. In a

delimiter-separated value file, each line is a data record and each record consist-

s of one or more fields, separated by the delimiter character (usually a comma).

Therefore, the data we will use can be found already processed at book’s Github

repository aseduc_figdp_1_Data.csvfile. Of course, it can also be download-

ed as unprocessed tabular data from the Eurostat database site13 following the path:

14 2 Toolboxes for Data Scientists

Tables by themes Population and social conditions Education and training Education

Indicators on education finance Public expenditure on education .

2.6.1 Reading

Let us start reading the data we downloaded. First of all, we have to create a new

notebook called Open Government Data Analysis and open it. Then, after

ensuring that the educ_figdp_1_Data.csv file is stored in the same directory

as our notebook directory, we will write the following code to read and show the

content:

In [1]:
edu = pd.read_csv(’files/ch02/educ_figdp_1_Data.csv’,

na_values = ’:’,

usecols = ["TIME","GEO","Value"])

edu

Out[1]: TIME GEO Value

0 2000 European Union ... NaN

1 2001 European Union ... NaN

2 2002 European Union ... 5.00

3 2003 European Union ... 5.03

...

382 2010 Finland 6.85

383 2011 Finland 6.76

384 rows × 5 columns

The way to read CSV (or any other separated value, providing the separator

character) files in Pandas is by calling the read_csv method. Besides the name

of the file, we add the na_values key argument to this method along with the

character that represents “non available data” in the file. Normally, CSV files have a

header with the names of the columns. If this is the case, we can use the usecols

parameter to select which columns in the file will be used.

In this case, the DataFrame resulting from reading our data is stored in edu. The

output of the execution shows that the eduDataFrame size is 384 rows × 3 columns.

Since the DataFrame is too large to be fully displayed, three dots appear in the middle

of each row.

Beside this, Pandas also has functions for reading files with formats such as Excel,

HDF5, tabulated files, or even the content from the clipboard (read_excel(),

read_hdf(), read_table(), read_clipboard()). Whichever function

we use, the result of reading a file is stored as a DataFrame structure.

To see how the data looks, we can use the head() method, which shows just the

first five rows. If we use a number as an argument to this method, this will be the

number of rows that will be listed:

13http://ec.europa.eu/eurostat/data/database.

http://ec.europa.eu/eurostat/data/database

2.6 Get Started with Python for Data Scientists 15

In [2]:
edu.head()

Out[2]: TIME GEO Value

0 2000 European Union ... NaN

1 2001 European Union ... NaN

2 2002 European Union ... 5.00

3 2003 European Union ... 5.03

4 2004 European Union ... 4.95

Similarly, it exists thetail()method, which returns the last five rows by default.

In [3]:
edu.tail()

Out[3]: 379 2007 Finland 5.90

380 2008 Finland 6.10

381 2009 Finland 6.81

382 2010 Finland 6.85

383 2011 Finland 6.76

If we want to know the names of the columns or the names of the indexes, we

can use the DataFrame attributes columns and index respectively. The names of

the columns or indexes can be changed by assigning a new list of the same length to

these attributes. The values of any DataFrame can be retrieved as a Python array by

calling its values attribute.

If we just want quick statistical information on all the numeric columns in a

DataFrame, we can use the function describe(). The result shows the count, the

mean, the standard deviation, the minimum and maximum, and the percentiles, by

default, the 25th, 50th, and 75th, for all the values in each column or series.

In [4]:
edu.describe ()

Out[4]: TIME Value

count 384.000000 361.000000

mean 2005.500000 5.203989

std 3.456556 1.021694

min 2000.000000 2.880000

25% 2002.750000 4.620000

50% 2005.500000 5.060000

75% 2008.250000 5.660000

max 2011.000000 8.810000

Name: Value, dtype: float64

16 2 Toolboxes for Data Scientists

2.6.2 Selecting Data

If we want to select a subset of data from a DataFrame, it is necessary to indicate this

subset using square brackets ([]) after the DataFrame. The subset can be specified

in several ways. If we want to select only one column from a DataFrame, we only

need to put its name between the square brackets. The result will be a Series data

structure, not a DataFrame, because only one column is retrieved.

In [5]:
edu[’Value’]

Out[5]: 0 NaN

1 NaN

2 5.00

3 5.03

4 4.95

... ...

380 6.10

381 6.81

382 6.85

383 6.76

Name: Value, dtype: float64

If we want to select a subset of rows from a DataFrame, we can do so by indicating

a range of rows separated by a colon (:) inside the square brackets. This is commonly

known as a slice of rows:

In [6]:
edu [10:14]

Out[6]: TIME GEO Value

10 2010 European Union (28 countries) 5.41

11 2011 European Union (28 countries) 5.25

12 2000 European Union (27 countries) 4.91

13 2001 European Union (27 countries) 4.99

This instruction returns the slice of rows from the 10th to the 13th position. Note

that the slice does not use the index labels as references, but the position. In this case,

the labels of the rows simply coincide with the position of the rows.

If we want to select a subset of columns and rows using the labels as our references

instead of the positions, we can use ix indexing:

In [7]:
edu.ix[90:94 , [’TIME’,’GEO’]]

2.6 Get Started with Python for Data Scientists 17

Out[7]: TIME GEO

90 2006 Belgium

91 2007 Belgium

92 2008 Belgium

93 2009 Belgium

94 2010 Belgium

This returns all the rows between the indexes specified in the slice before the

comma, and the columns specified as a list after the comma. In this case,ix references

the index labels, which means that ix does not return the 90th to 94th rows, but it

returns all the rows between the row labeled 90 and the row labeled 94; thus if the

index 100 is placed between the rows labeled as 90 and 94, this row would also be

returned.

2.6.3 Filtering Data

Another way to select a subset of data is by applying Boolean indexing. This indexing

is commonly known as a filter. For instance, if we want to filter those values less

than or equal to 6.5, we can do it like this:

In [8]:
edu[edu[’Value’] > 6.5]. tail()

Out[8]: TIME GEO Value

218 2002 Cyprus 6.60

281 2005 Malta 6.58

94 2010 Belgium 6.58

93 2009 Belgium 6.57

95 2011 Belgium 6.55

Boolean indexing uses the result of a Boolean operation over the data, returning

a mask with True or False for each row. The rows marked True in the mask will

be selected. In the previous example, the Boolean operation edu[’Value’] >

6.5 produces a Boolean mask. When an element in the “Value” column is greater

than 6.5, the corresponding value in the mask is set to True, otherwise it is set to

False. Then, when this mask is applied as an index in edu[edu[’Value’] >

6.5], the result is a filtered DataFrame containing only rows with values higher

than 6.5. Of course, any of the usual Boolean operators can be used for filtering: <

(less than),<= (less than or equal to), > (greater than), >= (greater than or equal

to), = (equal to), and ! = (not equal to).

2.6.4 Filtering Missing Values

Pandas uses the special value NaN (not a number) to represent missing values. In

Python, NaN is a special floating-point value returned by certain operations when

18 2 Toolboxes for Data Scientists

Table 2.1 List of most common aggregation functions

Function Description

count() Number of non-null observations

sum() Sum of values

mean() Mean of values

median() Arithmetic median of values

min() Minimum

max() Maximum

prod() Product of values

std() Unbiased standard deviation

var() Unbiased variance

one of their results ends in an undefined value. A subtle feature of NaN values is that

two NaN are never equal. Because of this, the only safe way to tell whether a value is

missing in a DataFrame is by using the isnull() function. Indeed, this function

can be used to filter rows with missing values:

In [9]:
edu[edu["Value"]. isnull()].head()

Out[9]: TIME GEO Value

0 2000 European Union (28 countries) NaN

1 2001 European Union (28 countries) NaN

36 2000 Euro area (18 countries) NaN

37 2001 Euro area (18 countries) NaN

48 2000 Euro area (17 countries) NaN

2.6.5 Manipulating Data

Once we know how to select the desired data, the next thing we need to know is how

to manipulate data. One of the most straightforward things we can do is to operate

with columns or rows using aggregation functions. Table 2.1 shows a list of the most

common aggregation functions. The result of all these functions applied to a row or

column is always a number. Meanwhile, if a function is applied to a DataFrame or a

selection of rows and columns, then you can specify if the function should be applied

to the rows for each column (setting the axis=0 keyword on the invocation of the

function), or it should be applied on the columns for each row (setting the axis=1

keyword on the invocation of the function).

In [10]:
edu.max(axis = 0)

2.6 Get Started with Python for Data Scientists 19

Out[10]: TIME 2011

GEO Spain

Value 8.81

dtype: object

Note that these are functions specific to Pandas, not the generic Python functions.

There are differences in their implementation. In Python, NaN values propagate

through all operations without raising an exception. In contrast, Pandas operations

excludeNaN values representing missing data. For example, the pandasmax function

excludes NaN values, thus they are interpreted as missing values, while the standard

Python max function will take the mathematical interpretation of NaN and return it

as the maximum:

In [11]:
print "Pandas max function:", edu[’Value’].max()

print "Python max function:", max(edu[’Value’])

Out[11]: Pandas max function: 8.81

Python max function: nan

Beside these aggregation functions, we can apply operations over all the values in

rows, columns or a selection of both. The rule of thumb is that an operation between

columns means that it is applied to each row in that column and an operation between

rows means that it is applied to each column in that row. For example we can apply

any binary arithmetical operation (+,-,*,/) to an entire row:

In [12]:
s = edu["Value"]/100

s.head()

Out[12]: 0 NaN

1 NaN

2 0.0500

3 0.0503

4 0.0495

Name: Value, dtype: float64

However, we can apply any function to a DataFrame or Series just setting its name

as argument of the apply method. For example, in the following code, we apply

the sqrt function from the NumPy library to perform the square root of each value

in the Value column.

In [13]:
s = edu["Value"]. apply(np.sqrt)

s.head()

Out[13]: 0 NaN

1 NaN

2 2.236068

3 2.242766

4 2.224860

Name: Value, dtype: float64

20 2 Toolboxes for Data Scientists

If we need to design a specific function to apply it, we can write an in-line function,

commonly known as a λ-function. A λ-function is a function without a name. It is

only necessary to specify the parameters it receives, between the lambda keyword

and the colon (:). In the next example, only one parameter is needed, which will be

the value of each element in the Value column. The value the function returns will

be the square of that value.

In [14]:
s = edu["Value"]. apply(lambda d: d**2)

s.head()

Out[14]: 0 NaN

1 NaN

2 25.0000

3 25.3009

4 24.5025

Name: Value, dtype: float64

Another basic manipulation operation is to set new values in our DataFrame. This

can be done directly using the assign operator (=) over a DataFrame. For example, to

add a new column to a DataFrame, we can assign a Series to a selection of a column

that does not exist. This will produce a new column in the DataFrame after all the

others. You must be aware that if a column with the same name already exists, the

previous values will be overwritten. In the following example, we assign the Series

that results from dividing the Value column by the maximum value in the same

column to a new column named ValueNorm.

In [15]:
edu[’ValueNorm’] = edu[’Value’]/edu[’Value’].max()

edu.tail()

Out[15]: TIME GEO Value ValueNorm

379 2007 Finland 5.90 0.669694

380 2008 Finland 6.10 0.692395

381 2009 Finland 6.81 0.772985

382 2010 Finland 6.85 0.777526

383 2011 Finland 6.76 0.767310

Now, if we want to remove this column from the DataFrame, we can use the drop

function; this removes the indicated rows if axis=0, or the indicated columns if

axis=1. In Pandas, all the functions that change the contents of a DataFrame, such

as the drop function, will normally return a copy of the modified data, instead of

overwriting the DataFrame. Therefore, the original DataFrame is kept. If you do not

want to keep the old values, you can set the keyword inplace to True. By default,

this keyword is set to False, meaning that a copy of the data is returned.

In [16]:
edu.drop(’ValueNorm’, axis = 1, inplace = True)

edu.head()

2.6 Get Started with Python for Data Scientists 21

Out[16]: TIME GEO Value

0 2000 European Union (28 countries) NaN

1 2001 European Union (28 countries) NaN

2 2002 European Union (28 countries) 5

3 2003 European Union (28 countries) 5.03

4 2004 European Union (28 countries) 4.95

Instead, if what we want to do is to insert a new row at the bottom of the DataFrame,

we can use the Pandas append function. This function receives as argument

the new row, which is represented as a dictionary where the keys are the name

of the columns and the values are the associated value. You must be aware to setting

the ignore_index flag in the append method to True, otherwise the index 0

is given to this new row, which will produce an error if it already exists:

In [17]:
edu = edu.append ({"TIME": 2000,"Value": 5.00,"GEO": ’a’},

ignore_index = True)

edu.tail()

Out[17]: TIME GEO Value

380 2008 Finland 6.1

381 2009 Finland 6.81

382 2010 Finland 6.85

383 2011 Finland 6.76

384 2000 a 5

Finally, if we want to remove this row, we need to use the drop function again.

Now we have to set the axis to 0, and specify the index of the row we want to remove.

Since we want to remove the last row, we can use the max function over the indexes

to determine which row is.

In [18]:
edu.drop(max(edu.index), axis = 0, inplace = True)

edu.tail()

Out[18]: TIME GEO Value

379 2007 Finland 5.9

380 2008 Finland 6.1

381 2009 Finland 6.81

382 2010 Finland 6.85

383 2011 Finland 6.76

The drop() function is also used to remove missing values by applying it over

the result of the isnull() function. This has a similar effect to filtering the NaN

values, as we explained above, but here the difference is that a copy of the DataFrame

without the NaN values is returned, instead of a view.

In [19]:
eduDrop = edu.drop(edu["Value"]. isnull (), axis = 0)

eduDrop.head()

22 2 Toolboxes for Data Scientists

Out[19]: TIME GEO Value

2 2002 European Union (28 countries) 5.00

3 2003 European Union (28 countries) 5.03

4 2004 European Union (28 countries) 4.95

5 2005 European Union (28 countries) 4.92

6 2006 European Union (28 countries) 4.91

To removeNaN values, instead of the generic drop function, we can use the specific

dropna() function. If we want to erase any row that contains an NaN value, we

have to set the how keyword to any. To restrict it to a subset of columns, we can

specify it using the subset keyword. As we can see below, the result will be the

same as using the drop function:

In [20]:
eduDrop = edu.dropna(how = ’any’, subset = ["Value"])

eduDrop.head()

Out[20]: TIME GEO Value

2 2002 European Union (28 countries) 5.00

3 2003 European Union (28 countries) 5.03

4 2004 European Union (28 countries) 4.95

5 2005 European Union (28 countries) 4.92

6 2006 European Union (28 countries) 4.91

If, instead of removing the rows containing NaN, we want to fill them with another

value, then we can use the fillna() method, specifying which value has to be

used. If we want to fill only some specific columns, we have to set as argument to

the fillna() function a dictionary with the name of the columns as the key and

which character to be used for filling as the value.

In [21]:
eduFilled = edu.fillna(value = {"Value": 0})

eduFilled.head()

Out[21]: TIME GEO Value

0 2000 European Union (28 countries) 0.00

1 2001 European Union (28 countries) 0.00

2 2002 European Union (28 countries) 5.00

3 2003 European Union (28 countries) 4.95

4 2004 European Union (28 countries) 4.95

2.6.6 Sorting

Another important functionality we will need when inspecting our data is to sort by

columns. We can sort a DataFrame using any column, using the sort function. If

we want to see the first five rows of data sorted in descending order (i.e., from the

largest to the smallest values) and using the Value column, then we just need to do

this:

2.6 Get Started with Python for Data Scientists 23

In [22]:
edu.sort_values(by = ’Value’, ascending = False ,

inplace = True)

edu.head()

Out[22]: TIME GEO Value

130 2010 Denmark 8.81

131 2011 Denmark 8.75

129 2009 Denmark 8.74

121 2001 Denmark 8.44

122 2002 Denmark 8.44

Note that the inplace keyword means that the DataFrame will be overwritten,

and hence no new DataFrame is returned. If instead of ascending = False we

use ascending = True, the values are sorted in ascending order (i.e., from the

smallest to the largest values).

If we want to return to the original order, we can sort by an index using the

sort_index function and specifying axis=0:

In [23]:
edu.sort_index(axis = 0, ascending = True , inplace = True)

edu.head()

Out[23]: TIME GEO Value

0 2000 European Union ... NaN

1 2001 European Union ... NaN

2 2002 European Union ... 5.00

3 2003 European Union ... 5.03

4 2004 European Union ... 4.95

2.6.7 Grouping Data

Another very useful way to inspect data is to group it according to some criteria. For

instance, in our example it would be nice to group all the data by country, regardless

of the year. Pandas has the groupby function that allows us to do exactly this. The

value returned by this function is a special grouped DataFrame. To have a proper

DataFrame as a result, it is necessary to apply an aggregation function. Thus, this

function will be applied to all the values in the same group.

For example, in our case, if we want a DataFrame showing the mean of the values

for each country over all the years, we can obtain it by grouping according to country

and using the mean function as the aggregation method for each group. The result

would be a DataFrame with countries as indexes and the mean values as the column:

In [24]:
group = edu[["GEO", "Value"]]. groupby(’GEO’).mean()

group.head()

24 2 Toolboxes for Data Scientists

Out[24]: Value

GEO

Austria 5.618333

Belgium 6.189091

Bulgaria 4.093333

Cyprus 7.023333

Czech Republic 4.16833

2.6.8 Rearranging Data

Up until now, our indexes have been just a numeration of rows without much meaning.

We can transform the arrangement of our data, redistributing the indexes and columns

for better manipulation of our data, which normally leads to better performance. We

can rearrange our data using the pivot_table function. Here, we can specify

which columns will be the new indexes, the new values, and the new columns.

For example, imagine that we want to transform our DataFrame to a spreadsheet-

like structure with the country names as the index, while the columns will be the

years starting from 2006 and the values will be the previous Value column. To do

this, first we need to filter out the data and then pivot it in this way:

In [25]:
filtered_data = edu[edu["TIME"] > 2005]

pivedu = pd.pivot_table(filtered_data , values = ’Value’,

index = [’GEO’],

columns = [’TIME’])

pivedu.head()

Out[25]: TIME 2006 2007 2008 2009 2010 2011

GEO

Austria 5.40 5.33 5.47 5.98 5.91 5.80

Belgium 5.98 6.00 6.43 6.57 6.58 6.55

Bulgaria 4.04 3.88 4.44 4.58 4.10 3.82

Cyprus 7.02 6.95 7.45 7.98 7.92 7.87

Czech Republic 4.42 4.05 3.92 4.36 4.25 4.51

Now we can use the new index to select specific rows by label, using the ix

operator:

In [26]:
pivedu.ix[[’Spain’,’Portugal’], [2006 ,2011]]

Out[26]: TIME 2006 2011

GEO

Spain 4.26 4.82

Portugal 5.07 5.27

Pivot also offers the option of providing an argument aggr_function that

allows us to perform an aggregation function between the values if there is more

2.6 Get Started with Python for Data Scientists 25

than one value for the given row and column after the transformation. As usual, you

can design any custom function you want, just giving its name or using a λ-function.

2.6.9 Ranking Data

Another useful visualization feature is to rank data. For example, we would like to

know how each country is ranked by year. To see this, we will use the pandas rank

function. But first, we need to clean up our previous pivoted table a bit so that it only

has real countries with real data. To do this, first we drop the Euro area entries and

shorten the Germany name entry, using the rename function and then we drop all

the rows containing any NaN, using the dropna function.

Now we can perform the ranking using the rank function. Note here that the

parameter ascending=False makes the ranking go from the highest values to

the lowest values. The Pandas rank function supports different tie-breaking methods,

specified with the method parameter. In our case, we use the first method, in

which ranks are assigned in the order they appear in the array, avoiding gaps between

ranking.

In [27]:
pivedu = pivedu.drop([

’Euro area (13 countries)’,

’Euro area (15 countries)’,

’Euro area (17 countries)’,

’Euro area (18 countries)’,

’European Union (25 countries)’,

’European Union (27 countries)’,

’European Union (28 countries)’

],

axis = 0)

pivedu = pivedu.rename(index = {’Germany (until 1990 former territory

of the FRG)’: ’Germany’})

pivedu = pivedu.dropna ()

pivedu.rank(ascending = False , method = ’first’).head()

Out[27]: TIME 2006 2007 2008 2009 2010 2011

GEO

Austria 10 7 11 7 8 8

Belgium 5 4 3 4 5 5

Bulgaria 21 21 20 20 22 21

Cyprus 2 2 2 2 2 3

Czech Republic 19 20 21 21 20 18

If we want to make a global ranking taking into account all the years, we can

sum up all the columns and rank the result. Then we can sort the resulting values to

retrieve the top five countries for the last 6 years, in this way:

In [28]:
totalSum = pivedu.sum(axis = 1)

totalSum.rank(ascending = False , method = ’dense’)

.sort_values ().head()

26 2 Toolboxes for Data Scientists

Out[28]: GEO

Denmark 1

Cyprus 2

Finland 3

Malta 4

Belgium 5

dtype: float64

Notice that the method keyword argument in the in the rank function specifies

how items that compare equals receive ranking. In the case of dense, items that

compare equals receive the same ranking number, and the next not equal item receives

the immediately following ranking number.

2.6.10 Plotting

Pandas DataFrames and Series can be plotted using the plot function, which uses

the library for graphics Matplotlib. For example, if we want to plot the accumulated

values for each country over the last 6 years, we can take the Series obtained in the

previous example and plot it directly by calling the plot function as shown in the

next cell:

In [29]:

totalSum = pivedu.sum(axis = 1)

.sort_values(ascending = False)

totalSum.plot(kind = ’bar’, style = ’b’, alpha = 0.4,

title = "Total Values for Country")

Out[29]:

Note that if we want the bars ordered from the highest to the lowest value, we

need to sort the values in the Series first. The parameter kind used in the plot

function defines which kind of graphic will be used. In our case, a bar graph. The

parameter style refers to the style properties of the graphic, in our case, the color

2.6 Get Started with Python for Data Scientists 27

of bars is set to b (blue). The alpha channel can be modified adding a keyword

parameter alpha with a percentage, producing a more translucent plot. Finally,

using the title keyword the name of the graphic can be set.

It is also possible to plot a DataFrame directly. In this case, each column is treated

as a separated Series. For example, instead of printing the accumulated value over

the years, we can plot the value for each year.

In [30]:
my_colors = [’b’, ’r’, ’g’, ’y’, ’m’, ’c’]

ax = pivedu.plot(kind = ’barh’,

stacked = True ,

color = my_colors)

ax.legend(loc = ’center left’, bbox_to_anchor = (1, .5))

Out[30]:

In this case, we have used a horizontal bar graph (kind=’barh’) stacking all the

years in the same country bar. This can be done by setting the parameter stacked

to True. The number of default colors in a plot is only 5, thus if you have more

than 5 Series to show, you need to specify more colors or otherwise the same set of

colors will be used again. We can set a new set of colors using the keyword color

with a list of colors. Basic colors have a single-character code assigned to each, for

example, “b” is for blue, “r” for red, “g” for green, “y” for yellow, “m” for magenta,

and “c” for cyan. When several Series are shown in a plot, a legend is created for

identifying each one. The name for each Series is the name of the column in the

DataFrame. By default, the legend goes inside the plot area. If we want to change

this, we can use the legend function of the axis object (this is the object returned

when the plot function is called). By using the loc keyword, we can set the relative

position of the legend with respect to the plot. It can be a combination of right or

left and upper, lower, or center. With bbox_to_anchor we can set an absolute

position with respect to the plot, allowing us to put the legend outside the graph.

28 2 Toolboxes for Data Scientists

2.7 Conclusions

This chapter has been a brief introduction to the most essential elements of a pro-

gramming environment for data scientists. The tutorial followed in this chapter is

just a starting point for more advanced projects and techniques. As we will see in

the following chapters, Python and its ecosystem is a very empowering choice for

developing data science projects.

Acknowledgements This chapter was co-written by Eloi Puertas and Francesc Dantí.

3Descriptive Statistics

3.1 Introduction

Descriptive statistics helps to simplify large amounts of data in a sensible way.

In contrast to inferential statistics, which will be introduced in a later chapter, in

descriptive statistics we do not draw conclusions beyond the data we are analyzing;

neither do we reach any conclusions regarding hypotheses we may make. We do not

try to infer characteristics of the “population” (see below) of the data, but claim to

present quantitative descriptions of it in a manageable form. It is simply a way to

describe the data.

Statistics, and in particular descriptive statistics, is based on two main concepts:

• a population is a collection of objects, items (“units”) about which information is

sought;

• a sample is a part of the population that is observed.

Descriptive statistics applies the concepts, measures, and terms that are used to

describe the basic features of the samples in a study. These procedures are essential

to provide summaries about the samples as an approximation of the population.

Together with simple graphics, they form the basis of every quantitative analysis of

data. In order to describe the sample data and to be able to infer any conclusion, we

should go through several steps:

1. Data preparation: Given a specific example, we need to prepare the data for

generating statistically valid descriptions.

2. Descriptive statistics: This generates different statistics to describe and summa-

rize the data concisely and evaluate different ways to visualize them.

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_3

29

30 3 Descriptive Statistics

3.2 Data Preparation

One of the first tasks when analyzing data is to collect and prepare the data in a format

appropriate for analysis of the samples. The most common steps for data preparation

involve the following operations.

1. Obtaining the data: Data can be read directly from a file or they might be obtained

by scraping the web.

2. Parsing the data: The right parsing procedure depends on what format the data

are in: plain text, fixed columns, CSV, XML, HTML, etc.

3. Cleaning the data: Survey responses and other data files are almost always in-

complete. Sometimes, there are multiple codes for things such as, not asked, did

not know, and declined to answer. And there are almost always errors. A simple

strategy is to remove or ignore incomplete records.

4. Building data structures: Once you read the data, it is necessary to store them in

a data structure that lends itself to the analysis we are interested in. If the data fit

into the memory, building a data structure is usually the way to go. If not, usually

a database is built, which is an out-of-memory data structure. Most databases

provide a mapping from keys to values, so they serve as dictionaries.

3.2.1 The Adult Example

Let us consider a public database called the “Adult” dataset, hosted on the UCI’s

Machine Learning Repository.1 It contains approximately 32,000 observations con-

cerning different financial parameters related to the US population: age, sex, marital

(marital status of the individual), country, income (Boolean variable: whether the per-

son makes more than $50,000 per annum), education (the highest level of education

achieved by the individual), occupation, capital gain, etc.

We will show that we can explore the data by asking questions like: “Are men

more likely to become high-income professionals than women, i.e., to receive an

income of over $50,000 per annum?”

1https://archive.ics.uci.edu/ml/datasets/Adult.

https://archive.ics.uci.edu/ml/datasets/Adult

3.2 Data Preparation 31

First, let us read the data:

In [1]:
file = open(’files/ch03/adult.data’, ’r’)

def chr_int(a):

if a.isdigit (): return int(a)

else: return 0

data = []

for line in file:

data1 = line.split(’, ’)

if len(data1) == 15:

data.append ([chr_int(data1 [0]), data1[1],

chr_int(data1 [2]), data1[3],

chr_int(data1 [4]), data1[5],

data1[6], data1[7], data1[8],

data1[9], chr_int(data1 [10]),

chr_int(data1 [11]),

chr_int(data1 [12]),

data1 [13], data1 [14]

])

Checking the data, we obtain:

In [2]:
print data [1:2]

Out[2]: [[50, ’Self-emp-not-inc’, 83311, ’Bachelors’, 13,

’Married-civ-spouse’, ’Exec-managerial’, ’Husband’, ’White’,

’Male’, 0, 0, 13, ’United-States’, ′ <= 50K’]]

One of the easiest ways to manage data in Python is by using the DataFrame

structure, defined in the Pandas library, which is a two-dimensional, size-mutable,

potentially heterogeneous tabular data structure with labeled axes:

In [3]:
df = pd.DataFrame(data)

df.columns = [

’age’, ’type_employer ’, ’fnlwgt ’,

’education ’, ’education_num ’, ’marital ’,

’occupation ’,’ relationship’, ’race’,

’sex’, ’capital_gain’, ’capital_loss’,

’hr_per_week ’, ’country ’, ’income ’

]

The command shape gives exactly the number of data samples (in rows, in this

case) and features (in columns):

In [4]:
df.shape

Out[4]: (32561, 15)

32 3 Descriptive Statistics

Thus, we can see that our dataset contains 32,561 data records with 15 features

each. Let us count the number of items per country:

In [5]:
counts = df.groupby(’country ’).size()

print counts.head()

Out[5]: country

? 583

Cambodia 19

Vietnam 67

Yugoslavia 16

The first row shows the number of samples with unknown country, followed by

the number of samples corresponding to the first countries in the dataset.

Let us split people according to their gender into two groups: men and women.

In [6]:
ml = df[(df.sex == ’Male’)]

If we focus on high-income professionals separated by sex, we can do:

In [7]:
ml1 = df[(df.sex == ’Male’) & (df.income ==’ >50K\n’)

]

fm = df[(df.sex == ’Female ’)]

fm1 = df[(df.sex == ’Female ’) & (df.income ==’ >50K\n

’)]

3.3 Exploratory Data Analysis

The data that come from performing a particular measurement on all the subjects

in a sample represent our observations for a single characteristic like country,

age, education, etc. These measurements and categories represent a sample

distribution of the variable, which in turn approximately represents the population

distribution of the variable. One of the main goals of exploratory data analysis is

to visualize and summarize the sample distribution, thereby allowing us to make

tentative assumptions about the population distribution.

3.3.1 Summarizing the Data

The data in general can be categorical or quantitative. For categorical data, a simple

tabulation of the frequency of each category is the best non-graphical exploration

for data analysis. For example, we can ask ourselves what is the proportion of high-

income professionals in our database:

3.3 Exploratory Data Analysis 33

In [8]:
df1 = df[(df.income ==’ >50K\n’)]

print ’The rate of people with high income is: ’,

int(len(df1)/float(len(df))*100), ’%.’

print ’The rate of men with high income is: ’,

int(len(ml1)/float(len(ml))*100), ’%.’

print ’The rate of women with high income is: ’,

int(len(fm1)/float(len(fm))*100), ’%.’

Out[8]: The rate of people with high income is: 24 %.

The rate of men with high income is: 30 %.

The rate of women with high income is: 10 %.

Given a quantitative variable, exploratory data analysis is a way to make prelim-

inary assessments about the population distribution of the variable using the data of

the observed samples. The characteristics of the population distribution of a quanti-

tative variable are its mean, deviation, histograms, outliers, etc. Our observed data

represent just a finite set of samples of an often infinite number of possible samples.

The characteristics of our randomly observed samples are interesting only to the

degree that they represent the population of the data they came from.

3.3.1.1 Mean
One of the first measurements we use to have a look at the data is to obtain sample

statistics from the data, such as the sample mean [1]. Given a sample of n values,

{xi }, i = 1, . . . , n, the mean, µ, is the sum of the values divided by the number of

values,2 in other words:

µ =
1

n

n∑

i=1

xi . (3.1)

The terms mean and average are often used interchangeably. In fact, the main

distinction between them is that the mean of a sample is the summary statistic com-

puted by Eq. (3.1), while an average is not strictly defined and could be one of many

summary statistics that can be chosen to describe the central tendency of a sample.

In our case, we can consider what the average age of men and women samples in

our dataset would be in terms of their mean:

2We will use the following notation: X is a random variable, x is a column vector, xT (the transpose

of x) is a row vector, X is a matrix, and xi is the i-th element of a dataset.

34 3 Descriptive Statistics

In [9]:
print ’The average age of men is: ’,

ml[’age’].mean()

print ’The average age of women is: ’,

fm[’age’].mean()

print ’The average age of high -income men is: ’,

ml1[’age’].mean()

print ’The average age of high -income women is: ’,

fm1[’age’].mean()

Out[9]: The average age of men is: 39.4335474989

The average age of women is: 36.8582304336

The average age of high-income men is: 44.6257880516

The average age of high-income women is: 42.1255301103

This difference in the sample means can be considered initial evidence that there

are differences between men and women with high income!

Comment: Later, we will work with both concepts: the population mean and the

sample mean. We should not confuse them! The first is the mean of samples taken

from the population; the second, the mean of the whole population.

3.3.1.2 Sample Variance
The mean is not usually a sufficient descriptor of the data. We can go further by

knowing two numbers: mean and variance. The variance σ2 describes the spread of

the data and it is defined as follows:

σ2 =
1

n

∑

i

(xi − µ)2. (3.2)

The term (xi − µ) is called the deviation from the mean, so the variance is the mean

squared deviation. The square root of the variance, σ, is called the standard deviation.

We consider the standard deviation, because the variance is hard to interpret (e.g., if

the units are grams, the variance is in grams squared).

Let us compute the mean and the variance of hours per week men and women in

our dataset work:

In [10]:
ml_mu = ml[’age’].mean()

fm_mu = fm[’age’].mean()

ml_var = ml[’age’].var()

fm_var = fm[’age’].var()

ml_std = ml[’age’].std()

fm_std = fm[’age’].std()

print ’Statistics of age for men: mu:’,

ml_mu , ’var:’, ml_var , ’std:’, ml_std

print ’Statistics of age for women: mu:’,

fm_mu , ’var:’, fm_var , ’std:’, fm_std

3.3 Exploratory Data Analysis 35

Out[10]: Statistics of age for men: mu: 39.4335474989 var: 178.773751745

std: 13.3706301925

Statistics of age for women: mu: 36.8582304336 var:

196.383706395 std: 14.0136970994

We can see that the mean number of hours worked per week by women is signif-

icantly lesser than that worked by men, but with much higher variance and standard

deviation.

3.3.1.3 Sample Median
The mean of the samples is a good descriptor, but it has an important drawback: what

will happen if in the sample set there is an error with a value very different from the

rest? For example, considering hours worked per week, it would normally be in a

range between 20 and 80; but what would happen if by mistake there was a value

of 1000? An item of data that is significantly different from the rest of the data is

called an outlier. In this case, the mean, µ, will be drastically changed towards the

outlier. One solution to this drawback is offered by the statistical median, µ12, which

is an order statistic giving the middle value of a sample. In this case, all the values

are ordered by their magnitude and the median is defined as the value that is in the

middle of the ordered list. Hence, it is a value that is much more robust in the face

of outliers.

Let us see, the median age of working men and women in our dataset and the

median age of high-income men and women:

In [11]:
ml_median = ml[’age’]. median ()

fm_median = fm[’age’]. median ()

print "Median age per men and women: ",

ml_median , fm_median

ml_median_age = ml1[’age’]. median ()

fm_median_age = fm1[’age’]. median ()

print "Median age per men and women with high -

income: ",

ml_median_age , fm_median_age

Out[11]: Median age per men and women: 38.0 35.0

Median age per men and women with high-income: 44.0 41.0

As expected, the median age of high-income people is higher than the whole set

of working people, although the difference between men and women in both sets is

the same.

3.3.1.4 Quantiles and Percentiles
Sometimes we are interested in observing how sample data are distributed in general.

In this case, we can order the samples {xi }, then find the x p so that it divides the data

into two parts, where:

36 3 Descriptive Statistics

Fig. 3.1 Histogram of the age of working men (left) and women (right)

• a fraction p of the data values is less than or equal to x p and

• the remaining fraction (1 − p) is greater than x p.

That value, x p, is the p-th quantile, or the 100 × p-th percentile. For example, a

5-number summary is defined by the values xmin, Q1, Q2, Q3, xmax , where Q1 is

the 25 × p-th percentile, Q2 is the 50 × p-th percentile and Q3 is the 75 × p-th

percentile.

3.3.2 Data Distributions

Summarizing data by just looking at their mean, median, and variance can be danger-

ous: very different data can be described by the same statistics. The best thing to do

is to validate the data by inspecting them. We can have a look at the data distribution,

which describes how often each value appears (i.e., what is its frequency).

The most common representation of a distribution is a histogram, which is a graph

that shows the frequency of each value. Let us show the age of working men and

women separately.

In [12]:
ml_age = ml[’age’]

ml_age.hist(normed = 0, histtype = ’stepfilled ’,

bins = 20)

In [13]:
fm_age = fm[’age’]

fm_age.hist(normed = 0, histtype = ’stepfilled ’,

bins = 10)

The output can be seen in Fig. 3.1. If we want to compare the histograms, we can

plot them overlapping in the same graphic as follows:

3.3 Exploratory Data Analysis 37

Fig. 3.2 Histogram of the age of working men (in ochre) and women (in violet) (left). Histogram of

the age of working men (in ochre), women (in blue), and their intersection (in violet) after samples

normalization (right)

In [14]:
import seaborn as sns

fm_age.hist(normed = 0, histtype = ’stepfilled ’,

alpha = .5, bins = 20)

ml_age.hist(normed = 0, histtype = ’stepfilled ’,

alpha = .5,

color = sns.desaturate("indianred",

.75),

bins = 10)

The output can be seen in Fig. 3.2 (left). Note that we are visualizing the absolute

values of the number of people in our dataset according to their age (the abscissa of

the histogram). As a side effect, we can see that there are many more men in these

conditions than women.

We can normalize the frequencies of the histogram by dividing/normalizing by

n, the number of samples. The normalized histogram is called the Probability Mass

Function (PMF).

In [15]:
fm_age.hist(normed = 1, histtype = ’stepfilled ’,

alpha = .5, bins = 20)

ml_age.hist(normed = 1, histtype = ’stepfilled ’,

alpha = .5, bins = 10,

color = sns.desaturate("indianred",

.75))

This outputs Fig. 3.2 (right), where we can observe a comparable range of indi-

viduals (men and women).

The Cumulative Distribution Function (CDF), or just distribution function,

describes the probability that a real-valued random variable X with a given proba-

bility distribution will be found to have a value less than or equal to x . Let us show

the CDF of age distribution for both men and women.

38 3 Descriptive Statistics

Fig. 3.3 The CDF of the age

of working male (in blue)

and female (in red) samples

In [16]:
ml_age.hist(normed = 1, histtype = ’step’,

cumulative = True , linewidth = 3.5,

bins = 20)

fm_age.hist(normed = 1, histtype=’step’,

cumulative = True , linewidth = 3.5,

bins = 20,

color = sns.desaturate("indianred",

.75))

The output can be seen in Fig. 3.3, which illustrates the CDF of the age distributions

for both men and women.

3.3.3 Outlier Treatment

As mentioned before, outliers are data samples with a value that is far from the central

tendency. Different rules can be defined to detect outliers, as follows:

• Computing samples that are far from the median.

• Computing samples whose values exceed the mean by 2 or 3 standard deviations.

For example, in our case, we are interested in the age statistics of men versus

women with high incomes and we can see that in our dataset, the minimum age is 17

years and the maximum is 90 years. We can consider that some of these samples are

due to errors or are not representable. Applying the domain knowledge, we focus on

the median age (37, in our case) up to 72 and down to 22 years old, and we consider

the rest as outliers.

3.3 Exploratory Data Analysis 39

In [17]:
df2 = df.drop(df.index[

(df.income == ’ >50K\n’) &

(df[’age’] > df[’age’]. median () + 35) &

(df[’age’] > df[’age’]. median () -15)

])

ml1_age = ml1[’age’]

fm1_age = fm1[’age’]

ml2_age = ml1_age.drop(ml1_age.index[

(ml1_age > df[’age’]. median () + 35) &

(ml1_age > df[’age’]. median () - 15)

])

fm2_age = fm1_age.drop(fm1_age.index[

(fm1_age > df[’age’]. median () + 35) &

(fm1_age > df[’age’]. median () - 15)

])

We can check how the mean and the median changed once the data were cleaned:

In [18]:
mu2ml = ml2_age.mean()

std2ml = ml2_age.std()

md2ml = ml2_age.median ()

mu2fm = fm2_age.mean()

std2fm = fm2_age.std()

md2fm = fm2_age.median ()

print "Men statistics:"

print "Mean:", mu2ml , "Std:", std2ml

print "Median:", md2ml

print "Min:", ml2_age.min(), "Max:", ml2_age.max()

print "Women statistics:"

print "Mean:", mu2fm , "Std:", std2fm

print "Median:", md2fm

print "Min:", fm2_age.min(), "Max:", fm2_age.max()

Out[18]: Men statistics: Mean: 44.3179821239 Std: 10.0197498572 Median:

44.0 Min: 19 Max: 72

Women statistics: Mean: 41.877028181 Std: 10.0364418073 Median:

41.0 Min: 19 Max: 72

Let us visualize how many outliers are removed from the whole data by:

In [19]:
plt.figure(figsize = (13.4, 5))

df.age[(df.income == ’ >50K\n’)]

.plot(alpha = .25, color = ’blue’)

df2.age[(df2.income == ’ >50K\n’)]

.plot(alpha = .45, color = ’red’)

40 3 Descriptive Statistics

Fig. 3.4 The red shows the cleaned data without the considered outliers (in blue)

Figure 3.4 shows the outliers in blue and the rest of the data in red. Visually, we

can confirm that we removed mainly outliers from the dataset.

Next we can see that by removing the outliers, the difference between the popula-

tions (men and women) actually decreased. In our case, there were more outliers in

men than women. If the difference in the mean values before removing the outliers

is 2.5, after removing them it slightly decreased to 2.44:

In [20]:
print ’The mean difference with outliers is: %4.2f.

’

% (ml_age.mean() - fm_age.mean())

print ’The mean difference without outliers is:

%4.2f.’

% (ml2_age.mean() - fm2_age.mean())

Out[20]: The mean difference with outliers is: 2.58.

