

Praise for Head First JavaScript Programming

“Warning: Do not read Head First JavaScript Programming unless you want to learn the
fundamentals of programming with JavaScript in an entertaining and meaningful fashion.
There may be an additional side effect that you may actually recall more about JavaScript than
after reading typical technical books.”

 — Jesse Palmer, Senior Software Developer, Gannett Digital

“If every elementary and middle school student studied Elisabeth and Eric’s Head First HTML
and CSS, and if Head First JavaScript Programming and Head First HTML5 Programming were part of
the high school math and science curriculum, then our country would never lose its competitive
edge.”

 — Michael Murphy, senior systems consultant, The History Tree

“The Head First series utilizes elements of modern learning theory, including constructivism, to
bring readers up to speed quickly. The authors have proven with this book that expert-level content
can be taught quickly and efficiently. Make no mistake here, this is a serious JavaScript book, and
yet, fun reading!”

 — Frank Moore, Web designer and developer

“Looking for a book that will keep you interested (and laughing) but teach you some serious
programming skills? Head First JavaScript Programming is it!”

 — Tim Williams, software entrepreneur

“Add this book to your library regardless of your programming skill level!”

 — Chris Fuselier, engineering consultant

“Robson and Freeman have done it again! Using the same fun and information-packed style
as their previous books in the Head First series, Head First JavaScript Programming leads you
through entertaining and useful projects that, chapter-by-chapter, allow programmers—even
nonspecialists like myself—to develop a solid foundation in modern JavaScript programming
that we can use to solve real problems.”

 — Russell Alleen-Willems, digital archeologist, DiachronicDesign.com

“Freeman and Robson continue to use innovative teaching methods for communicating complex
concepts to basic principles.”

 — Mark Arana, Strategy & Innovation, The Walt Disney Studios

Praise for other books by Eric T. Freeman and Elisabeth Robson

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired,
stale professor-speak.”

 — Travis Kalanick, CEO Uber

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

 — Cory Doctorow, co-editor of Boing Boing, Science Fiction author

“I feel like a thousand pounds of books have just been lifted off of my head.”

 — Ward Cunningham, inventor of the Wiki

“One of the very few software books I’ve ever read that strikes me as indispensable. (I’d put maybe 10
books in this category, at the outside.)”

 — David Gelernter, Professor of Computer Science, Yale University

“I laughed, I cried, it moved me.”

 — Daniel Steinberg, Editor-in-Chief, java.net

“I can think of no better tour guides than Eric and Elisabeth.”

 — Miko Matsumura, VP of Marketing and Developer Relations at Hazelcast
 Former Chief Java Evangelist, Sun Microsystems

“I literally love this book. In fact, I kissed this book in front of my wife.”

 — Satish Kumar

“The highly graphic and incremental approach precisely mimics the best way to learn this stuff...”

 — Danny Goodman, author of Dynamic HTML: The Definitive Guide

“Eric and Elisabeth clearly know their stuff. As the Internet becomes more complex, inspired construction
of web pages becomes increasingly critical. Elegant design is at the core of every chapter here, each
concept conveyed with equal doses of pragmatism and wit.”

 — Ken Goldstein, former CEO of Shop.com and author of
 This is Rage: A Novel of Silicon Valley and Other Madness

Make it Stick

Other related books from O’Reilly

Head First HTML5 Programming

JavaScript: The Definitive Guide

JavaScript Enlightenment

Other O’Reilly books by Eric T. Freeman and Elisabeth Robson

Head First Design Patterns

Head First HTML and CSS

Head First HTML5 Programming

Other books in O’Reilly’s Head First series

Head First HTML and CSS

Head First HTML5 Programming

Head First Design Patterns

Head First Servlets and JSP

Head First SQL

Head First Software Development

Head First C#

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First Ajax

Head First Rails

Head First PHP & MySQL

Head First Web Design

Head First Networking

Head First iPhone and iPad Development

Head First jQuery

Beijing • Cambridge • K�ln • Sebastopol • Tokyo

Eric T. Freeman
Elisabeth Robson

Head First
JavaScript

Programming

Wouldn’t it be dreamy if there was
a JavaScript book that was more
fun than going to the dentist and
more revealing than an IRS form?
It’s probably just a fantasy...

Head First JavaScript Programming
by Eric T. Freeman and Elisabeth Robson

Copyright © 2014 Eric Freeman, Elisabeth Robson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette, Courtney Nash

Cover Designer: Randy Comer

Code Monkeys: Eric T. Freeman, Elisabeth Robson

Production Editor: Melanie Yarbrough

Indexer: Potomac Indexing

Proofreader: Rachel Monaghan

Page Viewer: Oliver

Printing History:
March 2014: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. The Head First series designations, Head First JavaScript Programming, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First JavaScript Programming to, say, run a nuclear power plant, you’re
on your own. We do, however, encourage you to visit Webville.

No variables were harmed in the making of this book.

ISBN: 978-1-449-34013-1
[M]

To JavaScript—you weren’t born with a silver spoon in
your mouth, but you’ve outclassed every language that’s
challenged you in the browser.

viii

the authors

Authors of Head First JavaScript Programming

Elisabeth is a software engineer, writer, and trainer.
She has been passionate about technology since her
days as a student at Yale University, where she earned a
Masters of Science in Computer Science and designed
a concurrent, visual programming language and
software architecture.

Elisabeth’s been involved with the Internet since the
early days; she co-created the award-winning Web site,
The Ada Project, one of the first Web sites designed
to help women in computer science find career and
mentorship information online.

She’s currently co-founder of WickedlySmart, an online
education experience centered on web technologies,
where she creates books, articles, videos and more.
Previously, as Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person workshops and
online courses on a variety of technical topics and
developed her passion for creating learning experiences
to help people understand technology. Prior to her work
with O’Reilly, Elisabeth spent time spreading fairy dust
at The Walt Disney Company, where she led research
and development efforts in digital media.

When not in front of her computer, you’ll find Elisabeth
hiking, cycling or kayaking in the great outdoors, with
her camera nearby, or cooking vegetarian meals.

You can send her email at beth@wickedlysmart.com
or visit her blog at http://elisabethrobson.com.

Eric Freeman

Eric is described by Head First series co-creator Kathy
Sierra as “one of those rare individuals fluent in the language,
practice, and culture of multiple domains from hipster
hacker, corporate VP, engineer, think tank.”

Professionally, Eric recently ended nearly a decade as a media
company executive—having held the position of CTO of
Disney Online & Disney.com at The Walt Disney Company.
Eric is now devoting his time to WickedlySmart, a startup he
co-created with Elisabeth.

By training, Eric is a computer scientist, having studied with
industry luminary David Gelernter during his Ph.D. work
at Yale University. His dissertation is credited as the seminal
work in alternatives to the desktop metaphor, and also as the
first implementation of activity streams, a concept he and Dr.
Gelernter developed.

In his spare time, Eric is deeply involved with music; you’ll
find Eric’s latest project, a collaboration with ambient music
pioneer Steve Roach, available on the iPhone app store
under the name Immersion Station.

Eric lives with his wife and young daughter on Bainbridge
Island. His daughter is a frequent vistor to Eric’s studio, where
she loves to turn the knobs of his synths and audio effects.

Write to Eric at eric@wickedlysmart.com or visit his site
at http://ericfreeman.com.

Elisabeth Robson

ix

Intro
Your brain on JavaScript. Here you are trying to learn something, while here

your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid

and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing JavaScript programming?

Table of Contents (summary)
 Intro xxv

1 A quick dip into JavaScript: Getting your feet wet 1

2 Writing real code: Going further 43

3 Introducing functions: Getting functional 79

4 Putting some order in your data: Arrays 125

5 Understanding objects: A trip to Objectville 173

6 Interacting with your web page: Getting to know the DOM 229

7 Types, equality, conversion, and all that jazz: Serious types 265

8 Bringing it all together: Building an app 317

9 Asynchronous coding: Handling events 381

10 First-class functions: Liberated functions 429

11 Anonymous functions, scope, and closures: Serious functions 475

12 Advanced object construction: Creating objects 521

13 Using prototypes: Extra-strength objects 563

Appendix: The Top Ten Topics (we didn’t cover): Leftovers 623

Table of Contents (the real thing)

table of contents

Who is this book for ? xxvi

We know what you’re thinking. xxvii

We think of a “Head First” reader as a learner. xxviii

Metacognition: thinking about thinking xxix

Here’s what WE did: xxx

Here’s what YOU can do to bend your brain into submission xxxi

Read Me xxxii

Tech Reviewers xxxv

Acknowledgments* xxxvi

x

1 Getting your feet wet

a quick dip into javascript

JavaScript gives you superpowers. The true programming

language of the web, JavaScript lets you add behavior to your web pages. No

more dry, boring, static pages that just sit there looking at you—with JavaScript

you’re going to be able to reach out and touch your users, react to interesting

events, grab data from the web to use in your pages, draw graphics right in your

web pages and a lot more. And once you know JavaScript you’ll also be in a

position to create totally new behaviors for your users.

The way JavaScript works 2

How you’re going to write JavaScript 3

How to get JavaScript into your page 4

JavaScript, you’ve come a long way baby... 6

How to make a statement 10

Variables and values 11

Back away from that keyboard! 12

Express yourself 15

Doing things more than once 17

How the while loop works 18

Making decisions with JavaScript 22

And, when you need to make LOTS of decisions 23

Reach out and communicate with your user 25

A closer look at console.log 27

Opening the console 28

Coding a Serious JavaScript Application 29

How do I add code to my page? (let me count the ways) 32

We’re going to have to separate you two 33

table of contents

HTML CSS

JS

Browser

You’ve got a lot of flexibility in choosing your variable names, so here are a few Webville tips to make your naming easier:
Choose names that mean something. Variable names like _m, $, r and foo might mean something to you but they are generally frowned upon in Webville. Not only are you likely to forget them over time, your code will be much more readable with names like angle, currentPressure and passedExam.

Use “camel case” when creating multiword variable names. At some point you’re going to have to decide how you name a variable that represents, say, a two-headed dragon with fire. How? Just use camel case, in which you capitalize the first letter of each word (other than the first): twoHeadedDragonWithFire. Camel case is easy to form, widely spoken in Webville and gives you enough flexibility to create as specific a variable name as you need. There are other schemes too, but this is one of the more commonly used (even beyond JavaScript).
Use variables that begin with _ and $

only with very good reason.
Variables that begin with $ are usually reserved for JavaScript libraries and while some authors use variables beginning with _ for various conventions, we recommend you stay away from both unless you have very good reason (you’ll know if you do).Be safe.

Be safe in your variable naming; we’ll cover a few more tips for staying safe later in the book, but for now be clear in your naming, avoid keywords, and always use var when declaring a variable.

WEBVILLE T I M E SHow to avoid those embarassing naming mistakes

xi

2 Going further

writing real code

You already know about variables, types, expressions...
we could go on. The point is, you already know a few things about

JavaScript. In fact, you know enough to write some real code. Some code that

does something interesting, some code that someone would want to use. What

you’re lacking is the real experience of writing code, and we’re going to remedy

that right here and now. How? By jumping in head first and coding up a casual

game, all written in JavaScript. Our goal is ambitious but we’re going to take it

one step at a time. Come on, let’s get this started, and if you want to launch the

next casual startup, we won’t stand in your way; the code is yours.

Let’s build a Battleship game 44

Our first attempt... 44

First, a high-level design 45

Working through the Pseudocode 47

Oh, before we go any further, don’t forget the HTML! 49

Writing the Simple Battleship code 50

Now let’s write the game logic 51

Step One: setting up the loop, getting some input 52

How prompt works 53

Checking the user’s guess 54

So, do we have a hit? 56

Adding the hit detection code 57

Provide some post-game analysis 58

And that completes the logic! 60

Doing a little Quality Assurance 61

Can we talk about your verbosity... 65

Finishing the Simple Battleship game 66

How to assign random locations 67

The world-famous recipe for generating a random number 67

Back to do a little more QA 69

Congrats on your first true JavaScript program,
and a short word about reusing code 71

table of contents

Start

Game set-up

Get user
guess

Check
guess

hitmiss Mark ship as
hit

sunk

Mark ship
as sunk

Display user
score/rating

Game
over

xii

3 Getting functional

introducing functions

Get ready for your first superpower. You’ve got some programming under

your belt; now it’s time to really move things along with functions. Functions give you the

power to write code that can be applied to all sorts of different circumstances, code that

can be reused over and over, code that is much more manageable, code that can be

abstracted away and given a simple name so you can forget all the complexity and get

on with the important stuff. You’re going to find not only that functions are your gateway

from scripter to programmer, they’re the key to the JavaScript programming style. In

this chapter we’re going to start with the basics: the mechanics, the ins and outs of how

functions really work, and then you’ll keep honing your function skills throughout the rest

of the book. So, let’s get a good foundation started, now.

