

HTML and CSS Web
Standards Solutions

A Web Standardistas’ Approach

Christopher Murphy
Nicklas Persson

Lead Editor
Clay Andres

Technical Reviewer
Paul Haine

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Michelle Lowman, Matthew Moodie,

Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager
Beth Christmas

Copy Editor
Ami Knox

Associate Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Dina Quan

Proofreader
April Eddy

Indexer
Julie Grady

Artist
April Milne

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

HTML and CSS Web Standards Solutions:
A Web Standardistas’ Approach

Copyright © 2009 by Christopher Murphy and Nicklas Persson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1606-3

ISBN-13 (electronic): 978-1-4302-1607-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the

trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, ,

or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail ,

or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the
Downloads section.

Credits

For C, R & C
—C

For M, T & O
—N

iv

CONTENTS AT A GLANCE

About the Authors . xvii

Acknowledgments . xix

Introduction . xxi

PART ONE: A SOLID XHTML FOUNDATION

Chapter 1: Are You a Web Standardista? . 3

Chapter 2: Building Basic Web Pages .17

Chapter 3: Structured Markup .39

Chapter 4: Markup That Adds Meaning .65

Chapter 5: Including Images .91

Chapter 6: Creating Links with Anchors . 117

Chapter 7: Getting Your Site Online . 145

v

PART TWO: ADDING STYLE WITH CSS

Chapter 8: CSS 101 . 167

Chapter 9: Styling Text . 195

Chapter 10: A One- Column CSS Layout . 229

Chapter 11: A Two-Column CSS Layout . 275

Chapter 12: List-O-Matic . 313

Chapter 13: Harnessing the Power of External Style Sheets 343

Chapter 14: Where to from Here? . 377

Index . 399

vii

CONTENTS

About the Authors . xvii

Acknowledgments . xix

Introduction . xxi

PART ONE: A SOLID XHTML FOUNDATION

Chapter 1: Are You a Web Standardista? . 3

A brief history of the World Wide Web . 4
The Web is born. 4

The perfect Web . 4
The chaotic Web . 5

HTML rewind . 5
HTML evolved . 6

The X in XHTML . 7
A web standards approach . 7

What are standards? . 7
So, web standards? . 8

Why use web standards? . 8
Separating content and presentation . 9
Efficiency through reduced markup . 9
Increased accessibility . 10
Cross-browser compatibility . 10
Nonbrowser compatibility . 10
Forward compatibility . 11

CONTENTS

viii

The Web Standardistas’ approach . 11
Wax on . . . wax off . 11
Why use XHTML? . 12
The benefits of CSS . 12

The Web Standardistas’ toolbox . 12
We’re not WYSIWYG . 12
What’s your favorite plain text editor? . 13
Mac OS X, Windows, or Linux? . 13

Summary . 14
Homework: Set up your work environment . 14

Chapter 2: Building Basic Web Pages .17

HTML: Tags in action . 18
What are tags? . 18
Tags come in pairs, usually . 20
It’s an element, my dear Watson . 21

Your first web page: Hello World! . 22
To mark up a web page, you just type . 23

The markup makes the web page . 24
Learning from others: How to view source . 25

Every page has a <head> and a <body> . 26
The importance of using the title element . 26

Defining your document type . 28
It all starts with a DOCTYPE . 28

A short Quirks Mode interlude . 28
It’s all in a namespace . 29
Just one more thing . 29

You don’t have to memorize all this . 29
Hello World!: DOCTYPE edition . 30

Tags have structure too: Nested elements . 30
Making your markup easier to follow . 32

Commenting your markup . 32
White space . 34

Summary . 35
Homework: Create your first space-monkey- themed XHTML page 35

Chapter 3: Structured Markup .39

Adding structure and meaning . 40
What is structured markup? . 41

What is semantic markup? . 42
Making markup meaningful . 42
POSH and proud . 43

Signposts for reading . 43
Creating structure with headings and paragraphs . 44
Applying information hierarchy . 45
Case study: The Guardian . 46

CONTENTS

ix

An introduction to phrase elements . 49
What is an element? . 49
Adding meaning to fragments of text . 50
Adding emphasis: and . 50
Other phrase elements . 51

Block-level and inline-level elements . 51
Imagine a box. 52
The difference between block- level and inline-level elements . 52

Valid code is browser- friendly code . 53
The W3C Markup Validation Service. 53
Valid code is not necessarily well- structured code . 58

Getting the search mix right . 58
Summary . 60
Homework: Introducing Miss Baker . 60

Chapter 4: Markup That Adds Meaning .65

Lists: First- level organizers . 66
Why use lists? . 66
Unordered and ordered lists . 67
Enter the ordered list . 68
Nesting lists . 70
Definition lists . 71

Tables: The good, the bad, and the alternatives . 73
What is tabular data? . 74
<table>, <tr>, and <td> . 75
Improving table accessibility . 76
Adding a descriptive summary to a table . 77

Quoting text . 79
What’s a <blockquote>? . 79
Citations (or <cite>) . 80
Quotations (or <q>) . 81

Other tags in the Standardistas’ toolbox . 82
Abbreviations . 82
Making a case for rules: <hr /> . 83
A note on self- closing tags . 84
<code> and <pre> . 85
Marking up changes with and <ins> . 86
<sup> and <sub> . 86

Summary . 88
Homework: Gordo’s Adventure . 88

Chapter 5: Including Images .91

Introducing the tag . 92
An tag in action . 92
Adding width, height, and title attributes to images . 96

CONTENTS

x

Working with images . 97
Which image editor? (Or how long is a piece of string?) . 98

Photoshop . 98
Fireworks . 99
Photoshop Express . 99
Bring out the GIMP (and its friends) . 100

Image optimization . 100
Why compressing your files is important . 101
Save for Web . 102

Image formats for the Web . 103
JPG: Photographs . 103
GIF: Graphics and type . 105
PNG: The new (old) kid on the block . 106

PNG-8 . 107
PNG-24 . 107

A pixel is a pixel is a pixel . 109
Size matters . 109
The limitations of bitmaps . 110
Vector graphics . 110

Finding the right image . 112
Low-cost images . 112
Flickr and Creative Commons . 112

Summary . 113
Homework: A picture is worth a thousand words . 113

Chapter 6: Creating Links with Anchors . 117

Meet <a> . 118
Using descriptive link text . 119
The title attribute . 120

Let’s create some links! . 122
External links . 122

The dreaded ampersand and the validator . 123
Checking your links . 124
The (evil) target attribute . 124

Local links . 125
Internal links . 126
E-mail links . 127
Wrapping up . 128

Absolute vs. relative links. 129
Structuring your site . 130

Organizing your files and folders . 130
The magic index file. 132

Linking between different folders in our site . 134
Linking within a folder . 135
Linking down into a subfolder . 136
Linking up into a “parent” folder . 137
Linking up and then linking down . 138

Summary . 139
Homework: Housekeeping first; links second . 140

CONTENTS

xi

Chapter 7: Getting Your Site Online . 145

Your address on the Web . 146
What is a domain name? . 146
What’s a TLD? . 147
Think of a name! . 148
Registering a domain name . 149

Web hosting . 150
Free web hosting? . 150
Getting the balance right . 151
Things to look for in a hosting company . 151

Disk space . 151
Bandwidth . 152
E-mail . 152
A control panel . 152
Support . 152

Moving web hosts . 153
Uploading your files . 153

Local vs. remote . 153
File Transfer Protocol . 154
Propagation . 155

Tools we’re using . 155
Which FTP client? . 156
Transferring files to the server: A walkthrough . 156
What you need . 156

The address of the server . 157
Your username . 157
Your password . 157

Let’s get started . 157
Online walkthrough . 161

Summary . 161
Homework: Getting your site online . 162

PART TWO: ADDING STYLE WITH CSS

Chapter 8: CSS 101 . 167

Adding some style . 169
HTML: A brief refresher . 169
CSS isn’t new . 170
Tag soup or lean and mean? . 170
CSS to the rescue . 172

Meet CSS . 172
Anatomy of a CSS rule . 173
A note on formatting . 174
A slightly more complex rule . 175

Adding CSS to a web page . 176
Adding an embedded style sheet . 177

CONTENTS

xii

A simple walkthrough . 179
Getting colorful . 179
Styling the <body> . 180
Styling the headings: <h1> and <h2> . 183
Styling the <p> . 186
Commenting your CSS . 187

Summary . 191
Homework: Adding some CSS to Gordo’s web page . 191

Chapter 9: Styling Text . 195

Typography on the Web . 196
What is typography? . 196
CSS: Our flexible friend . 197
Making your text accessible . 197

Inheritance and specificity . 198
Inheritance . 198
Meet specificity . 200

Specifying type on the Web . 202
Core Web Fonts . 203
Writing more reliable CSS rules to specify fonts . 204

Serif . 205
Sans serif . 206
Monospace . 206
Cursive . 206
Fantasy . 206

Size matters . 206
Sizing text with pixels . 207
Sizing text with ems . 207

Writing more efficient rules. 209
Show and tell: Adding a few more rules . 211

Specifying a typeface . 211
Let’s lose some weight . 212
Text transform . 213
Letter spacing . 214
Styling paragraphs . 215

Setting a line height . 215
Adding paragraph indents . 217
Aligning text using text- align . 218

Styling links . 220
Using pseudo- classes to style links . 220
LoVe HAte your links . 224

Summary . 225
Homework: Improving Gordo’s typography . 225

Chapter 10: A One- Column CSS Layout . 229

The Cascade in Cascading Style Sheets . 230
So what exactly is the cascade? . 230
The order of your CSS rules is important . 232

CONTENTS

xiii

Introducing margins, borders, and padding . 233
Meet the box model . 233
Applying margins, borders, and padding . 234
Using CSS shorthand for margins, borders, and padding . 240
Styling our <blockquote> . 243

Dividing up your document . 244
Identifying your document’s sections . 245
Using div and span elements with id and class attributes . 246

div and span elements . 247
id and class attributes . 248

It’s all in a name . 249
Using div elements to create CSS layouts . 250

A one- column CSS layout . 252
Using descendant selectors to minimize markup . 260

Styling details with the span element . 262
Using a span to style inline content . 262
Dan Cederholm’s illustrious ampersand . 263

Styling with class attributes . 264
Enhancing your design by adding background images with CSS . 265

Adding a background image to the body . 266
Using background images with other elements . 268

Summary . 270
Homework: Creating a one- column CSS layout . 271

Chapter 11: A Two-Column CSS Layout . 275

A float-based CSS layout . 276
Floating divs . 277
Applying floats to layouts . 285
Creating our two-column CSS layout . 288

Calculating the width of your elements . 293
A short box model recap . 293
What happens when your elements are too wide? . 295

Collapsing margins . 297
Applying a float to an image . 299

Faux Columns . 304
Wrapping up with King Kong. 307
Summary . 309
Homework: Adding a second column to Gordo’s web page . 309

Chapter 12: List-O-Matic . 313

Styling lists . 315
Styling a simple list . 315
Styling a navigation list . 321

Creating horizontal lists . 326
Styling nested lists . 329

Styling a site map with a nested list . 330
Styling an ordered list . 337

CONTENTS

xiv

Summary . 339
Homework: Adding the Famous Primates web site’s navigation . 340

Chapter 13: Harnessing the Power of External Style Sheets 343

The head elements that make it all happen . 344
The importance of meta tags . 345

It’s all in a name . 347
Speaking a foreign language . 348

External Style Sheets . 350
Embedded vs. linked style sheets . 350
Linking to an external style sheet . 351

Media types . 351
Using @import . 352
Creating our external CSS file . 352
The real power of CSS . 354
Adding a print style sheet . 355
Building the print style sheet . 355

Style the body . 356
Hide unnecessary content . 356
Style the headings . 356
Style the links . 357
Click Print and check the results . 358

Conditional comments for Internet Explorer . 359
A conditional comment in action . 360
Adding a favicon . 361

Adding scripts . 362
Testing and troubleshooting . 363

Testing . 363
Web-based browser test services . 364
Building a guerilla testing suite . 366
Graded browser support . 366

Troubleshooting . 368
Validate, validate, validate! . 368
Leanr to spel . 369
Adopt a lurid palette . 370
Check for repetition . 370
Reduce to deduce . 371
XHTML rule reference . 371

Summary . 372
Homework: Linking to external style sheets . 372

Chapter 14: Where to from Here? . 377

But really, where to from here?. 378
JavaScript libraries . 381
Database-driven sites . 382
AJAX and Rich Internet Applications . 382

CONTENTS

xv

www.webstandardistas.com . 383
The Web Standardistas’ periodical . 384
Book reviews . 384
Resources . 384
Tools . 384
Badges . 385
Tea . 385

Tools to make your life easier . 385
Firefox Web Developer Add-on . 385
Firebug . 386
Tools for other browsers . 388
Basecamp . 388
What else is out there? . 389

Recommended books . 389
Bulletproof Web Design . 390
CSS Artistry . 390
The Zen of CSS Design. 390
CSS Mastery . 391
HTML Mastery . 391
Other books we recommend . 391

Recommended sites . 392
Organizations and publications . 392

W3C . 392
Web Standards Project . 392
A List Apart . 393
Digital Web Magazine . 393

Design and inspiration . 393
Design Observer . 393
The Elements of Typographic Style Applied to the Web . 394
Stylegala . 394
CSS Zen Garden . 394

Accessibility . 394
456 Berea Street . 394
Dive Into Accessibility . 395
Joe Clark . 395
North Temple Journal of Design . 395

People . 395
Dan Cederholm . 395
John Gruber . 396
John Hicks . 396
Jeffrey Zeldman . 396

A fond farewell . 396
Summary . 397
Homework: You’ve earned the badges—now use them! . 397

Index . 399

xvii

ABOUT THE AUTHORS

Internationally respected digital artist Christopher Murphy has
been described as “a William Morris for the digital age” (Creative
Review).

Creatively exploring the potential of the Web since the mid ’90s, he
is a cofounder of web-based arts publishing organization Fällt
Publishing () and has worked within the field of
audio-related design for over a decade.

Murphy’s work has been featured alongside numerous internation-
ally respected designers including Peter Saville, The Designers

Republic, Tomato, and Stefan Sagmeister in a variety of design books and magazines, includ-
ing Eye magazine, widely acknowledged as one of the world’s leading design journals. A regu-
lar speaker at design conferences and workshops worldwide, he also exhibits his work
internationally.

In addition to his role as a lecturer in interactive design at the University of Ulster at Belfast,
where he has actively promoted a web standards–based curriculum, Murphy runs an estab-
lished design consultancy and has created award-winning work for clients including Absolut
Vodka, Royal Mail, and the British Council.

When not otherwise occupied, he maintains the web site for digital arts collective Fehler:

ABOUT THE AUTHORS

xviii

A practicing digital artist since the mid ’90s, Nicklas Persson gradu-
ated from the University of Ulster in 2000 with a first-class BA (Hons)
degree in fine and applied arts. His work has been exhibited interna-
tionally at numerous online and offline digital arts festivals world-
wide.

On graduation Persson was invited to work for BBC Interactive, a
prestigious role he readily accepted. He subsequently moved to a role
as senior developer in the well-respected Belfast-based interactive
design agency Radar. He now combines work as a lecturer in interac-
tive design at the University of Ulster at Belfast with work as a

 freelance developer and designer at SL33P () specializing in the design and
development of well-crafted web applications.

As a consequence of his commitment to his teaching, he regrets neglecting his obligations to
his long-established web site:

About the Technical Reviewer
Paul Haine is a client-side developer currently working in London for the Guardian news-
paper. He is the author of HTML Mastery: Semantics, Standards, and Styling (friends of ED,
2006) and runs a personal web site at .

xix

ACKNOWLEDGMENTS

We’re grateful to everyone who has supported us throughout the process of writing this
book. We’ve very much appreciated the support of both our colleagues and our students
(not to mention our clients) while we’ve been knee-deep in paper—thanks for being so
understanding. We would particularly like to thank the following people who helped turn
this book into a reality.

Clay Andres, our editor, for believing in our original idea and creatively guiding us through
the writing process. We appreciate your encouragement and support.

Paul Haine, our technical reviewer, for his meticulous attention to detail. Your insightful sug-
gestions helped improve this book considerably.

Beth Christmas, our project manager, who has kept this book on track and provided inspira-
tion throughout the darker moments! We wouldn’t have made it through this process with-
out your boundless enthusiasm.

Ami Knox, our copy editor, who not only improved our text considerably, but also shares our
idiosyncratic sensibilities. If we ever write a book again, we’d like you and your eagle eyes on
the team!

We’ve also very much appreciated the hard work of Kelly Winquist, Dina Quan, April Eddy,
and everyone at friends of ED, who have worked under relentless pressure (thanks to a few
missed deadlines at our end) to deliver this book on time.

Thanks also to Lee Munroe for late-night Twitter support, Michael McCrory (our guinea pig)
for his feedback along the way, and Debbie Fraser for her unwavering tolerance (we’ll get
those projects finished for you now Debbie . . .).

Lastly, thanks to you, for choosing this book. We hope you find it both helpful and inspiring
as you embark on your journey as a Web Standardista.

Christopher Murphy and Nicklas Persson

ACKNOWLEDGMENTS

xx

Thanks to Cara for your constant support and understanding over the last few months (and
years), and to Ross and Caitlín for being there (when I’ve been there). Roll on Donegal 2009!

Christopher Murphy

Thanks to Margaret for your enduring support and for holding everything up during the last
few months, and to Tiernan and Oskar for still remembering my face.

Nicklas Persson

xxi

INTRODUCTION

Why did we choose to write this book? We’re both extremely busy—lecturing bachelor’s
degree and master’s degree interactive design students, maintaining our own practice work-
ing for clients, and furthering our established careers as artists exhibiting internationally—so
the idea of a “how to” book for would-be web designers wasn’t arrived at lightly.

That said, we felt the time was right for this sort of book. There are a lot of excellent books
that we point our students toward: Dan Cederholm’s inspiring Web Standards Solutions; Paul
Haine’s meticulous HTML Mastery; and Andy Budd, Cameron Moll, and Simon Collison’s
indispensable CSS Mastery, to name but a few. All are fantastic books and we urge our stu-
dents to buy every one; however, none of them seemed to cover everything our students
needed to embark on a well-grounded, web standards–based approach in one package:
namely, a solid foundation in well-structured XHTML coupled with a comprehensive intro-
duction to CSS.

Cue Web Standardistas.

A little background
We teach final year bachelor’s degree and master’s degree interactive design students at the
University of Ulster at Belfast, and we’re proud of the work that many of them do. We’ve
worked very hard over the last few years to develop a lecture program for our students that
covers all of the fundamentals: a solid grounding in XHTML coupled with a strong grasp of
CSS. We strive to ensure that when our students leave our courses they’re doing web design
the right way: creating well-designed web sites built using a web standards approach.

In late 2006 we were invited to write an evening course for absolute beginners, open to all,
no previous experience required. We relished the challenge and set about writing a web
design course from scratch that covered everything required to set up a web site from start
to finish, including registering your own web address and uploading your web site to your
own web space—an aspect often surprisingly overlooked in web design books.

INTRODUCTION

xxii

The book you’re holding in your hands grew out of that course and was designed to help
anyone getting started on the Web to get up and running as quickly as possible: low barrier
to entry, easy to follow, jargon explained in an easy-to-understand manner.

Who is this book aimed at?
Who is this book aimed at? Anyone! Anyone with an interest in the Web. Anyone with an
interest in building and maintaining an easy-to-update web site. More importantly, it’s aimed
at anyone wanting to set out on the one true path, embracing web standards, to become a
Web Standardista.

Even if you’re an absolute beginner in web design, this book will enable you to create future-
proof web sites that not only look great in all modern browsers, but are also accessible to a
wide variety of audiences across a range of platforms—from those browsing on everyday
computers to those accessing the Web on the latest, emerging mobile devices.

Across 14 easy-to-follow chapters, we introduce you to the fundamentals of contemporary
web design practice. By building progressively, chapter upon chapter, we equip you with a
firm knowledge of the fundamentals of web design. In short, everything you need to know to
move forward in your lifelong journey as a Web Standardista.

Regardless of your computing platform—Mac OS, Windows, or Linux—we recommend easy-
to-master tools that are, in most cases, free and equip you with a knowledge of these tools
with a minimum of technical jargon.

Step by step we cover how to build handcrafted web pages using well-structured XHTML
markup and how to apply layout and style to these pages using CSS. What this book doesn’t
require: expensive software or a degree in computer science.

What you’ll achieve
As you’ll discover in Chapter 1, “homework” forms an important aspect of this book. We’ve
included a series of enjoyable practical assignments at the end of each chapter, exercises for
you to follow along with at your own pace.

Following along with the homework will not only ensure that you fully grasp what we cover in
each chapter, but also provide you with a well-crafted web site that you can build on once
you’ve completed the book.

It gets better—we're even offering the XHTML and CSS you’ll be creating as a part of the
book’s homework for free, under a Creative Commons license. Complete the homework, and
you can use the web site you’ve built as a framework for your own content, safe in the knowl-
edge that the web site you’ve created is future-proof and optimized for everyone: from those
browsing on everyday computers, to those accessing the Web on the latest emerging mobile
devices, as shown in Figure 1.

INTRODUCTION

xxiii

Figure 1. The web site you’ll be creating as a part of the book’s homework is designed to be displayed
across a variety of devices.

By following along with the book’s practical assignments, you’ll be capable of producing a
comprehensive web site that not only looks good in everyday browsers, but also looks great
in the latest breakthrough Internet communication devices. You can see the completed web
site you’ll be creating at

Conventions used in this book
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted in bold type.

Code is presented in .

New or changed code is normally presented in .

Menu commands are written in the form Menu Submenu Submenu.

Where we’d like to draw your attention to something, or offer some additional supporting
material, we’ve highlighted it like this:

Remember, once opened, all tags should be closed.

INTRODUCTION

xxiv

Sometimes code won’t fit on a single line in a book. Where this happens, we use an arrow like
this: .

Throughout this book we provide examples of markup in XHTML and CSS. Where we show
sections of repetitive markup, we have used ellipses () for brevity as follows:

Using ellipses allows us to show you the markup that’s relevant and that we’re specifically
referring to, enabling you to focus on what matters.

Accessing the code
All the code examples and homework files used throughout this book are available for down-
load at the book’s companion web site. You can access these files along with additional sup-
porting material and links to other resources at

Let’s get started!

PART ONE

A SOLID XHTML FOUNDATION

CHAPTER 1

ARE YOU A WEB STANDARDISTA?

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

4

Congratulations, you’ve made it to Chapter 1. This is the point at which we establish a few
ground rules and minimum key requirements as we move forward—nothing too challeng-
ing beyond a willingness to learn. We’re confident you have what it takes. Not everyone
can become a Web Standardista. We feel optimistic, however, that if you’ve made it this
far, your heart is in the right place and you’re ready to join the growing band of web devel-
opers and designers that wear the Web Standardistas badge with pride.

Details on getting an actual, real- life, hold-in-your- hands badge are provided at the end of
the book. We’ve hidden those details, however, so don’t skip to that part of the book right
now; there are a few exercises you have to complete first to earn the right to display your
Web Standardista credentials.

Before we embark on the rest of the book, we felt it important to provide a little history
of the World Wide Web: who invented it, why it was invented, and how it has changed and
evolved.

So, without further ado . . .

A brief history of the World Wide Web
This section provides a contextual overview of web development and introduces some key
concepts that lie at the heart of the Web Standardistas’ approach, particularly the idea of
a return to structured markup and the use of Plain Old Semantic HTML, or POSH. You can
find out more about POSH at the Microformats web site:

At this point you’re probably thinking, “This is just the boring background stuff. I want to
get my hands dirty.” True, some of this chapter deals with history, but we believe that an
understanding of how the Web has evolved will help you see where it’s heading and, in
a rapidly evolving medium, this is useful knowledge to have. It also puts you ahead of the
everyday web developer who hasn’t availed themselves of the Web Standardistas’
approach.

The Web is born

First things first: the Web is not the Internet. People often use the terms the Web and the
Internet interchangeably; however, the two terms are not synonymous. The World Wide
Web, or Web, is in fact just one of a number of ways information can be exchanged over
the Internet, another being e-mail.

The perfect Web
When Tim Berners- Lee and his team at CERN invented the World Wide Web in 1990, they
did so with the intention of creating a platform for the free exchange of information.
Originally targeted at scientists, the Web was first a somewhat closed community. However,
in 1993, Marc Andreessen and Eric Bina at the National Center for Supercomputing
Applications (NCSA), a research department at the University of Illinois at Urbana- Champaign,

ARE YOU A WEB STANDARDISTA?

5

1

released the Web’s first truly easy-to- use browser. The release of Mosaic, the first browser
to display images within the browser window, heralded the arrival of the World Wide Web
as an information and entertainment medium.

Mosaic, which subsequently evolved into Netscape Navigator, caught the attention of
Microsoft, which entered the browser market in 1995 with Internet Explorer. Bundled as
part of Microsoft’s dominant Windows 95 operating system, Internet Explorer accelerated
the expansion of the Web in the public consciousness.

The chaotic Web
Microsoft’s entry into the browser market helped to raise the profile of the Web consider-
ably. Unfortunately, competition among browser manufacturers coupled with the growing
pains of a rapidly emerging medium quickly led to the creation of proprietary,
 browser- specific tags and markup. Different companies’ browsers adopted different stan-
dards, making it extremely difficult to build cross-platform- compatible web sites.

The result was a minefield for web designers: the only way to ensure correct display across
browsers and operating systems was to write custom web sites targeting different brows-
ers and operating systems, often doubling and even tripling workload.

This process was extremely inefficient, and it soon became apparent that the solution to
the problem of developing web sites efficiently lay in standardizing approaches to web
development. Thus the Web Standards Project, or WaSP, was born:

HTML rewind

But let’s rewind a little. Before we explore the rise of the Web Standards Project, it helps
to clarify what exactly HTML is and what it was intended to do. We’ll be demonstrating the
use of HTML in this book after all, or at least a variant of it, so you need to have a basic
understanding of it.

HTML, or HyperText Markup Language, underpins the Web. The World Wide Web
Consortium, or W3C—the nonprofit body responsible for guiding the evolution of the
Web and proposing web standards—defines HTML as follows:

HTML is the lingua franca for publishing hypertext on the World Wide Web. It is
a non- proprietary format . . . and can be created and processed by a wide range of tools,
from simple plain text editors—you type it in from scratch—to sophisticated WYSIWYG
authoring tools. HTML uses tags such as and to structure text into headings,
paragraphs, lists, hypertext links, etc.

The preceding definition, while accurate, can be a little confusing for the beginner. HTML
is a nonproprietary format, HTML can be created by a wide range of tools, HTML can be

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

6

processed by a wide range of tools, HTML can structure text into hypertext links—what
does it all mean? With some experience, the meaning of this is crystal clear, but to the
beginner, Douglas Adams’ Babel Fish wouldn’t go amiss. Cue the Babel Fish.

The Babel Fish is a species of fish that can instantly translate any language to any other
language.

 HTML is a nonproprietary format. Translated: HTML isn’t owned by anyone. It’s
open source and free, that is, anyone can use it freely, no royalties payable. This
openness is one key to the rapid growth of the Web.

 HTML can be created by a wide range of tools. Translated: HTML can be created
by anyone. It doesn’t require expensive software, and it can be written with the
simplest of free, yes free, plain text editors. (We’ll explain what a plain text editor is
and where to get one later in this chapter in the section “What’s your favorite plain
text editor?”).

 HTML can be processed by a wide range of tools. Translated: HTML, when writ-
ten properly—the Web Standardistas’ way—can be read on a variety of devices:
your desktop browser, your nearly new mobile phone, and the brand new iPhone
you’re convincing yourself you really need.

 HTML can structure text into hypertext links. Translated: HTML has the ability
to convert text (and images) into hypertext links or hyperlinks, magical portals
that transport you from one place to another, not unlike the Starship Enterprise’s
transporter or the green pipes in Super Mario Bros. Or, in even simpler terms, the
links you click to move from one web page to another, that is, the basic fabric of
the Web.

HTML evolved

The first documented reference to HTML dates back to 1991, in a page written by Tim
 Berners- Lee. “HTML Tags”

ml) introduced headers, paragraphs, hyperlinks, and a few other elements
that we still use in HTML today. In 1995, the first official specification, HTML 2.0, saw the
light of day. In the following few years, as the World Wide Web grew, computers became
faster, and browsers more powerful, HTML evolved. The W3C, formed in 1995, released
specifications for HTML 3.0, 3.2, and 4.0 in the latter half of the 1990s.

The last valid HTML specification published by the W3C is HTML 4.01, which was released
in 1999.

In January 2008, HTML 5 was published as a working draft by the W3C. Although still
a working draft, certain HTML 5 features are already implemented by some browsers.

ARE YOU A WEB STANDARDISTA?

7

1

The X in XHTML
XML (Extensible Markup Language) is a language created for the purpose of sharing data
between different computers and systems, and is used extensively on the Internet. XML
doesn’t have a defined set of tags like HTML. Instead, it has a defined structure and strict
rules on how this structure is interpreted. XHTML, or Extensible Hypertext Markup
Language, is HTML reformulated in XML. Translated, this means that XHTML is HTML with
the strict rules of XML added to the mix.

The W3C states the following:

The XHTML family is the next step in the evolution of the Internet. By migrating to XHTML
today, content developers can enter the XML world with all of its attendant benefits,
while still remaining confident in their content’s backward compatibility.

As if this weren’t confusing enough already, XHTML (like HTML) comes in a variety of “fla-
vors”: XHTML 1.0 Strict, XHTML 1.0 Transitional, and XHTML 1.0 Frameset. Throughout this
book, we’ll be using XHTML 1.0 Strict; to avoid confusion for now, that’s all you need to
know at this point.

Back to the Web Standards Project . . .

A web standards approach
Founded in 1998, the Web Standards Project campaigned (and still campaigns) for
a standards- based approach to web design to reduce the cost and complexity of web
development, while increasing the accessibility of web pages. Their mission was (and
remains) to gain support for web standards recommended by the W3C.

In English, the Web Standards Project has helped to drive forward and underpin a move
toward the use of standards in web development, away from the creation of proprietary,
 browser- specific tags and markup that had taken hold at the height of the “Wild West”
 browser- specific days of the Web. A noble intention, and one that is paying dividends, but
what exactly are standards?

What are standards?

Before we answer the question of what web standards are, it helps to define what stan-
dards are in the broadest sense and why we use standards day to day. We can define
 standards with a dictionary definition (but as you’ll see it’s a little dry):

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

8

standard –n. 1 an object or quality or measure serving as a basis or example or princi-
ple to which others conform or by which the accuracy or quality of others is judged . . .
7 a document specifying nationally or internationally agreed properties for manufac-
tured goods, etc.

Concise Oxford Dictionary (Clarendon Press, 1990)

In English? We use standards on a daily basis, often without realizing it. When we buy
a lightbulb, for example, we know that if we buy a screw-fitting bulb, it will fit our light
fitting when we get it home. Standards ensure that the bulb we buy isn’t “just a little too
large” or “just a little too wide” to fit our light fitting.

Standards enable companies to streamline production and allow consumers to rest easy in
the knowledge that what they buy will work when they get it home. Standards are all
around us: look at the plugs in your home, the size of the shoes you’re wearing, and so on.
But what has this go to do with the Web?

So, web standards?

Web standards pick up from the same principle. As browser manufacturers have moved
toward embracing standards, the need to write browser- specific markup has diminished.

By using well- structured HTML to mark up content and CSS, or Cascading Style Sheets, to
control presentation, we should now be able to design one web site, and it should display
consistently across standards- compliant browsers regardless of operating system (Mac OS,
Windows, or Linux). Equally importantly, when the same markup is rendered by less- capable,
 non-standards- compliant browsers—in older, text- based, or mobile browsers—the con-
tent should still remain accessible.

Web standards save us time as designers and allow us to sleep at night, safe in the knowl-
edge that our carefully crafted masterpiece is accessible regardless of who’s viewing it on
which browser and which platform.

As web standards are increasingly embraced by browser developers, a standards- based
approach embracing XHTML and CSS—the two key standards this book focuses on—is the
right way forward. Web standards pick up from the same principle, i.e., that we should be
able to design one web site, and it should display consistently across browsers regardless
of operating system.

Why use web standards?
Perhaps a better question to ask would be this one: why ignore web standards? The ben-
efits of adopting a web standards approach are so compelling, why wouldn’t you use
them?

ARE YOU A WEB STANDARDISTA?

9

1

Using web standards cuts down on development time, creates sites that are easy to update
and maintain, improves search engine rankings, and, as a welcome byproduct, can improve
accessibility, making pages accessible to more people, especially the disabled, some of
whom can’t use standard browsers.

This is why we built this book around a standards- based approach. In the upcoming text,
we run through some of the reasons for adopting this approach in a little more detail.
We’re confident that by the time you finish reading this chapter, you’ll start to see the Web
Standardistas’ way is the right way.

Separating content and presentation

As the Web evolved, HTML was misused to handle both content and its visual presentation
and design. The results of this are unfortunately common and are referred to as tag soup,
where HTML is used to control both how content is structured and how it looks.

This was never the intended purpose of HTML, which was always meant to describe the
semantic markup of information, not “how it looks within the browser.”

This quote from Wikipedia summarizes tag soup nicely:

Tag soup is characterized by a large number of common mistakes, such as malformed
HTML tags, improperly nested HTML elements . . . and the use of presentational HTML
elements and attributes in order to create visual effects without respect for their implied
meaning (that is, against their semantic purpose). Although often thought of as typify-
ing semi- professional or hobbyist web sites, tag soup is created by many professional
web page layout programs, and written by hand by many professional web developers
for some of the highest- profile sites.

The Web Standardistas’ approach is built on a simple concept: we use XHTML to handle
the content, structure, and meaning of information; and then use CSS to handle its visual
presentation and design. This is by no means a new concept, but is one that is being
embraced again and which forms the backbone of the Web Standardistas’ approach: using
the right tool for the job.

Efficiency through reduced markup

By separating content (the words and images) and presentation (how we style those words
and images), we reduce page download times considerably. Less code equals faster down-
load times and easier maintenance and—for a high- traffic web site—lower bandwidth
costs.

Separating content and presentation also makes ongoing maintenance much easier.
Handling the look and feel of your web site in a separate CSS file centralizes the design
aspects of your web site in one location. Change this file, and the whole web site changes.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

10

This is an extremely powerful and compelling feature that assists with ongoing site main-
tenance considerably.

Let’s face it; the Web is a rapidly evolving medium, and the look and feel of web pages
changes constantly. Tired of the design you created in 2008? Change the design across
your entire web site for a new and improved one by simply updating your style sheet.

Simple. Fast. Efficient. Design changes can be made instantly across your entire site through
one, easy-to-maintain file.

Increased accessibility

A major benefit of a web standards–based approach is the issue of significantly improved
accessibility for visually or mobility impaired users. As accessibility becomes an increasingly
pressing issue with the introduction of legislation to address users with visual and other
impairments, you’ll find your well- coded pages work well with assistive devices including
screen readers or Braille terminals. You can read more about the W3C’s Web Accessibility
Initiative at its web site:

Cross-browser compatibility

In the “Wild West” days of web design, it wasn’t uncommon to build multiple versions of
the same web site for different users on different operating systems using different brows-
ers. It sounds ridiculous, but there was a time when it wasn’t uncommon to build a version
of your web site for Windows XP users browsing with IE, another version for Linux users
browsing with Mozilla, and yet another version for Mac OS users browsing with Netscape
Navigator. Three full web sites—complete with browser- specific quirks—to display the
same information on three different computers. This no longer needs to be the case.

Although some web design dinosaurs still cling to these outdated concepts, you as a Web
Standardista know better. As browser manufacturers continue to embrace web standards,
we can look forward to a time when our single web site—designed for all browsers, regard-
less of operating system—will “just work.”

Nonbrowser compatibility

By using web standards to separate content from presentation, we make it easier to build
custom style sheets for nondesktop browsers. Creating a web site compatible with PDAs,
mobile phones, and other nondesktop devices is far simpler when using web standards to
separate how a web site looks from what it says. With a well- structured XHTML page, we
can write a variety of specific style sheets in CSS, for example, to include a print style sheet
that produces a well- designed printable page.

The emergence of devices like Apple’s iPhone means the mobile web is increasingly a real-
ity, with mobile users no longer forced to navigate web sites on small, cramped screens.

ARE YOU A WEB STANDARDISTA?

11

1

A standards- based approach makes designing for these emerging devices much, much
easier.

Forward compatibility

Last, but by no means least, how will your web site look in three, five, or even ten years’
time? While no one can guarantee how anything will look an undefined number of years
into the future, the road map for future browser development is now clear, and it is
underpinned by standards. In recent years, browser manufacturers’ attitudes toward web
standards have changed, and they are now embracing the benefits of a standards- based
approach.

The Web is an ever- changing medium where technologies and trends are in constant
motion. Using web standards agreed upon by browser manufacturers helps to future- proof
your web site and ensure that it will work and display as intended as browsers evolve.

The Web Standardistas’ approach
The first thing you learn when you embark on your voyage into the world of web design is
that abbreviations are everywhere: HTML, XML, XHTML, CSS . . . and the list goes on. This
book aims to guide you through the abbreviations minefield through a hands- on approach
to learning.

As mentioned previously, in this book we focus on two key technologies, XHTML and CSS,
the cornerstones of the Web as it is now. An understanding of these forms the backbone
of the book.

The Web Standardistas’ approach is systematic. It requires learning in a specific, carefully
structured, and rigorous way. We expect you to master each chapter before moving on to
the next. The urge to want to run before you can walk is understandable. However,
throughout this book, we ask you to suppress this urge and trust us as we move forward.

Wax on . . . wax off

In a memorable scene from the classic motion picture The Karate Kid, the wise mentor Mr.
Miyagi demonstrates the fundamental moves of karate to a young and impetuous student,
 Daniel- san, by insisting he polish his car—“Wax on . . . wax off.”

The moral of this story is that you shouldn’t go straight for the fancy moves, but have the
discipline to learn and master the fundamental underpinnings of your art.

In other words, don’t skip ahead to the “design chapters” of the book in the haste to
“make things look nice.” In the first half of the book, we’re only concerned with basic page
structure, we’re not focusing on look and feel—styling your web pages comes later. To add
style, we’ll be using Cascading Style Sheets; however, for the first few chapters, we want
you to concentrate solely on learning well- structured markup.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

12

You might wish to dive in and get started with some design, but please don’t. If you follow
our carefully structured course, the web pages you build will be better, trust us on this.
You might think design is all about CSS, but the reality is that well- structured markup in
XHTML is an equally important part of the design process.

Why use XHTML?

XHTML has evolved from HTML, and although it has stricter rules than HTML, we feel it is
the best choice at this stage in the Web’s development as it forces you to write well- formed
code.

While adhering to stricter rules might seem daunting at first, in the long run it will serve
you better. You will write code that is easier to debug and spot mistakes in, and your web
pages will display more consistently in standards- compliant browsers.

The benefits of CSS

Cascading Style Sheets are not new and have been around for a number of years; however,
 CSS- based web sites have now taken hold in the mainstream. This is largely thanks to
a number of high- profile sites embracing web standards and using CSS for presentation
and design and increased support for CSS by browser manufacturers.