The mean difference without outliers is: 2.44.

Let us observe the difference of men and women incomes in the cleaned subset

with some more details.

In [21]:
countx , divisionx = np.histogram(ml2_age , normed =

True)

county , divisiony = np.histogram(fm2_age , normed =

True)

val = [(divisionx[i] + divisionx[i+1])/2

for i in range(len(divisionx) - 1)]

plt.plot(val , countx - county , ’o-’)

The results are shown in Fig. 3.5. One can see that the differences between male

and female values are slightly negative before age 42 and positive after it. Hence,

women tend to be promoted (receive more than 50 K) earlier than men.

3.3 Exploratory Data Analysis 41

Fig. 3.5 Differences in high-income earner men versus women as a function of age

3.3.4 Measuring Asymmetry: Skewness and Pearson’s Median
Skewness Coefficient

For univariate data, the formula for skewness is a statistic that measures the asym-

metry of the set of n data samples, xi :

g1 =
1

n

∑
i (xi − µ3)

σ3
, (3.3)

where µ is the mean, σ is the standard deviation, and n is the number of data points.

Negative deviation indicates that the distribution “skews left” (it extends further

to the left than to the right). One can easily see that the skewness for a normal

distribution is zero, and any symmetric data must have a skewness of zero. Note

that skewness can be affected by outliers! A simpler alternative is to look at the

relationship between the mean µ and the median µ12.

In [22]:
def skewness(x):

res = 0

m = x.mean()

s = x.std()

for i in x:

res += (i-m) * (i-m) * (i-m)

res /= (len(x) * s * s * s)

return res

print "Skewness of the male population = ",

skewness(ml2_age)

print "Skewness of the female population is = ",

skewness(fm2_age)

42 3 Descriptive Statistics

Out[22]: Skewness of the male population = 0.266444383843

Skewness of the female population = 0.386333524913

That is, the female population is more skewed than the male, probably since men

could be most prone to retire later than women.

The Pearson’s median skewness coefficient is a more robust alternative to the

skewness coefficient and is defined as follows:

gp = 3(µ − µ12)σ.

There are many other definitions for skewness that will not be discussed here. In

our case, if we check the Pearson’s skewness coefficient for both men and women,

we can see that the difference between them actually increases:

In [23]:
def pearson(x):

return 3*(x.mean() - x.median ())*x.std()

print "Pearson ’s coefficient of the male population

= ",

pearson(ml2_age)

print "Pearson ’s coefficient of the female

population = ",

pearson(fm2_age)

Out[23]: Pearson’s coefficient of the male population = 9.55830402221

Pearson’s coefficient of the female population = 26.4067269073

3.3.4.1 Discussions
After exploring the data, we obtained some apparent effects that seem to support

our initial assumptions. For example, the mean age for men in our dataset is 39.4

years; while for women, is 36.8 years. When analyzing the high-income salaries, the

mean age for men increased to 44.6 years; while for women, increased to 42.1 years.

When the data were cleaned from outliers, we obtained mean age for high-income

men: 44.3, and for women: 41.8. Moreover, histograms and other statistics show the

skewness of the data and the fact that women used to be promoted a little bit earlier

than men, in general.

3.3.5 Continuous Distribution

The distributions we have considered up to now are based on empirical observations

and thus are called empirical distributions. As an alternative, we may be interested

in considering distributions that are defined by a continuous function and are called

continuous distributions [2]. Remember that we defined the PMF, fX (x), of a discrete

random variable X as fX (x) = P(X = x) for all x . In the case of a continuous

random variable X , we speak of the Probability Density Function (PDF), which

3.3 Exploratory Data Analysis 43

Fig. 3.6 Exponential CDF (left) and PDF (right) with λ = 3.00

is defined as FX (x) where this satisfies: FX (x) =
∫ x

∞ fX (t)δt for all x . There are

many continuous distributions; here, we will consider the most common ones: the

exponential and the normal distributions.

3.3.5.1 The Exponential Distribution
Exponential distributions are well known since they describe the inter-arrival time

between events. When the events are equally likely to occur at any time, the distri-

bution of the inter-arrival time tends to an exponential distribution. The CDF and the

PDF of the exponential distribution are defined by the following equations:

C DF(x) = 1 − e−λx , P DF(x) = λe−λx .

The parameter λ defines the shape of the distribution. An example is given in

Fig. 3.6. It is easy to show that the mean of the distribution is 1
λ

, the variance is 1
λ2

and the median is ln(2)
λ

.

Note that for a small number of samples, it is difficult to see that the exact empirical

distribution fits a continuous distribution. The best way to observe this match is to

generate samples from the continuous distribution and see if these samples match

the data. As an exercise, you can consider the birthdays of a large enough group of

people, sorting them and computing the inter-arrival time in days. If you plot the

CDF of the inter-arrival times, you will observe the exponential distribution.

There are a lot of real-world events that can be described with this distribution,

including the time until a radioactive particle decays; the time it takes before your

next telephone call; and the time until default (on payment to company debt holders)

in reduced-form credit risk modeling. The random variable X of the lifetime of some

batteries is associated with a probability density function of the form: P DF(x) =
1
4 e− x

4 e
− (x−µ)2

2σ2 .

44 3 Descriptive Statistics

Fig. 3.7 Normal PDF with µ = 6 and σ = 2

3.3.5.2 The Normal Distribution
The normal distribution, also called the Gaussian distribution, is the most common

since it represents many real phenomena: economic, natural, social, and others. Some

well-known examples of real phenomena with a normal distribution are as follows:

• The size of living tissue (length, height, weight).

• The length of inert appendages (hair, nails, teeth) of biological specimens.

• Different physiological measurements (e.g., blood pressure), etc.

The normal CDF has no closed-form expression and its most common represen-

tation is the PDF:

PDF(x) =
1

√
2πσ2

e
− (x−µ)2

2σ2 .

The parameter σ defines the shape of the distribution. An example of the PDF of

a normal distribution with µ = 6 and σ = 2 is given in Fig. 3.7.

3.3.6 Kernel Density

In many real problems, we may not be interested in the parameters of a particular

distribution of data, but just a continuous representation of the data. In this case,

we should estimate the distribution non-parametrically (i.e., making no assumptions

about the form of the underlying distribution) using kernel density estimation. Let us

imagine that we have a set of data measurements without knowing their distribution

and we need to estimate the continuous representation of their distribution. In this

case, we can consider a Gaussian kernel to generate the density around the data. Let

us consider a set of random data generated by a bimodal normal distribution. If we

consider a Gaussian kernel around the data, the sum of those kernels can give us

3.3 Exploratory Data Analysis 45

Fig. 3.8 Summed kernel functions around a random set of points (left) and the kernel density

estimate with the optimal bandwidth (right) for our dataset. Random data shown in blue, kernel

shown in black and summed function shown in red

a continuous function that when normalized would approximate the density of the

distribution:

In [24]:
x1 = np.random.normal(-1, 0.5, 15)

x2 = np.random.normal(6, 1, 10)

y = np.r_[x1 , x2] # r_ translates slice objects to

concatenation along the first axis.

x = np.linspace(min(y), max(y), 100)

s = 0.4 # Smoothing parameter

Calculate the kernels

kernels = np.transpose ([norm.pdf(x, yi , s) for yi

in y])

plt.plot(x, kernels , ’k:’)

plt.plot(x, kernels.sum(1), ’r’)

plt.plot(y, np.zeros(len(y)), ’bo’, ms = 10)

Figure 3.8 (left) shows the result of the construction of the continuous function

from the kernel summarization.

In fact, the library SciPy3 implements a Gaussian kernel density estimation that

automatically chooses the appropriate bandwidth parameter for the kernel. Thus, the

final construction of the density estimate will be obtained by:

3http://www.scipy.org.

http://www.scipy.org

46 3 Descriptive Statistics

In [25]:
from scipy.stats import kde

density = kde.gaussian_kde(y)

xgrid = np.linspace(x.min(), x.max(), 200)

plt.hist(y, bins = 28, normed = True)

plt.plot(xgrid , density(xgrid), ’r-’)

Figure 3.8 (right) shows the result of the kernel density estimate for our example.

3.4 Estimation

An important aspect when working with statistical data is being able to use estimates

to approximate the values of unknown parameters of the dataset. In this section, we

will review different kinds of estimators (estimated mean, variance, standard score,

etc.).

3.4.1 Sample and Estimated Mean, Variance and Standard Scores

In continuation, we will deal with point estimators that are single numerical estimates

of parameters of a population.

3.4.1.1 Mean
Let us assume that we know that our data are coming from a normal distribution and

the random samples drawn are as follows:

{0.33,−1.76, 2.34, 0.56, 0.89}.

The question is can we guess the mean µ of the distribution? One approximation is

given by the sample mean, x̄ . This process is called estimation and the statistic (e.g.,

the sample mean) is called an estimator. In our case, the sample mean is 0.472, and it

seems a logical choice to represent the mean of the distribution. It is not so evident if

we add a sample with a value of −465. In this case, the sample mean will be −77.11,

which does not look like the mean of the distribution. The reason is due to the fact

that the last value seems to be an outlier compared to the rest of the sample. In order

to avoid this effect, we can try first to remove outliers and then to estimate the mean;

or we can use the sample median as an estimator of the mean of the distribution.

If there are no outliers, the sample mean x̄ minimizes the following mean squared

error:

M SE =
1

n

∑
(x̄ − µ)2,

where n is the number of times we estimate the mean.

Let us compute the MSE of a set of random data:

3.4 Estimation 47

In [26]:
NTs = 200

mu = 0.0

var = 1.0

err = 0.0

NPs = 1000

for i in range(NTs):

x = np.random.normal(mu , var , NPs)

err += (x.mean()-mu)**2

print ’MSE: ’, err/NTests

Out[26]: MSE: 0.00019879541147

3.4.1.2 Variance
If we ask ourselves what is the variance, σ2, of the distribution of X , analogously we

can use the sample variance as an estimator. Let us denote by σ̄2 the sample variance

estimator:

σ̄2 =
1

n

∑
(xi − x̄)2.

For large samples, this estimator works well, but for a small number of samples

it is biased. In those cases, a better estimator is given by:

σ̄2 =
1

n − 1

∑
(xi − x̄)2.

3.4.1.3 Standard Score
In many real problems, when we want to compare data, or estimate their correlations

or some other kind of relations, we must avoid data that come in different units.

For example, weight can come in kilograms or grams. Even data that come in the

same units can still belong to different distributions. We need to normalize them to

standard scores. Given a dataset as a series of values, {xi }, we convert the data to

standard scores by subtracting the mean and dividing them by the standard deviation:

zi =
(xi − µ)

σ
.

Note that this measure is dimensionless and its distribution has a mean of 0 and

variance of 1. It inherits the “shape” of the dataset: if X is normally distributed, so

is Z ; if X is skewed, so is Z .

3.4.2 Covariance, and Pearson’s and Spearman’s Rank Correlation

Variables of data can express relations. For example, countries that tend to invest in

research also tend to invest more in education and health. This kind of relationship

is captured by the covariance.

48 3 Descriptive Statistics

Fig. 3.9 Positive correlation between economic growth and stock market returns worldwide (left).

Negative correlation between the world oil production and gasoline prices worldwide (right)

3.4.2.1 Covariance
When two variables share the same tendency, we speak about covariance. Let us

consider two series, {xi } and {yi }. Let us center the data with respect to their mean:

dxi = xi − µX and dyi = yi − µY . It is easy to show that when {xi } and {yi } vary

together, their deviations tend to have the same sign. The covariance is defined as

the mean of the following products:

Cov(X, Y) =
1

n

n∑

i=1

dxi dyi ,

where n is the length of both sets. Still, the covariance itself is hard to interpret.

3.4.2.2 Correlation and the Pearson’s Correlation
If we normalize the data with respect to their deviation, that leads to the standard

scores; and then multiplying them, we get:

ρi =
xi − µX

σX

yi − µY

σY

.

The mean of this product is ρ = 1
n

∑n
i=1 ρi . Equivalently, we can rewrite ρ in

terms of the covariance, and thus obtain the Pearson’s correlation:

ρ =
Cov(X, Y)

σXσY

.

Note that the Pearson’s correlation is always between −1 and +1, where the

magnitude depends on the degree of correlation. If the Pearson’s correlation is 1 (or

−1), it means that the variables are perfectly correlated (positively or negatively)

(see Fig. 3.9). This means that one variable can predict the other very well. However,

3.4 Estimation 49

Fig. 3.10 Anscombe configurations

having ρ = 0, does not necessarily mean that the variables are not correlated! Pear-

son’s correlation captures correlations of first order, but not nonlinear correlations.

Moreover, it does not work well in the presence of outliers.

3.4.2.3 Spearman’s Rank Correlation
The Spearman’s rank correlation comes as a solution to the robustness problem of

Pearson’s correlation when the data contain outliers. The main idea is to use the

ranks of the sorted sample data, instead of the values themselves. For example, in

the list [4, 3, 7, 5], the rank of 4 is 2, since it will appear second in the ordered list

([3, 4, 5, 7]). Spearman’s correlation computes the correlation between the ranks

of the data. For example, considering the data: X= [10, 20, 30, 40, 1000], and

Y= [−70,−1000, −50,−10, −20], where we have an outlier in each one set. If

we compute the ranks, they are [1.0, 2.0, 3.0, 4.0, 5.0] and [2.0, 1.0, 3.0, 5.0, 4.0]. As

value of the Pearson’s coefficient, we get 0.28, which does not show much correlation

50 3 Descriptive Statistics

between the sets. However, the Spearman’s rank coefficient, capturing the correlation

between the ranks, gives as a final value of 0.80, confirming the correlation between

the sets. As an exercise, you can compute the Pearson’s and the Spearman’s rank

correlations for the different Anscombe configurations given in Fig. 3.10. Observe if

linear and nonlinear correlations can be captured by the Pearson’s and the Spearman’s

rank correlations.

3.5 Conclusions

In this chapter, we have familiarized ourselves with the basic concepts and procedures

of descriptive statistics to explore a dataset. As we have seen, it helps us to understand

the experiment or a dataset in detail and allows us to put the data in perspective. We

introduced the central measures of tendency such as the sample mean and median;

and measures of variability such as the variance and standard deviation. We have also

discussed how these measures can be affected by outliers. In order to go deeper into

visualizing the dataset, we have introduced histograms, quantiles, and percentiles.

In many situations, when the values are continuous variables, it is convenient to

use continuous distributions; the most common of which are the normal and the

exponential distributions. The advantage of most continuous distributions is that

we can have an explicit expression for their PDF and CDF, as well as the mean

and variance in terms of a closed formula. Also, we learned how, by using the

kernel density, we can obtain a continuous representation of the sample distribution.

Finally, we discussed how to estimate the correlation and the covariance of datasets,

where two of the most popular measures are the Pearson’s and the Spearman’s rank

correlations, which are affected in different ways by the outliers of the dataset.

Acknowledgements This chapter was co-written by Petia Radeva and Laura Igual.

References

1. A. B. Downey, “Probability and Statistics for Programmers”, O’Reilly Media, 2011, ISBN-10:

1449307116.

2. Probability Distributions: Discrete vs. Continuous, http://stattrek.com/probability-distributions/

discrete-continuous.aspx.

http://stattrek.com/probability-distributions/discrete-continuous.aspx
http://stattrek.com/probability-distributions/discrete-continuous.aspx

4Statistical Inference

4.1 Introduction

There is not only one way to address the problem of statistical inference. In fact,

there are two main approaches to statistical inference: the frequentist and Bayesian

approaches. Their differences are subtle but fundamental:

• In the case of the frequentist approach, the main assumption is that there is a

population, which can be represented by several parameters, from which we can

obtain numerous random samples. Population parameters are fixed but they are

not accessible to the observer. The only way to derive information about these

parameters is to take a sample of the population, to compute the parameters of the

sample, and to use statistical inference techniques to make probable propositions

regarding population parameters.

• The Bayesian approach is based on a consideration that data are fixed, not the result

of a repeatable sampling process, but parameters describing data can be described

probabilistically. To this end, Bayesian inference methods focus on producing

parameter distributions that represent all the knowledge we can extract from the

sample and from prior information about the problem.

A deep understanding of the differences between these approaches is far beyond

the scope of this chapter, but there are many interesting references that will enable

you to learn about it [1]. What is really important is to realize that the approaches

are based on different assumptions which determine the validity of their inferences.

The assumptions are related in the first case to a sampling process; and to a statistical

model in the second case. Correct inference requires these assumptions to be correct.

The fulfillment of this requirement is not part of the method, but it is the responsibility

of the data scientist.

In this chapter, to keep things simple, we will only deal with the first approach,

but we suggest the reader also explores the second approach as it is well worth it!

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_4

51

52 4 Statistical Inference

4.2 Statistical Inference: The Frequentist Approach

As we have said, the ultimate objective of statistical inference, if we adopt the fre-

quentist approach, is to produce probable propositions concerning population param-

eters from analysis of a sample. The most important classes of propositions are as

follows:

• Propositions about point estimates. A point estimate is a particular value that best

approximates some parameter of interest. For example, the mean or the variance

of the sample.

• Propositions about confidence intervals or set estimates. A confidence interval is

a range of values that best represents some parameter of interest.

• Propositions about the acceptance or rejection of a hypothesis.

In all these cases, the production of propositions is based on a simple assumption:

we can estimate the probability that the result represented by the proposition has

been caused by chance. The estimation of this probability by sound methods is one

of the main topics of statistics.

The development of traditional statistics was limited by the scarcity of computa-

tional resources. In fact, the only computational resources were mechanical devices

and human computers, teams of people devoted to undertaking long and tedious

calculations. Given these conditions, the main results of classical statistics are theo-

retical approximations, based on idealized models and assumptions, to measure the

effect of chance on the statistic of interest. Thus, concepts such as the Central Limit

Theorem, the empirical sample distribution or the t-test are central to understanding

this approach.

The development of modern computers has opened an alternative strategy for

measuring chance that is based on simulation; producing computationally inten-

sive methods including resampling methods (such as bootstrapping), Markov chain

Monte Carlo methods, etc. The most interesting characteristic of these methods is

that they allow us to treat more realistic models.

4.3 Measuring the Variability in Estimates

Estimates produced by descriptive statistics are not equal to the truth but they are

better as more data become available. So, it makes sense to use them as central

elements of our propositions and to measure its variability with respect to the sample

size.

4.3 Measuring the Variability in Estimates 53

4.3.1 Point Estimates

Let us consider a dataset of accidents in Barcelona in 2013. This dataset can be

downloaded from the OpenDataBCN website,1 Barcelona City Hall’s open data

service. Each register in the dataset represents an accident via a series of features:

weekday, hour, address, number of dead and injured people, etc. This dataset will

represent our population: the set of all reported traffic accidents in Barcelona during

2013.

4.3.1.1 Sampling Distribution of Point Estimates
Let us suppose that we are interested in describing the daily number of traffic acci-

dents in the streets of Barcelona in 2013. If we have access to the population, the

computation of this parameter is a simple operation: the total number of accidents

divided by 365.

In [1]:
data = pd.read_csv("files/ch04/ACCIDENTS_GU_BCN_2013.csv")

data[’Date’] = data[u’Dia de mes’].apply(lambda x: str(x))

+ ’-’ +

data[u’Mes de any’].apply(lambda x: str(x))

data[’Date’] = pd.to_datetime(data[’Date’])

accidents = data.groupby ([’Date’]).size()

print accidents.mean()

Out[1]: Mean: 25.9095

But now, for illustrative purposes, let us suppose that we only have access to a

limited part of the data (the sample): the number of accidents during some days of

2013. Can we still give an approximation of the population mean?

The most intuitive way to go about providing such a mean is simply to take the

sample mean. The sample mean is a point estimate of the population mean. If we can

only choose one value to estimate the population mean, then this is our best guess.

The problem we face is that estimates generally vary from one sample to another,

and this sampling variation suggests our estimate may be close, but it will not be

exactly equal to our parameter of interest. How can we measure this variability?

In our example, because we have access to the population, we can empirically build

the sampling distribution of the sample mean2 for a given number of observations.

Then, we can use the sampling distribution to compute a measure of the variability.

In Fig. 4.1, we can see the empirical sample distribution of the mean for s = 10.000

samples with n = 200 observations from our dataset. This empirical distribution has

been built in the following way:

1http://opendata.bcn.cat/.
2Suppose that we draw all possible samples of a given size from a given population. Suppose further

that we compute the mean for each sample. The probability distribution of this statistic is called the

mean sampling distribution.

http://opendata.bcn.cat/

54 4 Statistical Inference

Fig. 4.1 Empirical distribution of the sample mean. In red, the mean value of this distribution

1. Draw s (a large number) independent samples {x1, . . . , xs} from the population

where each element x j is composed of {x
j
i }i=1,...,n .

2. Evaluate the sample mean µ̂ j = 1
n

∑n
i=1 x

j
i of each sample.

3. Estimate the sampling distribution of µ̂ by the empirical distribution of the sample

replications.

In [2]:
population

df = accidents.to_frame ()

N_test = 10000

elements = 200

mean array of samples

means = [0] * N_test

sample generation

for i in range(N_test):

rows = np.random.choice(df.index.values , elements)

sampled_df = df.ix[rows]

means[i] = sampled_df.mean()

In general, given a point estimate from a sample of size n, we define its sampling

distribution as the distribution of the point estimate based on samples of size n

from its population. This definition is valid for point estimates of other population

parameters, such as the population median or population standard deviation, but we

will focus on the analysis of the sample mean.

The sampling distribution of an estimate plays an important role in understanding

the real meaning of propositions concerning point estimates. It is very useful to think

of a particular point estimate as being drawn from such a distribution.

4.3.1.2 The Traditional Approach
In real problems, we do not have access to the real population and so estimation

of the sampling distribution of the estimate from the empirical distribution of the

sample replications is not an option. But this problem can be solved by making use

of some theoretical results from traditional statistics.

4.3 Measuring the Variability in Estimates 55

It can be mathematically shown that given n independent observations {xi }i=1,..,n

of a population with a standard deviation σx , the standard deviation of the sample

mean σx̄ , or standard error, can be approximated by this formula:

SE = σx√
n

The demonstration of this result is based on the Central Limit Theorem: an old

theorem with a history that starts in 1810 when Laplace released his first paper on it.

This formula uses the standard deviation of the population σx , which is not known,

but it can be shown that if it is substituted by its empirical estimate σ̂x , the estimation

is sufficiently good if n > 30 and the population distribution is not skewed. This

allows us to estimate the standard error of the sample mean even if we do not have

access to the population.

So, how can we give a measure of the variability of the sample mean? The answer

is simple: by giving the empirical standard error of the mean distribution.

In [3]:
rows = np.random.choice(df.index.values , 200)

sampled_df = df.ix[rows]

est_sigma_mean = sampled_df.std()/math.sqrt (200)

print ’Direct estimation of SE from one sample of

200 elements:’, est_sigma_mean [0]

print ’Estimation of the SE by simulating 10000 samples of

200 elements:’, np.array(means).std()

Out[3]: Direct estimation of SE from one sample of 200 elements: 0.6536

Estimation of the SE by simulating 10000 samples of 200

elements: 0.6362

Unlike the case of the sample mean, there is no formula for the standard error of

other interesting sample estimates, such as the median.

4.3.1.3 The Computationally Intensive Approach
Let us consider from now that our full dataset is a sample from a hypothetical

population (this is the most common situation when analyzing real data!).

A modern alternative to the traditional approach to statistical inference is the

bootstrapping method [2]. In the bootstrap, we draw n observations with replacement

from the original data to create a bootstrap sample or resample. Then, we can calculate

the mean for this resample. By repeating this process a large number of times, we

can build a good approximation of the mean sampling distribution (see Fig. 4.2).

56 4 Statistical Inference

Fig. 4.2 Mean sampling distribution by bootstrapping. In red, the mean value of this distribution

In [4]:
def meanBootstrap(X, numberb):

x = [0]* numberb

for i in range(numberb):

sample = [X[j]

for j

in np.random.randint(len(X), size=len(X))

]

x[i] = np.mean(sample)

return x

m = meanBootstrap(accidents , 10000)

print "Mean estimate:", np.mean(m)

Out[4]: Mean estimate: 25.9094

The basic idea of the bootstrapping method is that the observed sample contains

sufficient information about the underlying distribution. So, the information we can

extract from resampling the sample is a good approximation of what can be expected

from resampling the population.

The bootstrapping method can be applied to other simple estimates such as the

median or the variance and also to more complex operations such as estimates of

censored data.3

4.3.2 Confidence Intervals

A point estimate Θ , such as the sample mean, provides a single plausible value for

a parameter. However, as we have seen, a point estimate is rarely perfect; usually

there is some error in the estimate. That is why we have suggested using the standard

error as a measure of its variability.

Instead of that, a next logical step would be to provide a plausible range of values

for the parameter. A plausible range of values for the sample parameter is called a

confidence interval.

3Censoring is a condition in which the value of observation is only partially known.

4.3 Measuring the Variability in Estimates 57

We will base the definition of confidence interval on two ideas:

1. Our point estimate is the most plausible value of the parameter, so it makes sense

to build the confidence interval around the point estimate.

2. The plausibility of a range of values can be defined from the sampling distribution

of the estimate.

For the case of the mean, the Central Limit Theorem states that its sampling

distribution is normal:

Theorem 4.1 Given a population with a finite mean µ and a finite non-zero variance

σ 2, the sampling distribution of the mean approaches a normal distribution with a

mean of µ and a variance of σ 2/n as n, the sample size, increases.

In this case, and in order to define an interval, we can make use of a well-known

result from probability that applies to normal distributions: roughly 95% of the time

our estimate will be within 1.96 standard errors of the true mean of the distribution.

If the interval spreads out 1.96 standard errors from a normally distributed point

estimate, intuitively we can say that we are roughly 95% confident that we have

captured the true parameter.

C I = [Θ − 1.96 × SE, Θ + 1.96 × SE]

In [5]:
m = accidents.mean()

se = accidents.std()/math.sqrt(len(accidents))

ci = [m - se*1.96, m + se *1.96]

print "Confidence interval:", ci

Out[5]: Confidence interval: [24.975, 26.8440]

Suppose we want to consider confidence intervals where the confidence level is

somewhat higher than 95%: perhaps we would like a confidence level of 99%. To

create a 99% confidence interval, change 1.96 in the 95% confidence interval formula

to be 2.58 (it can be shown that 99% of the time a normal random variable will be

within 2.58 standard deviations of the mean).

In general, if the point estimate follows the normal model with standard error SE ,

then a confidence interval for the population parameter is

Θ ± z × SE

where z corresponds to the confidence level selected:

Confidence Level 90% 95% 99% 99.9%

z Value 1.65 1.96 2.58 3.291

This is how we would compute a 95% confidence interval of the sample mean

using bootstrapping:

58 4 Statistical Inference

1. Repeat the following steps for a large number, s, of times:

a. Draw n observations with replacement from the original data to create a

bootstrap sample or resample.

b. Calculate the mean for the resample.

2. Calculate the mean of your s values of the sample statistic. This process gives

you a “bootstrapped” estimate of the sample statistic.

3. Calculate the standard deviation of your s values of the sample statistic. This

process gives you a “bootstrapped” estimate of the SE of the sample statistic.

4. Obtain the 2.5th and 97.5th percentiles of your s values of the sample statistic.

In [6]:
m = meanBootstrap(accidents , 10000)

sample_mean = np.mean(m)

sample_se = np.std(m)

print "Mean estimate:", sample_mean

print "SE of the estimate:", sample_se

ci = [np.percentile(m, 2.5), np.percentile(m, 97.5)]

print "Confidence interval:", ci

Out[6]: Mean estimate: 25.9039

SE of the estimate: 0.4705

Confidence interval: [24.9834, 26.8219]

4.3.2.1 But What Does “95% Confident” Mean?
The real meaning of “confidence” is not evident and it must be understood from the

point of view of the generating process.

Suppose we took many (infinite) samples from a population and built a 95%

confidence interval from each sample. Then about 95% of those intervals would

contain the actual parameter. In Fig. 4.3 we show how many confidence intervals

computed from 100 different samples of 100 elements from our dataset contain the

real population mean. If this simulation could be done with infinite different samples,

5% of those intervals would not contain the true mean.

So, when faced with a sample, the correct interpretation of a confidence interval

is as follows:

In 95% of the cases, when I compute the 95% confidence interval from this sample, the true

mean of the population will fall within the interval defined by these bounds: ±1.96 × SE .

We cannot say either that our specific sample contains the true parameter or that

the interval has a 95% chance of containing the true parameter. That interpretation

would not be correct under the assumptions of traditional statistics.

4.4 Hypothesis Testing 59

4.4 Hypothesis Testing

Giving a measure of the variability of our estimates is one way of producing a

statistical proposition about the population, but not the only one. R.A. Fisher (1890–

1962) proposed an alternative, known as hypothesis testing, that is based on the

concept of statistical significance.

Let us suppose that a deeper analysis of traffic accidents in Barcelona results in a

difference between 2010 and 2013. Of course, the difference could be caused only

by chance, because of the variability of both estimates. But it could also be the case

that traffic conditions were very different in Barcelona during the two periods and,

because of that, data from the two periods can be considered as belonging to two

different populations. Then, the relevant question is: Are the observed effects real or

not?

Technically, the question is usually translated to: Were the observed effects statis-

tically significant?

The process of determining the statistical significance of an effect is called hypoth-

esis testing.

This process starts by simplifying the options into two competing hypotheses:

• H0: The mean number of daily traffic accidents is the same in 2010 and 2013

(there is only one population, one true mean, and 2010 and 2013 are just different

samples from the same population).

• HA: The mean number of daily traffic accidents in 2010 and 2013 is different

(2010 and 2013 are two samples from two different populations).

Fig. 4.3 This graph shows 100 sample means (green points) and its corresponding confidence

intervals, computed from 100 different samples of 100 elements from our dataset. It can be observed

that a few of them (those in red) do not contain the mean of the population (black horizontal line)

60 4 Statistical Inference

We call H0 the null hypothesis and it represents a skeptical point of view: the

effect we have observed is due to chance (due to the specific sample bias). HA is the

alternative hypothesis and it represents the other point of view: the effect is real.

The general rule of frequentist hypothesis testing: we will not discard H0 (and

hence we will not consider HA) unless the observed effect is implausible under H0.

4.4.1 Testing Hypotheses Using Confidence Intervals

We can use the concept represented by confidence intervals to measure the plausi-

bility of a hypothesis.

We can illustrate the evaluation of the hypothesis setup by comparing the mean

rate of traffic accidents in Barcelona during 2010 and 2013:

In [7]:
data = pd.read_csv("files/ch04/ACCIDENTS_GU_BCN_2010.csv",

encoding=’latin -1’)

Create a new column which is the date

data[’Date’] = data[’Dia de mes’].apply(lambda x: str(x))

+ ’-’ +

data[’Mes de any’].apply(lambda x: str(x))

data2 = data[’Date’]

counts2010 = data[’Date’]. value_counts()

print ’2010: Mean’, counts2010.mean()

data = pd.read_csv("files/ch04/ACCIDENTS_GU_BCN_2013.csv",

encoding=’latin -1’)

Create a new column which is the date

data[’Date’] = data[’Dia de mes’].apply(lambda x: str(x))

+ ’-’ +

data[’Mes de any’].apply(lambda x: str(x))

data2 = data[’Date’]

counts2013 = data[’Date’]. value_counts()

print ’2013: Mean’, counts2013.mean()

Out[7]: 2010: Mean 24.8109

2013: Mean 25.9095

This estimate suggests that in 2013 the mean rate of traffic accidents in Barcelona

was higher than it was in 2010. But is this effect statistically significant?

Based on our sample, the 95% confidence interval for the mean rate of traffic

accidents in Barcelona during 2013 can be calculated as follows:

In [8]:
n = len(counts2013)

mean = counts2013.mean()

s = counts2013.std()

ci = [mean - s*1.96/np.sqrt(n), mean + s*1.96/ np.sqrt(n)]

print ’2010 accident rate estimate:’, counts2010.mean()

print ’2013 accident rate estimate:’, counts2013.mean()

print ’CI for 2013: ’,ci

4.4 Hypothesis Testing 61

Out[8]: 2010 accident rate estimate: 24.8109

2013 accident rate estimate: 25.9095

CI for 2013: [24.9751, 26.8440]

Because the 2010 accident rate estimate does not fall in the range of plausible

values of 2013, we say the alternative hypothesis cannot be discarded. That is, it

cannot be ruled out that in 2013 the mean rate of traffic accidents in Barcelona was

higher than in 2010.

Interpreting CI Tests

Hypothesis testing is built around rejecting or failing to reject the null hypothesis.

That is, we do not reject H0 unless we have strong evidence against it. But what

precisely does strong evidence mean? As a general rule of thumb, for those cases

where the null hypothesis is actually true, we do not want to incorrectly reject H0

more than 5% of the time. This corresponds to a significance level of α = 0.05. In

this case, the correct interpretation of our test is as follows:

If we use a 95% confidence interval to test a problem where the null hypothesis is true, we

will make an error whenever the point estimate is at least 1.96 standard errors away from the

population parameter. This happens about 5% of the time (2.5% in each tail).

4.4.2 Testing Hypotheses Using p-Values

A more advanced notion of statistical significance was developed by R.A. Fisher in

the 1920s when he was looking for a test to decide whether variation in crop yields

was due to some specific intervention or merely random factors beyond experimental

control.

Fisher first assumed that fertilizer caused no difference (null hypothesis) and then

calculated P , the probability that an observed yield in a fertilized field would occur

if fertilizer had no real effect. This probability is called the p-value.

The p-value is the probability of observing data at least as favorable to the alter-

native hypothesis as our current dataset, if the null hypothesis is true. We typically

use a summary statistic of the data to help compute the p-value and evaluate the

hypotheses.

Usually, if P is less than 0.05 (the chance of a fluke is less than 5%) the result is

declared statistically significant.

It must be pointed out that this choice is rather arbitrary and should not be taken

as a scientific truth.

The goal of classical hypothesis testing is to answer the question, “Given a sample

and an apparent effect, what is the probability of seeing such an effect by chance?”

Here is how we answer that question:

• The first step is to quantify the size of the apparent effect by choosing a test statistic.

In our case, the apparent effect is a difference in accident rates, so a natural choice

for the test statistic is the difference in means between the two periods.

62 4 Statistical Inference

• The second step is to define a null hypothesis, which is a model of the system

based on the assumption that the apparent effect is not real. In our case, the null

hypothesis is that there is no difference between the two periods.

• The third step is to compute a p-value, which is the probability of seeing the

apparent effect if the null hypothesis is true. In our case, we would compute the

difference in means, then compute the probability of seeing a difference as big, or

bigger, under the null hypothesis.

• The last step is to interpret the result. If the p-value is low, the effect is said to be

statistically significant, which means that it is unlikely to have occurred by chance.

In this case we infer that the effect is more likely to appear in the larger population.

In our case, the test statistic can be easily computed:

In [9]:
m= len(counts2010)

n= len(counts2013)

p = (counts2013.mean() - counts2010.mean())

print ’m:’, m, ’n:’, n

print ’mean difference: ’, p

Out[9]: m: 365 n: 365

mean difference: 1.0986

To approximate the p-value , we can follow the following procedure:

1. Pool the distributions, generate samples with size n and compute the difference

in the mean.

2. Generate samples with size n and compute the difference in the mean.

3. Count how many differences are larger than the observed one.

In [10]:
pooling distributions

x = counts2010

y = counts2013

pool = np.concatenate ([x, y])

np.random.shuffle(pool)

#sample generation

import random

N = 10000 # number of samples

diff = range(N)

for i in range(N):

p1 = [random.choice(pool) for _ in xrange(n)]

p2 = [random.choice(pool) for _ in xrange(n)]

diff[i] = (np.mean(p1) - np.mean(p2))

4.4 Hypothesis Testing 63

In [11]:
counting differences larger than the observed one

diff2 = np.array(diff)

w1 = np.where(diff2 > p)[0]

print ’p-value (Simulation)=’, len(w1)/float(N),

’(’, len(w1)/float(N)*100 ,’%)’, ’Difference =’, p

if (len(w1)/float(N)) < 0.05:

print ’The effect is likely’

else:

print ’The effect is not likely’

Out[11]: p-value (Simulation)= 0.0485 (4.85%) Difference = 1.098

The effect is likely

Interpreting P-Values

A p-value is the probability of an observed (or more extreme) result arising only

from chance.

If P is less than 0.05, there are two possible conclusions: there is a real effect or

the result is an improbable fluke. Fisher’s method offers no way of knowing which is

the case.

We must not confuse the odds of getting a result (if a hypothesis is true) with

the odds of favoring the hypothesis if you observe that result. If P is less than 0.05,

we cannot say that this means that it is 95% certain that the observed effect is real

and could not have arisen by chance. Given an observation E and a hypothesis H ,

P(E |H) and P(H |E) are not the same!

Another common error equates statistical significance to practical importance/

relevance. When working with large datasets, we can detect statistical significance

for small effects that are meaningless in practical terms.

We have defined the effect as a difference in mean as large or larger than δ,

considering the sign. A test like this is called one sided.

If the relevant question is whether accident rates are different, then it makes sense

to test the absolute difference in means. This kind of test is called two sided because

it counts both sides of the distribution of differences.

Direct Approach

The formula for the standard error of the absolute difference in two means is similar

to the formula for other standard errors. Recall that the standard error of a single

mean can be approximated by:

SE x̄1 = σ1√
n1

The standard error of the difference of two sample means can be constructed from

the standard errors of the separate sample means:

SE x̄1−x̄2 =

√

σ 2
1

n1
+ σ 2

2

n2

This would allow us to define a direct test with the 95% confidence interval.

64 4 Statistical Inference

4.5 But Is the Effect E Real?

We do not yet have an answer for this question! We have defined a null hypothesis

H0 (the effect is not real) and we have computed the probability of the observed

effect under the null hypothesis, which is P(E |H0), where E is an effect as big as

or bigger than the apparent effect and a p-value .

We have stated that from the frequentist point of view, we cannot consider HA

unless P(E |H0) is less than an arbitrary value. But the real answer to this question

must be based on comparing P(H0|E) to P(HA|E), not on P(E |H0)! One possi-

ble solution to these problems is to use Bayesian reasoning; an alternative to the

frequentist approach.

No matter how many data you have, you will still depend on intuition to decide

how to interpret, explain, and use that data. Data cannot speak by themselves. Data

scientists are interpreters, offering one interpretation of what the useful narrative

story derived from the data is, if there is one at all.

4.6 Conclusions

In this chapter we have seen how we can approach the problem of making probable

propositions regarding population parameters.

We have learned that in some cases, there are theoretical results that allow us to

compute a measure of the variability of our estimates. We have called this approach

the “traditional approach”. Within this framework, we have seen that the sampling

distribution of our parameter of interest is the most important concept when under-

standing the real meaning of propositions concerning parameters.

We have also learned that the traditional approach is not the only alternative. The

“computationally intensive approach”, based on the bootstrap method, is a relatively

new approach that, based on intensive computer simulations, is capable of computing

a measure of the variability of our estimates by applying a resampling method to

our data sample. Bootstrapping can be used for computing variability of almost any

function of our data, with its only downside being the need for greater computational

resources.

We have seen that propositions about parameters can be classified into three

classes: propositions about point estimates, propositions about set estimates, and

propositions about the acceptance or the rejection of a hypothesis. All these classes

are related; but today, set estimates and hypothesis testing are the most preferred.

References 65

Finally, we have shown that the production of probable propositions is not error

free, even in the presence of big data. For these reason, data scientists cannot forget

that after any inference task, they must take decisions regarding the final interpretation

of the data.

Acknowledgements This chapter was co-written by Jordi Vitrià and Sergio Escalera.

References

1. M.I. Jordan. Are you a Bayesian or a frequentist? [Video Lecture]. Published: Nov. 2, 2009,

Recorded: September 2009. Retrieved from: http://videolectures.net/mlss09uk_jordan_bfway/

2. B. Efron, R.J. Tibshirani, An introduction to the bootstrap (CRC press, 1994)

http://videolectures.net/mlss09uk_jordan_bfway/

5Supervised Learning

5.1 Introduction

Machine learning involves coding programs that automatically adjust their perfor-

mance in accordance with their exposure to information in data. This learning is

achieved via a parameterized model with tunable parameters that are automatically

adjusted according to different performance criteria. Machine learning can be con-

sidered a subfield of artificial intelligence (AI) and we can roughly divide the field

into the following three major classes.

1. Supervised learning: Algorithms which learn from a training set of labeled

examples (exemplars) to generalize to the set of all possible inputs. Examples of

techniques in supervised learning: logistic regression, support vector machines,

decision trees, random forest, etc.

2. Unsupervised learning: Algorithms that learn from a training set of unlabeled

examples. Used to explore data according to some statistical, geometric or sim-

ilarity criterion. Examples of unsupervised learning include k-means clustering

and kernel density estimation. We will see more on this kind of techniques in

Chap. 7.

3. Reinforcement learning: Algorithms that learn via reinforcement from criticism

that provides information on the quality of a solution, but not on how to improve

it. Improved solutions are achieved by iteratively exploring the solution space.

This chapter focuses on a particular class of supervised machine learning: clas-

sification. As a data scientist, the first step you apply given a certain problem is to

identify the question to be answered. According to the type of answer we are seeking,

we are directly aiming for a certain set of techniques.