What’s wrong with the code anyway? 81

By the way, did we happen to mention FUNCTIONS? 83

Okay, but how does it actually work? 84

What can you pass to a function? 89

JavaScript is pass-by-value. 92

Weird Functions 94

Functions can return things too 95

Tracing through a function with a return statement 96

Global and local variables 99

Knowing the scope of your local and global variables 101

The short lives of variables 102

Don’t forget to declare your locals! 103

table of contents

xiii

4 Arrays

putting some order in your data

There’s more to JavaScript than numbers, strings and
booleans. So far you’ve been writing JavaScript code with primitives—simple

strings, numbers and booleans, like “Fido”, 23, and true. And you can do a lot with

primitive types, but at some point you’ve got to deal with more data. Say, all the items

in a shopping cart, or all the songs in a playlist, or a set of stars and their apparent

magnitude, or an entire product catalog. For that we need a little more ummph. The

type of choice for this kind of ordered data is a JavaScript array, and in this chapter

we’re going to walk through how to put your data into an array, how to pass it around

and how to operate on it. We’ll be looking at a few other ways to structure your data

in later chapters but let’s get started with arrays.

Can you help Bubbles-R-Us? 126

How to represent multiple values in JavaScript 127

How arrays work 128

How big is that array anyway? 130

The Phrase-O-Matic 132

Meanwhile, back at Bubbles-R-Us... 135

How to iterate over an array 138

But wait, there’s a better way to iterate over an array 140

Can we talk about your verbosity? 146

Redoing the for loop with the post-increment operator 147

Quick test drive 147

Creating an array from scratch (and adding to it) 151

And the winners are... 155

A quick survey of the code... 157

Writing the printAndGetHighScore function 158

Refactoring the code using printAndGetHighScore 159

Putting it all together... 161

table of contents

60 50 60 58 54 54 58 50 52 54

0 1 2 3 4 5 6 7 8 9

xiv

5 A trip to Objectville

undestanding objects

So far you’ve been using primitives and arrays in your
code. And, you’ve approached coding in quite a procedural manner using simple

statements, conditionals and for/while loops with functions—that’s not exactly object-

oriented. In fact, it’s not object-oriented at all! We did use a few objects here and

there without really knowing it, but you haven’t written any of your own objects yet.

Well, the time has come to leave this boring procedural town behind to create some

objects of your own. In this chapter, you’re going to find out why using objects is

going to make your life so much better—well, better in a programming sense (we

can’t really help you with your fashion sense and your JavaScript skills all in one

book). Just a warning: once you’ve discovered objects you’ll never want to come back.

Send us a postcard when you get there.

Did someone say “Objects”?! 174

Thinking about properties... 175

How to create an object 177

What is Object-Oriented Anyway? 180

How properties work 181

How does a variable hold an object? Inquiring minds want to know... 186

Comparing primitives and objects 187

Doing even more with objects... 188

Stepping through pre-qualification 190

Let’s talk a little more about passing objects to functions 192

Oh Behave! Or, how to add behavior to your objects 198

Improving the drive method 199

Why doesn’t the drive method know about the started property? 202

How this works 204

How behavior affects state... Adding some Gas-o-line 210

Now let’s affect the behavior with the state 211

Congrats on your first objects! 213

Guess what? There are objects all around you!
(and they’ll make your life easier) 214

table of contents

xv

Did someone say “Objects”?! 174

Thinking about properties... 175

How to create an object 177

What is Object-Oriented Anyway? 180

How properties work 181

How does a variable hold an object? Inquiring minds want to know... 186

Comparing primitives and objects 187

Doing even more with objects... 188

Stepping through pre-qualification 190

Let’s talk a little more about passing objects to functions 192

Oh Behave! Or, how to add behavior to your objects 198

Improving the drive method 199

Why doesn’t the drive method know about the started property? 202

How this works 204

How behavior affects state... Adding some Gas-o-line 210

Now let’s affect the behavior with the state 211

Congrats on your first objects! 213

Guess what? There are objects all around you!
(and they’ll make your life easier) 214

6 Getting to know the DOM

interacting with your web page

You’ve come a long way with JavaScript. In fact you’ve evolved from a newbie to

a scripter to, well, a programmer. But, there’s something missing. To really begin leveraging your

JavaScript skills you need to know how to interact with the web page your code lives in. Only by doing

that are you going to be able to write pages that are dynamic, pages that react, that respond, that

update themselves after they’ve been loaded. So how do you interact with the page? By using the DOM,

otherwise known as the document object model. In this chapter we’re going to break down the DOM

and see just how we can use it, along with JavaScript, to teach your page a few new tricks.

The “crack the code challenge.” 230

So what does the code do? 231

How JavaScript really interacts with your page 233

How to bake your very own DOM 234

A first taste of the DOM 235

Getting an element with getElementById 240

What, exactly, am I getting from the DOM? 241

Finding your inner HTML 242

What happens when you change the DOM 244

A test drive around the planets 247

Don’t even think about running my code until the page
is fully loaded! 249

You say “event hander,” I say “callback” 250

How to set an attribute with setAttribute 255

More fun with attributes!
(you can GET attributes too) 256

Don’t forget getElementById can return null too! 256

Any time you ask for something, you need to make sure
you got back what you expected... 256

So what else is a DOM good for anyway? 258

table of contents

Browser here, I’m
reading the page and
creating a DOM of it.

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

All is
well

Nothing to
report

All systems
A-OK

head

html

document

xvi

7 Serious types

types, equality, conversion, and all that jazz

It’s time to get serious about our types. One of the great things about

JavaScript is you can get a long way without knowing a lot of details of the language.

But to truly master the language, get that promotion and get on to the things you really

want to do in life, you have to rock at types. Remember what we said way back about

JavaScript? That it didn’t have the luxury of a silver-spoon, academic, peer-reviewed

language definition? Well that’s true, but the academic life didn’t stop Steve Jobs and

Bill Gates, and it didn’t stop JavaScript either. It does mean that JavaScript doesn’t have

the… well, the most thought-out type system, and we’ll find a few idiosyncrasies along

the way. But, don’t worry, in this chapter we’re going to nail all that down, and soon you’ll

be able to avoid all those embarrassing moments with types.

The truth is out there... 266

Watch out, you might bump into undefined
when you aren’t expecting it... 268

How to use null 271

Dealing with NaN 273

It gets even weirder 273

We have a confession to make 275

Understanding the equality operator (otherwise known as ==) 276

How equality converts its operands
(sounds more dangerous than it actually is) 277

How to get strict with equality 280

Even more type conversions... 286

How to determine if two objects are equal 289

The truthy is out there... 291

What JavaScript considers falsey 292

The Secret Life of Strings 294

How a string can look like a primitive and an object 295

A five-minute tour of string methods (and properties) 297

Chair Wars 301

table of contents

xvii

8 Building an app

bringing it all together

Put on your toolbelt. That is, the toolbelt with all your new coding skills, your

knowledge of the DOM, and even some HTML & CSS. We’re going to bring everything

together in this chapter to create our first true web application. No more silly toy

games with one battleship and a single row of hiding places. In this chapter we’re

building the entire experience: a nice big game board, multiple ships and user input

right in the web page. We’re going to create the page structure for the game with HTML,

visually style the game with CSS, and write JavaScript to code the game’s behavior. Get

ready: this is an all out, pedal to the metal development chapter where we’re going to lay

down some serious code.

This time, let’s build a REAL Battleship game 318

Stepping back... to HTML and CSS 319

Creating the HTML page: the Big Picture 320

Adding some more style 324

Using the hit and miss classes 327

How to design the game 329

Implementing the View 331

How displayMessage works 331

How displayHit and displayMiss work 333

The Model 336

How we’re going to represent the ships 338

Implementing the model object 341

Setting up the fire method 342

Implementing the Controller 349

Processing the player’s guess 350

Planning the code... 351

Implementing parseGuess 352

Counting guesses and firing the shot 355

How to add an event handler to the Fire! button 359

Passing the input to the controller 360

How to place ships 364

Writing the generateShip method 365

Generate the starting location for the new ship 366

Completing the generateShip method 367

table of contents

A

B

C

D

E

F

G

0 1 2 3 4 5 6

Ship3

Ship2

Sh
ip

1

HIT

xviii

9 Handling events

asynchronous coding

After this chapter you’re going to realize you aren’t in
Kansas anymore. Up until now, you’ve been writing code that typically

executes from top to bottom—sure, your code might be a little more complex than

that, and make use of a few functions, objects and methods, but at some point the

code just runs its course. Now, we’re awfully sorry to break this to you this late in

the book, but that’s not how you typically write JavaScript code. Rather, most

JavaScript is written to react to events. What kind of events? Well, how about a user

clicking on your page, data arriving from the network, timers expiring in the browser,

changes happening in the DOM and that’s just a few examples. In fact, all kinds

of events are happening all the time, behind the scenes, in your browser. In this

chapter we’re going rethink our approach to JavaScript coding, and learn how and

why we should write code that reacts to events.

What are events? 383

What’s an event handler? 384

How to create your first event handler 385

Test drive your event 386

Getting your head around events... by creating a game 388

Implementing the game 389

Test drive 390

Let’s add some more images 394

Now we need to assign the same event handler
to each image’s onclick property 395

How to reuse the same handler for all the images 396

How the event object works 399

Putting the event object to work 401

Test drive the event object and target 402

Events and queues 404

Even more events 407

How setTimeout works 408

Finishing the image game 412

Test driving the timer 413

table of contents

xix

10 Liberated functions

first class functions

Know functions, then rock. Every art, craft, and discipline has a key principle that

separates the intermediate players from the rock star virtuosos—when it comes to JavaScript, it’s truly

understanding functions that makes the difference. Functions are fundamental to JavaScript, and

many of the techniques we use to design and organize code depend on advanced knowledge and

use of functions. The path to learning functions at this level is an interesting and often mind-bending

one, so get ready... This chapter is going to be a bit like Willy Wonka giving a tour of the chocolate

factory—you’re going to encounter some wild, wacky and wonderful things as you learn more about

JavaScript functions.
The mysterious double life of the function keyword 430

Function declarations versus function expressions 431

Parsing the function declaration 432

What’s next? The browser executes the code 433

Moving on... The conditional 434

How functions are values too 439

Did we mention functions have
First Class status in JavaScript? 442

Flying First Class 443

Writing code to process and check passengers 444

Iterating through the passengers 446

Passing a function to a function 447

Returning functions from functions 450

Writing the flight attendant drink order code 451

The flight attendant drink order code: a different approach 452

Taking orders with first class functions 454

Webville Cola 457

How the array sort method works 459

Putting it all together 460

Take sorting for a test drive 462

table of contents

xx

11 Serious functions

anonymous functions, scopes, and closures

You’ve put functions through their paces, but there’s more to learn.
In this chapter we take it further; we get hard-core. We’re going to show you how to really handle

functions. This won’t be a super long chapter, but it will be intense, and at the end you’re going to

be more expressive with your JavaScript than you thought possible. You’re also going to be ready to

take on a coworker’s code, or jump into an open source JavasScript library, because we’re going to

cover some common coding idioms and conventions around functions. And if you’ve never heard of an

anonymous function or a closure, boy are you in the right place.