We begin to cover the implementation of CSS in Chapter 8 because we believe it’s impor-
tant to cover well- structured XHTML markup first. Resist the urge to fast- forward to
Chapter 8; the next six chapters will equip you with a solid foundation on which to build.

The Web Standardistas’ toolbox
The Web Standardistas’ approach encourages you to get to know the different ingredients
involved in building web pages and to learn how to put these together to create well- crafted
web sites. Like fine cooking, we encourage you to learn about the raw ingredients at the
heart of a good recipe; we do not encourage you to go down the processed,
 everything-out-of-a- jar TV dinner route.

By introducing you to the underlying components of the web pages you are building, we
enable you to find examples “in the wild” and learn from them. A 100% WYSIWYG (What
You See Is What You Get) approach doesn’t give you that understanding. We feel our
approach is the best to equip you for long- term learning.

We’re not WYSIWYG

As you’ve probably gathered from what we just wrote, we do not encourage the use of
WYSIWYG software in this book. We’re writing markup.

Why not use WYSIWYG software? It sounds ideal. Drag and drop in a visual environment,
click a button, and the software takes care of the rest, writing the markup for you. It

ARE YOU A WEB STANDARDISTA?

13

1

sounds perfect. It isn’t. The problem with using WYSIWYG software is that you have a lack
of understanding of what’s really happening behind the scenes because the software is
doing everything for you. In other words, WYSIWYG is fine for some people, some of the
time, but it will not equip you with a true appreciation of the underlying markup.

The Web Standardistas’ approach equips you with a fundamental understanding of web
design. Follow our tutorials, and you’ll be equipped with everything you need to know to
progress as a web designer. You’ll not be stuck in a product upgrade cycle waiting for
FrontPage Version 12.x, and you’ll be saving yourself some money too.

At first glance, the examples might appear a little like a foreign language, but within no
time, you’ll find everything is crystal clear. Stick with it, and you might even find your
friends referring to you as a nerd (which is no bad thing).

After only one chapter of the book, you’ll be able to use your browser’s View Source menu
command to look behind the scenes of other web sites and understand how they are built.
We can’t stress enough how important this is. Relying on WYSIWYG software won’t give
you the understanding to deconstruct a web page and work out how it’s been coded and
learn from it. Embracing the Web Standardistas’ approach will.

What’s your favorite plain text editor?

This book is intended for anyone with access to a computer (and it doesn’t even need to
be a powerful computer). The approach we adopt uses free or low- cost tools where pos-
sible, eschewing expensive software in favor of freeware or shareware. Why? Because
expensive software isn’t essential to write the code we’ll be covering; all you’ll need is
a plain text editor.

What is a plain text editor? A plain text editor is distinguished from a word processor in
that it offers no document formatting capabilities. Unlike Microsoft Word, for example,
a plain text editor is used simply for editing text, not for styling it.

We recommend Bare Bones Software’s free TextWrangler if you’re using a Macintosh or
 HTML- Kit if you’re running Windows. If your platform is a flavor of Linux, you probably
already have a favorite plain text editor, maybe Vim or Emacs, or—if you’re looking for
something less daunting—Bluefish or Komodo Edit.

All of the preceding programs are more than adequate to complete this book. This, in
part, explains the phenomenal growth of the World Wide Web: low barrier to entry.

You can find links to all of these applications at the Web Standardistas web site:

Mac OS X, Windows, or Linux?

It doesn’t matter which OS you use, this book is written in a cross- platform manner. In
fact, the Web—as originally intended by Tim Berners- Lee—is platform agnostic. What type
of computer you use doesn’t matter. A web standards approach is no different.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

14

Learn to write your web pages using the techniques we recommend, and your web site will
be platform independent—no more “This web site only runs in Internet Explorer!” (We
loathe those kinds of statements, so you won’t be seeing them here.)

Summary
So what have we covered? We’ve given you a little history of the Web and its development,
in particular introducing the transition from HTML to XHTML—the version of HTML we’ll
be using in this book. We’ve also introduced you to the benefits of embracing a web stan-
dards approach. Lastly, we pointed you in the right direction to get the tools you need.
This chapter’s homework, which follows, is to get the tools you need to get started and
familiarize yourself with them.

In the next chapter we put your freshly downloaded plain text editor to some good use as
we dive into the wonderful world of markup, building our very first web pages.

Homework: Set up your work environment

A note on the homework: we’ll conclude every chapter with some homework—additional
work for you to undertake to ensure you fully understand the principles of what we’re
covering chapter by chapter. It’s important you follow through with this homework. We
believe in learning by doing. Following along with our homework projects at the end of
each chapter ensures you will hit the ground running in the next one.

It’s time to take the first steps toward setting up your work environment—specifically,
selecting and installing a plain text editor so that you can work through the examples pro-
vided throughout the book and work on the different homework exercises.

1. Research

Research some of the plain text editors recommended earlier. Remember, we’ve provided
a link to some recommended tools at the Web Standardistas web site:

Take a look at what each alternative text editor offers. It’s worth spending some time
researching the different editors at this point, as your text editor will form the backbone
of most of the work undertaken in the book.

You might wish to start with one of the free applications from the list of recommended
tools, upgrading it for something more powerful as you become more proficient. As the
files we’re working with are plain text, you’ll be able to open them with any editor if you
upgrade to paid- for software with more features in the future.

ARE YOU A WEB STANDARDISTA?

15

1

You’ll notice that some of the editors offer a feature called syntax highlighting. This
means that when you save a file as an HTML file, the format we’ll be using, the editor col-
ors the markup, which makes spotting mistakes easier.

2. Select, download, and install a text editor

Once you’ve done your research, select a plain text editor and download it. You’ll be using
this to complete the homework. Follow the instructions for the editor you’ve chosen and
install it on your computer.

It’s worth taking a little time now to explore your editor of choice and get a feel for how
it works; this will help pave the way for the following chapter when you start writing
markup.

That's it! As you’re introducing yourself to the wonderful world of plain text editors, put
the kettle on and enjoy a cup of Darjeeling as you prepare yourself for the next chapter.

CHAPTER 2

BUILDING BASIC WEB PAGES

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

18

In this chapter, we get started with the hands- on aspects of our Web Standardistas’ journey.
First, we introduce you to HTML, the language that underpins the World Wide Web. We
then build a few basic web pages to give you an understanding of how they are con-
structed and to introduce you to some fundamental concepts. This will form the corner-
stone of the rest of the book, so we spend some time with you working though this
systematically to ensure you have grasped a solid understanding of the principles of HTML
and XHTML before moving on.

Once you’ve built your first web page, we show you how to use your browser’s View Source
command to learn from other designers’ web sites by looking at their underlying source
code. We also introduce the concept of HTML elements, looking at two key sections of
your document: the and the , explaining what their purpose is and how they
work.

Along the way, we cover nesting tags, commenting your markup, and the importance of
using a well- written tag.

HTML: Tags in action
You briefly met HTML in the last chapter when we covered the evolution of the Web. In
this chapter, you get some hands- on use of it. In a nutshell, HTML provides basic format-
ting for words and images—our content—and we use it to build web pages and to give
documents structure. HTML is used to describe the different elements that a web page can
consist of, for example, headings (, . . .), paragraphs (), and lists (,

 . . .). The way we describe these elements and add this structure is through the use
of what are known as tags.

What are tags?

HTML pages are in essence plain text files with the addition of tags that provide informa-
tion on how your document is structured. The tags are distinguished from the rest of the
content by being enclosed in angle brackets like this: . Everything between the tags
is intended for display within the browser; the different tags provide information on how
the document should be interpreted and displayed.

A word of warning: we’re working with XHTML 1.0 Strict throughout this book, and, as its
name suggests, its rules are strict. All tags must be written in lowercase (i.e., is right,

 isn’t). In addition to this key rule, there are some other important rules that we’ll
introduce to you when the time is right.

Let’s look at an example. In Figure 2-1, we have opened a simple plain text file in our text
editor and saved it as an HTML file.

BUILDING BASIC WEB PAGES

19

2

 Figure 2-1. Our document, without HTML tags, as it appears in our plain text editor

 Figure 2-2 shows the same page as it displays in our browser. Without any HTML tags to
inform the browser how to structure the content of the page, the browser has no way of
knowing how to display the content, and so simply displays it as a long line of text, wrap-
ping to the width of the browser window. Note that all of the formatting and line breaks
in our plain text example are ignored by the browser.

 Figure 2-2. Our document, without tags, as it displays in a browser

Compare this to the example in Figure 2-3, where we have added some basic tags to the
HTML document. We’ve marked up the first line—King Kong—to be a header using
tags and marked up the two paragraphs that follow using tags to divide the text into
two distinct paragraphs.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

20

 Figure 2-3. Our document, with HTML tags added, in our plain text editor

 Figure 2-4 shows how this marked-up version of our document displays in the browser.
Note the difference from Figure 2-2: the browser now displays some basic formatting and
gives a sense of the underlying document structure.

 Figure 2-4. Our document, with basic tags added, as it displays in a browser

As you can see, the tags are not directly visible in the browser; instead, the tags inform the
browser how the text is structured and how to display the content.

Tags come in pairs, usually

In XHTML, apart from a few exceptions, once opened, all tags need to be closed. Most tags
come in pairs consisting of an opening tag and a closing tag (sometimes called a start
tag and an end tag, respectively). For example, as shown in Figure 2-3 earlier, a paragraph
opens with a tag and closes with a tag (the slash, , after the opening angle
bracket distinguishes the closing tag from the opening tag).

BUILDING BASIC WEB PAGES

21

2

In the earliest days of the World Wide Web, as HTML evolved, browsers were quite forgiv-
ing. It was possible to write invalid markup and for the browser to “do its best” to
 second- guess what you were trying to achieve. However, as web standards become increas-
ingly embraced, writing valid, well- formed markup from the outset makes it easier for
browsers to display your pages consistently. Well- formed markup can help to reduce the
amount of time spent trying to debug a page that doesn’t display the way you intended.

Following the simple rules we introduce in this chapter can save you a significant amount
of time—which you would otherwise spend debugging and fixing problems—in the long
run. More importantly, it will result in your writing markup that is the envy of your peers.
It’s not difficult to write well- formed markup; it’s simply a matter of diligent attention to
detail, something every aspiring Web Standardista should strive for.

The following example shows how to correctly close tags. The opening the paragraph
has been closed with a :

In the following example, however, the paragraph has not been closed properly:

Remember, once opened, all tags should be closed.

Getting into the practice of writing well- formed markup—in particular closing all the tags
that you open—can help resolve display issues down the line. It is not a difficult habit to
get into, indeed, not getting into the habit can result in more difficulty down the line.
Follow a few simple rules, and you’re well and truly on your way.

It’s an element, my dear Watson

The opening tag, the closing tag, and the content within these tags are known collectively
as an HTML element. Figure 2-5 illustrates the structure of an element. As you can see,
the opening tag, the tag’s content, and the closing tag combined make up the element.

 Figure 2-5. The structure of an HTML element

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

22

We will regularly refer to opening tags, closing tags, and elements throughout this chapter,
so it’s worth ensuring that you have an understanding of how an element is constructed.

Your first web page: Hello World!
In this section, you’ll build your first web page. Nothing too complicated, but your first
web page nonetheless. Although it might at first glance seem a little simplistic, this page
will highlight a number of key principles that form the majority of the learning for this
chapter.

When learning any new programming language, it’s tradition to write a short program to
display the words “Hello World!” Our first web page will be no different. It will introduce
you to the basic concepts of HTML and provide stage one of your journey through web
standards.

Let’s get started on your first web page. Launch your text editor and create a new docu-
ment. Save it as . This will be your first web page.

Before we write the web page, let’s take a look at how we’ve named it. Naming files is
important and can cause issues down the line if done incorrectly, so it’s worth spending
some time on file-naming conventions now. Let’s look at the file name we just specified in
a little more detail.

The part is important: it is a suffix, referred to as an extension, that tells the browser
the document is a web page. (stands for HyperText Markup Language, but then by
now you know that, don’t you?) An alternative suffix, heralding from the days when cer-
tain software could only handle three- letter extensions, is . Some people prefer to
name their files using , others using . Regardless of which extension you prefer
to use, it is best to be consistent. In this book, we’re using .

The (underscore) is also important; we’ve used it instead of a space, as you can see in
 Figure 2-6. Spaces, along with a few other characters, are not allowed in URLs. (As you
probably know, a URL, short for Universal Resource Locator, is the address you type into
the browser’s address bar when you want to load a specific page on the Web.) Since
spaces are not allowed, the browser will convert it to , as shown in Figure 2-7.

 Figure 2-6. Our “Hello World!” page’s URL with an underscore replacing the space is easy to read.

 Figure 2-7. Our “Hello World!” page’s URL with the space in the file name converted to %20 is
confusing.

BUILDING BASIC WEB PAGES

23

2

So the file name that makes sense to you and is easily read as a URL:

is converted by the browser to the following:

Although the page would still load, the URL will have an unsightly in it. Not only is this
rather ugly and hard to read, but it is also a major Web Standardista faux pas. Although we
have used underscores in our file names, an alternative is to use hyphens to replace spaces
as in the following example:

Whether you use underscores or hyphens is largely a matter of taste. Some people prefer
the look of underscores, some the look of hyphens. It is worth mentioning, however, that
Google tends to interpret hyphens as spaces, so using hyphens might help Google to index
your page. Regardless, here is our First Golden Rule:

Don’t use spaces in your file names. Ever.

Finally, upper- and lowercase can be interpreted differently on different systems. Windows
systems are case insensitive whereas Linux systems are not. The following two file names
are seen as different documents by a computer running Linux:

As such, they’ll be treated as different web pages by your browser. It’s time to introduce
another golden rule so you’ll never need to worry about this again. Here is our Second
Golden Rule:

Use only lowercase letters when naming files.

Follow this rule, and you won’t run the risk of your page not being found because of the
difference in upper- and lowercase letters in the file name.

The bottom line is to be consistent, because it will save problems later. We recommend
naming all files in lowercase and using (underscores) or (hyphens) instead of spaces
throughout. Follow our rules, and you’ll save yourself a lot of trouble down the line.

To mark up a web page, you just type
After that brief, but important, digression on file-naming conventions, it’s back to your
first web page. In your new document, type the following:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

24

Save the file and open it within your browser. If you are using a Mac, you can do this by
locating your file and dragging it into an open browser window, or by opening your
browser, selecting File Open File, browsing to the file you just saved,
and clicking Open. The page will then load into a browser window. (If you are using
Windows or Linux, the procedure is similar, but the commands will vary slightly.) The web
page is a simple one, but a web page nonetheless. It should look something like
 Figure 2-8.

 Figure 2-8. Our “Hello World!” web page that we prepared earlier, displayed in a browser

Congratulations! You’ve just built your first web page. It might not seem like much, but it
marks the first step on your journey to becoming a Web Standardista.

The markup makes the web page

Let’s look at the preceding markup and break it down a little; doing so will give you an
understanding of a web page’s basic construction and a solid foundation on which to build
as we progress through the chapter. In our “Hello World!” example, we used the following
tags: , , , , and .

These tags provide the basic underlying structure:

 The tag tells the browser we’re opening a new HTML document; it primes
the browser, telling it, “Hey, get ready to receive some HTML goodness!”

 The tag tells the browser we’re providing some information about the page;
this is where we put information like the title of the page.

 The tag tells the browser the title of the page (you’ll see it at the top of
the browser in your “Hello World!” page).

BUILDING BASIC WEB PAGES

25

2

 The tag tells the browser we’re starting information that we want to display
on the page itself.

 The tag surrounds our first—admittedly short—paragraph.

That’s it. Five tags might not seem like much, but as you can see, they’re enough to create
a web page, and so begin your journey toward Web Standardista happiness.

Learning from others: How to view source

Now that you have a general understanding of how to use tags to organize and format
content, we can start to explore how other designers use tags to structure their web pages.
The best way to do this is to load up a web page and use your browser’s View Source fea-
ture to see the original behind-the- scenes code that underlies the page.

At first glance, the source code might look unintelligible, but given time, experience, and
persistence, looking at the markup of different web pages will teach you a huge amount
about web design and, equally importantly, will enable you to troubleshoot your own web
pages when things go wrong.

The wonderful thing about the Web, and what makes it easy to learn from others’ Web
pages, is the ability to use the View Source menu command in your browser to view the
underlying source code for almost any web page. On Safari, the browser we’re using, you’ll
find this command under the View menu (View View Source) as you can see in Figure 2-9.
Most browsers have an equivalent command.

 Figure 2-9. Using Safari’s View Source feature

Use View Source to take a look at the underlying source code of two web pages we’ve
provided, the URLs of which follow. By now, you should know enough about the structure
of HTML to work out what’s going on. As you work through the chapters, we encourage
you to look behind the scenes of the homework web pages and try and work out what’s
going on. Experiment by copying and pasting some of our markup into your web pages
and seeing what happens. The best way to learn is by doing.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

26

We’ve uploaded our two example web pages for you here:

It is important to stress that although you can look at the source of other designers’ web
pages and figure out how they are put together and learn from this, it is not permitted
to copy and paste other peoples’ markup and use it as your own, unless the designer has
specifically stated that you are allowed to do so.

Every page has a <head> and a <body>
HTML pages are broken into two key elements: the and elements, as illustrated
in Figure 2-10. Both handle different types of information about the web page itself, and
both are essential.

 Figure 2-10. The and elements are both a part of every HTML page

The element—everything contained within and including the opening and the
closing tag pair—handles information about the document and other data that is
not considered part of the document’s actual content (i.e., what appears within the view-
er’s browser window). This includes the page’s title, its meta tags (tags which, among other
things, can be used to provide information about the page to search engines), its style
sheets, and any scripts. In short, anything about or affecting the content of the page itself.
Information in the element isn’t seen by the everyday user, only information in the

 element is.

The element—everything within and including the opening and the closing
 tag pair—is where everything the user will see within the browser is contained. Any

text, links, or images you want to be displayed within the web browser reside within it. As
we progress through the next few chapters, we’ll provide you with additional useful tags to
ensure your is well fed.

The importance of using the title element

When you open a book—this one for example—you expect there to be some chapter
headings and for the information within the chapters to be broken down into sections

BUILDING BASIC WEB PAGES

27

2

with titles and subtitles. Let’s face it, it would be difficult to find this book on your book-
shelf if it didn’t have a title. Web pages are no different.

The element must contain a element, which is typically displayed in the brows-
er’s title bar and, if you are using Windows, in the task bar when the browser is minimized.
The is also the name saved when you bookmark a page or save it to your favorites.

If you don’t include a , the browser will usually display the name of the file (e.g.,
) in the title bar. This is confusing for the user and certainly embarrassing for

any budding Web Standardista.

Spending a little extra time and inserting a proper page title not only improves usability,
but also helps improve search engine rankings. Try to use meaningful keywords within
your page title; the upcoming examples demonstrate the importance of a meaningful
title.

In the following example, the title is clear and informative. It gives us an understanding of
the contents of the page.

The following example is less useful. Which company’s product page are we looking at? Is
this the Burger Flipper page or another page altogether?

How many times have you looked back through your browsing history to try and retrace
your steps? Some sites are easy to find, their titles clearly displayed in your history; others
are impossible to find—all you can see is Untitled Document, index.html, or Product Page.
Providing a well- considered helps resolve this confusion. In the preceding example,

 is clear and unambiguous.

In the next example, we have put the product names, for example “Burger Flipper,” before
the company name, “ACME Widgets.” This means that when you have the entire ACME
Widgets product catalog open in tabs in your browser, you can see the product names of
each page, as illustrated in Figure 2-11. Putting the company name first and product name
second might result in tabs reading as follows: ACME Widge . . ., ACME Widge . . ., ACME
Widge . . ., again and again and again. Less useful and quite frustrating.

 Figure 2-11. The ACME Widgets product catalog, open in tabs

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

28

Defining your document type
As we mentioned in Chapter 1, there are several types of HTML and XHTML: HTML 4.01
Strict, HTML 4.01 Transitional, and XHTML 1.0 Strict, to mention but a few.

In order to process your markup correctly, so it displays the way you intend it to, a web
browser needs to know which set of rules to use when interpreting your document. For
example, if you’ve created an HTML 4.01 Transitional document, the web browser needs to
use different rules than if you’ve created an XHTML 1.0 Strict document.

But how does the browser know which document type you are using?

It all starts with a DOCTYPE

As we mentioned in the previous chapter, the different versions of HTML and XHTML are
defined by the W3C, but they are also defined in something known as a Document Type
Definition, or DTD for short. The DTD is written not for humans, but for tools that pro-
cess (X)HTML documents. As a consequence, if it looks a little daunting at first sight, it is
because it is intended for machines, not people.

The DTD is often referred to as a DOCTYPE. The DOCTYPE informs the browser which
flavor of HTML or XHTML you’re using. Throughout this book, we will be using XHTML 1.0
Strict. The XHTML 1.0 Strict DOCTYPE looks like this:

The DOCTYPE is an additional, but important, part of your web page that tells the browser
how to display the page and what language has been used to mark it up. The DOCTYPE
needs to come before your opening tag, as you’ll see later in the section “Hello
World!: DOCTYPE edition.” Failure to include a DOCTYPE at the start of your web page trig-
gers what’s known as Quirks Mode, implying to the browser that your web page was writ-
ten using old- fashioned, invalid, and quirky markup. “What is Quirks Mode?” we hear you
ask. Let’s take a look.

A short Quirks Mode interlude
Quirks Mode was conceived at a time when browsers were starting to pay proper attention
to web standards. Millions of pages out there were created when the implementation of
CSS was less than stellar. The authors of these pages had built them to work in older
browsers, writing CSS that matched those browser’s implementations.

If the new browsers were completely standards compliant, a lot of these old pages—writ-
ten in the bad old days—would render as broken. As a consequence, browser vendors
looked for a solution that would allow old web pages to continue to be rendered using the
old rules, and the new pages built with web standards to be rendered using the new, com-
pliant rules. The trigger that would tell the browser to use the compliant, strict mode
instead of Quirks Mode was the inclusion of a DOCTYPE. Adding the DOCTYPE to the top
of your page was an indication that you knew what you were doing, and that you wanted
your pages to be interpreted using the new, strict rules.

BUILDING BASIC WEB PAGES

29

2

As an aspiring Web Standardista, you know how important it is to be standards-compliant.
In the next section, we show you where to place the DOCTYPE so that the browsers your
markup meets know what to expect, but first a couple of other important additions.

It’s all in a namespace
A second attribute that is required when creating valid XHTML Strict web pages is the
inclusion of what’s known as an XML namespace declaration. Essentially, we replace the
opening tag from our simple “Hello World!” web page with the following:

The attribute is required when writing web
pages in XHTML. Added to the opening tag, it ensures that your page validates.

Just one more thing
As Columbo would say, “Just one more thing . . . ”

The last thing we need to add to ensure our pages validate is a character encoding. Like
the DOCTYPE and namespace, you don’t need to know exactly how this works; you just
need to know that you must include it for your web pages to validate. You simply add the
following immediately after your opening tag:

The curious among you might want to skip ahead to Chapter 13, where we introduce the
wonders of character encoding fully, although this isn’t required reading at this point.

You don’t have to memorize all this

Don’t worry, you won’t have to learn or memorize the exact syntax of the DOCTYPE,
namespace declaration, or character encoding. For now, you can simply use a template file
we’ve provided for you to ensure your pages validate and render correctly.

To save you a lot of painstaking typing, and to ensure against mistyping, we’ve uploaded an
XHTML file with the correct DOCTYPE, namespace declaration, and character encoding to
the book’s companion web site, where you can simply download it, and copy and paste it.
Use View Source to find it here:

Apart from helping your browser determine how to interpret your document, the
DOCTYPE also enables you to use tools like The W3C Markup Validation Service (

) to check the syntax of your documents, helping you to ensure that
your code is valid.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

30

Hello World!: DOCTYPE edition
Earlier in this chapter, we created a very simple “Hello World!” web page to give you an
idea of a web page’s basic structure. We’ll now develop this by adding the DOCTYPE,
namespace declaration, and character encoding as described previously. Let’s have a look
at our new and improved “Hello World!” web page:

Although viewing this new and improved version of your web page in a browser will
appear to make little difference, trust us, behind the scenes the browser is being informed
that you’re building standards-compliant pages. The DOCTYPE, namespace declaration,
and character encoding are critical parts of every web page you build, and you should
include them from now on.

Tags have structure too: Nested elements
HTML elements can be nested, a feature which you have already seen in action in our
simple “Hello World!” web page. Figure 2-12 shows the basic structure of this page as
a diagram known as a document tree.

 Figure 2-12. A simple diagram of the document tree

BUILDING BASIC WEB PAGES

31

2

Nesting can simply be described as placing one element inside another. In our “Hello
World!” web page, illustrated in Figure 2-12, both the and elements are placed,
or nested, within the element. The element is nested within the element,
and the element is nested within the .

An easy way to grasp this concept is to think of your web page as an inverted tree. The
tree’s trunk is the element; from this trunk have grown two branches, the and

 elements. From each of these branches further elements grow.

An important rule to remember when writing valid XHTML markup is that elements must
be nested properly. Think of a Russian nested doll, which is really a set of dolls, each
nested within another: tags are no different.

To nest elements in the right order, you need to make sure that you close your tags in the
reverse order that they were opened. An easy way to remember this is to use the mnemonic
“First In, Last Out.” Following is an example of nesting tags in action; in this case, we’ve
added another layer of structure to a paragraph, using (strong emphasis, by
default displayed in bold in graphical browsers) and (emphasis, by default displayed
in italics). Figure 2-13 shows this markup in action.

 Figure 2-13. The nested markup displayed in a browser

Although web browsers are forgiving and would render the preceding HTML page the
same regardless of whether you nested your tags correctly, as mentioned before, making
sure your pages are valid is important in the long run. When building more complex
pages—and adding CSS to the mix—incorrectly nested tags can lead to inconsistent dis-
play of your web page across browsers.

In the following two examples, we show you the right way to nest elements using the First
In, Last Out approach. These tags are nested correctly:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

32

In the following example, the tags are not nested properly:

Making your markup easier to follow
By now, we’ve introduced quite a bit of complexity. We’re using a variety of tags, we’re
nesting tags in the right order, we’re using DOCTYPEs, and we never, ever forget to use
a well- written element. We’re building web pages and using View Source to look at
how other designers use XHTML. In short, there’s a lot for us to remember as we move
forward to the next chapter.

The good news is that we can use both the structure of our code—breaking it over differ-
ent lines, using tabs and white space—and leave hidden comments within it to make our
job that little bit easier.

In this section, we introduce the importance of both commenting your markup—leaving
hidden comments within it—and putting some thought into how you format it within your
chosen plain text editor—breaking it over different lines, using tabs and white space. This
can make your life a great deal easier, especially when you return to a project after some
time has elapsed.

Commenting your markup

Not everything we write in HTML displays within the browser. We’ve already introduced
you to the element, which is largely hidden from view within the main browser win-
dow. (X)HTML allows for the inclusion of hidden comments in both the and
elements that can only be read when using View Source or looking at the file in
question. Indeed, if you’ve been using your browser’s View Source command to look at
other web pages, you might have seen some examples of comments in use.

Comments open with a and close with a >; anything included between these mark-
ers is not displayed in the browser. This can be very useful for a number of reasons: a
comment could serve as a note to remind you why you structured a document a particular
way, a note to indicate when you changed the document, a note to a friend working on
the same web page, or a means of hiding parts of the document itself. This latter use can
be particularly useful when testing, enabling you to switch the display of elements on
or off.

The easiest way to show you how comments work is to show you some in action. In the
following example, we’ve included a comment between the first two paragraphs. We’ve
also commented out the third paragraph, showing you how you can also use comments to
hide parts of your markup.

BUILDING BASIC WEB PAGES

33

2

As you can see in the screenshot in Figure 2-14, our comment between the first two para-
graphs is hidden from the viewer, as is the third paragraph.

 Figure 2-14. Our page with comments, hidden within the browser

Comments aren’t restricted to single lines; they can also run over multiple lines. This can
be useful when you want to hide a section of a document while you’re testing your web
pages during development. In our next example, we’ve hidden a number of lines using
comments.

As you can see in Figure 2-15, only the first paragraph is displayed in the browser; the
remaining paragraphs are hidden from the viewer.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

34

 Figure 2-15. The previous example as seen in a browser—only the first, uncommented paragraph
is visible.

Although browsers hide everything between comments, your comments are still delivered
to the user’s browser along with the rest of the page’s markup. As you now know, anyone
can read these comments using View Source. Comments therefore aren’t the best place to
hide your secrets. The following, for example, isn’t advisable:

White space

In addition to using comments to assist in the process of writing markup, it’s also worth
considering the use of white space to enable you to visually indicate your document’s
structure within your plain text editor. As long as you’ve written your XHTML in a plain text
editor with formatting switched off, you can use line breaks, tabs, and spaces (commonly
referred to as white space) to separate the sections of your document to make your
markup more readable. When viewed in the browser, these white spaces are ignored.

Take a look at the following two examples of our “Hello World!” page. Both display identi-
cally in the browser. In the first, we’ve used no line breaks or tabs:

BUILDING BASIC WEB PAGES

35

2

In the following example, we’ve introduced line breaks and tabs. As you can see, this
makes the markup much easier to read.

You can see both of the preceding examples live here:

But what if you want to preserve line breaks, tabs, and extra spaces for a web page about
poetry or one that is displaying examples of code within the page, for example? Have no
fear, we will introduce a tag that specializes in just that in Chapter 4 when we show you
how to present preformatted code examples on your web page.

Summary
So what have we covered? In this chapter, we got our hands dirty and started to build
some web pages. We focused on the fundamental aspects of a web page’s construction
and highlighted some dos and don’ts. We also introduced the tricky topic of DOCTYPEs
and how they inform the browser behind the scenes that you’re a budding Web Standardista.
Lastly, we looked at ways of making your code easier to read by using comments and white
space.

In the next chapter, we start to add some good, old- fashioned, upper- class POSH markup.

Homework: Create your first space-monkey-
themed XHTML page

This chapter’s homework is to create a complete XHTML page using the plain text editor
you downloaded and took for a test drive at the end of the last chapter. We’ve supplied
some text for you; all you need to do is add some basic markup to this text to create
a simple web page along the lines of the ones we’ve covered in the chapter.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

36

1. Get started

Let’s get started. Open your text editor and create a new file. The page you’ll be making is
about Albert I, the first- ever monkey astronaut. Following the advice on naming files, we
suggest you save your new blank file as follows:

We suggest you keep all your homework files organized in one place—for now, use a sin-
gle folder.

We’ll cover organizing files in folders later, as this will have an effect on how your dif-
ferent files relate to each other. At this point please keep all of your files in one loca-
tion. We suggest you create a folder called where you save this and future
homework files.

2. A basic web page

By now you should know that the basic, minimal structure of an XHTML document looks
like the example displayed here:

At this point, you have two choices: you can either painstakingly type the preceding
markup into your blank document, or you can go to the Web Standardistas
web site and cheat a little by using copy and paste. You can find the preceding markup
here:

Using your browser’s View Source feature, copy and paste the markup into your blank
 document and save it.

3. Find out about Albert I

Once you’ve got the basic markup in place, the next thing to do is to get some content for
the page. Following the tradition of the best cooking shows, we’ve prepared this earlier
and supplied you with some text about Albert I at the following location:

BUILDING BASIC WEB PAGES

37

2

4. Add a title

You know the importance of adding a descriptive title to your web pages. We’ve left this
part up to you. After reading the text, add an appropriate title to your page between the

 tags, and save your page.

5. Mark up the content

Copy and paste the text provided into the of your page.

As our text currently stands, it has no markup or structure. Your task is to add some
 structure to the page using and tags, a process similar to the one covered in
Figures 2- 3 and 2- 4 of this chapter. With such a simple text file, this should be a relatively
straightforward process. Add your markup and save the page.

6. Add a comment

Once you’ve completed the previous stage, add a comment on the page congratulating
yourself on creating your very first space- monkey page using XHTML. Do this by leaving
a comment in the markup as follows:

7. Test your page

Now there’s just one thing left to do—test. Save the file and open the page in your web
browser to check that everything looks the way you would expect. At this point, we hope
all’s well; if not, you’ll need to check your code thoroughly for any mistakes that may have
crept in.

If you do run into problems, some things to consider might be the following: Is the text
copied into the of the page? Have you closed all the tags you’ve opened? To help you
with troubleshooting, we have created a similarly structured page about Cheeta, famous
for his role in the Tarzan movies. You can refer to this, using your browser’s View Source
command to see how we’ve structured the web page, here:

Assuming all’s well, put the kettle on and enjoy a cup of Lapsang Souchong as you prepare
yourself for the next chapter.

CHAPTER 3

STRUCTURED MARKUP

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

40

This chapter is critical to your evolution as a Web Standardista. Focused on structured
markup, the concepts introduced will form a solid foundation on which you will build as
we progress through the remainder of the chapters. At the heart of the chapter lies
a return to fundamental principles, particularly the idea of embracing Plain Old Semantic
HTML (POSH) and using it as a basis on which to build.

First, we introduce the concepts of structured markup and semantic markup and use
a case study to explain the idea of using “signposts for reading” to guide the reader. Once
we establish the basic principle of structured markup, we introduce you to some funda-
mental tags: heading tags and tags for adding emphasis. You briefly met one of the head-
ing tags in Chapter 2; now we start to use it and its companions.

It might not seem like much, but with just the tags introduced in this chapter in your tool-
box, you’ll be able to create well- structured web pages that will be the envy of your
 less-well- trained peers.

At this point you’re probably thinking, “Is that it? A few more tags? Where’s the design?
Where’s the color? Where’s the fancy stuff?” The answer is that it’s coming, and although
you might not realize it, we’re already adding design just by structuring the information on
our web pages.

Good information design separates the great web sites from the ordinary ones. By the end
of this chapter, you’ll be creating great web pages with well- structured markup, and that’s
half the battle.

Adding structure and meaning
Structured markup—sometimes referred to as semantic markup—is the practice of
using XHTML to define the structure of a document’s content. We believe in establishing
a firm foundation of structured markup before moving on to apply design with CSS. That’s
why we’ve devoted almost half of this book to the creation of well- formed XHTML.

As we suggested previously, the process of analyzing a page’s content and applying some
structure to it is a part of the design process. Where the beginning web designer almost
always goes wrong is in hurrying too quickly into what they mistakenly believe is the
“design phase,” which they equally wrongly assume is “only about CSS.”

The reality is the design phase in fact encompasses both the creation of well- structured
markup in XHTML and subsequently applying style to this with CSS.

Although sometimes used interchangeably, there are some subtle differences between
structured markup and semantic markup. The term structured markup usually refers to
the structure of the document: how your headings and paragraphs relate to each other,
and arranging your information in a logical and meaningful order. The term semantic
markup usually refers to adding meaning to your markup, using tags that say some-
thing about your content. When you add a heading or a paragraph to your page, how-
ever, you are adding both structure and meaning. In fact, structure and meaning are
quite closely intertwined.

STRUCTURED MARKUP

41

3

What is structured markup?
Structured markup lies at the heart of the Web Standardistas’ approach. We believe in
using the right tag for the right job. A heading should be within a heading tag; paragraphs
should be within <p> tags; a quote should be within <blockquote> or <q> tags. It’s simple:
look at the content and ask yourself, “Is this a heading?” If it is, then use a heading tag; if
it isn’t, use a more appropriate tag.

HTML was invented to give structure and meaning to documents. The emphasis was on
using tags to describe what they contained. This approach, using semantics to suggest
meaning, is fundamental to the Web Standardistas’ approach.

The first phase in building any web page should be a careful analysis of the information it
contains and identifying its inherent structure.

Take a look at Figure 3-1 and Figure 3-2. The first has no structure at all, but the second is
clearly structured.

 Figure 3-1. A document with no structure displayed in a browser

 Figure 3-2. The same document with tags added—giving the page structure

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

42

Looking at these two examples, notice the second one has an implicitly defined structure
and a clear information hierarchy. We would argue that even without style added with CSS
that the document in Figure 3-2 has been “designed.” The process of adding this layer of
structure or meaning is central to a structured markup approach.

What is semantic markup?

We’ve mentioned the word semantic a number of times, but what exactly does the word
mean? A dictionary definition gives us a start:

semantic –adj. relating to meaning in language.

Concise Oxford Dictionary (Clarendon Press, 1990)

In English? The word semantic is derived from the Greek word for sign. We use semantics
to give meaning to information through the creation of a logical structure. The idea of
creating signposts for reading is one we introduce later in this chapter. Think of your
markup as a series of signs that clearly inform the browser of its purpose, “I’m an <h1>: I’m
an important heading. I’m a <p>: I’m a paragraph.”

Our emphasis is on semantic markup first and foremost. Is it a list? Then mark it up as
a list. Is it a heading? Then mark it up as a heading. We believe code should be meaningful;
it should convey some sense and some structure. We believe in using appropriate markup
when it’s needed, and then styling it later.

Let’s repeat that, as it’s fundamental to the Web Standardistas’ approach: we believe in
using appropriate markup when it’s needed, and then styling it later.

This is the first hurdle beginners in web design trip over. They look at how big an <h1> is
when it renders using the browser’s default style sheet and opt instead for an <h2> or an
<h3> because they’re smaller and “look nicer.” “I just couldn’t bring myself to use an <h1>
tag—it’s just insanely big!”

This is XHTML + CSS mistake 101. Yes, minus any styling via CSS an <h1> tag is insanely big,
but we’ll be styling it with CSS, which allows us to design it to be as large or small as we’d
like. The bottom line is that, minus the CSS, the information needs to convey meaning.
Switch off the users’ style sheets, and it’s clear that the <h1> is more important than the
<h2> and <p> tags beneath it. The tags convey meaning. That’s the point.

Making markup meaningful

We believe in the use of meaningful markup. Our emphasis is on semantics first and fore-
most. Before you even open your text editor, look at the content you’ll be working with
and break it down into its component parts. Give it a hierarchy and try to tease out the
meaning of specific phrases. With this knowledge, mark up the document accordingly.

STRUCTURED MARKUP

43

3

This is design at its most fundamental level: looking at words and working out which tags
are most appropriate. If we can convey a document’s structure at this level using just
XHTML, we’re halfway there. The rest, handled with CSS, is just surface gloss and presenta-
tional niceness.

POSH and proud

When we talk about being POSH and proud, we’re not referring to our gentlemanly line-
age, rather we’re referring to POSH, which we’ve previously defined as an acronym for
Plain Old Semantic HTML. Coined in April 2007, POSH might sound like a new invention
(or an old Spice Girl), but it’s not. It is, however, a great way to remember the basics of
HTML and what it was first supposed to achieve.

Roger Johansson, a noted advocate of accessible web design, summarizes the appeal of the
term nicely:

POSH is short for “Plain Old Semantic HTML” and is obviously much quicker and easier
to say than “valid, semantic, accessible, well- structured HTML.”

http://www.456bereastreet.com/archive/200711/
posh_plain_old_semantic_html/

Rewind two decades. When Tim Berners- Lee first conceived HTML, he intended it to be
a language about language, a metalanguage or a means of describing language. POSH
markup returns to those original principles, using the right tag for the job, putting mean-
ing and semantics first and adding style later. This is at the heart of the Web Standardistas’
approach. Follow our guidelines, and you’ll be writing POSH markup in no time; you’ll also
be the envy of your peers.