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_5

67

http://dx.doi.org/10.1007/978-3-319-50017-1_7

68 5 Supervised Learning

• If our question is answered by YES/NO, we are facing a classification problem.

Classifiers are also the tools to use if our question admits only a discrete set of

answers, i.e., we want to select from a finite number of choices.

– Given the results of a clinical test, e.g., does this patient suffer from diabetes?

– Given a magnetic resonance image, is it a tumor shown in the image?

– Given the past activity associated with a credit card, is the current operation

fraudulent?

• If our question is a prediction of a real-valued quantity, we are faced with a regres-

sion problem. We will go into details of regression in Chap. 6.

– Given the description of an apartment, what is the expected market value of the

flat? What will the value be if the apartment has an elevator?

– Given the past records of user activity on Apps, how long will a certain client

be connected to our App?

– Given my skills and marks in computer science and maths, what mark will I

achieve in a data science course?

Observe that some problems can be solved using both regression and classification.

As we will see later, many classification algorithms are thresholded regressors. There

is a certain skill involved in designing the correct question and this dramatically

affects the solution we obtain.

5.2 The Problem

In this chapter we use data from the Lending Club1 to develop our understanding of

machine learning concepts. The Lending Club is a peer-to-peer lending company.

It offers loans which are funded by other people. In this sense, the Lending Club

acts as a hub connecting borrowers with investors. The client applies for a loan of a

certain amount, and the company assesses the risk of the operation. If the application

is accepted, it may or may not be fully covered. We will focus on the prediction

of whether the loan will be fully funded, based on the scoring of and information

related to the application.

We will use the partial dataset of period 2007–2011. Framing the problem a little

bit more, based on the information supplied by the customer asking for a loan, we

want to predict whether it will be granted up to a certain threshold thr . The attributes

we use in this problem are related to some of the details of the loan application, such

as amount of the loan applied for the borrower, monthly payment to be made by

the borrower if the loan is accepted, the borrower’s annual income, the number of

1https://www.lendingclub.com/info/download-data.action.

http://dx.doi.org/10.1007/978-3-319-50017-1_6
https://www.lendingclub.com/info/download-data.action

5.2 The Problem 69

incidences of delinquency in the borrower’s credit file, and interest rate of the loan,

among others.

In this case we would like to predict unsuccessful accepted loans. A loan applica-

tion is unsuccessful if the funded amount (funded_amnt) or the amount funded

by investors (funded_amnt_inv) falls far short of the requested loan amount

(loan_amnt). That is,
loan − f unded

loan
≥ 0.95.

5.3 First Steps

Note that in this problem we are predicting a binary value: either the loan is fully

funded or not. Classification is the natural choice of machine learning tools for

prediction with discrete known outcomes. According to the cardinality of the target

set, one usually distinguishes between binary classifiers when the target output only

takes two values, i.e., the classifier answers questions with a yes or a no; or multiclass

classifiers, for a larger number of classes. This issue is important in that not all

methods can naturally handle the multiclass setting.2

In a formal way, classification is regarded as the problem of finding a function

h(x) : R
d → K that maps an input space in R

d onto a discrete set of k target outputs

or classes K = {1, . . . , k}. In this setting, the features are arranged as a vector x of

d real-valued numbers.3

We can encode both target states in a numerical variable, e.g., a successful loan

target can take value +1; and it is −1, otherwise.

Let us check the dataset,4

In [1]:
import pickle

ofname = open(’./files/ch05/dataset_small.pkl’,’rb’)

x stores input data and y target values

(x,y) = pickle.load(ofname)

2Several well-known techniques such as support vector machines or adaptive boosting (adaboost)

are originally defined in the binary case. Any binary classifier can be extended to the multiclass case

in two different ways. We may either change the formulation of the learning/optimization process.

This requires the derivation of a new learning algorithm capable of handling the new modeling.

Alternatively, we may adopt ensemble techniques. The idea behind this latter approach is that we

may divide the multiclass problem into several binary problems; solve them; and then aggregate the

results. If the reader is interested in these techniques, it is a good idea to look for: one-versus-all,

one-versus-one, or error correcting output codes methods.
3Many problems are described using categorical data. In these cases either we need classifiers that

are capable of coping with this kind of data or we need to change the representation of those variables

into numerical values.
4The notebook companion shows the preprocessing steps, from reading the dataset, cleaning and

imputing data, up to saving a subsampled clean version of the original dataset.

70 5 Supervised Learning

A problem in Scikit-learn is modeled as follows:

• Input data is structured in Numpy arrays. The size of the array is expected to be

[n_samples, n_features]:

– n_samples: The number of samples (n). Each sample is an item to process

(e.g., classify). A sample can be a document, a picture, an audio file, a video,

an astronomical object, a row in a database or CSV file, or whatever you can

describe with a fixed set of quantitative traits.

– n_features: The number of features (d) or distinct traits that can be used to

describe each item in a quantitative manner. Features are generally real-valued,

but may be Boolean, discrete-valued or even categorical.

feature matrix : X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x11 x12 · · · x1d

x21 x22 · · · x2d

x31 x32 · · · x3d

...
...

. . .
...

...
...

. . .
...

xn1 xn2 · · · xnd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

label vector : yT = [y1, y2, y3, · · · yn]

The number of features must be fixed in advance. However, it can be very great

(e.g., millions of features).

In [2]:
dims = x.shape [1]

N = x.shape [0]

print ’dims: ’ + str(dims) + ’, samples: ’ + str(N)

Out[2]: dims: 15, samples: 4140

Considering data arranged as in the previous matrices we refer to:

• the columns as features, attributes, dimensions, regressors, covariates, predictors,

or independent variables;

• the rows as instances, examples, or samples;

• the target as the label, outcome, response, or dependent variable.

All objects in Scikit-learn share a uniform and limited API consisting of three

complementary interfaces:

• an estimator interface for building and fitting models (fit());

• a predictor interface for making predictions (predict());

• a transformer interface for converting data (transform()).

5.3 First Steps 71

Let us apply a classifier using Python’s Scikit-learn libraries,

In [3]:
from sklearn import neighbors

from sklearn import datasets

Create an instance of K-nearest neighbor classifier

knn = neighbors.KNeighborsClassifier(n_neighbors = 11)

Train the classifier

knn.fit(x, y)

Compute the prediction according to the model

yhat = knn.predict(x)

Check the result on the last example

print ’Predicted value: ’ + str(yhat [-1]),

’, real target: ’ + str(y[-1])

Out[3]: Predicted value: -1.0 , real target: -1.0

The basic measure of performance of a classifier is its accuracy. This is defined as

the number of correctly predicted examples divided by the total amount of examples.

Accuracy is related to the error as follows: acc = 1 − err .

acc =
Number of correct predictions

n

Each estimator has a score() method that invokes the default scoring metric.

In the case of k-nearest neighbors, this is the classification accuracy.

In [4]:
knn.score(x,y)

Out[4]: 0.83164251207729467

It looks like a really good result. But how good is it? Let us first understand a little

bit more about the problem by checking the distribution of the labels.

Let us load the dataset and check the distribution of labels:

In [5]:
plt.pie(np.c_[np.sum(np.where(y == 1, 1, 0)),

np.sum(np.where(y == -1, 1, 0))][0],

labels = [’Not fully funded’,’Full amount ’],

colors = [’r’, ’g’],shadow = False ,

autopct = ’%.2f’)

plt.gcf().set_size_inches ((7, 7))

with the result observed in Fig. 5.1.

Note that there are far more positive labels than negative ones. In this case, the

dataset is referred to as unbalanced.5 This has important consequences for a classifier

as we will see later on. In particular, a very simple rule such as always predict the

5The term unbalanced describes the condition of data where the ratio between positives and negatives

is a small value. In these scenarios, always predicting the majority class usually yields accurate

performance, though it is not very informative. This kind of problems is very common when we

want to model unusual events such as rare diseases, the occurrence of a failure in machinery,

fraudulent credit card operations, etc. In these scenarios, gathering data from usual events is very

easy but collecting data from unusual events is difficult and results in a comparatively small dataset.

72 5 Supervised Learning

Fig. 5.1 Pie chart showing

the distribution of labels in

the dataset

majority class, will give us good performance. In our problem, always predicting

that the loan will be fully funded correctly predicts 81.57% of the samples. Observe

that this value is very close to that obtained using the classifier.

Although accuracy is the most normal metric for evaluating classifiers, there are

cases when the business value of correctly predicting elements from one class is

different from the value for the prediction of elements of another class. In those

cases, accuracy is not a good performance metric and more detailed analysis is

needed. The confusion matrix enables us to define different metrics considering such

scenarios. The confusion matrix considers the concepts of the classifier outcome and

the actual ground truth or gold standard. In a binary problem, there are four possible

cases:

• True positives (TP): When the classifier predicts a sample as positive and it really

is positive.

• False positives (FP): When the classifier predicts a sample as positive but in fact

it is negative.

• True negatives (TN): When the classifier predicts a sample as negative and it really

is negative.

• False negatives (FN): When the classifier predicts a sample as negative but in fact

it is positive.

We can summarize this information in a matrix, namely the confusion matrix, as

follows:

5.3 First Steps 73

Prediction

Gold Standard

Positive Negative

Positive TP FP → Precision

Negative FN TN → Negative Predictive Value

↓ ↓

Sensitivity Specificity

(Recall)

The combination of these elements allows us to define several performance metrics:

• Accuracy:

accuracy =
TP + TN

TP + TN + FP + FN

• Column-wise we find these two partial performance metrics:

– Sensitivity or Recall:

sensitivity =
TP

Real Positives
=

TP

TP + FN

– Specificity:

specificity =
TN

Real Negatives
=

TN

TN + FP

• Row-wise we find these two partial performance metrics:

– Precision or Positive Predictive Value:

precision =
TP

Predicted Positives
=

TP

TP + FP

– Negative predictive value:

NPV =
TN

Predicted Negative
=

TN

TN + FN

These partial performance metrics allow us to answer questions concerning how

often a classifier predicts a particular class, e.g., what is the rate of predictions for

not fully funded loans that have actually not been fully funded? This question is

answered by recall. In contrast, we could ask: Of all the fully funded loans predicted

by the classifier, how many have been fully funded? This is answered by the precision

metric.

Let us compute these metrics for our problem.

74 5 Supervised Learning

In [6]:
yhat = knn.predict(x)

TP = np.sum(np.logical_and(yhat == -1, y == -1))

TN = np.sum(np.logical_and(yhat == 1, y == 1))

FP = np.sum(np.logical_and(yhat == -1, y == 1))

FN = np.sum(np.logical_and(yhat == 1, y == -1))

print ’TP: ’+ str(TP), ’, FP: ’+ str(FP)

print ’FN: ’+ str(FN), ’, TN: ’+ str(TN)

Out[6]: TP: 3370 , FP: 690

FN: 7 , TN: 73

Scikit-learn provides us with the confusion matrix,

In [7]:
from sklearn import metrics

metrics.confusion_matrix(yhat , y)

sklearn uses a transposed convention for the confusion

matrix thus I change targets and predictions

Out[7]: 3370, 690

7, 73

Let us check the following example. Let us select a nearest neighbor classifier

with the number of neighbors equal to one instead of eleven, as we did before, and

check the training error.

In [8]:
Train a classifier using .fit()

knn = neighbors.KNeighborsClassifier(n_neighbors = 1)

knn.fit(x, y)

yhat = knn.predict(x)

print "classification accuracy:" +

str(metrics.accuracy_score(yhat , y))

print "confusion matrix: \n" +

str(metrics.confusion_matrix(yhat , y))

Out[8]: classification accuracy: 1.0 confusion matrix:

3377 0

0 763

The performance measure is perfect! 100% accuracy and a diagonal confusion

matrix! This looks good. However, up to this point we have checked the classifier

performance on the same data it has been trained with. During exploitation, in real

applications, we will use the classifier on data not previously seen. Let us simulate

this effect by splitting the data into two sets: one will be used for learning (training

set) and the other for testing the accuracy (test set).

5.3 First Steps 75

In [9]:
Simulate a real case: Randomize and split data into

two subsets PRC *100\% for training and the rest

(1-PRC)*100\% for testing

perm = np.random.permutation(y.size)

PRC = 0.7

split_point = int(np.ceil(y.shape [0]* PRC))

X_train = x[perm[: split_point].ravel () ,:]

y_train = y[perm[: split_point].ravel ()]

X_test = x[perm[split_point :]. ravel () ,:]

y_test = y[perm[split_point :]. ravel ()]

If we check the shapes of the training and test sets we obtain,

Out[9]: Training shape: (2898, 15), training targets shape: (2898,)

Testing shape: (1242, 15), testing targets shape: (1242,)

With this new partition, let us train the model

In [10]:
#Train a classifier on training data

knn = neighbors.KNeighborsClassifier(n_neighbors = 1)

knn.fit(X_train , y_train)

yhat = knn.predict(X_train)

print "\n TRAINING STATS:"

print "classification accuracy:" +

str(metrics.accuracy_score(yhat , y_train))

print "confusion matrix: \n" +

str(metrics.confusion_matrix(y_train , yhat))

Out[10]: TRAINING STATS:

classification accuracy: 1.0

confusion matrix:
2355 0

0 543

As expected from the former experiment, we achieve a perfect score. Now let us

see what happens in the simulation with previously unseen data.

In [11]:
#Check on the test set

yhat = knn.predict(X_test)

print "TESTING STATS:"

print "classification accuracy:",

metrics.accuracy_score(yhat , y_test)

print "confusion matrix: \n" +

str(metrics.confusion_matrix(yhat , y_test))

Out[11]: TESTING STATS:

classification accuracy: 0.754428341385

confusion matrix:
865 148

157 72

76 5 Supervised Learning

Observe that each time we run the process of randomly splitting the dataset and

train a classifier we obtain a different performance. A good simulation for approxi-

mating the test error is to run this process many times and average the performances.

Let us do this!6

In [12]:
Spitting done by using the tools provided by sklearn:

from sklearn.cross_validation import train_test_split

PRC = 0.3

acc = np.zeros ((10,))

for i in xrange (10):

X_train , X_test , y_train , y_test =

train_test_split(x, y, test_size = PRC)

knn = neighbors.KNeighborsClassifier(n_neighbors = 1)

knn.fit(X_train , y_train)

yhat = knn.predict(X_test)

acc[i] = metrics.accuracy_score(yhat , y_test)

acc.shape = (1, 10)

print "Mean expected error:" + str(np.mean(acc [0]))

Out[12]: Mean expected error: 0.754669887279

As we can see, the resulting error is below 81%, which was the result of the most

naive decision process. What is wrong with this result?

Let us introduce the nomenclature for the quantities we have just computed and

define the following terms.

• In-sample error Ein: The in-sample error or training error is the error measured

over all the observed data samples in the training set, i.e.,

Ein =
1

N

N
∑

i=1

e(xi , yi)

• Out-of-sample error Eout: The out-of-sample error or generalization error mea-

sures the expected error on unseen data. We can approximate/simulate this quantity

by holding back some training data for testing purposes.

Eout = Ex,y(e(x, y))

Note that the definition of the instantaneous error e(xi , yi) is still missing. For

example, in classification we could use the indicator function to account for a cor-

rectly classified sample as follows:

e(xi , yi) = I [h(xi) = yi] =

{

1, if h(xi) = yi

0 otherwise.

6sklearn allows us to easily automate the train/test splitting using the function

train_test_split(...).

5.3 First Steps 77

Fig. 5.2 Comparison of the methods using the accuracy metric

Observe that:

Eout ≥ Ein

Using the expected error on the test set, we can select the best classifier for

our application. This is called model selection. In this example we cover the most

simplistic setting. Suppose we have a set of different classifiers and want to select

the “best” one. We may use the one that yields the lowest error rate.

In [13]:
from sklearn import tree

from sklearn import svm

PRC = 0.1

acc_r = np.zeros ((10, 4))

for i in xrange (10):

X_train , X_test , y_train , y_test =

train_test_split(x, y, test_size = PRC)

nn1 = neighbors.KNeighborsClassifier(n_neighbors = 1)

nn3 = neighbors.KNeighborsClassifier(n_neighbors = 3)

svc = svm.SVC()

dt = tree.DecisionTreeClassifier ()

nn1.fit(X_train , y_train)

nn3.fit(X_train , y_train)

svc.fit(X_train , y_train)

dt.fit(X_train , y_train)

yhat_nn1 = nn1.predict(X_test)

yhat_nn3 = nn3.predict(X_test)

yhat_svc = svc.predict(X_test)

yhat_dt = dt.predict(X_test)

acc_r[i][0] = metrics.accuracy_score(yhat_nn1 , y_test)

acc_r[i][1] = metrics.accuracy_score(yhat_nn3 , y_test)

acc_r[i][2] = metrics.accuracy_score(yhat_svc , y_test)

acc_r[i][3] = metrics.accuracy_score(yhat_dt , y_test)

Figure 5.2 shows the results of applying the code.

78 5 Supervised Learning

This process is one particular form of a general model selection technique called

cross-validation. There are other kinds of cross-validation, such as leave-one-out or

K-fold cross-validation.

• In leave-one-out, given N samples, the model is trained with N − 1 samples and

tested with the remaining one. This is repeated N times, once per training sample

and the result is averaged.

• In K-fold cross-validation, the training set is divided into K nonoverlapping splits.

K-1 splits are used for training and the remaining one used to assess the mean.

This process is repeated K times leaving one split out each time. The results are

then averaged.

5.4 What Is Learning?

Let us recall the two basic values defined in the last section. We talk of training error

or in-sample error, Ein, which refers to the error measured over all the observed data

samples in the training set. We also talk of test error or generalization error, Eout,

as the error expected on unseen data.

We can empirically estimate the generalization error by means of cross-validation

techniques and observe that:

Eout ≥ Ein.

The goal of learning is to minimize the generalization error; but how can we

guarantee this minimization using only training data?

From the above inequality it is easy to derive a couple of very intuitive ideas.

• Because Eout is greater than or equal to Ein, it is desirable to have

Ein → 0.

• Additionally, we also want the training error behavior to track the generalization

error so that if one minimizes the in-sample error the out-of-sample error follows,

i.e.,

Eout ≈ Ein.

We can rewrite the second condition as

Ein ≤ Eout ≤ Ein + Ω,

with Ω → 0.

We would like to characterize Ω in terms of our problem parameters, i.e., the

number of samples (N), dimensionality of the problem (d), etc.

Statistical analysis offers an interesting characterization of this quantity7

7The reader should note that there are several bounds in machine learning to characterize the

generalization error. Most of them come from variations of Hoeffding’s inequality.

5.4 What Is Learning? 79

Fig. 5.3 Toy problem data

Eout ≤ Ein(C) + O
(

√

log C

N

)

,

where C is a measure of the complexity of the model class we are using. Technically,

we may also refer to this model class as the hypothesis space.

5.5 Learning Curves

Let us simulate the effect of the number of examples on the training and test errors

for a given complexity. This curve is called the learning curve. We will focus for a

moment in a more simple case. Consider the toy problem in Fig. 5.3.

Let us take a classifier and vary the number of examples we feed it for training

purposes, then check the behavior of the training and test accuracies as the number

of examples grows. In this particular case, we will be using a decision tree with fixed

maximum depth.

Observing the plot in Fig. 5.4, we can see that:

• As the number of training samples increases, both errors tend to the same value.

• When we have few training data, the training error is very small but the test error

is very large.

Now check the learning curve when the degree of complexity is greater in Fig. 5.5.

We simulate this effect by increasing the maximum depth of the tree.

And if we put both curves together, we have the results shown in Fig. 5.6.

Although both show similar behavior, we can note several differences:

80 5 Supervised Learning

Fig. 5.4 Learning curves (training and test errors) for a model with a high degree of complexity

Fig. 5.5 Learning curves (training and test errors) for a model with a low degree of complexity

Fig. 5.6 Learning curves (training and test errors) for models with a low and a high degree of

complexity

5.5 Learning Curves 81

Fig. 5.7 Learning curves (training and test errors) for a fixed number of data samples, as the

complexity of the decision tree increases

• With a low degree of complexity, the training and test errors converge to the bias

sooner/with fewer data.

• Moreover, with a low degree of complexity, the error of convergence is larger than

with increased complexity.

The value both errors converge towards is also called the bias; and the differ-

ence between this value and the test error is called the variance. The bias/variance

decomposition of the learning curve is an alternative approach to the training and

generalization view.

Let us now plot the learning behavior for a fixed number of examples with respect

to the complexity of the model. We may use the same data but now we will change

the maximum depth of the decision tree, which governs the complexity of the model.

Observe in Fig. 5.7 that as the complexity increases the training error is reduced;

but above a certain level of complexity, the test error also increases. This effect is

called overfitting. We may enact several cures for overfitting:

• Observe that models are usually parameterized by some hyperparameters. Select-

ing the complexity is usually governed by some such parameters. Thus, we are

faced with a model selection problem. A good heuristic for selecting the model is

to choose the value of the hyperparameters that yields the smallest estimated test

error. Remember that this can be done using cross-validation.

• We may also change the formulation of the objective function to penalize complex

models. This is called regularization. Regularization accounts for estimating the

value of Ω in our out-of-sample error inequality. In other words, it models the

complexity of the technique. This usually becomes implicit in the algorithm but

has huge consequences in real applications. The most common regularization

strategies are as follows:

82 5 Supervised Learning

– L2 weight regularization: Adding an L2 penalization term to the weights of a

weight-controlled model implies looking for solutions with small weight values.

Intuitively, adding an L2 penalization term can be seen as a surrogate for the

notion of smoothness. In this sense, a low complexity model means a very

smooth model.

– L1 weight regularization: Adding an L1 regularization term forces sparsity in

the weights of the model. In this sense, a low complexity model means a model

with few components or few active terms.

These terms are added to the objective function. They trade off with the error

function in the objective and are governed by a hyperparameter. Thus, we still

have to select this parameter by means of model selection.

• We can use “ensemble techniques”. A third cure for overfitting is to use ensemble

techniques. The best known are bagging and boosting.

5.6 Training, Validation and Test

Going back to our problem, we have to select a model and control its complexity

according to the number of training data. In order to do this, we can start by using

a model selection technique. We have seen model selection before when we wanted

to compare the performance of different classifiers. In that case, our best bet was to

select the classifier with the smallest Eout. Analogous to model selection, we may

think of selecting the best hyperparameters as choosing the classifier with parameters

that performs the best. Thus, we may select a set of hyperparameter values and use

cross-validation to select the best configuration.

The process of selecting the best hyperparameters is called validation. This intro-

duces a new set into our simulation scheme; we now need to divide the data we have

into three sets: training, validation, and test sets. As we have seen, the process of

assessing the performance of the classifier by estimating the generalization error is

called testing. And the process of selecting a model using the estimation of the gen-

eralization error is called validation. There is a subtle but critical difference between

the two and we have to be aware of it when dealing with our problem.

• Test data is used exclusively for assessing performance at the end of the process

and will never be used in the learning process.8

• Validation data is used explicitly to select the parameters/models with the best

performance according to an estimation of the generalization error. This is a form

of learning.

• Training data are used to learn the instance of the model from a model class.

8This set cannot be used to select a classifier, model or hyperparameter; nor can it be used in any

decision process.

5.6 Training, Validation and Test 83

In practice, we are just given training data, and in the most general case we

explicitly have to tune some hyperparameter. Thus, how do we select the different

splits?

How we do this will depend on the questions regarding the method that we want

to answer:

• Let us say that our customer asks us to deliver a classifier for a given problem. If

we just want to provide the best model, then we may use cross-validation on our

training dataset and select the model with the best performance. In this scenario,

when we return the trained classifier to our customer, we know that it is the one

that achieves the best performance. But if the customer asks about the expected

performance, we cannot say anything.

A practical issue: once we have selected the model, we use the complete training

set to train the final model.

• If we want to know about the performance of our model, we have to use unseen

data. Thus, we may proceed in the following way:

1. Split the original dataset into training and test data. For example, use 30% of

the original dataset for testing purposes. This data is held back and will only be

used to assess the performance of the method.

2. Use the remaining training data to select the hyperparameters by means of cross-

validation.

3. Train the model with the selected parameter and assess the performance using

the test dataset.

A practical issue: Observe that by splitting the data into three sets, the classifier

is trained with a smaller fraction of the data.

• If we want to make a good comparison of classifiers but we do not care about

the best parameters, we may use nested cross-validation. Nested cross-validation

runs two cross-validation processes. An external cross-validation is used to assess

the performance of the classifier and in each loop of the external cross-validation

another cross-validation is run with the remaining training set to select the best

parameters.

If we want to select the best complexity of a decision tree, we can use tenfold cross-

validation checking for different complexity parameters. If we change the maximum

depth of the method, we obtain the results in Fig. 5.8.

84 5 Supervised Learning

Fig. 5.8 Box plot showing accuracy for different complexities of the decision tree

In [14]:
Create a 10-fold cross -validation set

kf = cross_validation.KFold(n = y.shape [0],

n_folds = 10,

shuffle = True ,

random_state = 0)

Search for the parameter among the following:

C = np.arange(2, 20,)

acc = np.zeros ((10, 18))

i = 0

for train_index , val_index in kf:

X_train , X_val = X[train_index], X[val_index]

y_train , y_val = y[train_index], y[val_index]

j = 0

for c in C:

dt = tree.DecisionTreeClassifier(

min_samples_leaf = 1,

max_depth = c)

dt.fit(X_train , y_train)

yhat = dt.predict(X_val)

acc[i][j] = metrics.accuracy_score(yhat , y_val)

j = j + 1

i = i + 1

Checking Fig. 5.8, we can see that the best average accuracy is obtained by the

fifth model, a maximum depth of 6. Although we can report that the best accuracy

is estimated to be found with a complexity value of 6, we cannot say anything about

the value it will achieve. In order to have an estimation of that value, we need to run

the model on a new set of data that are completely unseen, both in training and in

model selection (the model selection value is positively biased). Let us put everything

together. We will be considering a simple train_test split for testing purposes and

then run cross-validation for model selection.

5.6 Training, Validation and Test 85

In [15]:
Train_test split

X_train , X_test , y_train , y_test = cross_validation

.train_test_split(X, y, test_size = 0.20)

Create a 10-fold cross -validation set

kf = cross_validation.KFold(n = y_train.shape [0],

n_folds = 10,

shuffle = True ,

random_state = 0)

Search the parameter among the following

C = np.arange(2, 20,)

acc = np.zeros ((10, 18))

i = 0

for train_index , val_index in kf:

X_t , X_val = X_train[train_index], X_train[val_index]

y_t , y_val = y_train[train_index], y_train[val_index]

j = 0

for c in C:

dt = tree.DecisionTreeClassifier(

min_samples_leaf = 1,

max_depth = c)

dt.fit(X_t , y_t)

yhat = dt.predict(X_val)

acc[i][j] = metrics.accuracy_score(yhat , y_val)

j = j + 1

i = i + 1

print ’Mean accuracy: ’ + str(np.mean(acc , axis = 0))

print ’Selected model index: ’ +

str(np.argmax(np.mean(acc , axis = 0)))

Out[15]: Mean accuracy: [0.8254832 0.83031158 0.83091854 0.83423816

0.83363939 0.83303516 0.82759983 0.82337022 0.82034725

0.81642795 0.80947567 0.79951316 0.80162614 0.79226695

0.79589324 0.785928 0.78049267 0.78320988]

Selected model index: 3

If we run the output of this code, we observe that the best accuracy is provided

by the fourth model. In this example it is a model with complexity 5.9 The selected

model achieves a success rate of 0.83423816 in validation. We then train the model

with the complete training set and verify its test accuracy.

9This reduction in the complexity of the best model should not surprise us. Remember that com-

plexity and the number of examples are intimately related for the learning to succeed. By using a

test set we perform model selection with a smaller dataset than in the former case.

86 5 Supervised Learning

In [16]:
Train the model with the complete training set with the

selected complexity

dt = tree.DecisionTreeClassifier(

min_samples_leaf = 1,

max_depth = C[np.argmax(np.mean(acc , axis = 0))])

dt.fit(X_train ,y_train)

Test the model with the test set

yhat = dt.predict(X_test)

print ’Test accuracy: ’ +

str(metrics.accuracy_score(yhat , y_test))

Out[16]: Test accuracy: 0.826086956522

As expected, the value is slightly reduced; it achieves 0.82608. Finally, the model

is trained with the complete dataset. This will be the model used in exploitation and

we expect to at least achieve an accuracy rate of 0.82608.

In [17]:
Train the final model

dt = tree.DecisionTreeClassifier(min_samples_leaf = 1,

max_depth = C[np.argmax(np.mean(acc , axis = 0))])

dt.fit(X, y)

5.7 Two Learning Models

Let us return to our problem and check the performance of different models. There

are many learning models in the machine learning literature. However, in this short

introduction we focus on two of the most important and pragmatically effective

approaches10: support vector machines (SVM) and random forests (RF).

5.7.1 Generalities Concerning Learning Models

Before going into some of the details of the models selected, let us check the com-

ponents of any learning algorithm. In order to be able to learn, an algorithm has to

define at least three components:

• The model class/hypothesis space defines the family of mathematical models that

will be used. The target decision boundary will be approximated from one element

of this space. For example, we can consider the class of linear models. In this case

our decision boundary will be a line if the problem is defined in R2 and the model

class is the space of all possible lines in R2.

10These techniques have been shown to be two of the most powerful families for classification [1].

5.7 Two Learning Models 87

Model classes define the geometric properties of the decision function. There are

different taxonomies but the best known are the families of linear and nonlinear

models. These families usually depend on some parameters; and the solution to a

learning problem is the selection of a particular set of parameters, i.e., the selection

of an instance of a model from the model class space. The model class space is

also called the hypothesis space.

The selection of the best model will depend on our problem and what we want

to obtain from the problem. The primary goal in learning is usually to achieve

the minimum error/maximum performance; but according to what else we want

from the algorithm, we can come up with different algorithms. Other common

desirable properties are interpretability, behavior when faced with missing data,

fast training, etc.

• The problem model formalizes and encodes the desired properties of the solution.

In many cases, this formalization takes the form of an optimization problem. In its

most basic instantiation, the problem model can be the minimization of an error

function. The error function measures the difference between our model and the

target. Informally speaking, in a classification problem it measures how “irritated”

we are when our model misses the right label for a training sample. For example,

in classification, the ideal error function is the 0–1 loss. This function takes value

1 when we incorrectly classify a training sample and zero otherwise. In this case,

we can interpret it by saying that we are only irritated by “one unit of irritation”

when one sample is misclassified.

The problem model can also be used to impose other constraints on our solution,11

such as finding a smooth approximation, a model with a low degree of small

complexity, a sparse solution, etc.

• The learning algorithm is an optimization/search method or algorithm that, given

a model class, fits it to the training data according to the error function. According

to the nature of our problem there are many different algorithms. In general, we

are talking about finding the minimum error approximation or maximum probable

model. In those cases, if the problem is convex/quasi-convex we will typically use

first- or second-order methods (i.e., gradient descent, coordinate descent, Newton’s

method, interior point methods, etc.). Other searching techniques such as genetic

algorithms or Monte Carlo techniques can be used if we do not have access to the

derivatives of the objective function.

5.7.2 Support Vector Machines

SVM is a learning technique initially designed to fit a linear boundary between the

samples of a binary problem, ensuring the maximum robustness in terms of tolerance

to isotropic uncertainty. This effect is observed in Fig. 5.9. Note that the boundary

displayed has the largest distance to the closest point of both classes. Any other

11Remember the regularization cure for overfitting.

88 5 Supervised Learning

Fig. 5.9 Support vector

machine decision boundary

and the support vectors

separating boundary will have a point of a class closer to it than this one. The figure

also shows the closest points of the classes to the boundary. These points are called

support vectors. In fact, the boundary only depends on those points. If we remove

any other point from the dataset, the boundary remains intact. However, in general,

if any of these special points is removed the boundary will change.

5.7.2.1 A Brief Note on Deriving Hard Margin Support Vector Machines
In order to understand the model, we have to be able to approximately derive its for-

mulation. For this purpose it is important to understand a couple of things about basic

geometry of a hyperplane. A hyperplane in Rd is defined as an affine combination of

the variables: π ≡ aT x + b = 0. A hyperplane splits the space into two half-spaces.

The evaluation of the equation of the hyperplane on any element belonging to one

of the half-spaces is a positive value. It is a negative value for all the elements in the

other half-space. The distance of a point x ∈ Rd to the hyperplane π is

d(x, π) =
|aT x + b|

‖a‖2

Given a binary classification problem with training data D = {(xi , yi)}, i =

1 . . . N , yi ∈ {+1,−1}, consider S ⊆ D the subset of all data points belonging to

class +1, S = {xi |yi = +1}, and R = {xi |yi = −1} its complement.

5.7 Two Learning Models 89

Then the problem of finding a separating hyperplane consists of fulfilling the

following constraints12

aT si + b > 0 and aT ri + b < 0 ∀si ∈ S, ri ∈ R.

This is a feasibility problem and it is usually written in the following way in

optimization standard notation:

minimize 1

subject to yi (a
T xi + b) ≥ 1, ∀xi ∈ D

The solution of this problem is not unique. Selecting the maximum margin hyper-

plane requires us to add a new constraint to our problem. Remember from the geom-

etry of the hyperplane that the distance of any point to a hyperplane is given by:

d(x, π) = aT x+b
‖a‖2

.

Recall also that we want positive data to be beyond value 1 and negative data

below −1. Thus, what is the distance value we want to maximize?

The positive point closest to the boundary is at 1/‖a‖2 and the negative point

closest to the boundary data point is also at 1/‖a‖2. Thus, data points from different

classes are at least 2/‖a‖2 apart.

Recall that our goal is to find the separating hyperplane with maximum margin,

i.e., with maximum distance between elements in the different classes. Thus, we can

complete the former formulation with our last requirement as follows:

minimize ‖a‖2/2

subject to yi (a
T xi + b) ≥ 1, ∀xi ∈ D

This formulation has a solution as long as the problem is linearly separable.

In order to deal with misclassifications, we are going to introduce a new set of

variables ξi , that represents the amount of violation in the i-th constraint. If the

constraint is already satisfied, then ξi = 0; while ξi > 0 otherwise. Because ξi is

related to the errors, we would like to keep this amount as close to zero as possible.

This makes us introduce an element in the objective trade-off with the maximum

margin.

12Note the strict inequalities in the formulation. Informally, we can consider the smallest satisfied

constraint, and observe that the rest must be satisfied with a larger value. Thus, we can arbitrarily

set that value to 1 and rewrite the problem as

aT si + b ≥ 1 and aT ri + b ≤ −1.

90 5 Supervised Learning

The new model becomes:

minimize ‖a‖2/2 + C

N
∑

i=1

ξi

subject to yi (a
T xi + b) ≥ 1 − ξi , i = 1 . . . N

ξi ≥ 0

where C is the trade-off parameter that roughly balances the rates of margin and

misclassification. This formulation is also called soft-margin SVM.

The larger the C value is, the more importance one gives to the error, i.e., the

method will be more accurate according to the data at hand, at the cost of being more

sensitive to variations of the data.

The decision boundary of most problems cannot be well approximated by a linear

model. In SVM, the extension to the nonlinear case is handled by means of kernel

theory. In a pragmatic way, a kernel can be referred to as any function that captures

the similarity between any two samples in the training set. The kernel has to be a

positive semi-definite function as follows:

• Linear kernel:

k(xi , x j) = xT
i x j

• Polynomial kernel:

k(xi , x j) = (1 + xT
i x j)

p

• Radial Basis Function kernel:

k(xi , x j) = e
−

‖xi −x j ‖
2

2σ2

Note that selecting a polynomial or a Radial Basis Function kernel means that we

have to adjust a second parameter p or σ, respectively. As a practical summary, the

SVM method will depend on two parameters (C, γ) that have to be chosen carefully

using cross-validation to obtain the best performance.

5.7.3 Random Forest

Random Forest (RF) is the other technique that is considered in this work. RF is

an ensemble technique. Ensemble techniques rely on combining different classifiers

using some aggregation technique, such as majority voting. As pointed out earlier,

ensemble techniques usually have good properties for combating overfitting. In this

case, the aggregation of classifiers using a voting technique reduces the variance of

the final classifier. This increases the robustness of the classifier and usually achieves

a very good classification performance. A critical issue in the ensemble of classifiers

is that for the combination to be successful, the errors made by the members of the

ensemble should be as uncorrelated as possible. This is sometimes referred to in the

5.7 Two Learning Models 91

literature as the diversity of the classifiers. As the name suggests, the base classifiers

in RF are decision trees.

5.7.3.1 A Brief Note on Decision Trees
A decision tree is one of the most simple and intuitive techniques in machine learning,

based on the divide and conquer paradigm. The basic idea behind decision trees is to

partition the space into patches and to fit a model to a patch. There are two questions

to answer in order to implement this solution:

• How do we partition the space?

• What model shall we use for each patch?

Tackling the first question leads to different strategies for creating decision tree.

However, most techniques share the axis-orthogonal hyperplane partition policy,

i.e., a threshold in a single feature. For example, in our problem “Does the applicant

have a home mortgage?”. This is the key that allows the results of this method to be

interpreted. In decision trees, the second question is straightforward, each patch is

given the value of a label, e.g., the majority label, and all data falling in that part of

the space will be predicted as such.

The RF technique creates different trees over the same training dataset. The word

“random” in RF refers to the fact that only a subset of features is available to each

of the trees in its building process. The two most important parameters in RF are the

number of trees in the ensemble and the number of features each tree is allowed to

check.

5.8 Ending the Learning Process

With both techniques in mind, we are going to optimize and check the results using

nested cross-validation. Scikit-learn allows us to do this easily using several model

selection techniques. We will use a grid search,GridSearchCV (a cross-validation

using an exhaustive search over all combinations of parameters provided).

92 5 Supervised Learning

In [16]:
parameters = {’C’: [1e4 , 1e5 , 1e6],

’gamma ’: [1e-5, 1e-4, 1e-3]}

N_folds = 5

kf=cross_validation.KFold(n = y.shape [0],

n_folds = N_folds ,

shuffle = True ,

random_state = 0)

acc = np.zeros ((N_folds ,))

i = 0

We will build the predicted y from the partial predictions

on the test of each of the folds

yhat = y.copy()

for train_index , test_index in kf:

X_train , X_test = X[train_index ,:], X[test_index ,:]

y_train , y_test = y[train_index], y[test_index]

scaler = StandardScaler ()

X_train = scaler.fit_transform(X_train)

clf = svm.SVC(kernel = ’rbf’)

clf = grid_search.GridSearchCV(clf , parameters , cv = 3)

clf.fit(X_train , y_train.ravel ())

X_test = scaler.transform(X_test)

yhat[test_index] = clf.predict(X_test)

print metrics.accuracy_score(yhat , y)

print metrics.confusion_matrix(yhat , y)

Out[16]: classification accuracy: 0.856038647343

confusion matrix:
3371 590

6 173

The result obtained has a large error in the non-fully funded class (negative). This

is because the default scoring for cross-validation grid-search is mean accuracy.

Depending on our business, this large error in recall for this class may be unaccept-

able. There are different strategies for diminishing the impact of this effect. On the

one hand, we may change the default scoring and find the parameter setting that cor-

responds to the maximum average recall. On the other hand, we could mitigate this

effect by imposing a different weight on an error on the critical class. For example,

we could look for the best parameterization such than one error on the critical class

is equivalent to one thousand errors on the noncritical class. This is important in

business scenarios where monetization of errors can be derived.

5.9 A Toy Business Case

Consider that clients using our service yield a profit of 100 units per client (we will use

abstract units but keep in mind that this will usually be accounted in euros/dollars).

We design a campaign with the goal of attracting investors in order to cover all

non-fully funded loans. Let us assume that the cost of the campaign is α units

per client. With this policy we expect to keep our customers satisfied and engaged

with our service, so they keep using it. Analyzing the confusion matrix we can

5.9 A Toy Business Case 93

Fig. 5.10 Surfaces for two

different campaign and

attraction factors. The

horizontal plane corresponds

to the profit if no campaign

is launched. The slanted

plane is the profit for a

certain confusion matrix

give precise meaning to different concepts in this campaign. The real positive set

(T P + F N) consists of the number of clients that are fully funded. According to

our assumption, each of these clients generates a profit of 100 units. The total profit

is 100 · (T P + F N). The campaign to attract investors will be cast considering all

the clients we predict are not fully funded. These are those that the classifier predict

as negative, i.e., (F N + T N). However, the campaign will only have an effect on

the investors/clients that are actually not funded, i.e., T N ; and we expect to attract a

certain fraction β of them. After deploying our campaign, a simplified model of the

expected profit is as follows:

100 · (T P + F N) − α(T N + F N) + 100βT N

When optimizing the classifier for accuracy, we do not consider the business needs.

In this case, optimizing an SVM using cross-validation for different parameters of the

C and γ, we have an accuracy of 85.60% and a confusion matrix with the following

values:
(

3371. 590.

6. 173.

)

If we check how the profit changes for different values of α and β, we obtain the plot

in Fig. 5.10. The figure shows two hyperplanes. The horizontal plane is the expected

profit if the campaign is not launched, i.e., 100 · (T P + F N). The other hyperplane

represents the profit of the campaign for different values of α and β using a particular

classifier. Remember that the cost of the campaign is given by α, and the success rate

of the campaign is represented by β. For the campaign to be successful we would

like to select values for both parameters so that the profit of the campaign is larger

than the cost of launching it. Observe in the figure that certain costs and attraction

rates result in losses.