Taking a look at the other side of functions... 476

How to use an anonymous function 477

We need to talk about your verbosity, again 479

When is a function defined? It depends... 483

What just happened? Why wasn’t fly defined? 484

How to nest functions 485

How nesting affects scope 486

A little review of lexical scope 488

Where things get interesting with lexical scope 489

Functions Revisited 491

Calling a function (revisited) 492

What the heck is a closure? 495

Closing a function 496

Using closures to implement a magic counter 498

Looking behind the curtain... 499

Creating a closure by passing a function expression as an argument 501

The closure contains the actual environment, not a copy 502

Creating a closure with an event handler 503

How the Click me! closure works 506

table of contents

Wait a sec... what
is this closure thing? It
looks related to what
we’re doing. Maybe we can
get a leg up on her yet.

Darn it! Judy
was right again.

xxi

12 Creating objects

advanced object construction

So far we’ve been crafting objects by hand. For each object,

we’ve used an object literal to specify each and every property. That’s okay on a

small scale, but for serious code we need something better. That’s where object

constructors come in. With constructors we can create objects much more easily,

and we can create objects that all adhere to the same design blueprint—meaning

we can use constructors to ensure each object has the same properties and includes

the same methods. And with constructors we can write object code that is much

more concise and a lot less error prone when we’re creating lots of objects. So, let’s

get started and after this chapter you’ll be talking constructors just like you grew up in

Objectville.

Creating objects with object literals 522

Using conventions for objects 523

Introducing Object Constructors 525

How to create a Constructor 526

How to use a Constructor 527

How constructors work 528

You can put methods into constructors as well 530

It’s Production Time! 536

Let’s test drive some new cars 538

Don’t count out object literals just yet 539

Rewiring the arguments as an object literal 540

Reworking the Car constructor 541

Understanding Object Instances 543

Even constructed objects can have their own independent properties 546

Real World Constructors 548

The Array object 549

Even more fun with built-in objects 551

table of contents

xxii

13 Extra strength objects

using prototypes

Learning how to create objects was just the beginning. It’s

time to put some muscle on our objects. We need more ways to create relationships

between objects and to share code among them. And, we need ways to extend

and enhance existing objects. In other words, we need more tools. In this chapter,

you’re going to see that JavaScript has a very powerful object model, but one that

is a bit different than the status quo object-oriented language. Rather than the typical

class-based object-oriented system, JavaScript instead opts for a more powerful

prototype model, where objects can inherit and extend the behavior of other objects.

What is that good for? You’ll see soon enough. Let’s get started...

Hey, before we get started, we’ve got a better way to diagram our objects 565

Revisiting object constructors: we’re reusing code, but are we being efficient? 566

Is duplicating methods really a problem? 568

What are prototypes? 569

Inheriting from a prototype 570

How inheritance works 571

Overriding the prototype 573

How to set up the prototype 576

Prototypes are dynamic 582

A more interesting implementation of the sit method 584

One more time: how the sitting property works 585

How to approach the design of the show dogs 589

Setting up a chain of prototypes 591

How inheritance works in a prototype chain 592

Creating the show dog prototype 594

Creating a show dog Instance 598

A final cleanup of show dogs 602

Stepping through Dog.call 604

The chain doesn’t end at dog 607

Using inheritance to your advantage...by overriding built-in behavior 608

Using inheritance to your advantage...by extending a built-in object 610

Grand Unified Theory of Everything 612

Better living through objects 612

Putting it all together 613

What’s next? 613

table of contents

Object

toString()
hasOwnProperty()
// and more

species: "Canine"
Dog Prototype

bark()
run()
wag()

name: “Scotty”
breed: “Scottish Terrier”
weight: 15
handler: “Cookie”

ShowDog

league: “Webville”

ShowDog Prototype

stack()
bait()
gait()
groom()

xxiii

14 The top ten topics (we didn’t cover)
Appendix: Leftovers

We’ve covered a lot of ground, and
you’re almost finished with this book.
We’ll miss you, but before we let you go, we wouldn’t

feel right about sending you out into the world without a

little more preparation. We can’t possibly fit everything

you’ll need to know into this relatively small chapter.

Actually, we did originally include everything you need

to know about JavaScript Programming (not already

covered by the other chapters), by reducing the type

point size to .00004. It all fit, but nobody could read it.

So we threw most of it away, and kept the best bits for

this Top Ten appendix.This really is the end of the book.

Except for the index, of course (a must-read!).

#1 jQuery 624

#2 Doing more with the DOM 626

#3 The Window Object 627

#4 Arguments 628

#5 Handling exceptions 629

#6 Adding event handlers with addEventListener 630

#7 Regular Expressions 632

#8 Recursion 634

#9 JSON 636

#10 Server-side JavaScript 637

table of contents

i Index 641

xxv

Intro
how to use this book

I can’t believe
they put that in a
JavaScript book!

In this section, we answer the burning questi
on:

“So, why DID they put that in a J
avaScript book?”

how to use this book

xxvi intro

Who is this book for ?

1 Do you have access to a computer with a modern web
browser and a text editor?

2 Do you want to learn, understand and remember how
to program with JavaScript using the best techniques
and the most recent standards?

this book is for you.

Who should probably back away from this book?

1 Are you completely new to web development?

Are HTML and CSS foreign concepts to you? If so,
you’ll probably want to start with Head First HTML
and CSS to understand how to put web pages
together before tackling JavaScript.

3

this book is not for you.

Are you afraid to try something different? Would you
rather have a root canal than mix stripes with plaid?
Do you believe that a technical book can’t be serious if
JavaScript objects are anthropomorphized?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt web developer looking for a
reference book?

[Note from marketing: this book is
for anyone with a credit card.]

3 Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

We consider an updated version of Safari, Chrome, Firefox or IE version 9 or newer to be modern.

the intro

you are here� xxvii

“How can this be a serious book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you. What happens inside your head
and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-
free zone. You’re studying. Getting ready for an exam. Or trying to
learn some tough technical topic your boss thinks will take a week,
ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obviously non-important content doesn’t
clutter up scarce resources. Resources that are better spent storing
the really big things. Like tigers. Like the danger of fire. Like how
you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how little
I’m registering on the emotional Richter scale right now, I really do
want you to keep this stuff around.”

And we know what your brain is thinking.

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

Great. Only 661
more dull, dry,
boring pages.

how to use this book

xxviii intro

We think of a “Head First” reader as a learner.

I really think
JavaScript should go
in the <head> element.

Now that I have your
attention, you should be

more careful using global

variables.

So what does it take to learn something? First, you have to get it, then make

sure you don’t forget it. It’s not about pushing facts into your head. Based

on the latest research in cognitive science, neurobiology and educational

psychology, learning takes a lot more than text on a page. We know what

turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words

alone, and make learning much more effective (up to 89%

improvement in recall and transfer studies). It also makes things

more understandable. Put the words within or near the

graphics they relate to, rather than on the bottom or on another

page, and learners will be up to twice as likely to solve problems

related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content

spoke directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t

take yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words,

unless you actively flex your neurons, nothing much happens in your

head. A reader has to be motivated, engaged, curious and inspired

to solve problems, draw conclusions and generate new

knowledge. And for that, you need challenges, exercises

and thought-provoking questions, and activities that

involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all

had the “I really want to learn this but I can’t stay awake past page one”

experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have

to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re

talking emotions like surprise, curiosity, fun, “what the…?” , and the feeling of “I Rule!” that comes

when you solve a puzzle, learn something everybody else thinks is hard, or realize you know

something that “I’m more technical than thou” Bob from engineering doesn’t.

Unlike other languages, JavaScript is
delivered, as code, directly to your
browser. That’s different!

“Found the code, here ya go”Web Server

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 <p>BT - Satellite: nice
downbeat tune.
 </p>

 <p>

Not so fast! T
here are

performance and pag
e

loading implications!

the intro

you are here� xxix

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught how to learn.

But we assume that if you’re holding this book, you really want to learn
how to create JavaScript programs. And you probably don’t want to
spend a lot of time. And you want to remember what you read, and be able
to apply it. And for that, you’ve got to understand it. To get the most from
this book, or any book or learning experience, take responsibility for your
brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best
to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So how DO you get your brain to think JavaScript is
as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep pounding on the same
thing. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try
to make sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxx intro

how to use this book

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth 1024 words. And when text and pictures work together, we
embedded the text in the pictures because your brain works more effectively when the text is
within the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain is
tuned to pay attention to the biochemistry of emotions. That which causes you to feel something
is more likely to be remembered, even if that feeling is nothing more than a little humor,
surprise or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading.

We included more than 100 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, while someone else just wants to see a
code example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you can
be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And your
brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going to be a kick-butt JavaScript
developer, this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll
actually need.

Here’s what WE did:

 BULLET POINTS

Puzzles

Be the Browser

species: "Canine"
Dog Prototype

bark()
run()
wag()

name: “Scotty”
breed: “Scottish Terrier”
weight: 15
handler: “Cookie”

ShowDog

league: “Webville”

ShowDog Prototype

stack()
bait()

groom()
gait()

the intro

you are here� xxxi

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Here’s what YOU can do to bend
your brain into submission

1 Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

4 Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing-time, some of what you
just learned will be lost.

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

6 Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

9 Create something!
Apply this to something new you’re designing, or
rework an older project. Just do something to get some
experience beyond the exercises and activities in
this book. All you need is a pencil and a problem
to solve… a problem that might benefit from using
JavaScript.

Cut this out and stick it on your refrigerator.

8 Feel something!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

10 Get Sleep.
You’ve got to create a lot of new brain connections
to learn to program. Sleep often; it helps.

xxxii intro

Read Me

how to use this book

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We teach the GOOD parts of JavaScript, and warn you about the
BAD parts.
JavaScript is a programming language that didn’t come up through the ivy leagues with
plenty of time for academic peer review. JavaScript was thrown out into the world out of
necessity and grew up in the early browser neighborhood. So, be warned: JavaScript has
some great parts and some not so great parts. But, overall, JavaScript is brilliant, if you use it
intelligently.

In this book, we teach you to use the great parts to best advantage, and we’ll point out the
bad parts, and advise you to drive around them.

We don’t exhaustively cover every single aspect of the language.
There’s a lot you can learn about JavaScript. This book is not a reference book; it’s a learning
book, so it doesn’t cover everything there is to know about JavaScript. Our goal is to teach
you the fundamentals of using JavaScript so that you can pick up any old reference book and
do whatever you want with JavaScript.

This book does teach you JavaScript in the browser.
The browser is not only the most common environment that JavaScript runs in, it’s also the
most convenient (everyone has a computer with a text editor and a browser, and that’s all you
need to get started with JavaScript). Running JavaScript in the browser also means you get
instant gratification: you can write code and all you have to do is reload your web page to see
what it does.

This book advocates well-structured and readable code based on
best practices.

You want to write code that you and other people can read and understand, code that will
still work in next year’s browsers. You want to write code in the most straight-forward way so
you can get the job done and get on to better things. In this book we’re going to teach you to
write clear, well-organized code that anticipates change from the get-go. Code you can be
proud of, code you’ll want to frame and put on the wall (just take it down before you bring
your date over).

We encourage you to use more than one browser with this book.
We teach you to write JavaScript that is based on standards, but you’re still likely to encounter
minor differences in the way web browsers interpret JavaScript. While we’ll do our best to
ensure all the code in the book works in all modern browsers, and even show you a couple

the intro

you are here� xxxiii

of tricks to make sure your code is supported by those browsers, we encourage you to pick
at least two browsers and test your JavaScript using them. This will give you experience in
seeing the differences among browsers and in creating JavaScript code that works well in a
variety of browsers with consistent results.

Programming is serious business. You’re going to have to work,
sometimes hard.
If you’ve already had some programming experience, then you know what we’re talking
about. If you’re coming straight from Head First HTML and CSS, then you’re going to find
writing code is a little, well, different. Programming requires a different way of thinking.
Programming is logical, at times very abstract, and requires you to think in an algorithmic
way. But no worries; we’re going to do all that in a brain-friendly way. Just take it a bit
at a time, make sure you’re well nourished and get plenty of sleep. That way, these new
programming concepts will really sink in.