Signposts for reading
Whenever we read something—a newspaper or a book, for example—our eyes are guided
through the content through the use of established typographic techniques. A headline is
styled differently from a paragraph, and different headlines are assigned different levels of
importance through relative size and other design aspects, for example, the use of color.

By establishing a basic information hierarchy, such as using <h1> tags for the most impor-
tant headings and using <h6> tags for the least important headings, we can make the read-
ing process easier; we can also improve the accessibility of the web pages we design
(making those pages accessible to, say, visually impaired users using screen readers or high
contrast layouts). A welcome byproduct of this improved accessibility is that search engines
find indexing your pages easier.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

44

This section covers the relationship of tags to one another. It introduces a core concept
that we’ve already mentioned is key to the Web Standardistas’ approach: structured
markup.

Creating structure with headings and paragraphs

What’s more important, an <h1> or an <h2>? Is an <h3> more important than an <h5>?
How does a <p> relate to an <h1>? The answer is simple. In XHTML, there are six headings:
<h1>, <h2>, <h3>, <h4>, <h5>, and <h6>. <h1> is the most important, and <h6> is the least.
<p> tags indicate paragraphs, which generally sit under one of the heading tags, depending
upon where they appear within the document’s semantic structure.

In Chapter 2, you saw that you can use more than one set of <p> tags on a page, and head-
ing tags are no different. We can have as many heading tags on a page as we like; the key
is to define the structure and apply our markup accordingly.

The W3C states the following:

Since some users skim through a document by navigating its headings, it is important to
use them appropriately to convey document structure. Users should order heading
 elements properly. For example, in HTML, H2 elements should follow H1 elements, H3
elements should follow H2 elements, etc. Content developers should not ’skip‘ levels (e.g.,
H1 directly to H3). Do not use headings to create font effects; use style sheets to change
font styles for example.

http://www.w3.org/TR/WCAG10-HTML-TECHS/#document-headers

The following example show a series of headings marked up in XHTML:

<h1>Heading 1</h1>
<h2>Heading 2</h2>
<h3>Heading 3</h3>
<h4>Heading 4</h4>
<h5>Heading 5</h5>
<h6>Heading 6</h6>

The way the browser displays these headings by default, as shown in Figure 3-3, gives us an
indication of the importance of the different headings. The h1 is clearly more significant
than the h6. As we mentioned earlier in this chapter, we can use CSS to adjust the style and
size of these headings, so by now you know not to be tempted to pick a heading based on
its default size.

STRUCTURED MARKUP

45

3

 Figure 3-3. The full range of headings as they display, unstyled, within a browser

Applying information hierarchy

When building pages using a Web Standardistas’ approach, the first stage in the design
process is looking at a page’s content and applying some structure to it using the appropri-
ate tags. Once this stage is completed and only then do we move on to style our
 well- structured markup through the use of CSS.

In Figure 3-1 and Figure 3-2, earlier in the chapter, we showed you two versions of the
same page, one with and one without structure. Let’s take a closer look at the text that
comprises this document minus markup. By doing this, we can begin to ask some ques-
tions about the document’s structure and use the answers to those questions to guide our
choice of tags when marking up the document.

It might sound obvious, but the first thing we’ll do is to carefully read the content. It’s
important to get a feel for the relationship between the different sections so that we can
establish a clear information hierarchy. Our plain, unstructured content looks like this:

Famous Monkeys
Who would have guessed that there are actually web pages about
famous monkeys.
Perhaps the best, certainly number one at Google, is Famous Monkeys
Through History, a somewhat bizarre site that chronicles the
adventures of real life ape-o- nauts.
My favourite is Gordo, the first ape in space who unfortunately died
in somewhat controversial circumstances.
Obscure Monkey Facts
Washoe the chimp was possibly the first monkey to master the art of
sign language. When encountering a monkey she disliked she signed
"dirty" with "monkey" to express her disapproval of the other
primate.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

46

The cleverly named 'Robomonkey' was the first robotic primate.
A group of monkeys is called a troop of monkeys.

After reading through the content, it is time to start marking up our headings and para-
graphs. The page is all about famous monkeys, so the first line, “Famous Monkeys,” would
best be marked up as an h1, the most important heading on the page. Under this heading,
we have three sections that we’ll mark up as paragraphs. So far, so good. Our document is
slowly taking shape.

The line “Obscure Monkey Facts” is destined to become another heading. As it’s a subsec-
tion and less important than the “Famous Monkeys” heading at the top of the page, we’ll
mark this up as an h2. Following this heading, we have three obscure monkey facts.
Although the first piece of monkey trivia is a little longer than the second and third, this
content is still suitable to be marked up as a list. Our final port of call is to add some addi-
tional semantic meaning to the page by pulling out some key phrases in this simple exam-
ple using the and tags we’ve already discussed.

The resulting markup looks like this:

<h1>Famous Monkeys</h1>
 <p>Who would have guessed that there are actually web pages about
 famous monkeys. Perhaps the best, certainly number one at Google, is
 Famous Monkeys Through History, a somewhat bizarre site
 that chronicles the adventures of real life
 ape-o-nauts.<p>
 <p>My favourite is Gordo, the first ape in space who unfortunately
 died in somewhat controversial circumstances.</p>
<h2>Obscure Monkey Facts</h2>

 Washoe the chimp was possibly the first monkey to master the ➥

 art
 of sign language. When encountering a monkey she disliked she ➥

 signed
 "dirty" with "monkey" to express her disapproval of the other
 primate.
 The cleverly named 'Robomonkey' was the first robotic
 primate.
 A group of monkeys is called a troop of monkeys.

The result of this process is that we’ve moved from an unstructured page with no informa-
tion hierarchy to a well- structured XHTML page with a clear information hierarchy. You’ll
see as you progress through the book how you can apply style to all of the tags used here
to further tease out the document’s structure and meaning.

Case study: The Guardian

Looking at an example web page and trying to identify its structure is the best way to learn
what structured markup is. At this point, it’s over to you. The example shown in Figure 3-4

STRUCTURED MARKUP

47

3

is taken from www.guardian.co.uk, the web site of the UK national newspaper the
Guardian. Looking at the example, try to work out which is the most important heading—
an h1—and which are the h2 and h3 headings.

 Figure 3-4. The Guardian home page

In our Famous Monkeys web page that we looked at in the previous section of this chap-
ter, the most important heading, our h1, also happened to be at the very top of the page.
Looking at the example in Figure 3-4, however, you can see that there’s a lot of informa-
tion at the top of the page that doesn’t seem to fit the “most important heading” descrip-
tion. Sign in? Register? Search? These don’t feel like headings, so we need to keep looking.

A contender for the h1 spot is the guardian.co.uk brand, displayed in two shades of blue
near the top of the page. This brand is consistently displayed throughout the site, and
some might argue that this could indeed be the most important heading on the page.
When you pick up a newspaper, however, you’re probably more interested in the news
headlines than in the paper’s branding, which stays the same day in, day out, regardless of
what’s going on in the world.

As you can see in Figure 3-5, the first news headline on the page is in fact an h1. Following
this news story are a number of other headlines, all marked up as h2s. These stories are all
considered important; they’re not the top story of the day, but they are all marked up to
be the second most important pieces of information on the page. So a page may have
more than one h2; ultimately this depends on the content. Further on, in the right- hand
column, less urgent stories about dating and saving are marked up with h3 tags.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

48

 Figure 3-5. The Guardian home page, annotated to indicate the different levels of headings

It’s worth bearing in mind when looking at this example that there may be several differ-
ent ways to structure our information meaningfully. After all, what is important to you
might differ from another’s opinion of what should get the highest priority. However, our
goal should remain the same: when writing your markup, adding your headings and para-
graphs and structuring your page, strive toward adding tags that give clues as to the mean-
ing of the content. Not how it should look on the page, but what it means.

As a general rule, there are two approaches to applying markup in this first pass: a linear
approach, where an h2 is a subsection of an h1 and so on; and a less linear approach,
where information is marked up in order of importance (e.g., an h2 isn’t necessarily a sub-
section of the h1, but is the second most important item on the page). Which approach
you take depends upon the content you’re marking up, both on the page itself and
throughout the site.

Bear in mind that your web pages don’t exist in isolation and will have a relationship to
each other. It’s worth considering the information hierarchy across different pages in your
site as this will also have an impact on how you mark up those pages. At the end of the
day, it all depends on the content. Let the content guide your decisions over which tags to
use, and you should be fine.

STRUCTURED MARKUP

49

3

An introduction to phrase elements
We briefly alluded to elements in Chapter 2 with a diagram (Figure 2-5) that showed an
element consisting of an opening tag, some content, and a closing tag. In this section, we
explain what an element is in a little more detail.

What is an element?

You already know what a tag is, and we’ve briefly discussed elements already. But what
exactly is an element? We could have steered clear of elements and simply referred to tags
throughout; however, it’s useful for Web Standardistas to have a fully functioning vocabu-
lary (you never know which famous web standards evangelist is around the corner, and we
want you to be prepared for every eventuality).

Tags, elements? It’s not as complicated as it sounds. As we mentioned in Chapter 2, an ele-
ment is simply a set of opening and closing tags (<p> and </p> for instance) plus the con-
tent within these tags, as indicated in Figure 3-6.

 Figure 3-6. The structure of an element

A simple example of an element might be a paragraph of text, like in the following exam-
ple. This would be referred to as a p element. Note the lack of the < and > brackets—we’re
talking about elements now, not tags. The p element in question is everything that follows:
opening tags, closing tags, and content.

<p>And now, ladies and gentlemen, before I tell you any more,
I'm going to show you the greatest thing your eyes have ever beheld.
He was a king and a god in the world he knew, but now he comes to
civilization merely a captive - a show to gratify your curiosity.
Ladies and gentlemen, look at Kong, the Eighth Wonder of the World.
</p>.

What’s important to remember is that elements can contain other elements. In the next
example, everything contained within the opening <body> and closing </body> tags, includ-
ing the tags themselves, can be referred to as the body element.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

50

</head>
<body>
 <h1>King Kong - The Lost Scenes</h1>
 <p>The original version of King Kong included scenes that later
 were cut to placate the censors. One such scene was only shown
 publicly once during a preview screening in San Bernardino,
 California in 1933. This lost scene featured Kong shaking four
 sailors off a log bridge, causing them to fall into a ravine where
 they were eaten alive by giant spiders.</p>
</body>
</html>

Adding meaning to fragments of text

Phrase elements add meaning to fragments of text. You’ve already encountered two
phrase elements, em and strong, in our example of nesting elements, but there are many
more that you can use to improve the structure and meaning of your markup.

In this section, we introduce you to a number of phrase elements to expand your XHTML
vocabulary. By the end of this chapter, you’ll have an extensive set of elements from which
to choose.

Adding emphasis: and

Poorly trained web designers often confuse (emphasis) with <i> (italics) and
(strong emphasis) with (bold). Given a little guidance, however, we’re confident you
will never make this glaring error as a Web Standardista. Why? Simply because <i> and
are presentational, that is, they only affect visual display within the browser, whereas
and suggest meaning.

Comparing <i> and should help to clarify this distinction further. <i> deals only with
the visual display of text (i.e., it is presentational), whereas conveys meaning (i.e., it is
semantic). This meaning is interpreted by the browser to display as italic; however, it also
conveys additional information to assistive devices like screen readers for the visually
impaired—where display is, by definition, impossible. When using and ,
screen readers will change volume, pitch, or rate to suggest the difference in emphasis.

There are some occasions where using italics might be appropriate, such as to indicate
a ship’s name, as in the following example (also shown displayed within a browser in
 Figure 3-7):

<p>King Kong travelled to New York in the hull of a ship
called <i>The Venture</i> under Captain Engelhorn.<p>

STRUCTURED MARKUP

51

3

 Figure 3-7. Our italics example as displayed in a browser

Although we would like the ship’s name The Venture to be displayed in italics in a visual
browser, we don’t want a screen reader to add emphasis to the ship’s name when reading
it aloud. This makes an <i> tag a more appropriate choice than an in this case.

Other phrase elements

Being restricted to only adding emphasis and strong emphasis to your content might
become a little bit monotonous after a while, so it’s worth getting to know a few other
phrase elements. These elements can all be used to add additional meaning to your con-
tent. You might end up using some of them all the time, others might be used less fre-
quently, but all are worth knowing about nonetheless.

 abbr: Used to identify the enclosed text as an abbreviation or a shortened form of
a word or phrase (e.g., Dr.).

 acronym: Used to indicate an acronym, a word formed from the initial letters of
 other words (e.g., NATO).

 cite: Used to denote a citation, a reference to another document, especially books,
magazines, and articles.

 q: Used to mark up short quotations. Standards- compliant browsers will add quota-
tion marks around text marked up with q. Sadly, a lack of consistent browser sup-
port has made this element hard to use.

 code: Used to denote a sample of program code. By default, code is rendered in
the browser’s specified monospace font—with this type of font, every character
has the same width. This makes the code easier to read and to differentiate from
the rest of the page content. Other programming-related elements include kbd (for
keyboard commands), samp (for code samples), and var (for code variables).

 del and ins: Used to indicate deleted and inserted text, useful when revising
a document. Deleted text is usually displayed with a line drawn through the text,
whereas inserted text usually displays with an underline.

You’ll encounter these and other phrase elements again in a little more detail in the fol-
lowing chapter; for now, consider yourself introduced, but not yet intimate.

Block-level and inline-level elements
There are two types of elements in XHTML: block- level elements and inline-level ele-
ments. What’s the difference between them? Simply put, block- level elements generally
begin rendering on a new line within the document and force a new line when they are
closed. You’ll have noticed by now that a browser by default inserts a line of blank space
above and below an h1 or a p; that is because these are block- level elements.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

52

Inline-level elements, on the other hand, display inline. Adding em or strong elements
within a paragraph does not force a line break within the paragraph because these are
inline-level elements.

But surely it can’t be that easy? Wait, there’s more . . .

Imagine a box

Every element within an XHTML document is contained within a “box” that is either
 block- level or inline- level (the latter is sometimes referred to as text- level). The easiest
way to demonstrate what this means is to point out some examples in a screenshot.

In Figure 3-8, the first paragraph (contained within <p> tags) occupies its own block- level
space. In the second paragraph, both the words ape (contained within tags) and the
word monkey (contained within tags) are inline- level elements and so display
inline. (The paragraph that contains these inline- level elements is also block- level; how-
ever, we’ve resisted the urge to draw a box around it to keep the illustration clearer!)

 Figure 3-8. Block- level and inline-level elements

The difference between block- level and inline-level
elements

As you can see in Figure 3-8, block- level elements generate “breaks” before and after their
containing box. Put simply, if we consider a paragraph, we imagine it to be a block of text
with space above and below it—it is block level. A word in italics or bold, however, is con-
tained within the paragraph—it is inline.

Some examples of block- level elements include h1, h2, and p.

Some examples of inline-level elements include strong, em, and cite.

STRUCTURED MARKUP

53

3

In XHTML, block- level elements cannot be nested inside inline-level elements; for example,
you cannot have a p element nested within tags. In the following two
examples, we show you the right way to nest elements using the First In, Last Out
approach.

This example is correct:

<p>The strong element nested within the containing p tags in this
paragraph - me - is fine.</p>

The following example, however, is incorrect, as a block- level element cannot be nested
within an inline element:

This is <p>not fine</p>.

It’s also worth noting that inline-level elements cannot be placed directly within the body
without first being enclosed within block-level elements. Failure to nest inline-level ele-
ments within block-level elements will result in pages that fail to validate.

In the next section, we will look at a way to ensure that you’ve nested your elements cor-
rectly and that your document is valid. We’ll do so using the W3C Markup Validation
Service.

Valid code is browser- friendly markup
By now, you’ve been introduced to quite a bit of material. If you’ve been following along
with the examples and exercises, and experimenting building your own pages, you should
be capable of building pages with quite a bit of complexity.

As with any process, the more complexity you add, the easier it is for errors or mistakes to
creep in. These errors might affect the display of your web page within different browsers
across different platforms, so it’s important you pick them up and correct them.

Wouldn’t it be great if there were a service that offered to check all your code for you?
A service that highlighted line by line where those errors lie to make your bug-hunting
task just that little bit easier? Better still, a service that did all of the above for free. Good
news, there is. Meet the W3C Markup Validation Service.

The W3C Markup Validation Service

Why use the W3C Markup Validation Service? There are a number of reasons. First, valid
pages are Google- friendly pages, and Google- friendly pages are easier to find. Second,
valid pages are easier to debug.

When we build a web site, it’s inevitable that things will go wrong from time to time. We
get distracted, our minds wander, a mistake creeps in. The W3C Markup Validation Service
highlights where the errors are, details what those errors are, and points them out line by
 line, ensuring that they’re easy to track down and fix.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

54

When your web page displays in an unexpected way, a brief check to see whether your
code is invalid or formatted incorrectly can often highlight the problem. Using the W3C
Markup Validation Service can save a lot of checking over code line by line by highlighting
where any mistakes are. If you’ve accidentally forgotten to close a tag, for instance, using
the validator will show you where you went wrong, saving you hours of looking through
your code trying to find the bug yourself.

Use of the validation service is easy, and you don’t even need to have your files uploaded
to a server to avail yourself of the service (we’ll be covering uploading your files in
Chapter 7).

Let’s give it a test drive. We start off with opening the following page in our browser:

http://validator.w3.org/

Clicking the Validate by Direct Input tab allows you to copy and paste your markup into the
validator. Let’s put the markup in the following example through the test:

<!DOCTYPE html PUBLIC "- //W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>King Kong</title>
</head>
<body>
 <h1>King Kong</h1>
 <p>King Kong is the name of a fictional giant ape from the legendary
 Skull Island, who has appeared in several works since 1933. Most of
 these bear his name, and include the groundbreaking 1933 film, the
 film remakes of 1976 and 2005, and numerous sequels.<p/>
 <p>Although the 1933 movie featured crude animatronics and a giant
 ape made out of a sponge, it is considered by many to be the
 definitive version.</p>
</body>
</html>

As shown in Figure 3-9, we’ve pasted the preceding markup into the validator. Now it’s
time for the moment of truth. Click the Check button, and the validator will check our
page.

STRUCTURED MARKUP

55

3

 Figure 3-9. We’re putting our markup through the test with the W3C Markup Validation Service.

Checking our markup reveals that there’s something not quite right with our XHTML. As
shown in Figure 3-10, there are a total of six errors, but how do we find out what those
errors are so that we can fix them?

 Figure 3-10. The W3C Markup Validation Service shows that our page is not valid. Let’s find out why.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

56

This is where the validation output comes into play. Scroll down the page, and you will
see each error listed, with some helpful, if at first rather perplexing, details. Figure 3-11
shows the first of our six errors. Let’s take a closer look at it and try to work out what’s
 gone wrong.

 Figure 3-11. The validation output shows the details of our errors.

Let’s start from the beginning. The first bit of information, displayed in italic, is telling us
where in the document our error has occurred—in this case, on Line 10 of our XHTML
document. Most plain text editors have a feature like TextWrangler’s Show Line Numbers.
If your text editor supports this feature, it’s a good idea to turn it on, as this will allow you
to quickly identify where to locate any errors, as shown in Figure 3-12.

 Figure 3-12. Line numbers help you find specific sections of code easily.

STRUCTURED MARKUP

57

3

The second piece of information, displayed in bold, is probably a little bewildering, as it
describes the probable details of your error in very dry, technical terms. Along with the
more verbose paragraphs below, expanding on these details, this information is an attempt
by the validator to determine the cause of the error for you. In this case, as there could be
a number of possible explanations, you’re left with the task of deciphering the information
and working out which error applies to you.

In simple scenarios, the line of code displaying the markup where your error occurred is
the best place to start. In our example in Figure 3-12 earlier, the end of Line 10 looks like
this:

...film remakes of 1976 and 2005, and numerous sequels.<p/>

As you might already have spotted, the error is a simple typo. We’ve tried to close our
paragraph tag, but accidentally written <p/> instead of </p>. Let’s fix this typo and revali-
date by clicking the Revalidate button. Figure 3-13 shows the result after fixing the error.

 Figure 3-13. Fixing one error made all six disappear. Now our page validates.

Fixing just this one error clearly had a domino effect; the result is that all six errors have
disappeared. It’s worth revalidating your markup after fixing each error, as one simple
mistake can often result in multiple errors being reported by the validator.

One of the reasons to embrace the W3C Markup Validation Service early in your career as
a budding Web Standardista is that it can teach you a great deal about how to debug code
and resolve web page display issues. The act of debugging a page and trying to get it to
validate is extremely educational and, as a welcome byproduct, highlights the importance

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

58

of well- formed code. The W3C Markup Validation Service is a free tool; it costs nothing
but time to use.

If we ensure our pages validate without errors, they should

 Render as we expect in standards- compliant browsers.

 Load faster.

 Be 100% future- proof as the Web evolves.

All good goals to be striving for; all expected of a Web Standardista.

Valid code is not necessarily well- structured code

Passing the W3C Markup Validation Service test doesn’t automatically mean that your page
is well structured. Imagine that we’ve marked up the preceding information as follows:

...
<p>King Kong</p>
 <h3>King Kong is the name of a fictional giant ape from the legendary
 Skull Island, who has appeared in several works since 1933. Most of
 these bear his name, and include the groundbreaking 1933 film, the
 film remakes of 1976 and 2005, and numerous sequels.</h3>
...

Now the most important heading on the page is marked up as a p and the subsequent
paragraph has been marked up as an h3. All it takes is a quick glance over this markup to
see that something isn’t quite right; it certainly hasn’t been written by an aspiring Web
Standardista. The preceding is perfectly valid, however, and the validator will not find any
errors in the markup. Remember, make sure that your page is well structured before you
attempt to validate it, or in the words of Gary Larson: “First pants, THEN your shoes.”

Getting the search mix right
Structured markup is Google- friendly markup, and Google- friendly markup increases the
chances of your web site being found.

Let’s face it, with an estimated 63 billion web pages in existence (and that was just in June
2008), getting found online is a little like finding the proverbial needle in a haystack, only
this is a very big haystack. Using a Web Standardistas’ approach helps your web site con-
siderably in the eyes of Google. In this section, we explore why.

STRUCTURED MARKUP

59

3

By structuring your content in a logical way, using headings, paragraphs, and phrase ele-
ments to add meaning to your content, you are not only building the foundations for
a POSH site worthy of a Web Standardista, but also helping search engines, which can use
your well- structured markup to help them make sense of the contents of your page.

Apart from making sure that your content contains the words or phrases that people are
likely to search for, one of the simplest things you can do to guarantee your page is ranked
well by Google is to cross- reference the content of your title element and your page’s h1
elements and ensure that both feature an intelligent use of words relevant to your web
site or web page.

Let’s put ourselves in the shoes of someone desperately trying to find useful information
about famous primates and take a look at a couple of examples to underline what we
mean. In the following examples, we’ve shown two different versions of the same page.
The first tells us—and Google—very little about the page:

...
 <title>Gordo and Clyde</title>
...
<h1>Furry Forest Dwellers Found Fame</h1>
...

Who are Gordo and Clyde? Using our human powers of deduction, we might determine
that there was a chance these furry forest dwellers were indeed primates, and since they
found fame they would probably also be famous, but it would be very hard for a machine
to equate this information with the words Famous Primates.

The following example is much better. It’s evident from the title element that this page
is the one we’ve been looking for; it also provides Google with a mix of meaningful key-
words that also cross- reference with the h1. Perfect.

...
<title>Famous Primates presents Gordo and Clyde</title>
...
<h1>Gordo and Clyde - Two Famous Primates</h1>
...

Although we can’t completely rule out that the somewhat specialist subject matter helped
a little, the homework web site we built to accompany this book is an example of how
a well- structured page can make it into the top- three position in Google (as shown in
 Figure 3-14) within only a few weeks of its launch. 3 out of 862,000 isn’t bad.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

60

 Figure 3-14. After only a few weeks, our page about famous primates reached the third spot in
Google.

There are a number of other techniques that help with search engine optimization (SEO);
however, what we want to stress here is that search engine–friendly pages are a natural
byproduct of the Web Standardistas’ approach.

Summary
So what have we covered? Although you might not think we’ve done any “design” yet,
trust us, we have. Even without the addition of style with CSS, we’ve explored the impor-
tance of establishing a strong information hierarchy. This process is central to any good
piece of design, and hopefully now that you’re marking your pages up using the full range
of tags at your disposal, you agree.

Along the way we’ve looked at the W3C Markup Validation Service and considered its
importance in ensuring your web pages display consistently regardless of browser or plat-
form. Lastly, we took a look at a byproduct of the Web Standardistas’ approach that
ensures your web pages are search engine friendly.

In the next chapter we introduce you to lists, the building blocks of web site navigation.
We also introduce you to a number of other tags, ensuring that you have a well- stocked
web design toolkit moving forward.

Homework: Introducing Miss Baker
In the last chapter’s homework, you created a simple web page about Albert I, the first- ever
monkey astronaut. In this chapter, we’ve introduced a number of tags to add additional

STRUCTURED MARKUP

61

3

structure and meaning to your markup. You’ll be adding these to another page you’ll be
creating about Miss Baker, another well- known space pioneer.

Good news: Albert I—now feeling a little lonely in the homework folder—is about to be
joined by a lady friend.

As with the last chapter, we’ll provide you with all the information you need on Miss Baker;
your job will be to add markup to the page to give it some structure. You’ll be adding the
following: a range of headings from h1 to h4; some additional <p> tags to mark up the
paragraphs; and some phrase elements, namely em and strong.

Finally, once you’ve marked up the Miss Baker page, you’ll be validating it using the W3C
Markup Validation Service to check that no errors have slipped in during the markup pro-
cess.

1. Establish an information hierarchy

To undertake the last chapter’s homework, we provided you with a very simple page about
Albert I, consisting of a single h1 and three short paragraphs. In this chapter, we’re increas-
ing the level of complexity.

As before, we’ve supplied you with a text file that you’ll be adding markup to. You can
access it here:

www.webstandardistas.com/03/miss_baker.txt

At first glance, the information hierarchy of Miss Baker’s page isn’t quite as clear as
Albert I’s page. The first stage in the markup process is simple, but essential: read every-
thing before you mark up anything. As you read, your goal is to try to identify an informa-
tion hierarchy for the text supplied so that you can add effective and meaningful markup
in the next stage.

2. Add <h1>–<h4> and <p> tags

Once you’ve read through the text supplied for the Miss Baker page, try to work out the
meaning of the words and the page’s information hierarchy. Using <h1>–<h4> and <p> tags,
apply some structure to the page.

It’s worth noting that there are potentially a number of ways to mark this page up, and the
choices you make are in some respects subjective. However, to help you in the process, we
have created a similarly structured page about Cornelius, famous for his role in The Planet
of the Apes. You can refer to this using your browser’s View Source command to see how
we’ve structured the web page logically, here:

www.webstandardistas.com/03/cornelius.html

3. Add and

The next stage in the markup process is to identify any phrase elements that might exist
within the text. In this case, you’re looking for any words that might benefit from the addi-
tion of emphasis. Remember, em and strong are intended for the addition of emphasis to
text, not for changing its visual presentation (or look and feel).

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

62

Again, you might wish to refer to our Cornelius web page to see where we’ve added
emphasis.

4. Validate your page

Once you’ve completed adding the markup to your Miss Baker web page, the final stage in
the process will be to check it using the W3C Markup Validation Service. Start by opening
the following page in your browser:

http://validator.w3.org/

Click the Validate by Direct Input tab, and copy and paste the markup for your Miss Baker
page into the validator. Click Check and wait for the results. If you’ve been a diligent Web
Standardista and written all your markup carefully, you’ll be welcomed by the green ban-
ner. If you’re met with the less welcoming red banner, have no fear, the process of debug-
ging your Miss Baker page will in itself be an educational experience.

Only once you’re met with the green banner are you allowed to put the kettle on and
enjoy a cup of Earl Grey as you prepare yourself for the next chapter!

CHAPTER 4

MARKUP THAT ADDS MEANING

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

66

In this chapter we look at the topic of adding additional meaning to your markup through
the use of a number of new tags we introduce. Our primary focus is to cover a number of
methods of organizing and grouping information. In particular, we explore the importance
of using lists—unordered lists, ordered lists, and definition lists (don’t worry, we’ll intro-
duce each of these fully in due course)—to help group together related information. We
also introduce tables, often mistakenly maligned, but useful nonetheless for giving form to
tabular data.

By the end of this chapter, you’ll be ready to build basic lists that will form the backbone
of your web site’s navigation after we’ve introduced creating links in Chapter 6. At this
point, like your other markup, your lists will remain unstyled, but rest assured you’ll style
them in good time. You’ll also have an understanding of how to use tables to organize
tabular data, enabling you to apply structure and meaning to calendars, charts, schedules,
and timetables, to give but a few examples.

Finally, and for good measure, we introduce a number of additional tags—bonus tags for
every occasion. In a veritable XHTML feast, we supply you with a sizable number of tags
that no Web Standardista should be without: tags for quotations— , , and

; tags we’re rescuing— ; tags for nerds— and ; tags for writers—
 and ; and finally, and , useful, in particular, for our scientist

friends.

Lists: First- level organizers
Lists are everywhere: shopping lists, to- do lists, top ten lists, lists of links, lists of links for
navigation, and so on. Lists are semantic: they suggest structure or indicate related groups
of information, which is why we’re using them.

Look at any well- designed web page, and it’s likely that the navigation at the top or the
side of the page is a list of links that’s been styled with CSS. Lists provide a means of
grouping information together and making the separate elements easier to grasp. Lists
also give us meaningful tags that we can target with CSS, which we’ll cover when we get to
Chapter 12, where we show you how to style a variety of lists.

Why use lists?

Look at the following two examples—a list of primate- related films. In the first, we struc-
ture the list as an inline paragraph; in the second we structure the list using bullet points.
Two different approaches that, as you’ll see, have an important impact on how they render
in a browser and can have an impact on how they’re absorbed as groups of information.

Looking at the two examples, it’s clear that using a list to both group and structure the
information provides an additional layer of meaning for the information supplied.

Recommended films, version 1 (in no particular order):

MARKUP THAT ADDS MEANING

67

4

Escape from the Planet of the Apes, Every Which Way But Loose, Conquest of the Planet of
the Apes, Bedtime for Bonzo, King Kong, Bonzo Goes to College, Planet of the Apes, The
King of Kong, Beneath the Planet of the Apes, 2001: A Space Odyssey.

Recommended films, version 2 (in no particular order):

 Escape from the Planet of the Apes

 Every Which Way But Loose

 Conquest of the Planet of the Apes

 Bedtime for Bonzo

 King Kong

 Bonzo Goes to College

 Planet of the Apes

 The King of Kong

 Beneath the Planet of the Apes

 2001: A Space Odyssey

Looking at the preceding examples, we would argue that certain information lends itself to
display in list format. Rendered in the browser as a series of bullet points, the list of films
is easier to read than the paragraph with the list of films rendered inline. With each film
beginning on a new line and with bullet points clearly indicating each new film in the list,
we would argue that the list is easier to read when presented this way. As with the previous
chapters, we’re using the right tag for the job to indicate the structure and grouping of
information to the reader, adding design through the careful use of structured markup.

While it’s worth noting that we could use CSS to switch off bullet points and render our list
inline as a paragraph (something we’ll cover in Chapter 12), the point we’d like to make
here is that through the careful selection of appropriate tags, we can amplify the meaning
of our raw, unstyled information—no bad thing.

In the next section, we show you how to use the basic components of a list in XHTML;
along the way we introduce you to three types of list: unordered lists, ordered lists, and
definition lists. We’ll focus primarily on the first two types of list, as these will provide you
with useful methods of marking up groups of information that you can style later using
CSS.

Unordered and ordered lists

We structure unordered lists using two elements: and . The element indicates that
we are grouping our items in an unordered list, that is, each item in the list is of equal
value and the list suggests no inherent order. The element is used for each item—or list
item—in the list.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

68

Recall the version 2 example of the recommended films (in no particular order) men-
tioned previously. Marked up, the list looks like this:

The preceding markup, when rendered in a browser, looks like what you see in
 Figure 4-1.

 Figure 4-1. Our unordered list as it displays in a browser

We open and close our list with and tags, respectively, indicating that what fol-
lows is a group of related information. We then list each item in the list within tags.

But what if we want to give our list some order? After all, a top ten list isn’t much use if we
haven’t ordered it.

Enter the ordered list

Perhaps you need to get your lists in order, and an unordered list doesn’t meet your
requirements. Have no fear, HTML provides a means of doing this. Meet the , or ordered
list.

MARKUP THAT ADDS MEANING

69

4

In the previous example, we introduced you to a great list of films, but the browser’s
default bullet points of a didn’t give us much of a sense of order; in fact, we prefaced
the list with the words in no particular order. What if you wanted to make a top ten list?
Good news, we have an alternative to the at our disposal. Enter the ordered list, or .
Change the tags in the preceding example to tags, and we now have a top ten
list that looks like the following example (you’ll notice our list is now ordered differently—
in the authors’ order of preference):

The preceding markup, when rendered in a browser, looks like the list in Figure 4-2.

 Figure 4-2. Our ordered list as it displays in a browser

The only thing we had to do, apart from putting the films in the order we felt appropriate,
was to change the to an . With just that simple change, the browser takes care of the
numbering for us. So, if in the event of a recount we wanted to put The King of Kong in at
number one, we wouldn’t have to renumber the whole list; we could simply move

 up three lines in our HTML document. Simple.

Another benefit of the is that we’re not just limited to numerals. As you’ll see when you
get to Chapter 12, which covers styling lists with CSS, we can exchange our default 1, 2, 3,
4 . . . () for

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

70

 A, B, C, D . . . ha)

 a, b, c, d . . . ha)

 I, II, III, IV . . . an)

 i, ii, iii, iv . . . an)

We can even use , which switches numbering off completely, although why we would
want an unordered ordered list is another question altogether.

Nesting lists

Before we add a further layer of complexity to our lists, it’s worth noting that both the
and elements are block level and can only contain elements. No text or other ele-
ments can appear in a or an element unless they are contained within tags.

It’s possible, however, to create more complex lists through nesting other elements or
even other lists within elements. This is best demonstrated with an example. Let’s take
a look at how a nested list is constructed:

As lists become more complex, particularly as lists are nested within lists, it’s easy to make
mistakes, resulting in pages that fail to validate. The preceding list is perfectly valid; how-
ever, the apparent lack of a closing tag on the Famous Apes and Famous Monkeys
list items can be confusing for the beginner. At first glance, these list items appear to open,
but not to close; however, they are in fact closed, after the they contain is closed,
a number of lines below.

When nesting a list, the containing list item is not closed until the nested list is closed. The
easiest way to get this right is to use indentation or white space to clearly indicate the list’s
structure within your markup.

The preceding markup, when rendered in a browser, looks like what you see in
 Figure 4-3.

MARKUP THAT ADDS MEANING

71

4 Figure 4-3. The nested list as it displays in a browser

As you can see in the preceding example, as we nest lists within lists, the browser alters the
default bullet point to differentiate between the different levels of the nested list. The bul-
let points your browser uses will depend upon its default style sheet. We’ll cover how to
control this (and indeed what a default style sheet is) when we get to Chapter 12.

Definition lists

Meet our final list type, the , or definition list. Definition lists are perfect for lists of
definitions, for example, for use in a glossary of terms as might be found at the back of
a technical reference. Definition lists consist of three elements: a container—a ; a defini-
tion term—a ; and a definition description—a .

We can demonstrate definition lists best by showing one in action:

The preceding markup, when rendered in a browser, looks like the list in Figure 4-4.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

72

 Figure 4-4. The definition list as it displays in a browser

In this example, our gathers related terms and definitions together; the elements are
the definition terms (i.e., the terms we’re defining); and the elements are the defini-
tion descriptions (i.e., the descriptions or definitions of the terms).

It’s possible to use multiple or elements within a definition list. The following exam-
ples show first one definition term with two different possible definitions, and second, two
different definition terms with one definition:

Or

We can also nest block level elements within a definition description (), as in the follow-
ing example. Note, however, that block- level elements cannot be nested within the
element:

MARKUP THAT ADDS MEANING

73

4

 Figure 4-5 shows how this example looks in a browser.

 Figure 4-5. A definition term with a number of possible definition descriptions nested as a list

In short, definition lists offer a way to tie together terms and definitions and, as with all our
examples so far, provide an additional layer of meaning or structure to information.

Tables: The good, the bad, and the
alternatives

In the “Wild West” days of the interwebs, as HTML evolved, web designers started to push
the tags at their disposal far beyond what they were originally intended for, in an effort to
make the Web a more beautiful place.

Although many of these designers were incredibly inventive and managed to create some
spectacular layouts, their beauty was only skin deep. (The web sites’ beauty that is, not the
designers’, who, as we know, are beautiful people.)

Looking behind the scenes at the code producing these layouts, however, revealed a com-
plex mass of nested table tags with countless rows and columns creating a precarious scaf-
folding holding the different pages together.

This was never the purpose of the tag in HTML, which was always intended for gath-
ering together tabular data and giving it structure. Nonetheless, this practice became
widespread in an effort to control the look and feel of a rapidly growing Web.

Fortunately for us, browsers evolved, soon developing enough support for CSS to make
 CSS- based layouts a viable alternative to table- based layouts when designing for the Web.
Gone was the need to resort to tables to achieve something they were never intended
for.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

74

So, are tables evil, as many early Standardistas believed?

When tables are used for layout purposes, each page includes all the presentational infor-
mation as well as the content, rather than separating the presentational information into
a separate style sheet. As a consequence, table- based layouts result in extra markup that is
harder to maintain, and the resulting pages are less accessible to screen readers, mobile
devices, and search engines. In short, it’s safe to say—when used for layout purposes—
tables are evil, and many early Standardistas avoided them at all costs.

Used in the right way, however, tables aren’t evil and are in fact very useful. Used correctly,
tables still have a place in the Web Standardista’s arsenal. We know that using tables for
layout is strictly off limits, so what do we use tables for? The answer is simple: we use
tables for tabular data. But what is tabular data?

What is tabular data?

Before we look at an actual in action, let’s rewind just a little and look at some dif-
ferent types of data. First, let’s look at a simple list:

This list can be read from the top down, vertically: Cheeta, Clyde, Gordo. In other words,
this data is one dimensional. But what if our information is a little more complex? Now
we’re going to step things up a little and add another dimension to the equation.

Consider the table shown in Figure 4-6.

 Figure 4-6. A simple three- row, three- column table with table headers. (A table border has been
added to reveal the table’s underlying structure.)

As you can see, this data can be read in two dimensions: horizontally we can determine
that Cheeta is a chimpanzee who lives in Palm Springs. Vertically we can get a list of names

MARKUP THAT ADDS MEANING

75

4

(Cheeta, Clyde, and Gordo), species (chimpanzee, orangutan, and squirrel monkey), and
locations (well . . . you get the picture).

Each piece of data can be related horizontally and vertically: Clyde is an orangutan who
lives in San Fernando Valley. Clyde is also part of a list of names including Cheeta and
Gordo. Side to side, up and down. In other words, this data is two dimensional. Now we
know our two- dimensional tabular data from our one- dimensional list data.