We may launch different classifiers with different configurations and toy with dif-

ferent weights (2, 4, 8, 16) for elements of different classes in order to bias the classi-

94 5 Supervised Learning

Fig. 5.11 3D surfaces of the profit obtained for different classifiers and configurations of retention

campaign cost and retention rate. a RF, b SVM with the same cost per class, c SVM with double

cost for the target class, d SVM with a cost for the target class equal to 4, e SVM with a cost for

the target class equal to 8, f SVM with a cost for the target class equal to 16

fier towards obtaining different values for the confusion matrix.13 The weights define

13It is worth mentioning that another useful tool for visualizing the trade-off between true positives

and false positives in order to choose the operating point of the classifier is the receiver-operating

5.9 A Toy Business Case 95

Table 5.1 Different configurations of classifiers and their respective profit rates and accuracies

Max profit rate (%) Profit rate at 60% (%) Accuracy (%)

Random forest 4.41 2.41 87.87

SVM {1 : 1} 4.59 2.54 85.60

SVM {1 : 2} 4.52 2.50 85.60

SVM {1 : 4} 4.30 2.28 83.81

SVM {1 : 8} 10.69 3.57 52.51

SVM {1 : 16} 10.68 2.88 41.40

how much a misclassification in one class counts with respect to a misclassification

in another. Figure 5.11 shows the different landscapes for different configurations of

the SVM classifier and RF.

In order to frame the problem, we consider a very successful campaign with a

60% investor attraction rate. We can ask several questions in this scenario:

• What is the maximum amount to be spent on the campaign?

• How much will I gain?

• From all possible configurations of the classifier, which is the most profitable?

• Is it the one with the best accuracy?

Checking the values in Fig. 5.11, we find the results collected in Table 5.1. Observe

that the most profitable campaign with 60% corresponds to a classifier that considers

the cost of mistaking a sample from the non-fully funded class eight times larger

than the one from the other class. Observe also that the accuracy in that case is much

worse than in other configurations.

The take-home idea of this section is that business needs are often not aligned with

the notion of accuracy. In such scenarios, the confusion matrix values have specific

meanings. This must be taken into account when tuning the classifier.

5.10 Conclusion

In this chapter we have seen the basics of machine learning and how to apply learning

theory in a practical case using Python. The example in this chapter is a basic one

in which we can safely assume the data are independent and identically distributed,

and that they can be readily represented in vector form. However, machine learning

(Footnote 13 continued)

characteristic (ROC) curve. This curve plots the true positive rate/sensitivity/recall (TP/(TP+FN))

with respect to the false positive rate (FP/(FP+TN)).

96 5 Supervised Learning

may tackle many more different settings. For example, we may have different target

labels for a single example; this is called multilabel learning. Or, data can come

from streams or be time dependent; in these settings, sequential learning or sequence

learning can be the methods of choice. Moreover, each data example can be a non-

vector or have a variable size, such as a graph, a tree, or a string. In such scenarios

kernel learning or structural learning may be used. During these last years we are also

seeing the revival of neural networks under the name of deep learning and achieving

impressive results in different domains such as computer vision or natural language

processing. Nonetheless, all of these methods will behave as explained in this chapter

and most of the lessons learned here can be readily applied to these techniques.

Acknowledgements This chapter was co-written by Oriol Pujol and Petia Radeva.

Reference

1. M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we Need Hundreds of Classifiers

to Solve Real World Classification Problems? Journal of Machine Learning Research 15, 3133

(2014). http://jmlr.org/papers/v15/delgado14a.html

http://jmlr.org/papers/v15/delgado14a.html

6Regression Analysis

6.1 Introduction

In this chapter, we introduce regression analysis and some of its applications in data

science. Regression is related to how to make predictions about real-world quantities

such as, for instance, the predictions alluded to in the following questions. How does

sales volume change with changes in price? How is sales volume affected by the

weather? How does the title of a book affect its sales? How does the amount of a

drug absorbed vary with the patient’s body weight; and does this relationship depend

on blood pressure? How many customers can I expect today? At what time should I

go home to avoid traffic jams? What is the chance of rain on the next two Mondays;

and what is the expected temperature?

All these questions have a common structure: they ask for a response that can

be expressed as a combination of one or more (independent) variables (also called

covariates or predictors). The role of regression is to build a model to predict the

response from the variables. This process involves the transition from data to model.

More specifically, the model can be useful in different tasks, such as the following:

(1) analyzing the behavior of data (the relation between the response and the vari-

ables), (2) predicting data values (whether continuous or discrete), and (3) finding

important variables for the model.

In order to understand how a regression model can be suitable for tackling these

tasks, we will introduce three practical cases for which we use three real datasets and

solve different questions. These practical cases will motivate simple linear regression,

multiple linear regression, and logistic regression, as presented in the following

sections.

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_6

97

98 6 Regression Analysis

Fig. 6.1 Illustration of different simple linear regression models. Blue points correspond to a set

of random points sampled from a univariate normal (Gaussian) distribution. Red, green and yellow

lines are three different simple linear regression models

6.2 Linear Regression

The objective of performing a regression is to build a model to express the relation

between the response y ∈ R
n and a combination of one or more (independent) vari-

ables xi ∈ R
n . [1] The model allows us to predict the response y from the variables.

The simplest model which can be considered is a linear model, where the response

y depends linearly on the d variables xi :

y = a1x1 + · · · + adxd . (6.1)

The variables ai are termed the parameters or coefficients of the model. This

equation can be rewritten in a more compact matrix form: y = Xw, where

y =

⎛

⎜

⎜

⎜

⎝

y1

y2

...

yn

⎞

⎟

⎟

⎟

⎠

, X =

⎛

⎜

⎜

⎜

⎝

x11 . . . x1d

x21 . . . x2d

...

xn1 . . . xnd

⎞

⎟

⎟

⎟

⎠

, w =

⎛

⎜

⎜

⎜

⎝

a1

a2

...

ad

⎞

⎟

⎟

⎟

⎠

.

Linear regression is the technique for creating these linear models.

6.2.1 Simple Linear Regression

Simple linear regression considers n samples of a single variable x ∈ R
n and

describes the relationship between the variable and the response with the model:

y = a0 + a1x, (6.2)

where the parameter a0 is called the intercept or the constant term.

Given a set of samples (x, y), such as the set illustrated in Fig. 6.1, we can create

a linear model to explain the data, as in Eq. (6.2). But how do we know which is the

6.2 Linear Regression 99

best model (best parameters) for this particular set of samples? See the three different

models (straight lines in different colors) in Fig. 6.1.

Ordinary least squares (OLS) is the simplest and most common estimator in which

the parameters (a’s) are chosen to minimize the square of the distance between the

predicted values and the actual values with respect to a0, a1:

||a0 + a1x − y||22 =

n
∑

j=1

(a0 + a1x j − y j)
2.

We are concerned here with the y-axis distance, since it does not consider the error

in the variables. This error expression is often called the sum of squared errors of

prediction (SSE). The SSE function is quadratic in the parameters, w, with positive-

definite Hessian, and therefore this function possesses a unique global minimum at

ŵ = (â0, â1). The resulting model is represented as follows: ŷ = â0 + â1x, where

the hats on the variables represent the fact that they are estimated from the data

available.

OLS is a popular approach for several reasons. It makes it computationally cheap to

calculate the coefficients. It is also easier to interpret than the other more sophisticated

models. In situations where the goal is to understand a simple model in detail, rather

than to estimate the response well, it can provide insight into what the model captures.

Finally, in situations where there is a lot of noise, as in many real scenarios, it may

be hard to find the true functional form, so a constrained model can perform quite

well compared to a complex model which can be more affected by noise.

Practical Case: Sea Ice Data and Climate Change

In this practical case, we pose the question: Is the climate really changing? More

concretely, we want to show the effect of the climate change by determining whether

the sea ice area (or extent) has decreased over the years. Sea ice area refers to the

total area covered by ice, whereas sea ice extent is the area of ocean with at least

15% sea ice. Reliable measurement of sea ice edges began with the satellite era in

the late 1970s. Before then, sea ice area and extent were monitored less precisely by

a combination of ships, buoys, and aircraft.

We will use the sea ice data from the National Snow & Ice Data Center1 which

provides measurements of the area and extend of sea ice at the poles over the last

36 years. The center has given access to the archived monthly Sea Ice Index images

and data since 1979 [2]. The archived data reside at an FTP location2 (web-page

instructions can be followed easily to access and download the files). The ASCII

data files tabulate sea ice extent and area (in millions of square kilometers) by year

for a given month.

In order to check whether there is an anomaly in the evolution of sea ice extent

over recent years, we want to build a simple linear regression model and analyze the

fitting; but before we need to perform several processing steps.

1https://nsidc.org/data/seaice_index/archives.html.
2ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/.

https://nsidc.org/data/seaice_index/archives.html
ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/

100 6 Regression Analysis

Fig. 6.2 Ice extent data by month

First, we read the data, previously downloaded, and create a DataFrame

(Pandas) as follows:

In [1]:
ice = pd.read_csv(’files/ch06/SeaIce.txt’,

delim_whitespace=True)

print ’shape:’, ice.shape

Out[1]: shape: (424, 6)

For data cleaning, we check the values of all the fields to detect any potential error.

We find that there is a ‘−9999’ value in the data_type field which should contain

‘Goddard’ or ‘NRTSI-G’ (the type of the input dataset). So we can easily clean the

data, removing these instances.

In [2]:
ice2 = ice[ice.data_type != ’ -9999’]

Next, we visualize the data. The lmplot() function from the Seaborn toolbox

is intended for exploring linear relationships of different forms in multidimensional

datasets. For instance, we can illustrate the relationship between the month of the

year (variable) and the extent (response) as follows:

In [3]:
import Seaborn as sns

sns.lmplot("mo", "extent", ice2)

This outputs Fig. 6.2. We can observe a monthly fluctuation of the sea ice extent,

as would be expected for the different seasons of the year.

We should normalize the data before performing the regression analysis to avoid

this fluctuation and be able to study the evolution of the extent over the years. To

capture the variation for a given interval of time (month), we can compute the mean

6.2 Linear Regression 101

Fig. 6.3 Ice extent data by month after the normalization

for the i-th interval of time (using the period from 1979 through 2014 for the mean

extent) µi , and subtract it from the set of extent values for that month {ei
j }. This

value can be converted to a relative percentage difference by dividing it by the total

average (1979–2014) µ, and then multiplying by 100:

ẽi
j = 100 ∗

ei
j − µi

µ
, i = 1, . . . , 12.

We implement this normalization and plot the relationship again as follows:

In [4]:
for i in range (12):

ice2.extent[ice2.mo == i+1] =

100*(ice2.extent[ice2.mo == i+1]

- month_means[i+1])

/month_means.mean()

sns.lmplot("mo", "extent", ice2)

The new output is in Fig. 6.3. We now observe a comparable range of values for

all months.

Next, the normalized values can be plotted for the entire time series to analyze the

tendency. We compute the trend as a simple linear regression. We use thelmplot()

function for visualizing linear relationships between the year (variable) and the extent

(response).

In [5]:
sns.lmplot("year", "extent", ice2)

This outputs Fig. 6.4 showing the regression model fitting the extent data. This

plot has two main components. The first is a scatter plot, showing the observed data

points. The second is a regression line, showing the estimated linear model relating

102 6 Regression Analysis

Fig. 6.4 Regression model fitting sea ice extent data for all months by year using lmplot

the two variables. The regression line is plotted with a 95% confidence band to give

an impression of the uncertainty in the model.

In this figure, we can observe that the data show a long-term negative trend over

years. The negative trend can be attributed to global warming, although there is also

a considerable amount of variation from year to year.

Up until here, we have qualitatively shown the linear regression using a useful visu-

alization tool. We can also analyze the linear relationship in the data using the Scikit-

learn library, which allows a quantitative evaluation. As was explained in the previous

chapter, Scikit-learn provides an object-oriented interface centered around the con-

cept of an estimator. The sklearn.linear_model.LinearRegression

estimator sets the state of the estimator based on the training data using the function

fit. Moreover, it allows the user to specify whether to fit an intercept term in the

object construction. This is done by setting the corresponding constructor arguments

of the estimator object as follows:

In [6]:
from sklearn.linear_model import LinearRegression

est = LinearRegression(fit_intercept = True)

During the fitting process, the state of the estimator is stored in instance

attributes that have a trailing underscore (‘_’). For example, the coefficients of a

LinearRegression estimator are stored in the attribute coef_. We fit a regres-

sion model using years as variables (x) and the extent values as the response (y).

In [7]:
x = ice2[[’year’]]

y = ice2[[’extent’]]

est.fit(x, y)

print "Coefficients:", est.coef_

print "Intercept:", est.intercept_

6.2 Linear Regression 103

Out[7]: Coefficients: [[-0.45275459]]

Intercept: [903.71640207]

Estimators that can generate predictions provide an Estimator.predict

method. In the case of regression, Estimator.predictwill return the predicted

regression values. We can evaluate the model fitting by computing the mean squared

error (MSE) and the coefficient of determination (R2) of the model. The coefficient

R2 is defined as (1 − u/v), with u =
∑

(y − ŷ)2 and v =
∑

(y − ȳ)2, where ȳ is the

mean. The best possible score for R2 is 1.0, lower values are worse (it can also be

negative). These measures can provide a quantitative answer to the question we are

facing: Is there a negative trend in the evolution of sea ice extent over recent years?

We can perform this analysis for a particular month or for all months together, as

done in the following lines:

In [8]:
from sklearn import metrics

y_hat = est.predict(x)

print "MSE:", metrics.mean_squared_error(y_hat , y)

print "R^2:", metrics.r2_score(y_hat , y)

print ’var:’, y.var()

Out[8]: MSE: 10.5391316398

R2: 0.50678703821

var: 31.98324

The negative trend seen in Fig. 6.4 is validated by the MSE value which is small,

0.1%, and the R2 value which is acceptable, given the variance of the data, 0.3%.

Given the model, we can also predict the extent value for the coming years. For

instance, the predicted extent for January 2025 can be computed as follows:

In [9]:
x = [2025]

y_hat = model.predict(x)

m = 1 # January

y_hat = (y_hat*month_means.mean() /100) + month_means[m]

print "Prediction of extent for January 2025

(in millions of square km):", y_hat

Out[9]: Prediction of extent for January 2025 (in millions of square

km): [12.93603933].

6.2.2 Multiple Linear Regression and Polynomial Regression

As we have seen in the previous section, with simple linear regression we describe

the relationship between the variable and the response with a straight line. In the

case of multiple linear regression, we extend this idea by fitting a d-dimensional

hyperplane to our d variables, as defined in Eq. (6.1).

Multiple linear regression may seem a very simple model, but even when the

response depends on the variables in nonlinear ways, this model can still be used by

104 6 Regression Analysis

considering nonlinear transformations φ(·) of the variables:

y = a1φ(x1) + · · · + adφ(xd)

This model is called polynomial regression and it is a popular nonlinear regression

technique which models the relationship between the response and the variables

as an p-th order polynomial. The higher the order of the polynomial, the more

complex the functions you can fit. However, using higher-order polynomial can

involve computational complexity and overfitting. Overfitting occurs when a model

fits the characteristics of the training data and loses the capacity to generalize from

the seen to predict the unseen.

6.2.3 Sparse Model

Often, in real problems, there are uninformative variables in the data which prevent

proper modeling of the problem and thus, the building of a correct regression model.

In such cases, a feature selection process is crucial to select only the informative

features and discard non-informative ones. This can be achieved by sparse methods

which use a penalization approach, such as LASSO (least absolute shrinkage and

selection operator) to set some model coefficients to zero (thereby discarding those

variables). Sparsity can be seen as an application of Occam’s razor: prefer simpler

models to complex ones.

Given the set of samples (X, y), the objective of a sparse model is to minimize

the SSE through a restriction (or penalty):

1

2n
||Xw − y||22 + α||w||1,

where ||w||1 is the L1-norm of the parameter vector w = (a0, . . . , ad).

Practical Case: Prediction of the Price of a New Housing Market

In this practical case we want to solve the question: Can we predict the price of a

new market given any of its attributes?

We will use the Boston housing dataset from Scikit-learn, which provides recorded

measurements of 13 attributes of housing markets around Boston, as well as the

median house price.3 Once we load the dataset (506 instances), the description of

the dataset can easily be shown by printing the field DESCR. The data (x), feature

names, and target (y) are stored in other fields of the dataset.

We first consider the task of predicting median house values in the Boston area

using as the variable one of the attributes, for instance, LSTAT, defined as the “pro-

portion of lower status of the population”.

Seaborn visualization can be used to show this linear relationships easily:

3Copy of UCI ML housing dataset: http://archive.ics.uci.edu/ml/datasets/Housing.

http://archive.ics.uci.edu/ml/datasets/Housing

6.2 Linear Regression 105

Fig. 6.5 Scatter plot of Boston data (LSTAT versus price) and their linear relationship (using

lmplot)

In [10]:
from sklearn import datasets

boston = datasets.load_boston ()

X_boston , y_boston = boston.data , boston.target

print ’Shape of data:’, X_boston.shape , y_boston.shape

print ’Feature names:’,boston.feature_names

df_boston = pd.DataFrame(boston.data ,

columns = boston.feature_names)

df_boston[’price’] = boston.target

sns.lmplot("price", "LSTAT", df_boston)

Out[10]: Shape of data: (506L, 13L) (506L,)

Feature names: [’CRIM’ ’ZN’ ’INDUS’ ’CHAS’ ’NOX’ ’RM’ ’AGE’

’DIS’ ’RAD’ ’TAX’ ’PTRATIO’ ’B’ ’LSTAT’]

In Fig. 6.5, we can clearly see that the relationship between price and LSTAT

is nonlinear, since the straight line is a poor fit. We can examine whether a better fit

can be obtained by including higher-order terms. For example, a quadratic model:

yi ≈ a0 + a1xi + a2x2
i

The lmplot function allows to easily change the order of the model as is done in

the next code, which outputs Fig. 6.6, where we observe a better fit.

In [11]:
sns.lmplot("price", "LSTAT", df_boston , order = 2)

To study the relation among multiple variables in a dataset, there are different

options. We can study the relationship between several variables in a dataset by

using the functions corr and heatmap which allow to calculate a correlation

matrix for a dataset and draws a heat map with the correlation values. The heat map

is a matricial image which helps to interpret the correlations among variables. For the

sake of visualization, we do not consider all the 13 variables in the Boston housing

data, but six: CRIM, per capita crime rate by town; INDUS, proportion of non-retail

106 6 Regression Analysis

Fig. 6.6 Scatter plot of Boston data (LSTAT versus price) and their polynomial relationship

(using lmplot with order 2)

business acres per town; NOX, nitric oxide concentrations (parts per 10 million); RM,

average number of rooms per dwelling; AGE, proportion of owner-occupied units

built prior to 1940; and LSTAT. These variables are indicated by their indexes in the

following code:

In [12]:
indexes = [0,2,4,5,6,12]

df2 = pd.DataFrame(boston.data[:,indexes],

columns = boston.feature_names[indexes])

df2[’price ’] = boston.target

corrmat = df2.corr()

sns.heatmap(corrmat , vmax = .8, square = True)

Figure 6.7 shows a heat map representing the correlation between pairs of vari-

ables; specifically, the six variables selected and the price of houses. The color bar

shows the range of values used in the matrix. This plot is a useful way of summa-

rizing the correlation of several variables. It can be seen that LSTAT and RM are the

variables that are most correlated with price.

Another good way to explore multiple variables is the scatter plot from Pandas.

The scatter plot is a grid of plots of multiple variables one against the others, illus-

trating the relationship of each variable with the rest. For the sake of visualization,

we do not consider all the variables, but just three: RM, AGE, and LSTAT defined by

indexes in the following code:

In [13]:
indexes =[5,6,12]

df2 = pd.DataFrame(boston.data[:,indexes],

columns = boston.feature_names[indexes])

df2[’price ’] = boston.target

pd.scatter_matrix(df2 , figsize = (12.0, 12.0))

6.2 Linear Regression 107

Fig. 6.7 Correlation plot:

heat map representing the

correlation between seven

pairs of variables in the

Boston housing dataset

This code outputs Fig. 6.8, where we obtain visual information concerning the

density function for every variable, in the diagonal, as well as the scatter plots of the

data points for pairs of variables. In the last column, we can appreciate the relation

between the three variables selected and house prices. It can be seen that RM follows

a linear relation with price; whereas AGE does not. LSTAT follows a higher-order

relation with price. This plot gives us an indication of how good or bad every

attribute would be as a variable in a linear model.

For the evaluation of the prediction power of the model with new samples, we split

the data into a training set and a testing set, and we compute the linear regression

score, which returns the coefficient of determination R2 of the prediction. We can

also calculate the MSE.

In [14]:
from sklearn import linear_model

train_size = X_boston.shape [0]/2

X_train = X_boston [: train_size]

X_test = X_boston[train_size :]

y_train = y_boston [: train_size]

y_test = y_boston[train_size :]

print ’Training and testing set sizes ’,

X_train.shape , X_test.shape

regr = LinearRegression ()

regr.fit(X_train , y_train)

print ’Coeff and intercept:’,

regr.coef_ , regr.intercept_

print ’Testing Score:’, regr.score(X_test , y_test) print ’

Training

MSE: ’,

np.mean((regr.predict(X_train) - y_train)**2)

print ’Testing MSE: ’,

np.mean((regr.predict(X_test) - y_test)**2)

108 6 Regression Analysis

Fig. 6.8 Scatter plot of Boston housing dataset

Out[14]: Training and testing set sizes (253, 13) (253, 13)

Coeff and intercept: [1.20133313 0.02449686 0.00999508

0.42548672 -8.44272332 8.87767164 -0.04850422 -1.11980855

0.20377571 -0.01597724 -0.65974775 0.01777057 -0.11480104]

-10.0174305829

Testing Score: -2.24420202674

Training MSE: 9.98751732546

Testing MSE: 302.64091133

We can see that all the coefficients obtained are different from zero, meaning that

no variable is discarded. Next, we try to build a sparse model to predict the price

using the most important factors and discarding the non-informative ones. To do this,

we can create a LASSO regressor, forcing zero coefficients.

6.2 Linear Regression 109

In [15]:
regr_lasso = linear_model.Lasso(alpha = .3)

regr_lasso.fit(X_train , y_train) print ’Coeff and intercept:

’,regr_lasso.coef_

print ’Tesing Score:’, regr_lasso.score(X_test ,

y_test) print ’Training MSE: ’,

np.mean((regr_lasso.predict(X_train) - y_train)**2)

print ’Testing MSE: ’,

np.mean((regr_lasso.predict(X_test) - y_test)**2)

Out[15]: Coeff and intercept: [0. 0.01996512 -0. 0. -0. 7.69894744

-0.03444803 -0.79380636 0.0735163 -0.0143421 -0.66768539

0.01547437 -0.22181817] -6.18324183615

Testing Score: 0.501127529021

Training MSE: 10.7343110095

Testing MSE: 46.5381680949

It can now be seen that the result of the model fitting for a set of sparse coefficients

is much better than before (using all the variables), with the score increasing from

−2.24 to 0.5. This demonstrates that four of the initial variables are not important

for the prediction and in fact they confuse the regressor.

With the LASSO result, we can also emphasize the most important factors for

determining the price of a new market, based on the coefficient values:

In [16]:
ind = np.argsort(np.abs(regr_lasso.coef_))

print ’Ordered variable (from less to more important):’,

boston.feature_names[ind]

Out[16]: Ordered variable (from less to more important): [’CRIM’ ’INDUS’

’CHAS’ ’NOX’ ’TAX’ ’B’ ’ZN’ ’AGE’ ’RAD’ ’LSTAT’ ’PTRATIO’ ’DIS’

’RM’]

There are also other strategies for feature selection. For instance, we can select

the k=5 best features, according to the k highest scores, using the function

SelectKBest from Scikit-learn:

In [17]:
import sklearn.feature_selection as fs

selector = fs.SelectKBest(score_func = fs.f_regression ,

k = 5)

selector.fit_transform(X_train , y_train) per

selector.fit(X_train ,y_train)

print ’Selected features:’,

zip(selector.get_support (), boston.feature_names)

Out[17]: Selected features: [(False, ’CRIM’), (False, ’ZN’), (True,

’INDUS’), (False, ’CHAS’), (False, ’NOX’), (True, ’RM’), (True,

’AGE’), (False, ’DIS’), (False, ’RAD’), (False, ’TAX’), (True,

’PTRATIO’), (False, ’B’), (True, ’LSTAT’)]

The set of selected features is now different, since the criterion has changed.

However, three of the most important features: RM, PTRATIO, and LSTAT.

In order to evaluate the prediction, it could be interesting to visualize the target

and predicted responses in a scatter plot, as it is done in the next code:

110 6 Regression Analysis

Fig. 6.9 Relation between true (x-axis) and predicted (y-axis) prices

In [18]:
clf = LinearRegression ()

clf.fit(boston.data , boston.target)

predicted = clf.predict(boston.data)

plt.scatter(boston.target , predicted , alpha = 0.3)

plt.plot([0, 50], [0, 50], ’--k’)

plt.axis(’tight ’)

plt.xlabel(’True price ($1000s)’)

plt.ylabel(’Predicted price ($1000s)’)

The output is shown in Fig. 6.9, where we can observe that the original prices

are properly estimated by the predicted ones, except for the higher values, around

$50.000 (points in the top right corner).

Finally, it is worth noting that we can work with statistical evaluation of a linear

regression with the OLS toolbox of the Stats Model toolbox.4 This toolbox is useful

to study several statistics concerning the regression model. To know more about the

toolbox, go to the Documentation related to Stats Models.

6.3 Logistic Regression

Logistic regression is a type of model of probabilistic statistical classification. It is

used as a binary model to predict a binary response, the outcome of a categorical

dependent variable (i.e., a class label), based on one or more variables.

The form of the logistic function is:

f (x) =
1

1 + e−λx

4http://statsmodels.sourceforge.net/devel/examples/notebooks/generated/ols.html.

http://statsmodels.sourceforge.net/devel/examples/notebooks/generated/ols.html

6.3 Logistic Regression 111

Fig. 6.10 Logistic function for different lambda values

Fig. 6.11 Linear regression (blue) versus logistic regression (red) for fitting a set of data (black

points) normally distributed across the 0 and 1 y-values

Figure 6.10 illustrates the logistic function with different values of λ. This function

is useful because it can take as its input any value from negative infinity to positive

infinity, whereas the output is restricted to values between 0 and 1 and hence can be

interpreted as a probability.

The set of samples (X, y), illustrated as black points in Fig. 6.11, defines a fitting

problem suitable for a logistic regression. The blue and red lines show the fitting

result for linear and logistic models, respectively. In this case, a logistic model can

clearly explain the data; whereas a linear model cannot.

Practical Case: Winning or Losing Football Team

Now, we pose the question: What number of goals makes a football team the winner

or the loser? More concretely, we want to predict victory or defeat in a football

match when we are given the number of goals a team scores. To do this we consider

112 6 Regression Analysis

the set of results of the football matches from the Spanish league5 and we build a

classification model with it.

We first read the data file in a DataFrame and select the following columns

in a new DataFrame: HomeTeam, AwayTeam, FTHG (home team goals), FTAG

(away team goals), and FTR (H=home win, D=draw, A=away win). We then build

a d-dimensional vector of variables with all the scores, x, and a binary response

indicating victory or defeat, y. For that, we create two extra columns containing W

the number of goals of the winning team and L the number of goals of the losing

team and we concatenate these data. Finally, we can compute and visualize a logistic

regression model to predict the discrete value (victory or defeat) using these data.

In [19]:
from sklearn.linear_model import LogisticRegression

data = pd.read_csv(’files/ch06/SP1.csv’)

s = data[[’HomeTeam ’,’AwayTeam ’, ’FTHG’, ’FTAG’, ’FTR’]]

def my_f1(row):

return max(row[’FTHG’], row[’FTAG’])

def my_f2(row):

return min(row[’FTHG’], row[’FTAG’])

s[’W’] = s.apply(my_f1 , axis = 1)

s[’L’] = s.apply(my_f2 , axis = 1)

x1 = s[’W’]. values

y1 = np.ones(len(x1), dtype = np.int)

x2 = s[’L’]. values

y2 = np.zeros(len(x2), dtype = np.int)

x = np.concatenate ([x1 , x2])

x = x[:, np.newaxis]

y = np.concatenate ([y1 , y2])

logreg = LogisticRegression ()

logreg.fit(x, y)

X_test = np.linspace(-5, 10, 300)

def lr_model(x):

return 1 / (1+np.exp(-x))

loss = lr_model(X_test*logreg.coef_ + logreg.intercept_)

.ravel ()

X_test2 = X_test[:,np.newaxis]

losspred = logreg.predict(X_test2)

plt.scatter(x.ravel (), y,

color = ’black ’,

s = 100, zorder = 20,

alpha = 0.03)

plt.plot(X_test , loss , color = ’blue’, linewidth = 3)

plt.plot(X_test , losspred , color = ’red’, linewidth = 3)

Figure 6.12 shows a scatter plot with transparency so we can appreciate the over-

lapping in the discrete positions of the total numbers of victories and defeats. It

also shows the fitting of the logistic regression model, in blue, and prediction of the

logistic regression model, in red, for the Spanish football league results. With this

information we can estimate that the cutoff value is 1. This means that a team, in

general, has to score more than one goal to win.

5http://www.football-data.co.uk/mmz4281/1213/SP1.csv.

http://www.football-data.co.uk/mmz4281/1213/SP1.csv

6.4 Conclusions 113

Fig. 6.12 Fitting of the logistic regression model (blue) and prediction of the logistic regression

model (red) for the Spanish football league results

6.4 Conclusions

In this chapter, we have focused on regression analysis and the different Python tools

that are useful for performing it. We have shown how regression analysis allows us

to better understand data by means of building a model from it. We have formally

presented four different regression models: simple linear regression, multiple linear

regression, polynomial regression, and logistic regression. We have also emphasized

the properties of sparse models in the selection of variables.

The different models have been used in three real problems dealing with different

types of datasets. In these practical cases, we solve different questions regarding

the behavior of the data, the prediction of data values (continuous or discrete), and

the importance of variables for the model. In the first case, we showed that there

is a decreasing tendency in the sea ice extent over the years, and we also predicted

the amount of ice for the next 20 years. In the second case, we predicted the price

of a market given a set of attributes and distinguished which of the attributes were

more important in the prediction. Moreover, we presented a useful way to show

the correlation between pairs of variables, as well as a way to plot the relationship

between pairs of variables. In the third case, we faced the problem of predicting

victory or defeat in a football match given the score of a team. We posed this problem

as a classification problem and solved it using a logistic regression model; and we

estimated the minimum number of goals a team has to score to win.

Acknowledgements This chapter was co-written by Laura Igual and Jordi Vitrià.

114 6 Regression Analysis

References

1. D. Freedman, Statistical Models: Theory and Practice. Cambridge University Press, (2009)

2. J. Maslanik, J. Stroeve. Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concen-

trations. Sea ice index data: Monthly sea ice extent and area data files, (1999, updated daily).

http://dx.doi.org/10.5067/U8C09DWVX9LM

http://dx.doi.org/10.5067/U8C09DWVX9LM

7Unsupervised Learning

7.1 Introduction

In machine learning, the problem of unsupervised learning is that of trying to find

hidden structure in unlabeled data. Since the examples given to the learner are unla-

beled, there is no error or reward signal to evaluate the goodness of a potential

solution. This distinguishes unsupervised from supervised learning. Unsupervised

learning is defined as the task performed by algorithms that learn from a training set

of unlabeled or unannotated examples, using the features of the inputs to categorize

them according to some geometric or statistical criteria.

Unsupervised learning encompasses many techniques that seek to summarize and

explain key features or structures of the data. Many methods employed in unsuper-

vised learning are based on data mining methods used to preprocess data. Most

unsupervised learning techniques can be summarized as those that tackle the follow-

ing four groups of problems:

• Clustering: has as a goal to partition the set of examples into groups.

• Dimensionality reduction: aims to reduce the dimensionality of the data. Here, we

encounter techniques such as Principal Component Analysis (PCA), independent

component analysis, and nonnegative matrix factorization.

• Outlier detection: has as a purpose to find unusual events (e.g., a malfunction),

that distinguish part of the data from the rest according to certain criteria.

• Novelty detection: deals with cases when changes occur in the data (e.g., in stream-

ing data).

The most common unsupervised task is clustering, which we focus on in this

chapter.

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_7

115

116 7 Unsupervised Learning

7.2 Clustering

Clustering is a process of grouping similar objects together; i.e., to partition unlabeled

examples into disjoint subsets of clusters, such that:

• Examples within a cluster are similar (in this case, we speak of high intraclass

similarity).

• Examples in different clusters are different (in this case, we speak of low interclass

similarity).

When we denote data as similar and dissimilar, we should define a measure for this

similarity/dissimilarity. Note that grouping similar data together can help in discov-

ering new categories in an unsupervised manner, even when no sample category

labels are provided. Moreover, two kinds of inputs can be used for grouping:

(a) in similarity-based clustering, the input to the algorithm is an n × n dissimilarity

matrix or distance matrix;

(b) in feature-based clustering, the input to the algorithm is an n × D feature matrix

or design matrix, where n is the number of examples in the dataset and D the

dimensionality of each sample.

Similarity-based clustering allows easy inclusion of domain-specific similarity,

while feature-based clustering has the advantage that it is applicable to potentially

noisy data.

Therefore, several questions regarding the clustering process arise.

• What is a natural grouping among the objects? We need to define the “groupness”

and the “similarity/distance” between data.

• How can we group samples? What are the best procedures? Are they efficient?

Are they fast? Are they deterministic?

• How many clusters should we look for in the data? Shall we state this number

a priori? Should the process be completely data driven or can the user guide the

grouping process? How can we avoid “trivial” clusters? Should we allow final

clustering results to have very large or very small clusters? Which methods work

when the number of samples is large? Which methods work when the number of

classes is large?

• What constitutes a good grouping? What objective measures can be defined to

evaluate the quality of the clusters?

There is not always a single or optimal answer to these questions. It used to be said

that clustering is a “subjective” issue. Clustering will help us to describe, analyze,

and gain insight into the data, but the quality of the partition depends to a great extent

on the application and the analyst.

7.2 Clustering 117

7.2.1 Similarity and Distances

To speak of similar and dissimilar data, we need to introduce a notion of the similarity

of data. There are several ways for modeling of similarity. A simple way to model

this is by means of a Gaussian kernel:

s(a, b) = e−γd(a,b)

where d(a, b) is a metric function, and γ is a constant that controls the decay of the

function. Observe that when a = b, the similarity is maximum and equal to one. On

the contrary, when a is very different to b, the similarity tends to zero. The former

modeling of the similarity function suggests that we can use the notion of distance

as a surrogate. The most widespread distance metric is the Minkowski distance:

d(a, b) = (

d
∑

i=1

|ai − bi|
p)1/p

where d(a, b) stands for the distance between two elements a, b ∈ R
d , d is the

dimensionality of the data, and p is a parameter.

The best-known instantiations of this metric are as follows:

• when p = 2, we have the Euclidean distance,

• when p = 1, we have the Manhattan distance, and

• when p = inf, we have the max-distance. In this case, the distance corresponds to

the component |ai − bi| with the highest value.

7.2.2 What Constitutes a Good Clustering? Defining Metrics
to Measure Clustering Quality

When performing clustering, the question normally arises: How do we measure the

quality of the clustering result? Note that in unsupervised clustering, we do not have

groundtruth labels that would allow us to compute the accuracy of the algorithm. Still,

there are several procedures for assessing quality. We find two families of techniques:

those that allow us to compare clustering techniques, and those that check on specific

properties of the clustering, for example “compactness”.

7.2.2.1 Rand Index, Homogeneity, Completeness and V-measure
Scores

One of the best-known methods for comparing the results in clustering techniques

in statistics is the Rand index or Rand measure (named after William M. Rand). The

Rand index evaluates the similarity between two results of data clustering. Since

in unsupervised clustering, class labels are not known, we use the Rand index to

compare the coincidence of different clusterings obtained by different approaches

or criteria. As an alternative, we later discuss the Silhouette coefficient: instead of

118 7 Unsupervised Learning

comparing different clusterings, this evaluates the compactness of the results of

applying a specific clustering approach.

Given a set of n elements S = {o1, . . . , on}, we can compare two partitions of S1:

X = {X1, . . . , Xr}, a partition of S into r subsets; and Y = {Y1, . . . , , Ys}, a partition

of S into s subsets. Let us use the annotations as follows:

• a is the number of pairs of elements in S that are in the same subset in both X and

Y ;

• b is the number of pairs of elements in S that are in different subsets in both X and

Y ;

• c is the number of pairs of elements in S that are in the same subset in X , but in

different subsets in Y ; and

• d is the number of pairs of elements in S that are in different subsets in X , but in

the same subset in Y .

The Rand index, R, is defined as follows:

R =
a + b

a + b + c + d
,

ensuring that its value is between 0 and 1.

One of the problems of the Rand index is that when given two datasets with random

labelings, it does not take a constant value (e.g., zero) as expected. Moreover, when

the number of clusters increases it is desirable that the upper limit tends to the unity.

To solve this problem, a form of the Rand index, called the Adjusted Rand index, is

used that adjusts the Rand index with respect to chance grouping of elements. It is

defined as follows:

AR =

(

n
2

)

(a + d) − [(a + b)(a + c) + (c + d)(b + d)]
(

n
2

)2
[(a + b)(a + c) + (c + d)(b + d)]

.

Another way for comparing clustering results is the V-measure. Let us first intro-

duce some concepts. We say that a clustering result satisfies a homogeneity criterion

if all of its clusters contain only data points which are members of the same original

(single) class. A clustering result satisfies a completeness criterion if all the data

points that are members of a given class are elements of the same predicted cluster.

Note that both scores have real positive values between 0.0 and 1.0, larger values

being desirable. For example, if we consider two toy clustering sets (e.g., original

and predicted) with four samples and two labels, we get:

In [1]:
print("%.3f" % metrics.homogeneity_score ([0, 0, 1, 1],

[0, 0, 0, 0]))

Out[1]: 0.000

1https://en.wikipedia.org/wiki/Rand_index.

https://en.wikipedia.org/wiki/Rand_index

7.2 Clustering 119

The homogeneity is 0 since the samples in the predicted cluster 0 come from

original cluster 0 and cluster 1.

In [2]:
print metrics.completeness_score ([0, 0, 1, 1],

[1, 1, 0, 0])

Out[2]: 1.0

The completeness is 1 since all the samples from the original cluster with label 0

go into the same predicted cluster with label 1, and all the samples from the original

cluster with label 1 go into the same predicted cluster with label 0.

However, how can we define a measure that takes into account the completeness

as well as the homogeneity? The V-measure is the harmonic mean between the

homogeneity and the completeness defined as follows:

v = 2 ∗ (homogeneity ∗ completeness)/(homogeneity + completeness).

Note that this metric is not dependent of the absolute values of the labels: a

permutation of the class or cluster label values will not change the score value in

any way. Moreover, the metric is symmetric with respect to switching between the

predicted and the original cluster label. This is very useful to measure the agreement

of two independent label assignment strategies applied to the same dataset even

when the real groundtruth is not known. If class members are completely split across

different clusters, the assignment is totally incomplete, hence the V-measure is null:

In [3]:
print("%.3f" % metrics.v_measure_score ([0, 0, 0, 0],

[0, 1, 2, 3]))

Out[3]: 0.000

In contrast, clusters that include samples from different classes destroy the homo-

geneity of the labeling, hence:

In [4]:
print("%.3f" % metrics.v_measure_score ([0, 0, 1, 1],

[0, 0, 0, 0]))

Out[4]: 0.000

In summary, we can say that the advantages of the V-measure include that it

has bounded scores: 0.0 means the clustering is extremely bad; 1.0 indicates a per-

fect clustering result. Moreover, it can be interpreted easily: when analyzing the

V-measure, low completeness or homogeneity explain in which direction the clus-

tering is not performing well. Furthermore, we do not assume anything about the

cluster structure. Therefore, it can be used to compare clustering algorithms such

as K-means, which assume isotropic blob shapes, with results of other clustering

algorithms such as spectral clustering (see Sect. 7.2.3.2), which can find clusters

with “folded” shapes. As a drawback, the previously introduced metrics are not

normalized with regard to random labeling. This means that depending on the num-

ber of samples, clusters and groundtruth classes, a completely random labeling will

120 7 Unsupervised Learning

not always yield the same values for homogeneity, completeness and hence, the V-

measure. In particular, random labeling will not yield a zero score, and they will tend

further from zero as the number of clusters increases. It can be shown that this prob-

lem can reliably be overcome when the number of samples is high, i.e., more than a

thousand, and the number of clusters is less than 10. These metrics require knowl-

edge of the groundtruth classes, while in practice this information is almost never

available or requires manual assignment by human annotators. Instead, as mentioned

before, these metrics can be used to compare the results of different clusterings.

7.2.2.2 Silhouette Score
An alternative to the former scores is to evaluate the final ‘shape’ of the clustering

result. This is the underlying idea behind the Silhouette coefficient. It is defined as

a function of the intracluster distance of a sample in the dataset, a and the nearest-

cluster distance, b for each sample.2 Later, we will discuss different ways to compute

the distance between clusters. The Silhouette coefficient for a sample i can be written

as follows:

Silhouette(i) =
b − a

max(a, b)
.