The activities are NOT optional.
The exercises and activities in this book are not add-ons; they’re part of the core content of
the book. Some of them are to help with memory, some are for understanding, and some
will help you apply what you’ve learned. Don’t skip the exercises. The crossword puzzles
are the only things you don’t have to do, but they’re good for giving your brain a chance to
think about the words in a different context.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book is about learning, so you’ll see some of the
same concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for
the two lines they need to understand. Most examples in this book are shown within the
smallest possible context, so that the part you’re trying to learn is clear and simple. Don’t
expect all of the examples to be robust, or even complete—they are written specifically for
learning, and aren’t always fully-functional.

We’ve placed all the example files on the Web so you can download them. You’ll find them
at http://wickedlysmart.com/hfjs.

The ‘Brain Power’ exercises don’t usually have answers.
For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises you will find hints to point you in the right direction.

http://wickedlysmart.com/hfjs

how to use this book

xxxiv intro

We often give you only the code, not the markup.
After we get past the first chapter or two, we often give you just the JavaScript code and
assume you’ll wrap it in a nice HTML wrapper. Here’s a simple HTML page you can use
with most of the code in this book, and if we want you to use other HTML, we’ll tell you:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Your HTML Page</title>

 <script>

 </script>

 </head>

 <body>

 </body>

</html>

Your JavaScript code will typically go here.

Any web page content will go here.

But don’t worry; at the beginning of the
book we’ll take you through everything.

Get the code examples, help and discussion
You’ll find everything you need for this book online at http://wickedlysmart.com/hfjs,
including code sample files and additional support material including videos.

http://wickedlysmart.com/hfjs

the intro

you are here� xxxv

Tech Reviewers

Thank you to our amazing review team

This book has been more carefully reviewed than any of our previous books. In fact, over 270 people joined
our WickedlySmart Insiders program and participated in reading and critiquing this book in real time as we
wrote it. This worked better than we ever imagined and was instrumental in shaping every aspect of Head
First JavaScript Programming. Our heartfelt thanks to everyone who participated; the book is so much better
because of you.

The amazing technical reviewers pictured above provided feedback above and beyond, and each made
significant contributions to this book. The following reviewers also made contributions across different aspects
of the book: Galina N. Orlova, J. Patrick Kelley, Claus-Peter Kahl, Rob Cleary,
Rebeca Dunn-Krahn, Olaf Schoenrich, Jim Cupec, Matthew M. Hanrahan, Russell
Alleen-Willems, Christine J. Wilson, Louis-Philippe Breton, Timo Glaser, Charmaine
Gray, Lee Beckham, Michael Murphy, Dave Young, Don Smallidge, Alan Rusyak, Eric R.
Liscinsky, Brent Fazekas, Sue Starr, Eric (Orange Pants) Johnson, Jesse Palmer, Manabu
Kawakami, Alan McIvor, Alex Kelley, Yvonne Bichsel Truhon, Austin Throop, Tim Williams, J. Albert
Bowden II, Rod Shelton, Nancy DeHaven Hall, Sue McGee, Francisco Debs, Miriam Berkland, Christine H
Grecco, Elhadji Barry, Athanasios Valsamakis, Peter Casey, Dustin Wollam and Robb Kerley.

Jeff Straw
Ismaël Martin “Bing” Demiddel

Frank D. Moore

Alfred J. Speller
Javier Ruedas

Bruce Forkush

These guys really rocked it; they
were there for us throughout the
review process and provided invaluable,
detailed feedback on everything!

xxxvi intro

We’re also extremely grateful to our esteemed technical reviewer David
Powers. The truth is we don’t write books without David anymore, he’s
just saved our butts too many times. It’s getting a little like Elton and Bernie;
we’re starting to ask ourselves if we actually could write a book without
him. David helps us forces us to make the book more sound and technically
accurate, and his second career as a standup comic really comes in handy
when we’re tuning the more humorous parts of the book. Thank you once
again David—you’re the ultimate professional and we sleep better at night
knowing we’ve passed your technical muster.

At O’Reilly:

A huge, massive thanks to

our editor, Meghan
Blanchette, who
cleared the path for
this book, removed
every obstacle to its
completion, waited
patiently and
sacrificed family
time to get it done. She’s also the person who keeps us sane in
our relationship with O’Reilly (and keeps O’Reilly sane in their
relationship with us). We love you and can’t wait to collaborate with
you again!

And another big shoutout

to our Chief Editor Emeritus, Mike Hendrickson, who
spearheaded this book from the very beginning. Thanks again Mike;
none of our books would have happened without you. You’ve been our
champion for well over a decade and we love you for it!

Acknowledgments*

*The large number of acknowledgments is because we’re testing the theory
that everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you’d like to be in the
acknowledgment of our next book, and you have a large family, write to us.

Don’t let the smile fool
you, this guy is hard core
(technically of course).

Esteemed Reviewer,
David Powers

Meghan Blanchette

the review team

Mike Hendrickson

the intro

you are here� xxxvii

Also At O’Reilly:

Our sincerest thanks as well to the whole O’Reilly team: Melanie Yarbrough, Bob Pfahler and
Dan Fauxsmith, who wrangled the book into shape; to Ed Stephenson, Huguette Barriere,
and Leslie Crandell who led the way on marketing and we appreciate their out-of-the-box
approach. Thanks to Ellie Volkhausen, Randy Comer and Karen Montgomery for their
inspired cover design that continues to serve us well. Thank you, as always, to Rachel Monaghan
for her hardcore copyedit (and for keeping it all fun), and to Bert Bates for his valuable feedback.

this is a new chapter 1

Getting your feet wet
1 a quick dip into javascript

Come on in, the water’s
great! We’re going to dive

right in and check out JavaScript,
write some code, run it and watch it

interact with your browser! You’re
going to be writing code in no

time.

JavaScript gives you superpowers. The true programming

language of the web, JavaScript lets you add behavior to your web pages. No

more dry, boring, static pages that just sit there looking at you—with JavaScript

you’re going to be able to reach out and touch your users, react to interesting

events, grab data from the web to use in your pages, draw graphics right in your

web pages and a lot more. And once you know JavaScript you’ll also be in a

position to create totally new behaviors for your users.

You’ll be in good company too, JavaScript’s not only one of the most popular

programming languages, it’s also supported in all modern (and most ancient)

browsers; JavaScript’s even branching out and being embedded in a lot of

environments outside the browser. More on that later; for now, let’s get started!

2 Chapter 1

how javascript works

The way JavaScript works

So let’s introduce JavaScript, HTML & CSS’s
computational cousin. JavaScript lets you create
behavior in your web pages. Need to react when a
user clicks on your “On Sale for the next 30 seconds!”
button? Double check your user’s form input on the fly?
Grab some tweets from Twitter and display them? Or
how about play a game? Look to JavaScript. JavaScript
gives you a way to add programming to your page so
that you can compute, react, draw, communicate, alert,
alter, update, change, and we could go on... anything
dynamic, that’s JavaScript in action.

And you already know that we
use CSS, or Cascading Style
Sheets, to specify how the
HTML is presented...the colors,
fonts, borders, margins, and
the layout of your page. CSS
gives you style, and it does it
in a way that is separate from
the structure of the page.

You already know
we use HTML, or
Hypertext Markup
Language, to specify
all the content of
your pages along
with their structure,
like paragraphs,
headings and
sections.

HTML CSS

JS

If you’re used to creating structure, content, layout and style in your web pages,
isn’t it time to add a little behavior as well? These days, there’s no need for
the page to just sit there. Great pages should be dynamic, interactive, and they
should work with your users in new ways. That’s where JavaScript comes in.
Let’s start by taking a look at how JavaScript fits into the web page ecosystem:

Browser

you are here 4 3

a quick dip into javascript

CSS

How you’re going to write JavaScript

You create your page
just like you always do,
with HTML content and
CSS style. And you also
include JavaScript in
your page. As you’ll see,
just like HTML and CSS,
you can put everything
together in one file, or
you can place JavaScript
in its own file, to be
included in your page.

Writing

<html>
<head>
<title>Icecream</title>
<script>
 var x = 49;
</script>
<body>
<h1>Icecream Flavors</h1>
<h2>49 flavors</h2>
<p>All your favorite
flavors!</p>
</body>
</html>

1

The browser starts
executing your code as
soon as it encounters it in
your page, and continues
executing it for the lifetime
of your page. Unlike early
versions of JavaScript,
today’s JavaScript is
a powerhouse, using
advanced compilation
techniques to execute
your code at nearly the
same speed as many native
programming languages.

3

Executing

Point your browser to your
page, just as you always
do. When the browser sees
code, it starts parsing it
immediately, getting ready
to execute it. Note that
like HTML and CSS, if the
browser sees errors in your
code, it will do its best to
keep moving and reading
more JavaScript, HTML and
CSS. The last thing it wants
to do is not be able to give
the user a page to see.

Browser

2

Loading

html

head

title script

body

h1 ph2

em

Browser

JavaScript is fairly unique in the programming world. With your typical
programming language you have to write it, compile it, link it and deploy
it. JavaScript is much more fluid and flexible. With JavaScript all you
need to do is write JavaScript right into your page, and then load it into a
browser. From there, the browser will happily begin executing your code.
Let’s take a closer look at how this works:

For future reference, the browser also builds an “object model" of your HTML page that JavaScript can make use of. Put that in the back of your brain, we'll come back to it later...

We’ll talk about the best way in a bit...

4 Chapter 1

get javascript in your page

How to get JavaScript into your page
First things first. You can’t get very far with JavaScript if you don’t know
how to get it into a page. So, how do you do that? Using the <script>
element of course!

Let’s take a boring old, garden-variety web page and add some dynamic
behavior using a <script> element. Now, at this point, don’t worry too
much about the details of what we’re putting into the <script> element—
your goal right now is to get some JavaScript working.

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Just a Generic Page</title>

 <script>

 setTimeout(wakeUpUser, 5000);

 function wakeUpUser() {

 alert("Are you going to stare at this boring page forever?");

 }

 </script>

 </head>

 <body>

 <h1>Just a generic heading</h1>

 <p>Not a lot to read about here. I'm just an obligatory paragraph living in
an example in a JavaScript book. I'm looking for something to make my life more
exciting.</p>

 </body>

</html>

Here's our standard HTML5 doctype, and
<html> and <head> elements.

And we've got a pretty generic <body> for this page as well.

Ah, but we've added a script element to
the <head> of the page.

And we've written some JavaScript code
inside it.

Again, don’t worry too much about what this code does.
Then again, we bet you’ll want to take a look at the code
and see if you can think through what each part might do.

Go ahead and type this page into a file named “behavior.html”. Drag
the file to your browser (or use File > Open) to load it. What does it do?
Hint, you’ll need to wait five seconds to find out.

A little test drive

you are here 4 5

a quick dip into javascript

Q: I’ve heard JavaScript is a bit of a wimpy language. Is it?

A: JavaScript certainly wasn’t a power lifter in its early days, but
its importance to the web has grown since then, and as a result,
many resources (including brain power from some of the best minds
in the business) have gone into supercharging the performance of
JavaScript. But, you know what? Even before JavaScript was super
fast, it was always a brilliant language. As you'll see, we’re going to
do some very powerful things with it.

Q: Is JavaScript related to Java?

A: Only by name. JavaScript was created during a time when
Java was a red hot popular language, and the inventors of JavaScript
capitalized on that popularity by making use of the Java name. Both
languages borrow some syntax from programming languages like C,
but other than that, they are quite different.

Q: Is JavaScript the best way to create dynamic web pages?
What about solutions like Flash?

A: There was a time when Flash may have been the preferred
choice for many to create interactive and more dynamic web pages,
but the industry direction is moving strongly in favor of HTML5
with JavaScript. And, with HTML5, JavaScript is now the standard
scripting language for the Web. Many resources are going into
making JavaScript fast and efficient, and creating JavaScript APIs
that extend the functionality of the browser.

Q: My friend is using JavaScript inside Photoshop, or at least
he says he is. Is that possible?

A: Yes, JavaScript is breaking out of the browser as a general
scripting language for many applications from graphics utilities to
music applications and even to server-side programming. Your
investment in learning JavaScript is likely to pay off in ways beyond
web pages in the future.

Q: You say that many other languages are compiled. What
exactly does that mean and why isn't JavaScript?