The easiest way to determine whether a table is the right choice for marking up a section
of content is to think about whether it could fit into a spreadsheet, like Excel for example.
If the grid- like structure of a spreadsheet fits your content like a glove, it’s time to roll out
the tables.

<table>, <tr>, and <td>

As you’ve figured out by now, a table consists of rows and columns. We can create a sim-
ple table using just three sets of tags, resulting in something like this:

In this example, we start the table with an opening tag. Next, the tag starts
our table row. Between the opening and the closing , we have a single table
cell, denoted by the opening and the closing . means table data; all con-
tent in a table is contained inside tags. When all the columns and rows are finished,
we have our closing tag, wrapping everything up.

A one- row, one- column table is of course of rather limited use, so let’s get a bit more
adventurous by revisiting our top ten movies list. If we were to add a little more detail, for
example, the film’s position in our top ten list, its title, its director, and the year it was
made, we’d be heading into table territory. Let’s see this in action. (Note: We’ve added
a 1px border— —to the opening tag to reveal the table’s underlying structure
in the illustrations. This, however, is presentational and would normally be handled using
CSS.)

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

76

The preceding example renders in a browser as shown in Figure 4-7.

 Figure 4-7. A simple three- row, four- column table

Although this table has three rows and four columns, it follows exactly the same structure
as the simple example that we introduced earlier. First, a tag instructs the browser
we’re dealing with a table. Each table row starts and ends with a and tag,
respectively. The cells containing the table data are nested within and tags.
Finally, a closing tag ends our table.

It’s worth noting that the number of columns must remain the same in each row. That said,
there are a number of ways of merging table cells—a topic we’ve decided to steer clear of
in this book to avoid confusing beginners. If you’re feeling adventurous, Paul Haine—our
technical reviewer—covers advanced tables in his book HTML Mastery: Semantics,
Standards, and Styling (friends of ED, 2006).

Improving table accessibility

There are several ways to describe the contents of a table, and, in addition to building
your table as outlined previously, it’s good practice to describe its contents in summary
form. This is particularly useful when accommodating nonvisual browsers for the visually
impaired, for example.

We have three tools at our disposal to improve the accessibility of tables: the or table
header; the , which provides an indication of the table’s content; and the
attribute, a means of describing the content of the table in greater depth. Of these, the
first two are aimed at both visual browsers and screen readers, while the latter is only
aimed at screen readers.

You might argue that we could use at the top of
our Species column in Figure 4-8 (our original table example, repeated here to save you
from having to flip back a few pages to find it) to help to visually differentiate the col-
umn’s header from its contents. However, using is better. The —a
table header—achieves the same visually but adds a layer of meaning. is both semantic
and, as an added benefit, will be repeated by screen readers as each row of the table’s
data is read, helping the visually impaired to understand how the table’s information is
interrelated.

MARKUP THAT ADDS MEANING

77

4 Figure 4-8. Our original table example

A screen reader would read the contents of row three of the table as follows:

Name: Gordo; Species: Squirrel Monkey; Location: Unknown

Now that we’ve got our table headers sorted, we can give our table a . The pur-
pose of the is to give the table a title, which displays, by default, above the table.
In our original example, the caption reads Famous Monkeys and Apes—Where are they
now? This adds a further, useful layer of meaning to our table, summarizing at a glance
what the table is about.

Finally, we can include a attribute, which we’ll look at more closely in a moment.
For a simple table, table headers and a caption might be sufficient to describe the data
they contain. As tables become more complex, however, a well- written attribute
can prove invaluable to the visually impaired user, browsing the table with a screen
reader.

Adding a descriptive summary to a table

Tables are great for condensing information. As you’ve seen in the preceding examples,
they’re perfect for drawing together connected information in an easy-to- digest manner.
Take train timetables, for example. If you wanted to find out when the next train to Paris
leaves, a table is the place to look. The same information displayed in paragraphs or even
lists would take up far more space, be harder to cross- reference, and, as a consequence,
be harder to digest (remember, it would be one dimensional).

But what if you didn’t want to take the next train to Paris, but wanted to take the next
train to Bordeaux instead? Easy, just glance at the Paris table, determine that this informa-
tion isn’t for you, skip right over it, and find the Bordeaux table. Simple, right?

It’s only simple if you’re using a visual browser. What if you were blind and couldn’t use
a visual browser? What if you were using a screen reader? A quick glance over the table’s
content wouldn’t work for you because you were visually impaired.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

78

For anyone who uses a screen reader, listening through each row of a table, column after
column, to painstakingly find out whether the table contains the information they need
could be a somewhat torturous affair. This is where the attribute comes to the
rescue.

A table’s is not rendered in visual browsers, but is especially useful for more com-
plex tables where headers or a caption would not be enough to explain the contents of
the table; it’s perfect for screen readers and as a consequence should be high on the
accessibility agenda. A well- written should give enough information about the
contents and structure of a table to give the users of screen readers an idea of a particular
table’s usefulness. It should clearly suggest whether it’s worth sitting through a table’s
information or whether it’s best to just skip it.

So, let’s put our attribute into action. Wrapping up, our perfectly formed table—
now more accessible than our first version—is listed here:

Although we’ve only covered the essentials of well- formed and accessibly marked- up
tables, we’ve hopefully given you the basics to create well- formatted tables that not only
look good in visual browsers, but also function well for users of screen readers.

Formatting tables using CSS can be complicated for the beginner; however, building on
a solid foundation of well- formed XHTML is half the battle. We recommend the chapter
“Tables are Evil?” in Dan Cederholm’s Web Standards Solutions: The Markup and Style
Handbook (friends of ED, 2004) for anyone wishing to further their knowledge of using
CSS to style well- formed CSS tables.

MARKUP THAT ADDS MEANING

79

4

Quoting text
In this section, we introduce two methods of marking up quotes: the first, using the

 tag, is block-level and is generally used for substantial quotations; the sec-
ond, using the tag, is inline-level and is generally used for shorter quotations that are
better handled inline. Along the way, we encounter both the element and the
attribute, perfect for citing the source of our quotations.

If you’re writing an essay, read this!

What’s a <blockquote>?

A is a quote block consisting of one or more paragraphs of text, often
accompanied by a attribute indicating the source, in the form of a URL, from which
the block quote was referenced, as in the following example:

This renders in the browser as shown in Figure 4-9.

 Figure 4-9. A blockquote in action

A element indents the quote using the browser’s default settings (although
this can be altered using CSS as you’ll see in Chapter 10). The element adds
structure to your document, clearly identifying quotes within your marked- up content.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

80

It’s worth noting that the needs to contain a block- level element, usually
a paragraph, to remain valid. This is valid markup:

Whereas this markup would not validate:

Going back to the example displayed in Figure 4-9, we used the attribute to reference
the source of our quote. Although the attribute is not displayed in the browser, it’s
worth getting into the practice of using it, as it lets you easily track down the source of
a quote you’ve made by looking at the markup of your document. If you want to display
this information in the browser, look no further than the element, which comes up
next.

Citations (or <cite>)

The element, not to be confused with the attribute, is used to indicate a citation
or reference to another source. Let’s jump straight in and look at an example:

 Figure 4-10 shows this example in a browser.

 Figure 4-10. A block quote with a element,
by default displayed in italics

You can use the element anywhere you may need to reference a different source—
for example, a book title, the name of a newspaper or magazine, or the title of a movie. As
you’ve already seen, you can also use the element to denote the name of the source
a quote is attributed to.

The element is not confined to being used within a block quote. For instance, you
can use the element in a paragraph as in the following example:

MARKUP THAT ADDS MEANING

81

4

Here we have used to denote the title of a movie. As you can see, we have added
a attribute within the element, providing additional information. If the source
you were referencing was to another web page, you might also consider creating a link to
that reference using the element, something we cover in great detail in Chapter 6.

Quotations (or <q>)

A word of warning before we begin: support for tags across browsers is poor at best.
However, in the interests of completeness, we’re covering them here. Don’t say we’re not
comprehensive.

 tags are used to define short quotations that can be included inline, for example:

This should render in the browser as shown in Figure 4-11.

 Figure 4-11. A tag rendered correctly by Safari

However, support for the tag is poor, particularly in Internet Explorer, which omits the
opening and closing quote marks. This screenshot, taken in Safari, displays the inline
as it’s supposed to display. (Well done, Safari!)

However, when we nest tags, Safari isn’t so hot. What should happen is that the
browser should alternate the display of double and single quotes as quotes are nested
within quotes, as in the following example, courtesy of Firefox. Safari, however, fails this
task miserably, displaying only double quotes. (A little homework for you Safari!) As for
Internet Explorer . . . well, let’s not go there.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

82

This should render in the browser as shown in Figure 4-12.

 Figure 4-12. A nested rendered correctly by Firefox

In closing, using and elements (and including attributes) adds addi-
tional structure and meaning to your XHTML documents. These elements can be styled
using CSS, as we’ll cover in Chapters 8 to 13, but first and foremost they are semantic,
which we by now know is a Web Standardista best practice.

Other tags in the Standardistas’ toolbox
There are tags we use day in, day out— and , for instance; however, other useful
tags exist that, although specialized, can be useful to add specific meaning to your con-
tent. In this last section, we take a look at these, which you’ll want to add to your Web
Standardista’s toolbox.

Abbreviations

There are two elements at our disposal when dealing with abbreviations, a shortened form
of a word or a phrase. The first is , which is used to identify the enclosed text as an
abbreviation, for example, Dr., which is short for Doctor or abbr., short for abbreviation.
The second is which, no surprises here, is used to indicate an acronym. An acro-
nym is a special kind of abbreviation formed from the initial letters of other words, for
example, NATO.

Although all acronyms are abbreviations, all abbreviations aren’t acronyms. You would
think it would be safe to just use the element. Unfortunately, earlier versions of
Internet Explorer lacked proper support for the element, so in past practice,
has often been used for any kind of abbreviation. Looking forward, however, using
for all kinds of abbreviations should be the way to go. Let’s have a look at and

 in action:

MARKUP THAT ADDS MEANING

83

4

As you can see, the attribute in each element is used to provide the expanded form
of the abbreviation. As shown in Figure 4-13, standards- aware browsers display the con-
tents of the respective attributes as a tooltip.

 Figure 4-13. The and elements displayed in a browser

It’s worth pointing out that the first time you introduce an abbreviation, it’s helpful to
include the expanded version in the text at least once. Very common abbreviations—Dr. or
NASA, for instance—probably won’t need this kind of formal introduction. Less common
abbreviations—APE (Advocates for Primate Empowerment), for instance—would benefit
from an initial explanation.

Making a case for rules: <hr />

The humble or horizontal rule gets a bit of an unfair beating at the hands of
a number of noted Standardistas. Patrick Griffiths, the acclaimed writer behind the excel-
lent web- based resource HTML Dog (), even goes so far as to describe it
as a bad tag. We, however, beg to differ.

Yes, there are many ways we can create rules or borders using just CSS, but the humble
 can serve a semantic purpose: as a simple separator of content. Take a look at the

example in Figure 4-14, an excerpt from James Joyce’s Ulysses: essentially this is an
example of a lightweight structural section separator.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

84

 Figure 4-14. If an is good enough for James Joyce, it’s good enough for us.

As this example shows, the can take a variety of forms, in this case an elegant,
decorative separator. As XHTML evolves and new tags are introduced, we hope to see
a replacement for in the form of a element that clearly reflects
a more flexible structural use. This would allow, for example, for its use as a vertical sepa-
rator for languages written vertically, such as Japanese. For now, however, we’re happy to
use where it’s appropriate as a section separator.

A note on self- closing tags

As you already know, an element consists of a start tag, some content, and an end tag. You
also know that, when writing XHTML, you must close a tag whenever you open it. For
example, if you open a to mark up a paragraph, you must close it with a at the
end of your paragraph.

There are, however, a few HTML elements that can’t hold any content within them and
consequently never had a closing tag; some examples include (line break),
(image), and (horizontal rule).

With the stricter rules of XHTML, in particular the insistence that all tags must be closed,
the elements that didn’t have closing tags in HTML are now treated as self- closing in
XHTML. We can make a tag self- closing by adding a space and a forward slash () to the
end of the tag as in the following example:

Although the space before the forward slash is not required, some older browsers will get
confused without it; in addition, it makes the markup a little easier to read, and therefore
we recommend including it.

MARKUP THAT ADDS MEANING

85

4

<code> and <pre>

There are a number of phrase elements useful for describing code samples—of particular
use when you’re a full- fledged Web Standardista and writing your own web pages with
examples of coding best practice. In this section, we look at two: and .

In Chapter 2 we briefly mentioned retaining white-space formatting when displaying poetry
within a browser; we’re revisiting that concept here in the context of writing code. Cue:
the tag.

If we wanted to include a sample of code or markup in a web page, a very simple CSS
declaration for instance, we first need to wrap the markup in some tags that tell
the browser that the enclosed contents are code. By default, the browser will render any-
thing nested in tags in the browser’s default monospace font, helping to identify
that text as an example of code. If we also want to retain the formatting—our white space,
tabs, and indentations—we then need to wrap the element in tags.

This is demonstrated in the following example:

This example renders in a browser as shown in Figure 4-15.

 Figure 4-15. An example of and used to display a code example in a browser

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

86

Marking up changes with and <ins>

During the process of writing this book, we’ve made a number of changes as is only natu-
ral. One or the other of us writes some text, and then the other finds a better way of
phrasing the same thing (or occasionally spots an error). We can use (delete) and

 (insert) tags to indicate these changes clearly.

Take a look at the following example, which shows and in action:

 Figure 4-16 shows how this example displays.

 Figure 4-16. Using and to track changes to a document’s content

By default, browsers visually render anything enclosed in tags with a strikethrough
or a line through it, while underlining anything enclosed in tags.

The default underline style that browsers give the element is a little bit unfortunate.
Most people see underlined text as links and might become frustrated when clicking your
perfectly valid text. A good alternative to underlining is to use CSS to give your
elements a background color (something that is easily achievable when you have a firm
grasp of CSS).

<sup> and <sub>

The (superscript) and (subscript) tags have come under fire as being largely
presentational; however, there are instances where you might wish to use them to add
meaning to your markup. In this section, we take a look at some examples that use
and to convey meaning. If you’re a scientist, take note, this section’s for you.

First, the superscript. Imagine the Pythagorean theorem without to supply those all-
important squares. Or the classic slasher Friday the 13th (not to mention its countless
sequels). Or what if you’re French and you needed to refer to the abbreviated form of
Mademoiselle? In all of these cases, is for you.

MARKUP THAT ADDS MEANING

87

4

 Figure 4-17 shows these examples in action.

 Figure 4-17. Some examples of in action

Now the subscript. Imagine you’re a noted chemist and you’re ordering a glass of water
using only the language you know. You’re really looking for a glass of H2O, not H2O.
Without a , you’re not getting the water.

 Figure 4-18 shows how this example appears in a browser.

 Figure 4-18. Example of in action

In all of the preceding examples, although the use of and is presentational,
they convey information more clearly than adding a layer of style using CSS. Equally impor-
tantly, using and ensures our equations and other examples render as we
intend them to, even with styling removed.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

88

Summary
So what have we covered? In this chapter, we’ve explored a variety of methods of adding
additional meaning to your markup. We’ve introduced two important methods of organiz-
ing and grouping information: using lists (unordered, ordered, and definition lists) and
tables. The former will prove instrumental when we start to add navigation lists to our web
pages and link them together.

Throughout the chapter, we’ve again stressed the importance of using meaningful markup.
Finally, we introduced a variety of additional tags that no aspiring Web Standardista should
be without.

We’re now at a point where we can build complex web pages that are well formed and
marked up semantically. Great news, but everything so far has been text based. By now,
you’re doubtlessly hungry for some imagery.

In the next chapter that’s just what we’ll cover. Onward.

Homework: Gordo’s Adventure
Last chapter’s web page for Miss Baker introduced a little more complexity than the hum-
ble web page you built for Albert I in Chapter 2. We’ve introduced a lot in this chapter and,
although we’re not demanding you use every single tag we’ve covered, we’d like you to
include some of the important tags in another web page you’ll create for noted space
pioneer Gordo.

Once again, we’ll provide you with all the information you need on Gordo. Your job will be
to use the appropriate markup introduced in the chapter as and where you see fit.

In addition to the variety of tags you’ve added to your two web pages so far, this chapter’s
homework will include the following: both unordered and ordered lists, covering ,

, and ; and adding a quote using the and tags.

Once again, we encourage you to validate your web page when you’ve completed the
homework using the W3C Markup Validation Service. Yes, you’ve guessed it, this is some-
thing you should be getting into the habit of doing.

1. Explore the content

As with the previous chapter’s homework, we encourage you to read over the content first
and get a feel for it before diving into the markup. You’ll find this chapter’s text file with
facts on Gordo here:

Again, as you read the text, focus on where it might be appropriate to amplify the text’s
meaning through the inclusion of unordered lists and ordered lists, and where you’ll be
including the and tags.

MARKUP THAT ADDS MEANING

89

4

Of course, you’ll be adding headings and paragraphs, but by now we expect you to do that
as a matter of course.

2. Adding unordered lists

We’ve added a number of facts about Gordo’s flight, detailing his reentry speed, his flight’s
launch time, how long he was weightless for, and his total journey time—a historic 15
minutes. These short lists of facts are the perfect place to introduce unordered lists.

Take a look at the content and, using and tags as appropriate, mark up the
unordered lists on the Gordo web page.

Once again, we’ve created a file for you to refer to. Using your browser’s View Source
menu command, you can look at how we’ve structured our matching web page for King
Kong here:

3. Structuring the references

Our list of references at the bottom of Gordo’s page lends itself to being marked up as an
ordered list of references using and tags. Again, you can refer to our King Kong
page for guidance.

It’s worth noting that at this point we’re simply referencing our sources, as all good stu-
dents should; we’re not including links. We’ll add links to these references in Chapter 6
when we introduce links properly.

4. Marking up a block quote

Your Gordo page has a quotation by Donald “Deke” Slayton, one of the original Mercury
Seven NASA astronauts. Using the and tags, mark this quotation up,
citing Deke Slayton as the source.

5. Check for errors

As outlined in the previous chapter’s homework, this is a good to time to avail yourself of
the W3C Markup Validation Service to check you’ve got everything right. If as a result of
the added complexity of the page you’re seeing the dreaded red banner, don’t—repeat
don’t—put it to the back of your mind. Fix the problems and revalidate.

If we’re mentioning this again, it’s simply to emphasize that using the validator will save
you problems later and in the process will add to your understanding.

When you’re error free, feel free to put the kettle on and enjoy a cup of Russian Caravan
as you prepare yourself for the next chapter!

CHAPTER 5

INCLUDING IMAGES

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

92

Ever since Mosaic integrated the display of images within web pages in 1993, imagery has
been a cornerstone of the Web. They say a picture is worth a thousand words. Good news
then: this is the chapter where we introduce a few thousand words through the inclusion
of just a few well-chosen images.

This chapter is designed to give you a working knowledge of using images, introducing you
to some fundamental concepts. We focus in particular on a variety of means of compress-
ing your images for faster download online, an aspect that is once again emerging as an
important consideration as we witness the rapid growth of the mobile Web, accessed via
increasingly powerful mobile devices.

We’ll introduce you to the three main image formats used online—JPG, GIF, and PNG—and
explain why you’d select different image formats for different types of imagery. We’ll also
show you the HTML you’ll need to use to include your images, introducing you to some
additional image attributes that, though not strictly necessary for your images to display,
are de rigueur for any aspiring Web Standardista.

Before we get started, a word of warning. Contrary to popular opinion, the imagery you
find online isn’t free for you to copy at will. It’s a common misconception that everything
found on the web is free to use because it’s freely available. It isn’t. The chances are that
the image you’ve fallen in love with that you found online belongs to someone and, unless
stated otherwise, is copyright protected. If you’re not absolutely certain an image is free to
use, don’t use it. Simple.

If creating compelling imagery isn’t your strong point, don’t worry. There are a number of
free or low-cost image resources on the Web at hand. We’ll introduce you to some of
these at the end of the chapter.

So, now that we’ve got the copyright issue out of the way, let’s get started including images
in our well-structured web pages.

Introducing the tag
Including images in your web pages isn’t difficult; all it requires is the introduction of one
additional tag: the tag. In this section, we introduce you to this tag and its attri-
butes, starting you on your visual journey on the Web.

The best way to show you how the tag is used, particularly to underline the aspect
of linking to images, is to get straight into a practical example and look at how the markup
is constructed.

An tag in action

The minimum markup we need to display an image on a web page is as follows:

INCLUDING IMAGES

93

5

Before we look at this element in a little more detail, it’s worth noting that the
tag, like the tag we introduced in Chapter 4, is a self-closing tag. As we’ve covered
before, the closing “ ” (space, trailing slash, and angle bracket) are important for our
XHTML pages to validate.

As with all inline-level elements, the element must be nested in a block-level element
in order for your pages to validate.

Until your markup options increase we suggest enclosing images within an opening
and a closing tag as you'll see in our reference examples for this chapter.

So, what does the preceding markup do? In a nutshell, it provides a reference to where the
image is stored in relation to the HTML file itself. This is a subtle, but important, point to
note. Unlike, for example, the text in a element, which is a part of our HTML file itself,
the element is used to add references to images, not the actual images themselves (i.e.,
the images are stored separately from the HTML file and referenced by it).

When a browser encounters a web page with links to images, it builds the page by follow-
ing the links supplied within the tag, retrieving the images from the server, and
rendering the page in its entirety. So, your web page and the images that are included on
it are separate files.

In short, the markup points the browser to the source of the image we’d like it to display.
This is referenced in the attribute which, in the preceding example, instructs the
browser to look for a file called and display it. Without the information in
the attribute, the browser has no way of knowing where the image file you want to
display is.

The example assumes that your image file () is in the same folder (or direc-
tory) as your web page.

We will cover how to link to files and images in different folders when we introduce you
to linking and organizing files in the next chapter.

Although it’s possible to include an image using just the attribute as in the short
example earlier, we also need to include an attribute for our page to validate as in the
following example:

Figure 5-1 shows the image of King Kong included on a web page using the preceding
markup.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

94

Figure 5-1. The image of King Kong included on our page as displayed in a browser

Although the attribute is not required to display our image, it is helpful for visually
impaired users, and as such you should get into the practice of using it. Supplying an
attribute is required when creating valid pages and has the added bonus of making your
pages more accessible for assistive devices like screen readers. Lastly, the attribute
provides useful text for search engines to index your page.

The text of your attribute is also displayed in a number of browsers when a user
browses your web page with images switched off, for example, by someone browsing the
Web on a nonbroadband, dial-up connection or over a mobile phone with a slow connec-
tion. Your attribute will also display in Firefox and some other browsers as the image
is being downloaded, useful for images of a large file size that might take longer to
 download.

It’s important to stress that your text is intended to be used instead of your image, and
is not intended to provide additional information about the image. The example in
Figure 5-2 shows an attribute in action when images have been switched off.

INCLUDING IMAGES

95

5

Figure 5-2. Opera, a standards-compliant browser, displaying “A map of Skull Island.”—the
contents of our attribute as an alternative when images are switched off

When writing attributes, try to use meaningful language, for example,
 is better than , and

 is better than . This is particularly important
in the latter of these two examples, where an image of a company logo is also serving a
navigational purpose. Visually impaired users using assistive software like screen readers
rely on this information, so ensure you give your text some thought.

Put yourself in the shoes of a visually impaired user using a screen reader and try to
employ descriptive language that illustrates the images you’re using. The bottom line is to
ask yourself whether the image is a type of content (in which case you should use a descrip-
tive attribute) or only serves a decorative or presentational purpose (in which case an
empty attribute is better).

There may be occasions where an image serves purely decorative purposes, for example,
as a decorative banner, where an attribute doesn’t contribute much meaning to a visu-
ally impaired user. However, in most cases where images serve a purely decorative or
presentational purpose, they should be handled with CSS.

If your image is purely decorative, it is advisable to use an empty attribute, with no
space between the quotes, as in the following example:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

96

Although an attribute can contain up to 1,024 characters (including spaces), it’s
best to keep your description short and to the point. Again, consider the impact of your

 text on visually impaired users: listening to a lengthy and over-detailed description
might prove frustrating.

So now you know you need to include an attribute whenever you add an image to a
page. However, there are a number of additional image attributes the true Web Standardista
should use. We introduce these in the next section.

Adding width, height, and title attributes to images

In the last section, we introduced you to the minimum markup required to display an
image on a web page. As you’ll see here, we’re now adding to our earlier example to
include some additional information about the image:

The and attributes tell the browser what width and height our image is in
pixels. Although these aren’t strictly required to display our image, it’s good practice to
use them. By supplying the browser with the image’s width and height, it can allocate
space for the image as the page renders, often before the image has fully downloaded; this
stops the page from jumping about when loading.

The word pixel is a 1960s’ abbreviation of the term picture element—a useful fact worth
storing mentally for your next pub quiz.

The attribute (not to be confused with the tag we introduced you to in
Chapter 2) is intended for the supply of additional information about our image. In a visual
browser, it is usually displayed as a tooltip as in Figure 5-3.

The attribute is not strictly required, and, if you need to provide additional informa-
tion about an image, we suggest the use of a caption in a tag beneath the image itself
where users can read it without relying on a tooltip. After all, if you’re supplying additional
information that’s important to the understanding of the image, you probably want to
make this more accessible within the content of the page itself rather than hidden in a
tooltip, which can be read only if a user mouses over an image long enough.

It’s important to note that and attributes serve different purposes as outlined
previously. The former is intended for the supply of alternative text and is especially useful
for accessibility purposes; the latter is intended for the supply of additional information.
Don’t confuse the two, a mistake beginners often make.

INCLUDING IMAGES

97

5

Figure 5-3. A browser displaying the contents of a attribute as a tooltip

Perhaps one reason beginners get confused lies with Internet Explorer, which incorrectly
displays the content of the attribute as a tooltip unless a attribute is specified.
This leads many to believe the attribute is for displaying tooltips. It isn’t. It’s for provid-
ing a text alternative to an image. Think “improving accessibility,” not “nice little tooltip.”

Working with images
In this day and age of low-cost digital cameras and easy-to-use scanners, it’s easier than
ever to find images for your web site. Plug in your digital camera or fire up your scanner,
import your images, and go.

In fact, it’s a little more complicated than that. As you’ll see in the upcoming text, there
are a few stages you’ll need to go through to create web-friendly images—images that
download quickly and, equally importantly, look good. While these stages are important,
nothing’s too complicated, and we’ll walk you through the process of optimizing your
images step by step as we progress through the chapter.

We looked previously at how you add images to your web pages using the tag and
its various attributes. Now we’ll explore some practical aspects of working with images, in
particular editing them so that they’re in the right size and optimized for delivery on the
Web. To do this, we’ll need to look at some image editors.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

98

Which image editor? (Or how long is a piece of string?)

Which image editor you choose depends upon a number of factors, primarily driven by
what you need to achieve. In this section, we suggest some alternatives that range from
paid-for software that allows for a more comprehensive approach to image editing to free
software with a few limitations. Which option you choose depends upon both what you
need to achieve and what you’re willing to spend on software.

In the upcoming text, we outline the benefits of three options: Photoshop, Fireworks, and
Photoshop Express, before concluding the section with an introduction to GIMP (GNU
Image Manipulation Program) and a list of alternative image editors you might also like to
try that range in price from free to low cost.

If you’re simply importing photographs from a digital camera, scaling them, and making
minor adjustments, Adobe’s free web-based Photoshop Express is more than ample for
your needs and has a very shallow learning curve. It also provides you with an ample set of
tools to make basic image adjustments and, equally importantly, to resize and crop photo-
graphs and save them at specific sizes.

If, however, you need a more extensive range of tools, in particular the ability to work with
type or nonphotographic images—logos or illustrations, for example—Photoshop and
Fireworks are better suited to your needs, as they allow for extensive image creation and
manipulation.

We’ve used Photoshop to illustrate some of our examples; however, if you’re approaching
the book from a position where access to expensive software is an issue, you can still
experiment with one of the lower-cost alternatives we recommend at the end of this
 section.

The bottom line? The basic principles we cover in this chapter are applicable across the
range of image editors available. We’re focusing on the fundamentals in this chapter; if
you’re not using the image editor we’re using, don’t worry, the principles will remain the
same.

Photoshop
As long as the Web has been in existence, Photoshop has been one of the leading applica-
tions for creating and manipulating imagery for web-based delivery. This is one reason why
so many alternative image-editing applications follow the majority of its interface
 metaphors.

Despite its name, Photoshop is useful for much more than extensive manipulation of pho-
tographic imagery. It also features a number of tools for the creation of images from
scratch—both photographic and nonphotographic.

This becomes important as you start to consider including nonphotographic imagery on
your web site. For example, when we needed to create the typographic brand for our
Famous Primates web site, we turned to Photoshop.

One drawback of Photoshop is price, but as the old saying goes, you get what you pay for;
while its true that Photoshop is expensive, it’s also extremely versatile and powerful.

INCLUDING IMAGES

99

5

Throughout this chapter, we’ve used Photoshop to illustrate our examples; however, as
we’ve stated earlier, the basic principles we’re covering apply regardless of preferred soft-
ware.

Fireworks
A less expensive alternative to Photoshop that offers a slightly different approach, but is
certainly worth exploring, is Adobe’s Fireworks. Formerly developed by Macromedia, but
now part of Adobe’s stable, Fireworks is a credible alternative for creating graphics for use
on the Web and has a loyal following among web developers.

Fireworks takes a hybrid approach, integrating both bitmap and vector tools in one pack-
age, allowing you to create and edit both bitmap images and vector objects with tools that
are familiar to both image formats in an integrated environment.

Although the focus of this chapter is on raster images (images made up of pixels), in the
section “Vector graphics,” we give you a brief introduction to this other image type.

Photoshop Express
Throughout this book, we’ve emphasized an approach that embraces the use of free tools,
ensuring a low barrier to entry. With this in mind, we felt it important to include an image
editor with a price point set at zero. Luckily for you, you can now tap into Adobe’s
web-based Photoshop Express, 100% free. That’s right, an exorbitant $0.00 (£0.00, 0.00,
¥0.00). Good news indeed. You can access Photoshop Express at

About this tool, Adobe states “You shot it—now do something to it. Make it pop. Make it
impossible to ignore. Upload, sort, polish . . . all for free. Resize, tint, distort, and more—
add your mark to all your images.”

Believe it or not, this isn’t marketing hype; it’s true. As broadband has taken off and the
Web has evolved, web-based applications like Photoshop Express have emerged as poten-
tial competitors to traditional desktop applications.

Despite its nonexistent price tag, Photoshop Express offers a great deal of potential for
anyone wishing to experiment with basic image manipulation. Like Apple’s iPhoto, the
emphasis is on ease of use with one-click options to reduce red eye, adjust exposures, and
touch up images. The best way to get a feel for it is to create an account and get started.

It gets better: Adobe has even provided a full set of video tutorials to get you started. You
can find these tutorials here:

One key limitation of Photoshop Express is that it is an image manipulation program, not
an image creation program. If you need to create images for your web site from scratch,
for example, section headers using custom type, you’ll need to use Photoshop or Fireworks,
or try one of the other programs listed next.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

100

Bring out the GIMP (and its friends)
Reading the preceding text, you might be mistaken for thinking that Adobe is the only
company that offers image editors suitable for web development. Not so. There are a
number of alternatives available that are worth mentioning and are also considerably less
expensive.

So why have we have used Photoshop to illustrate our examples? The answer is that all of
the applications we suggest in this section are built using similar user interface metaphors
to Photoshop. All follow very similar approaches to image editing; indeed at first glance
their tools and working environments are all very similar.

GIMP, primarily developed for Linux, a platform for which Photoshop was never available,
is an open source alternative to proprietary image-editing software. While it has the com-
plexity and many of the features of Photoshop, a number of other image-editing applica-
tions offer similar features that are more accessible and beginner friendly.

We’ve listed a number of these alternatives—for a variety of platforms and potential
uses—here. These vary in complexity, features, and price; all are detailed at the respective
applications’ web sites.

Regardless of the application you choose—free, low cost, or fully featured—we’ve focused
on the basic principles of creating imagery for use on the Web throughout the chapter. At
the end of the day, the fundamental principles—image size, image resolution, and com-
pression formats, to name but a few—are the important aspects to focus on.

As free or low-cost alternatives to Photoshop and Fireworks, we recommend Pixelmator or
Acorn if you’re using a Macintosh, or GIMP or Photoshop Elements if you’re running
Windows. If your platform is a flavor of Linux, GIMP will probably not intimidate you; how-
ever, Pixel is also worth considering.

You can find links to all of these applications at the Web Standardistas web site:

Image optimization
While you’ve seen that it’s not too difficult to insert images into your web pages, you first
need to convert them to a web-friendly format. If you haven’t yet met, welcome to the
wonderful world of pixels.

A number of different image formats optimized for web delivery are available to the aspir-
ing Web Standardista, all having different strengths and weaknesses. Picking the right
image type for the job is important when designing your web pages. In this section, we
guide you through the maze of image types available, highlighting when and where to use
different formats (and when and where not to use them).

JPG or, in full, JPEG (Joint Photographic Experts Group), GIF (Graphic Interchange Format),
and PNG (Portable Network Graphic)—trust us, you don’t need to remember any of these

INCLUDING IMAGES

101

5

full terms—all have different uses. All, however, share one common feature: they allow for
varying levels of image compression, resulting in faster image downloads.

Why compressing your files is important

When delivering images online, compression is important. You’ve no doubt encountered
web pages that take an eternity to download; waiting for the page to load feels a little like
watching paint dry. You can help to alleviate this problem, especially when creating a web
page that features a lot of images, by using image compression to reduce the amount of
information that needs to be transferred from the server to the user’s browser. The goal is
to reduce the size of your image files as much as possible while retaining as high a quality
as possible.

All of the image types we briefly introduced previously allow for varying levels of compres-
sion, resulting in faster downloads, and each uses a different compression algorithm suited
to a different type of imagery, photographs or illustrations, for example.

The compression of images for delivery online might not seem important now as we enter
a phase of broadband delivery, where everything appears to download instantly. However,
the web pages we’re building in this book are also optimized for delivery on nondesktop
media, for example, mobile phones and PDAs, where download speeds aren’t quite so fast
(see Figure 5-4).

Figure 5-4. The same web page delivered to a desktop browser and to an iPhone

Mobile phones—the iPhone in particular—have broadened the appeal of the Web beyond
desktop computers, and when delivering to mobile platforms, image compression is
important. Imagine this scenario: you love your breakthrough Internet communication
device, and you use it all the time. You’d like every page you download to be lean and
mean and load as fast as possible. Cue compression.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

102

Take a look at the two images side by side in Figure 5-5. To the naked eye, there isn’t much
difference between the two; however, one of the images is almost six times smaller than
the other.

Figure 5-5. Two images, barely distinguishable; however, the one to the right is a sixth of the size of
the other

Both of the JPG images in Figure 5-5 are saved at different levels of compression. The first
image is 160K, the second is 28K. Although the images look almost identical to the naked
eye, the 28K image will download almost six times faster than the 160K image. If viewed
on a mobile phone, with an expensive data contract, the 160K image will cost almost six
times as much to download and view. Clearly, you’d rather be downloading the smaller
image.

Efficient compression of images isn’t just aimed at browsing the Web via mobile phones,
however; it’s of importance on any platform. Smaller file sizes result in faster downloads,
and this makes for a better user experience, something you should strive for.

In the following section, we cover the benefits of the different image compression formats
we’ve mentioned and identify when and where best to use them.

Save for Web

One major advantage that Photoshop, Fireworks, and GIMP offer is the ease with which
you can optimize images for delivery on the Web. This feature, known as Save for Web and
Devices in Photoshop, is also available as a Save for Web plug-in for GIMP and is built into
Fireworks’ interface.

As its title suggests, Save for Web is designed specifically for optimizing images for delivery
on the Web and makes the image optimization process a simple and relatively painless
one. The ability to allow real-time previews of images as you alter image formats and
 compression settings sets Photoshop, Fireworks, and GIMP apart from most other image-
editing applications when optimizing images for web delivery.

INCLUDING IMAGES

103

5

Image formats for the Web
Welcome once again to the abbreviation minefield: JPG, GIF, and PNG. All are image for-
mats. All are suited for specific uses. In this section, we cover each image type, introducing
you to each format’s specific uses.

JPG: Photographs

As Joint Photographic Experts Group, the full term for JPG, indicates, this format is primar-
ily intended for the display of photographic imagery.

JPG is a lossy format, which means that when you save an image as a JPG, the file doesn’t
store all the data included in the original image. Instead, the compression format tries to
discard any information that isn’t needed, removing information that is difficult to distin-
guish by the human eye.

This compression makes the file size much smaller, but it also means that each time you
open, edit, and save a JPG file, the quality of your image reduces. This is one of the reasons
it’s advisable to work from an original file and save your resized or edited images as copies,
leaving the original file untouched. If you later need to make some tweaks to your image,
you can start again from your high-quality original.

When optimizing imagery for the Web, you always have to
make a choice between image quality and file size. A high-
quality image that looks great results in a larger file size,
which takes longer to download. Saving your image at a
lower quality setting, with more compression, results in a
smaller file size, which will download more quickly. When
saving a JPG through Photoshop’s Save for Web and Devices
feature, you can experiment with various levels of com-
pression, either by choosing one of the presets (Low to
Maximum) or by manually changing the Quality settings as
in the example in Figure 5-6.

Photoshop’s Save for Web and Devices feature also dis-
cards any additional information about the image that
isn’t absolutely necessary to display it. In particular, this
includes any Exchangeable Image File (EXIF) format data—
metadata about the photograph, saved when the
 photograph was taken—including the date and time
a photograph was taken, the camera that was used to take the photograph, shutter speed,
and other related information.

Using the 2-Up view as in Figure 5-7, you can compare the visual quality of your original
image with your optimized version. As you change the Quality setting to a lower value, you
will notice how the file size, displayed below the image, is reduced.

Figure 5-6.
Photoshop’s Save for Web and

Devices feature (File Save for
Web and Devices)

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

104

Figure 5-7. Photoshop’s 2-Up view allows us to compare the quality and file size of our original
image alongside the optimized version.

The trick is to find a good balance between file size and
image quality. As each image is different, you will need to
use your eye and your judgment to determine where this
balance lies. The danger in compressing an image too
much is that the compression can become evident through
what is known as artifacts—groups of pixels where too
much information has been discarded in the compression
process—as shown in the example in Figure 5-8.

As we noted earlier, JPGs are perfect for the compression
of photographic images. They are not, however, the per-
fect choice for graphics or type. Let’s repeat that because
it’s important: JPGs are not the perfect choice for graphics

or type. If you need to work with type or graphic imagery—a logo or a graphic banner, for
example—a far better choice of image type is GIF or PNG. We introduce you to GIFs and
PNGs in the upcoming text.

Using the JPG format to compress graphic images, especially type, results in unsightly
artifacts—an effect like a halo of pixels—which you can see in Figure 5-9. Not only does
this look extremely unsightly, but it’s also a definite no-no for the Web Standardista.

Figure 5-8.
An example of JPG artifacts in a
photograph

INCLUDING IMAGES

105

5

Figure 5-9. The example on the left shows unsightly artifacts when
using the JPG format to compress type. The example on the right,
saved as a PNG instead, has no artifacts. The images are enlarged
for clarity.