Hence, if the Silhouette s(i) is close to 0, it means that the sample is on the border of

its cluster and the closest one from the rest of the dataset clusters. A negative value

means that the sample is closer to the neighbor cluster. The average of the Silhouette

coefficients of all samples of a given cluster defines the “goodness” of the cluster.

A high positive value, i.e., close to 1 would mean a compact cluster, and vice versa.

And the average of the Silhouette coefficients of all clusters gives idea of the quality

of the clustering result. Note that the Silhouette coefficient only makes sense when

the number of labels predicted is less than the number of samples clustered.

The advantage of the Silhouette coefficient is that it is bounded between −1 and

+1. Moreover, it is easy to show that the score is higher when clusters are dense

and well separated; a logical feature when speaking about clusters. Furthermore, the

Silhouette coefficient is generally higher when clusters are compact.

7.2.3 Taxonomies of Clustering Techniques

Within different clustering algorithms, one can find soft partition algorithms, which

assign a probability of the data belonging to each cluster, and also hard partition

algorithms, where each datapoint is assigned precise membership of one cluster.

A typical example of a soft partition algorithm is the Mixture of Gaussians [1],

which can be viewed as a density estimator method that assigns a confidence or

2The intracluster distance of sample i is obtained by the distance of the sample to the nearest sample

from the same class, and the nearest-cluster distance is given by the distance to the closest sample

from the cluster nearest to the cluster of sample i.

7.2 Clustering 121

probability to each point in the space. A Gaussian mixture model is a probabilistic

model that assumes all the data points are generated from a mixture of a finite

number of Gaussian distributions with unknown parameters. The universally used

generative unsupervised clustering using a Gaussian mixture model is also known

as EM Clustering. Each point in the dataset has a soft assignment to the K clusters.

One can convert this soft probabilistic assignment into membership by picking out

the most likely clusters (those with the highest probability of assignment).

An alternative to soft algorithms are the hard partition algorithms, which assign a

unique cluster value to each element in the feature space. According to the grouping

process of the hard partition algorithm, there are two large families of clustering

techniques:

• Partitional algorithms: these start with a random partition and refine it iteratively.

That is why sometimes these algorithms are called “flat” clustering. In this chapter,

we will consider two partitional algorithms in detail: K-means and spectral clus-

tering.

• Hierarchical algorithms: these organize the data into hierarchical structures, where

data can be agglomerated in the bottom-up direction, or split in a top-down manner.

In this chapter, we will discuss and illustrate agglomerative clustering.

A typical hard partition algorithm is K-means clustering. We will now discuss it

in some detail.

7.2.3.1 K-means Clustering
K-means algorithm is a hard partition algorithm with the goal of assigning each data

point to a single cluster. K-means algorithm divides a set of n samples X into k

disjoint clusters ci, i = 1, . . . , k, each described by the mean µi of the samples in the

cluster. The means are commonly called cluster centroids. The K-means algorithm

assumes that all k groups have equal variance.

K-means clustering solves the following minimization problem:

arg minc

k
∑

j=1

∑

x∈cj

d(x, µj) = arg minc

k
∑

j=1

∑

x∈cj

||x − µj||
2
2 (7.1)

where ci is the set of points that belong to cluster i and µi is the center of the class

ci. K-means clustering objective function uses the square of the Euclidean distance

d(x, µj) = ||x − µj||
2, that is also referred to as the inertia or within-cluster sum-

of-squares. This problem is not trivial to solve (in fact, it is NP-hard problem), so

the algorithm only hopes to find the global minimum, but may become stuck at a

different solution.

In other words, we may wonder whether the centroids should belong to the original

set of points:

inertia =

n
∑

i=0

minµj∈c(||xi − µj||
2)). (7.2)

122 7 Unsupervised Learning

The K-means algorithm, also known as Lloyd’s algorithm, is an iterative procedure

that searches for a solution of the K-means clustering problem and works as follows.

First, we need to decide the number of clusters, k. Then we apply the following

procedure:

1. Initialize (e.g., randomly) the k cluster centers, called centroids.

2. Decide the class memberships of the n data samples by assigning them to the

nearest-cluster centroids (e.g., the center of gravity or mean).

3. Re-estimate the k cluster centers, ci, by assuming the memberships found above

are correct.

4. If none of the n objects changes its membership from the last iteration, then exit.

Otherwise go to step 2.

Let us illustrate the algorithm in Python. First, we will create three sample distri-

butions:

In [5]:
MAXN = 40

X = np.concatenate ([

1.25*np.random.randn(MAXN , 2),

5 + 1.5*np.random.randn(MAXN , 2)])

X = np.concatenate ([

X, [8, 3] + 1.2*np.random.randn(MAXN , 2)])

The sample distributions generated are shown in Fig. 7.1 (left). However, the algo-

rithm is not aware of their distribution. Figure 7.1 (right) shows what the algorithm

sees. Let us assume that we expect to have three clusters (k = 3) and apply the

K-means command from the Scikit-learn library:

Fig. 7.1 Initial samples as generated (left), and samples seen by the algorithm (right)

7.2 Clustering 123

In [6]:
from sklearn import cluster

K = 3 # Assuming we have 3 clusters!

clf = cluster.KMeans(init = ’random’, n_clusters = K)

clf.fit(X)

Out[6]: KMeans(copy_x=True, init=’random’, max_iter=300,

n_clusters=3, n_init=10, n_jobs=1, precompute_distances=True,

random_state=None, tol=0.0001, verbose=0)

Each clustering algorithm in Scikit-learn is used as follows. First, an object from

the clustering technique is instantiated. Then we can use the fit method to adjust

the learning parameters. We also find the method predict that, given new data,

returns the cluster they belong to. For the class, the labels over the training data can

be found in the labels_ attribute or alternatively they can be obtained using the

predict method.

How many “mis-clusterings” do we have? In order to see this, we tessellate the

space and color all grid points from the same cluster with the same color. Then, we

overlay the initial sample distributions (see Fig. 7.2). In the ideal case, we expect that

in each partitioned subspace the sample points are of the same color. However, as

shown in Fig. 7.2, the resulting clustering, which is represented in the figure by the

color subspace in gray, does not usually coincide exactly with the initial distribution,

which is represented by the color of the data. For example, in the same figure, if most

of the blue points belong to the same cluster, there are a few ones that belong to the

space occupied by the green data.

When computing the Rand index, we get:

In [7]:
print (’The Adjusted Rand index is: %.2f’ %

metrics.adjusted_rand_score (y.ravel (), clf.labels_))

Fig. 7.2 Original samples

(dots) generated by three

distributions and the partition

of the space according to the

K-means clustering

124 7 Unsupervised Learning

Out[7]: The Adjusted Rand index is: 0.66

Taking into account that the Adjusted Rand index belongs to the interval [0, 1],

the result of 0.66 in our example means that although most of the clusters were

discovered, not 100% of them were; as confirmed by Fig. 7.2.

The inertia can be seen as a measure of how internally coherent the clusters are.

Several issues should be taken into account:

• The inertia assumes that clusters are isotropic and convex, since the Euclidean

distance is applied, which is isotropic with regard to the different dimensions of

the data. However, we cannot expect that the data fulfill this assumption by default.

Hence, the K-means algorithm responds poorly to elongated clusters or manifolds

with irregular shapes.

• The algorithm may not ensure convergence to the global minimum. It can be

shown that K-means will always converge to a local minimum of the inertia

(Eq. (7.2)). It depends on the random initialization of the seeds, but some seeds

can result in a poor convergence rate, or convergence to suboptimal clustering.

To alleviate the problem of local minima, the K-means computation is often per-

formed several times, with different centroid initializations. One way to address

this issue is the k-means++ initialization scheme, which has been implemented

in Scikit-learn (use the init=’kmeans++’ parameter). This parameter

initializes the centroids to be (generally) far from each other, thereby probably

leading to better results than random initialization.

• This algorithm requires the number of clusters to be specified. Different heuristics

can be applied to predetermine the number of seeds of the algorithm.

• It scales well to a large number of samples and has been used across a large range

of application areas in many different fields.

In summary, we can conclude that K-means has the advantages of allowing the

easy use of heuristics to select good seeds; initialization of seeds by other methods;

multiple points to be tried. However, in contrast, it still cannot ensure that the local

minima problem is overcome; it is iterative and hence slow when there are a lot of

high-dimensional samples; and it tends to look for spherical clusters.

7.2.3.2 Spectral Clustering
Up to this point, the clustering procedure has been considered as a way to find data

groups following a notion of compactness. Another way of looking at what a cluster

is is provided by connectivity (or similarity). Spectral clustering [2] refers to a family

of methods that use spectral techniques. Specifically, these techniques are related to

the eigendecomposition of an affinity or similarity matrix and solve the problem of

clustering according to the connectivity of the data. Let us consider an ideal similarity

matrix of two clear sets.

Let us denote the similarity matrix, S, as the matrix Sij = s(xi, xj) which gives the

similarity between observations xi and xj. Remember that we can model similarity

7.2 Clustering 125

using the Euclidean distance, d(xi, xj) = ||xi − xj||
2, by means of a Gaussian Kernel

as follows:

s(xi, xj) = exp(−α||xi − xj||
2),

where α is a parameter. We expect two points from different clusters to be far away

from each other. However, if there is a sequence of points within the cluster that forms

a “path” between them, this also would lead to big distance among some of the points

from the same cluster. Hence, we define an affinity matrix A based on the similarity

matrix S, where A contains positive values and is symmetric. This can be done, for

example, by applying a k-nearest neighbor that builds a graph connecting just the

k closest data points. The symmetry comes from the fact that Aij and Aji give the

distance between the same points. Considering the affinity matrix, the clustering can

be seen as a graph partition problem, where connected graph components correspond

to clusters. The graph obtained by spectral clustering will be partitioned so that graph

edges connecting different clusters have low weights, and vice versa. Furthermore,

we define a degree matrix D, where each diagonal value is the degree of the respective

graph node and all other elements are 0. Finally, we can compute the unnormalized

graph Laplacian (U = D − A) and/or a normalized version of the Laplacian (L), as

follows:

• Simple Laplacian: L = I − D−1A, which corresponds to a random walk, being

D−1 the transition matrix. Spectral clustering obtains groups of nodes such that

the random walk corresponds to seldom transitions from one group to another.

• Normalized Laplacian: L = D− 1
2 UD− 1

2 .

• Generalized Laplacian: L = D−1U .

If we assume that there are k clusters, the next step is to find the k small-

est eigenvectors, without considering the trivial constant eigenvector. Each row of

the matrix formed by the k smallest eigenvectors of the Laplacian matrix defines

a transformation of the data xi. Thus, in this transformed space, we can apply

K-means clustering in order to find the final clusters. If we do not know in advance

the number of clusters, k, we can look for sudden changes in the sorted eigenvalues

of the matrix, U , and keep the smallest ones.

7.2.3.3 Hierarchical Clustering
Another well-known clustering technique of particular interest is hierarchical cluster-

ing. Hierarchical clustering is comprised of a general family of clustering algorithms

that construct nested clusters by successive merging or splitting of data. The hier-

archy of clusters is represented as a tree. The tree is usually called a dendrogram.

The root of the dendrogram is the single cluster that contains all the samples; the

leaves are the clusters containing only one sample each. This is a nice tool, since

it can be straightforwardly interpreted: it “explains” how clusters are formed and

visualizes clusters at different scales. The tree that results from the technique shows

126 7 Unsupervised Learning

the similarity between the samples. Partitioning is computed by selecting a cut on

the tree at a certain level.

In general, there are two types of hierarchical clustering:

• Top-down divisive clustering applies the following algorithm:

– Start with all the data in a single cluster.

– Consider every possible way to divide the cluster into two.

– Choose the best division.

– Recursively, it operates on both sides until a stopping criterion is met. That can

be something as follows: there are as much clusters as data; the predetermined

number of clusters has been reached; the maximum distance between all possible

partition divisions is smaller than a predetermined threshold; etc.

• Bottom-up agglomerative clustering applies the following algorithm:

– Start with each data point in a separate cluster.

– Repeatedly join the closest pair of clusters.

– At each step, a stopping criterion is checked: there is only one cluster; a prede-

termined number of clusters has been reached; the distance between the closest

clusters is greater than a predetermined threshold; etc.

This process of merging forms a binary tree or hierarchy.

When merging two clusters, a question naturally arises: How to measure the

similarity of two clusters? There are different ways to define this with different

results for the agglomerative clustering. The linkage criterion determines the metric

used for the cluster merging strategy:

• Maximum or complete linkage minimizes the maximum distance between observa-

tions of pairs of clusters. Based on the similarity of the two least similar members

of the clusters, this clustering tends to give tight spherical clusters as a final result.

• Average linkage averages similarity between members, i.e., minimizes the average

of the distances between all observations of pairs of clusters.

• Ward linkage minimizes the sum of squared differences within all clusters. It is

thus a variance-minimizing approach and in this sense is similar to the K-means

objective function, but tackled with an agglomerative hierarchical approach.

Let us illustrate how the different linkages work with an example. Let us generate

three clusters as follows:

7.2 Clustering 127

In [8]:
MAXN1 = 500

MAXN2 = 400

MAXN3 = 300

X1 = np.concatenate ([

2.25 * np.random.randn(MAXN1 , 2),

4 + 1.7*np.random.randn(MAXN2 , 2)])

X1 = np.concatenate ([

X1 , [8, 3] + 1.9*np.random.randn(MAXN3 , 2)])

y1 = np.concatenate ([

np.ones((MAXN1 , 1)),

2 * np.ones((MAXN2 , 1))])

y1 = np.concatenate ([

y1 , 3 * np.ones((MAXN3 , 1))]).ravel()

y1 = np.int_(y1)

labels_y1 = [’+’, ’*’, ’o’]

colors = [’r’, ’g’, ’b’]

Let us apply agglomerative clustering using the different linkages:

In [9]:
from sklearn.cluster import AgglomerativeClustering

for linkage in (’ward’, ’complete ’, ’average ’):

clustering = AgglomerativeClustering(linkage = linkage ,

n_clusters =3)

clustering.fit(X1)

x_min , x_max = np.min (X1 , axis = 0) , np.max (X1 ,axis

= 0)

X1 = (X1 - x_min) / (x_max - x_min)

plt.figure (figsize =(5 , 5))

for i in range (X1.shape [0]) :

plt.text(X1[i, 0], X1[i, 1], labels_y1[y1[i]-1],

color = colors[y1[i]-1])

plt.title("\%s linkage " \% linkage , size = 20)

plt.tight_layout ()

plt.show()

The results of the agglomerative clustering using the different linkages: complete,

average, and Ward are given in Fig. 7.3. Note that agglomerative clustering exhibits

“rich get richer” behavior that can sometimes lead to uneven cluster sizes, with

average linkage being the worst strategy in this respect and Ward linkage giving the

most regular sizes. Ward linkage is an attempt to form clusters that are as compact

as possible, since it considers inter- and intra-distances of the clusters. Meanwhile,

for non-Euclidean metrics, average linkage is a good alternative. Average linkage

can produce very unbalanced clusters, it can even separate a single data point into a

separate cluster. This fact would be useful if we want to detect outliers, but it may

be undesirable when two clusters are very close to each other, since it would tend to

merge them.

Agglomerative clustering can scale to a large number of samples when it is used

jointly with a connectivity matrix, but it is computationally expensive when no con-

128 7 Unsupervised Learning

nectivity constraints are added between samples: it considers all the possible merges

at each step.

7.2.3.4 Adding Connectivity Constraints
Sometimes, we are interested in introducing a connectivity constraint into the clus-

tering process so that merging of nonadjacent points is avoided. This can be achieved

by constructing a connectivity matrix that defines which are the neighboring samples

in the dataset. For instance, in the example in Fig. 7.4, we want to avoid the forma-

tion of clusters of samples from the different circles. A sample code to compute

agglomerative clustering with connectivity would be as follows:

Fig. 7.3 Illustration of agglomerative clustering using different linkages: Ward, complete, and

average. The symbol of each data point corresponds to the original class generated and the color

corresponds to the cluster obtained

7.2 Clustering 129

Fig. 7.4 Illustration of agglomerative clustering without (top row) and with (bottom row) a connec-

tivity graph using the three linkages (from left to right): average, complete, and Ward. The colors

correspond to the clusters obtained

In [10]:
connectivity = kneighbors_graph(X, 30)

model = AgglomerativeClustering(linkage = ’average ’,

connectivity = connectivity , n_clusters = 8)

model.fit(X)

A connectivity constraint is useful to impose a certain local structure, but it also

makes the algorithm faster, especially when the number of the samples is large. A

connectivity constraint is imposed via a connectivity matrix: a sparse matrix that only

has elements at the intersection of a row and a column with indexes of the dataset

that should be connected. This matrix can be constructed from a priori information

or can be learned from the data, for instance using kneighbors_graph to restrict

merging to nearest neighbors or using image.grid_to_graph to limit merging

to neighboring pixels in an image, both from Scikit-learn. This phenomenon can be

observed in Fig. 7.4, where in the first row we see the results of the agglomerative

clustering without using a connectivity graph. The clustering can join data from

different circles (e.g., the black cluster). At the bottom, the three linkages use a

connectivity graph and thus two of them avoid joining data points that belong to

different circles (except the Ward linkage that attempts to form compact and isotropic

clusters).

130 7 Unsupervised Learning

Fig. 7.5 Comparison of the different clustering techniques (from left to right): K-means, spectral

clustering, and agglomerative clustering with average and Ward linkage on simple compact datasets.

In the first row, the expected number of clusters is k = 2 and in the second row: k = 4

7.2.3.5 Comparison of Different Hard Partition Clustering Algorithms
Let us compare the behavior of the different clustering algorithms discussed so far.

For this purpose, we generate three different datasets’ configurations:

(a) 4 spherical groups of data;

(b) a uniform data distribution; and

(c) a non-flat configuration of data composed of two moon-like groups of data.

An easy way to generate these datasets is by using Scikit-learn that has

predefined functions for it: datasets.make_blobs(), datasets.ma- ke_

moons(), etc.

We apply the clustering techniques discussed above, namely K-means, agglom-

erative clustering with average linkage, agglomerative clustering with Ward linkage,

and spectral clustering. Let us test the behavior of the different algorithms assuming

k = 2 and k = 4. Connectivity is applied in the algorithms where it is applicable.

In the simple case of separated clusters of data and k = 4, most of the clustering

algorithms perform well, as expected (see Fig. 7.5). The only algorithm that could

not discover the four groups of samples is the average agglomerative clustering.

Since it allows highly unbalanced clusters, the two noisy data points that are quite

separated from the closest two blobs were considered as a different cluster, while the

two central blobs were merged in one cluster. In case of k = 2, each of the methods

is obligated to join at least two blobs in a cluster.

Regarding the uniform distribution of data (see Fig. 7.6), K-means, Ward linkage

agglomerative clustering and spectral clustering tend to yield even and compact

clusters; while the average linkage agglomerative clustering attempts to join close

points as much as possible following the “rich get richer” rule. This results in a

7.2 Clustering 131

Fig. 7.6 Comparison of the different clustering techniques (from left to right): K-means, spectral

clustering, and agglomerative clustering with average and Ward linkage on uniformly distributed

data. In the first row, the number of clusters assumed is k = 2 and in the second row: k = 4

Fig. 7.7 Comparison of the different clustering techniques (from left to right): K-means, spec-

tral clustering, and agglomerative clustering with average and Ward linkage on non-flat geometry

datasets. In the first row, the expected number of clusters is k = 2 and in the second row: k = 4

second cluster of a small set of data. This behavior is observed in both cases: k = 2

and k = 4.

Regarding datasets with more complex geometry, like in the moon dataset (see

Fig. 7.7), K-means and Ward linkage agglomerative clustering attempt to construct

compact clusters and thus cannot separate the moons. Due to the connectivity con-

straint, the spectral clustering and the average linkage agglomerative clustering sep-

arated both moons in case of k = 2, while in case of k = 4, the average linkage

agglomerative clustering clustered most of datasets correctly separating some of the

noisy data points as two separate single clusters. In the case of spectral clustering,

looking for four clusters, the method splits each of the two moon datasets into two

clusters.

132 7 Unsupervised Learning

Fig. 7.8 Expenditure on different educational indicators for the first five countries in the Eurostat

dataset

7.3 Case Study

In order to illustrate clustering with a real dataset, we will now analyze the indicators

of spending on education among the European Union member states, provided by

the Eurostat data bank.3 The data are organized by year (TIME) from 2002 until

2011 and country (GEO): (‘Albania’, ‘Austria’, ‘Belgium’, ‘Bulgaria’, etc.). Twelve

indicators (INDIC_ED) of financing of education with their corresponding values

(Value) are given: (1) Expenditure on educational institutions from private sources

as % of gross domestic product (GDP), for all levels of education combined; (2)

Expenditure on educational institutions from public sources as % of GDP, for all

levels of government combined, (3) Expenditure on educational institutions from

public sources as % of total public expenditure, for all levels of education combined,

(4) Public subsidies to the private sector as % of GDP, for all levels of education

combined, (5) Public subsidies to the private sector as % of total public expenditure,

for all levels of education combined, etc. We can store the 12 indicators for a given

year (e.g., 2010) in a table. Figure 7.8 provides visualization of the first five countries

in the table.

As we can observe, this is not a clean dataset, since there are values missing. Some

countries have very limited information and should be excluded. Other countries may

still not collect or have access to a few indicators. For these last cases, we can proceed

in two ways: (a) fill in the gaps with some non-informative, non-biasing data; or (b)

drop the features with missing values for the analysis. If we have many features and

only a few have missing values, then it is not very harmful to drop them. However, if

missing values are spread across most of the features, we eventually have to deal with

them. In our case, both options seem reasonable, as long as the number of missing

features for a country is not too large. We will proceed in both ways at the same time.

We apply both options: filling the gap with the mean value of the feature and

the dropping option, ignoring the indicators with missing values. Let us now apply

K-means clustering to these data in order to partition the countries according to

3http://ec.europa.eu/eurostat.

http://ec.europa.eu/eurostat

7.3 Case Study 133

Fig. 7.9 Clustering of the countries according to their educational expenditure using filled-in (top

row) and dropped (bottom row) missing values

their investment in education and check their profiles. Figure 7.9 shows the results

of this K-means clustering. We have sorted the data for better visualization. At

a simple glance, we can see that the partitions (top and bottom of Fig. 7.9) are

different. Most countries in cluster 2 in the filled-in dataset correspond to cluster 0

in the dropped missing values dataset. Analogously, most of cluster 0 in the filled-

in dataset correspond to cluster 1 in the dropped missing values dataset; and most

countries from cluster 1 in the filled-in dataset correspond to cluster 2 in the dropped

134 7 Unsupervised Learning

Fig. 7.10 Mean expenditure of the different clusters according to the 8 indicators of the indicators-

dropped dataset

set. Still, there are some countries that do not follow this rule. That is, looking at

both clusterings, they may yield similar (up to label permutation) results, but they

will not necessarily always coincide. This is mainly due to two aspects: the random

initialization of the K-means clustering and the fact that each method works in a

different space (i.e., dropped data in 8D space vs filled-in data, working in 12D

space). Note that we should not consider the assigned absolute cluster value, since

it is irrelevant. The mean expenditure of the different clusters is shown by different

colors according to the 8 indicators of the indicators-dropped dataset (see Fig. 7.10).

So, without loss of generality, we continue analyzing the set obtained by dropping

missing values. Let us now check the clusters and check their profile by looking at

the centroids. Visualizing the eight values of the three clusters (see Fig. 7.10), we can

see that cluster 1 spends more on education for the 8 educational indicators, while

cluster 0 is the one with least resources invested in education.

Let us consider a specific country, e.g., Spain and its expenditure on education.

If we refine cluster 0 further and check how close members are from this cluster

to cluster 1, it may give us a hint as to a possible ordering. When visualizing the

distance to cluster 0 and 1, we can observe that Spain, while being from cluster 0, has

a smaller distance to cluster 1 (see Fig. 7.11). This should make us realize that using 3

clusters probably does not sufficiently represent the groups of countries. So we redo

the process, but applying k = 4: we obtain 4 clusters. This time cluster 0 includes

the EU members with medium expenditure (Fig. 7.12). This reinforce the intuition

about Spain being a limit case in the former clustering. The clusters obtained are as

follows:

• Cluster 0: (‘Austria’, ‘Estonia’, ‘EU13’, ‘EU15’, ‘EU25’, ‘EU27’, ‘France’,

‘Germany’, ‘Hungary’, ‘Latvia’, ‘Lithuania’, ‘Netherlands’, ‘Poland’, ‘Portugal’,

‘Slovenia’, ‘Spain’, ‘Switzerland’, ‘United Kingdom’, ‘United States’)

7.3 Case Study 135

Fig. 7.11 Distance of countries in cluster 0 to centroids of cluster 0 (in red) and cluster 1 (in blue)

Fig. 7.12 K-means applied to the Eurostat dataset grouping the countries into four clusters

• Cluster 1: (‘Bulgaria’, ‘Croatia’, ‘Czech Republic’, ‘Italy’, ‘Japan’, ‘Romania’,

‘Slovakia’)

• Cluster 2: (‘Cyprus’, ‘Denmark’, ‘Iceland’)

• Cluster 3: (‘Belgium’, ‘Finland’, ‘Ireland’, ‘Malta’, ‘Norway’, ‘Sweden’)

We can repeat the process using the alternative clustering techniques and compare

their results. Let us first apply spectral clustering. The corresponding code will be

as follows:

136 7 Unsupervised Learning

Fig. 7.13 Spectral clustering applied to the European countries according to their expenditure on

education

In [11]:
X = StandardScaler ().fit_transform(edudrop.values)

distances = euclidean_distances (edudrop.values)

spectral = cluster.SpectralClustering(

n_clusters = 4, affinity = "nearest_neighbors")

spectral.fit(edudrop.values)

y_pred = spectral.labels_.astype(np.int)

The result of this spectral clustering is shown in Fig. 7.13. Note that in general,

the aim of spectral clustering is to obtain more balanced clusters. In this way, the

predicted cluster 1 merges clusters 2 and 3 of the K-means clustering, cluster 2

corresponds to cluster 1 of the K-means clustering, cluster 0 mainly shifts to cluster

2, and cluster 3 corresponds to cluster 0 of the K-means.

Applying agglomerative clustering, not only we do obtain different clusters, but

also we can see how different clusters are obtained. Thus, in some way it is giving

us information on which the most similar pairs of countries and clusters are. The

corresponding code that applies the agglomerative clustering will be as follows:

7.3 Case Study 137

In [12]:
from scipy.cluster.hierarchy import linkage , dendrogram

from scipy.spatial.distance import pdist

X_train = edudrop.values

dist = pdist(X_train , ’euclidean ’)

linkage_matrix = linkage(dist , method = ’complete ’);

plt.figure(figsize = (11.3, 11.3))

dendrogram(linkage_matrix , orientation="right",

color_threshold = 3,

labels = wrk_countries_names ,

leaf_font_size = 20);

plt.tight_layout ()

In Scikit-learn, the parameter color_threshold of the command dendro-

gram() colors all the descendent links below a cluster node k the same color if k is

the first node below the color_threshold. All links connecting nodes with distances

greater than or equal to the threshold are colored blue. Hence, using color_threshold

= 3, the clusters obtained are as follows:

• Cluster 0: (‘Cyprus’, ‘Denmark’, ‘Iceland’)

• Cluster 1: (‘Bulgaria’, ‘Croatia’, ‘Czech Republic’, ‘Italy’, ‘Japan’, ‘Romania’,

‘Slovakia’)

• Cluster 2: (‘Belgium’, ‘Finland’, ‘Ireland’, ‘Malta’, ‘Norway’, ‘Sweden’)

• Cluster 3: (‘Austria’, ‘Estonia’, ‘EU13’, ‘EU15’, ‘EU25’, ‘EU27’, ‘France’,

‘Germany’, ‘Hungary’, ‘Latvia’, ‘Lithuania’, ‘Netherlands’, ‘Poland’, ‘Portugal’,

‘Slovenia’, ‘Spain’, ‘Switzerland’, ‘United Kingdom’, ‘United States’)

Note that, to a high degree, they correspond to the clusters obtained by the K-means

(except for permutation of cluster labels, which is irrelevant).

Figure 7.14 shows the construction of the clusters using complete linkage agglom-

erative clustering. Different cuts at different levels of the dendrogram allow us to

obtain different numbers of clusters.

To summarize, we can compare the results of the three clustering approaches. We

cannot expect the results to coincide, since the different approaches are based on

different criteria for constructing clusters. Nonetheless, we can still observe that in

this case, K-means and the agglomerative approaches gave the same results (up to a

permutation of the number of cluster, which is irrelevant); while spectral clustering

gave more evenly distributed clusters. This later approach fused clusters 0 and 2 of

the agglomerative clustering in cluster 1, and split cluster 3 of the agglomerative

clustering into its clusters 0 and 3. Note that these results could change when using

different distances among data.

138 7 Unsupervised Learning

Fig. 7.14 Agglomerative clustering applied to cluster European countries according to their expen-

diture on education

7.4 Conclusions

In this chapter, we have introduced the unsupervised learning problem as a problem

of knowledge or structure discovery from a set of unlabeled data. We have focused

on clustering as one of the main problems in unsupervised learning. Basic concepts

such as distance, similarity, connectivity, and the quality of the clustering results

have been discussed as the main elements to be determined before choosing a spe-

cific clustering technique. Three basic clustering techniques have been introduced:

K-means, agglomerative clustering, and spectral clustering. We have discussed their

advantages and disadvantages and compared them through different examples. One

of the important parameters for most clustering techniques is the number of clusters

expected.

Regarding scalability, K-means can be applied to very large datasets, but the

number of clusters should be as much as medium value, due to its iterative procedure.

Spectral clustering can manage datasets that are not very large and a reasonable

number of clusters, since it is based on computing the eigenvectors of the affinity

matrix. In this aspect, the best option is hierarchical clustering, which allows large

References 139

numbers of samples and clusters to be tackled. Regarding uses, K-means is best

suited to data with a flat geometry (isotropic and compact clusters), while spectral

clustering and agglomerative clustering, with either average or complete linkage,

are able to detect patterns in data with non-flat geometry. The connectivity graph

is especially helpful in such cases. At the end of the chapter, a case study using a

Eurostat database has been considered to show the applicability of the clustering in

real problems (with real datasets).

Acknowledgements This chapter was co-written by Petia Radeva and Oriol Pujol.

References

1. Press, WH; Teukolsky, SA; Vetterling, W.T.; Flannery, B.P. (2007). “Section 16.1. Gaussian

Mixture Models and k-Means Clustering”. Numerical Recipes: The Art of Scientific Computing

(3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.

2. Meilǎ, M.; Shi, J. (2001); “Learning Segmentation by Random Walks”, Neural Information

Processing Systems 13 (NIPS 2000), 2001, pp. 873–879.

3. Székely, G.J.; Rizzo, M.L. (2005). “Hierarchical clustering via Joint Between-Within Distances:

Extending Ward’s Minimum Variance Method”, Journal of Classification 22, 151–183.

8Network Analysis

8.1 Introduction

Network data are generated when we consider relationships between two or more

entities in the data, like the highways connecting cities, friendships between peo-

ple or their phone calls. In recent years, a huge number of network data are being

generated and analyzed in different fields. For instance, in sociology there is inter-

est in analyzing blog networks, which can be built based on their citations, to look

for divisions in their structures between political orientations. Another example is

infectious disease transmission networks, which are built in epidemiological studies

to find the best way to prevent infection of people in a territory, by isolating cer-

tain areas. Other examples studied in the field of technology include interconnected

computer networks or power grids, which are analyzed to optimize their functioning.

We also find examples in academia, where we can build co-authorship networks and

citation networks to analyze collaborations among Universities.

Structuring data as networks can facilitate the study of the data for different goals;

for example, to discover the weaknesses of a structure. That could be the objective

of a biologist studying a community of plants and trying to establish which of its

properties promote quick transmission of a disease. A contrasting objective would be

to find and exploit structures that work efficiently for the transmission of messages

across the network. This may be the goal of an advertising agent trying to find the

best strategy for spreading publicity.

How to analyze networks and extract the features we want to study are some

of the issues we consider in this chapter. In particular, we introduce some basic

concepts related with networks, such as connected components, centrality measures,

ego-networks, and PageRank. We present some useful Python tools for the analysis

of networks and discuss some of the visualization options. In order to motivate and

illustrate the concepts, we perform social network analysis using real data. We present

a practical case based on a public dataset which consists of a set of interconnected

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_8

141

142 8 Network Analysis

Facebook friendship networks. We formulate multiple questions at different levels:

the local/member level, the community level, and the global level.

In general, some of the questions we try to solve are the following:

• What type of network are we dealing with?

• Which is the most representative member of the network in terms of being the

most connected to the rest of the members?

• Which is the most representative member of the network in terms of being the

most circulated on the paths between the rest of the members?

• Which is the most representative member of the network in terms of proximity to

the rest of the members?

• Which is the most representative member of the network in terms of being the

most accessible from any location in the network?

• There are many ways of calculating the representativeness or importance of a

member, each one with a different meaning, so: how can we illustrate them and

compare them?

• Are there different communities in the network? If so, how many?

• Does any member of the network belong to more than one community? That is,

is there any overlap between the communities? How much overlap? How can we

illustrate this overlap?

• Which is the largest community in the network?

• Which is the most dense community (in terms of connections)?

• How can we automatically detect the communities in the network?

• Is there any difference between automatically detected communities and real ones

(manually labeled by users)?

8.2 Basic Definitions in Graphs

Graph is the mathematical term used to refer to a network. Thus, the field that

studies networks is called graph theory and it provides the tools necessary to analyze

networks. Leonhard Euler defined the first graph in 1735, as an abstraction of one of

the problems posed by mathematicians of the time regarding Konigsberg, a city with

two islands created by the River Pregel, which was crossed by seven bridges. The

problem was: is it possible to walk through the town of Konigsberg crossing each

bridge once and only once? Euler represented the land areas as nodes and the bridges

connecting them as edges of a graph and proved that the walk was not possible for

this particular graph.

A graph is defined as a set of nodes, which are an abstraction of any entities

(parts of a city, persons, etc.), and the connecting links between pairs of nodes called

edges or relationships. The edge between two nodes can be directed or undirected. A

directed edge means that the edge points from one node to the other and not the other

way round. An example of a directed relationship is “a person knows another person”.

An edge has a direction when person A knows person B, and not the reverse direction

8.2 Basic Definitions in Graphs 143

Fig. 8.1 Simple undirected

labeled graph with 5 nodes

and 5 edges

if B does not know A (which is usual for many fans and celebrities). An undirected

edge means that there is a symmetric relationship. An example is “a person shook

hands with another person”; in this case, the relationship, unavoidably, involves both

persons and there is no directionality. Depending on whether the edges of a graph are

directed or undirected, the graph is called a directed graph or an undirected graph,

respectively.

The degree of a node is the number of edges that connect to it. Figure 8.1 shows

an example of an undirected graph with 5 nodes and 5 edges. The degree of node C

is 1, while the degree of nodes A, D and E is 2 and for node B it is 3. If a network is

directed, then nodes have two different degrees, the in-degree, which is the number

of incoming edges, and the out-degree, which is the number of outgoing edges.

In some cases, there is information we would like to add to graphs to model

properties of the entities that the nodes represent or their relationships. We could add

strengths or weights to the links between the nodes, to represent some real-world

measure. For instance, the length of the highways connecting the cities in a network.

In this case, the graph is called a weighted graph.

Some other elementary concepts that are useful in graph analysis are those we

explain in what follows. We define a path in a network to be a sequence of nodes

connected by edges. Moreover, many applications of graphs require shortest paths

to be computed. The shortest path problem is the problem of finding a path between

two nodes in a graph such that the length of the path or the sum of the weights of

edges in the path is minimized. In the example in Fig. 8.1, the paths (C, A, B, E) and

(C, A, B, D, E) are those between nodes C and E. This graph is unweighted, so the

shortest path between C and E is the one that follows the fewer edges: (C, A, B, E).

A graph is said to be connected if for every pair of nodes, there is a path between

them. A graph is fully connected or complete if each pair of nodes is connected by

an edge. A connected component or simply a component of a graph is a subset of its

nodes such that every node in the subset has a path to every other one. In the example

of Fig. 8.1, the graph has one connected component. A subgraph is a subset of the

nodes of a graph and all the edges linking those nodes. Any group of nodes can form

a subgraph.

144 8 Network Analysis

8.3 Social Network Analysis

Social network analysis processes social data structured in graphs. It involves the

extraction of several characteristics and graphics to describe the main properties of

the network. Some general properties of networks, such as the shape of the network

degree distribution (defined bellow) or the average path length, determine the type

of network, such as a small-world network or a scale-free network. A small-world

network is a type of graph in which most nodes are not neighbors of one another, but

most nodes can be reached from every other node in a small number of steps. This

is the so-called small-world phenomenon which can be interpreted by the fact that

strangers are linked by a short chain of acquaintances. In a small-world network,

people usually form communities or small groups where everyone knows every-

one else. Such communities can be seen as complete graphs. In addition, most the

community members have a few relationships with people outside that community.

However, some people are connected to a large number of communities. These may

be celebrities and such people are considered as the hubs that are responsible for

the small-world phenomenon. Many small-world networks are also scale-free net-

works. In a scale-free network the node degree distribution follows a power law (a

relationship function between two quantities x and y defined as y = xn , where n is

a constant). The name scale-free comes from the fact that power laws have the same

functional form at all scales, i.e., their shape does not change on multiplication by a

scale factor. Thus, by definition, a scale-free network has many nodes with a very few

connections and a small number of nodes with many connections. This structure is

typical of the World Wide Web and other social networks. In the following sections,

we illustrate this and other graph properties that are useful in social network analysis.

8.3.1 Basics in NetworkX

NetworkX1 is a Python toolbox for the creation, manipulation and study of the struc-

ture, dynamics and functions of complex networks. After importing the toolbox, we

can create an undirected graph with 5 nodes by adding the edges, as is done in the

following code. The output is the graph in Fig. 8.1.

In [1]:
import networkx as nx

G = nx.Graph()

G.add_edge(’A’, ’B’);

G.add_edge(’A’, ’C’);

G.add_edge(’B’, ’D’);

G.add_edge(’B’, ’E’);

G.add_edge(’D’, ’E’);

nx.draw_networkx(G)

To create a directed graph we would use nx.DiGraph().

1https://networkit.iti.kit.edu.

https://networkit.iti.kit.edu

8.3 Social Network Analysis 145

8.3.2 Practical Case: Facebook Dataset

For our practical case we consider data from the Facebook network. In particular, we

use the data Social circles: Facebook2 from the Stanford Large Network Dataset3

(SNAP) collection. The SNAP collection has links to a great variety of networks

such as Facebook-style social networks, citation networks, Twitter networks or open

communities like Live Journal. The Facebook dataset consists of a network repre-

senting friendship between Facebook users. The Facebook data was anonymized by

replacing the internal Facebook identifiers for each user with a new value.

The network corresponds to an undirected and unweighted graph that contains

users of Facebook (nodes) and their friendship relations (edges). The Facebook

dataset is defined by an edge list in a plain text file with one edge per line.

Let us load the Facebook network and start extracting the basic information from

the graph, including the numbers of nodes and edges, and the average degree:

In [2]:
fb = nx.read_edgelist("files/ch08/facebook_combined.txt")

fb_n , fb_k = fb.order (), fb.size()

fb_avg_deg = fb_k / fb_n

print ’Nodes: ’, fb_n

print ’Edges: ’, fb_k

print ’Average degree: ’, fb_avg_deg

Out[2]: Nodes: 4039

Edges: 88234

Average degree: 21

The Facebook dataset has a total of 4,039 users and 88,234 friendship connections,

with an average degree of 21. In order to better understand the graph, let us compute

the degree distribution of the graph. If the graph were directed, we would need to

generate two distributions: one for the in-degree and another for the out-degree. A

way to illustrate the degree distribution is by computing the histogram of degrees

and plotting it, as the following code does with the output shown in Fig. 8.2:

In [3]:
degrees = fb.degree().values()

degree_hist = plt.hist(degrees , 100)

The graph in Fig. 8.2 is a power-law distribution. Thus, we can say that the Face-

book network is a scale-free network.

Next, let us find out if the Facebook dataset contains more than one connected

component (previously defined in Sect. 8.2):

In [4]:
print ’# connected components of Facebook network: ’,

nx.number_connected_components(fb)

Out[4]: # connected components of Facebook network: 1

2https://snap.stanford.edu/data/egonets-Facebook.html.
3http://snap.stanford.edu/data/.

https://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/

146 8 Network Analysis

As it can be seen, there is only one connected component in the Facebook network.