A: With conventional programming languages like C, C++ or
Java, you compile the code before you execute it. Compiling takes
your code and produces a machine efficient representation of it,
usually optimized for runtime performance. Scripting languages are
typically interpreted, which means that the browser runs each line
of JavaScript code as it gets to it. Scripting languages place less
importance on runtime performance, and are more geared towards
tasks like prototyping, interactive coding and flexibility. This was
the case with early JavaScript, and was why, for many years, the
performance of JavaScript was not so great. There is a middle
ground however; an interpreted language can be compiled on the fly,
and that’s the path browser manufacturers have taken with modern
JavaScript. In fact, with JavaScript you now have the conveniences
of a scripting language, while enjoying the performance of a compiled
language. By the way, we’ll use the words interpret, evaluate and
execute in this book. They have slightly different meanings in various
contexts, but for our purposes, they all basically mean the same thing.

Relax
Just relax. At this point we don’t expect you to read JavaScript like you grew up with it. In fact,
all we want you to do right now is get a feel for what JavaScript looks like.

That said, you’re not totally off the hook because we need to get your brain revved up and
working. Remember that code on the previous page? Let’s just walk through it to get a feel for
what it might do:

 setTimeout(wakeUpUser, 5000);

 function wakeUpUser() {

 alert("Are you going to stare at this boring page forever?");

 }

Perhaps a way to count five seconds of time? Hint:
1000 milliseconds = 1 second.

Clearly a way to alert the user with a message.

A way to create
reusable code
and call it

“wakeUpUser”?

6 Chapter 1

javascript history

JavaScript, you’ve come a long way baby...

JavaScript 1.0 JavaScript 1.3
Netscape might have been before your
time, but it was the first real browser
company. Back in the mid-1990s browser
competition was fierce, particularly with
Microsoft, and so adding new, exciting
features to the browser was a priority.

And towards that goal, Netscape wanted
to create a scripting language that would
allow anyone to add scripts to their
pages. Enter LiveScript, a language
developed in short order to meet that
need. Now if you’ve never heard of
LiveScript, that’s because this was all
about the time that Sun Microsystems
introduced Java, and, as a result, drove
their own stock to stratospheric levels. So,
why not capitalize on that success and
rename LiveScript to JavaScript? After
all, who cares if they don’t actually have
anything to do with each other? Right?

Did we mention Microsoft? They
created their own scripting language
soon after Netscape did, named, um,
JScript, and it was, um, quite similar to
JavaScript. And so began the browser
wars.

Between 1996 and 2000, JavaScript
grew up. In fact, Netscape submitted
JavaScript for standardization and
ECMAScript was born. Never
heard of ECMAScript? That’s
okay, now you have; just know that
ECMAScript serves as the standard
language definition for all JavaScript
implementations (in and out of the
browser).

During this time developers
continued struggling with JavaScript
as casualties of the browser wars
(because of all the differences in
browsers), although the use of
JavaScript became common-place
in any case. And while subtle
differences between JavaScript and
JScript continued to give developers
headaches, the two languages began
to look more and more like each
other over time.

JavaScript still hadn’t outgrown
its reputation as an amateurish
language, but that was soon to
change...

Finally, JavaScript comes of
age and gains the respect of
professional developers! While
you might say it’s all due to
having a solid standard, like
ECMAScript 5, which is now
implemented in all modern
browsers, it’s really Google that
pushed JavaScript usage into the
professional limelight, when in
2005 they released Google Maps
and showed the world what could
really be done with JavaScript to
create dynamic web pages.

With all the new attention,
many of the best programming
language minds focused
on improving JavaScript’s
interpreters and made vast
improvements to its runtime
performance. Today, JavaScript
stands with only a few changes
from the early days, and despite
its rushed birth into the world, is
showing itself to be a powerful
and expressive language.

JavaScript 1.8.5

1995 2000 2012

you are here 4 7

a quick dip into javascript

Look how easy it is
to write JavaScript

var price = 28.99;

var discount = 10;

var total =
 price - (price * (discount / 100));

if (total > 25) {

 freeShipping();

}

var count = 10;

while (count > 0) {

 juggle();

 count = count - 1;

}

var dog = {name: "Rover", weight: 35};

if (dog.weight > 30) {

 alert("WOOF WOOF");

} else {

 alert("woof woof");

}

var circleRadius = 20;

var circleArea =

 Math.PI * (circleRadius * circleRadius);

You don’t know JavaScript yet, but we bet you can make some
good guesses about how JavaScript code works. Take a look at
each line of code below and see if you can guess what it does.
Write in your answers below. We’ve done one for you to get you
started. If you get stuck, the answers are on the next page.

Create a variable named price, and assign the value 28.99 to it.

8 Chapter 1

javascript exercise solution

Look how easy it is
to write JavaScript

var price = 28.99;

var discount = 10;

var total =
 price - (price * (discount / 100));

if (total > 25) {

 freeShipping();

}

var count = 10;

while (count > 0) {

 juggle();

 count = count - 1;

}

var dog = {name: "Rover", weight: 35};

if (dog.weight > 30) {

 alert("WOOF WOOF");

} else {

 alert("woof woof");

}

var circleRadius = 20;

var circleArea =

 Math.PI * (circleRadius * circleRadius);

You don’t know JavaScript yet, but we bet you can make some
good guesses about how JavaScript code works. Take a look at
each line of code below and see if you can guess what it does.
Write in your answers below. We’ve done one for you to get you
started. Here are our answers.

Create a variable named price, and assign the value 28.99 to it.
Create a variable named discount, and assign the value 10 to it.
Compute a new price by applying a discount and then assign it
to the variable total.
Compare the value in the variable total to 25. If it's greater...
 ...then do something with freeShipping.
End the if statement

Create a variable named count, and assign the value 10 to it.
As long as the variable count is greater than 0...
 ...do some juggling, and...
 ...reduce the value of count by 1 each time.
End the while loop

Create a dog with a name and weight.

If the dog’s weight is greater than 30...
 ...alert “WOOF WOOF" to the browser’s web page
Otherwise...
 ...alert “woof woof” to the browser’s web page
End the if/else statement

Create a variable, circleRadius, and assign the value 20 to it.
Create a variable named circleArea...
 ...and assign the result of this expression to it
 (1256.6370614359173)

you are here 4 9

a quick dip into javascript

And usually
increase the
size of your
paycheck too!

Look, if you
want to go beyond creating

just static web pages, you
gotta have JavaScript chops.

It’s True.
With HTML and CSS you can create some great looking pages. But once you
know JavaScript, you can really expand on the kinds of pages you can create.
So much so, in fact, you might actually start thinking of your pages as
applications (or even experiences!) rather than mere pages.

Now, you might be saying, “Sure, I know that. Why do you think I’m reading this
book?” Well, we actually wanted to use this opportunity to have a little chat about
learning JavaScript. If you already have a programming language or scripting
language under your belt, then you have some idea of what lies ahead. However,
if you’ve mostly been using HTML & CSS to date, you should know that there is
something fundamentally different about learning a programming language.

With HTML & CSS what you’re doing is largely declarative—for instance, you’re
declaring, say, that some text is a paragraph or that all elements in the “sale” class
should be colored red. With JavaScript you’re adding behavior to the page, and to
do that you need to describe computation. You need to be able to describe things
like, “compute the user’s score by summing up all the correct answers” or “do
this action ten times” or “when the user clicks on that button play the you-have-
won sound” or even “go off and get my latest tweet, and put it in this page.”

To do those things you need a language that is quite different from HTML or
CSS. Let’s see how…

10 Chapter 1

javascript statements

With HTML we mark up text to create structure. Like, “I need a large heading called Mocha Cafe Latte; it’s a heading for a drink. And I need a paragraph after that.”

How to make a statement
When you create HTML you usually mark up text to give it structure; to do
that you add elements, attributes and values to the text:

<h1 class="drink">Mocha Caffe Latte</h1>

<p>Espresso, steamed milk and chocolate syrup,
just the way you like it.</p>

CSS is a bit different. With CSS you’re writing a set of rules, where each rule
selects elements in the page, and then specifies a set of styles for those elements:

h1.drink {

 color: brown;

}

p {

 font-family: sans-serif;

}

With JavaScript you write statements. Each statement specifies a small part of a
computation, and together, all the statements create the behavior of the page:

var age = 25;

var name = "Owen";

if (age > 14) {

 alert("Sorry this page is for kids only!");

} else {

 alert("Welcome " + name + "!");

}

A set of statements.

With CSS we write rules that use selectors,
like h1.drink and p, to determine what parts
of the HTML the style is applied to.

Each statement does a little bit of work, like declaring some variables to contain values for us.

Or making decisions, such as: Is the age of the user greater than 14?

And if so alerting the user
they are too old for this page.

Otherwise, we welcome the user by name,
like this: “Welcome Owen!” (but since Owen
is 25, we don’t do that in this case.)

...and we want all the paragraphs to have a sans-serif type font.

Here we create a variable to contain an age of 25, and
we also need a variable to contain the value “Owen”.

Let’s make sure all drink
headings are colored brown...

you are here 4 11

a quick dip into javascript

Variables and values
You might have noticed that JavaScript statements usually involve
variables. Variables are used to store values. What kinds of values?
Here are a few examples:

var winners = 2;

var name = "Duke";

var isEligible = false;

This statement declares a
variable named winners and
assigns a numeric value of 2 to it.

This one assigns a string of
characters to the variable name
(we call those “strings,” for short).

And this statement assigns the value false to the
variable isEligible. We call true/false values “booleans.”

winners

2

name

“D
uk

e”

isEligible

fal
se

losers

No value?! What am
I supposed to do now?!
I’m so humiliated.

There are other values that variables can hold beyond numbers, strings
and booleans, and we’ll get to those soon enough, but, no matter what
a variable contains, we create all variables the same way. Let’s take a
little closer look at how to declare a variable:

We say optionally, because if you want, you can create a variable without
an initial value, and then assign it a value later. To create a variable
without an initial value, just leave off the assignment part, like this:

We always start
with the var
keyword when
declaring a variable.

var winners = 2;

NO EXCEPTIONS! Even if
JavaScript doesn’t complain
when you leave off the var.
We’ll tell you why later... Next we give the

variable a name.

And, optionally, we assign a value to the variable by
adding an equals sign followed by the value.

var losers;

By leaving off the
equals sign and value
you’re just declaring the
variable for later use.

Pronounced “boo-lee-ans.”
Notice we don’t put quotes
around boolean values.

We always end an assignment
statement with a semicolon.

12 Chapter 1

javascript keywords

Back away from that keyboard!
You know variables have a name, and you know they have a value.

You also know some of the things a variable can hold are numbers, strings and boolean values.

But what can you call your variables? Is any name okay? Well no, but the rules around
creating variable names are simple: just follow the two rules below to create valid variable names:

1

2

Start your variables with a letter, an underscore or a
dollar sign.

After that, use as many letters, numeric digits,
underscores or dollar signs as you like.

Oh, and one more thing; we really don’t want to confuse JavaScript by using any of the built-in
keywords, like var or function or false, so consider those off limits for your own variable names.
We’ll get to some of these keywords and what they mean throughout the rest of the book, but
here’s a list to take a quick look at:

Q: What’s a keyword?

A: A keyword is a reserved word in
JavaScript. JavaScript uses these reserved
words for its own purposes, and it would
be confusing to you and the browser if you
started using them for your variables.

Q: What if I used a keyword as part
of my variable name? For instance, can
I have a variable named ifOnly (that is, a
variable that contains the keyword if)?

A: You sure can, just don’t match the
keyword exactly. It’s also good to write clear
code, so in general you wouldn’t want to
use something like elze, which might be
confused with else.

Q: Is JavaScript case sensitive?
In other words, are myvariable and
MyVariable the same thing?

A: If you’re used to HTML markup you
might be used to case insensitive languages;
after all, <head> and <HEAD> are treated
the same by the browser. With JavaScript
however, case matters for variables,
keywords, function names and pretty much
everything else, too. So pay attention to your
use of upper- and lowercase.

break
case
catch
class
const
continue
debugger
default

delete
do
else
enum
export
extends
false
finally

for
function
if
implements
import
in
instanceof
interface

let
new
package
private
protected
public
return
static

super
switch
this
throw
true
try
typeof
var

void
while
with
yield

you are here 4 13

a quick dip into javascript

 � Each statement ends in a semicolon.
x = x + 1;

 � A single line comment begins with two forward
slashes. Comments are just notes to you or other
developers about the code.They aren’t executed.
// I'm a comment

 � Whitespace doesn’t matter (almost everywhere).
x = 2233;

 � Surround strings of characters with double quotes
(or single, both work, just be consistent).
"You rule!"
'And so do you!'