GIF: Graphics and type

As the full term for GIF, Graphic Interchange Format, suggests, this format is intended for
the display of primarily graphic imagery: type, logos, line drawings, and icons, for
 example.

The GIF color palette has a maximum of 256 colors (or 8 bits), a much more limited color
palette than the JPG color palette, which is capable of displaying up to 16 million colors.
However, GIFs are better suited to displaying images containing large areas of solid color
and are perfect for compressing and optimizing logos or type.

GIF is a lossless format, that is, no image data is lost when saving images containing 256
colors or fewer. This means it’s possible to resave a GIF over and over again without fur-
ther loss of data.

GIFs are well suited for images with a limited number of
solid colors; essentially the algorithm looks for repeated
patterns of pixels and compresses this information. One
method of reducing the file size of a GIF is to reduce the
number of colors it contains. In Photoshop, the Color
Table shows how many colors your image contains. You
can adjust this number in the Colors drop-down menu
as shown in Figure 5-10.

Again, how many colors you choose to use is a trade-off
between file size and quality. A full-color logo saved as a
256-color GIF might look great, but will result in a larger
file size. The same logo saved as a 4-color version will
probably look too pixilated and blocky. The best result
will probably be to reduce the number of colors to
somewhere in between, creating an image that looks
great but is also a smaller file. As with JPG compression,
the trick lies in getting the balance of compression and
image quality right.

GIF also allows for dithering of colors, a method of add-
ing patterned or random pixels to the image, which
fools the eye by making it appear that the image con-
tains more colors than are actually in the palette. Using dithering allows you to reduce the
color palette further, bringing the file size down even more. However, it’s worth noting

Figure 5-10.
GIF Color Table for Photoshop’s

Save for Web and Devices feature

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

106

that if your image contains 256 colors and you need dithering to make the image look
reasonable, you might be better off saving the image as a JPG or a PNG-24, which we cover
after this discussion on GIFs.

One thing GIFs are not intended for is photographic imagery. With a maximum of 256
colors, photographs do not reproduce well as GIFs. Should you need to compress photo-
graphs, use the JPG format.

GIFs have 1-bit transparency, that is, we can pick one color within the image’s color table
and set it to be transparent, allowing the background on which the image is sitting to show
through. However, 1-bit transparency has limitations, especially where we need an image
to blend seamlessly with the background as in Figure 5-11.

Figure 5-11. The limitation of 1-bit transparency

If blending an image to the background on which it sits is important, we recommend the
PNG-24 format; however, it has some limitations as we outline in the next section.

An additional feature supported by the GIF format is simple frame-by-frame animation.
The hottest thing on the Web in 1996, the novelty of animated GIFs has now, thankfully,
worn off. However, there might be instances where animated GIFs are suitable, for exam-
ple, for an advertisement banner or animated logo. More complex animations are bet-
ter achieved using Adobe’s Flash, which is beyond the scope of this book.

So, to summarize, if you’re working with graphics, logos, or text set in a particular type-
face, choose GIF or PNG, which we cover next.

PNG: The new (old) kid on the block

Meet the new (old) kid on the block: PNG, or Portable Network Graphic. The PNG format,
introduced in 1997 as a patent-free alternative to GIF, is suited to the same sort of imagery
as the GIF format introduced in the last section. However, PNGs offer a number of distinct
advantages over GIFs, notably a larger color palette and advanced transparency features.

As the advanced features of the PNG format have become more widely supported with
the introduction of Internet Explorer 7, PNGs are proving a more desirable alternative to
GIFs and are certainly worth considering.

INCLUDING IMAGES

107

5

PNG-8
In practical terms, a PNG-8 is almost identical to a GIF. It has a 256-color palette and is
suitable for the same sorts of graphics covered in the discussion on GIFs (i.e., type, logos,
line drawings, and icons).

Why use PNG-8 instead of the GIF format? In some cases, PNG-8 may prove more efficient
than the GIF format. You can use Photoshop’s Save for Web and Devices feature to com-
pare sizes and select the appropriate format, as in the example in Figure 5-12. The bottom
line: use the image format that looks best at the smallest file size.

Figure 5-12. These two images are barely distinguishable; however, the PNG is smaller
in file size.

PNG-24
Why use PNG-24 instead of PNG-8? The answer is that PNG-24 allows us to display millions
of colors compared to PNG-8’s limited 256-color palette. It also offers us full alpha trans-
parency. But what exactly is full alpha transparency? Where GIFs or PNG-8s offer 1-bit
transparency (i.e., one color is specified as being transparent) PNG-24 allows for more
than one color to be transparent, allowing for seamless blends between an image in the
foreground and the background of the page.

All this talk of transparency can be a little confusing, so it’s best to explain it with an
example. Take a look at the two images in Figure 5-13. The image on the left features a
PNG-8 image, with transparency limited to a single color. The image on the right features
a PNG-24 image, allowing for full alpha transparency. The resulting PNG-24 image allows
for a seamless blend between the image in the foreground and the background of the web
page.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

108

Figure 5-13. Two images, saved using the PNG format. The image on the left is saved as a PNG-8,
the image on the right is saved as a PNG-24.

This can be an extremely useful feature when you want a foreground image to blend into
its background to create a particular design effect. However, a word of warning: PNG-24
might look like the answer to your dreams, but it results in files that are much larger than
PNG-8s. Of more concern, however, is the fact that Internet Explorer versions 6.0 and ear-
lier do not support full alpha transparency, as shown in Figure 5-14.

Figure 5-14. A PNG-24 with transparency rendered in Internet Explorer 6 and 7. In IE 6, on the left,
the image background isn’t transparent.

Given that IE 6 and its previous incarnations are old browsers being superseded by IE 7 and
IE 8, this lack of support for transparency in PNG-24 images will hopefully be consigned to
the dustbin of history. We felt it important to warn you of this browser shortcoming
 nonetheless.

A word of warning: images formatted as PNGs can sometimes cause display problems. A
number of browsers, Internet Explorer 7 included, will not always exactly match a fore-
ground image in PNG format with a background color specified in the CSS on which
they are sitting. The result can prove frustrating with an image and a background color
not quite matching up. If this specific scenario poses problems for you, we suggest sav-
ing your image as a GIF or JPG instead.

INCLUDING IMAGES

109

5

A pixel is a pixel is a pixel
You might have encountered discussion about the relative merits, or lack of, of saving your
images for the Web at different resolutions, or dots per inch (dpi). Different authors will
sing the praises of 72 dpi over 96 dpi, or vice versa. In fact, the resolution of your images
makes no difference onscreen whatsoever. What does make a difference, however, is the
dimensions—in pixels (px)—you generate your images at. Most image editors default to
72 dpi when creating new images—it’s perfectly safe to leave this setting alone.

Size matters

We’ve looked at image compression to reduce the file sizes of your images. Another aspect
of your images to consider is their actual dimensions—their width and height—in pixels.
Although it’s possible to resize images using the and attributes within the

 element, it’s not recommended.

Consider the following scenario. We have a JPG image of Cornelius, the noted chimpanzee
archaeologist and historian. The original image supplied is 1600 1000 px; however, that’s
too large to fit into the layout we’ve designed. We really need the image to be 400 250
px to fit. In a moment of laziness, we decide not to scale the image down in our image
editor and save a new smaller version. We opt instead to scale it down using the and

 attributes as in the following example:

Perfect. But is it? This will instruct the browser to scale down the original, large image and
display it at a width of 400 px and a height of 250 px—just the size we want. While this
might be convenient, there are a number of obvious downsides to this approach.

Forcing the browser to scale down a large image, while possible, results in longer down-
load times and can also cause images to distort badly in many browsers. A better approach
is to resize your images using an image editor so that they’re sized to the width and height
you need them to display.

Consider again browsing the Web on a mobile device with an expensive data plan. Scaling
a 1600 1000 px image to 400 250 px forces users to download 16 times as much data,
16 times the cost—money they’d rather be spending on a mocha-choco-latte.

You might think that the larger image is only four times bigger, but you’d be mistaken.
The large image comprises 1600 1000, or 1,600,000 pixels of data; the small image
comprises 400 250, or 100,000 pixels of data, 1/16th smaller.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

110

The limitations of bitmaps

One of the downsides of using bitmap images that are by nature resolution dependent is
the fact that they don’t scale up very well. Scaling up bitmap images usually results in a
loss of detail and quality. For this reason, when working with images, it’s important to work
with original images where possible, scaling them down to the size you require them at.

Take a look at the two close-ups of the mighty King Kong in Figure 5-15. The original on
the left at 200 200 px is fine for use on the Famous Primates web site. When we scale it
up to 800 800 px, however, it loses detail and quality.

Figure 5-15. Scaling up a bitmap image results in a loss of image quality.

Unlike bitmap images, vector graphics can be scaled independently of resolution, as we
cover in the following section.

Vector graphics

Unlike photographs or other bitmap images, vector graphics do not store pixel data;
instead they describe images as a series of mathematical formulae using what are known
as Bézier curves or paths.

Let’s look at a simple example. Imagine you wanted to draw a line from the top-left corner
to the bottom-right corner of a piece of squared paper. A bitmap image, which is essen-
tially a grid of pixels, would draw this line using a series of pixels at a specified resolution,
as in the example on the right in Figure 5-16. A vector image, however, would simply
specify the start and end points of the line, irrespective of resolution.

INCLUDING IMAGES

111

5Figure 5-16. A vector graphic compared to a bitmap graphic

One advantage of vector graphics is that they aren’t limited to the size they were created
at like bitmap graphics are, as shown in Figure 5-17. Simple sets of instructions—draw a
line from point A to point B, or connect four points to create a circle—vector graphics,
which are resolution independent, can be scaled up or down to your heart’s content. The
instructions that make up the image remain the same, regardless of the size it is displayed
at. As a result, vector images are often smaller in file size than bitmap images.

Figure 5-17. Vector images (A) are resolution independent, while bitmap images (B–C) are tied to
the resolution they were saved at.

Vector graphics are often used for the creation of illustrations, logos, or typographic head-
ers. Adobe Illustrator is specifically designed for the creation of vector graphics, although
both Fireworks and recent versions of Photoshop have support for vector-based image
creation.

One point worth noting is that vector images cannot be added to a web page using the
 tag; they need to be saved in a rasterized (bitmap), web-friendly format first in

order to be displayed as an within a browser.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

112

Scalable Vector Graphics (SVG) is an open standard for displaying vector graphics
on the Web. Support for this format is still uneven, with no native support from
Internet Explorer.

Finding the right image
Perhaps your photography isn’t the best in the world, or you’d like to use an illustration,
but your drawing skills aren’t exactly up to scratch. Have no fear, there are a number of
low-cost image resources on the Web sure to offer what you’re looking for. In this final
section, we introduce you to a few, paying particular attention to iStockphoto (

) and stock.xchng (), both resources we regularly use. Indeed,
iStockphoto is the source of all of the famous primates photographs used in this book.

Low-cost images

Companies like iStockphoto and stock.xchng offer a variety of high-quality, but free or
low-cost, images, perfect for most needs. If your budget is tight or even nonexistent you’re
likely to find something at either iStockphoto or stock.xchng that will suit your require-
ments without breaking the bank.

Allowing emerging photographers and illustrators to share their creative work with others,
these sites have built up considerable libraries of images available in a variety of resolu-
tions, ideal for use online. Easy to search and offering a huge variety of styles of photos
that are, best of all, free or low cost—iStockphoto and stock.xchng are a perfect first port
of call when you’re looking for a specific image.

Flickr and Creative Commons

Another option worth considering when looking for images is Flickr ().
Many users of this popular photo-sharing site have licensed their photographs using what’s
known as a Creative Commons license, which allows you to use them freely under certain
conditions.

Creative Commons (), established in 2002, offers an alternative
to full copyright, allowing content owners and content creators to offer their works under
less restrictive licenses.

What this means in practice is that instead of an image having all rights reserved, making
it illegal to use without permission, only some rights are reserved. For example, the creator
allows you to use their image as long as you give them credit, or the author allows you to
use the image for noncommercial projects only. In essence, Creative Commons offers a
variety of different license models designed to expand the range of creative works avail-
able for others to build upon and to share legally.

INCLUDING IMAGES

113

5

Links to all of the preceding web sites and a variety of other online image resources can be
found at the book’s companion web site:

Summary
So what have we covered? In this chapter we’ve covered the fundamentals of adding
images to the pages of your web site. We’ve introduced you to the element, which is
required to add images to a web page along with its various attributes. We’ve also intro-
duced a number of image-editing applications and a variety of image formats designed for
web delivery. Lastly, we’ve provided an overview of how to create imagery optimized for
delivery on the Web.

In the next chapter we introduce you to links, the elements that make the Web the Web.

Homework: A picture is worth a
thousand words

Over the last three chapters, you’ve created three web pages of progressively varying com-
plexity for Albert I, Miss Baker, and Gordo. As you’ve worked your way through the home-
work, we’ve added a variety of elements to enable you to build web pages that have
become progressively richer.

This chapter’s homework is to add images to your three monkey pioneer pages.

We’ve worked with iStockphoto to enable us to supply you with photographs of all of our
famous primates for your homework. Before you download and use these images, here’s
the small print!

Although we’re providing you with these images to enable you to undertake each chap-
ter’s task, the images remain the copyright of iStockphoto and may not be used for other
purposes. iStockphoto is happy for us to offer you these images for educational purposes;
however, should you plan on making your Famous Primates web site publicly available,
you will need to purchase licenses for the images at a cost of just a few dollars. (Or, alter-
natively, replace them with images of your own.) We’ve put a Read Me! file containing
the licensing details in the folder with the images.

You’ll be adding two images to each of your three monkey pioneer pages: at the top of the
page, above the opening , you’ll add the Famous Primates brand, and beneath the
text that introduces each monkey you’ll add an image of that particular simian.

Do we need to remind you to validate your pages when you’re done? We thought not . . .

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

114

Once you’ve added the images to your web pages, the second part of your homework will
involve researching some of the image editors we suggested in the chapter.

1. Get the images

As mentioned previously, to make your task a little easier and to save you having to track
down all the images you’ll need, we’ve added them all to a folder that we’ve compressed
and zipped for you to download.

You can download the folder here; don’t forget to read the Read Me! file:

2. Add your img elements

Using the examples provided in the chapter, add the Famous Primates brand and the illus-
trations of Albert I, Miss Baker, and Gordo to your web pages.

As usual, we’ve been working on the apes’ side of the web site and have created a similarly
structured page about King Kong, the Eighth Wonder of the World. You can refer to this,
using your browser’s View Source command to see how we’ve included our images, here:

3. Test!

When you’ve completed the three pages, check them in your browser to ensure every-
thing’s working as expected.

4. Research

Research some of the image editors recommended earlier in the chapter. Remember,
we’ve provided a link to some recommended tools at the Web Standardistas web site:

Take a look at what each image editor offers and give Adobe’s Photoshop Express a whirl;
it won’t even cost you a penny.

That’s it! After you’ve explored the wonderful world of image editors, put the kettle on
and enjoy a cup of Chifir’ as you prepare yourself for the next chapter.

CHAPTER 6

CREATING LINKS WITH ANCHORS

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

118

Up to this point we’ve focused on creating well-structured web pages, marking up our
content using the right tag for the job. We’ve introduced you to most of the tags you’ll
need to include text and images on your web pages. If you’ve been following along with
the homework, you should by now be able to create quite complex web pages using struc-
tured markup. All good, but there’s something distinctly lacking: links.

The Web is all about links; without them there would be no Web. By now you’re aware that
we’re using HyperText Markup Language, but we’ve yet to create some actual hypertext
to link our separate pages together. Have no fear; this is the chapter where we introduce
you to links to enable you to do this.

The first two initials of HTML stand for HyperText—one word, two initials (because HML
wouldn’t sound as snappy). The New Oxford American Dictionary (Oxford University Press,
2005) states that hypertext “links topics on the screen to related information and graphics,
which are typically accessed by a point-and-click method.” This chapter introduces you to
the point-and-click aspect of web design, or to be more specific, anchors.

What is an anchor? Simply put, an anchor is a means of tying together separate pieces of
information. We can use anchors to link to other pages or resources on the Web, to other
web pages within our web site, and even to different sections of the same web page, which
is especially useful if we’re creating a web page with a lot of information.

But how do we include anchors on our web pages? The answer is simple: we use the
tag, also known as the anchor tag, and its necessary attributes, which we introduce next.
This chapter will enable you to link your carefully crafted web pages together to create a
web site. Let’s get started.

Meet <a>
What makes links important? The answer is that without hypertext links the Web wouldn’t
be the Web, it would simply be a collection of separate, unconnected pages. The W3C
states the following:

HTML offers many of the conventional publishing idioms for rich text and structured
documents, but what separates it from most other markup languages is its features
for hypertext and interactive documents. Although a simple concept, the link has
been one of the primary forces driving the success of the Web.

Links point the browser to a destination anchor, which can be any form of web resource:
for example, an HTML document, a specific part of an HTML document, a link to an e-mail
address, or even an image, a video clip, or a sound file. The following example contains a
link in its simplest form: it has link text, in this case the word Cheeta, and a destination
anchor, which is an HTML document named located at the domain

:

CREATING LINKS WITH ANCHORS

119

6

The element instructs the browser we’re linking to another piece of information, and the
 attribute informs the browser of the location of that information. Without the

attribute, the browser wouldn’t know where to look for the information we are linking to.
By now you won’t be surprised to learn that stands for hypertext reference. It
should also come as no surprise that the contents of the attribute point to, or refer
to, the address of the resource we’re linking to.

Here is the preceding link again, but this time shown within a short paragraph of text to
demonstrate how a browser differentiates ordinary, nonlink text from link text:

The preceding example renders in a browser unstyled as in Figure 6-1.

Figure 6-1. Our example link as it renders unstyled in a browser

As you can see, the default style for links in a visual browser is usually blue text with an
underline. (As this is a book printed in black and white, you’ll have to take our word that
the link is, in fact, blue. Better yet, you can take a look at the page in color on the book’s
companion web site: .) However, as
we’ll cover in Chapters 9 to 12, when we’re adding style with CSS, we can change these
defaults using a style sheet, switching off the underlining and changing the color of the
link, should we wish to do so. We’ll introduce you to how to do this in the second half of
the book where we focus on CSS.

Using descriptive link text

As you saw in Figure 6-1, everything contained within the opening and closing
tags is highlighted within the browser as a link, in this case the word Cheeta.

Our link text can be as long or as short as we like. However, it’s good practice to use
descriptive language when writing link text so that the user knows what to expect before

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

120

clicking the link. Writing good link text is an important, yet often overlooked, part of the
design process. Taking some time to write descriptive link text results in a more user-
friendly site, something you should strive for.

Take a look at the following two examples. The first example doesn’t give the user any
indication of what they will find if they click the link, as the word Cheeta on its own
doesn’t offer much in the way of clues. It might link to a biography page about Cheeta, an
image of Cheeta, or Cheeta’s Wikipedia entry.

The second example, however, uses language that clearly indicates what the user might
expect to find at the link’s destination, suggesting a page with a gallery of photos of
Cheeta celebrating his momentous birthday.

Descriptive link text also holds significant weight in search engine rankings and is more
valuable for search engines than generic phrases like “click here,” for example.

Using descriptive link text is also important when the link might break with a user’s expec-
tations, for example, a link to a Microsoft Word document or another file type that might
not necessarily open within a browser or might launch another piece of software.

Lastly, it’s good practice to use clear link text when linking to large files, for example, a
movie file. It’s helpful to indicate the size of large files as in the following example so that
a user has an indication of what they’re committing to before clicking the link:

Another way of providing more detailed information about links is through the use of a
 attribute, which we introduce next.

The title attribute

As with the tag introduced in the last chapter, the tag has a number of attri-
butes that enable it to work its magic. As you now know, the bare minimum information
we need to provide within an anchor is an attribute, which informs the browser
where the information we’d like to link to is located on the Web. We can provide a little
more detail about the link, however, with the inclusion of a well-written and descriptive

 attribute.

CREATING LINKS WITH ANCHORS

121

6

You may recall you met the attribute in the previous chapter when we introduced
adding images. In fact the attribute can be used with all HTML elements except for
a select few; however, it isn’t strictly required for any. That this attribute can be used with
so many elements—and isn’t always—is probably one reason to explain why it’s less than
clear when to use it and what it’s for. The W3C states that a attribute is meant to
offer “advisory information about the element for which it is set” (

). However, that advice is at best a little vague.

We established in the last chapter that the attribute wasn’t strictly required for our
 elements and that, if you needed to add additional information to images, it might be

better to include this through the use of a caption in a element. With links you face a
similar conundrum.

First and foremost, it’s important to write descriptive link text; however, a well-written
 attribute can also provide additional information to the user before they click a link

that takes them to a destination they might otherwise not want to go to.

The following example expands on our link about Cheeta’s retirement party to include a
 attribute that gives the user a little more information about the link before they

click it:

Although well-written link text is of more importance when creating links, the attri-
bute allows for the provision of additional information. In the preceding example, the

 attribute clearly indicates the user will be taken to a photo album, information that
isn’t contained in the link text, but information that’s useful nonetheless. The information
contained within the attribute will usually appear within a tooltip when the user
mouses over the link as shown in Figure 6-2.

Figure 6-2. A link’s attribute in action as the user mouses over a link

Another important aspect of using the attribute when creating links is that screen
readers for the visually impaired can be set up to read out its contents; however, this is

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

122

sometimes at the expense of the link text contained within the tags. If you are design-
ing specifically for users with accessibility issues, we strongly recommend a little further
reading on this thorny topic. We’ve provided some links to get you started at the book’s
companion web site:

Let’s create some links!
We mentioned briefly that links can be used to link to a variety of destinations. We now
introduce you to a variety of examples: external links (to other web sites or resources on
the Web), local links (to other pages within your own web site), internal links (links to
specific areas within a web page itself), and, lastly, links to other types of resources (an
e-mail link, for example).

In this section we introduce a number of different ways of linking to other resources
online, showing you how to add links to your own web pages. Good news, we’re about to
start creating a properly linked-up web site.

External links

Now that you’re familiar with the component parts of a link, you know that the address of
the page we want to link to is contained within the attribute. Let’s take a look at
creating a link to another web site elsewhere on the Web on one of our web pages.

From this point onward we’ll be creating our link examples without attributes.
This is to ensure our markup is easier to read.

If we wanted to link to Wikipedia’s monkey page, for example, we can do this by adding
the following markup to our web page:

The attribute in this example contains the full address, or Uniform Resource Locator
(URL), of the web site we’d like to link to. Note that the link’s address starts with —
this informs the browser to look for this link on the Web (using the HyperText Transfer
Protocol). For external links to other web sites that we’re linking to, the part is
essential to include; without it the link will not work.

The preceding example is useful to give you an idea of what one particular example of a
link looks like, but let’s take it a bit further by creating a list of external links. You can use
this to form the basis for a links page for the web site about famous monkeys and apes
that you’re building as part of the homework.

CREATING LINKS WITH ANCHORS

123

6

We’ll link to a variety of files, including those for an image, a video, and a web page.
Although this adds to the complexity, this will give you an idea of what a typical list of links
looks like. While it might appear a little daunting at first glance, there’s nothing in the fol-
lowing example that you haven’t been introduced to. We’re using an unordered list, or
element, to give our list some added structure.

You can see a more complete version of this example that demonstrates a number of
external links in action on the following page at the book’s companion web site:

The dreaded ampersand and the validator
When validating your pages, you might at some point encounter an issue relating to URLs
in links containing an ampersand () character. Including URLs containing ampersands in
your links will lead to a frustrating and somewhat obscure error.

The reason is that the ampersand is a reserved character in XHTML and therefore needs
to be encoded—replacing with —in order for your page to validate. As a conse-
quence of this, the following markup is not valid:

This markup returns the following error message from the W3C Markup Validation Service:
“You used an unescaped ampersand ‘ ’: this may be valid in some contexts, but it is recom-
mended to use ‘ ’, which is always safe.”

You’d be forgiven for wondering what this error message means—and whether or not
ampersands are “safe” to use in URLs is another matter; however, if we replace the with

 in the preceding link, the page will validate:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

124

It’s worth noting that you only need to encode the ampersand within the markup of
your page. If you want to type the URL into the address bar of a browser, you should
use the unencoded .

The ampersand isn’t the only character you need to encode when writing your markup.
You also need to encode with and with when not used as part of an HTML
tag. In short, wherever you use these characters when you’re not creating tags, use their
encoded versions as in the following examples.

The following will not validate:

The following, where the and are encoded, will validate:

With the and characters it’s not just a case of passing validation, as some browsers
might incorrectly interpret these as the start or end of an actual tag, which might cause
rendering issues.

Forgive us for this brief interlude on the intricacies of reserved characters and character
entities—now back to business.

Checking your links
Before going live with your web site, it’s important to check that all of your links actually
work. A simple error when typing in a link—a spelling mistake or a missing piece of punc-
tuation, for example—can easily result in a link not working, which not only proves frus-
trating to your users, but is also a little embarrassing for the budding Web Standardista.

There are a number of free web-based tools that automatically check all the links on your
web site or check links on a per-page basis. Our friends at the W3C, who provide the W3C
Markup Validation Service, also provide one such free link-checking tool. We’ve provided
some links to automated link checkers, including the W3C’s, at the book’s companion
web site:

The (evil) target attribute
You’ll see a number of resources online recommending the use of the attribute,
which can be used to open links to other web pages in a new window as in the following
example:

CREATING LINKS WITH ANCHORS

125

6

Including a attribute opens a new (blank) window and loads the page
you are linking to into it, leaving your web site still open in a window beneath the new
window.

Don’t be tempted to use the attribute. Not only is it forbidden in XHTML, but its use
is also bad practice as it takes control away from your users. A better approach is to
respect your users’ wishes and allow them to decide how they’d like to access the links
they click.

As tabbed browser interfaces have become increasingly commonplace, users will often
choose to open your link in a new tab instead of within the current window. As a conse-
quence, tabbed browsing is to an increasing extent rendering null and
void, which is no bad thing.

Local links

Now it’s starting to get interesting. Having a web page with external links is fine, but a little
bit limited. What we really want are a few pages of our own all linked together. In other
words, a web site of our own.

Imagine we’ve created a web page titled “Monkeys in Space” to link to all our space mon-
key pages, and we’ve named this HTML file . We’ve also created
another web page that we’ve named with specific information on Gordo.
(Does this ring a bell?) To create a link from the Monkeys in Space general overview page
to the page specifically about Gordo, we can use the following markup:

Assuming both web pages are stored in the same folder or directory, you can see creating
the link is as simple as putting the file name of the file you’d like to link to in the
attribute. Note that a local link does not contain either the or the full domain
name, just the name of the file linked to.

We will cover how to link to pages and resources that are not all in the same folder in the
“Linking between different folders in our site” section in this chapter.

You can see a more complete version of the preceding example that demonstrates a num-
ber of local links in action on the following page at the book’s companion web site:

Use View Source to get a feel for how the links work to link the separate pages together.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

126

Internal links

Although most commonly used for linking different web pages together, the element can
also be used to point to specific sections within a current document or web page. This can
be useful if you’ve created a long web page with a lot of related information on it.

For example, imagine we’ve created a long page titled “Apes in the Movies.” We might
have a section on King Kong, another section on Cheeta, and yet another section on
Cornelius. As you can imagine, by the time we include biographical details on our various
ape thespians, this page might become quite long.

Using well-structured markup, we’ve headed the page with an element and headed
each of the ape’s separate sections with elements. If we give each of these elements
an attribute—a unique identifier that distinguishes each from the other elements
on the page—we can link to them within the page’s introductory text using internal links,
as in the following example, which we explain in full afterward:

To denote that the links in the first paragraph of the page are internal links, that is, links to
another point on the page we’re currently on, the attributes start with a (hash)
sign—followed by the section’s unique identifier as indicated by its attribute: in this
case either , , or .

These links will cause the browser to jump down to our King Kong, Cheeta, and Cornelius
sections when we click their corresponding links within the opening paragraph. This is
thanks to the unique identifier, or attribute, we’ve added to the opening tags at
the start of each section.

CREATING LINKS WITH ANCHORS

127

6

We can give any element on the page a unique identifier, or attribute, allowing us the
flexibility to jump from one section of the page to another. Among other things this allows
us to create a link at the base of a long page of content that takes the user back to the top
of the page as in the following example for the Cheeta page:

You can see this in action by using View Source at the book’s companion web site:

We can also combine internal links with local links, enabling us to link from one web page
to a specific subsection of another web page within our site. Imagine we’re on the Cheeta
web page, but we want to create a link to the King Kong section of the Apes in the Movies
web page. We can use the following markup to achieve this:

What this markup does is first tell the browser to go to the Apes in the Movies web page
(), and then look for the section on that page with the of

.

Without getting overly complicated—we’ll cover the attribute in greater depth in
Chapter 10—each is a unique identifier meaning that there’s only one element on the
Apes in the Movies web page with an of . The use of unique identifiers allows
us, among other things, to create this internal link.

You can see a more complete version of the preceding example that demonstrates internal
links in action on the following page at the book’s companion web site:

E-mail links

You’ve built your web site and you’re happy with it, but you’d like some way for others
who browse the site to contact you. One way to achieve this is with a link to your e-mail
address. To create an e-mail link is simple, as shown in the following example:

As you can see, the content of this attribute is slightly different from those that
you’ve encountered so far. Instead of starting with , the e-mail link starts with

 followed by an e-mail address. When the user clicks this link, their e-mail applica-
tion is launched with the e-mail address specified in the attribute already entered in
the To: field of the e-mail.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

128

Spam alert! Putting your e-mail address on your web site can lead to a huge
quantity of spam as spambots surf the Web looking for e-mail addresses to add
to their databases.

If you need to insert your e-mail address into a web page, a better approach would be to
use a service like Hivelogic’s Enkoder, a web-based application that converts your e-mail
links into encrypted JavaScript code, which hides them from e-mail-harvesting robots while
revealing them to real people. You can read more about the Enkoder at the book’s
 companion web site:

Although JavaScript is beyond the scope of this book, if you’ve been following along with
the homework, you should know enough by now to understand how to embed an
“enkoded” e-mail link in your web site after you’ve looked at the preceding page. It’s
worth pointing out, however, that e-mail-harvesting robots are getting smarter by the day,
and the only guaranteed way to ensure that your e-mail address does not end up in their
claws is to not include your e-mail address on the page in the first place.

Another approach for allowing users to contact you would be to include a contact form on
your web page. This requires a server-side script to parse the data entered on the form
and e-mail it to you, a topic that’s a little beyond the scope of this book. However, we
wouldn’t want to leave you feeling short-changed, so we recommend some web-based
form creation tools at the book’s companion web site:

Wrapping up

We’ve covered four types of links in this section:

 An external link:

 A local link:

 An internal link:

 An e-mail link:

The first example, an external link, contains the full path to the file we want to link to on
the Web. The second example, a local link, contains the path to the file we want to link to
in relation to the file we’re linking from. The third example, an internal link, links to a spe-
cific section of the page that the user is currently on. The last example, an e-mail link,
allows users to contact us via e-mail.

CREATING LINKS WITH ANCHORS

129

6

Absolute vs. relative links
Absolute links or relative links, what’s the difference? We touched on this previously, but
it can be a confusing topic so we’re focusing on it here.

Let’s imagine Cheeta’s neighbor at the Primate Sanctuary, Bonzo, needs to pass Cheeta’s
address details on to King Kong. Bonzo uses Cheeta’s full address, providing everything
needed to contact Cheeta: country, state, city, and so on—as in the following example:

Cheeta
The Primate Sanctuary
Palm Springs
CA
USA

This is similar to an absolute link and as a URL it might look something like the following:

However, because Bonzo lives next door to Cheeta, he can use a shorter address, express-
ing Cheeta’s location in relation to his own. Cheeta is his neighbor after all, so he uses the
relationship between his house and Cheeta’s, as in the following example:

Next door

This is similar to a relative link, and as a URL it might look something like the following:

Both of the preceding methods point to the same location, so why use one rather than the
other? Clearly the relative link is shorter, which is an added bonus, but the primary reason
is that relative links become important as we begin to organize the different files that
comprise the web site we’re creating, gathering them together in logically structured fold-
ers, an exercise we embark on in the next section. As we start to link those files together
to create our web site, you’ll begin to appreciate the importance of using relative links.

Let’s return to our friends Cheeta and Bonzo. But instead of being neighbors at the Primate
Sanctuary, imagine they’re files for the same web site. We could use absolute links every
time we needed to link them together, but as you’ve seen in the preceding example, the
absolute link is much, much longer than the relative link. It’s much easier to create links
between Cheeta and Bonzo using relative links.

But what if King Kong, from Skull Island, needed to get in touch with Cheeta? He certainly
doesn’t live next door to Cheeta. If King Kong needed to contact Cheeta, he’d need to use
an absolute link.

There are certain situations where you need absolute links, and certain situations where
you need relative links. As a rule of thumb, use absolute links when linking to pages on
someone else’s web site, and use relative links when linking to pages on your own web site.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

130

The use of relative links will become more apparent as we start to structure our site in the
following section.

Structuring your site
By now you should have a number of web pages and image files within your
folder. Things are—dare we say it—starting to get a little messy.

In this section we focus on some methods of organizing your files that will allow you to
plan for future growth. In particular we focus on tidying up your web site by organizing its
different files into logical folders and adding an folder where you’ll gather the
relevant images you’re using for the site.

Keeping all your HTML files and images in one folder works as long as you have only a few
files and one or two images in your site. But what happens if you have ten or twenty
images and the number of web pages you’ve created starts to grow? The folder starts to
become cluttered, and it can soon become hard to find what you’re looking for. This is
where a little organization comes into play.

Organizing your files and folders

Before your web site becomes large and complicated, it makes sense to spend a little time
considering how to structure it so that you can organize your files and folders as you add
them. Until this point, we’ve been working with all of our files—HTML pages and images—
stored in one folder (or directory) as in Figure 6-3.

Figure 6-3. Our files as they’re currently organized, all in one folder and starting to get a little
cluttered

CREATING LINKS WITH ANCHORS

131

6

As you can see from Figure 6-3, what we really need now is a little structure to give every-
thing some order. We’ve left the organization until this point to fit with the structure of
the book; however, it’s a good idea to consider what your web site might contain and how
this information can be logically grouped together before you begin developing a web site.

It might surprise you, but at this point in the process, we suggest you turn off your com-
puter and start working with a pen and paper to plan out a site map.

Let’s consider what we’ve created so far. If you’ve been following along with the home-
work, you should have created a number of web pages by now. You should have created
pages for the following monkey pioneers: Albert I, Miss Baker, and Gordo. Along the way
we’ve provided pages for you to refer to for the following ape thespians: Cheeta,
Cornelius, and King Kong. That’s quite a few HTML files and images, but we need to add a
few more to create a more realistic web site in terms of structure.

With this in mind and to prepare you for this chapter’s homework, we’ll be providing you
with additional files that we have created for you. You’ll be organizing and linking these up
as part of this chapter’s homework.

You’ll be aware that there are a number of distinct themes that already suggest some
structure, not least the fact that we have two different categories of primates that we
could group together. We’ve covered both monkeys and apes, so we’ll create two folders:
one where we gather all of our monkey files and a second where we gather all of our ape
files.

We could call these folders “monkeys” and “apes,” respectively; however, we’ve also looked
at the role of monkeys in the history of space flight and apes in the movie business. So we
could give the folders names that reflect that, for example, “pioneers” (for our space-
traveling monkeys) and “thespians” (for our apes with acting aspirations).

How we choose to name the folders is important; it has an effect on the character and
tone of our web site. Choosing “monkeys” and “apes” as folder titles will result in a web
site with a different character and tone than if we choose “pioneers” and “thespians” as
folder titles.

Take a look at Figure 6-4, which shows the basic overview of the site we’ll be building for
the homework with a little structure added. You’ll see we’ve broken the files down into
two key sections—pioneers and thespians—which we’ll now create folders (or directories)
for to keep everything tidy. We’ve also added a links page, which we’ll use to try out some
external links for the homework.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

132

Figure 6-4. Our files as we’re going to organize them from now on, using clearly named subfolders

Once you’ve settled on a site structure and uploaded your web site, resist the urge to
restructure your site and change your web pages’ locations. Bear in mind that others
might have already linked to pages within your site, so changing these files’ locations
will result in broken incoming links.

One other folder we’d always suggest adding at the start of a project is an folder
where we gather images together, specifically using this for any general images employed
throughout the site, for example, branding elements.

The magic index file

When you type www.famousprimates.com/pioneers/gordo.html into a web browser’s address
bar, you should by now know what is going on: the browser will attempt to display a
file called located in the folder. But what happens if you type
www.famousprimates.com/pioneers? In this case you don’t seem to specify a file for the
browser to display; but, as shown in Figure 6-5, a page displays nonetheless.

CREATING LINKS WITH ANCHORS

133

6

Figure 6-5. Although the URL in the address bar doesn’t contain a reference to a specific HTML
file, the browser still displays our web page as it will stand after we upload it at the end of
Chapter 7.

When you type www.famousprimates.com/pioneers in the address bar, you are telling the
browser to look for a folder called at the domain. The
reason you don’t have to expressly add the file name is that web servers are set up by
default to look inside the folder and load a specific file known as the index file, in our
example a file called .

On some Windows servers the index file is called .

But what happens if you don’t have an index file? Depending on your server, you might get
an error message when entering a URL that doesn’t contain a reference to a specific HTML
file, for example, . Alternatively, and again this
depends on how the server is set up, you might get a listing of all the files in the specific
folder like in Figure 6-6.

Figure 6-6. Without an index file, we are greeted with the default folder listing. Not pretty.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

134

In preparation for uploading our files to the server on the Web, which we’ll cover in the
next chapter, we’ll make one final amendment to the file structure illustrated in Figure 6-4
earlier. We’ll make sure that the files we want to load by default are renamed .
Figure 6-7 shows our files and folders after renaming ,

, and to .

Figure 6-7. Our organized files and folders with the default file in each folder renamed

In the next section we take a look at how the different folder titles and, more importantly,
how moving our files into these folders will affect our links.

Linking between different folders in our site
Earlier in this chapter we introduced the concept of relative links, noting that links between
separate files depend upon the relationship of the files’ locations to each other. In the last
section we moved some of our files around, organizing them into subfolders. Clearly this
is going to have an impact on our files’ relative locations, which will have changed to take
into account that they’re now stored in the folders we just created.

CREATING LINKS WITH ANCHORS

135

6

This will mean we need to revisit the links we created previously—another reason to think
carefully about the structure of your site before you begin building it.

Up until this point all of our web pages have been located in a single folder, so linking to
them has been as simple as inserting the file name we’d like to link to in our attribute
when creating a link. We can still use this method for files stored within the same folder,
but we’ll need to revisit links between files in different folders to take account of their new
relationship to each other. This is best demonstrated with some examples.

Linking within a folder

Take a look at our top-level folder; it now contains only two HTML files, as the rest of the
files have now been placed into subfolders. To create a link from the main home page,

, to the links page, , is as simple as follows:

This is because these two files sit alongside each other in the same folder, as you can see in
Figure 6-8.

Figure 6-8. Linking between two files in the
same folder

Creating a link from the links page back to the home page is equally simple, as shown in
the following example:

Creating links between files in the same folder is the easiest type of link to create. Let’s
move to the next stage of complexity, linking from one level of a web site down into a
subfolder.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

136

Linking down into a subfolder

Linking down a level, for example, from the main home page, , to the
 page in the subfolder is slightly different. If you think of the files’ relative

positions to each other, it should make more sense.