Thus, the Facebook network is a connected graph (see definition in Sect. 8.2). We can

try to divide the graph into different connected components, which can be potential

communities (see Sect. 8.6). To do that, we can remove one node from the graph

(this operation also involves removing the edges linking the node) and see if the

number of connected components of the graph changes. In the following code, we

prune the graph by removing node ‘0’ (arbitrarily selected) and compute the number

of connected components of the pruned version of the graph:

In [5]:
fb_prun = nx.read_edgelist(

"files/ch08/facebook_combined.txt")

fb_prun.remove_node(’0’)

print ’Remaining nodes:’, fb_prun.number_of_nodes ()

print ’New # connected components:’,

nx.number_connected_components(fb_prun)

Out[5]: Remaining nodes: 4038

New # connected components: 19

Now there are 19 connected components, but let us see how big the biggest is and

how small the smallest is:

In [6]:
fb_components = nx.connected_components(fb_prun)

print ’Sizes of the connected components ’,

[len(c) for c in fb_components]

Out[6]: Sizes of the connected components [4015, 1, 3, 2, 2, 1, 1, 1,

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1]

This simple example shows that removing a node splits the graph into multiple

components. You can see that there is one large connected component and the rest

are almost all isolated nodes. The isolated nodes in the pruned graph were only

Fig. 8.2 Degree histogram distribution

8.3 Social Network Analysis 147

connected to node ‘0’ in the original graph and when that node was removed they

were converted into connected components of size 1. These nodes, only connected

to one neighbor, are probably not important nodes in the structure of the graph. We

can generalize the analysis by studying the centrality of the nodes. The next section

is devoted to explore this concept.

8.4 Centrality

The centrality of a node measures its relative importance within the graph. In this

section we focus on undirected graphs. Centrality concepts were first developed in

social network analysis. The first studies indicated that central nodes are probably

more influential, have greater access to information, and can communicate their

opinions to others more efficiently [1]. Thus, the applications of centrality concepts

in a social network include identifying the most influential people, the most informed

people, or the most communicative people. In practice, what centrality means will

depend on the application and the meaning of the entities represented as nodes in the

data and the connections between those nodes. Various measures of the centrality

of a node have been proposed. We present four of the best-known measures: degree

centrality, betweenness centrality, closeness centrality, and eigenvector centrality.

Degree centrality is defined as the number of edges of the node. So the more ties a

node has, the more central the node is. To achieve a normalized degree centrality of a

node, the measure is divided by the total number of graph nodes (n) without counting

this particular one (n −1). The normalized measure provides proportions and allows

us to compare it among graphs. Degree centrality is related to the capacity of a node

to capture any information that is floating through the network. In social networks,

connections are associated with positive aspects such as knowledge or friendship.

Betweenness centrality quantifies the number of times a node is crossed along

the shortest path/s between any other pair of nodes. For the normalized measure

this number is divided by the total number of shortest paths for every pair of nodes.

Intuitively, if we think of a public bus transportation network, the bus stop (node)

with the highest betweenness has the most traffic. In social networks, a person with

high betweenness has more power in the sense that more people depend on him/her

to make connections with other people or to access information from other people.

Comparing this measure with degree centrality, we can say that degree centrality

depends only on the node’s neighbors; thus, it is more local than the betweenness

centrality, which depends on the connection properties of every pair of nodes in the

graph, except pairs with the node in question itself. The equivalent measure exists

for edges. The betweenness centrality of an edge is the proportion of the shortest

paths between all node pairs which pass through it.

Closeness centrality tries to quantify the position a node occupies in the network

based on a distance calculation. The distance metric used between a pair of nodes

is defined by the length of its shortest path. The closeness of a node is inversely

proportional to the length of the average shortest path between that node and all the

148 8 Network Analysis

other nodes in the graph. In this case, we interpret a central node as being close to,

and able to communicate quickly with, the other nodes in a social network.

Eigenvector centrality defines a relative score for a node based on its connections

and considering that connections from high centrality nodes contribute more to the

score of the node than connections from low centrality nodes. It is a measure of the

influence of a node in a network, in the following sense: it measures the extent to

which a node is connected to influential nodes. Accordingly, an important node is

connected to important neighbors.

Let us illustrate the centrality measures with an example. In Fig. 8.3, we show

an undirected star graph with n = 8 nodes. Node C is obviously important, since

it can exchange information with more nodes than the others. The degree centrality

measures this idea. In this star network, node C has a degree centrality of 7 or 1

if we consider the normalized measure, whereas all other nodes have a degree of 1

or 1/7 if we consider the normalized measure. Another reason why node C is more

important than the others in this star network is that it lies between each of the other

pairs of nodes, and no other node lies between C and any other node. If node C

wants to contact F, C can do it directly; whereas if node F wants to contact B, it

must go through C. This gives node C the capacity to broke/prevent contact among

other nodes and to isolate nodes from information. The betweenness centrality is

underneath this idea. In this example, the betweenness centrality of the node C is 28,

computed as (n − 1)(n − 2)/2, while the rest of nodes have a betweenness of 0. The

final reason why we can say node C is superior in the star network is because C is

closer to more nodes than any other node is. In the example, node C is at a distance

of 1 from all other 7 nodes and each other node is at a distance 2 from all other nodes,

except C. So, node C has closeness centrality of 1/7, while the rest of nodes have a

closeness of 1/13. The normalized measures, computed by dividing by n − 1, are 1

for C and 7/13 for the other nodes.

An important concept in social network analysis is that of a hub node, which is

defined as a node with high degree centrality and betweenness centrality. When a

hub governs a very centralized network, the network can be easily fragmented by

removing that hub.

Coming back to the Facebook example, let us compute the degree centrality of

Facebook graph nodes. In the code below we show the user identifier of the 10 most

central nodes together with their normalized degree centrality measure. We also

show the degree histogram to extract some more information from the shape of the

distribution. It might be useful to represent distributions using logarithmic scale. We

Fig. 8.3 Star graph example

8.4 Centrality 149

do that with the matplotlib.loglog() function. Figure 8.4 shows the degree

centrality histogram in linear and logarithmic scales as computed in the box bellow.

In [7]:
degree_cent_fb = nx.degree_centrality(fb)

print ’Facebook degree centrality: ’,

sorted(degree_cent_fb.items (),

key = lambda x: x[1],

reverse = True)[:10]

degree_hist = plt.hist(list(degree_cent_fb.values ()), 100)

plt.loglog(degree_hist [1][1:] ,

degree_hist [0], ’b’, marker = ’o’)

Out[7]: Facebook degree centrality: [(u’107’, 0.258791480931154),

(u’1684’, 0.1961367013372957), (u’1912’, 0.18697374938088163),

(u’3437’, 0.13546310054482416), (u’0’, 0.08593363051015354),

(u’2543’, 0.07280832095096582), (u’2347’, 0.07206537890044576),

(u’1888’, 0.0629024269440317), (u’1800’, 0.06067360079247152),

(u’1663’, 0.058197127290737984)]

The previous plots show us that there is an interesting (large) set of nodes which

corresponds to low degrees. The representation using a logarithmic scale (right-hand

graphic in Fig. 8.4) is useful to distinguish the members of this set of nodes, which

are clearly visible as a straight line at low values for the x-axis (upper left-hand

part of the logarithmic plot). We can conclude that most of the nodes in the graph

have low degree centrality; only a few of them have high degree centrality. These

latter nodes can be properly seen as the points in the bottom right-hand part of the

logarithmic plot.

The next code computes the betweenness, closeness, and eigenvector centrality

and prints the top 10 central nodes for each measure.

Fig. 8.4 Degree centrality histogram shown using a linear scale (left) and a log scale for both the

x- and y-axis (right)

150 8 Network Analysis

In [8]:
betweenness_fb = nx.betweenness_centrality(fb)

closeness_fb = nx.closeness_centrality(fb)

eigencentrality_fb = nx.eigenvector_centrality(fb)

print ’Facebook betweenness centrality:’,

sorted(betweenness_fb.items (),

key = lambda x: x[1],

reverse = True)[:10]

print ’Facebook closeness centrality:’,

sorted(closeness_fb.items (),

key = lambda x: x[1],

reverse = True)[:10]

print ’Facebook eigenvector centrality:’,

sorted(eigencentrality_fb.items (),

key = lambda x: x[1],

reverse = True)[:10]

Out[8]: Facebook betweenness centrality: [(u’107’, 0.4805180785560141),

(u’1684’, 0.33779744973019843), (u’3437’, 0.23611535735892616),

(u’1912’, 0.2292953395868727), (u’1085’, 0.1490150921166526),

(u’0’, 0.1463059214744276), (u’698’, 0.11533045020560861),

(u’567’, 0.09631033121856114), (u’58’, 0.08436020590796521),

(u’428’, 0.06430906239323908)]

Out[8]: Facebook closeness centrality: [(u’107’, 0.45969945355191255),

(u’58’, 0.3974018305284913), (u’428’, 0.3948371956585509),

(u’563’, 0.3939127889961955), (u’1684’, 0.39360561458231796),

(u’171’, 0.37049270575282134), (u’348’, 0.36991572004397216),

(u’483’, 0.3698479575013739), (u’414’, 0.3695433330282786),

(u’376’, 0.36655773420479304)]

Facebook eigenvector centrality: [(u’1912’, 0.09540688873596524),

(u’2266’, 0.08698328226321951), (u’2206’, 0.08605240174265624),

(u’2233’, 0.08517341350597836), (u’2464’, 0.08427878364685948),

(u’2142’, 0.08419312450068105), (u’2218’, 0.08415574433673866),

(u’2078’, 0.08413617905810111), (u’2123’, 0.08367142125897363),

(u’1993’, 0.08353243711860482)]

As can be seen in the previous results, each measure gives a different ordering of

the nodes. The node ‘107’ is the most central node for degree (see box Out [7]),

betweenness, and closeness centrality, while it is not among the 10 most central nodes

for eigenvector centrality. The second most central node is different for closeness

and eigenvector centralities; while the third most central node is different for all four

centrality measures.

Another interesting measure is the current flow betweenness centrality, also called

random walk betweenness centrality, of a node. It can be defined as the probability

of passing through the node in question on a random walk starting and ending at

some node. In this way, the betweenness is not computed as a function of shortest

paths, but of all paths. This makes sense for some social networks where messages

may get to their final destination not by the shortest path, but by a random path, as

in the case of gossip floating through a social network for example.

Computing the current flow betweenness centrality can take a while, so we will

work with a trimmed Facebook network instead of the original one. In fact, we can

8.4 Centrality 151

pose the question: What happen if we only consider the graph nodes with more than

the average degree of the network (21)? We can trim the graph using degree centrality

values. To do this, in the next code, we define a function to trim the graph based on

the degree centrality of the graph nodes. We set the threshold to 21 connections:

In [9]:
def trim_degree_centrality(graph , degree = 0.01):

g = graph.copy()

d = nx.degree_centrality(g)

for n in g.nodes ():

if d[n] <= degree:

g.remove_node(n)

return g

thr = 21.0/(fb.order () - 1.0)

print ’Degree centrality threshold:’, thr

fb_trimmed = trim_degree_centrality(fb , degree = thr)

print ’Remaining # nodes:’, len(fb_trimmed)

Out[9]: Degree centrality threshold: 0.00520059435364

Remaining # nodes: 2226

The new graph is much smaller; we have removed almost half of the nodes (we

have moved from 4,039 to 2,226 nodes).

The current flow betweenness centrality measure needs connected graphs, as does

any betweenness centrality measure, so we should first extract a connected compo-

nent from the trimmed Facebook network and then compute the measure:

In [10]:
fb_subgraph = list(nx.connected_component_subgraphs(

fb_trimed))

print ’# subgraphs found:’, size(fb_subgraph)

print ’# nodes in the first subgraph:’,

len(fb_subgraph [0])

betweenness = nx.betweenness_centrality(fb_subgraph [0])

print ’Trimmed FB betweenness: ’,

sorted(betweenness.items (), key = lambda x: x[1],

reverse = True)[:10]

current_flow = nx.current_flow_betweenness_centrality (

fb_subgraph [0])

print ’Trimmed FB current flow betweenness:’,

sorted(current_flow.items (), key = lambda x: x[1],

reverse = True)[:10]

152 8 Network Analysis

Fig. 8.5 The Facebook

network with a random

layout

Out[10]: # subgraphs found: 2

nodes in the first subgraph: 2225

Trimmed FB betweenness: [(u’107’, 0.5469164906683255),

(u’1684’, 0.3133966633778371), (u’1912’, 0.19965597457246995),

(u’3437’, 0.13002843874261014), (u’1577’, 0.1274607407928195),

(u’1085’, 0.11517250980098293), (u’1718’, 0.08916631761105698),

(u’428’, 0.0638271827912378), (u’1465’, 0.057995900747731755),

(u’567’, 0.05414376521577943)]

Trimmed FB current flow betweenness: [(u’107’,

0.2858892136334576), (u’1718’, 0.2678396761785764), (u’1684’,

0.1585162194931393), (u’1085’, 0.1572155780323929), (u’1405’,

0.1253563113363113), (u’3437’, 0.10482568101478178), (u’1912’,

0.09369897700970155), (u’1577’, 0.08897207040045449), (u’136’,

0.07052866082249776), (u’1505’, 0.06152347046861114)]

As can be seen, there are similarities in the 10 most central nodes for the between-

ness and current flow betweenness centralities. In particular, seven up to ten are the

same nodes, even if they are differently ordered.

8.4.1 Drawing Centrality in Graphs

In this section we focus on graph visualization, which can help in the network data

understanding and usability.

The visualization of a network with a large amount of nodes is a complex task.

Different layouts can be used to try to build a proper visualization. For instance, we

can draw the Facebook graph using the random layout (nx.random_layout),

but this is a bad option, as can be seen in Fig. 8.5. Other alternatives can be more

useful. In the box below, we use the Spring layout, as it is used in the default function

(nx.draw), but with more iterations. The function nx.spring_layout returns

the position of the nodes using the Fruchterman–Reingold force-directed algorithm.

8.4 Centrality 153

Fig. 8.6 The Facebook

network drawn using the

Spring layout and degree

centrality to define the node

size

This algorithm distributes the graph nodes in such a way that all the edges are more

or less equally long and they cross themselves as few times as possible. Moreover,

we can change the size of the nodes to that defined by their degree centrality. As

can be seen in the code, the degree centrality is normalized to values between 0 and

1, and multiplied by a constant to make the sizes appropriate for the format of the

figure:

In [11]:
pos_fb = nx.spring_layout(fb ,iterations = 1000)

nsize = np.array ([v for v in degree_cent_fb.values ()])

nsize = 500*(nsize - min(nsize))/(max(nsize) - min(nsize))

nodes = nx.draw_networkx_nodes (fb , pos = pos_fb ,

node_size = nsize)

edges = nx.draw_networkx_edges (fb , pos = pos_fb ,

alpha = .1)

The resulting graph visualization is shown in Fig. 8.6. This illustration allows us

to understand the network better. Now we can distinguish several groups of nodes or

“communities” clearly in the graph. Moreover, the larger nodes are the more central

nodes, which are highly connected of the Facebook graph.

We can also use the betweenness centrality to define the size of the nodes. In this

way, we obtain a new illustration stressing the nodes with higher betweenness, which

are those with a large influence on the transfer of information through the network.

The new graph is shown in Fig. 8.7. As expected, the central nodes are now those

connecting the different communities.

Generally different centrality metrics will be positively correlated, but when they

are not, there is probably something interesting about the network nodes. For instance,

if you can spot nodes with high betweenness but relatively low degree, these are the

nodes with few links but which are crucial for network flow. We can also look for

154 8 Network Analysis

Fig. 8.7 The Facebook

network drawn using the

Spring layout and

betweenness centrality to

define the node size

the opposite effect: nodes with high degree but relatively low betweenness. These

nodes are those with redundant communication.

Changing the centrality measure to closeness and eigenvector, we obtain the

graphs in Figs. 8.8 and 8.9, respectively. As can be seen, the central nodes are

also different for these measures. With this or other visualizations you will be able

to discern different types of nodes. You can probably see nodes with high closeness

centrality but low degree; these are essential nodes linked to a few important or active

nodes. If the opposite occurs, if there are nodes with high degree centrality but low

closeness, these can be interpreted as nodes embedded in a community that is far

removed from the rest of the network.

In other examples of social networks, you could find nodes with high closeness

centrality but low betweenness; these are nodes near many people, but since there

may be multiple paths in the network, they are not the only ones to be near many

people. Finally, it is usually difficult to find nodes with high betweenness but low

closeness, since this would mean that the node in question monopolized the links

from a small number of people to many others.

8.4.2 PageRank

PageRank is an algorithm related to the concept of eigenvector centrality in directed

graphs. It is used to rate webpages objectively and effectively measure the attention

devoted to them. PageRank was invented by Larry Page and Sergey Brin, and became

a Google trademark in 1998 [2].

Assigning the importance of a webpage is a subjective task, which depends on the

interests and knowledge of the persons that browse the webpages. However, there

are ways to objectively rank the relative importance of webpages.

8.4 Centrality 155

Fig. 8.8 The Facebook

network drawn using the

Spring layout and closeness

centrality to define the node

size

Fig. 8.9 The Facebook

network drawn using the

Spring layout and

eigenvector centrality to

define the node size

We consider the directed graph formed by nodes corresponding to the webpages

and edges corresponding to the hyperlinks. Intuitively, a hyperlink to a page counts

as a vote of support and a page has a high rank if the sum of the ranks of its incoming

edges is high. This considers both cases when a page has many incoming links and

when a page has a few highly ranked incoming links. Nowadays, a variant of the

algorithm is used by Google. It does not only use information on the number of edges

pointing into and out of a website, but uses many more variables.

We can describe the PageRank algorithm from a probabilistic point of view. The

rank of page Pi is the probability that a surfer on the Internet who starts visiting a

random page and follows links, visits the page Pi . With more details, we consider

that the weights assigned to the edges of a network by its transition matrix, M, are the

probabilities that the surfer goes from one webpage to another. We can understand the

156 8 Network Analysis

Fig. 8.10 The Facebook

network drawn using the

Spring layout and PageRank

to define the node size

rank computation as a random walk through the network. We start with an initial equal

probability for each page: v0 = (1
n
, . . . , 1

n
), where n is the number of nodes. Then

we can compute the probability that each page is visited after one step by applying

the transition matrix: v1 = Mv. The probability that each page will be visited after

k steps is given by vk = Mka. After several steps, the sequence converges to a

unique probabilistic vector a∗ which is the PageRank vector. The i-th element of

this vector is the probability that at each moment the surfer visits page Pi . We need a

nonambiguous definition of the rank of a page for any directed web graph. However,

in the Internet, we can expect to find pages that do not contain outgoing links and

this configuration can lead to certain problems to the explained procedure. In order

to overcome this problem, the algorithm fixes a positive constant p between 0 and

1 (a typical value for p is 0.85) and redefines the transition matrix of the graph by

R = (1 − p) M + p B, where B =
1
n

I , and I is the identity matrix. Therefore, a

node with no outgoing edges has probability
p
n

of moving to any other node.

Let us compute the PageRank vector of the Facebook network and use it to define

the size of the nodes, as was done in box In [11].

In [12]:
pr = nx.pagerank(fb , alpha = 0.85)

nsize = np.array ([v for v in pr.values ()])

nsize = 500*(nsize - min(nsize))/(max(nsize) - min(nsize))

nodes = nx.draw_networkx_nodes (fb ,

pos = pos_fb ,

node_size = nsize)

edges = nx.draw_networkx_edges (fb ,

pos = pos_fb ,

alpha = .1)

The code above outputs the graph in Fig. 8.10, that emphasizes some of the nodes

with high PageRank. Looking the graph carefully one can realize that there is one

large node per community.

8.5 Ego-Networks 157

8.5 Ego-Networks

Ego-networks are subnetworks of neighbors that are centered on a certain node. In

Facebook and LinkedIn, these are described as “your network". Every person in an

ego-network has her/his own ego-network and can only access the nodes in it. All

ego-networks interlock to form the whole social network. The ego-network definition

depends on the network distance considered. In the basic case, a distance of 1, a link

means that person A is a friends of person B, a distance of 2 means that a person, C, is

a friend of a friend of A, and a distance of 3 means that another person, D, is a friend

of a friend of a friend of A. Knowing the size of an ego-network is important when

it comes to understanding the reach of the information that a person can transmit or

have access to. Figure 8.11 shows an example of an ego-network. The blue node is

the ego, while the rest of the nodes are red.

Our Facebook network was manually labeled by users into a set of 10 ego-

networks. The public dataset includes the information of these 10 manually defined

ego-networks. In particular, we have available the list of the 10 ego nodes: ‘0’, ‘107’,

‘348’, ‘414’, ‘686’, ‘1684’, ‘1912’, ‘3437’, ‘3980’ and their connections. These

ego-networks are interconnected to form the fully connected graph we have been

analyzing in previous sections.

In Sect. 8.4 we saw that node ‘107’ is the most central node of the Facebook

network for three of the four centrality measures computed. So, let us extract the

ego-networks of the popular node ‘107’ with a distance of 1 and 2, and compute their

sizes. NetworkX has a function devoted to this task:

In [13]:
ego_107 = nx.ego_graph(fb, ’107’)

print ’# nodes of ego graph 107:’,

len(ego_107)

print ’# nodes of ego graph 107 with radius up to 2:’,

len(nx.ego_graph(fb, ’107’, radius = 2))

Fig. 8.11 Example of an

ego-network. The blue node

is the ego

158 8 Network Analysis

Out[13]: # nodes of ego graph 107: 1046

nodes of ego graph 107 with radius up to 2: 2687

The ego-network size is 1,046 with a distance of 1, but when we expand the

distance to 2, node ‘107’ is able to reach up to 2,687 nodes. That is quite a large

ego-network, containing more than half of the total number of nodes.

Since the dataset also provides the previously labeled ego-networks, we can com-

pute the actual size of the ego-network following the user labeling. We can access

the ego-networks by simply importing os.path and reading the edge list corre-

sponding, for instance, to node ‘107’, as in the following code:

In [14]:
import os.path

ego_id = 107

G_107 = nx.read_edgelist(

os.path.join(’files/ch08/facebook ’,

’{0}. edges’.format(ego_id)),

nodetype = int)

print ’Nodes of the ego graph 107:’, len(G_107)

Out[14]: Nodes of the ego graph 107: 1034

As can be seen, the size of the previously defined ego-network of node ‘107’ is

slightly different from the ego-network automatically computed using NetworkX.

This is due to the fact that the manual labeling is not necessarily referred to the

subgraph of neighbors at a distance of 1.

We can now answer some other questions about the structure of the Facebook

network and compare the 10 different ego-networks among them. First, we can

compute which the most densely connected ego-network is from the total of 10. To

do that, in the code below, we compute the number of edges in every ego-network

and select the network with the maximum number:

8.5 Ego-Networks 159

In [15]:
ego_ids = (0, 107, 348,

414, 686, 698,

1684, 1912, 3437, 3980)

ego_sizes = zeros ((10, 1))

i = 0

Fill the ’ego_sizes ’ vector with the size (# edges) of the

10 ego -networks in egoids

for id in ego_ids :

G = nx.read_edgelist(

os.path.join(’files/ch08/facebook ’,

’{0}. edges ’.format(id)),

nodetype = int)

ego_sizes[i] = G.size()

i = i + 1

[i_max ,j] = (ego_sizes == ego_sizes.max()).nonzero ()

ego_max = ego_ids[i_max]

print ’The most densely connected ego -network is \

that of node:’, ego_max

G = nx.read_edgelist(

os.path.join(’files/ch08/facebook ’,

’{0}. edges ’.format(ego_max)),

nodetype = int)

print ’Nodes: ’, G.order ()

print ’Edges: ’, G.size()

print ’Average degree: ’, G_k / G_n

Out[15]: The most densely connected ego-network is that of node: 1912

Nodes: 747

Edges: 30025

Average degree: 40

The most densely connected ego-network is that of node ‘1912’, which has an

average degree of 40. We can also compute which is the largest (in number of nodes)

ego-network, changing the measure of sizes from G.size() by G.order(). In

this case, we obtain that the largest ego-network is that of node ‘107’, which has

1,034 nodes and an average degree of 25.

Next let us work out how much intersection exists between the ego-networks in

the Facebook network. To do this, in the code below, we add a field ‘egonet’ for every

node and store an array with the ego-networks the node belongs to. Then, having the

length of these arrays, we compute the number of nodes that belong to 1, 2, 3, 4 and

more than 4 ego-networks:

160 8 Network Analysis

In [16]:
Add a field ’egonet’ to the nodes of the whole facebook

network.

Default value egonet = [], meaning that this node does not

belong to any ego -netowrk

for i in fb.nodes () :

fb.node[str(i)][’egonet ’] = []

Fill the ’egonet’ field with one of the 10 ego values in

ego_ids:

for id in ego_ids :

G = nx.read_edgelist(

os.path.join(’files/ch08/facebook ’,

’{0}. edges ’.format(id)),

nodetype = int)

print id

for n in G.nodes () :

if (fb.node[str(n)][’egonet’] == []) :

fb.node[str(n)][’egonet’] = [id]

else :

fb.node[str(n)][’egonet’]. append(id)

Compute the intersections:

S = [len(x[’egonet’]) for x in fb.node.values ()]

print ’# nodes into 0 ego -network: ’, sum(equal(S, 0))

print ’# nodes into 1 ego -network: ’, sum(equal(S, 1))

print ’# nodes into 2 ego -network: ’, sum(equal(S, 2))

print ’# nodes into 3 ego -network: ’, sum(equal(S, 3))

print ’# nodes into 4 ego -network: ’, sum(equal(S, 4))

print ’# nodes into more than 4 ego -network: ’,\

sum(greater(S, 4))

Out[16]: # nodes into 0 ego-network: 80

nodes into 1 ego-network: 3844

nodes into 2 ego-network: 102

nodes into 3 ego-network: 11

nodes into 4 ego-network: 2

nodes into more than 4 ego-network: 0

As can be seen, there is an intersection between the ego-networks in the Facebook

network, since some of the nodes belong to more than 1 and up to 4 ego-networks

simultaneously.

We can also try to visualize the different ego-networks. In the following code,

we draw the ego-networks using different colors on the whole Facebook network

and we obtain the graph in Fig. 8.12. As can be seen, the ego-networks clearly form

groups of nodes that can be seen as communities.

8.5 Ego-Networks 161

Fig. 8.12 The Facebook

network drawn using the

Spring layout and different

colors to separate the

ego-networks

In [17]:
Add a field ’egocolor ’ to the nodes of the whole facebook

network.

Default value egocolor r =0, meaning that this node

does not belong to any ego -netowrk for i in fb.nodes () :

fb.node[str(i)][’egocolor ’] = 0

Fill the ’egocolor ’ field with a different color number

for each ego -network in ego_ids:

idColor = 1

for id in ego_ids :

G = nx.read_edgelist(

os.path.join(’files/ch08/facebook ’,

’{0}. edges ’.format(id)),

nodetype = int)

for n in G.nodes () :

fb.node[str(n)][’egocolor ’] = idColor

idColor += 1

colors = [x[’egocolor ’] for x in fb.node.values ()]

nsize = np.array ([v for v in degree_cent_fb.values ()])

nsize = 500*(nsize - min(nsize))/(max(nsize)- min(nsize))

nodes = nx.draw_networkx_nodes (

fb , pos = pos_fb ,

cmap = plt.get_cmap(’Paired’),

node_color = colors ,

node_size = nsize ,

with_labels = False)

edges=nx.draw_networkx_edges(fb , pos = pos_fb , alpha = .1)

However, the graph in Fig. 8.12 does not illustrate how much overlap is there

between the ego-networks. To do that, we can visualize the intersection between

ego-networks using a Venn or an Euler diagram. Both diagrams are useful in order to

see how networks are related. Figure 8.13 shows the Venn diagram of the Facebook

network. This powerful and complex graph cannot be easily built in Python tool-

162 8 Network Analysis

Fig. 8.13 Venn diagram.

The area is weighted

according to the number of

friends in each ego-network

and the intersection between

ego-networks is related to

the number of common users

boxes like NetworkX or Matplotlib. In order to create it, we have used a JavaScript

visualization library called D3.JS.4

8.6 Community Detection

A community in a network can be seen as a set of nodes of the network that is densely

connected internally. The detection of communities in a network is a difficult task

since the number and sizes of communities are usually unknown [3].

Several methods for community detection have been developed. Here, we apply

one of the methods to automatically extract communities from the Facebook network.

We import the Community toolbox5 which implements the Louvain method for

community detection. In the code below, we compute the best partition and plot the

resulting communities in the whole Facebook network with different colors, as we

did in box In [17]. The resulting graph is shown in Fig. 8.14.

In [18]:
import community partition = community.best_partition(fb)

print "#

communities found:", max(partition.values()) colors2 =

[partition.get(node) for node in fb.nodes ()] nsize = np.

array ([v

for v in degree_cent_fb.values()]) nsize = 500*(nsize -

min(nsize))/(max(nsize)- min(nsize)) nodes =

nx.draw_networkx_nodes (

fb , pos = pos_fb ,

cmap = plt.get_cmap(’Paired’),

node_color = colors2 ,

node_size = nsize ,

with_labels = False)

edges = nx.draw_networkx_edges (fb , pos = pos_fb , alpha = .1)

4https://d3js.org.
5http://perso.crans.org/aynaud/communities/.

https://d3js.org
http://perso.crans.org/aynaud/communities/

8.6 Community Detection 163

Fig. 8.14 The Facebook

network drawn using the

Spring layout and different

colors to separate the

communities found

Out[18]: # communities found: 15

As can be seen, the 15 communities found automatically are similar to the 10 ego-

networks loaded from the dataset (Fig. 8.12). However, some of the 10 ego-networks

are subdivided into several communities now. This discrepancy can be due to the

fact that the ego-networks are manually annotated based on more properties of the

nodes, whereas communities are extracted based only on the graph information.

8.7 Conclusions

In this chapter, we have introduced network analysis and a Python toolbox (Net-

workX) that is useful for this analysis. We have shown how network analysis allows

us to extract properties from the data that would be hard to discover by other means.

Some of these properties are basic concepts in social network analysis, such as

centrality measures which return the importance of the nodes in the network or ego-

networks which allows us to study the reach of the information a node can transmit

or have access to. The different concepts have been practically illustrated by a prac-

tical case dealing with a Facebook network. In this practical case, we have resolved

several issues, such as finding the most representative members of the network in

terms of the most “connected”, the most “circulated”, the “closest”, or the most

“accessible” nodes to the others. We have presented useful ways of extracting basic

properties of the Facebook network, and studying its ego-networks and communities,

164 8 Network Analysis

as well as comparing them quantitatively and qualitatively. We have also proposed

several visualizations of the graph to represent several measures and to emphasize

the important nodes with different meanings.

Acknowledgements This chapter was co-written by Laura Igual and Santi Seguí.

References

1. N. Friedkin, Structural bases of interpersonal influence in groups: A Longitudinal Case Study.

American Sociological Review 58(6):861 1993

2. L. Page, S. Brin, R. Motwani, and T. Winograd, The PageRank citation ranking: Bringing order

to the Web. 1999

3. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, R. Lefebvre, Fast unfolding of communities in

large networks. Journal of Statistical Mechanics: Theory and Experiment. 2008(10)

9Recommender Systems

9.1 Introduction

In this chapter, we will see what are recommender systems, how they work, and how

they can be implemented. We will also see the different paradigms of recommender

systems based on the information they use, as well as the output they produce. We

will consider typical questions that companies like Netflix or Amazon include in

their products: Which movie should I rent? Which TV should I buy? and we will

give some insights in order to deal with more complex questions: Which is the best

place for me and my family to travel to?

So, the first question we should answer: What is a recommender system? It can

be defined as a tool designed to interact with large and complex information spaces,

and to provide information or items that are likely to be of interest to the user, in an

automated fashion. We refer to complex information space to the set of items, and

its characteristics, which the system recommends to the user, i.e., books, movies, or

city trips.

Nowadays, recommender systems are extremely common, and are applied in a

large variety of applications. Perhaps one of the most popular types are the movie

recommender systems in applications used by companies such as Netflix, and the

music recommenders in Pandora or Spotify, as well as any kind of product recom-

mendation from Amazon.com. However, the truth is that recommender systems are

present in a huge variety of applications, such as movies, music, news, books, re-

search papers, search queries, social tags, and products in general, but they are also

present in more sophisticated products where personalization is critical, like recom-

mender systems for restaurants, financial services, life assurance, online dating, and

Twitter followers.

Why and When Do We Need a Recommender System?

In this new era, where the quantity of information is huge, recommender systems

are extremely useful in several domains. People are not able to be experts in all

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_9

165

166 9 Recommender Systems

these domains in which they are users, and they do not have enough time to spend

looking for the perfect TV or book to buy. Particularly, recommender systems are

really interesting when dealing with the following issues:

• solutions for large amounts of good data;

• reduction of cognitive load on the user;

• allowing new items to be revealed to users.

9.2 How Do Recommender Systems Work?

There are several different ways to build a recommender system. However, most of

them take one of two basic approaches: content-based filtering (CBF) or collabora-

tive filtering (CF).

9.2.1 Content-Based Filtering

CBF methods are constructed behind the following paradigm: “Show me more of

the same what I’ve liked”. So, this approach will recommend items which are similar

to those the user liked before and the recommendations are based on descriptions

of items and a profile of the user’s preferences. The computation of the similarity

between items is the most important part of these methods and it is based on the

content of the items themselves. As the content of the item can be very diverse, and it

usually depends on the kind of items the system recommends, a range of sophisticated

algorithms are usually used to abstract features from items. When dealing with textual

information such as books or news, a widely used algorithm is tf–idf representation.

The term tf–idf refers to frequency–inverse document frequency, it is a numerical

statistic that measures how important a word is to a document in a collection or

corpus.

An interesting content-based filtering system is Pandora.1 This music recom-

mender system uses up to 400 songs and artist properties in order to find similar

songs to recommend to the original seed. These properties are a subset of the fea-

tures studied by musicologists in The Music Genome Project who describe a song

in terms of its melody, harmony, rhythm, and instrumentation as well as its form and

the vocal performance.

1http://www.pandora.com/.

http://www.pandora.com/

9.2 How Do Recommender Systems Work? 167

9.2.2 Collaborative Filtering

CF methods are constructed behind the following paradigm: “Tell me what’s popular

among my like-minded users”. This is really intuitive paradigm since it is really

similar of what people use to do: ask or look at the preferences of the people they

trust. An important working hypothesis behind these kind of recommenders is that

similar users tend to like similar items. In order to do so, these approaches are based

on collecting and analyzing a large number of data related to the behavior, activities,

or tastes of users, and predicting what users will like based on their similarity to other

users. One of the main advantages of this type of system is that it does not need to

“understand” what the item it recommends is.

Nowadays, these methods are extremely popular because of the simplicity and

the large amount of data available from users. The main drawbacks of this kind of

method is the need for a user community, as well as the cold-start effect for new

users in the community. The cold-start problem appears when the system cannot

draw any, or an optimal, inference or recommendation for the users (or items) since

it has not yet obtained the sufficient information of them.

CF can be of two types: user-based or item-based.

• User-based CF works like this: Find similar users to me and recommend what they

liked. In this method, given a user, U , we first find a set of other users, D, whose

ratings are similar to the ratings of U and then we calculate a prediction for U .

• Item-based CF works like this: Find similar items to those that I previously liked.

In item-based CF, we first build an item–item matrix that determines relationships

between pairs of items; then using this matrix and data on the current user U ,

we infer the user’s taste. Typically, this approach is used in the domain: people

who buy x also buy y. This is a really popular approach used by companies like

Amazon. Moreover, one of the advantages of this approach is that items usually

do not change much, so its similarities can be computed offline.

9.2.3 Hybrid Recommenders

Hybrid approaches can be implemented in several ways: by making content-based

and collaborative predictions separately and then combining them; by adding content-

based capabilities to a collaborative approach (and vice versa); or by unifying the

approaches into one model.

9.3 Modeling User Preferences

Both, CBF and CF recommender systems, require to understand the user prefer-

ences. Understanding how to model the user preference is a critical step due to the

variety of sources. It is not the same when we deal with applications like the movie

168 9 Recommender Systems

recommender from Netflix, where the users rank the movies with 1 to 5 stars; or

as dealing with any product recommender system from Amazon, where usually the

tracking information of the purchases is used. In this case, three values can be used:

0 - not bought; 1 - viewed; 2 - bought.

The most common types of labels used to estimate the user preferences are:

• Boolean expressions (is bought?; is viewed?)

• Numerical expressions (e.g., star ranking)

• Up-Down expressions (e.g., like, neutral, or dislike)

• Weighted value expressions (e.g., number of reproductions or clicks)

In the following sections of this chapter, we only consider the numerical expression

described as stars on the scale of 1 to 5.

9.4 Evaluating Recommenders

The evaluation of the recommender systems is another important step in order to

assess the effectiveness of the method. When dealing with numerical labels, as the

5-star ratings, the most common way to validate a recommender system is based

on their prediction value, i.e., the capacity to predict the user’s choices. Standard

functions such as root mean square error (RMSE), precision, recall, or ROC/cost

curves have been extensively used.

However, there are several other ways to evaluate the systems. It is because metrics

are entirely relevant to point of view of the person who has to evaluate it. Imagine

the following three persons: (a) a marketing guy; (b) a technical system designer;

and (c) a final user. It is clear that what is relevant for all of them is not the same.

For a marketing guy, what is usually important is how the system helps to push the

product, for the technical system designer is how efficient is the algorithm, and for

the final user is if the system gives him good, or mostly cool, results. In the literature

we can see two main typologies: offline and online evaluation.

We refer to evaluation as offline when a set of labeled data is obtained and then

divided into two sets: a training set and a test set. The training set is used to create the

model and adjust all the parameters; while the test set is used to determine selected

evaluation metrics. As mentioned above, standard metrics such as RMSE, preci-

sion, and recall are extensively used, but recently other indirect functions have also

started to be widely considered. Examples of these: diversity, novelty, coverage, cold-

start, or serendipity, the latter is a quite popular metric that evaluates how surprising

the recommendations are. For further discussion of this field, the reader is referred

to [1].

9.4 Evaluating Recommenders 169

We refer to evaluation as online when a set of tools is used that allows us to look at

the interactions of users with the system. The most common online technique is called

A-B testing and has the benefit of allowing evaluation of the system at the same time

as users are learning, buying, or playing with the recommender system. This brings

the evaluation closer to the actual working of the system and makes it really effective

when the purpose of the system is to change or influence the behavior of users. In

order to evaluate the test, we are interested in measuring how user behavior changes

when the user is interacting with different recommender systems. Let us give an

example: imagine we want to develop a music recommender system like Pandora,

where your final goal is none other than for users to love your intelligent music

station and spend more time listening to it. In such a situation, offline metrics like

RMSE are not good enough. In this case, we are particularly interested in evaluation

of the global goal of the recommender system as it is the long-term profit or user

retention.

9.5 Practical Case

In this section, we will play with a real dataset to implement a movie recommender

system. We will work with a user-based collaborative system with the MovieLens

dataset.

9.5.1 MovieLens Dataset

MovieLens datasets are a collection of movie ratings produced by hundreds of users

collected by the GroupLens Research Project at the University of Minnesota and

released into the public domain. Several versions of this dataset can be found at the

GroupLens site.2 Figure 9.1 shows a capture of this website.

Although performance on bigger dataset is expected to be better, we will work

with the smallest dataset: MovieLens 100K Dataset. Working with this lite version

has the benefit of less computational costs, while we will also get the basic skills

required on user-based recommender systems.

Once you have downloaded and unzipped the file into a directory, you can create

a Pandas DataFrame with the following code:

2http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/

170 9 Recommender Systems

Fig. 9.1 Grouplens website

In [1]:
Load user data
u_cols = [

’user_id ’, ’age’, ’sex’,
’occupation ’, ’zip_code ’
]

users = pd.read_csv(’files/ch09/ml -100k/u.user’,
sep=’|’,
names=u_cols)

Load movie data
r_cols = [

’user_id ’, ’movie_id ’,
’rating’, ’unix_timestamp ’
]

ratings = pd.read_csv(’files/ch09/ml -100k/u.data’,
sep=’\t’,
names=r_cols)

The movie file contains columns indicating the genres of
the movie

We will only load the first three columns of the file with
usecols

9.5 Practical Case 171

In [1]:
m_cols = [

’movie_id ’, ’title ’,
’release_date ’
]

movies = pd.read_csv(’files/ch09/ml -100k/u.item’,
sep=’|’,
names=m_cols ,
usecols=range (3))

Create a DataFrame using only the fields required
data = pd.merge(pd.merge(ratings , users), movies)
data = data[[’user_id ’, ’title ’, ’movie_id ’, ’rating’]]

print "The BD has "+ str(data.shape [0]) +" ratings"
print "The BD has ", data.user_id.nunique ()," users"
print "The BD has ", data.movie_id.nunique (), " items"
print data.head()

Out[1]: The DB has 100000 ratings
The DB has 943 different users
The DB has 1682 different items

user_id title movie_id rating
0 196 Kolya (1996) 242 3
1 305 Kolya (1996) 242 5
2 6 Kolya (1996) 242 4
3 234 Kolya (1996) 242 4
4 63 Kolya (1996) 242 3

If you explore the dataset in detail, you will see that it consists of:

• 100,000 ratings from 943 users of 1682 movies. Ratings are from 1 to 5.

• Each user has rated at least 20 movies.

• Simple demographic info for the users (age, gender, occupation, zip).

9.5.2 User-Based Collaborative Filtering

In order to create a user-based collaborative recommender system we must define: (1)

a prediction function, (2) a user similarity function, and (3) an evaluation function.

Prediction Function

The prediction function behind the user-based CF will be based on the movie ratings

from similar users. So, in order to recommend a movie, p, from a set of movies, P ,

to a given user, a, we first need to see the set of users, B, who have already seen p.