 � Don’t use quotes around the boolean values true
and false.
rockin = true;

 � Variables don’t have to be given a value when
they are declared:
var width;

 � JavaScript, unlike HTML markup, is case
sensitive, meaning upper- and lowercase matters.
The variable counter is different from the
variable Counter.

Syntax Fun

You’ve got a lot of flexibility in choosing your variable names, so here are a few Webville tips to make your naming easier:
Choose names that mean something. Variable names like _m, $, r and foo might mean something to you but they are generally frowned upon in Webville. Not only are you likely to forget them over time, your code will be much more readable with names like angle, currentPressure and passedExam.

Use “camel case” when creating multiword variable names.
At some point you’re going to have to decide how you name a variable that represents, say, a two-headed dragon with fire. How? Just use camel case, in which you capitalize the first letter of each word (other than the first): twoHeadedDragonWithFire. Camel case is easy to form, widely spoken in Webville and gives you enough flexibility to create as specific a variable name as you need. There are other schemes too, but this is one of the more commonly used (even beyond JavaScript).

Use variables that begin with _ and $ only with very good reason.
Variables that begin with $ are usually reserved for JavaScript libraries and while some authors use variables beginning with _ for various conventions, we recommend you stay away from both unless you have very good reason (you’ll know if you do).Be safe.

Be safe in your variable naming; we’ll cover a few more tips for staying safe later in the book, but for now be clear in your naming, avoid keywords, and always use var when declaring a variable.

WEBVILLE T I M E SHow to avoid those embarassing naming mistakes

14 Chapter 1

syntax exercise

Below, you’ll find JavaScript code
with some mistakes in it. Your
job is to play like you’re the
browser and find the errors in

the code. After you’ve
done the exercise
look at the end of
the chapter to see if
you found them all.

// Test for jokes

var joke = "JavaScript walked into a bar....';

var toldJoke = "false";

var $punchline =

 "Better watch out for those semi-colons."

var %entage = 20;

var result

if (toldJoke == true) {

 Alert($punchline);

} else

 alert(joke);

}

\\ Movie Night

var zip code = 98104;

var joe'sFavoriteMovie = Forbidden Planet;

var movieTicket$ = 9;

if (movieTicket$ >= 9) {

 alert("Too much!");

} else {

 alert("We're going to see " + joe'sFavoriteMovie);

}

A

B

BE the Browser

Don't worry too much about what this
JavaScript does for now; just focus on
looking for errors in variables and syntax.

you are here 4 15

a quick dip into javascript

Express yourself

var total = price - (price * (discount / 100));

Here’s a JavaScript statement that assigns the result of
evaluating an expression to the variable total.

And this whole thing is an expression.
Here’s our variable total. And the

assignment.

To truly express yourself in JavaScript you need expressions.
Expressions evaluate to values. You’ve already seen a few in passing in
our code examples. Take the expression in this statement for instance:

This expression evaluates
to a price reduced by
a discount that is a
percent of the price. So
if your price is 10 and the
discount is 20, we get 8
as a result.

If you’ve ever taken a math class, balanced your checkbook or done your
taxes, we’re sure these kinds of numeric expressions are nothing new.

There are also string expressions; here are a few:

"Dear " + "Reader" + ","

"super" + "cali" + youKnowTheRest

phoneNumber.substring(0,3)

We also have expressions that evaluate to true or false, otherwise
known as boolean expressions. Work through each of these to see how
you get true or false from them:

age < 14

cost >= 3.99

animal == "bear"

And expressions can evaluate to a few other types; we’ll get to these
later in the book. For now, the important thing is to realize all these
expressions evaluate to something: a value that is a number, a string or
a boolean. Let’s keep moving and see what that gets you!

This adds together, or concatenates, these strings to
form a new string “Dear Reader,”.

Same here, except we have a variable that
contains a string as part of the expression. This
evaluates to “supercalifragilisticexpialidocious”.

Just another example of an expression that results in a string.
We’ll get to exactly how this works later, but this returns the
area code of a US phone number string.

*

* Of course, that is assuming the variable youKnowTheRest is “fragilisticexpialidocious”.

If a person’s age is less than 14 this is true, otherwise it is false.
We could use this to test if someone is a child or not.

If the cost is 3.99 or greater, this is true. Otherwise it’s false. Get ready to buy on sale when it’s false!

This is true when animal contains the string “bear”. If it does, beware!

We use * for multiply
and / for divide.

16 Chapter 1

expressions exercise

(9 / 5) * temp + 32

color == "orange"

name + ", " + "you've won!"

yourLevel > 5

(level * points) + bonus

color != "orange"

1000 + "108"

What is the result when temp is 10? __________

Is this expression true or false when color has the value
“pink”? __________
Or has the value “orange”? __________

What value does this compute to when name is “Martha”?

When yourLevel is 2, what does this evaluate to? ________
When yourLevel is 5, what does this evaluate to? ________
When yourLevel is 7, what does this evaluate to? ________

Okay, level is 5, points is 30,000 and bonus is 3300. What
does this evaluate to? ________

Is this expression true or false when color has the value
“pink”? __________

Get out your pencil and put some expressions through their paces. For each expression below, compute its
value and write in your answer. Yes, WRITE IN… forget what your Mom told you about writing in books and
scribble your answer right in this book! Be sure to check your answers at the end of the chapter.

Serious Coding
Did you notice that the =
operator is used in assignments,

while the == operator tests for equality?
That is, we use one equal sign to assign
values to variables. We use two equal
signs to test if two values are equal to
each other. Substituting one for the other is a common coding mistake.

Can you say “Celsius to Fahrenheit calculator”?

This tests if the first
value is greater than the
second. You can also use
>= to test if the first
value is greater than or
equal to the second.

The != operator tests if two values
are NOT equal to each other.

Extra CREDIT!

Are there a few possible answers?
Only one is correct. Which would you
choose? ______________________

This is a boolean expression. The
== operator tests if two values
are equal to each other.

you are here 4 17

a quick dip into javascript

while (scoops > 0) {

 document.write("Another scoop!");

 scoops = scoops - 1;

}

Doing things more than once
You do a lot of things more than once:

Lather, rinse, repeat…

Wax on, wax off…

Eat candies from the bowl until they’re all gone.

Of course you’ll often need to do things in code more than once, and
JavaScript gives you a few ways to repeatedly execute code in a loop: while,
for, for in and forEach. Eventually, we’ll look at all these ways of looping,
but let’s focus on while for now.

We just talked about expressions that evaluate to boolean values, like
scoops > 0, and these kinds of expressions are the key to the while
statement. Here’s how:

while (juggling) {

 keepBallsInAir();

}

While uses a boolean expression
that we call a conditional test, or
conditional for short.

A while statement starts

with the keyword while.

If the conditional is true,
everything in the code
block is executed.

What’s a code block?
Everything between the curly
braces; that is, between { }.

And, if our conditional is true, then,
after we execute the code block, we
loop back around and do it all again. If
the conditional is false, we’re done.

Like we said, lather, rinse, repeat!

18 Chapter 1

javascript iteration

Seeing as this is your first while loop, let’s trace through a round of its execution
to see exactly how it works. Notice we’ve added a declaration for scoops to
declare it, and initialize it to the value 5.

How the while loop works

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

After that we hit the while statement. When we evaluate a while
statement the first thing we do is evaluate the conditional to see if
it’s true or false.

Is scoops greater
than zero? Looks
like it to us!

Now let’s start executing this code. First we set scoops to five.

Because the conditional is true, we start executing the block of code.
The first statement in the body writes the string “Another scoop!
”
to the browser.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

you are here 4 19

a quick dip into javascript

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

The next statement subtracts one from the number of
scoops and then sets scoops to that new value, four.

1 scoop gone,
4 left!

That’s the last statement in the block, so we loop back up
to the conditional and start over again.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Evaluating our conditional again, this time scoops is four. But
that’s still more than zero.

Still plenty left!

Once again we write the string “Another scoop!
” to the browser.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

20 Chapter 1

javascript while loop

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

The next statement subtracts one from the number of
scoops and sets scoops to that new value, which is three.

2 scoops gone,
3 left!

That’s the last statement in the block, so we loop back up
to the conditional and start over again.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Evaluating our conditional again, this time scoops is three. But
that’s still more than zero.

Still plenty left!

Once again we write the string “Another scoop!
” to the browser.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

you are here 4 21

a quick dip into javascript

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

And as you can see, this continues... each time we
loop, we decrement (reduce scoops by 1), write
another string to the browser, and keep going.

3 scoops gone,
2 left!

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

And continues... 4 scoops gone, 1 left!

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Until the last time... this time something’s different. Scoops
is zero, and so our conditional returns false. That’s it folks;
we’re not going to go through the loop anymore, we’re not
going to execute the block. This time, we bypass the block
and execute the statement that follows it.

5 scoops gone, 0 left!

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Now we execute the other document.write, and write the
string “Life without ice cream isn’t the same”. We’re done!

22 Chapter 1

javascript conditionals

You’ve just seen how you use a conditional to decide whether to continue looping in a
while statement. You can also use boolean expressions to make decisions in JavaScript
with the if statement. The if statement executes its code block only if a conditional test
is true. Here’s an example:

if (scoops < 3) {

 alert("Ice cream is running low!");

}

This conditional tests to see if we’re down
to fewer than three scoops.

Making decisions with JavaScript

if (cashInWallet > 5) {
 order = “I’ll take the works: cheeseburger, fries and a coke”;
} else {
 order = “I’ll just have a glass of water”;
}

And if we’ve got fewer than three left, then
we execute the if statement’s code block.

With an if statement we can also string together multiple tests by adding on one or more
else if’s, like this:

if (scoops >= 5) {

 alert("Eat faster, the ice cream is going to melt!");

} else if (scoops < 3) {

 alert("Ice cream is running low!");

}

Add as many tests with “else if” as you need, each with its own associated code block that will be executed when the condition is true.

Here’s the if keyword, followed by a conditional

and a block of code.

alert takes a string and displays it in a popup dialog in your
browser. Give it a try!

We can have one test, and then
another test with if/else if

you are here 4 23

a quick dip into javascript

You can string together as many if/else statements as you need, and if you want one, even a
final catch-all else, so that if all conditions fail, you can handle it. Like this:

And, when you need to make LOTS of decisions

if (scoops >= 5) {

 alert("Eat faster, the ice cream is going to melt!");

} else if (scoops == 3) {

 alert("Ice cream is running low!");

} else if (scoops == 2) {

 alert("Going once!");

} else if (scoops == 1) {

 alert("Going twice!");

} else if (scoops == 0) {

 alert("Gone!");

} else {

 alert("Still lots of ice cream left, come and get it.");

}

In this code we check to see if there are
five or more scoops left...

And if none of the conditions above are true, then this code is executed.

...or if there are 2, 1 or 0, and then we provide the appropriate alert.

...or if there are precisely three left...

Q: What exactly is a block of code?

A: Syntactically, a block of code (which
we usually just call a block) is a set of
statements, which could be one statement,
or as many as you like, grouped together
between curly braces. Once you’ve got a
block of code, all the statements in that
block are treated as a group to be executed
together. For instance, all the statements
within the block in a while statement are
executed if the condition of the while is true.
The same holds for a block in an if or else if.

Q: I’ve seen code where the
conditional is just a variable that is
sometimes a string, not a boolean. How
does that work?

A: We’ll be covering that a little later,
but the short answer is JavaScript is quite
flexible in what it thinks is a true or false
value. For instance, any variable that holds
a (non-empty) string is considered true, but
a variable that hasn’t been set to a value is
considered false. We’ll get into these details
soon enough.

Q: You’ve said that expressions can
result in things other than numbers,
strings and booleans. Like what?

A: Right now we’re concentrating on
what are known as the primitive types, that
is, numbers, strings and booleans. Later
we’ll take a look at more complex types,
like arrays, which are collections of values,
objects and functions.