The page is now located one folder down from the folder containing the
 file, that is, is located in a subfolder. We need to inform the

browser of this by giving it the path between the two files as follows:

This is because the file we’re linking to is in a folder nested within the main folder as in
Figure 6-9. The first part of the preceding attribute, , tells the browser to
look into the folder; the second part, , tells the browser to look for
the file called inside that folder.

Figure 6-9. Linking to a file in a subfolder

If you’ve ever typed a typical URL into your browser, you’ll have encountered this type of
link before, so the structure of the preceding link shouldn’t come as a complete surprise.

CREATING LINKS WITH ANCHORS

137

6

Linking up into a “parent” folder

For the beginner, linking up into a “parent” folder is probably the hardest concept to
grasp, but you should be able to understand the principle if you work through an example.
Let’s imagine we’d like to create a link from our page back to the
home page, that is, in the opposite direction to the link explained in the last section.

The page is one folder down from the folder containing the page.
Somehow we need to inform the browser that we’d like to move out of the
folder and into the next folder up and look for the page.

We inform the browser of the path between the two files as follows (we’ll explain it in full
in a moment):

The key thing to notice here is the part. This first part of the attribute acts like a
sort of magic escalator to move out of the folder and up one level. The second
part, , tells the browser to look for the file called inside the folder
we’ve just moved into, in this case the top-level folder. This is illustrated in Figure 6-10.

Figure 6-10. Linking to a file in a
parent folder, we use the magic
escalator to move up one
level, out of the folder.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

138

Understanding how to create relative links between files in different folders can be a dif-
ficult concept to grasp for the beginner; however, once grasped, the concept will soon fall
into place.

It's worth noting that you can use multiple instances of the magic escalator, , to
move up more than one level in more deeply nested folders. The following example will
move up two levels, linking from a file within a folder that is nested within another folder:

.

The best approach to learning this difficult topic is to undertake the exercises in the
homework section in which we take you through the relative linking process by moving
some files around and asking you to link them together.

Linking up and then linking down

There’s just one last thing we need to address now that we’ve organized all the files . . . our
images.

You’ve seen how to create links between pages in different folders, in particular looking at
the escalator— —which lets you link a file in a subfolder to one in its parent folder.
Now that we’ve organized all of our images by placing them in an folder, the rela-
tionship of the images and the HTML pages we placed them onto in Chapter 5 has
changed.

In Chapter 5 we created our image links as follows (we’ve omitted the and other attri-
butes for brevity here):

However, that was when the image was in the same folder as the
page. Now these two different files are in different folders, so their relationship to each
other has changed. We need to reflect that by updating our tags.

Taking the page as an example, let’s see what we need to do to reestablish the
link between the page and the image. The page is now
contained within a folder called , and the image is now contained
within a folder called . Clearly this is going to have an impact on how we write our

 tags so that they reflect the new folder structure.

In order to reestablish the link between the page and the image,
we rewrite the tag as follows:

Let’s break down what this tag is doing. The first part— —informs the browser to leave
the folder where the file now resides and move up into its parent
folder. The second part— —tells the browser to enter the folder. The final

CREATING LINKS WITH ANCHORS

139

6

part— —tells the browser to display the image that’s now in the
 folder. You can see this illustrated in Figure 6-11.

Figure 6-11. Reestablishing the link between
 and

At first glance, the relationship between links might seem complicated (let’s be honest, it
is), but practice—as they say—makes perfect. The easiest way to get an understanding of
how your different files relate to each other in your newly organized folder structure is to
fix the various links that will now be broken as a result of reorganizing your file structure.

In the short term this might seem like a painful process, and the temptation might be to
leave everything “organized” in one giant folder. In the longer term, learning about file
structure and the relationship between files—in particular the importance of relative
links—will stand you in good stead as your web sites grow and expand.

Summary
So what have we covered? This chapter’s topic, anchors (or links), is often the biggest
obstacle the beginner web designer runs into. Coupling this with the whole topic of orga-
nizing files—and the impact that has on links—makes this chapter an important one to
grasp.

Understanding relative links isn’t easy, and it takes practice through a lot of trial and error.
Once the concept is grasped, however, it forms the backbone of the creation of any web
site you might build.

After all, a web site wouldn’t be a web site without links.

In the next chapter you’ll finally take the pages you’ve created and linked together and
upload them to the Web so you can start showing off your work live, worldwide.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

140

Homework: Housekeeping first; links second
In this chapter we’ve introduced links and their various types: external links, local links,
internal links, and e-mail links. We’ve also introduced the importance of organizing your
site by implementing some folder structure to gather your files together in a logical
 manner.

We looked at how adding a folder structure affected our links, in particular introducing
you to the idea of relative links and how they are affected when we restructure our web
site and organize its files within folders.

Let’s reiterate that point: Relative links are affected as we reorganize our files, so it’s a
good idea to do the organization first and the linking second.

This chapter’s homework comprises two parts: first, organizing the files you’ve created so
far; second, once that’s done, linking up all of the files in your Famous Primates web site.

This is probably the most challenging homework we’ve set so far and will require some
persistence on your part. The topics we’ve introduced aren’t as straightforward as those in
the last few chapters, but they are important to grasp nonetheless.

1. The content audit

Let’s take a look at the files you’ve created so far. At this point you should have the HTML
files , , and in your folder. You should
also have the images for these files, along with the ape images (that you haven’t used yet).
You’ll be organizing these files as part of this chapter’s homework.

2. Here’s one we prepared earlier

Let’s face it, for many people organization isn’t necessarily a task embraced with relish;
however, it’s important nonetheless. As a little treat for you, and to make your life a little
easier, we’ve provided a ZIP file for you to download at the book’s companion web site
that already has the correct folder structure created.

This file also contains all of the additional files you need to complete your homework for
this chapter, including a page of primate-related information that will act as a home page
(this is the file in the top-level folder) and a page of monkey-specific
information that will act as the launch page for the monkeys (the file in the

 folder). It also contains our ready-made files for the Thespians section of the
site.

You can download the additional files for this chapter’s homework from here:

Download and unzip this file, and then move the contents, which should look like
Figure 6-12, into your folder.

CREATING LINKS WITH ANCHORS

141

6

Figure 6-12. The contents of the ZIP file. Move all of this into your
 folder.

3. Move your images into the images folder

We left a little bit of organizing for you to do. Now it is time to put all of the images (mon-
keys, apes, and the brands we have supplied) into the folder. After you’ve done
this, try loading the HTML pages that linked to these images. You should see that the
images are no longer showing on your pages; this is because the relationship between the
images and the HTML files has changed. You will fix that shortly.

4. Move your monkey pages into the pioneers folder

You now have a folder called . Move your , , and
 pages into it. This folder is now the home for all your monkey (pioneer)

pages. We have supplied a page of monkey-specific information that will act as the launch
page for the monkey pages; this is the file already in the folder.
That’s the organizing over with; now it’s time to start looking at our links and images.

5. Fix the image references

As discussed toward the end of the chapter, altering the relationship between the HTML
files and the image files they refer to will break the links between them. Now it’s time to
fix these links. Using the (magic escalator) to move up out of the folder and
link down into the folder, amend the image attribute to reestablish links from
the , , and pages to their respective images.

To help you with this you can look at the files in the folder to see how these
files are linked together. When you’ve changed the links to reflect the new structure,
reload your HTML pages to check that the images display as they should.

6. Add links to the references

Both the Miss Baker and Gordo pages include some references, added in a previous chap-
ter. However, so far these references have not included links. Now is the time to add these.
You can get the links for these references in the file supplied in the

 folder.

Convert your unlinked ordered lists on the Miss Baker and Gordo pages into lists of links.
Again, you can refer to our ape pages in the folder to see how this is done.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

142

7. Link your pages together

We’ve saved the best for last. Now it’s time to create internal links from your monkey
pages, , , and —each of these pages needs a link
to the file in the folder. Add a short paragraph to each of these
pages that says Back to Pioneers and link it up. You’ll see a similar link, Back to Thespians,
on our ape pages.

When you’re done, check that all your links are working as they should.

This has been a complicated chapter. Once you have all your homework files organized
and your links working, you’ll certainly have earned the right to put the kettle on and
enjoy a cup of Baker Street Afternoon Blend as you prepare yourself for the next chapter.

CHAPTER 7

GETTING YOUR SITE ONLINE

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

146

What good is a web site if the only person who can see it is you? This chapter covers every-
thing you need to know about finding and buying a domain name (a web address) and
buying some low-cost web space to host your web site.

By the end of this chapter you’ll have an understanding of what “registering a domain
name” means, and you’ll also be ready to transfer your files from your computer, where
only you can see them, to the Web, where everyone can see them.

We’ll introduce some of the principles of File Transfer Protocol (FTP), a method of trans-
ferring files from one location to another, and even suggest an improvement to this, SSH
File Transfer Protocol (SFTP), which we feel is a better, more secure alternative. This learn-
ing will underpin the final stage of the chapter where we walk you through the steps
needed to move the various files that comprise your web site from your computer to
 the Web.

Your address on the Web
In this section we take a look at how to register an address (or a domain name) on the
Web. We answer the question, “What is a domain name and what types of domain names
are available?” Equally importantly, we look at where you can find out which names are
available and where you can register them. Lastly, we outline what registering a domain
name entitles you to.

What is a domain name?

Even if you’ve never heard the expression domain name, you’ve probably seen and used
hundreds day to day while surfing the Web: www.google.com, www.wikipedia.org, www.
harvard.edu, and www.famousprimates.com—all are well-known examples of domain
names, unique names used to locate specific web sites.

Every location on the Web has an address in the form of a number. Let’s take Google, for
example. Type the following into your browser’s address bar and press Return:
72.14.207.99

You should see Google load up just as you’d see it if you were to type in www.google.com.
That’s because the human-readable address www.google.com maps onto the machine-
readable address 64.233.167.99 (also known as an IP, or Internet Protocol, address).

Think about it: the verb google has now become synonymous with search the Internet
because it’s an easy word to remember. The verb 72.14.207.99 doesn’t have quite the
same ring to it. (The verb google was officially added to the Oxford English Dictionary on
 June 15, 2006.)

At the time of writing this book, the IP address 72.14.207.99 resolved to www.google.com,
however, it is possible that it might not in future. This is due to the fact that domain
names are often re-configured to point to different IP addresses to improve server
 efficiency.

GETTING YOUR SITE ONLINE

147

7

The use of human-readable domain names allows us to easily remember addresses on the
Web. It would be very difficult to remember all the web sites we regularly visited if we had
to remember them all as complicated clusters of numbers. This explains the popularity of
easy-to-remember domain names.

Every time you type a domain name into your browser’s address bar and press Return,
you use the Internet’s DNS (Domain Name System) servers, which look up the domain
name, identify its matching IP address, and point the browser in the correct direction.

Every domain name maps onto an IP address and, in the early days of the Web, would have
mapped onto a unique or dedicated IP address. However, as the Web has grown and
evolved at an increasingly rapid pace, mapping human-readable domains onto unique IP
addresses is now less prevalent. In reality most domain names sit on shared servers where
one IP address is shared among a number of domain names.

In practical terms, having your web site hosted on a shared server makes no difference.
There are a few very specific occasions when a unique IP address is required, and if you
should run into one of these in the future, you can still purchase a unique IP address, even
on a shared server.

What’s a TLD?

Before we point you in the direction of some web-based services that enable you to look
up which domain names are and aren’t available, it’s worth looking at the different types
of domain names—or top-level domains—on offer.

A top-level domain (TLD) is the last part of an Internet domain name, that is, the letters
following the final dot of any domain name as in Figure 7-1. In the domain name
www.amazon.com, for example, the TLD is com. In www.bbc.co.uk, the TLD is uk.

Figure 7-1. The structure of a URL showing both the domain name and the TLD

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

148

A number of different domain name levels are available:

 Top-level domains: The best known of these are .com, .net, and .org, with .com
often seen as the most desirable. However, ICANN (Internet Corporation for
Assigned Names and Numbers), the nonprofit corporation responsible for oversee-
ing a number of Internet-related tasks, including the management and introduction
of TLDs, has created a number of others, which are gaining in popularity.

 Country-specific domains (ccTLDs): A country code top-level domain is a top-
level domain generally used or reserved for a country or a dependent territory. All
ccTLD identifiers are two letters long. Two examples of this type of domain are .us
and .ru, which stand for the United States and Russia, respectively.

 Licensed country-specific domains: A number of the world’s smallest countries
have licensed their TLDs for world wide commercial exploitation. The best known
example of these is .tv, which, though commonly interpreted as dot television, in
fact stands for dot Tuvalu, a small Pacific island nation.

When selecting a domain name, your first consideration should be what the different TLDs
suggest. For example, www.acmewidgets.com suggests a more international company than
www.acmewidgets.co.uk, based in the UK. However, that does not mean .com is necessar-
ily the most appropriate choice.

A novelty leprechaun manufacturer based in Ireland might want to feature the .ie TLD for
its implicit reference to Ireland, home of a sizable leprechaun population. A nonprofit
business might prefer a .org TLD, widely held to suggest a noncommercial organization.

The bottom line is to select a TLD most appropriate to your needs.

Think of a name!

When trying to think of a domain name, be inventive. Most short and memorable
domains—especially those ending in .com—are taken. After all, there are only so many
words in existence.

When creating a domain name, you can use only letters, numbers, and hyphens. Spaces
or other symbols are not allowed.

As more and more domain names are registered, you need to be increasingly creative in
your thinking. Your first choice might have been registered, so think laterally. Some creative
approaches that can prove useful include the following:

 Combining two or more words to create a memorable name: www.simplebits.
com, www.daringfireball.net, or www.superfluousbanter.org

 Using a well-known or descriptive phrase: www.haveamint.com, www.ourspareroom.
org, or www.mylittlerobot.com

 Creative use of a ccTLD: blo.gs, chronolo.gy, or del.icio.us

 Inventing a name: www.vimeo.com, www.odeo.com, or www.flickr.com

GETTING YOUR SITE ONLINE

149

7

If the domain name you really want—www.pleasantlunch.com—is taken, try a different
TLD. Not every web site address needs to end in .com; perhaps .org or .info would be
better. Alternatively, try a country-specific domain for the country you live in, for example,
www.pleasantlunch.de.

Be creative, but take a good look at the domain before you click Pay and register it. Check
you’ve spelled everything correctly. (A quick trip to the dictionary now can save tears
later.) Also consider how the domain reads. Two consecutive vowels or consonants can
make a domain name hard to read, for example, www.someecho.com.

When combining words to create a memorable domain, bear in mind that new and unex-
pected word combinations can appear where words join. For example, Experts Exchange
probably weren’t best advised when they originally registered www.expertsexchange.com!

So, you’ve done some creative thinking and you have a list of names. Is the domain name
you’d like available? You can find a number of useful resources online that return domain
name availability results instantly, enabling you to quickly identify which names are avail-
able. One we use regularly is Instant Domain Search (http://instantdomainsearch.
com/).

Simply type in the domain name you’re looking for and it returns results for the .com,
.net, and .org TLDs on the fly.

Congratulations, you’ve found the perfect name. Now you need to register it.

Registering a domain name

Great, the domain name you’ve always wanted—www.roastapigeon.com—is available. So
where do you register it?

In the next section, we’ll look at web hosting in detail, but it’s worth a brief detour here to
introduce the idea that there is a difference between registering a domain name and pay-
ing for web hosting. Both are required.

Although there are a number of companies that focus exclusively on domain name regis-
tration without offering web hosting, it’s worth considering a company that offers both
services under one roof. Many web hosting companies also offer free domain name regis-
tration as part of their web hosting packages.

So, how much does registering a domain name actually cost? This varies considerably upon
the type of domain name you’d like to register. When it comes to registering a country-
specific domain, it depends on the country that manages it. Some countries will allow
anyone to register a domain name with their two-letter suffix; others impose more
 restrictions. As always, research is the key. We’ve listed a number of domain name regis-
tration companies at the book’s companion web site. You can access these here:

www.webstandardistas.com/hosting

When the Web was first established, registering a top-level domain was an expensive busi-
ness, costing upward of $100 per year. However, the cost of domain names has dropped

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

150

dramatically over the last few years, with many companies now offering domains for as
little as $4.95 a year.

An important point to note is that when you register a domain name you’re not buying it
outright; instead, you’re buying the right to use it. Usually you’ll pay to register the domain
name for a year; however, it is possible to register the domain for up to ten years, saving
you the headache of renewing the registration yearly.

Great news, you’ve identified a domain name and bought it. Now it’s time to start thinking
about web hosting.

Web hosting
In order to use the domain name you’ve just registered, you need some web space. We’ve
now established that your domain name is mapped onto a location—or server—where
your files are stored. This is where the web hosting aspect comes in.

Think of a web host as a hotel for your domain name. Like any real-world hotel, it can take
a number of forms. Perhaps it’s of the “pile ’em high, sell ’em cheap” variety: it’s a little
flea-ridden and there are thousands of rooms, but—a plus point on your tight budget—it’s
cheap. Perhaps it’s a luxury hotel, with all the added benefits: five star, breakfast in bed,
and room service only a phone call away. Both offer different levels of quality and service.

In short, expect to get what you pay for. You’re not going to get the luxury service in the
flea-ridden hostelry. So what should you go for?

It’s worth noting that you can register a domain name with one registrar and host it
with a completely different web hosting company. Indeed, with certain country-specific
domains, you will need to do this as the country’s registrar perhaps only deals with
 registrations.

Free web hosting?

One thing we do not recommend is free web hosting. You might think that a company
offering free hosting is the answer to your dreams, but as the old saying goes, “There’s no
such thing as a free lunch.” Ask yourself why you’re being offered the hosting absolutely
free. What corners are being cut to allow that free “service”?

Bitter experience—our students’, not ours—has taught us that free hosting can be fraught
with problems: poor, or even nonexistent, service; extremely slow page loading times;
hugely restricted bandwidth; or even an insistence on running banner ads all over your
carefully crafted web pages.

Trust us, the downsides are too high and experience proves that you’ll regret it in the long
run.

GETTING YOUR SITE ONLINE

151

7

Getting the balance right

Start by getting something that is affordable and does the job. Initially we’d recommend
that you start small. At this point in time you only need the basics; resist the urge to sign
up for every feature under the sun. You probably won’t use them.

Most hosting companies offer tiered plans, which allow you to scale up your hosting as
your needs grow. If your web site does take off and generate a huge amount of traffic,
don’t panic; your web hosting company is more than likely used to this and will allow you
to scale up your hosting plan accordingly.

There are a lot of different web hosting companies catering to different types of people;
however, finding the right one for you can be a challenge. Finding your way around the
web-hosting jungle can often feel a little like learning to speak a foreign language. Hearing
that a hosting company offers support for PHP, MySQL, Perl, Ruby on Rails, and Python
while allowing full access to the back end is daunting when first encountered.

You may also encounter companies offering to host your web site on a variety of different
hardware or software platforms, for example, servers running Windows, Linux, or other
flavors of Unix. Because Linux is open source and does not require license fees for its
operating system, Linux-based hosting is generally less expensive.

Don’t worry, you can afford to ignore most of this. When you’re ready for advanced abbre-
viations (POP, SSL, CGI . . .), you’ll know it. Trust us. There are, however, some key things
to look for, which we explain in easy-to-understand language next.

Things to look for in a hosting company

First things first: everyone is different and every web site is different. What you’ll need to
look for in a web hosting company will largely be dictated by the type of web site you’re
creating.

A web site for a record label with thousands of large MP3 audio files and thousands of
dedicated fans will have considerably different requirements from a web site for an online
music magazine that publishes a small number of text-based reviews read by a dedicated
group of followers numbered in the hundreds. The record label will need considerably
more disk space and bandwidth, two terms we explain in the upcoming text.

The following list covers the key points you should look for when considering a web host-
ing company.

Disk space
Disk space is the amount of space you need to store your web site on your web hosting
 company’s servers.

How much will you need? This depends entirely on what your web site is intended for. File
sizes vary considerably: a simple HTML page can be as small as a few kilobytes, whereas an
MP3 could easily be as large as a hundred megabytes.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

152

Considering the needs of the record label we mentioned previously, thousands of large
MP3 audio files will require considerably more storage space than the online magazine
whose site is comprised largely of HTML pages and images. Your web site will have its own
characteristics; however, most hosting companies will offer more than enough disk space
to accommodate your requirements.

Bandwidth
Bandwidth is the amount of actual data transferred from your web site to the browsers of
those looking at your web site. In short, anything that is transferred from your server to
your visitors’ computers is measured and counts toward the bandwidth.

For example, the record label we mentioned previously offers a 100MB MP3 mix for free
download, and 500 visitors to the site download it. This is equivalent to 500 ✕ 100MB, or
50,000MB, or ~50GB. Quite a bit of data. Clearly, if you’re offering large files, you will need
to consider bandwidth requirements when selecting a web hosting company.

Again, barring exceptional circumstances, most hosting companies will offer more than
enough bandwidth to accommodate your requirements.

E-mail
Unless you’re building a web site for a Fortune 500 company that needs thousands of
e-mail addresses, you’ll find that most hosting companies offer more than enough e-mail
addresses to support your needs. But then, if you were building a web site for a Fortune
500 company, you probably wouldn’t be reading this book.

A control panel
A control panel is essentially a form of web-based interface for interacting with your
server to change its settings. Control panels can vary considerably, from extremely user
friendly to almost nonexistent. Again, this will depend on the hosting company and what
 it offers.

A good control panel can help take the pain out of adding new e-mail addresses, installing
software (for example, blogging software or web-based galleries), or keeping track of your
bandwidth usage. A good control panel can make your life considerably easier, and it’s
worth looking to see whether a hosting company offers one and, if so, what its users think
of it.

Support
Remember our hotel metaphor? Support is a little like room service. It’s worth taking a
look at what types of support a hosting company offers. There’s a world of difference
between telephone and web-based support. Which you’ll need again depends upon what
your web site is for.

The bottom line? Do some research and find what’s appropriate for your needs. We’ve
created a list of recommended hosting companies at the book’s companion web site. As
with the other online resources, we’ll keep it updated to reflect what’s current. You can
find the list here:

www.webstandardistas.com/hosting

GETTING YOUR SITE ONLINE

153

7

Moving web hosts

In the “Wild West” days of the Web, hosting companies would launch, grow fantastically,
and then crash spectacularly. The resulting chaos would leave you struggling to find an
alternative host, often at a moment’s notice. You’d sign up with a new company only to
find the whole process repeat itself again. They didn’t call it the dot.com crash for nothing.

Thankfully, those days are becoming a distant memory. Hosting companies have, by and
large, consolidated and become more reliable as a consequence. If, however, you do find
yourself having problems with a web hosting company or service provider, don’t panic.

Remember, you own the right to use your domain name, and all it’s doing is pointing to
the server where your web site is currently hosted. This server can easily be changed by
moving to a new hosting firm and reconfiguring your domain name to point there instead.
Although pointing a domain name to a particular server goes beyond the scope of this
book, we felt it important to highlight nonetheless.

Uploading your files
You’ve registered a domain name, you’ve bought some web space. Now you need to do
something with them.

If you’ve been following along with the homework, you should have a folder with some
files organized into subfolders, as shown in Figure 7-2. As things stand the only person who
can see these files is you; they’re on your computer and so are not publicly accessible.

Figure 7-2. The homework files, organized in
folders on your computer

It’s time to upload your files to the server.

Local vs. remote

What’s the difference? Assuming you’ve been following along with the homework, up until
this point you’ve been working on your own computer. Now you need to transfer your
files from your computer to your web hosting company’s server, which is possibly located
in a faraway country.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

154

As you progress as a Web Standardista, you’ll encounter numerous references to a local
machine and a remote machine. The computer you’ve been working on up until this point
is commonly referred to as your local machine. The server, in that faraway country, is com-
monly referred to as the remote machine.

In the next section we’ll be exploring how we create a connection between our local com-
puter and the remote server so that we can transfer our files from one to the other. It’s
worth mentioning that once we create this connection, we are not restricted to transfer-
ring files from the local machine to the remote machine in one direction. We can transfer
files in both directions.

So how do we transfer our files to the web hosting company’s server so that others can see
our web site? Enter FTP. There are a number of protocols for making the connection
between your local computer and the remote server. Although FTP isn’t the only one, it is
one of the most common, and file transfer applications are commonly referred to as FTP
clients.

File Transfer Protocol

There are a number of different protocols on the Web. You’ve already met one: HTTP
(HyperText Transfer Protocol)—the http:// part of any URL. FTP is another protocol that
allows us to transfer files, or any form of data, from one machine to another.

We’ll recommend some FTP clients—programs that allow you to upload your files to
your server—in the section “Which FTP client?” later in this chapter.

Although FTP is probably the file transfer protocol you’ll hear about most often, it isn’t the
only one. A preferable alternative to FTP is SFTP, sometimes called Secure File Transfer
Protocol. Unlike FTP, SFTP encrypts both commands and data sent over the network, pre-
venting passwords and sensitive information from being transmitted “in the open.”

Why choose SFTP over FTP? Primarily because it offers considerably better security. The
difference between FTP and SFTP is the difference between sending an intimate note to
your lover as either a postcard or a letter sealed in an envelope. Ask yourself: do you really
want the postman to read those “romantic confessions”?

In short, FTP sends packets of data, including your password, “in the open”; SFTP sends the
same information in a much more secure way.

To all intents and purposes, FTP and SFTP work almost identically to the average user, the
primary difference being that the latter encrypts any data transferred. If your hosting com-
pany supports it, we recommend choosing SFTP over FTP. After all, you don’t want all your
private information displayed for all to see. A good web hosting company should support
SFTP or a secure alternative, so this might be something to consider when choosing your
web hosting company.

GETTING YOUR SITE ONLINE

155

7

Propagation

Despite the word propagation’s gardening connotation, we’re not drifting off into a sub-
section on the benefits of being green fingered, but rather highlighting an issue you may
run into and that is worth being made aware of.

Imagine this scenario. You’ve worked fast: you registered a domain name, bought some
web hosting, fired up your FTP client, and transferred your beautifully designed and care-
fully crafted web site to the remote machine. The web site’s working fine—you checked it
locally—and now you can’t wait to see it online and show it off to your friends. You fire up
a browser and enter www.fatplatterofsushi.com . . .

Disaster! There’s nothing there. All you see is something similar to Figure 7-3.

Figure 7-3. Our browser can’t find the server www.fatplatterofsushi.com because the
domain name hasn’t yet propagated.

Don’t panic. There’s a simple reason for this error. By now you know that the domain
name you registered is mapped onto the address of your server. This information—the
relationship between domain name and physical (server) location—is stored on a number
of DNS servers: giant databases that point browsers in the right direction when looking for
web sites (we mentioned them toward the beginning of this chapter). It takes time for the
connection between your domain name and the address of the server on which it’s hosted
to register on these databases, a process known as propagation.

This process can take up to 36 to 72 hours to take effect. Check again in a day or two, and
everything should be fine. Patience, our young Padawan.

Tools we’re using
As in the previous chapters, we’ve focused on low-cost, but fully featured applications that
enable you to upload your web site to your server space. Although we’ve used Cyberduck
(for Macintosh OS X) for the screenshots in the walkthrough that follows, a number of
alternatives are available.

If you’re using Windows or Linux, you might want to consider FileZilla, a free FTP client.
With tutorials for first-time users available at the FileZilla web site, it’s worth trying out:

http://wiki.filezilla-project.org/Using

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

156

The principles of the following walkthrough remain consistent across platform or software
used, and you should be able to understand the principles we cover regardless of soft-
ware.

Which FTP client?

Most file transfer applications support a variety of protocols, including FTP and SFTP. As
we’ve stated, the basic principles we cover in the walkthrough apply regardless of your
preferred software.

There are a number of alternative file transfer applications for a variety of platforms and
potential uses. These vary in complexity and features, and all are detailed at the respective
applications’ web sites. We recommend Cyberduck or Transmit if you are using a
Macintosh, and FileZilla or Core FTP if you’re running Windows. If your platform is a flavor
of Linux, FileZilla is a good option; another alternative is gFTP.

You can find links to all of these FTP clients at the Web Standardistas web site. As new
software is released, we’ll update this list. You can find the most recent version of the list
here:

www.webstandardistas.com/tools

Transferring files to the server: A walkthrough

With so many different web hosting companies configured in such a huge variety of ways,
it’s almost impossible to create a single walkthrough that will satisfy everyone. However, in
the following walkthrough we’ve highlighted the key principles.

Even if you’re not using the file transfer application we’ve used for the walkthrough
(Cyberduck) or the hosting company (DreamHost), the principles of creating a basic SFTP
or FTP connection from your local computer to a remote server remain the same.

If you’re not using the Cyberduck and DreamHost combination, have no fear. Your web
hosting provider should have provided some instructions on uploading files and connect-
ing to your server space. There should also be help files for the FTP application you
selected. It might sound obvious, but we have to say it: Read them!

We also recommend reading through this section before trying the instructions out your-
self, to give you an idea of what to expect when first connecting to your web server.

What you need

You’ll need to get a number of details from your web hosting company. These will nor-
mally have been automatically e-mailed to you when signing up for a web hosting pack-
age. There are generally three essential pieces of information, as follows:

GETTING YOUR SITE ONLINE

157

7

 1. The address of the server

 2. Your username

 3. Your password

Let’s run through these in order.

The address of the server
This is the address of the web space that you will upload your files to. This address will not
necessarily be the same as your domain name. For example, if your domain name is
www.famousprimates.com, the address to the server could be ftp.famousprimates.com or,
as in our example, simply famousprimates.com. The server address will depend upon how
your server is set up. Make sure to get the right details from your hosting company.

Your username
For anyone familiar with the Web, a username shouldn’t come as a complete surprise. As
with anywhere else online, take care to enter your username using case sensitivity where
appropriate (i.e., BaBoon is not the same as babOOn).

Your password
Web hosting companies will often generate a password for you automatically. These can
often be quite complicated, for example, LKaQ^L#r. You can usually reset these to a more
memorable name; you should ensure, however, that the password remains hard to guess
and preferably consists of a combination of numbers, letters, and other characters.
Passwords are also case sensitive.

This may seem like common sense, but even for the seasoned web professional careless
typing can often be the frustrating cause of a connection not working. Ensuring that you’ve
entered all the details exactly as they were given to you by your hosting company is the
first thing to check if something isn’t working as it should.

Let’s get started

As we’ve mentioned, in this walkthrough we’re using Cyberduck, a free file transfer appli-
cation available for Mac OS X. You can download it from the following site:

http://cyberduck.ch

 1. Download Cyberduck and move it to your Applications folder. On launching the
application, you should see an empty listings window like the one in Figure 7-4.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

158

Figure 7-4. Click Open Connection in Cyberduck to enter your connection details.

 2. Click Open Connection in the top-left corner to get started.

Clicking the Open Connection icon in Figure 7-4 rolls out a dialog sheet where you can
enter the connection details given to you by your hosting company. The Protocol drop-
down menu, as shown in Figure 7-5, lists a number of options, the default being FTP. As
mentioned previously in this chapter, if your hosting company allows it, you are advised to
use a more secure option such as SFTP.

Figure 7-5. Cyberduck, like most file transfer applications, allows other, more secure
protocols than FTP.

GETTING YOUR SITE ONLINE

159

7

 3. Enter the server, username, and password details in their respective fields, as shown
in Figure 7-6. The Port value can usually be left at its default setting unless your
hosting company has provided you with specific details that tell you otherwise.
Leave Anonymous Login unchecked and check Add to Keychain if you want your Mac
to remember your password for you. (If you’re not the only one with access to your
computer, it might be advisable to leave this unchecked too.) When you’ve fin-
ished, click Connect.

Figure 7-6. Add your server details, username, and password and click Connect.

All being well Cyberduck should now establish a connection to your server. As Figure 7-7
illustrates, Cyberduck displays a listing of the files and folders on the server. Since you
haven’t uploaded anything to the server yet, you might get an empty listing, or you might
get something that looks like Figure 7-7: a collection of folders created automatically on
the server when your hosting account was created.

Figure 7-7. The folder listing on the remote server

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

160

These folders usually have specific uses: one might contain log files, detailing the visitors
to your site; one might contain mail files, where your e-mails are stored; and one is the
folder where your web pages need to be placed in order to be viewed online.

In this case, it’s easy to deduce that the folder named famousprimates.com is the one to
upload your files to. Your hosting company will usually tell you which folder to store your
web pages in. This is sometimes referred to as the path to your web directory. You can
reveal the Path field in Cyberduck by clicking More Options (shown in the bottom of the
sheet in Figure 7-6).

 4. To move into the famousprimates.com folder, double-click the folder icon. You
should be presented with an empty folder listing as shown in Figure 7-8.

Figure 7-8. Moving into the famousprimates.com folder where our web pages will be stored

 5. Switch over to the Finder and open the folder where you have saved all your
homework files. It will probably look something like Figure 7-9. The easiest way to
transfer these files to your server is to select them all and drag and drop them from
the Finder window to the Cyberduck window.

Figure 7-9. Your files are all stored in a folder on
your local computer.

GETTING YOUR SITE ONLINE

161

7

Dragging and dropping your files from the Finder window to the Cyberduck window, as
shown in Figure 7-10, will start the process of transferring your files from your local com-
puter to the remote server. Depending on the number of files, their size, and the speed of
your Internet connection, this might take a few moments. Typically uploading files is a
much slower process than downloading them.

Figure 7-10. Drag the files from your local folder to the Cyberduck window to transfer them to the
remote server.

Having uploaded your files, you can type your domain name into the address bar of a
browser; all being well, you should now see your web site in all its (unstyled) glory.

Online walkthrough

We’ve created a screencast of the preceding walkthrough, which is available to watch at
the book’s companion web site. It takes you through each of the stages outlined step by
step. You can access it here:

www.webstandardistas.com/07/walkthrough

Summary
So what have we covered? We’ve explored what registering a domain name means and
given you some ideas for generating a memorable name for your web site. We’ve explained

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

162

how to buy that name and then buy some web hosting so that the domain name has a
home (or hotel) on the Web.

Lastly, we’ve outlined how to transfer your files to your web space. In short, we’ve shown
you how to move everything from your computer (where, until now, it’s been stored
locally) to a server on the interwebs (where, from now on, it will be stored remotely).

This is a big step. Up until this point everything you’ve been working on has been stored
locally, so only a limited audience has been able to see it. Now everyone can see it.

In the next chapter, we start to show you how to turn your well-crafted web pages, oozing
with semantic and structural markup, into beautifully presented web pages using CSS or
Cascading Style Sheets.

Homework: Getting your site online
This chapter’s homework is all about the process we’ve covered in this chapter. By now
you should have a number of files organized and linked up in a folder on your hard drive.
A web site, no less. What we focus on in this chapter’s homework is moving that web site
from your computer to the World Wide Web so that everyone can see it.

1. Research

Research some of the FTP clients recommended previously. Remember, we’ve provided a
link to some recommended tools at the Web Standardistas web site:

www.webstandardistas.com/tools

Take a look at what each alternative client offers; some solid research will not only inform
you of the differences of what’s on offer, but will also help inform you of current best
practice.

2. Download and install an FTP client

Once you’ve done your research, select an FTP client and download it. You’ll be using this
to complete the homework. Follow the instructions for the FTP client you’ve chosen and
install it on your computer.

Once you register a domain name and purchase some web space, you’ll be ready to use
your chosen FTP client to upload your web site from your computer to the Web.

3. Register a domain name

Now it’s time to purchase your domain name. Bear in mind the suggestions we made ear-
lier about being creative when thinking of a domain name. Remember, this web address
could be yours for some time, so put some thought into it. As we did previously, we’ve
provided a link to some recommended domain name tools at the Web Standardistas
web site:

www.webstandardistas.com/hosting

GETTING YOUR SITE ONLINE

163

7

Once you’ve found a domain name, register it. At this point, it might be worth considering
a combined web hosting and domain name registration package.

4. Purchase some web space

Now it’s time to purchase some web space. Remember the hotel metaphor we mentioned.
You don’t want somewhere flea-ridden, yet five-star luxury is probably a bit over the top.
Start small, and work up.

Again, we’ve provided a link to some recommended web hosting companies at the Web
Standardistas web site:

www.webstandardistas.com/hosting

Since it takes a while for the domain name you registered to propagate, this might be a
good time to go on a fishing trip for a day or so.

5. Connect to your server

Follow the instructions you received from your web hosting provider and enter the details
they provided (usually server, username, and password) into the relevant location on your
chosen FTP client. At this point you may need to refer again to the help files for the FTP
application you selected.

6. Upload your files

Once you’ve established a connection to your server, upload your files. That’s it.

7. Check your web site

Enter your domain name into your browser’s address bar and press Return. You should
now see your web site. Congratulations.

8. Invite your friends

Let your friends know you’ve diligently been doing your homework. Relax with a nice cup
of Formosa Oolong Extra Fancy as you read the congratulatory slew of e-mail from your
well-wishers.

PART TWO

ADDING STYLE WITH CSS

CHAPTER 8

CSS 101

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

168

We’ve spent the first half of the book building a solid foundation, teaching you to create
markup using well- structured XHTML. Now it’s time to add some style to your well- crafted
web pages using CSS.

The impatient among you have been waiting for this chapter for some time or have pos-
sibly cheated and skipped a few chapters, perhaps because you mistakenly think this chap-
ter marks the beginning of the “design” chapters. If you can recognize yourself in this
description, particularly if you skipped the first half of the book because you wanted to
dive straight into CSS, please—we urge you—skip back a few chapters.

Why?

Simple. We’ve been covering design for some time now. All that structured markup, all that
talk of semantics, all that “choose the right tag for the job”—all of that is design.

Good design isn’t choosing this year’s color or selecting a typeface that’s hot. Good design
is much more fundamental than that; it’s about taking some information and giving it
structure. It’s about amplifying meaning by drawing out an information hierarchy and teas-
ing out semantics. In short, it’s . . . everything we covered in the first half of the book.

If you’re feeling a little guilty—you skipped a few sections here and there, you really
wanted to get to “the exciting parts”—we strongly recommend you skip back and read
the preceding chapters. You’ll thank us if you do.

Not guilty? Read on!

This chapter introduces the fundamentals of Cascading Style Sheets (CSS), the presenta-
tion part of the content plus presentation equation. You’ll learn the basic principles of CSS
and start applying style to some of the web pages you’ve created in the first half of the
book.

CSS is a language used to control the presentation of documents written in markup
language, for example, to style web pages written in XHTML. CSS can be used to define
colors, fonts, and a variety of other aspects of document presentation; it can also be
used to position elements and control layout.

CSS is primarily designed to enable the separation of a document’s content (written in
XHTML) from a document’s presentation (written in CSS). This separation can improve
content accessibility, provide users with more flexibility in accessing content, and allow
the same markup to be presented in a variety of different styles for different rendering
methods, for example, for viewing on screen and in print or for accessing via a screen
reader.

Up until this point our well- structured web pages have been styled using the browser’s
default style sheet. Although these style sheets vary slightly between browsers, they have
common characteristics including black text, blue text for links, and purple text for visited
links. By adding your own style sheet, you can override the browser’s style sheet, allowing
you to style the page as you wish.