Then, we need to see the taste similarity between these users in B and user a. The

most simple prediction function for a user a and movie p can be defined as follows:

pred(a, p) =

∑

b∈B sim(a, b)(rb,p)
∑

b∈B sim(a, b)
(9.1)

172 9 Recommender Systems

Table 9.1 Recommender System

Critic sim(a,b) Rating movie1: rb,p1 sim(a, b)(rb,p1)

Paul 0.99 3 2.97

Alice 0.38 3 1.14

Marc 0.89 4.5 4.0

Anne 0.92 3 2.77
∑

b∈N sim(a, b)(rb,p) 10.87
∑

b∈N sim(a, b) 3.18

pred(a, p) 3.41

where sim(a, b) is the similarity between user a and user b, B is the set of users in

the dataset that have already seen p and rb,p is the rating of p by b.

Let us give an example (see Table 9.1). Imagine the system can only recommend

one movie, since the rest have already been seen by the user. So, we only want to

estimate the score corresponding to that movie. The movie has been seen by Paul,

Alice, Marc, and Anne and scored 3, 3, 4, and 3, respectively. Similarity between user

a and Paul, Alice, Marc, and Anne has been computed “somehow” (we will see later

how we can compute it) and the values are 0.99, 0.38, 0.89, and 0.92, respectively. If

we follow the previous equation, the estimated score is 3.41, as seen in Table 9.1.

User Similarity Function

The computation of the similarity between users is one of the most critical steps in

the CF algorithms. The basic idea behind the similarity computation between two

users a and b is that we can first isolate the set P of items rated by both users, and

then apply a similarity computation technique to determine the similarity.

The set of common_movies can be obtained with the following code:

In [2]:
dataframe with the data from user 1
df_usr1 = data_train[data_train.user_id == 1]

dataframe with the data from user 2
df_usr2 = data_train[data_train.user_id == 6]

We first compute the set of common movies
common_mov = set(df_usr1.movie_id).intersection(

df_usr2.movie_id)

print "\nNumber of common movies",
len(common_mov)

9.5 Practical Case 173

In [2]:
Sub -dataframe with only the common movies
mask = (data_user_1.movie_id.isin(common_movies))
data_user_1 = data_user_1[mask]
print data_user_1 [[’title’, ’rating’]]. head()

mask = (data_user_2.movie_id.isin(common_movies))
data_user_2 = data_user_2[mask]
print data_user_2 [[’title’, ’rating’]]. head()

Out[2]: Number of common movies 11
Movies User 1

title rating

14 Kolya (1996) 5
417 Shall We Dance? (1996) 4
1306 Truth About Cats & Dogs, The (1996) 5
1618 Birdcage, The (1996) 4
3479 Men in Black (1997) 4
Movies User 2

title rating

32 Kolya (1996) 5
424 Shall We Dance? (1996) 5
1336 Truth About Cats & Dogs, The (1996) 4
1648 Birdcage, The (1996) 4
3510 Men in Black (1997) 4

Once the set of ratings for all movies common to the two users has been obtained,

we can compute the user similarity. Some of the most common similarity functions

used in CF methods are as follows:

Euclidean distance:

sim(a, b) =
1

1 +
√

∑

p∈P (ra,p − rb,p)
2

(9.2)

Pearson correlation:

sim(a, b) =

∑

p∈P (ra,p − r̄a)(rb,p − r̄b)
√

∑

p∈P (ra,p − r̄a)
√

∑

p∈P (rb,p − r̄b)
(9.3)

where r̄a and r̄b are the mean ratings of users a and b.

Cosine distance:

sim(a, b) =
a · b

|a| · |b|
(9.4)

Now, the question: Which function should we use? The answer is that there is no

fixed recipe; but there are some issues we can take into account when choosing the

proper similarity function. On the one hand, Pearson correlation usually works better

than Euclidean distance since it is based more on the ranking than on the values. So,

two users who usually like more the same set of items, although their rating is on

different scales, will come out as similar users with Pearson correlation but not with

Euclidean distance. On the other hand, when dealing with binary/unary data, i.e.,

174 9 Recommender Systems

like versus not like or buy versus not buy, instead of scalar or real data like ratings,

cosine distance is usually used.

Let us define the Euclidean and Pearson functions:

In [3]:
from scipy.spatial.distance import Euclidean

Similarity based on Euclidean distance for users 1-2
def SimEuclid(df ,User1 ,User2 ,min_common_items =10):

GET MOVIES OF USER1
mov_u1 = df[df[’user_id ’] == User1]
GET MOVIES OF USER2
mov_u2 = df[df[’user_id ’] == User2]

FIND SHARED FILMS
rep = pd.merge(mov_u1 , mov_u2 , on = ’movie_id ’)
if len(rep) == 0:

return 0
if(len(rep) < min_common_items):

return 0
return 1.0 / (1.0+ euclidean(rep[’rating_x ’],

rep[’rating_y ’]))

In [4]:
from scipy.stats import pearsonr

Similarity based on Pearson correlation for user 1-2
def SimPearson(df , User1 , User2 , min_common_items = 10):

GET MOVIES OF USER1
mov_u1 = df[df[’user_id ’] == User1]
GET MOVIES OF USER2
mov_u2 = df[df[’user_id ’] == User2]

FIND SHARED FILMS
rep = pd.merge(mov_u1 , mov_u2 , on = ’movie_id ’)
if len(rep)==0:

return 0
if(len(rep) < min_common_items):

return 0
return pearsonr(rep[’rating_x ’], rep[’rating_y ’]) [0]

Figure 9.2 shows the correlation plots for user 1 versus user 8 and user 1 versus

user 31. Each point in the plots corresponds to a different set of ratings from the two

users of the same movies. The bigger the dot, the larger the set of movies rated with

the corresponding values. We can observe in these plots that ratings from user 1 are

more correlated with ratings from user 8 than from the user 31. However, as we can

observe in the following outputs, the Euclidean similarity between user 1 and user

31 is closer than between user 1 and user 8.

In [5]:
print "Euclidean similarity",SimEuclid(data_train , 1, 8)
print "Pearson similarity",SimPearson(data_train , 1, 8)

print "Euclidean similarity",SimEuclid(data_train , 1, 31)
print "Pearson similarity",SimPearson(data_train , 1, 31)

9.5 Practical Case 175

(a) User 1 vs. 8 (b) User 1 vs. 31

Fig. 9.2 Similarity between users

Out[5]: Euclidean similarity 0.195194101601
Pearson similarity 0.773097845465

Euclidean similarity 0.240253073352
Pearson similarity 0.272165526976

Evaluation

In order to validate the system, we will divide the dataset into two different sets:

one called X_train containing 80% of the data from each user; and another called

X_test, with the remaining 20% of the data from each user. In the following code

we create a function assign_to_set that creates a new column in the DataFrame

indicating which sample it belongs to.

In [6]:
def assign_to_set(df):

sampled_ids = np.random.choice(
df.index ,
size = np.int64(np.ceil(df.index.size * 0.2)),
replace=False)

df.ix[sampled_ids , ’for_testing ’] = True
return df

data[’for_testing ’] = False
grouped = data.groupby(’user_id ’, group_keys = False)

.apply(assign_to_set)
X_train = data[grouped.for_testing == False]
X_test = data[grouped.for_testing == True]

The resulting X_train and X_test sets have 79619 and 20381 ratings, respec-

tively.

Once the data is divided in these sets, we can build a model with the training set

and evaluate its performance using the test set. In our case, the evaluation will be

performed using the standard RMSE:

RM SE =

√

(
∑

(ŷ − y)2

n

)

(9.5)

176 9 Recommender Systems

where y is the real rating and ŷ is the predicted rating.

In [7]:
def compute_rmse(y_pred , y_true):

""" Compute Root Mean Squared Error. """
return np.sqrt(np.mean(np.power(y_pred - y_true , 2)))

Collaborative Filtering Class

We can define our recommender system with a Python class. This class consists of

a constructor and two methods: fit and predict. In the fit method the user’s

similarities are computed and stored into a Python dictionary. This is a really simple

method but quite expensive in terms of computation when dealing with a large dataset.

We decided to show one of the most basic schemes in order to implement it. More

complex algorithms can be used in order to improve the computations cost. Moreover,

online strategies can be used when dealing with a really dynamic problems. In the

predict the score for a movie and a user is estimated.

In [8]:
class CollaborativeFiltering:

""" CF using a custom sim(u,u ’). """
def __init__(self , df, similarity = SimPearson):

""" Constructor """
self.sim_method = similarity
self.df = df
self.sim = pd.DataFrame(
np.sum ([0]) , columns = df.user_id.unique (),
index = df.user_id.unique ())

def fit(self):
""" Prepare data structures for estimation.

Similarity matrix for users """
allUsers = set(self.df[’user_id ’])
self.sim = {}
for person1 in allUsers:

self.sim.setdefault(person1 , {})
a = self.df[

self.df[’user_id ’] == person1][[’movie_id ’]
]

data_reduced = pd.merge(self.df , a,
on = ’movie_id ’)

for person2 in allUsers:
Avoid our -self
if person1 == person2: continue
self.sim.setdefault(person2 , {})
if(self.sim[person2]. has_key(person1)):

continue # since symmetric matrix
sim = self.sim_method(data_reduced ,

person1 ,
person2)

if(sim < 0):
self.sim[person1][person2] = 0
self.sim[person2][person1] = 0

else:
self.sim[person1][person2] = sim
self.sim[person2][person1] = sim

def predict(self , user_id , movie_id):
totals = {}
users = self.df[self.df[’movie_id ’] == movie_id]

9.5 Practical Case 177

In [11]:
rating_num , rating_den = 0.0, 0.0

allUsers = set(users[’user_id ’])
for other in allUsers:

if user_id == other: continue
rating_num +=

self.sim[user_id][other] * float(users[users
[’user_id ’] == other][’rating’])

rating_den += self.sim[user_id][other]
if rating_den == 0:

if self.df.rating[self.df[’movie_id ’] ==
movie_id].mean() > 0:
Mean movie rating if there is no similar

for the computation
return self.df.rating[self.df[’movie_id ’] ==

movie_id].mean()
else:

else mean user rating
return self.df.rating[self.df[’user_id ’] ==

user_id].mean()
return rating_num/rating_den

For the evaluation of the system we define a function called evaluate. This

function estimates the score for all items in the test set (X_test) and compares

them with the real values using the RMSE.

In [9]:
def evaluate(fit_f ,train ,test):

""" RMSE -based predictive performance evaluation with
pandas. """

ids_to_estimate = zip(test.user_id , test.movie_id)
estimated = np.array ([fit_f(u, i)

if u
in train.user_id
else 3
for (u, i)
in ids_to_estimate])

real = test.rating.values
return compute_rmse(estimated , real)

Now, the system can be executed with the following lines:

In [10]:
print ’RMSE for Collaborative Recommender:’,
print ’ %s’ % evaluate(reco.fit , data_train , data_test)

Out[10]: RMSE for Collaborative Recommender: 1.00468945461

As we can see, the obtained RM SE for this first basic recommender system is

1.004. Sure, that this result could be improved with a bigger dataset, but let us think

of how we can improve it with just few tricks:

Trick 1: Since humans do not usually act the same as critics, i.e., some people

usually rank movies higher or lower than others, this prediction function can be easily

improved by taking into account the user mean as follows:

pred(a, p) = r̄a +

∑

b∈B sim(a, b) ∗ (rb,p − r̄b)
∑

b∈B sim(a, b)
(9.6)

where r̄a and r̄b are the mean rating of user a and b.

178 9 Recommender Systems

Table 9.2 Recommender system using mean user ratings

Critic sim(a,b) Mean ratings:

r̄b

Rating

movie1: rb,p1

sim(a, b) ∗

(rb,p1)

Paul 0.99 4.3 3 −1.28

Alice 0.38 2.73 3 0.1

Marc 0.89 3.12 4.5 1.22

Anne 0.92 3.98 3 −0.9
∑

b∈N sim(a, b) ∗ (rb,p − r̄b) −1.13
∑

b∈N sim(a, b) 3.18

pred(a, p) 3.14

Let us see an example: Prediction for the user “a” with r̄a = 3.5 (Table 9.2)

If we modify the recommender system using Eq. (9.6), the RMSE obtained is the

following:

Out[11]: RMSE for Collaborative Recommender: 0.950086206741

Trick 2: One of the most critical steps with this kind of recommender system is

the user similarity computation. If two users have very few items in common, let us

imagine that there is only one, and the rating is the same, the user similarity will be

really high; however, the confidence is really small. In order to solve this problem

we can modify the similarity function as follows:

new_sim(a, b) = sim(a, b) ∗
min(K , |Pab|)

K
(9.7)

where |Pab| is the number of common items shared by user a and user b, and K is the

minimum number of common items in order not to penalize the similarity function.

In the next code, we define an update version of the similarity function called

simPersonCorrected that follows the Eq. 9.7.

In [12]:
def SimPearsonCorrected (df , User1 , User2 ,

min_common_items = 1,
pref_common_items = 20):

""" RMSE -based predictive performance evaluation with
pandas. """

GET MOVIES OF USER1
m_user1 = df[df[’user_id ’] == User1]
GET MOVIES OF USER2
m_user2 = df[df[’user_id ’] == User2]

FIND SHARED FILMS
rep = pd.merge(m_user1 , m_user2 , on = ’movie_id ’)
if len(rep) == 0:

return 0
if(len(rep) < min_common_items):

return 0

9.5 Practical Case 179

In [12]:
res = pearsonr(rep[’rating_x ’], rep[’rating_y ’])[0]
res = res * min(pref_common_items , len(rep))
res = res / pref_common_items
if(isnan(res)):

return 0
return res

reco4 = CollaborativeFiltering3(
data_train ,
similarity = SimPearsonCorrected)

reco4.learn ()

print ’RMSE for Collaborative Recommender:’,
print ’ %s’ % evaluate(reco4.fit , data_train , data_test)

Out[12]: RMSE for Collaborative Recommender: 0.930811091922

As it can be seen, with this small modification the RMSE error has decreased

from 1.0 to 0.93.

9.6 Conclusions

In this chapter, we have introduced what are recommender systems, how they work,

and how they can be implemented in Python. We have seen that there are different

types of recommender systems based on the information they use, as well as the

output they produce. We have introduced content-based recommender systems and

collaborative recommender systems; and we have seen the importance of defining

the similarity function between items and users.

We have learned how recommender system can be implemented in Python in order

to answer questions such as which movie should I see? We have also discussed how

recommender system should be evaluated, and several online and offline metrics.

Finally, we have worked with a publicly available dataset from GroupLens in

order to implement and evaluate a collaborative recommendation system for movie

recommendations.

Acknowledgements This chapter was co-written by Santi Seguí and Eloi Puertas

References

1. G. Shani, A. Gunawardana, A survey of accuracy evaluation metrics of recommendation tasks.

in J. Mach. Learn. Res., 10:2935–2962, 2009

2. F. Ricci, L. Rokach, B. Schapira, in Recommender Systems Handbook (Springer, 2015).

10Statistical Natural Language
Processing for Sentiment Analysis

10.1 Introduction

In this chapter, we will perform sentiment analysis from text data. The term sentiment

analysis (or opinion mining) refers to the analysis from data of the attitude of the

subject with respect to a particular topic. This attitude can be a judgment (appraisal

theory), an affective state, or the intended emotional communication.

Generally, sentiment analysis is performed based on the processing of natural

language, the analysis of text and computational linguistics. Although data can come

from different data sources, in this chapter we will analyze sentiment in text data,

using two particular text data examples: one from film critics, where the text is highly

structured and maintains text semantics; and another example coming from social

networks (tweets in this case), where the text can show a lack of structure and users

may use (and abuse!) text abbreviations.

In the following sections, we will review some basic mechanisms required to

perform sentiment analysis. In particular, we will analyze the steps required for

data cleaning (that is, removing irrelevant text items not associated with sentiment

information), producing a general representation of the text, and performing some

statistical inference on the text represented to determine positive and negative senti-

ments.

Although the scope of sentiment analysis may introduce many aspects to be ana-

lyzed, in this chapter and for simplicity, we will analyze binary sentiment analysis

categorization problems. We will thus basically learn to classify positive against

negative opinions from text data. The scope of sentiment analysis is broader, and it

includes many aspects that make analysis of sentiments a challenging task. Some

interesting open issues in this topic are as follows:

• Identification of sarcasm: sometimes without knowing the personality of the per-

son, you do not know whether “bad” means bad or good.

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_10

181

182 10 Statistical Natural Language Processing for Sentiment Analysis

• Lack of text structure: in the case of Twitter, for example, it may contain abbre-

viations, and there may be a lack of capitals, poor spelling, poor punctuation, and

poor grammar, all of which make it difficult to analyze the text.

• Many possible sentiment categories and degrees: positive and negative is a simple

analysis, one would like to identify the amount of hate there is inside the opinion,

how much happiness, how much sadness, etc.

• Identification of the object of analysis: many concepts can appear in text, and how

to detect the object that the opinion is positive for and the object that the opinion is

negative for is an open issue. For example, if you say “She won him!”, this means

a positive sentiment for her and a negative sentiment for him, at the same time.

• Subjective text: another open challenge is how to analyze very subjective sentences

or paragraphs. Sometimes, even for humans it is very hard to agree on the sentiment

of these highly subjective texts.

10.2 Data Cleaning

In order to perform sentiment analysis, first we need to deal with some processing

steps on the data. Next, we will apply the different steps on simple “toy” sentences

to understand better each one. Later, we will perform the whole process on larger

datasets.

Given the input text data in cell [1], the main task of data cleaning is to remove

those characters considered as noise in the data mining process. For instance, comma

or colon characters. Of course, in each particular data mining problem different char-

acters can be considered as noise, depending on the final objective of the analysis. In

our case, we are going to consider that all punctuation characters should be removed,

including other non-conventional symbols. In order to perform the data cleaning pro-

cess and posterior text representation and analysis we will use the Natural Language

Toolkit (NLTK) library for the examples in this chapter.

In [1]:
raw_docs = ["Here are some very simple basic

sentences.",
"They won’t be very interesting , I’m afraid.",
"The point of these examples is to _learn how

basic text \
cleaning works_ on *very simple* data."]

The first step consists of defining a list with all word-vectors in the text. NLTK

makes it easy to convert documents-as-strings into word-vectors, a process called

tokenizing. See the example below.

In [2]:
from nltk.tokenize import word_tokenize
tokenized_docs = [word_tokenize(doc) for doc in

raw_docs]
print tokenized_docs

10.2 Data Cleaning 183

Out[2]: [[’Here’, ’are’, ’some’, ’very’, ’simple’, ’basic’,
’sentences’, ’.’], [’They’, ’wo’, "n’t", ’be’, ’very’,
’interesting’, ’,’, ’I’, "’m", ’afraid’, %’.’], [’The’,
’point’, ’of’, ’these’, ’examples’, ’is’, ’to’, ’_learn’,
’how’, %’basic’, ’text’, ’cleaning’, ’works_’, ’on’, ’*very’,
’simple*’, ’data’, ’.’]]

Thus, for each line of text in raw_docs, word_tokenize function will set

the list of word-vectors. Now we can search the list for punctuation symbols, for

instance, and remove them. There are many ways to perform this step. Let us see

one possible solution using the String library.

In [3]:
import string
string.punctuation

Out[3]: ’!"#\$\%&\’()*+,-./:;<=>?@[\\]∧_‘{|}∼’

See that string.punctuation contains a set of common punctuation sym-

bols. This list can be modified according to the symbols you want to remove. Let us

see with the next example using the Regular Expressions (RE) package how punctu-

ation symbols can be removed. Note that many other possibilities to remove symbols

exist, such as directly implementing a loop comparing position by position.

In the input cell [6], and without going into the details of RE, re.compile
contains a list of “expressions”, the symbols contained instring.punctuation.

Then, for each item in tokenized_docs that matches an expression/symbol

contained inregex, the part of the item corresponding to the punctuation will be sub-

stituted by u” (where u refers to unicode encoding). If the item after substitution cor-

responds tou”, it will be not included in the final list. If the new item is different from

u”, it means that the item contained text other than punctuation, and thus it is included

in the new list without punctuation tokenized_docs_no_punctuation. The

results of applying this script are shown in the output cell [7].

In [4]:
import re
import string
regex = re.compile(’[%s]’ % re.escape(string.

punctuation))
tokenized_docs_no_punctuation = []
for review in tokenized_docs:

new_review = []
for token in review:

new_token = regex.sub(u’’, token)
if not new_token == u’’:

new_review.append(new_token)
tokenized_docs_no_punctuation.append(new_review

)
print tokenized_docs_no_punctuation

184 10 Statistical Natural Language Processing for Sentiment Analysis

Out[4]: [[’Here’, ’are’, ’some’, ’very’, ’simple’, ’basic’,
’sentences’],
[’They’, ’wo’, u’nt’, ’be’, ’very’, ’interesting’, ’I’, u’m’,
’afraid’],
[’The’, ’point’, ’of’, ’these’, ’examples’, ’is’, ’to’,
u’learn’, ’how’, ’basic’, ’text’, ’cleaning’, u’works’, ’on’,
u’very’, u’simple’, ’data’]]

One can see that punctuation symbols are removed, and those words containing

a punctuation symbol are kept and marked with an initial u. If the reader wants

more details, we recommend to read information about the RE package1 for treating

expressions.

Another important step in many data mining systems for text analysis consists of

stemming and lemmatizing. Morphology is the notion that words have a root form.

If you want to get to the basic term meaning of the word, you can try applying

a stemmer or lemmatizer. This step is useful to reduce the dictionary size and the

posterior high-dimensional and sparse feature spaces. NLTK provides different ways

of performing this procedure. In the case of running the porter.stem(word)
approach, the output is shown next.

In [5]:
from nltk.stem.porter import PorterStemmer
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
porter = PorterStemmer ()
#snowball = SnowballStemmer(’english ’)
#wordnet = WordNetLemmatizer ()

#each of the following commands perform stemming on
word

porter.stem(word)
#snowball.stem(word)
#wordnet.lemmatize(word)

Out[5]: [[’Here’, ’are’, ’some’, ’very’, ’simple’, ’basic’,
’sentences’], [’They’, ’wo’, u’nt’, ’be’, ’very’,
’interesting’, ’I’, u’m’, ’afraid’], [’The’, ’point’, ’of’,
’these’, ’examples’, ’is’, ’to’, u’learn’, ’how’, ’basic’,
’text’, ’cleaning’, u’works’, ’on’, u’very’, u’simple’,
’data’]]
[[’Here’, ’are’, ’some’, ’veri’, ’simpl’, ’basic’, ’sentenc’],
[’They’, ’wo’, u’nt’, ’be’, ’veri’, ’interest’, ’I’, u’m’,
’afraid’], [’The’, ’point’,’of’, ’these’, ’exampl’, ’is’,
’to’, u’learn’, ’how’, ’basic’, ’text’, ’clean’, u’work’, ’on’,
u’veri’,u’simpl’, ’data’]]

1https://docs.python.org/2/library/re.html.

https://docs.python.org/2/library/re.html

10.2 Data Cleaning 185

This kind of approaches are very useful in order to reduce the exponential number

of combinations of words with the same meaning and match similar texts. Words

such as “interest” and “interesting” will be converted into the same word “interest”

making the comparison of texts easier, as we will see later.

Another very useful data cleaning procedure consists of removing HTML entities

and tags. Those may contain words and other symbols that were not removed by

applying the previous procedures, but that do not provide useful meaning for text

analysis and will introduce noise in our posterior text representation procedure. There

are many possibilities for removing these tags. Here we show another example using

the same NLTK package.

In [6]:
import nltk
test_string ="<p>While many of the stories tugged

at the heartstrings , I never felt manipulated by
the authors. (Note: Part of the reason why I

don’t like the ’Chicken Soup for the Soul’
series is that I feel that the authors are just
dying to make the reader clutch for the box of
tissues .) "

print ’Original text:’
print test_string
print ’Cleaned text:’
nltk.clean_html(test_string.decode ())

Out[6]: Original text:
<p>While many of the stories tugged at the heartstrings, I
never felt manipulated by the authors. (Note: Part of the
reason why I don’t like the "Chicken Soup for the Soul" series
is that I feel that the authors are just dying to make the
reader clutch for the box of tissues.)

Cleaned text:
u"While many of the stories tugged at the heartstrings, I never
felt manipulated by the authors. (Note: Part of the reason why
I don’t like the "Chicken Soup for the Soul" series is that I
feel that the authors are just dying to make the reader clutch
for the box of tissues.)"

You can see that tags such as “<p>” and “” have been removed. The reader

is referred to the RE package documentation to learn more about how to use it for

data cleaning and HTLM parsing to remove tags.

10.3 Text Representation

In the previous section we have analyzed different techniques for data cleaning, stem-

ming, and lemmatizing, and filtering the text to remove other unnecessary tags for

posterior text analysis. In order to analyze sentiment from text, the next step consists

of having a representation of the text that has been cleaned. Although different rep-

186 10 Statistical Natural Language Processing for Sentiment Analysis

Fig. 10.1 Example of BoW representation for two texts

resentations of text exist, the most common ones are variants of Bag of Words (BoW)

models [1]. The basic idea is to think about word frequencies. If we can define a

dictionary of possible different words, the number of different existing words will

define the length of a feature space to represent each text. See the toy example in

Fig. 10.1. Two different texts represent all the available texts we have in this case.

The total number of different words in this dictionary is seven, which will represent

the length of the feature vector. Then we can represent each of the two available texts

in the form of this feature vector by indicating the number of word frequencies, as

shown in the bottom of the figure. The last two rows will represent the feature vector

codifying each text in our dictionary.

Next, we will see a particular case of bag of words, the Vector Space Model of

text: TF–IDF (term frequency–inverse distance frequency). First, we need to count

the terms per document, which is the term frequency vector. See a code example

below.

In [7]:
mydoclist = [’Mireia loves me more than Hector

loves me’,
’Sergio likes me more than Mireia loves me’,
’He likes basketball more than football ’]

from collections import Counter
for doc in mydoclist:

tf = Counter ()
for word in doc.split():

tf[word] += 1
print tf.items()

Out[7]: [(’me’, 2), (’Mireia’, 1), (’loves’, 2), (’Hector’, 1),
(’than’, 1), (’more’, 1)] [(’me’, 2), (’Mireia’, 1), (’likes’,
1), (’loves’, 1), (’Sergio’, 1), (’than’, 1), (’more’, 1)]
[(’basketball’, 1), (’football’, 1), (’likes’, 1), (’He’, 1),
(’than’, 1), (’more’, 1)]

Here, we have introduced the Python object called a Counter. Counters are only

in Python 2.7 and higher. They are useful because they allow you to perform this

exact kind of function: counting in a loop. A Counter is a dictionary subclass for

counting hashable objects. It is an unordered collection where elements are stored as

dictionary keys and their counts are stored as dictionary values. Counts are allowed

to be any integer value including zero or negative counts.

10.3 Text Representation 187

Elements are counted from an iterable or initialized from another mapping (or

Counter).

In [8]:
c = Counter () # a new , empty counter
c = Counter(’gallahad ’) # a new counter from an

iterable

Counter objects have a dictionary interface except that they return a zero count

for missing items instead of raising a KeyError.

In [9]:
c = Counter ([’eggs’, ’ham’])
c[’bacon’]

Out[9]: 0

Let us call this a first stab at representing documents quantitatively, just by their

word counts (also thinking that we may have previously filtered and cleaned the text

using previous approaches). Here we show an example for computing the feature

vector based on word frequencies.

In [10]:
def build_lexicon(corpus):
define a set with all possible words included in

all the sentences or "corpus"
lexicon = set()
for doc in corpus:

lexicon.update ([word for word in doc.split
()])

return lexicon
def tf(term , document):

return freq(term , document)
def freq(term , document):

return document.split().count(term)
vocabulary = build_lexicon(mydoclist)
doc_term_matrix = []
print ’Our vocabulary vector is [’ +

’, ’.join(list(vocabulary)) + ’]’
for doc in mydoclist:

print ’The doc is "’ + doc + ’"’
tf_vector = [tf(word , doc) for word in

vocabulary]
tf_vector_string = ’, ’.join(format(freq , ’d’)

for freq
in tf_vector)

print ’The tf vector for Document %d is [%s]’
% ((mydoclist.index(doc)+1),

tf_vector_string)
doc_term_matrix.append(tf_vector)

print ’All combined , here is our master document
term matrix: ’

print doc_term_matrix

188 10 Statistical Natural Language Processing for Sentiment Analysis

Out[10]: Our vocabulary vector is [me, basketball, Julie, baseball,
likes, loves, Jane, Linda, He, than, more]
The doc is "Julie loves me more than Linda loves me"
The tf vector for Document 1 is [2, 0, 1, 0, 0, 2, 0, 1, 0, 1,
1]
The doc is "Jane likes me more than Julie loves me"
The tf vector for Document 2 is [2, 0, 1, 0, 1, 1, 1, 0, 0, 1,
1]
The doc is "He likes basketball more than baseball"
The tf vector for Document 3 is [0, 1, 0, 1, 1, 0, 0, 0, 1, 1,
1]
All combined, here is our master document term matrix:
[[2, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1], [2, 0, 1, 0, 1, 1, 1, 0, 0,
1, 1], [0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1]]

Now, every document is in the same feature space, meaning that we can represent

the entire corpus in the same dimensional space. Once we have the data in the

same feature space, we can start applying some machine learning methods: learning,

classifying, clustering, and so on. But actually, we have a few problems. Words are

not all equally informative. If words appear too frequently in a single document,

they are going to muck up our analysis. We want to perform some weighting of these

term frequency vectors into something a bit more representative. That is, we need to

do some vector normalizing. One possibility is to ensure that the L2 norm of each

vector is equal to 1.

In [11]:
import math

def l2_normalizer(vec):
denom = np.sum([el**2 for el in vec])
return [(el / math.sqrt(denom)) for el in vec]

doc_term_matrix_l2 = []
for vec in doc_term_matrix:

doc_term_matrix_l2.append(l2_normalizer(vec))
print ’A regular old document term matrix: ’
print np.matrix(doc_term_matrix)
print ’\nA document term matrix with row -wise L2

norm:’
print np.matrix(doc_term_matrix_l2)

Out[11]: A regular old document term matrix:
[[2 0 1 0 0 2 0 1 0 1 1]
[2 0 1 0 1 1 1 0 0 1 1]
[0 1 0 1 1 0 0 0 1 1 1]]
A document term matrix with row-wise L2 norm:
[[0.57735027 0. 0.28867513 0. 0. 0.57735027
0. 0.28867513 0. 0.28867513 0.28867513]
[0.63245553 0. 0.31622777 0. 0.31622777 0.31622777
0.31622777 0. 0. 0.31622777 0.31622777]
[0. 0.40824829 0. 0.40824829 0.40824829 0. 0.
0. 0.40824829 0.40824829 0.40824829]]

10.3 Text Representation 189

You can see that we have scaled down the vectors so that each element is between

[0, 1]. This will avoid getting a diminishing return on the informative value of a word

massively used in a particular document. For that, we need to scale down words that

appear too frequently in a document.

Finally, we have a final task to perform. Just as not all words are equally valuable

within a document, not all words are valuable across all documents. We can try

reweighting every word by its inverse document frequency.

In [12]:
def numDocsContaining(word , doclist):

doccount = 0
for doc in doclist:

if freq(word , doc) > 0:
doccount += 1

return doccount
def idf(word , doclist):

n_samples = len(doclist)
df = numDocsContaining(word , doclist)
return np.log(n_samples / (float(df)))

my_idf_vector = [idf(word , mydoclist) for word in
vocabulary]

print ’Our vocabulary vector is [’ + ’, ’.join(list
(vocabulary)) + ’]’

print ’The inverse document frequency vector is
[’ + ’, ’.join(format(freq , ’f’) for freq in
my_idf_vector) + ’]’

Out[12]: Our vocabulary vector is [me, basketball, Mireia, football,
likes, loves, Sergio, Hector, He, than, more]
The inverse document frequency vector is [0.405465, 1.098612,
0.405465, 1.098612, 0.405465, 0.405465, 1.098612, 1.098612,
1.098612, 0.000000, 0.000000]

Now we have a general sense of information values per term in our vocabulary,

accounting for their relative frequency across the entire corpus. Note that this is

an inverse. To get TF–IDF weighted word-vectors, we have to perform the simple

calculation of the term frequencies multiplied by the inverse frequency values.

In the next example we convert our IDF vector into a matrix where the diagonal

is the IDF vector.

In [13]:
def build_idf_matrix(idf_vector):

idf_mat = np.zeros((len(idf_vector), len(
idf_vector)))

np.fill_diagonal(idf_mat , idf_vector)
return idf_mat

my_idf_matrix = build_idf_matrix(my_idf_vector)
print my_idf_matrix

190 10 Statistical Natural Language Processing for Sentiment Analysis

Out[13]: [[0.40546511 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 1.09861229 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0.40546511 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1.09861229 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.40546511 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.40546511 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 1.09861229 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1.09861229 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1.09861229 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

That means we can now multiply every term frequency vector by the inverse

document frequency matrix. Then, to make sure we are also accounting for words

that appear too frequently within documents, we will normalize each document using

the L2 norm.

In [14]:
doc_term_matrix_tfidf = []
#performing tf -idf matrix multiplication
for tf_vector in doc_term_matrix:

doc_term_matrix_tfidf.append(np.dot(tf_vector ,
my_idf_matrix))

#normalizing
doc_term_matrix_tfidf_l2 = []
for tf_vector in doc_term_matrix_tfidf:

doc_term_matrix_tfidf_l2.
append(l2_normalizer(tf_vector))

print vocabulary
np.matrix () just to make it easier to look at
print np.matrix(doc_term_matrix_tfidf_l2)

Out[14]: set([’me’, ’basketball’, ’Mireia’, ’football’, ’likes’,
’loves’, ’Sergio’, ’Linda’, ’He’, ’than’, ’more’])
[[0.49474872 0. 0.24737436 0. 0. 0.49474872 0. 0.67026363 0.
0. 0.]
[0.52812101 0. 0.2640605 0. 0.2640605 0.2640605 0.71547492 0.
0. 0. 0.]
[0. 0.56467328 0. 0.56467328 0.20840411 0. 0. 0. 0.56467328 0.
0.]]

10.3.1 Bi-Grams and n-Grams

It is sometimes useful to take significant bi-grams into the model based on the BoW.

Note that this example can be extended to n-grams. In the fields of computational

linguistics and probability, an n-gram is a contiguous sequence of n items from

a given sequence of text or speech. The items can be phonemes, syllables, letters,

words, or base pairs according to the application. The n-grams are typically collected

from a text or speech corpus.

10.3 Text Representation 191

A n-gram of size 1 is referred to as a “uni-gram”; size 2 is a “bi-gram” (or, less

commonly, a “digram”); size 3 is a “tri-gram”. Larger sizes are sometimes referred

to by the value of n, e.g., “four-gram”, “five-gram”, and so on. These n-grams can

be introduced within the BoW model just by considering each different n-gram as a

new position within the feature vector representation.

10.4 Practical Cases

Python packages provide useful tools for analyzing text. The reader is referred to

the NLTK and Textblob package2 documentation for further details. Here, we will

perform all the previously presented procedures for data cleaning, stemming, and

representation and introduce some binary learning schemes to learn the text repre-

sentations in the feature space. The binary learning schemes will receive examples

for training positive and negative sentiment texts and we will apply them later to

unseen examples from a test set.

We will apply the whole sentiment analysis process in two examples. The first

corresponds to the Large Movie reviews dataset [2]. This is one of the largest public

available data sets for sentiment analysis, which includes more than 50,000 texts

from movie reviews including the groundtruth annotation related to positive and

negative movie reviews. As a proof on concept, for this example we use a subset of

the dataset consisting of about 30% of the data.

The code reuses part of the previous examples for data cleaning, reads training

and testing data from the folders as provided by the authors of the dataset. Then,

TF–IDF is computed, which performs all steps mentioned previously for computing

feature space, normalization, and feature weights. Note that at the end of the script we

perform training and testing based on two different state-of-the-art machine learning

approaches: Naive Bayes and Support Vector Machines. It is beyond the scope of

this chapter to give details of the methods and parameters. The important point here

is that the documents are represented in feature spaces that can be used by different

data mining tools.

2https://textblob.readthedocs.io/en/dev/.

https://textblob.readthedocs.io/en/dev/

192 10 Statistical Natural Language Processing for Sentiment Analysis

In [15]:
from nltk.tokenize import word_tokenize
from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import

TfidfVectorizer
from nltk.classify import NaiveBayesClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn import svm
from unidecode import unidecode

def BoW(text):
Tokenizing text
text_tokenized = [word_tokenize(doc) for doc in

text]
Removing punctuation
regex = re.compile(’[%s]’ % re.escape(string.

punctuation))
tokenized_docs_no_punctuation = []
for review in text_tokenized:

new_review = []
for token in review:

new_token = regex.sub(u’’, token)
if not new_token == u’’:

new_review.append(new_token)
tokenized_docs_no_punctuation.append(

new_review)
Stemming and Lemmatizing
porter = PorterStemmer ()
preprocessed_docs = []
for doc in tokenized_docs_no_punctuation:

final_doc = ’’
for word in doc:

final_doc = final_doc + ’ ’ + porter.
stem(word)

preprocessed_docs.append(final_doc)
return preprocessed_docs

#read your train text data here
textTrain=ReadTrainDataText ()
preprocessed_docs=BoW(textTrain) # for train data
Computing TIDF word space
tfidf_vectorizer = TfidfVectorizer(min_df = 1)
trainData = tfidf_vectorizer.fit_transform(

preprocessed_docs)

textTest=ReadTestDataText() #read your test text
data here

prepro_docs_test=BoW(textTest) # for test data
testData = tfidf_vectorizer.transform(

prepro_docs_test)

10.4 Practical Cases 193

In [16]:

print(’Training and testing on training Naive Bayes
’)

gnb = GaussianNB ()
testData.todense ()
y_pred = gnb.fit(trainData.todense (), targetTrain)

.predict(trainData.todense ())
print("Number of mislabeled training points out of

a total %d points : %d"
% (trainData.shape [0],(targetTrain != y_pred)

.sum()))

y_pred = gnb.fit(trainData.todense (), targetTrain)
.predict(testData.todense ())

print("Number of mislabeled test points out of a
total %d points : %d" %

(testData.shape [0],(targetTest != y_pred).sum
()))

print(’Training and testing on train with SVM’)
clf = svm.SVC()
clf.fit(trainData.todense (), targetTrain)
y_pred = clf.predict(trainData.todense ())
print("Number of mislabeled test points out of a

total %d points : %d" %
(trainData.shape [0],(targetTrain != y_pred).

sum()))

print(’Testing on test with already trained SVM’)
y_pred = clf.predict(testData.todense ())
print("Number of mislabeled test points out of a

total %d points : %d" %
(testData.shape [0],(targetTest != y_pred).sum

()))

In addition to the machine learning implementations provided by the Scikit-

learn module used in this example, NLTK also provides useful learning tools for

text learning, which also includes Naive Bayes classifiers. Another related pack-

age with similar functionalities is Textblob. The results of running the script are

shown next.

194 10 Statistical Natural Language Processing for Sentiment Analysis

Out[16]: Training and testing on training Naive Bayes
Number of mislabeled training points out of a total 4313 points
: 129
Number of mislabeled test points out of a total 6292 points :
2087
Training and testing on train with SVM
Number of mislabeled test points out of a total 4313 points :
1288
Testing on test with already trained SVM
Number of mislabeled test points out of a total 6292 points :
1680

We can see that the training error of Naive Bayes on the selected data is 129/4313

while in testing it is 2087/6292. Interestingly, the training error using SVM is higher

(1288/4313), but it provides a better generalization of the test set than Naive Bayes

(1680/6292). Thus it seems that Naive Bayes produces more overfitting of the data

(selecting particular features for better learning the training data but producing such

high modifications of the feature space for testing that cannot be recovered, just

reducing the generalization capability of the technique). However, note that this is a

simple execution with standard methods on a subset of the dataset provided. More

data, as well as many other aspects, will influence the performance. For instance,

we could enrich our dictionary by introducing a list of already studied positive and

negative words.3 For further details of the analysis of this dataset, the reader is

referred to [2].

Finally, let us see another example of sentiment analysis based on tweets. Although

there is some work using more tweet data4 here we present a reduced set of tweets

which are analyzed as in the previous example of movie reviews. The main code

remains the same except for the definition of the initial data.

In [17]:
textTrain = [’I love this sandwich.’, ’This is an

amazing place!’, ’I feel very good about these
beers.’, ’This is my best work.’, ’What an
awesome view’, ’I do not like this restaurant ’,
’I am tired of this stuff.’, ’I can not deal
with this’, ’He is my sworn enemy!’, ’My boss is
horrible.’]

targetTrain = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
preprocessed_docs=BoW(textTrain)
tfidf_vectorizer = TfidfVectorizer(min_df = 1)
trainData = tfidf_vectorizer.fit_transform(

preprocessed_docs)

3Such as those provided in http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html.
4http://www.sananalytics.com/lab/twitter-sentiment/.