Q: Where does the name boolean
come from?

A: Booleans are named after George
Boole, an English mathematician who
invented Boolean logic. You’ll often see
boolean written “Boolean,” to signify that
these types of variables are named after
George.

24 Chapter 1

code magnets coding exercise

Code Magnets
A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the
right places to make a working JavaScript program to produce the output shown below?.
Check your answer at the end of the chapter before you go on.

var name = "Joe";

Your unscrambled program
should produce this output.

Arrange these magnets to make a
working JavaScript program.

Use this space for your
re-arranged magnets.

var i = 0;

while (i < 2) {

document.write("Happy Birthday to you.
");

i = i + 1; }

document.write("Happy Birthday to you.
");

document.write("Happy Birthday dear " + name + ",
");

you are here 4 25

a quick dip into javascript

We’re using these three
methods in this chapter.

As you’ve seen, the browser gives you a quick way to alert your
users through the alert function. Just call alert with a string
containing your alert message, and the browser will give your
user the message in a nice dialog box. A small confession though:
we’ve been overusing this because it’s easy; alert really should
be used only when you truly want to stop everything and let the
user know something.

We’ve been talking about making your pages more interactive,
and to do that you need to be able to communicate with your user.
As it turns out there are a few ways to do that, and you’ve already
seen some of them. Let’s get a quick overview and then we’ll dive
into these in more detail throughout the book:

Reach out and communicate with your user

Every JavaScript environment also has a console that can log messages
from your code. To write a message to the console’s log you use the
function console.log and hand it a string that you’d like printed to
the log (more details on using console log in a second). You can view
console.log as a great tool for troubleshooting your code, but typically
your users will never see your console log, so it’s not a very effective way
to communicate with them.

Use the console.

Write directly into your document.

Create an alert.

Think of your web page as a document (that’s what the browser calls it).
You can use a function document.write to write arbitrary HTML and
content into your page at any point. In general, this is considered bad
form, although you’ll see it used here and there. We’ve used it a bit in this
chapter too because it’s an easy way to get started.

Directly manipulate your document.
This is the big leagues; this is the way you want to be interacting with your
page and users—using JavaScript you can access your actual web page,
read & change its content, and even alter its structure and style! This all
happens by making use of your browser’s document object model (more on
that later). As you’ll see, this is the best way to communicate with your user.
But, using the document object model requires knowledge of how your
page is structured and of the programming interface that is used to read
and write to the page. We’ll be getting there soon enough. But first, we’ve
got some more JavaScript to learn.

This is what we’re working towards.
When you get there you’ll be able to
read, alter and manipulate your page
in any number of ways.

The console is a really handy way
to help find errors in your code!
If you've made a typing mistake,
like missing a quote, JavaScript
will usually give you an error in the
console to help you track it down.

26 Chapter 1

comparing means of javascript output

All our methods of communication have come to the party with masks on. Can you
help us unmask each one? Match the descriptions on the right to the names on the
left. We’ve done one for you.

document.write

console.log

alert

document object model

I ’ l l stop your user in his
tracks and deliver a short
message. The user has
to click on “ok” to go
further.

I can insert a little HTML
and text into a document.
I’m not the most elegant
way to get a message to
your users, but I work on
every browser.

Using me you can totally
control a web page: get
values that a user typed in,
alter the HTML or the style,
or update the content of
your page.

I’m just here for simple
debugging purposes. Use
me and I can write out
information to a special
developer ’s console.

you are here 4 27

a quick dip into javascript

Take any old string...

A closer look at console.log
Let’s take a closer look at how console.log works so we can use it in this
chapter to see the output from our code, and throughout the book to inspect
the output of our code and debug it. Remember though, the console is not a
browser feature most casual users of the web will encounter, so you won’t want
to use it in the final version of your web page. Writing to the console log is
typically done to troubleshoot as you develop your page. That said, it’s a great
way to see what your code is doing while you’re learning the basics of JavaScript.
Here’s how it works:

var message = "Howdy" + " " + "partner";
console.log(message); ...and give it to console.log, and it will be

shown in the browser’s console, like this.

The console contains all the
output logged by your code.

Q: I get that console.log can be used
to output strings, but what exactly is it? I
mean why are the “console” and the “log”
seperated by a period?

A: Ah, good point. We’re jumping ahead
a bit, but think of the console as an object
that does things, console-like things. One
of those things is logging, and to tell the
console to log for us, we use the syntax

“console.log” and pass it our output in
between parentheses. Keep that in the

back of your mind; we’re coming back to talk
a lot more about objects a little later in the
book. For now, you’ve got enough to use
console.log.

Q: Can the console do anything other
than just log?

A: Yes, but typically people just use it to
log. There are a few more advanced ways
to use log (and console), but they tend to be
browser-specific. Note that console is

something all modern browsers supply, but it
isn’t part of any formal specification.

Q: Uh, console looks great, but where
do I find it? I’m using it in my code and I
don’t see any output!

A: In most browsers you have to explicitly
open the console window. Check out the
next page for details.

28 Chapter 1

using the javascript console

Opening the console
Every browser has a slightly different implementation of the console. And, to make
things even more complicated, the way that browsers implement the console changes
fairly frequently—not in a huge way, but enough so that by the time you read this,
your browser’s console might look a bit different from what we’re showing here.

So, we’re going to show you how to access the console in the Chrome browser
(version 25) on the Mac, and we’ll put instructions on how to access the console in
all the major browsers online at http://wickedlysmart.com/hfjsconsole. Once you
get the hang of the console in one browser, it’s fairly easy to figure out how to use it
in other browsers too, and we encourage you to try using the console in at least two
browsers so you’re familiar with them.

To access the console in Chrome (on
the Mac), use the View > Developer >
JavaScript Console menu.

The console will appear in
the bottom part of your
browser window.

Make sure the Console tab is
selected in the tab bar along
the top of the console.

You should see any messages you
give to console.log in your code
displayed in the window here.Don’t worry about what these other tabs are for. They’re useful, but the most important one now is Console, so we can see console.log messages from our code.

http://wickedlysmart.com/hfjsconsole

you are here 4 29

a quick dip into javascript

Coding a Serious JavaScript Application
Let’s put all these new JavaScript skills and console.log to good
use with something practical. We need some variables, a while
statement, some if statements with elses. Add a little more
polish and we’ll have a super-serious business application before
you know it. But, before you look at the code, think to yourself
how you’d code that classic favorite, “99 bottles of beer.”

var word = "bottles";

var count = 99;

while (count > 0) {

 console.log(count + " " + word + " of beer on the wall");

 console.log(count + " " + word + " of beer,");

 console.log("Take one down, pass it around,");

 count = count - 1;

 if (count > 0) {

 console.log(count + " " + word + " of beer on the wall.");

 } else {

 console.log("No more " + word + " of beer on the wall.");

 }

}

There’s still a little flaw in our code. It runs correctly,
but the output isn’t 100% perfect. See if you can find
the flaw, and fix it.

30 Chapter 1

the script tag

Shouldn’t we
be putting this code in

actual web pages so we can see
the output? Or are we just going to
keep writing answers on paper?

Good point! Yes, it’s time. Before we
got there we wanted to make sure you had
enough JavaScript under your belt to make
it interesting. That said, you already saw in
the beginning of this chapter that you add
JavaScript to your HTML just like you add
CSS; that is, you just add it inline with the
appropriate <script> tags around it.

Now, like CSS, you can also place your
JavaScript in files that are external to your
HTML.

Let’s first get this serious business application
into a page, and then after we’ve thoroughly
tested it, we’ll move the JavaScript out to an
external file.

you are here 4 31

a quick dip into javascript

A Test Drive

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>My First JavaScript</title>

 </head>

 <body>

 <script>

 </script>

 </body>

</html>

Type this in.

Here’s our test run of this code. The code creates
the entire lyrics for the 99 bottles of beer song
and logs the text to the browser’s console.

Here are the <script> tags. At this point you
know that’s where you should put your code.

To download all the code and sample files for this book,
please visit http://wickedlysmart.com/hfjs.

Okay, let’s get some code in the browser... follow the instructions below and get your
serious business app launched! You’ll see our result below:

1

2

Check out the HTML below; that’s where your JavaScript’s going to go. Go ahead
and type in the HTML and then place the JavaScript from two pages back in between
the <script> tags. You can use an editor like Notepad (Windows) or TextEdit (Mac),
making sure you are in plain text mode. Or, if you have a favorite HTML editor, like
Dreamweaver, Coda or WebStorm, you can use that too.

Save the file as “index.html”.

3 Load the file into your browser. You can either drag the file
right on top of your browser window, or use the File > Open
(or File > Open File) menu option in your favorite browser.

4 You won’t see anything in the web page itself because we’re
logging all the output to the console, using console.log. So
open up the browser’s console, and congratulate yourself on
your serious business application.

32 Chapter 1

how to add code to your page

You can place your code inline,
in the <head> element. The most
common way to add code to your pages is
to put a <script> element in the <head>.
Sure, it makes your code easy to find
and seems to be a logical place for
your code, but it’s not always the
best place. Why? Read on…

How do I add code to my page? (let me count the ways)
You already know you can add the <script> element with your JavaScript code to the <head> or
<body> of your page, but there are a couple of other ways to add your code to a page. Let’s check out all
the places you can put JavaScript (and why you might want to put it one place over another):

Despite evidence
to the contrary, I

still think the <head> is a
great place for code.

Or, you can add your
code inline in the body
of the document. To do
this, enclose your JavaScript
code in the <script> element
and place it in the <body> of
your page (typically at the end of
the body).

This is a little better. Why? When
your browser loads a page, it loads
everything in your page’s <head>
before it loads the <body>. So, if
your code is in the <head>, users might
have to wait a while to see the page. If
the code is loaded after the HTML in the
<body>, users will get to see the page
content while they wait for the code to
load.

Still, is there a better way? Read on…

Or, put your code in its own file
and link to it from the <head>.

This is just like linking to a CSS file. The
only difference is that you use the

src attribute of the <script> tag to
specify the URL to your JavaScript

file.

When your code is in an external
file, it’s easier to maintain
(separately from the HTML)
and can be used across
multiple pages. But this
method still has the drawback
that all the code needs to be
loaded before the body of the
page. Is there a better way?
Read on…

Finally, you can link to
an external file in the
body of your page. Ahhh,

the best of both worlds. We have a
nice, maintainable JavaScript file that

can be included in any page, and it’s
referenced from the bottom of the body
of the page, so it’s only loaded after the
body of the page. Not bad.

Your HTML page

<head>
<script>
 statement;
</script>

<script src=”mycode.js”></script>

<script>
 statement;
 statement;
</script>

<body>

<script src=”somecode.js”></script>

you are here 4 33

a quick dip into javascript

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>My First JavaScript</title>

 </head>

 <body>

 <script>

 var word = "bottles";

 var count = 99;

 while (count > 0) {

 console.log(count + " " + word + " of beer on the wall");

 console.log(count + " " + word + " of beer,");

 console.log("Take one down, pass it around,");

 count = count - 1;

 if (count > 0) {

 console.log(count + " " + word + " of beer on the wall.");

 } else {

 console.log("No more " + word + " of beer on the wall.");

 }

 }

 </script>

 </body>

</html>

Going separate ways hurts, but we know we have to do it. It’s time to take your
JavaScript and move it into its own file. Here’s how you do that…

We’re going to have to separate you two

1

Now create a new file named “code.js” in your editor, and place the
code into it. Then save “code.js”.

2

Open index.html and select all the code; that is, everything
between the <script> tags. Your selection should look like this:

Select just the code, not the <script> tags;
you won’t need those where you’re going...

code.js

34 Chapter 1

external javascript code

3 Now we need to place a reference to the “code.js” file in
“index.html” so that it’s retrieved and loaded when the page
loads. To do that, delete the JavaScript code from “index.html”,
but leave the <script> tags. Then add a src attribute to your
opening <script> tag to reference “code.js”.

4 That’s it, the surgery is complete. Now
you need to test it. Reload your

“index.html” page and you should see
exactly the same result as before. Note
that by using a src=“code.js”, we’re
assuming that the code file is in the same
directory as the HTML file.