CSS 101

169

8

By the end of this chapter you’ll be ready to start adding additional—visual and presenta-
tional—design to your web pages, turning them from well- structured web pages into
 well- structured and well- designed web pages. Good times.

Adding some style
You should by now be capable of building well- structured web pages using semantic
markup. You should also know how to upload these to some personal web space as cov-
ered in Chapter 7. This is a significant achievement. However, as things stand your web
pages aren’t too far removed from what the Web was supposed to look like circa 1993.
You might find it hard to believe, but that is not a bad start.

Now you’d really like to work on the presentation aspect, controlling the look and feel of
your web pages to enhance their design. This chapter takes your well- structured web
pages and begins to apply some style to them using CSS. Before we embark on this part of
our journey, it’s worth a quick refresher on what HTML was and, equally importantly,
wasn’t intended for.

HTML: A brief refresher

As we discussed in Chapter 1, when HTML was invented, it was not intended to be a pre-
sentational language. The tags that dealt with the visual aspect of text (the choice of type-
face, its size and color, for example) were limited and were intended only to introduce
a semantic structure to text. We covered this in Chapter 3 when we discussed structured
markup, where we used an to signify “I am more important than an ” and
so on.

As web browsers grew more sophisticated, adding support for images and introducing
additional—often proprietary—tags, web designers grew more and more adventurous and
started to embrace non-semantic markup to create hidden scaffolding for increasingly
complicated designs.

The introduction of WYSIWYG (What You See Is What You Get) editors that allowed the
user to create HTML by dragging and dropping visual elements on the page, much like in
a word processor, created markup of such complexity that it would be almost impossible
to create by hand, or to change or edit without access to the program that created the
markup in the first place.

Web pages created using WYSIWYG editors (for example, FrontPage or Dreamweaver)
took longer to download due to the amount of extra markup they contained, they were
harder to update and maintain, and if you wanted to change a visual element on your web
site, you had to go through each and every individual page, as the visual style was embed-
ded in the content of the page and not in a separate design file or style sheet.

Working with pages generated in WYSIWYG editors? In a word: nightmare.

CSS offered the possibility to change all that, separating content and presentation, which
forms the cornerstone of the Web Standardistas’ approach.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

170

CSS isn’t new

CSS has been around for over a decade, being proposed as early as 1994 and agreed upon
as a W3C Recommendation in December 1996, but it is only in the last few years that
browser support has been reliable enough for web designers to depend on CSS for layout
and design.

The key advantages of CSS include the fact that it’s easy to maintain; it helps in the cre-
ation of lean web pages (look at the tag soup example in the next section to understand
why this is a good thing); it uses the same XHTML markup for screen and print; and it can
be used to improve accessibility, for example, through the inclusion of a high- contrast
style sheet for visually impaired users.

Tag soup or lean and mean?

We introduced the concept of tag soup in Chapter 1; we’ll now show you an example
we’ve reverse- engineered to demonstrate how much smaller a well- formatted web page
can become by removing presentational HTML.

In Figure 8-1, we’ve marked up a section of our King Kong page using tags to style
the text and tags to control the layout, as would have been typical before CSS was
widely supported by standards- compliant browsers.

 Figure 8-1. Our reverse- engineered tag soup example is not only unwieldy, but also uses tables
for layout, a Web Standardista faux pas.

CSS 101

171

8

Take a look at the paragraphs in Figure 8-1. As you can see, they haven’t even been marked
up with tags, relying instead on a considerable amount of presentational markup.
Every single time a paragraph is encountered, it’s been styled with the addition of

, setting the paragraphs to
display in Arial, size 3, and black (we’ll explain why the additional typefaces in the
tag are included in Chapter 9). Note how this is added to every single paragraph!

As you can see, this could get really messy and hard to read, not to mention hard to write.
As if that weren’t bad enough, this complex and nonstructured markup is much harder for
search engines to index.

Surely there must be a more efficient way to do this. Imagine we have a client who would
prefer Times New Roman to Arial and would rather the paragraphs were in red, not black.
The client would also like the text size increased just a little. We would have to find every
instance of and
replace it with .
No small task, especially if we had a web site with hundreds of pages.

In the Figure 8-2, we take the same page and remove the presentational and
 tags, reducing the markup considerably.

 Figure 8-2. Lean and mean, our web standards–based web page is not only considerably smaller,
but far more accessible. It’s also more search engine friendly.

These contrasting examples go to the very heart of the problem. The use of tags
and other presentational markup is inefficient and results in much larger file sizes, which
take longer to download and longer to edit and update. The fragment in Figure 8-1 is
1,396 characters long, while the fragment in Figure 8-2 is only 779 characters, almost half
the size. It will download twice as fast, and we can update its style and presentation con-
siderably more quickly.

So how do we add all the presentational information that’s not included in the second
example? The answer is using CSS.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

172

CSS to the rescue

Using CSS to add style to your web pages removes the need for all the individual
tags encountered in the previous section. By providing a mechanism for selecting specific
elements within your markup—for example, all the tags in the preceding example—
CSS allows you to target them and style them as you wish. Write one CSS rule and style
every . This results in web pages that are efficient, much easier to maintain, and faster
to download.

While early web authors and designers had little choice but to employ elements in a pre-
sentational manner to create visually effective web pages, CSS has largely done away with
the need for those methods. Old habits die hard, however, and many authors continue to
unnecessarily employ these tag soup hacks rather than embrace CSS. As a Web Standardista,
you know better.

Using CSS to control presentation—adding a layer of style to your well- structured XHTML
pages—allows you to separate content and presentation. Focus first on the creation of
 well- structured markup, markup that uses the right tag for the job, before styling that
markup and controlling how it displays using CSS. This is a much better approach, and one
wonders why it’s taken so long for CSS to take a hold.

This all sounds great, but how do we actually use CSS?

Meet CSS
Although XHTML and CSS are two different languages, with different rules, CSS is easy to
learn and, once you understand the basic principles of the language, you should be up and
running in no time.

Let’s take a look at a simple CSS rule. We’ll work with a typical piece of markup from the
bad old days and demonstrate how you can use CSS to replace the cumbersome
tags used. In the tag soup example in Figure 8-1, we showed how tags had been
used to style the different paragraphs on the King Kong page. We’ve simplified the markup
here to style just one aspect of the type, its color:

In the tag soup days, when we wanted to style a paragraph, we needed to include the
additional markup in the tag, every single time. With CSS used to style a solid foun-
dation built using structured markup, we can achieve this much more efficiently.

The first step in the process, as you know by now, is to remove the tags and wrap
this admittedly short paragraph in tags as in the following example:

CSS 101

173

8

Not only is the inclusion of tags semantic, a good thing as you know, but it also gives
us an element we can target with CSS. The result of this is that it achieves exactly the same
effect as multiple tags, styling all of our elements, using just the following CSS
rule:

Although this might seem a little complicated at first, don’t worry, all will soon be revealed
as we break down this basic CSS rule in the next section. The preceding CSS rule does
exactly the same as the tags in the first example, but as we can write one rule to
target all instances of on a page, it is a great deal more efficient.

Remember the client who preferred the color red? Simply change the preceding rule as
follows, and it will change all occurrences of , styling them red, and the client will be
happy:

We’ll now introduce you to how the preceding CSS rule is structured, breaking it down
into its constituent parts.

Anatomy of a CSS rule

At first glance, the rule in the previous example probably appears a little bit cryptic; how-
ever, once we’ve explained it, you’ll soon understand what’s going on.

CSS rules are comprised of a selector, a property, and a value as follows:

In Figure 8-3, we’ve taken this example and rewritten it on one line to illustrate its differ-
ent components more clearly.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

174

 Figure 8-3. The different parts of a very simple CSS rule, styling just
one property

Let’s look again at this simple rule and break it down into its key components:

 The letter on the first line targets the element (i.e., all content within tags
on the page).

 Everything between the and (curly brackets) is style we’re applying to the ele-
ments.

 The declaration specifies a particular color for those elements.

In CSS a declaration is the name given to a pair. In the preceding
example, the we’re targeting is the color, and its is being set to . As
you’ll see in the section “A slightly more complex rule,” we can identify a number of
 pairs to create more complex rules. The property and value are sepa-
rated with a colon ().

It’s also worth noting the semicolon at the end of the declaration line. We use semicolons
to mark the end of each declaration; we’ll need them when we start adding additional
declarations to our rules as in the examples in the following section. The semicolon is
important and needs to be included; the semicolon, not the line break, tells the inter-
preter that this is the end of the declaration.

A note on formatting

Before we go on it’s worth pausing for a moment to talk about how CSS rules can be for-
matted. If you’ve been using View Source to take a look at how others’ web pages are

CSS 101

175

8

constructed, you might see a number of variations on how CSS rules are laid out. It’s worth
noting that the following three examples are all functionally equivalent:

or

or

Based on our teaching experience, we find the last example to be the easiest layout for
beginners to follow as it breaks the selector and property and value pairs onto separate
lines. This makes the declaration easier to understand and follow.

A slightly more complex rule

So, now you know what a CSS rule looks like and we’ve introduced you to a simple rule to
style all of our paragraphs red. However, you’d like to do a little more than change your
paragraphs to red; you’d like to choose a typeface for them.

We could do this by writing a rule for each aspect we’d like to style as follows:

Although this will work, styling all the paragraphs in red and setting them in Arial, it would
quickly become cumbersome, with endless rules styling each element. Good news, CSS
allows us to combine declarations as in the following example, which does exactly the
same thing:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

176

 Figure 8-4 shows an example of a CSS rule with multiple declarations, one per line.

 Figure 8-4. A more complex CSS rule, consisting of three declarations, each on its own line

We can add as many declarations as we want to each rule, enabling us to apply specific
styles to each element on a page as in the following example:

As you can see, although this example is getting quite complicated, it still follows the basic
principles we established earlier. As your CSS rules become more complicated, you’ll find
them easier to read if you put each declaration on a separate line. Although not strictly
necessary, this can help to establish exactly what a specific rule is targeting.

Now that you know what a CSS rule looks like, we need to show you how to add one to
a web page. We’ll introduce this in the next section, working on our King Kong page to add
some basic style to it.

Adding CSS to a web page
Now that you’ve seen what CSS rules look like, we need to add them to our XHTML pages.
There are two primary ways to do this: using either an embedded style sheet, where the
style sheet is on the page itself, or an external style sheet, where the style sheet is an exter-
nal file that is linked to.

CSS 101

177

8

While using an external style sheet—one CSS file that controls all the pages in our web
site—will be our ultimate goal, we’ll be focusing on embedded style sheets for the next
few chapters.

When embarking on a project, it’s often easiest to start with an embedded style sheet to
work out basic issues like styling and layout. Having everything—XHTML and CSS—on one
page makes developing and fine- tuning a little easier, as everything is located in one place,
allowing you to test the effect of your CSS on your markup within a single file. Once you’ve
reached a point at which you’re happy with your CSS, it can be offloaded to an external
style sheet which, when linked to by each page, will style all the pages in your web site.
We’ll cover external style sheets in Chapter 13.

One other method—which we’ll just mention briefly—is the use of inline styles. Not too
dissimilar to the tag we introduced previously, CSS can be used inline to style ele-
ments as they occur, as in the following example:

While inline styles can be useful in edge case scenarios, we’ve chosen not to cover them in
this book, focusing instead on embedded and external style sheets.

Adding an embedded style sheet

When embedding a style sheet, we add our various CSS rules within a element,
which we place within the as in the following example:

The element is simply another XHTML element, which informs the browser that
everything between the opening and closing tags is CSS. The
attribute is required; it specifies the language of the elements contained within the
tags. Put simply, it informs the browser that we’re breaking out of XHTML and entering
into CSS (). Figure 8-5 visualizes this.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

178

 Figure 8-5. Our simple CSS rule, located in an embedded style sheet in the element

Let’s take a look at an actual example—the King Kong page we last worked with in
Chapter 6—and see how adding CSS to an unstyled XHTML page works in action. We com-
pare this page unstyled and with some basic style added in Figure 8-6.

 Figure 8-6. Our unstyled King Kong page as it stood at the end of Chapter 6 alongside the same
page with some basic style added with CSS

CSS 101

179

8

A simple walkthrough
We’ll start with the King Kong page that we’ve been working on in the previous chapters.
As the page currently stands it has no style added and so displays using the browser’s
default style sheet. It’s simply an unstyled, but well- structured XHTML page.

In this walkthrough we’ll style the , , , and elements to introduce you to the
fundamental principles of adding CSS to a web page, but before we get our hands dirty
with the CSS, there’s just one more thing we need to mention: colors.

Getting colorful

In the preceding examples, we’ve used to specify our colors, for example, ,
, and . Although there are a number of additional keywords, there are only

16 original color keywords defined in the HTML 4.01 specification: , , ,
, , , , , , , , , , , , and

. These 16 keywords are the only ones that are considered valid by the W3C CSS
Validation Service.

The world as we see it, however, is not restricted to 16 colors, so why should it be any dif-
ferent in web design? The answer is it’s not. We don’t need to restrict ourselves to using
keywords to specify colors; instead, we can inform the browser we’d like a specific color by
using a more specific method of identifying color.

There are a number of methods of selecting colors in CSS; the one we’ll be using is
 hexadecimal. “Hexadeciwhat?!” you ask? Good question. Using hexadecimal notation to
select colors allows us to access a much broader range of colors, far more than the 16
we’ve been restricted to so far. But what exactly is hexadecimal?

Think of a paint chart. You can select Blossom Apple White, a human- readable name; how-
ever, it will very likely also have a specific reference or code, for example, DECT31415,
a machine- readable name. Let’s take a look at the colors we’ve introduced previously—

, , and —and see how they are specified in hexadecimal.

 :

 :

 :

Each code indicates a different color, using a computer- friendly method (computers,
unlike most humans, love code). Right now you don’t need to know the ins and outs of
how and why hexadecimal is used, you can simply use the handy page we’ve created for
you at the book’s companion web site to select the color you require:

Most image editors, for example Photoshop, allow you to find any color’s hexadecimal
value, as highlighted in Figure 8-7.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

180

 Figure 8-7. Photoshop’s Color Picker shows the hexadecimal color value.

You can find further color inspiration at Adobe’s Kuler web site (
), which offers a number of color palettes submitted by users worldwide. Another

excellent source of inspiration is COLOURlovers ().

Styling the <body>

The first thing we’ll style is the ; this essentially styles everything that displays within
the element. By now you’re probably a little tired of XHTML pages that display as
black text on a white background, courtesy of the browser’s default style sheet. Good
news, this is finally about to change.

First we’ll introduce a rule with just one declaration to style the background of the page,
in this case displaying it in a dark shade of brown, worthy of a fearsome fictional gorilla.
Now that you know you can use hexadecimal color, let’s find a nice shade of dark brown
for our King Kong web page. After some deliberation, we’ve chosen as our per-
fect shade of brown. Let’s have a look at our page with this first CSS rule added:

CSS 101

181

8

The result of adding this simple CSS rule is shown in Figure 8-8.

 Figure 8-8. Our King Kong page with a background color added using CSS

This is a start, but there’s clearly more work to do here. As things stand the text on the
page is more than a little hard to read when rendered black on dark brown. It’s high time
for an additional CSS declaration in our rule:

We’ve added the declaration to our first CSS rule. This sets the text color
of all elements appearing within the to a shade of creamy white. When specifying

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

182

a in your CSS, it's good practice to always specify a contrasting text
 to ensure that your text remains legible to all.

Another thing we’ve noticed is that the image displaying the Famous Primates brand would
look much better if it matched our fearsome gorilla- brown background color and had
some of the space around it removed.

We’ve taken care of this by firing up our image editor, changing the background color of
the Famous Primates brand image to match our CSS background color, , cropping
it slightly, and saving a new image to the folder. Our King Kong page now looks like
 Figure 8-9.

 Figure 8-9. The text color is now a creamy white to contrast with the dark brown background
color. The brand image background color has also been changed to match the background
color of the page.

Much better!

The next thing we’ll tackle is the line length. As things currently stand, our paragraphs
occupy the full width of the browser window. For anyone using a large monitor this could
result in very long lines of text that are difficult to read, as in Figure 8-10.

 Figure 8-10. Without a set width, our paragraphs occupy the full width of the browser window.

CSS 101

183

8

Adding a simple declaration to the rule allows us to control the width of the ele-
ments within our page. This will be our first small step toward creating a CSS- based layout
that we will expand upon over the next few chapters, introducing more versatile alterna-
tives to setting a on the element.

Our CSS rule styling the now looks like this:

In typography the width of a line of text is known as its measure. Too long a measure
results in text that is difficult to read. The eye gets to the end of a very long line of text,
and then needs to find the beginning of the next line, often getting lost in the process.
Equally too short a measure can be frustrating to read with the eye having to jump back
and forth as it reaches the end of lots of very short lines.

A look at most books will reveal that there is an optimum measure around which most
designers tend to settle. This can vary upon the type of content; however, it is generally
agreed to be between 50–60 characters per line. In practice different typefaces will result
in different line lengths, especially in an online context where the user can scale text up
and down.

Our next step is to look at styling our and headings.

Styling the headings: <h1> and <h2>

Now that we’ve set the width and styled both the text color and the background color of
our King Kong web page, we’ll take a look at styling the element. We’ll create a CSS rule
for it and change its typeface, size, and color.

In the section of the document, we add a new rule as follows:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

184

This additional rule specifies the typeface Arial for our . We’ve also set the size to
(pixels), which is slightly larger than the browser default shown in Figures 8- 8 to 8- 10. The

 has also been colored a light shade of blue, specified as the hexadecimal color .
The result of these declarations can be seen in Figure 8-11.

 Figure 8-11. The King Kong is now displayed in Arial at 36 pixels in a light
shade of blue.

Next we’ll add a rule for the , almost identical to the rule; it looks like this:

The only difference between this rule and the previous one styling the is the ze,
which we’ve set to a slightly smaller size of .

You’ll notice we’ve used sizes of and , setting the sizes in or pixels. There are
a number of options for sizing type, including pixels, %, ems, or keywords. We’ll introduce
the thorny topic of sizing type in more detail in the following chapter when we look
closely at styling text.

As the rules for the and the are largely identical, we can use one of the features of
CSS to simplify our style sheet a little. Rather than specifying for
every single element, we can specify it just once: in the rule styling the .

CSS 101

185

8

The , , and other elements on the page—which are all nested within the body—will
inherit this style (we’ll cover the intricacies of inheritance in the following chapter). Our
revised style sheet, with the declaration removed from the and rules
and applied to the rule, looks like this:

The result of this revision can be seen in Figure 8-12, which shows the headings and the
paragraphs now all being displayed in Arial, all thanks to the power of inheritance.

 Figure 8-12. Applying the declaration to the results in
our headings and paragraphs all displaying in Arial.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

186

Styling the <p>

But what if we don’t want all headings and paragraphs to be displayed in the same type-
face? Have no fear, there’s an easy solution at hand. Let’s have a look at styling our ,
changing its typeface from the style specified previously to a different typeface, Verdana.
While we’re at it, we’ll also change the size of the paragraph .

We add a rule to our style sheet as follows:

Adding the declaration to the overrides the
 declaration of the . We’ll explain exactly how this works in the next chapter

when we discuss the topic of specificity.

The result of adding this last rule, styling the , can be seen in Figure 8-13. As you can see,
the rule styles all the elements on the page, displaying them in Verdana at a size of
13 px.

CSS 101

187

8

 Figure 8-13. Adding a declaration to our overrides the
 declaration on the .

The CSS added to the King Kong page in this chapter is just a start of our journey using
style sheets. Although the rules introduced so far are relatively simple ones, they introduce
the fundamental principles of CSS. With a little experimentation in your own time, you can
try out different typefaces, sizes, and colors and apply CSS to some of the other web pages
you’ve created for your homework.

Commenting your CSS

Just like HTML allows you to use hidden comments within your markup to make notes and
selectively hide sections of a web page during the development process, you can also add
comments within your CSS, assisting you as you develop your style sheets.

As with HTML comments, CSS comments are useful for a number of purposes: making
notes during the development process; commenting out single declarations within a rule;
commenting out entire rules; adding structural comments to break your CSS down into
logical, grouped sections; and, lastly, giving your CSS a title, useful for keeping a track of
the creation date and version number, or noting who created it.

Where HTML uses an opening and a closing to contain your comments, CSS uses
an opening and a closing . This is shown in the following two examples so that you
can clearly distinguish the syntax. The first example shows an HTML comment; you should
be familiar with this by now:

The next example shows a CSS comment:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

188

As we covered in the introduction to this section, comments in CSS can serve a variety of
purposes; let’s run through these one by one. Although you’re only getting started with
CSS and some of these uses will be more relevant when you’re writing more complicated
style sheets and creating external CSS files, we feel it’s useful to gather the examples in
one section for easy reference.

As with HTML comments, CSS comments can be useful to keep track of changes or to
provide notes for useful reference; following is an example of a note:

The ability to comment your CSS can also be very useful throughout the development
process. As browsers ignore anything between the opening and the closing , CSS
comments can be used to selectively switch on and off entire rules, single declarations
within rules, or groups of declarations within rules, as shown in the following examples.

Imagine you’re creating a style sheet, and in the process you’re trying out a new color for
your s. You’re not 100% convinced that the color’s right; perhaps the page looked better
before you added the declaration. Commenting out the declaration, as in the
 following example, allows you to quickly see how the page looked before you decided on
chimp vomit green for all your s:

CSS 101

189

8

Sitting between comments (or commented out), the declaration will be
ignored by the browser, switching off the chimp vomit green on the s. This method
makes experimentation easy; if you want to switch the color back on, all you need to do is
uncomment the rule.

Just like cornflower blue, chocolate brown, and school bus yellow are accepted as
 “officially recognized” color names, so too is chimp vomit green. Coined by noted web
standards advocate Jeffrey Zeldman in his book Designing with Web Standards (Peachpit
Press, 2006), the term chimp vomit green is used to describe a color generated by
a Netscape- related browser bug.

You can use the same method to temporarily disable more than just one declaration in
your style sheet, switching off multiple declarations, or even hiding entire CSS rules as in
the next example:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

190

In the preceding example, the comment spans several lines, commenting out the entire
rule. Using CSS comments like this during the development process can be extremely
helpful, both when experimenting and troubleshooting.

Although we’ve only just introduced CSS in this chapter and the style sheets we’ve shown
are quite simple, as your style sheets grow in complexity, you’ll find using structural com-
ments to break your CSS down into logical, grouped sections makes the development
process easier in the long run. For example, grouping together body and layout sections,
typography sections, link styles, and so on can make finding these sections and making
changes to them much simpler.

The following examples show some CSS comments used to provide visual breaks within
a style sheet, helping to visually separate each logical section. Breaking down a compli-
cated style sheet like this helps finding different sections of the CSS easier:

Stylizing these comments a little more can help to visually separate them from your CSS
rules as in the following example:

Lastly, you can use CSS comments to give your style sheet a title, useful for keeping track
of the creation date and version number, or noting who created it. Although we’re using
an embedded style sheet at this point, CSS comments can be useful to provide you with
a quick reference to the status of a style sheet, for example, what version of the style sheet
it is and when it was last updated.

The following comment shows a typical example of this that we’ll be using at the top of
our King Kong web page’s CSS as we continue to develop it:

CSS 101

191

8

This allows us to keep track of who last edited the CSS and when. In this case we can see
the style sheet was last updated on Thursday, 6 November 2008 by CM (the initials of the
person who made the last revision).

Summary
So what have we covered? This chapter marked the beginning of our journey into CSS.
We’ve introduced you to some simple CSS rules and covered how to add them to your
web pages. Although it might not look like we’ve changed our basic web page much in the
example we’ve walked through, we’ve introduced the underlying concept of CSS and how
you implement it.

Having followed the preceding examples, you should now know enough to begin adding
some style to your well- structured HTML pages that you created as a part of the previous
chapters’ homework.

In the next chapter we’ll take our working knowledge of CSS and expand upon it, enabling
you to create web pages that are both well- structured and well- presented. Good times
indeed.

Homework: Adding some CSS to Gordo’s
web page

In this chapter we’ve introduced CSS, which will allow you to style a number of the ele-
ments on the page you’ve been working on for Gordo. Now it’s time for you to give
Gordo’s page a makeover.

We looked at how CSS rules are written, in particular introducing the idea that one CSS
rule could have multiple declarations styling a variety of different properties, for example,

ly, ze, ht, , and or.

We also showed you how to add an embedded style sheet to a web page where, for now,
you’ll be locating all of your CSS rules. Lastly, we covered the use of comments in CSS and
how they can be used to structure and order your CSS rules.

In our King Kong walkthrough, we styled the , , , and elements to introduce you
to the fundamental principles of adding CSS to a web page. You’ll be applying style to
these elements on your Gordo page for this chapter’s homework. The process of adding
these elements will reinforce the fundamentals of CSS and will form the basis for the fol-
lowing few chapters’ homework.

You’re embarking on a new language in this homework—writing style sheets. Completing
this homework will equip you with a firm grasp of the principles of CSS, something that
will prove important as we embark on the forthcoming chapters, which progressively add
complexity.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

192

1. Add your <style> tags

Open the file in your folder. In order to add some CSS rules to
this page, you’ll need to add some tags. In the head section, add an opening

 tag and a closing tag. You’ll be placing all of your CSS
rules within these tags.

2. Style the <body>

Referring to the examples in this chapter, style the element on Gordo’s web page.
We’d like you to create a rule with three declarations that styles the and

 and sets a for the elements nested within the .

3. Style the headings

Once you’ve styled the , it’s time to style the headings. In our King Kong example, we
styled the and ; we’d like you to do the same for the Gordo page. Add new rules to
your embedded style sheet for the and elements and style the ly,

ze, and of both.

4. Style the paragraphs

The last rule we’d like you to create is for the paragraphs. Create a rule targeting all of the
 elements and apply some style to the and to differentiate the

paragraphs from the headings.

5. Add a comment

Once you’ve completed the previous stage, add a CSS comment within the embedded
style sheet, giving it a title and a version number (presumably version 1.0), and noting the
date you created it. You can do this by leaving a comment at the top of the CSS as
 follows:

To help you with these stages we’ve created a similarly styled page about King Kong. You
can refer to this, using your browser’s View Source menu command to see how we’ve
applied our CSS to it, here:

6. Validate

You won’t be surprised to hear that we’d like you to validate Gordo’s new CSS using the
W3C CSS Validation Service. Like the W3C Markup Validation Service—for XHTML—that
you’ve been using so far, it offers an option to validate by direct input, allowing you to
copy and paste your code into the web page. Alternatively you can enter the URL of your
file if you’ve uploaded it. The W3C CSS Validation Service is available here:

CSS 101

193

8

In the event of errors, the CSS validator offers similar clues to its XHTML counterpart, giv-
ing the line number of each error. If you run into errors, debug your CSS and revalidate.

Once you’re welcomed with the message, “Congratulations! No Error Found.” put the
kettle on and enjoy a cup of Kokei Cha as you prepare yourself for the next chapter.

CHAPTER 9

STYLING TEXT

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

196

In the last chapter we introduced you to the basics of CSS, adding a little style to our King
Kong web page. In this chapter we go a bit further, styling all of the typographic elements
on the mighty gorilla’s web page. Cue thunderous roar from the jungle.

We deliberately kept things simple with our King Kong page in the last chapter, styling only
a few elements: the , , , and . In this chapter we’ll build on what we demon-
strated in the last chapter and delve a little bit deeper into CSS, introducing and expanding
on some underlying concepts along the way.

This chapter’s focus is specifically on styling text, an area CSS is particularly well suited to.
By the end of the chapter you should not only have a deeper understanding of how to use
CSS, but also have an insight into how powerful it can be in transforming any well-
structured XHTML web page into a well- styled, great- looking web page. This chapter also
introduces a number of different methods of specifying font sizes in CSS: pixels, ems, and
keywords. All have strengths. Unfortunately, all also have weaknesses.

We conclude the chapter with a walkthrough of our new, improved King Kong page, along
the way introducing a wide variety of ways to make your text more readable and more
pleasing to the eye.

Typography on the Web
Working through another pass of the CSS of our King Kong web page will introduce you to
some of the fundamentals of typography, including some general typographic principles
and a few new terms. It will also highlight how designing for the Web, particularly when it
comes to typography, has its limitations, but equally can offer a number of opportunities
and advantages.

Before we embark on a look at the specifics of typography on the Web, it’s worth defining
what exactly typography is.

What is typography?

Typography is often defined in traditional terms referring to the world of print—books,
magazines, newspapers . . . in short, anything printed. However, typography isn’t just appro-
priate to print, it’s also appropriate to everything we create onscreen. In short, anywhere
that type is used.

We can define typography as follows:

typography –n. 1 the art or process of setting and arranging types and printing from
them 2 the style and appearance of printed matter

Concise Oxford Dictionary (Clarendon Press, 1990)

STYLING TEXT

197

9

However, this definition implies typography is limited to print, but as you learned hands- on
in the last chapter, typography is also used online. After all, we set and arranged some type
when we specified both a and a for the , , and elements on
our King Kong web page.

Clearly typography is also of interest on the Web.

In traditional typographic terminology, a typeface and a font are not the same. A type-
face refers to a whole family of type, for example, Times New Roman. A font, however,
refers to one instance of this typeface, for example, Time New Roman, Italic, 12 pt. This is
because historically every typeface would have been comprised of a number of fonts, all
cast in metal and set by hand. In a web- based context, however, the terms typeface and
font are used interchangeably.

One of the greatest benefits of using CSS to style text is the control it gives us over typog-
raphy and, equally importantly, its flexibility.

CSS: Our flexible friend

The separation of your content, marked up as well- structured XHTML, and its visual pre-
sentation, controlled by your CSS rules, makes for a remarkably flexible and efficient way
of applying style to your web pages.

Style is not only easy to apply, but also easy to change: simply alter a rule in your style
sheet and Hey Presto! your page is displayed using a different typeface at a different size.
This enables you to quickly prototype and test design ideas, adjusting your page’s typogra-
phy through nothing more than simple changes and modifications to your style sheet.
Herein lies the real power of CSS.

You’ll discover this to your delight if approaching a redesign of your XHTML pages. In most
cases you can simply take your existing content, marked up semantically, rework the CSS
rules in your style sheet, and have a new design ready in an instant.

Making your text accessible

As Joe Clark, a noted accessibility advocate, states,

Reading is the primary activity of the Web. For people with impaired vision who do not
use screen readers, colour choices and, to a far lesser extent, type size become the acces-
sibility issues.

An added benefit of CSS, which leverages the separation of content and presentation
inherent in the Web Standardistas’ approach, lies in the ability to create alternative style

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

198

sheets for different users. One example would be the creation of a high- contrast style
sheet for visually impaired users—easy to create, given the solid foundation of semantic
markup that you are now used to creating.

Another advantage of CSS is that it gives a greater level of control to the user, for example,
allowing the user to resize text or increase the contrast on the page, making the pages
more accessible. While at first this lack of control can appear daunting from a designer’s
perspective, its important to remember that the primary purpose of the Web as envisaged
by Tim Berners- Lee was to make as much information as possible accessible to as wide an
audience as possible. A good thing.

Inheritance and specificity
In the last chapter we applied some basic style to the elements on our King Kong page. To
refresh your memory, among a few other rules, we specified a and text
for our web page, as shown in the following example:

Looking at this rule again you might be forgiven for asking, “Why are we styling
a and on the element? Why not on the elements themselves? The

s, s, s, and so on?”

The answer, as we alluded to in the previous chapter, lies in the issue of inheritance.
Although it can take a little getting used to, the concept of inheritance lies at the heart of
CSS and is essential to grasp if you want to create efficient web pages with a minimum of
markup. Let’s dive right in.

Inheritance

In Chapter 2 we introduced the idea of the document tree, explaining how elements can
be nested. You might recall that our simple “Hello World!” web page had a single nested
within the . Another way of describing the relationship between these elements would
be to state that the element is descended from its parent element, the .

So the is a child of the , and conversely, the is a parent of the . The important
point to note is that the elements have a relationship to each other.

Just like children inherit characteristics from their parents in the real world, child elements
inherit characteristics from their parent elements in the world of CSS.

If we look at our King Kong web page, we can see that the element contains the fol-
lowing child elements: – , , , , , , , , , , , and .

STYLING TEXT

199

9

Considerably more child elements than the “Hello World!” web page we first built, proof—
if it were needed—of your growing capabilities as a Web Standardista.

In Figure 9-1 we’ve illustrated a simplified version of the document tree for the King Kong
web page (for the purposes of simplicity, we haven’t included all of the elements descended
from the).

 Figure 9-1. The relationship between the and its descendants

Looking at Figure 9-1, you’ll also notice that in addition to all of the elements on the King
Kong page being descended from the element, there are other elements with child
elements. In our simplified example, both the and elements have children, the former
an , the latter an .

The King Kong page we’ve created also has another element descended from the
which itself has a number of child elements. The features two children: two s,
one of which has a descendent, namely a element, as shown in Figure 9-2.

 Figure 9-2. Our element is a child of a ,
itself a child of the which, in turn, is
a child of the . Think of this as a family tree.

Given that all of these elements are descended from the element, they inherit any
rules applied to the . What this means is that we don’t need to write rules for each of
the elements we’d like to style; we can instead rely on inheritance to take care of this for
us, as you briefly saw in the last chapter when we applied some style to our element.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

200

Bravo! This is going to result in a lot less work down the line. But you might be thinking
that this all looks just a little bit too easy . . .

Meet specificity

Now we’ve ascertained that all the CSS declarations we apply to the element are
inherited by its descendants, let’s take a look at this in action. We’ve created a simplified
version of our King Kong web page, removing most of the content so we can focus on the

, , and elements. We’ve created a single CSS rule to look at an example of inheri-
tance in action. Our simplified web page looks like this:

According to the rules of inheritance we introduced earlier, we might imagine that every-
thing on our simple web page would display in Arial at a size of 14 pixels, in cream type
against a dark brown background. Let’s take a look at Figure 9-3, which shows how this
displays in the browser.

 Figure 9-3. Our CSS specified a size of for the , so why aren’t the
 and inheriting the setting?

STYLING TEXT

201

9

We’d hoped everything would display in Arial at a size of . Our , , and elements
are displaying in Arial as we expected; however, the type is clearly not all set to . Why?
To answer that question we need to delve a little bit deeper into the complexities of
specificity.

To explain this riddle, we return to our previous example where we’ve specified a
on the . This rule should, according to the principles of inheritance, be applied to all
of its descendants: the , , and .

However, the examples we covered in the previous chapter showed us that if we wanted
to change the of a child element, the for example, we could do so by target-
ing this element with a rule that would be more specific and therefore override the less
 specific rule we applied to its parent, the .

But in this case there’s no rule targeting the in our style sheet—we only applied style to
the . So why is the not ? The answer is buried deep inside your browser,
in something known as the browser’s default style sheet.

We’ve mentioned default styles and the browser’s default style sheet previously, but what
is the browser’s default style sheet? The CSS rules and declarations that apply style to
your web pages can in fact come from a number of sources:

Author Styles: The CSS rules we have been writing for our King Kong page are known as
Author Styles, as they are style sheets provided by the author of the web page. When we
mention style sheets, rules, and declarations throughout this book, we’re in fact referring
to Author Styles.

User Styles: The user of your web page can also create CSS rules, usually through options
in their web browser. These style sheets are applied to all web pages and may override
the Author Styles. User Styles might be created to enlarge text or to increase contrast, by
a visually impaired user, for example.

User Agent Styles: Finally, User Agent Styles, also referred to as the browser’s default
style sheet, control the browser’s default presentation of XHTML elements. The “unstyled”
XHTML pages we worked on in the first six chapters of this book have in fact been styled
all along, using the browser’s default style sheet. Although these styles vary slightly
between browsers, they do share common characteristics.

In the example in Figure 9-3, we used the selector to assign some style to our page;
however, it didn’t affect the size of headings. That’s because the browser’s default style
sheet is also assigning style to our page, in particular, controlling the size of the headings.

The browser’s default style sheet contains a more specific rule, in this case targeting the
and elements directly. In other words, the browser’s more specific and rules take
precedence over our less- specific rule.

In CSS, when two or more conflicting rules are controlling the same element, the browser
needs to determine which rule to follow. It does this by following a number of basic (but
rather complex) rules, as we'll see in Chapter 10. In this case, the browser’s default style
sheet is winning and overriding the size we set for the headings.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

202

Now that we’ve covered the tricky topics of inheritance and specificity, let’s get back to
the focus of this chapter: styling text.

Specifying type on the Web
In the last chapter we specified a typeface for our element using CSS. We deliberately
kept things simple, specifying Arial, a typeface most people would be familiar with.
However, what if we’d like to use a different typeface? Something a little more exotic per-
haps?

As anyone who has ever used Microsoft Word knows, the list of typefaces available is often
very large. You might be forgiven for asking, “Why can’t I specify one of these other type-
faces instead?” The answer is that the display of the typeface you choose depends upon
the typefaces installed on your end user’s computer, not yours.

When you specify a typeface using CSS, it will only display in that typeface if it is installed
on the end user’s computer. With so many different operating systems—Windows Vista,
Windows XP, Mac OS X, and the various flavors of Linux—all with different preinstalled
typefaces, it’s difficult to predict with any degree of confidence what typefaces will be on
your users’ computers.

So, what happens if we specify a font and the end user doesn’t have it? Let’s take a look.
When creating the brand for our Famous Primates web site, we used a typeface called
Bryant, a lovingly crafted sans serif typeface inspired by mechanical lettering kits used by
draftsmen and amateur sign makers, created by the talented Eric Olson of Process Type
Foundry (). We’ve rewritten the rule that specified

 at the end of the last chapter, to specify instead, as follows:

Being conscientious Web Standardistas, we check it in our browser, and it displays exactly
as we wanted, as in Figure 9-4.

 Figure 9-4. Change to in the rule and . . . voilà! Everything
changes.

STYLING TEXT

203

9

Good news. The principle of inheritance is simplifying things considerably. Change the
typeface on the rule and inheritance takes care of the rest, changing the type on the
whole page. Not so fast!

Being truly conscientious Web Standardistas, we know better than to check the web page
only in our own browsers. We ask a friend to take a look. Disaster. Our friend sends us
back a screenshot as in Figure 9-5. No Bryant, just Times New Roman. It turns out he
doesn’t have Bryant installed on his computer, so the type has reverted to his browser’s
default text style.

 Figure 9-5. No Bryant. No joy.

Needless to say, Figure 9-5 wasn’t how we intended this page to display at all. We were
happy with it the way it displayed in Figure 9-4. Why has this happened? The answer is
simple: we have the typeface Bryant installed, our friend doesn’t. Without the typeface
we’ve specified installed on his machine, the font reverts to what is defined by his brows-
er’s default style sheet, with the default typeface usually being Times New Roman.

So how can we be sure that a typeface we specify for a web page is available in browsers
other than our own? In short, we can’t 100%, but all is not lost. Why? Unusually—thanks
goes to Microsoft . . .

Core Web Fonts

In 1996, Microsoft began a project to establish a standard suite of fonts for the Internet.
Released under a generous end-user license, the fonts quickly became established as
a cross- platform core font set that could reasonably be relied upon to be installed on
most users’ computers.