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.sananalytics.com/lab/twitter-sentiment/

10.4 Practical Cases 195

In [18]:
textTest = [’The beer was good.’, ’I do not enjoy

my job’, ’I aint feeling dandy today’, ’I feel
amazing!’, ’Gary is a friend of mine.’, ’I can
not believe I am doing this.’]

targetTest = [0, 1, 1, 0, 0, 1]
preprocessed_docs=BoW(textTest)
testData = tfidf_vectorizer.transform(

preprocessed_docs)

print(’Training and testing on test Naive Bayes’)
gnb = GaussianNB ()
testData.todense ()
y_pred = gnb.fit(trainData.todense (), targetTrain)

.predict(trainData.todense ())
print("Number of mislabeled training points out of

a total %d points : %d" % (trainData.shape [0],(
targetTrain != y_pred).sum()))

y_pred = gnb.fit(trainData.todense (), targetTrain)
.predict(testData.todense ())

print("Number of mislabeled test points out of a
total %d points : %d" % (testData.shape [0],(
targetTest != y_pred).sum()))

print(’Training and testing on train with SVM’)
clf = svm.SVC()
clf.fit(trainData.todense (), targetTrain)
y_pred = clf.predict(trainData.todense ())
print("Number of mislabeled test points out of a

total
%d points : %d"
% (trainData.shape [0],(targetTrain != y_pred

).sum()))

print(’Testing on test with already trained SVM’)
y_pred = clf.predict(testData.todense ())
print("Number of mislabeled test points out of a

total
%d points : %d"
% (testData.shape [0],(targetTest != y_pred).

sum()))

Out[17]: Training and testing on test Naive Bayes
Number of mislabeled training points out of a total 10 points : 0
Number of mislabeled test points out of a total 6 points : 2
Training and testing on train with SVM
Number of mislabeled test points out of a total 10 points : 0
Testing on test with already trained SVM
Number of mislabeled test points out of a total 6 points : 2

In this scenario both learning strategies achieve the same recognition rates in both

training and test sets. Note that similar words are shared between tweets. In practice,

196 10 Statistical Natural Language Processing for Sentiment Analysis

with real examples, tweets will include unstructured sentences and abbreviations,

making recognition harder.

10.5 Conclusions

In this chapter, we have analyzed the problem of binary sentiment analysis of text

data: data cleaning to remove irrelevant symbols, punctuation and tags; stemming in

order to define the same root for different works with the same meaning in terms of

sentiment; defining a dictionary of words (including n-grams); and representing text

in terms of a feature space with the length of the dictionary. We have also seen cod-

ification in this feature space, based on normalized and weighted term frequencies.

We have defined feature vectors that can be used by any machine learning tech-

nique in order to perform sentiment analysis (binary classification in the examples

shown), and reviewed some useful Python packages, such as NLTK and Textblob,

for sentiment analysis.

As discussed in the introduction of this chapter, we have only reviewed the senti-

ment analysis problem and described common procedures for performing the analysis

resulting from a binary classification problem. Several open issues can be addressed

in further research, such as the identification of sarcasm, a lack of text structure (as

in tweets), many possible sentiment categories and degrees (not only binary but also

multiclass, regression, and multilabel problems, among others), identification of the

object of analysis, or subjective text, to name a few.

The tools described in this chapter can define a basis for dealing with those more

challenging problems. One recent example of current state-of-the-art research is the

work of [3], where deep learning architectures are used for sentiment analysis. Deep

learning strategies are currently a powerful tool in the fields of pattern recognition,

machine learning, and computer vision, among others; the main deep learning strate-

gies are based on neural network architectures. In the work of [3], a deep learning

model builds up a representation of whole sentences based on the sentence struc-

ture, and it computes the sentiment based on how words form the meaning of longer

phrases. In the methods explained in this chapter, n-grams are the only features that

capture those semantics. For further discussion in this field, the reader is referred

to [4,5].

Acknowledgements This chapter was co-written by Sergio Escalera and Santi Seguí.

References

1. Z. Ren, J. Yuan, J. Meng, Z. Zhang, IEEE Transactions on Multimedia 15(5), 1110 (2013)

References 197

2. A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, in Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human Language Technolo-

gies (Association for Computational Linguistics, Portland, Oregon, USA, 2011), pp. 142–150.

URL http://www.aclweb.org/anthology/P11-1015

3. R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, C. Potts, Conference on Empirical

Methods in Natural Language Processing (2013)

4. E. Cambria, B. Schuller, Y. Xia, C. Havasi, IEEE Intelligent Systems 28(2), 15 (2013)

5. B. Pang, L. Lee, Found. Trends Inf. Retr. 2(1–2), 1 (2008)

http://www.aclweb.org/anthology/P11-1015

11Parallel Computing

11.1 Introduction

The computer industry underwent a vigorous shake-up several years ago. Major chip

manufacturers gave up trying to increase processor frequency. Each year, more and

more transistors fit into the same space, but their clock speed cannot be increased

without overheating. Thus, rather than trying to increase the clock speed, manufac-

turers turned to multicore architectures. A multicore processor is a single computing

component with two or more processing units (called “cores”) which read and exe-

cute program instructions. Multiple cores can run different instructions at the same

time, thereby increasing the overall speed of programs susceptible to parallel com-

puting. Within multicore systems, the cores communicate through hardware (the bus)

in order to synchronize access to common resources such as RAM.

The operating system is the application that manages these multiple cores. If

two computation-intensive processes (i.e., applications) are run on the computer, the

operating system manages things so that each task is run on a different core. If we

have a single computation-intensive task, it will only run on one core, even if our

computer has multiple cores. If nothing is done explicitly, we will waste a lot of

computation power!

Currently, in most parallel programming frameworks, the programmer has to

manually split the computation work into multiple tasks so that each one is executed

in different cores. The programmer has to perform the split and the operating system

will then automatically execute each task on a different core. So, each task has

to be run in different processes or threads. This is the principle behind parallel

programming; harnessing multiple processors to work on a single task by dividing

it into multiple (smaller) tasks.

In order to make the most of multicore capabilities, the number of processes

should be equal to the number of processors. Within a parallel computing context,

it does not make much sense to define more tasks than cores we have, e.g., defining

eight computation-intensive tasks if our computer only has four cores. In this latter

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1_11

199

200 11 Parallel Computing

case, the operating system will try to run eight tasks using four cores. This is done by

switching between the tasks in such a way that each one gets approximately the same

amount of computing time. Switching between tasks has a computational cost and

thus overall performance may suffer if the number of simultaneous tasks is higher

than the number of available cores.

Assume that a task takes T seconds to run on a single core (using standard seri-

alized programming). Now assume that we have a computer with N cores and that

we have divided our serialized application into N subtasks. By using the parallel

capabilities of our computer we may be able to reduce the total computation time to

T/N . This is the ideal case and usually we will not be able to reduce the computation

time by a factor of N . This is due to the fact that cores, on the one hand, need to syn-

chronize at the hardware level in order to access common resources such as RAM;

and, on the other hand, the operating system needs some time to switch between

all the tasks that run on the computer. However, using the multicore capabilities of

the computer unit will result in a reduction of the computation time if the tasks are

properly defined.

Parallelization can also be performed by means of distributed computing. While

in multicore systems the cores communicate with each other through the bus at

the hardware level, in distributed systems software communicates and coordinates

the actions of computational entities located within a network. The computational

entities are usually computers. In distributed computing, a large number of discrete

computers, named nodes, distributed across a network (e.g., the Internet) devote

some or all of their computation time to solving a common problem; each node

receives and completes many small tasks, reporting the results to a central server

which integrates the results into the overall solution. Each of the nodes has its own

local memory and thus tasks that run on different computers do not need to coordinate

access to it. However, since information is exchanged through the network, care must

be taken in order to select the amount of information that is passed so as to optimize

the computational performance.

In this chapter we will focus on IPython’s capabilities for parallel computing, on

both multicore and distributed systems. IPython does indeed offer an environment

capable of dealing with both architectures in a transparent manner for the program-

mer. The user should be aware of the underlying architecture in which the application

will be run in order to avoid loss of performance. We would like to point out that

Python currently does not offer support for the parallel capabilities explained below.

IPython, however, supports them.

11.2 Architecture

Figure 11.1 shows a simplified version of the IPython architecture for parallel com-

puting (multicore and distributed).1 The proposed architecture enables IPython to

1For a more detailed description please see http://ipyparallel.readthedocs.io/en/stable/intro.html.

Last seen July 2016.

http://ipyparallel.readthedocs.io/en/stable/intro.html

11.2 Architecture 201

Fig. 11.1 IPython’s

architecture for parallel

computing (multicore and

distributed)

support many different styles of parallelism including those described in this chapter.

Each of the blocks is explained below:

• Each engine is an instance of IPython, usually an IPython interpreter, that receives

commands through a connection. When multiple engines are started, multicore

and distributed computing becomes possible.

• The scheduler is an application that distributes the commands to the engines. We

will see that there are two ways of distributing this work: the direct view and the

load-balanced view, described in later sections.

• The client is an IPython object created at an IPython interpreter. This object will

allow us to send commands to the IPython engines.

IPython uses the term cluster to refer to the scheduler and the set of engines that

make parallelization possible. It should not be confused with the term cluster used

in supercomputing. In addition, the reader should take into account that:

• Each engine is an independent instance of an IPython interpreter, i.e., it runs an

independent process. None of the variables declared at, e.g., engine 1 are visible

to the remaining engines or to the client. In a similar way, if we want to work with

numpy functions, we should import this toolbox to every engine.

• We may be able to control at which engine each task is executed, but we will not

be able to control on which core each engine is executed; this is the job of the

operating system.

11.2.1 Getting Started

To use IPython’s parallel capabilities, the first thing to do is to start the cluster. There

are two ways of doing this:

• From the notebook interface. This is the simplest way of proceeding and is the

recommended way for newbies in this topic. Within the IPython notebook, we

can use the Clusters tab of the dashboard, and press Start with the desired number

202 11 Parallel Computing

of cores, under the desired profile.2 This will automatically run the necessary

commands to start the IPython cluster. In this case, the notebook will be used as

the interface with the cluster; i.e., we will be able to send different tasks to the

engines using the web interface.

• From the command line of a terminal. We can run the following command to start

an IPython cluster:

$ ipcluster start

This command will create a cluster with N engines, where N equals the number

of cores. If we want to create a cluster with a different number of engines, we just

run:

$ ipcluster start -n 4

With this command we start a cluster with four engines. Once the engines are

started, we may run an IPython interpreter.

$ ipython

11.2.2 Connecting to the Cluster (The Engines)

We have seen how to initialize the cluster. No matter which way we initialize the

cluster, the following commands allow us to connect to it. These commands should

either be introduced through the notebook or be typed into the IPython command

line interpreter (the client):

In [1]:
from IPython import parallel

engines = parallel.Client()

engines.block = True

print engines.ids

Out[1]: [0, 1, 2, 3, 4, 5, 6, 7]

These commands connect to the cluster and output the number of engines in it.

If an error is shown when running the commands, the cluster has not been correctly

created. We will explain later on the meaning of the block attribute.

The variable engines is an object that represents the available engines to which

commands can be sent. Let us now see two different ways we can send tasks to the

engines: the first, called the direct view, is simpler and allows the user to directly

control which tasks are sent to which engines; the second, called the load-balanced

view, delegates to the IPython scheduler the task of deciding which engines each

task is sent to.

2More information on ipcluster profiles can be found at http://ipython.readthedocs.io/en/stable/.

http://ipython.readthedocs.io/en/stable/

11.2 Architecture 203

As will be seen next, the former view is useful if a task can be evenly distributed

computationally into smaller tasks; whereas the second is more useful if such sub-

division cannot be easily done. For instance, if we have to analyze multiple data

files, the direct view is a good approach if all the files have approximately the same

size. But if the files differ (quite a lot) in size, the load-balanced view is the better

approach. Let us now see both approaches.

11.3 Multicore Programming

11.3.1 Direct View of Engines

How do we send a command to the cluster? Recall that the engines variable just

defined represents the engines in the cluster. Within the direct view, engines[0]

represents the first engine, engines[1] the second engine, and so on. The follow-

ing commands, executed on the client (i.e., the IPython interpreter), send commands

to the first engine:

In [2]:
engines [0]. execute(’a = 2’)

engines [0]. execute(’b = 10’)

engines [0]. execute(’c = a + b’)

We may retrieve the result by executing the following command on the client:

In [3]:
engines [0]. pull(’c’)

Out[3]: 12

Note that we do not have direct access to the command line of the first engine.

Rather, we may send commands to it through the client.

What about parallelization? Let us try the following:

In [4]:
engines [0]. execute(’a = 2’)

engines [0]. execute(’b = 10’)

engines [1]. execute(’a = 9’)

engines [1]. execute(’b = 7’)

engines [0:2]. execute(’c = a + b’)

These commands initialize different values for a and b at engines 0 and 1 and

execute the sum at both engines. Since each engine runs an independent process, the

operating system may schedule each engine at different cores and thus execution is

performed in parallel. Again, as before, we can retrieve both results using the pull

command:

204 11 Parallel Computing

In [5]:
engines [0:2]. pull(’c’)

Out[5]: [12, 16]

Note that with these commands we are directly accessing the engines and that is

why this type of approach is called the direct view.

In order to simplify the code, let us define the following variables:

In [6]:
dview2 = engines [0:2]

dview = engines.direct_view ()

The variabledview2 references the first two engines, whereasdview references

all the current engines. This variable will be used later on, in Sect. 11.5.

Let us now try with matrix multiplication. Assume we have created four matrices

A0, B0, A1, and B1 on the client. The objective is to compute the matrix products:

C0 = A0B0 and C1 = A1B1.

The commands to be executed are as follows:

In [7]:
dview2.execute(’import numpy as np’)

engines [0]. push(dict(A=A0 , B=B0))

engines [1]. push(dict(A=A1 , B=B1))

dview2.execute(’C = np.dot(A,B)’)

dview2.pull(’C’)

Observe that theimport command has to be run on each of the engines so that the

scientific computing library becomes available on each engine. As before, the push

and pull commands are used to send and retrieve data between the client and the

engines, and the execute command computes the matrix product on both engines.

It should be pointed out that the push, execute, and pull commands block (i.e.,

they do not return) until the engines have completed their corresponding task. This is

due to the attributeengines.block = Truewe set when initializing the cluster,

see Sect. 11.2.2. We may set the attribute to False, in which case the commands

will return immediately, without waiting for the command to end. This feature may

be very useful if we want to take full advantage of parallelization capabilities and

performance. However, additional commands need to be introduced in order to ensure

that, for instance, the execute command is not issued before the engines have

received the corresponding matrices with the push command. The reader may find

more information on this issue in the corresponding documentation.3 An example

of the non-blocking feature is shown in Sect. 11.5.

The previous examples show us how to execute commands on engines as if we

were typing them directly into the command line. Indeed, we have manually sent,

3http://ipython.readthedocs.io/en/stable/.

http://ipython.readthedocs.io/en/stable/

11.3 Multicore Programming 205

executed, and retrieved the results of computations. This procedure may be useful

in some cases but in many cases there will be no need for it. Indeed, the apply

function allows us to simplify such procedure. Let us see this with the following

example:

In [8]:
def mul(A, B):

import numpy as np

C = np.dot(A, B)

return C

C = engines [0]. apply(mul , A0 , B0)

These commands, executed on the client, perform a remote call. The function

mul is defined locally but is executed on the first engine. There is no need to use

the push and pull functions explicitly to send and retrieve the results; it is done

implicitly. All methods that communicate with the engines are built on top of the

apply method. Note the import numpy as np inside the function. This is a

common model, to ensure that the appropriate toolboxes are imported where the task

is run.

If we execute dview2.apply(mul, A0, B0) we would execute the same

command on engines 0 and 1. So, how can we call up the mul function and distribute

parameters among the engines? The direct view (and load-balanced view, as we will

see next) offers us the map method to tackle this issue:

In [9]:
[C0 , C1] = dview2.map(mul ,[A0 , A1],[B0 , B1])

The map call splits the tasks between the engines associated with dview2.

In the previous example, the task mul(A0,B0) is executed on one engine and

mul(A1, B1) is executed on the other one. Which command is executed on each

engine? What happens if the list of arguments to map includes three or more matrices?

We may see this with the following example:

In [10]:
engines [0]. execute(’my_id = "engineA"’)

engines [1]. execute(’my_id = "engineB"’)

def sleep_and_return_id (sec):

import time

time.sleep(sec)

return my_id ,sec

dview2.map(sleep_and_return_id , [3, 3, 3, 1, 1, 1])

Note that the sleep_and_return_id makes the function sleep for the spec-

ified amount of time and returns the identifier of the engine that has executed the

function. The output is as follows:

206 11 Parallel Computing

Out[10]: [(’engineA’, 3),

(’engineA’, 3),

(’engineA’, 3),

(’engineB’, 1),

(’engineB’, 1),

(’engineB’, 1)]

The previous output shows to which engine each task is assigned. The direct

view distributes the tasks in a uniform way among the engines before execut-

ing them no matter which is the delay we pass as argument to the function

sleep_and_return_id. Since the block attribute is set to True, the map

function blocks until all engines have finished with their corresponding tasks. This

is a good way to proceed if you expect each task to take the same amount of time.

But if not, as is the case in the previous example, computation time is wasted and so

we recommend to use the load-balanced view instead.

11.3.2 Load-Balanced View of Engines

The load-balanced view is an interface that allows, as does the direct view interface,

parallelization of tasks. With load-balanced view, however, the user has no direct

access to individual engines. It is the IPython scheduler that assigns work to each

engine. This interface is simultaneously simpler and more powerful.

To create a load-balanced view we may use the following command:

In [11]:
engines.block = True

lview2 = engines.load_balanced_view(targets = [0, 1])

lview = engines.load_balanced_view ()

Again, we use the blocking mode since it simplifies the code. As can be seen,

we have defined two variables: lview2 is a variable that references the first two

engines, whereas lview references all the engines.

Our example will be centered on the sleep_and_return_id function we

saw in the previous subsection:

In [12]:
lview2.map(sleep_and_return_id , [3 ,3 ,3 ,1 ,1 , 1])

Observe that rather than using the direct view interface (dview2 variable) of

the map function, we use the associated load-balanced view interface (lview2

variable). The output for our execution is as follows:

Out[12]: [(’engineB’, 3),

(’engineA’, 3),

(’engineB’, 3),

(’engineA’, 1),

(’engineA’, 1),

(’engineA’, 1)]

11.3 Multicore Programming 207

As for the case of the direct view, the map function returns as soon as all the tasks

have finished, since we are using the blocking mode. The output may vary each time

the map function is executed. In this case, the tasks are assigned to the engines in

a dynamic way. The map function of the load-balanced view begins by assigning

one task to each engine in the order given by the parameters of the map function.

By default, the load-balanced view scheduler then assigns a new task to an engine

when it becomes free.4 Since with the load-balanced view we do not know on which

engine execution will take place, explicit data movement methods like push and

pull functions are not provided in this view. The direct view should be used instead

if needed.

The reader should have noticed the simplicity of the IPython interface to parallelize

tasks. Once the cluster of engines has been set up, we may use the map function to

execute tasks in parallel. This simplicity allows IPython’s parallelization capabilities

to be used in distributed computing. We next offer an overview of some of the

associated issues.

11.4 Distributed Computing

The previous section introduced multicore computing; i.e., how to take advantage

of the N multiple cores of a computer in order to speed up code execution. An

application that takes T seconds to execute on a single core could be executed in

T/N seconds if the tasks are properly defined. But what if we need to reduce the

computation time even more?

One solution might be what is called as scale-up. That is, buying a new computer

or a new processor with more cores, adding more memory to the system, buying

faster storage, and so on.

Another solution is called scale-out: interconnecting multiple computers to make

them work together to solve a problem. That is, create a grid of computers. Grids

allow you to scale your system to meet your needs: add as many computers as you

need, use all of them or only a few of them. Grids offer great scalability but low

performance; whereas supercomputers give the best performance values but have

scalability limitations.

In distributed computing, the nodes work together in order to solve a problem.

As information is exchanged through the network, care must be taken to select the

amount of information that is passed in order to optimize computational performance.

One of the most prominent examples of distributed computing is the SETI@Home

project: a project that searches for extraterrestrial life by analyzing radiotelescope

signals. For that, the computational capacity of millions of computers belonging to

volunteer users is used.

4Changing this behavior is beyond the scope of this chapter. You can find more details here: http://

ipyparallel.readthedocs.io/en/stable/task.html#schedulers. Last seen November 2015.

http://ipyparallel.readthedocs.io/en/stable/task.html#schedulers
http://ipyparallel.readthedocs.io/en/stable/task.html#schedulers

208 11 Parallel Computing

IPython offers the possibility of setting up a cluster of engines running on dif-

ferent computers. One way to proceed is to use the ipcluster command (see

Sect. 11.2.1) in SSH mode; the official documentation has examples of this. Config-

uring IPython to work with a grid of computers is not as easy as configuring it for

multicore computing, so commercial platforms that offer the computational grid and

ease the configuration process are also available.

All the commands that are discussed in Sect. 11.3 can also be used in distributed

programming. However, it should be taken into account that the push and pull

commands send data through the network. Sending many data through the network

may drastically reduce the performance of the system; thus data movement is an

important issue to tackle in distributed computing. Rather than using push and

pull commands (either explicit or implicitly), engines may access the data they

need directly on disk. Different approaches may be used in this case; data may be

stored in a shared filesystem, for instance. This approach is useful and common if

computers are interconnected within a local network but it is difficult to implement

with computers connected in different networks. In a shared filesystem, the data are

stored in a server and thus each computer has to connect with the server and retrieve

the data needed from the same server. This can become a bottleneck when working

with many data.

Another approach is to use a distributed filesystem. In this case, rather than storing

all the data in a single server, data are divided into chunks and replicated between

multiple computers. The data to be processed are distributed and thus the same

computer that stores the chunk can work with it. This way of proceeding may be

useful for Big Data: a broad term that refers to the processing of large datasets.

11.5 A Real Application: New York Taxi Trips

This section presents a real application of the parallel capabilities of IPython and

discussion of several approaches to it. The dataset is a database of taxi trips in

New York and it has been obtained through a Freedom of Information Law (FOIL)

request from the New York City Taxi & Limousine Commission (NYCT&L) by the

University of Illinois at Urbana-Champaign.5 The dataset consists of 12 × 2 Gbyte

CSV files. Each file has approximately 14 million entries (lines) and is already

cleaned. Thus no special preprocessing is needed to be able to process it. For our

purposes, we are only interested in the following information from each entry:

• pickup_datetime: start time of the trip, mm-dd-yyyy hh24:mm:ss EDT.

• pickup_longitude and pickup_latitude: GPS coordinates at the start

of the trip.

5http://publish.illinois.edu/dbwork/open-data/.

http://publish.illinois.edu/dbwork/open-data/

11.5 A Real Application: New York Taxi Trips 209

Our objective is to analyze these data in order to answer the following questions:

for each district, how many pickups are performed during week days and how many

during weekends? And how many pickups are performed in the morning? For this

issue, the city of New York is arbitrarily divided into nine districts: ChinaTown, WTC,

Soho, Harlem, UpperTown, MidTown, DownTown, UpperEastSide, UpperWestSide,

and Financial.

Implementing the previous classification is rather simple since it only requires

checking, for each entry, the GPS coordinates of the start of the trip and the pickup

date and time. Performing this task in a sequential way may take a rather long time,

since the number of entries, for a single CSV file, is rather large. In addition, special

care has to be taken when reading the file since a 2 Gbyte file may not fit into the

computer’s memory.

We may take advantage of parallelization capabilities in order to reduce the pro-

cessing time. The idea is to divide the input data into chunks so that each engine takes

care of classifying the entries in their corresponding chunks. A simple procedure may

follow from the previous idea: we may explicitly divide the original 2 Gbyte file into

multiple smaller files of approximately the same number of entries. Such splitting

may be performed using, for instance, the Unix split command. Once performed,

each engine reads and processes its chunks and the result may be collected by the

client. Since we expect each chunk to be processed in the same amount of time the

chunks may be distributed by the client using the map function of the direct view.

Although straightforward to implement, this has several drawbacks. Note that

the new procedure includes a splitting stage that divides the input file into multiple

smaller files. Splitting the file implies accessing a disk for reading and writing,

and thus it may reduce the overall possible improvement, since accessing the disk is

usually slow in comparison to CPUs computing capabilities. In addition, the splitting

process reads the input file and afterwards each engine reads the split data again from

the disk. There is no need to read data twice. We may avoid reading the data twice by

letting each engine read their corresponding chunks from the original non-split file.

However, this may also reduce the overall improvement since it may imply numerous

movements of the disk brace when data are read from the disk by multiple engines.

Finally, care should be taken when splitting the input file into smaller ones. Notice

that each engine will read its assigned chunk and thus we must ensure that all chunks

read by the engines fit into memory.

11.5.1 A Direct View Non-Blocking Proposal

We propose here a second approach which avoids reading the data twice by the

computer. It is based on implementing a producer–consumer paradigm in order to

distribute the tasks. The producer, associated with the client, reads the chunks from

disk and distributes them among the engines using a round-robin technique. No

explicit map function is used in this case. Rather, we simulate the behavior of the

map function in order to have fine control of the parallel problem. Recall that each

210 11 Parallel Computing

engine runs an independent process. Since we assign different tasks to each engine,

the operating system will try to execute each engine via a different process.

Assume engines are labeled with values 1 to N. The proposed solution, based on

a round-robin algorithm, is as follows: the client begins by manually distributing

a chunk to each engine in an ordered way, from engine 1 to engine N, and asking

them to analyze its contents. This is performed in a non-blocking mode: the client

will not wait for the task to finish on one engine in order to send a chunk to the next

engine. Once a chunk has been distributed to each engine, the client then waits for

the engine 1 to finish. Once finished, it sends a new chunk to it and asks it to analyze

it without waiting for the engine to finish. The client then waits for the engine 2

to finish, sends it a new chunk and asks it to process it, and so on. The previous

procedure is repeated until all the chunks have been sent to the engines. The engines

accumulate the overall partial result of analyzing their chunks in a local variable.

Once all the engines have finished, the client collects the partial results of each engine

to compute the final result.

This round-robin technique is useful since each engine receives a chunk of the

same size. Thus, each engine is expected to take the same amount of time to process

its chunk. Indeed, if all engines are processing a chunk, the most likely engine to

finish first is the one that, among all engines, is next in the round-robin queue.

Our solution is based on the direct view interface, see Sect. 11.3.1. We use the

direct view since we would like to have explicit access to the engines in order to

distribute the chunks. We also assume that one CSV file does not fit into memory.

Therefore, the client (i.e., the producer) will split the input data into uniform chunks

of appropriate size. The whole implementation of the solution is available as an

IPython notebook. Here, we discuss only issues related to parallelization. Therefore,

no number has been assigned to the input cells.

First, let dview be an IPython object associated with all the engines in the cluster.

We set the block attribute to True, i.e., by default all the commands that are sent to

the engines will not return until they are finished. In order to be able to send tasks to

the engines in a round-robin-like fashion, an infinite iterator over the list of engines

can be created. This can be done with a Cycle object:

from itertools import cycle

c_engines = cycle(engines.ids)

Our proposal then has the following steps, see Fig. 11.2:

1. We begin by sending each engine all the necessary functions that are needed to

process the data. Of these functions, we just mention init(), which resets the

(local) engine’s variables, and process(b), which classifies a chunk b of lines

and groups the results into a local_total variable, which is local to each

engine. After sending the necessary functions to the engines, in each engine we

execute the init() function, in order to initialize the local variables in each

engine:

11.5 A Real Application: New York Taxi Trips 211

Fig. 11.2 Block diagram of the algorithm to process databases with taxi trips

for i in engines.ids:

async_tasks[i] = engines[i]. execute(’init()’,

block = False)

Observe that it is executed in non-blocking mode. That is, the init() function

is executed on each engine without waiting for the engine to finish and thus the

execute command will return immediately. Thus, the loop can be executed

for each engine in parallel. In order to know whether the execute command has

finished for a given engine, we will need to check, when needed, the state of the

corresponding async_tasks variable.

After performing this step the client enters a loop made up of steps 2 to 6 (see

Fig. 11.2).

2. The client reads a chunk of the file and selects which engine the chunk will be

sent to:

new_chunk = get_chunk(f, lines_per_block)

run_engine = c_engines.next()

These commands will be executed even if the init() function has not finished

or if the engines have not finished processing their previous chunk. Each read

chunk will have the same number of lines (with the exception of the last chunk

read from the file) and thus we expect each chunk to be processed in the same

amount of time by each engine. We therefore manually select the next engine in

a round-robin fashion.

3. Once the chunk has been read and the engine that will process the chunk has been

selected, we need to wait for the engine to finish its previous task. It may still

be in the initialization state or it may be processing a previous chunk. While the

engine has not finished, we wait:

while (not async_tasks[run_engine].ready ()):

time.sleep (1)

4. At this point, we are sure that the run_engine engine is free. Thus, we may

send the data to the engine and ask it to process them:

212 11 Parallel Computing

mydict = dict(data = new_chunk)

engines[run_engine].push(mydict , block = True)

async_tasks[run_engine] = engines[run_engine].

execute(’process(data)’, block = False)

The push is performed with the default value of block = True. Thus the

push function will not return until the chunk has arrived at the engine. Once

it returns, we are sure that the chunk has been received by the engine and thus

we may call the execute function. The latter function will process the data in

non-blocking mode. Thus, the execute function will return immediately and

meanwhile the engine will process its corresponding block.

It should be mentioned that the process function locally aggregates the results

of analyzing each chunk in the variable local_total. At the end, the client

will collect the local results from all the engines.

5. The algorithm then jumps again to step 2. The first time step 2 is executed the

selected engine is engine 0. The second time it will be engine 1 and so on. After

a chunk has been assigned to all engines the algorithm will again select engine 0;

so it will wait until engine 0 has finished processing its previous chunk.

6. Once the loop (steps 2 to 5) has processed all the chunks in the file, the client gets

the results from each engine and aggregates them into the global_result

variable. Before reading the result we need to be sure that the engine has finished

with its last chunk:

for engine in engines.ids:

while (not async_tasks[engine]. ready ()):

time.sleep (1)

global_result += engines[engine].pull(’local_total ’,

block = True)

The pull is performed in blocking mode. After reading all the results from the

engines the final result is stored in the dictionary global_result.

11.5.2 Results

The experiments were performed on an i7-4790 CPU with four physical cores

with HyperThreading and 8 Gb of RAM. We performed experiments with differ-

ent numbers of engines and different numbers of lines per block (i.e., the vari-

able lines_per_block in the previous subsection). The performance results are

shown in seconds and were obtained by computing the mean of three executions.

11.5.2.1 Lines per Block
The number of lines per block defines the number of data that will be sent to each

of the engines to be processed. In order to test the performance of the algorithm, we

performed tests with different values of lines per block and a reduced version of one

CSV file: only 1 million lines were processed. The experiments used 8 engines; i.e.,

11.5 A Real Application: New York Taxi Trips 213

Fig. 11.3 Performance to

process 1 million lines of a

CSV file using 8 engines for

different values of lines per

block. Time is shown in

seconds

the number of processors of the computer. Thus, in our environment, there will be a

total of nine processes running: one producer, which is in charge of reading the CSV

file and distributing the data among the engines in blocks defined by the variable

associated with lines per block, and eight engines that will take the blocks of data

from the producer and process them.

The results are shown in Fig. 11.3. As can be seen, an optimal execution time

is located near 2,000 lines per block. With fewer lines per block, efficiency is lost

because most of the time engines are idle (thus cores are also idle), and the system

wastes lots of computational time managing short messages between processes.

When working with more than 6,000 lines per block, the messages to be passed

between processes are too big to be moved quickly.

Similar effects can be found by modifying the waiting time when an engine is

busy; see step 3 in Sect. 11.5.1. Tests can be done to show that with a shorter waiting

time the optimal number of lines per block value is reduced. Nevertheless, optimal

execution time does not change because the optimal execution time is based on not

having idle cores.

11.5.2.2 Number of Engines
The number of engines is associated with the level of parallelization that the code can

reach. We tested our algorithm using 2,000 lines per block and different numbers

of engines, again using a reduced version of one CSV file. In this case, 100,000

lines were processed. The result is shown in Fig. 11.4. As can be seen, for a given

number of cores, the time that is needed to process the data reduces as the number

of engines is increased, and the relation between the number of engines and time is

not linear. The reason for this is that the operating system sees each engine as one

process and thus each engine is expected to be scheduled on different processors

of the computer. Note that for one engine the execution time is rather high; time is

reduced if more engines are included in the environment until the number of engines

214 11 Parallel Computing

Fig. 11.4 Performance to

process 100,000 lines for

different numbers of engines

is close to the number of cores of the computer. Once the minimum is reached (in

this case for eight cores) there is no benefit from parallelizing the job with more

engines; on the contrary, with more processes, the operating system scheduler is

going to spend more time managing processes so the execution time may increase.

That is, the operating system scheduler may become a bottleneck. In addition, recall

that the producer process in charge of distributing the data among the engines steals

processing time from the engines.

11.5.2.3 Processing the Entire Dataset
With this optimal value of 2,000 for the lines per block variable we executed our

algorithm over a whole CSV file made up of 14.7 million lines. The execution time

with eight engines was 1009 seconds; and with four engines, that time increased to

1895 seconds.

As can be seen, increasing the number of engines by a factor of two does not

divide the execution time by two. The reason of this can be explained by the fact

that there is an additional process, the producer, that distributes the blocks of lines

between the engines.

11.6 Conclusions

This chapter has focused on the parallel capabilities of IPython. As has been seen,

IPython offers us an architecture that is capable of supporting many styles of par-

allelism, including multicore and distributed computing. In order to take advantage

of such architecture, the user has to manually split the task to be performed into

multiple subtasks. Each of these subtasks may then be executed on different engines.

References 215

The direct view offers the user the possibility of controlling which engine each task

is sent to; whereas the load-balanced view leaves this issue to the scheduler. The

former is useful if the tasks to be executed have similar computational cost or if a

fine control over the tasks executed by each engine is needed. The latter is useful

if the tasks have different computational costs and it does not matter which engine

each task is executed on.

We used the IPython parallel capabilities to analyze a database made up of millions

of entries. The tasks were created by dividing the database into chunks and assigning,

in a cyclic manner, each of the chunks to an engine.

The framework explained in this chapter is not the only one currently available for

IPython to take advantage of parallel computing capabilities. For instance, Hadoop

and Apache Spark are cluster computing frameworks whose Application Program-

ming Interface is available for the IPython notebook. Thus, these frameworks can be

effectively used for data analysis.

Acknowledgements This chapter was co-written by Francesc Dantí and Lluís Garrido.

References

1. M. Herlihy, N. Shavit, The art of multiprocessor programming (Morgan Kaufmann, 2008)

2. T.K.G.B.G. Coulouris, J. Dollimore, Distributed Systems (Pearson, 2012)

Index

B

Bag of words, 188

Bootstrapping, 57–59, 66

C

Centrality measures, 143, 150, 152, 159, 165

Classification, 70, 71, 73, 89, 90, 92

Clustering, 117–134, 136–140

Collaborative filtering, 169, 171, 173, 181

Community detection, 164

Connected components, 143, 148, 149

Content based recommender systems, 181

Correlation, 47–50

D

Data distribution, 36

Data science, 1–4

E

Ego-networks, 143, 159–165

F

Frequentist approach, 54, 66

H

Hierarchical clustering, 127, 140

Histogram, 36, 37, 42, 50

I

IPcluster, 204

K

K-means, 123, 124, 126–128, 132–134,

138–140

L

Lemmatizing, 186, 187

Linear and polynomial regression, 115

Logistic regression, 113–115

M

Machine learning, 69–71, 88, 93, 97

Mean, 33–36, 38–43, 46–48, 50

Multicore, 201–203, 209, 210, 216

N

Natural language processing, 183

Network analysis, 143, 146, 149, 150, 165

P

Parallel computing, 201, 202, 217

Parallelization, 202, 203, 206, 208, 209, 211,

212, 215

Programming, 5–8, 28

p-value, 63, 64, 66

Python, 5–9, 12, 15, 17, 19, 28

© Springer International Publishing Switzerland 2017

L. Igual and S. Seguí, Introduction to Data Science,

Undergraduate Topics in Computer Science, DOI 10.1007/978-3-319-50017-1

217

218 Index

R

Recommender systems, 167, 169–171, 181

Regression analysis, 102, 115

S

Sentiment analysis, 183, 184, 193, 196, 198

Sparse model, 106, 110, 115

Spectral clustering, 121, 126, 127, 132, 133,

137–141

Statistical inference, 53, 54, 57

Supervised learning, 69

T

Toolbox, 5–8, 10

V

Variance, 34–36, 43, 47, 50

	Preface
	Subject Area of the Book
	Organization and Feature of the Book
	Target Audiences
	Previous Uses of the Materials
	Suggested Uses of the Book
	Supplemental Resources
	Acknowledgements

	Contents
	Authors and Contributors
	1 Introduction to Data Science
	1.1 What is Data Science?
	1.2 About This Book

	2 Toolboxes for Data Scientists
	2.1 Introduction
	2.2 Why Python?
	2.3 Fundamental Python Libraries for Data Scientists
	2.3.1 Numeric and Scientific Computation: NumPy and SciPy
	2.3.2 SCIKIT-Learn: Machine Learning in Python
	2.3.3 PANDAS: Python Data Analysis Library

	2.4 Data Science Ecosystem Installation
	2.5 Integrated Development Environments (IDE)
	2.5.1 Web Integrated Development Environment (WIDE): Jupyter

	2.6 Get Started with Python for Data Scientists
	2.6.1 Reading
	2.6.2 Selecting Data
	2.6.3 Filtering Data
	2.6.4 Filtering Missing Values
	2.6.5 Manipulating Data
	2.6.6 Sorting
	2.6.7 Grouping Data
	2.6.8 Rearranging Data
	2.6.9 Ranking Data
	2.6.10 Plotting

	2.7 Conclusions

	3 Descriptive Statistics
	3.1 Introduction
	3.2 Data Preparation
	3.2.1 The Adult Example

	3.3 Exploratory Data Analysis
	3.3.1 Summarizing the Data
	3.3.2 Data Distributions
	3.3.3 Outlier Treatment
	3.3.4 Measuring Asymmetry: Skewness and Pearson's Median Skewness Coefficient
	3.3.5 Continuous Distribution
	3.3.6 Kernel Density

	3.4 Estimation
	3.4.1 Sample and Estimated Mean, Variance and Standard Scores
	3.4.2 Covariance, and Pearson's and Spearman's Rank Correlation

	3.5 Conclusions

	4 Statistical Inference
	4.1 Introduction
	4.2 Statistical Inference: The Frequentist Approach
	4.3 Measuring the Variability in Estimates
	4.3.1 Point Estimates
	4.3.2 Confidence Intervals

	4.4 Hypothesis Testing
	4.4.1 Testing Hypotheses Using Confidence Intervals
	4.4.2 Testing Hypotheses Using p-Values

	4.5 But Is the Effect E Real?
	4.6 Conclusions

	5 Supervised Learning
	5.1 Introduction
	5.2 The Problem
	5.3 First Steps
	5.4 What Is Learning?
	5.5 Learning Curves
	5.6 Training, Validation and Test
	5.7 Two Learning Models
	5.7.1 Generalities Concerning Learning Models
	5.7.2 Support Vector Machines
	5.7.3 Random Forest

	5.8 Ending the Learning Process
	5.9 A Toy Business Case
	5.10 Conclusion

	6 Regression Analysis
	6.1 Introduction
	6.2 Linear Regression
	6.2.1 Simple Linear Regression
	6.2.2 Multiple Linear Regression and Polynomial Regression
	6.2.3 Sparse Model

	6.3 Logistic Regression
	6.4 Conclusions

	7 Unsupervised Learning
	7.1 Introduction
	7.2 Clustering
	7.2.1 Similarity and Distances
	7.2.2 What Constitutes a Good Clustering? Defining Metrics to Measure Clustering Quality
	7.2.3 Taxonomies of Clustering Techniques

	7.3 Case Study
	7.4 Conclusions

	8 Network Analysis
	8.1 Introduction
	8.2 Basic Definitions in Graphs
	8.3 Social Network Analysis
	8.3.1 Basics in NetworkX
	8.3.2 Practical Case: Facebook Dataset

	8.4 Centrality
	8.4.1 Drawing Centrality in Graphs
	8.4.2 PageRank

	8.5 Ego-Networks
	8.6 Community Detection
	8.7 Conclusions

	9 Recommender Systems
	9.1 Introduction
	9.2 How Do Recommender Systems Work?
	9.2.1 Content-Based Filtering
	9.2.2 Collaborative Filtering
	9.2.3 Hybrid Recommenders

	9.3 Modeling User Preferences
	9.4 Evaluating Recommenders
	9.5 Practical Case
	9.5.1 MovieLens Dataset
	9.5.2 User-Based Collaborative Filtering

	9.6 Conclusions

	10 Statistical Natural Language Processing for Sentiment Analysis
	10.1 Introduction
	10.2 Data Cleaning
	10.3 Text Representation
	10.3.1 Bi-Grams and n-Grams

	10.4 Practical Cases
	10.5 Conclusions

	11 Parallel Computing
	11.1 Introduction
	11.2 Architecture
	11.2.1 Getting Started
	11.2.2 Connecting to the Cluster (The Engines)

	11.3 Multicore Programming
	11.3.1 Direct View of Engines
	11.3.2 Load-Balanced View of Engines

	11.4 Distributed Computing
	11.5 A Real Application: New York Taxi Trips
	11.5.1 A Direct View Non-Blocking Proposal
	11.5.2 Results

	11.6 Conclusions

	Index