You should get the same result as
before. But now your HTML and
JavaScript are in separate files.
Doesn’t that just feel cleaner, more
manageable, more stress-free already?

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My First JavaScript</title>
 </head>
 <body>
 <script src="code.js">

 </script>
 </body>
</html>

Where your code was.

Use the src attribute of the <script>
element to link to your JavaScript file.

Believe it or not we still need the ending <script> tag, even if
there is no code between the two tags.

you are here 4 35

a quick dip into javascript

You know how to use the <script> element to add code to your page, but just
to really nail down the topic, let’s review the <script> element to make sure we
have every detail covered:

Anatomy of a Script Element

<script type="text/javascript" >

 alert("Hello world!");

</script>

The <script>
opening tag.

The type attribute tells the browser you’re writing JavaScript. The thing
is, browsers assume you’re using JavaScript if you leave it off. So, we
recommend you leave it off, and so do the people who write the standards.

Don’t forget the right
bracket on the opening tag.

Everything between the script tags
must be valid JavaScript.

You must end the script with a closing
</script> tag, always!

Add a src attribute to specify
the URL of the JavaScript file.

<script src="myJavaScript.js" >

</script>

And when you are referencing a separate JavaScript file from your HTML, you’ll use the
<script> element like this:

Use “.js” as the extension
on JavaScript files.

When referencing a separate JavaScript
file, you don’t put any JavaScript in the
content of the <script> element.

Again, don’t forget the closing </script> tag! You need it even when you’re linking to an external file.

You can’t use inline and external together.
If you try throwing some quick code in between those <script> tags when you’re already using a src attribute, it won’t work. You’ll need two separate <script> elements.
 <script src="goodies.js">
 var = "quick hack";

 </script> WRONG

36 Chapter 1

interview with javascript

Head First: Welcome JavaScript. We know you’re super-
busy out there, working on all those web pages, so we’re
glad you could take time out to talk to us.

JavaScript: No problem. And, I am busier than ever
these days; people are using JavaScript on just about every
page on the Web nowadays, for everything from simple
menu effects to full blown games. It’s nuts!

Head First: That’s amazing given that just a few years
ago, someone said that you were just a “half-baked,
wimpy scripting language” and now you’re everywhere.

JavaScript: Don’t remind me. I’ve come a long way
since then, and many great minds have been hard at work
making me better.

Head First: Better how? Seems like your basic language
features are about the same…

JavaScript: Well, I’m better in a couple of ways. First
of all, I’m lightning fast these days. While I’m considered
a scripting language, now my performance is close to that
of native compiled languages.

Head First: And second?

JavaScript: My ability to do things in the browser has
expanded dramatically. Using the JavaScript libraries
available in all modern browsers you can find out your
location, play video and audio, paint graphics on your
web page and a lot more. But if you wanna do all that you
have to know JavaScript.

Head First: But back to those criticisms of you, the
language. I’ve heard some not so kind words… I believe
the phrase was “hacked up language.”

JavaScript: I’ll stand on my record. I’m pretty
much one of, if not the most widely used languages in
the world. I’ve also fought off many competitors and
won. Remember Java in the browser? Ha, what a joke.
VBScript? Ha. JScript? Flash?! Silverlight? I could go on
and on. So, tell me, how bad could I be?

Head First: You’ve been criticized as, well, “simplistic.”

JavaScript: Honestly, it’s my greatest strength. The
fact that you can fire up a browser, type in a few lines of
JavaScript and be off and running, that’s powerful. And
it’s great for beginners too. I’ve heard some say there’s no
better beginning language than JavaScript.

Head First: But simplicity comes at a cost, no?

JavaScript: Well that’s the great thing, I’m simple in the
sense you can get a quick start. But I’m deep and full of
all the latest modern programming constructs.

Head First: Oh, like what?

JavaScript: Well, for example, can you say dynamic
types, first-class functions and closures?

Head First: I can say it but I don’t know what they are.

JavaScript: Figures… that’s okay, if you stay with the
book you will get to know them.

Head First: Well, give us the gist.

JavaScript: Let me just say this, JavaScript was built
to live in a dynamic web environment, an exciting
environment where users interact with a page, where
data is coming in on the fly, where many types of
events happen, and the language reflects that style of
programming. You’ll get it a little more a bit later in the
book when you understand JavaScript more.

Head First: Okay, to hear you tell it, you’re the perfect
language. Is that right?

JavaScript tears up…

JavaScript: You know, I didn’t grow up within the ivy-
covered walls of academia like most languages. I was born
into the real world and had to sink or swim very fast in
my life. Given that, I’m not perfect; I certainly have a few
“bad parts.”

Head First with a slight Barbara Walters smile:
We’ve seen a new side of you today. I think this merits
another interview in the future. Any parting thoughts?

JavaScript: Don’t judge me by my bad parts, learn the
good stuff and stick with that!

JavaScript Exposed
This week’s interview:
Getting to know JavaScript

you are here 4 37

a quick dip into javascript

 � JavaScript is used to add behavior
to web pages.

 � Browser engines are much faster at
executing JavaScript than they were
just a few years ago.

 � Browsers begin executing JavaScript
code as soon as they encounter the
code in the page.

 � Add JavaScript to your page with the
<script> element.

 � You can put your JavaScript inline in
the web page, or link to a separate
file containing your JavaScript from
your HTML.

 � Use the src attribute in the <script>
tag to link to a separate JavaScript
file.

 � HTML declares the structure and
content of your page; JavaScript
computes values and adds behavior
to your page.

 � JavaScript programs are made up of
a series of statements.

 � One of the most common JavaScript
statements is a variable declaration,
which uses the var keyword to
declare a new variable and the
assignment operator, =, to assign a
value to it.

 � There are just a few rules and
guidelines for naming JavaScript
variables, and it’s important that you
follow them.

 � Remember to avoid JavaScript
keywords when naming variables.

 � JavaScript expressions compute
values.

 � Three common types of expressions
are numeric, string and boolean
expressions.

 � if/else statements allow you to make
decisions in your code.

 � while/for statements allow you to
execute code many times by looping.

 � Use console.log instead of alert to
display messages to the Console.

 � Console messages should be used
primarily for troubleshooting as users
will most likely never see console
messages.

 � JavaScript is most commonly found
adding behavior to web pages, but is
also used to script applications like
Adobe Photoshop, OpenOffice and
Google Apps, and is even used as a
server-side programming language.

38 Chapter 1

javascript crossword

JavaScript cross
Time to stretch your dendrites with a puzzle to
help it all sink in.

ACROSS
2. To link to an external JavaScript file from HTML, you
need the _______ attribute for your <script> element.
6. To avoid embarrassing naming mistakes, use

__________ case.
7. JavaScript adds _______________ to your web pages.
10. There are 99 _____________ of beer on the wall.
13. Each line of JavaScript code is called a
_______________.
14. 3 + 4 is an example of an _____________.
15. All JavaScript statements end with a ___________.
16. Use _____________ to troubleshoot your code.

DOWN
1. Do things more than once in a JavaScript program with
the _________ loop.
3. JavaScript variable names are _________ sensitive.
4. To declare a variable, use this keyword.
5. Variables are used to store these.
6. Each time through a loop, we evaluate a

______________ expression.
8. Today's JavaScript runs a lot

________________ than it used to.
9. The if/else statement is used to make a

____________.
11. You can concatenate _______________
together with the + operator.
12. You put your JavaScript inside a ______________
element.

you are here 4 39

a quick dip into javascript

\\ Movie Night

var zip code = 98104;

var joe'sFavoriteMovie = Forbidden Planet;

var movieTicket$ = 9;

if (movieTicket$ >= 9) {

 alert("Too much!");

} else {

 alert("We're going to see " + joe'sFavoriteMovie);

}

// Test for jokes

var joke = "JavaScript walked into a bar....';

var toldJoke = "false";

var $punchline =

 "Better watch out for those semi-colons."

var %entage = 20;

var result

if (toldJoke == true) {

 Alert($punchline);

} else

 alert(joke);

}

It’s okay, but not recommended, to begin a variable with a $.

Can’t use % in variable names.

Comments should begin with // not \\.
No spaces allowed in variable names.

No quotes allowed
in variable names.

This if/else doesn’t work
because of the invalid variable
name here.

Below, you’ll find JavaScript code
with some mistakes in it. Your job
is to play like you’re the browser
and find the errors in the code.

After you’ve done the
exercise look at the
end of the chapter to
see if you found them

all. Here's our solution.

A

B

BE the Browser Solution

Don't forget to end
statements with a semi-colon!

Another missing semi-colon.

Should be alert, not Alert.
JavaScript is case-sensitive.

Don’t put quotes around boolean
values unless you really want a string.

Delimit your strings with two double quotes
(“) or two single quotes (‘). Don’t mix!

But we do need quotes
around the string
“Forbidden Planet”.

We’re missing an opening brace here.

40 Chapter 1

exercise solutions

(9 / 5) * temp + 32

color == "orange"

name + ", " + "you've won!"

yourLevel > 5

(level * points) + bonus

color != "orange"

1000 + "108"

What is the result when temp is 10? __________

Is this expression true or false when color has the value
“pink”? __________
Or, has the value “orange”? __________

What value does this compute to when name is “Martha”?

When yourLevel is 2, what does this evaluate to? ________
When yourLevel is 5, what does this evaluate to? ________
When yourLevel is 7, what does this evaluate to? ________

Okay, level is 5, points is 30,000 and bonus is 3300. What
does this evaluate to? ________

Is this expression true or false when color has the value
“pink”? __________

Get out your pencil and let’s put some expressions through their paces. For each expression below, compute
its value and write in your answer. Yes, WRITE IN... forget what your Mom told you about writing in books and
scribble your answer right in this book! Here’s our solution.

Serious Coding
Did you notice that the =
operator is used in assignments,

while the == operator tests for equality?
That is, we use one equal sign to assign
values to variables. We use two equal
signs to test if two values are equal to
each other. Substituting one for the other is a common coding mistake.

Can you say “Celsius to Fahrenheit calculator”?

This tests if the first
value is greater than the
second. You can also use
>= to test if the first
value is greater than or
equal to the second.

The != operator tests if two values
are NOT equal to each other.

Extra CREDIT!

Are there a few possible answers?
Only one is correct. Which would you
choose? ______________________

false
true

50

false
false
true

153300

true

“1000108”

This is a boolean expression. The
== operator tests if two values
are equal to each other.

“Martha, you’ve won!”

you are here 4 41

a quick dip into javascript

Code Magnets Solution
A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the
right places to make a working JavaScript program to produce the output shown below?.
Here’s our solution.

var name = "Joe";

Your unscrambled program
should produce this output.

Here are the unscrambled magnets!

var i = 0;

while (i < 2) {

 document.write("Happy Birthday to you.
");

 i = i + 1;

}

document.write("Happy Birthday to you.
");

document.write("Happy Birthday dear " + name + ",
");

42 Chapter 1

exercise solutions

JavaScript
Cross
Solution

All our methods of communication have come to the party with masks on. Can you help us unmask
each one? Match the descriptions on the right to the names on the left. Here’s our solution:

document.write

console.log

alert

document object model

I ’ l l stop your user in his tracks and deliver a short
message. The user has to click “ok” to go further.

I can insert a little HTML and text into a document.
I’m not the most elegant way to get a message to
your users, but I work on every browser.

Using me you can totally control a web page: get
values that a user typed in, alter the HTML or the style,
or update the content of your page.

I’m just here for simple debugging purposes. Use
me and I can write out information to a special
developer ’s console.

SOlUTion

O’Reilly Media spreads the knowledge of innovators
through its books, online services, magazines, research,
and conferences. Get the information you need from the
experts you trust; visit oreilly.com to purchase this book.

Get 40% off of the print book by entering
discount code HFJSP.

Head First JavaScript Programming
By Eric T. Freeman, Elisabeth Robson
Mar 2014, ISBN 978-1-4493-4013-1
704 pages, $49.99

Spreading the knowledge of innovators oreilly.com

Head First JavaScript
Programming

http://shop.oreilly.com/product/0636920027065.do?cmp=af-prog-books-videos-product_cj_9781449340131_7096077