Although this project was discontinued by Microsoft in 2002, the generosity of the original
license still allows for distribution and use of the fonts today, with the result being that
they still remain prevalent. The full list of fonts available is as follows:

 Andale Mono

 Arial

 Arial Black

 Comic Sans MS

 Courier New

 Georgia

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

204

 Impact

 Times New Roman

 Trebuchet MS

 Verdana

 Webdings

As these fonts were optimized for display and legibility on screen, the best way to see how
they render is to look at them in your browser. We’ve created a page displaying all of them
here:

Good news: specifying one of the preceding fonts is generally considered reliable as most
users have them installed. Better news: we can use the preceding fonts to create a fallback
option for anyone, like our friend in the example earlier, who doesn’t have our obscure,
but beloved, typefaces installed. So, how do we establish a fallback font when writing
CSS?

Writing more reliable CSS rules to specify fonts

We now know that the fonts we specify in CSS will only display if the user has the same
font installed on their computer. We also know that this isn’t always the case.

CSS provides a solution to this problem by allowing us to specify more than one font in
a CSS rule so that we can provide a list of alternatives or fallback options in the event that
the typeface we’d really like is not available on the user’s computer.

In the last rule, where we specified Bryant, we supplied it on its own with no fallback
option. In the following rule, we’d really like Bryant to display in the first instance; how-
ever, we know not everyone has that typeface installed so we’ve provided a number of
alternatives as follows:

The browser interprets this list of fonts in order of preference, with the first being your
preferred choice. In the preceding example everything in the will display in Bryant if
the user has that typeface installed; if not it will display in Arial, and finally, as a last resort,
it will display in the browser’s generic sans serif font (unless a different sans serif font has
been explicitly set as a User Style preference, as mentioned earlier in the chapter).

Let’s return to our friend who doesn’t have the typeface Bryant; in his browser the revised
page now displays as in Figure 9-6.

STYLING TEXT

205

9

 Figure 9-6. The page displayed in our friend’s browser. He doesn’t have Bryant,
so the page displays using our fallback typeface, Arial.

Both Bryant and Arial are sans serif typefaces, and although we may prefer the look of the
page displayed using Bryant, the fallback typefaces share the basic characteristics of our
first choice. As you’ve seen from the list of Core Web Fonts, you can also be reasonably
assured that Arial will be widely installed. Selecting it as a fallback font has resulted in
a page that retains many of the typographic characteristics we were aiming for.

Microsoft’s Core Web Fonts were specifically designed for use onscreen and are conse-
quently very readable on most computers. Modern operating systems, Macintosh OS X
for instance, however, have made the display of fonts originally designed for print much
more viable for onscreen use.

When considering legibility and readability, it’s worth considering the best typeface for
the job. The Guardian, which we highlighted in Chapter 3, decided to use Arial as a body
font instead of Helvetica because Arial—being custom- designed for the Web—looked
better in a wider range of environments.

So, selecting a carefully considered list of fonts when specifying your can
help when a user doesn’t have the exact typeface you’d like.

Let’s take a look at this CSS rule again:

You may be forgiven for asking, “What typeface is if?” Unlike Bryant or Arial, sans
serif is not a specific typeface, but a generic font family. There are five generic font families
built into the CSS language. These are often used as “an option of last resort” when speci-
fying a list of alternative font values.

The five generic font families are as follows.

Serif
Serif fonts are characterized by decorative serifs, or accents, at the ends of various letter
strokes. Used widely on the Web, serif fonts are sometimes considered to have a classic,
formal style. Examples include Times New Roman, Georgia, and Garamond.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

206

Sans serif
Sans serif translates literally as without serif. Unsurprisingly sans serif fonts have simpler
forms than serif fonts. Also used widely on the Web, sans serif fonts can be seen as having
a clean, modern style. Examples include Helvetica, Arial, and Trebuchet.

Monospace
As the name implies, the width of the characters in a monospace font—a, b, c . . . ,
A, B, C . . . , 1, 2, 3 . . .—are all the same. They are most often specified for displaying
examples of computer code, where monospaced characters make the code easier to read.
Examples include Andale Mono, Courier New, and Monaco.

Cursive
Cursive fonts emulate handwritten letterforms and have a script like appearance. Their
characteristics can vary widely, and most cursive fonts are unlikely to be present on
a majority of computers. They should therefore be used with caution. Examples include
Bello, Caflisch Script, and Ex Ponto.

Fantasy
Fantasy fonts (who, we ask, came up with the term fantasy fonts?) are primarily decorative
and usually intended for headings. The junk- drawer of generic families, fantasy fonts don’t
necessarily share many characteristics, and most are unlikely to be present on a majority
of computers. Specifying fantasy fonts is an unpredictable affair, perhaps one reason why
these fonts aren’t widely used on the Web. Examples include Impact, Critter, and
Cottonwood.

Now that we’ve covered the affair in some detail, let’s move swiftly on and
talk about another important issue for many: size.

Size matters
In the last chapter we set a for our paragraphs as follows:

thus setting all instances of at (or 14 pixels), deliberately keeping things simple.
When it comes to setting ze, however, we have a number of options available,
including pixels, ems, and keywords. As we mentioned in the introduction, all have
strengths; all also have weaknesses. In this section we focus on two units of measure: pixels
and ems. Before we get to those, however, first a word on keywords.

CSS includes seven keywords, ranging from to ge, which are
relative to the browser’s setting (where the setting is usually interpreted as

). In addition to a number of issues in older browsers that require workarounds, the

STYLING TEXT

207

9

problem with keywords is their lack of precision. Imagine you’d like to buy a T- shirt,
 is a little too big, but is just a little too small. Herein lies the problem.

That said, if you don’t care exactly what size your T- shirt is, maybe keywords are for
you . . .

Sizing text with pixels

Sizing your type using pixels is perhaps the easiest method, which explains why we’ve used
it so far; however, it too has its limitations. If you want your paragraphs to appear at a size
of , you simply write a CSS rule as we did in the last chapter:

What if you’d prefer them at ? Simply rewrite the value:

Sizing text in pixels allows you to get consistent font sizing in your web pages without
trouble. It’s also quite easy to grasp the relationship between different font sizes on your
web pages: will be half the size of and so on. Great news, but there’s a catch.

The main drawback with sizing text in pixels lies with the issue of accessibility. Internet
Explorer 6—rapidly dropping in popularity, but still a widely installed browser—is not
capable of resizing text specified in pixels. Where other browsers allow the user to resize
text set in pixels, IE 6 has no method of doing so. For people who like their text to be
larger (or indeed smaller) than the designer specified in the style sheet, IE 6 and pixels are
not a winning combination.

IE 7 goes some way toward resolving this with a feature called Page Zoom, which enlarges
the entire web page, including images. However, this behavior quickly becomes unwieldy,
leading to horizontal scrollbars as your page zooms up. This is better than nothing, but it’s
not ideal.

If accessibility and allowing the visitors of your web site to resize the text to a size that
suits them is important to you, consider ems or keywords instead.

Sizing text with ems

So by now you’re really hoping that ems are the Holy Grail. Not quite. (Honestly, are you
surprised?) While it’s true that ems have a lot going for them, they also have some draw-
backs (not least the need to get your head around some, at times complicated, math).

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

208

An em, not to be confused with the HTML element , is a relative measure used when
sizing type. Ems are calculated based on the font size of the parent element. What does that
mean in English? Let’s look at an example:

Imagine you’d like the paragraph in this example to appear at a size equivalent to 14 pixels.
You first need to determine the font size of the parent element of the . Now you’re think-
ing, “The parent element? What’s that again?”

There’s no need to panic; when we introduced the concept of inheritance earlier in this
chapter, you met parent and child elements. The parent element of the in the preceding
example is the , which means we need to establish a size for the and the will
then be sized relative to that.

If you have a degree in astrophysics, great. If not, brace yourself for a little mathematics.

Most modern browsers have a default paragraph text size that is , that is, unstyled
elements will display at using the browser’s default style sheet.

By adding the following rule to a style sheet, we can change the default font size of the
page from to anything we’d like by changing the percentage. In the following exam-
ple we set the default on the to .

Why 62.5%?

62.5% of 16 pixels is 10 pixels. 10 is a nice round number. Setting the base of
the to makes working out relative sizes considerably easier. Using the declara-
tion sets at . We’d like our paragraphs to display at 14 px. We
now size them in relation to the element (= , therefore =) using
the following rules:

STYLING TEXT

209

9

Let’s recap because it’s a little convoluted! We’ve reduced the font size of the ele-
ment to in our first rule using a percentage of (remember, most browsers have
a default of and =). Everything will be sized relative to
the , which is the parent element of everything on the page. The second rule is setting
the paragraph to 1.4 times the size of the parent element, or . Voilà!

Although this is not as straightforward as setting sizes directly in pixels, this method has
the advantage of allowing users to resize their text in any relatively modern browser,
including IE 6. For accessibility purposes, this is a good thing to strive for.

If you’re wondering why the in the element is specified using
a percentage instead of using , which should have the same effect, con-
gratulations, you’ve just earned five extra nerd points! The answer is that using
a percentage works around a bug in IE where the text would resize too much or
too little, resulting in super- large or super- tiny text. Redeem your nerd points at
the Web Standardistas web site.

To make the examples in the rest of this chapter easier to follow, we’re using pixels from
this point on. We’ll leave experimenting with the use of ems or keywords as an exercise for
the reader.

Writing more efficient rules
Consider the following example, which sets the ly, respective for our

– elements, and colors them (a light shade of powder blue). We could write
the – declarations like this:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

210

In this example each of the rules specifies identical and declarations. If
we wanted to change these details down the line, we would have to edit each individual
rule. This repetitive task seems somewhat inefficient—surely there’s a better solution.

The good news is that CSS allows us a way to group selectors to keep our style sheets
leaner and meaner. If we replace the preceding rules with the following, the result will be
exactly the same:

Let’s take a look at what’s happening here. The first rule is instructing the browser to style
our – headings in Arial (or a generic sans serif fallback font) and in the color .
We’ve then written rules for each of the – headings that set their size, an additional
rule specific to each heading.

The benefits of this are twofold. First, the second set of rules is considerably smaller than
the first, and we know that the smaller the file, the faster the download. Second, if we’d
like to change the color or the font of our , , , and elements down the line, we
can do it in just one location, a more efficient method of making changes.

STYLING TEXT

211

9

An understanding of grouped selectors coupled with a knowledge of the principles of
inheritance, outlined earlier in this chapter, can go a long way to reducing the size and
complexity of your style sheets.

Show and tell: Adding a few more rules
By now you should be quite familiar with adding CSS rules to your web pages, and you
should be beginning to grasp some of the principles of CSS. We restricted ourselves in the
last chapter to a limited number of CSS properties. We’ll introduce a few more in this sec-
tion to ensure you’re getting your money’s worth. Value for money is, after all, what it’s all
about.

Now that we’ve introduced you to some of the practicalities of handling typography on
the Web, we’ll finish the process of styling the remainder of the typographic elements on
our King Kong page. The process of doing this will introduce you to a variety of CSS prop-
erties that you can use to control the look and feel of your web pages’ typography.

You can see the effect of all of this chapter’s changes combined in our King Kong page,
which you’ll be referring to as you embark on this chapter’s homework: adding additional
style to Gordo’s page. You can access this page here:

Without further ado, let’s get started on our typographic journey.

Specifying a typeface

You now know that you can specify a set of typefaces to ensure your typeface selections
are more reliable, using alternatives and generic font family names to create a controlled
fallback situation in the event that your users don’t have your first choice of typeface.

We’d like to display all of the type on our King Kong page in Lucida Grande. A humanist
sans serif typeface included with Apple’s Mac OS X operating system, we know this won’t
be available on computers running Windows or Linux by default, so we’ll need to specify
some fallback fonts for users on other platforms.

We add the following rules to our CSS body declaration, setting the typeface and establish-
ing a base type size for all of the typographic elements on the page. (Remember, elements
like our headings will need to be given explicit sizes to stop the browser’s default style
sheet from overriding our declaration.) We amend the following declarations to our
body rule:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

212

This sets all of the type on the page to display in Lucida Grande. Users who don’t have that
typeface installed will get Lucida Sans if it’s installed, failing that Arial (a Core Web Font).
If that’s not available, they’ll get their browser’s default sans serif.

Astute readers will notice that both Lucida Grande and Lucida Sans have quotation
marks around them. Why is this? The reason is simple: both typefaces’ names consist of
more than one word and contain a space. Any font with more than one word and
a space—for example, Times New Roman or Courier New—should be enclosed in straight
quotes. Note also that the comma needs to follow the closing quotation mark.

Quotation marks must not be used to enclose generic names (,
if, , , and).

You can see the effect of this rule on our King Kong page by following the URL we listed
at the start of this section.

Let’s lose some weight

As you briefly saw earlier in the chapter when we looked at the issue of specificity, when
we mark up headings, the browser’s built- in style sheet sets headings to display in bold by
default. If we’d like our headings to display in something other than the default weight, we
need to explicitly set it using a rule in CSS. We do this using the property.

We’d like to style all of our headings from to to display in a normal weight (or, if you
were a typographer, a roman weight). We can do this using one rule, a grouped selector,
which takes care of all of our headings by explicitly setting a ht. We add the fol-
lowing rule to our style sheet:

The result of this one rule is that all of our headings display in a roman weight. In Figure 9-7
we show the headings before and after the change for comparison.

Using the property we can set a variety of weights for our type either numer-
ically (, , . . .) or using keywords. The numeric value is equivalent to the
keyword ; is equivalent to .

STYLING TEXT

213

9

 Figure 9-7. Our single rule, using a grouped selector, takes care of all of our
headings. On the left our headings as displayed using the browser’s default style
sheet’s ht, on the right as they are now styled with our new rule.

Text transform

CSS offers us a variety of powerful methods of altering the text that’s included in our
markup, enabling us to transform the case in which it’s set, regardless of how it appears in
our markup. We can use the property in CSS to visually transform the
display of text into or , or even to capitalize words using the value

.

In this section we’ll use a rule to transform the , which sits above our list of references,
into uppercase to differentiate it from the other headings on the page. We add the follow-
ing declaration to our rule:

The result of this declaration is shown in Figure 9-8.

 Figure 9-8. Using the property in CSS,
we can magically transforms the visual display of our
text into uppercase.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

214

Letter spacing

Looking at Figure 9-8, the spacing between the uppercase letters is a little tight; they
would look better with a little space inserted between them (a property known to typog-
raphers as kerning). No problem! CSS provides us with a means of controlling kerning
using the property.

We increase the letter spacing of our heading by adding the following
declaration to our rule:

The result of this is shown in Figure 9-9.

 Figure 9-9. Our type is now letter- spaced a little more
generously.

It’s worth noting that we’ve specified our in ems to ensure that the
amount of kerning is applied in proportion to the text size of the .

A word of warning: letter spacing—while useful when styling headings in uppercase let-
ters—is not recommended for lowercase letters. Letter spacing lowercase letters can
impede legibility and, unless absolutely necessary, should be avoided.

The prolific American type designer Frederick W. Goudy went so far as to state, “A man
who would letterspace lower case would steal sheep.” Trust us, at the time, this was quite
an insult. Stealing sheep? Who would even countenance the thought . . . This quote went
on to become the title of noted typographer Erik Spiekermann’s excellent book Stop
Stealing Sheep & Find Out How Type Works (Adobe Press, 1993), which is well worth
reading for a comprehensive introduction to the wonderful world of typography.

When setting using CSS, you’re not restricted to positive letter spacing
values; you can also set negative values, for example, , although
why you might want all of your letterforms to overlap each other to create an illegible
mess is beyond us.

CSS also allows you to control the space between words using the property
as in the following example:

STYLING TEXT

215

9

We leave it as an exercise for you to add this declaration to your Gordo web page and wit-
ness why should best be avoided like the plague.

Styling paragraphs

Our page is beginning to take shape. In this section we’re going to look at some CSS rules
to give our paragraphs some style. We’ll introduce some vertical space between the lines
within our paragraphs, using a property known as to improve the legibility of
our paragraphs.

In CSS the vertical space between lines of text is called ht; in traditional typo-
graphic terms this would have been known as leading. In the early days of typography,
strips of lead would have been inserted between lines of text to space them apart, which
is where the term leading originates.

Once we’ve set a ht, we’ll look at the property to create indents
for the first lines of each of our paragraphs. Finally, we’ll look at the selector
to align our text to both the left and right, to center it, and to justify it.

Setting a line height
Before we embark on adding some line height, let’s regroup. The of our ele-
ments is (remember, we set it on the element, and the element has inherited
this size). However, at present the of all the elements on the page is being
dictated by the browser’s default style sheet as shown in Figure 9-10.

 Figure 9-10. The of our paragraphs as it currently stands,
styled using the browser’s defaults

We’d like to give our elements some additional ht, however, to space the lines
out a little bit more and improve their legibility. We do this by adding a declaration to the
rule targeting our elements as follows:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

216

The result of this is shown in Figure 9-11.

 Figure 9-11. The of our paragraphs set to a value of 1.6—
1.6 14 px (the paragraph text size)

As you can see, adding the declaration adds a little more vertical space
between the lines of our paragraphs, improving their legibility. We can set as much

 (or as little) as we’d like; however, it’s worth bearing in mind that too much
(or too little) space between the lines of paragraphs can impede legibility. While we rec-
ommend the addition of a little to “loosen the text up a little” when setting
large paragraphs of type, we suggest—like extra hot chili powder—it be used sparingly.

When specifying a ht, we’re not using a unit of measure (like or); instead
we’re leaving the value unitless. This way the remains consistent
throughout your page. Let’s explain this by looking at a simple example:

To make the calculations easier to follow, we’ve set a of on the and
 on our element. We’ve set the to , or for the .

The descendent element will inherit this calculated of .

STYLING TEXT

217

9

However, most of the time we’d like the to be consistent across all of our
elements. In our example we’d like the of the element to be ,
or . The simplest way to achieve this is to remove the unit of measure from our

 declaration in the rule as follows:

This will achieve our goal of creating a that is 1.5 times the of each
descendant element on our page. The rule of thumb is this: when specifying ht,
leave the unit of measure off, and your CSS will work as expected.

Adding paragraph indents
Now that we’ve increased the of our paragraphs, let’s take a look at another
property that CSS allows us to control: nt.

As you discovered in Chapter 3, paragraphs are block- level elements, separated by line
breaks. As such, the beginnings and endings of paragraphs are easily identified thanks to
the vertical space added beneath elements by default in most web browsers.

In Chapter 10 we’ll show you how to reset the vertical space (a property known as)
that sits between paragraphs, removing the blank lines that separate the paragraphs as
they stand on our current King Kong page. However, we’ll need to replace this vertical
space with something to indicate to the reader that a new paragraph is beginning.

Most novels use indentation to indicate the beginning of each new paragraph within
a block of continuous text. We can achieve the same visual effect using the
property in CSS.

Adding the following declaration to a rule styling paragraphs indents the first line of every
paragraph by 2 ems:

The result of this rule can be seen in Figure 9-12.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

218

 Figure 9-12. Using allows us to indent the initial lines of our
paragraphs.

Aligning text using text- align
Our last focus for this section is the question of aligning type. In CSS type can be aligned
using the following four principle settings: , , , and . The first
three are fairly self- explanatory; the fourth comes with a note of caution.

You’ve seen left- aligned text already on the King Kong page we’ve been building, as brows-
ers align text by default to the left. With no specified, the browser’s default (in
the Western world) is and the preceding paragraph examples are all
 left- aligned. However, we can align text to the right by using a declaration, as
added in the following example:

You can see the result of this declaration in Figure 9-13.

 Figure 9-13. Our paragraph is now aligned to the right.

We can also center our text using the value as in the following example:

You can see the result of this declaration in Figure 9-14.

STYLING TEXT

219

9

 Figure 9-14. Our paragraph is now centered. This can be useful to differentiate
type in headings or for centering footer text, for example.

The last value we’ll consider is the value as in the following example:

You can see the result of this declaration in Figure 9-15.

 Figure 9-15. Our paragraph is now justified. The browser adjusts both letter
spacing and word spacing to justify the text.

Danger, Will Robinson! In certain situations can really add to
a design. However, a note of caution: when text is justified in short paragraphs, it can result
in large gaps or “rivers” of space between words, for example, between the words miracu-
lously and escaped in Figure 9-16.

 Figure 9-16.
When used on paragraphs with a narrow measure,
justification results in unsightly rivers running
through the text.

Justifying text in print is considerably easier than justifying it online. Justifying text in print
often involves the use of hyphenation to even out the different lines in a block of text as
much as possible, reducing the possibility of rivers of white space. Online, however, where
text can reflow as a user increases and decreases the size of their type, this isn’t possible.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

220

Styling links
The last typographic element on our King Kong page we need to style are its links. Before
we get down to some examples, first a word on styling links in general. How should links
be styled? Specifically, to underline or not to underline?

There are many different opinions on this, and many designers have created great-looking
links without an underline in sight. Be aware though that users usually expect links to be
underlined (and expect underlined text to be links). However, this isn’t to say that links
have to be underlined. Should you choose to style your links differently, it’s a good idea to
ensure that they stand out from the body text.

CSS allows us to style links so that they react to a user’s interaction with the link itself. We
do this by targeting a number of pseudo- classes, which relate to the different states a link
can be in. These pseudo- classes are as follows:

 : This is the default state for all unvisited links; left unstyled, this is usually blue
and underlined.

 : This is the state for all visited links; left unstyled, this is usually purple and
underlined.

 : This is used to identify when a user is hovering over a link (i.e., the user’s
mouse is positioned over the link).

 : This is used to identify when a user is activating a link or actually in the
process of clicking it.

 : This is used to identify when a link has focus, for instance, when a user tabs
to the link using the keyboard.

We can style these pseudo- classes to give our users more visual feedback when they inter-
act with links, a topic we cover in the next section.

Using pseudo- classes to style links

We’ll introduce in a following chapter; for now we’ll look at styling your links
using the different link pseudo- classes to give your users a richer experience as they inter-
act with your web pages.

Links can be styled at the most basic level through the inclusion of a simple rule in your
style sheet, as in the following example:

This rule targets all instances of the element (our anchors) and overrides the browser’s
default blue for links, replacing it with a bright red. So far, so good, but not exactly
 super- exciting. Let’s look at links in a little more detail by styling the links in the references
section of our King Kong page.

STYLING TEXT

221

9

Our page currently stands as shown in Figure 9-17; the links, in the default blue, are very
hard to see due to a lack of contrast between the link color and the page’s background
color.

 Figure 9-17. Unstyled, the default dark blue color of our links
is hard to read, lacking contrast with the page’s background.

We resolve this by setting the links to display in the same powder blue color as our head-
ings, which, being higher contrast, improves legibility. We also switch off the browser’s
default underlines by setting the property of our links to , removing
the underline (we’ll add this later using a border). Although this change might seem coun-
terintuitive—switching off an underline to replace it with a border—the border will allow
us much more scope for styling as you’ll see shortly. Lastly, we give the links their own

 to space them out a little more.

We add the following CSS rule:

The result of this rule can be seen in Figure 9-18.

 Figure 9-18. Our links’ color is now set to match the powder
blue of our headings. We’ve also switched off the underlining.

Now our links are styled so they pick up the powder blue theme we’ve been developing,
improving the consistency of our design. However, we switched off the underline in the
last stage by setting the property to This could be confusing to
our users who might not realize the references are, in fact, links.

We add a border to our pseudo- class to switch the underline back on. Why do this?
Simply because the border gives us much more flexibility. We’ve set the border to be ,

, and powder blue (). By simply adjusting this declaration, we could increase
the weight of our underline to, for example, ; we could also use or
instead of to create, you guessed it, dotted and dashed underlines. We add the fol-
lowing rule to our style sheet:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

222

The result of this rule is shown in Figure 9-19.

 Figure 9-19. Our links are now underlined, this time using
.

By using a border we have much more control over our link’s underlines, allowing us to set
the border, for example, to , , , , or . We can also accu-
rately control the position of the underline in relation to the link text using , as
you’ll see in Chapter 10.

Now that we’ve styled our state, we’ll look at styling the state. Giving it
a different style to our state will visually inform the user which links they’ve visited
and which they haven’t. We add the following rule:

STYLING TEXT

223

9

We’ve used a border so you can see its effect; we’ve also set the type and the
underline to the same color as the body text on the page, differentiating our visited links
from our unvisited links. The result of this can be seen in Figure 9-20.

 Figure 9-20. Our visited links are now differentiated from
our unvisited links.

Lastly, we style our and states to provide some interactivity when the user
hovers over the links or clicks them. We do this by adding two further rules to our style
sheet:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

224

As you can see in Figure 9-21, when the user mouses over a link, the background color
changes, giving a clear visual indication that the text is a link.

 Figure 9-21. Setting a state provides useful visual
feedback to the user.

You can see everything we’ve covered in this section in action at the King Kong web page
at the book’s companion web site:

To ensure your links are more accessible, it's advisable to include another, lesser- known
 pseudo- class: . This pseudo- class is useful for people who might not use a mouse,
instead perhaps using their keyboard to navigate through the links on a page. In most
instances can be grouped with the pseudo- class, using a grouped
selector, to easily increase the accessibility of your web page.

We’ve only scratched the surface of what’s possible when styling links. The best way to get
a feel for what’s possible is to experiment by adding rules to your own XHTML pages and
experimenting with changing your own link styles. Trial and error along with some good,
 old- fashioned use of View Source to look at how links are styled at other web sites will give
you lots of inspiration.

LoVe HAte your links

In the last section we added a full set of rules for our links in all of their states (,
 , , and). It’s important to point out that these pseudo- classes need to
be written in a particular order in our CSS to behave properly so that one link pseudo- class
doesn’t override another. This order is as follows:

 (L)

 (V)

 (H)

 (A)

An easy way to remember the right order—LVHA—is with the mnemonic: LoVe HAte. (Or
you could use noted Standardista Dan Cederholm’s mnemonic Love Vegetables? Have
Asparagus!)

STYLING TEXT

225

9

Summary
So what have we covered? This chapter has been a bit of a rollercoaster. We’ve discussed
a great deal, and we’d strongly recommend you read it again, trying out some of the
examples as you read along.

We covered some more complicated, but important, aspects of CSS including inheritance
and specificity. We also looked at the use of grouped selectors in CSS and how their use
can keep our code lean and mean and, as a consequence, easier to maintain as we move
forward.

Along the way we looked at typography and how you can use CSS to control it within your
documents. In our walkthrough we showed you a wide variety of ways to create great-
looking text online. Finally, we explored using pseudo- classes to give a degree of interac-
tivity and user feedback to our links. As with the preceding chapters, follow along using
your homework files, comparing them to our examples, and your grasp of styling text with
CSS should improve considerably.

In the next chapter we’ll introduce the fundamental principles of CSS layout, enabling you
to control the position of the elements on your web pages.

Homework: Improving Gordo’s typography
In this chapter we introduced you to a variety of methods of styling text using CSS, show-
casing the power and flexibility of style sheets when used for handling typography. The
topics we covered will enable you to take your Gordo page’s typography and raise it to the
next level.

Our focus throughout the chapter was on type, and we introduced you to a number of
different properties perfect for styling text using CSS, including ht,

rm, and ng, ht, nt, and
gn.

We also introduced the concept of inheritance and specificity, explaining how an under-
standing of these two principles will enable you to write lean and easy-to- maintain style
sheets.

In this chapter’s “show and tell” we applied all of the preceding properties to our King
Kong page to show them in action. Your homework for this chapter will be to apply some
of these properties to your Gordo page, enhancing its typography and improving the styl-
ing of its text.

The process of adding these new properties will further underline your knowledge and
awareness of CSS and, as a byproduct, introduce you to the power of inheritance and how
it can be used to improve your style sheets by creating more efficient rules.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

226

1. Change your font- family

In Chapter 8 we showed you how to set a on the and elements. In this
chapter we’d like you to remove the declaration from the element of your
Gordo page and take care of all of the page’s typography by setting a declaration on the

 and allowing inheritance to take care of the rest.

It’s also time to revisit the choice of typeface you’re using. In the last chapter we deliber-
ately kept things simple by specifying two widely installed typefaces: Arial and Verdana. In
this chapter, however, we introduced you to the concept of fallback fonts and used them
to specify values for our King Kong page’s property as follows:

We’ve left it to your discretion to select a typeface of your own choosing for your Gordo
page; however, we’d like you to specify a number of fallback fonts to ensure that the
page’s typography is considered in the event of your first choice of typeface being unavail-
able.

Once you’ve made these changes, save your Gordo page and test their effect in a number
of browsers.

2. Use grouped selectors

In Chapter 8 we specified the same for two of our headings (the and), writing
an identical declaration for each rule. In this chapter we introduced you to the con-
cept of grouped selectors, which allow you to reduce the number of declarations in your
style sheets by targeting more than one element with each CSS rule.

In this chapter we’d like you to style all of your Gordo page’s headings from to . Set
the of all of your Gordo page’s headings to display in (overriding the
browser’s default style sheet styling) and set the of all of your headings to
display in the light shade of blue we’ve been using ().

Instead of writing duplicate declarations for each heading’s rules, use a grouped selector
to take care of the common styles that the headings share. You can refer to the example
of a grouped selector in this chapter to see how we styled the common declarations on
our King Kong page’s – elements.

3. Style the <h4>

Referring to the examples provided in this chapter, style your element—the “References”
heading—using the and properties.

Experiment with some of the values we covered in the chapter; for example, try setting the
 value to , , and and testing the effect of

these rules in the browser.

We’d also like you to explore the effect of adjusting your values; try
, , and . Again, test the effect of changing these values in the browser.

(Remember our note of caution: use in moderation, especially when
 lowercase letters. ! What were we thinking?)

STYLING TEXT

227

9

4. Style the paragraphs

In this chapter we introduced ht, nt, and gn—three proper-
ties that can be used to great effect to style your paragraphs and improve their legibility.
Referring to the examples in this chapter, experiment by setting a variety of values for each
of these properties and testing their effects in the browser.

5. Style your links

The last set of rules we’d like you to create is targeted at your Gordo page’s links. You
might recall that, at the end of the last chapter, the links on your Gordo page suffered
from a lack of contrast with the of the page, displaying dark blue on
a dark brown background. Good news, you’ll resolve this here.

Taking a look at our examples in this chapter, style your Gordo page’s links, improving their
usability. Using the pseudo- classes we introduced, experiment with setting styles for the
following pseudo- classes: , , , and .

As usual, to help you with the different stages of this chapter’s homework, we’ve created
our own, similarly styled, page about King Kong featuring new, improved typography. You
can refer to this, using your browser’s View Source menu command to see how we’ve
updated our CSS, here:

Once you’ve completed Gordo’s typographic upgrade, put the kettle on and enjoy a cup of
Ceylon Dimbula Inverness as you prepare yourself for the next chapter.

CHAPTER 10

A ONE- COLUMN CSS LAYOUT

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

230

This chapter forms the next stage of our journey to build a well- structured and well- styled
web page. As in the previous chapters, we’ll be working on our King Kong page and walk-
ing you through a variety of practical and hands- on CSS techniques.

In this chapter we’ll be adding some additional structure to our document by breaking our
King Kong page down into sections or divisions. We’ll introduce and use div elements as
the basis for creating a simple one- column CSS layout. An understanding of how div ele-
ments work is an important part of your Web Standardistas’ journey and will form the
foundation for creating more complicated layouts in CSS, so we urge you to pay attention
throughout this chapter.

Along the way we’ll introduce adding margins, borders, and padding, a means of adding
borders and space around your elements and, as a byproduct of that, we’ll introduce the
CSS box model. We’ll also look at the humble span, the inline sibling of the div, as well as
ids and classes, attributes that allow you to identify and classify individual or groups of
elements to easily target them with styles.

Finally, we’ll look at CSS background images and how they can be used as a simple but
effective means of ensuring your designs are just a little bit more interesting.

We know you’re eager to get started and to get your hands dirty, but first, some short
messages.

The Cascade in Cascading Style Sheets
Before we get on to the juicy part of this chapter, it’s important to introduce a few more
aspects of how CSS works. We’re reaching a point at which our style sheets can get quite
complex, and as a consequence, conflicting CSS rules might have an impact on how our
elements display.

Allow us to digress for a moment while we look in a little more depth at the cascade in
Cascading Style Sheets. We’ll introduce how the cascade works; we’ll also take a look at
what happens when your CSS contains more than one rule targeting the same element and
how the browser resolves these issues.

So what exactly is the cascade?

We’ve talked a lot about Cascading Style Sheets, but we’ve yet to touch on the actual topic
of cascading. As your pages grow in complexity, especially as you start to use internal and
external style sheets in combination during the development process, an understanding of
the cascading aspect of CSS becomes important.

So what exactly is the cascade? The cascade is how CSS resolves conflicts between differ-
ent styles, for example, when more than one rule is applied to the same element. The best
way to explain how the cascade works is to show you an example.

We mentioned earlier in the book that we’d be working on an internal style sheet until we
had our design complete. We also mentioned that—when the time was right and we had

A ONE- COLUMN CSS LAYOUT

231

10

the style sheet we wanted—we would remove this from the XHTML page itself to create
an external style sheet that we would link to. We also mentioned the browser’s default
style sheet in Chapter 9. Lastly, we mentioned inline styles in Chapter 8, where the various
styles are applied within the body of the XHTML page itself, directly to the elements we’re
styling.

This gives us a total of four potential sources of style for the elements on a page. So what
if we have multiple rules targeting the same element? What wins out?

Imagine this scenario: we have a very simple web page with just a single h1 on it. Unlikely,
but for the purpose of this exercise, a little easier to follow.

As you know, the browser’s default style sheet defines default styles for all the elements
on our pages, including our solitary h1. As you saw in the chapters covering XHTML, the
browser’s default style sheet sets our h1’s color to black by default. However, what if we
also have an external style sheet with a rule targeting our h1, setting its color to red? (We
know we haven’t told you how to create an external style sheet yet, but the principle
remains.) As if this weren’t confusing enough for the poor h1, let’s add an internal style
sheet too, with a rule for our h1 setting its color to green. Lastly, let’s apply a style directly
to the h1 itself using an inline style, setting its color to blue.

So, our lone h1 is being styled left, right, and center (and from above too). Which style
takes precedence? What color will the h1 display in? The answer is blue, because the inline
style wins. Let’s find out why.

First, you need to get your head around the concept that before displaying your page,
a browser gathers all of the different styles together; these styles then cascade into a new
“virtual” style sheet combining all the different styles as visualized in Figure 10-1.

 Figure 10-1. The browser gathers together the different styles, identifying which rules
win in the event of any conflicts, before applying them to our web page.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

232

Which styles “win out” in this new, “virtual” style sheet depends upon a set of complicated
rules. We’ve simplified them here to make things a little easier to understand. The winners,
in order, are as follows:

 1. Inline styles

 2. Internal style sheet (This is the style sheet you’re currently using, situated inside the
head element.)

 3. External style sheet

 4. Browser’s default style sheet

So, internal style sheets win over external style sheets. Both take precedence over the
browser’s default style sheet. Inline styles—on the rare occasions you might use them—
overrule everything. You can see this in action by looking at the source code of a page
we’ve created for you to demonstrate how our solitary h1 is styled, at the book’s compan-
ion web site:

www.webstandardistas.com/10/cascade.html

In fact, the rules of the cascade are a little more complicated, but this, in essence, is it.
Although you’re not using external style sheets yet, you might witness a potential clash
between your inline style sheet and the browser’s default style sheet. Hopefully an aware-
ness of this will save you tearing your hair out when things are appearing to “go wrong”
and you can’t work out why.

The order of your CSS rules is important

As your style sheets get longer and more complicated, it’s easy to lose track of what you’ve
styled and find yourself writing additional rules lower in your style sheet that clash with
earlier rules you’ve previously written. Take a look at the following example:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;
}

p
{
color: red;
}

/* Imagine another few dozen additional rules here. */

p
{
color: blue;
}

A ONE- COLUMN CSS LAYOUT

233

10

You’ve written a rule for your p elements to display all paragraphs in red as you first
intended. However, after writing a few dozen additional rules, you’ve written another rule
for your p elements to display all paragraphs in blue. Perhaps you forgot about writing the
first; perhaps someone interrupted your train of thought, and it just slipped in by
 mistake.

So now there are two conflicting CSS rules targeting your p elements. What color will your
paragraphs display in? The answer is blue. The browser takes the rule lowest in the style
sheet and uses it to display your paragraphs. The later a rule appears in a style sheet, the
more weight it is given.

Your style sheets might not be complex now, but they eventually will be, and you’d be
surprised how often this happens. When an element doesn’t display as you intended, it’s
worth spending a few minutes checking for duplicate rules in your style sheet(s) as this can
often be the source of problems.

Introducing margins, borders, and padding
In Chapter 9 you saw how we could use line- height to give our paragraphs a little more
spacing between the lines of text to aid legibility. We can also put space around our ele-
ments, using margins, borders, and padding to create space between our different elements.
As we move toward creating more complicated layouts for our King Kong page, an under-
standing of how the margin, border, and padding properties work is important.

So far we’ve looked at styling elements in isolation, adding some line- height, and styling
the typography of the different elements. In this section we look at how margins, borders,
and padding are applied in CSS, affecting the relationship of our elements to each other.
An understanding of this will form the basis for creating CSS layouts.

Meet the box model

Before we embark on a walkthrough, adding margins, borders, and padding to a simple
paragraph to show how they affect a typical element, we need to cover a little theory.

You already know that all elements on a web page are treated as boxes—some are
 block- level, some are inline- level (we introduced this concept in Chapter 3). Each of these
boxes is comprised of a content area and optional margins, borders, and padding. Up until
this point margins, borders, and padding have been set by the browser’s default style
sheet; however, we can explicitly set them using CSS, overriding these defaults and specify-
ing sizes we’d prefer.

The relationship of an element to its margins, borders, and padding is known as the box
model. An understanding of the box model and how it works is crucial as we move for-
ward to cover CSS layouts, so, without further ado, let’s meet the box model.

 Figure 10-2 illustrates the relationship between an element and any added margin, border,
and padding. As you can see, the padding sits between the edge of the element and any

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

234

border added to it; the margin sits between any border added to an element and any adja-
cent elements.

 Figure 10-2. The W3C box model, showing the relationship of an element’s content
to its margins, borders, and padding

When margin, border, and padding properties are all specified, the width of our element—
or the space that it occupies within the browser window—is as follows:

margin-left + border- left + padding- left + element width + padding- right +
 border- right + margin- right

We’ll see this in action in the following section when we take a typical element, a para-
graph, and add margins, borders, and padding to it, demonstrating the effect that this has
on an element within the context of a browser window.

Applying margins, borders, and padding

Now that we’ve introduced you to the box model and margins, borders, and padding, we
need to look at how these are applied to our elements. In this section we add margin,
border, and padding declarations to a single p element and demonstrate their effect within
a browser. This will give you an idea of how an element’s margins, borders, and padding
relate to each other and how you can use them together to structure your web page.

To start with we’ve created a very short web page with a single paragraph. We’ve written
the following two CSS rules:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;

A ONE- COLUMN CSS LAYOUT

235

10

color: #000000;
background-color: #FFFFFF;
}

p
{
width: 400px;
line-height: 1.5;
}

In the preceding rules we’ve applied some basic styling to a very simple paragraph. We’ve
set a width on our sole p element of 400px to allow us to see the paragraph in context
within a browser window and to see how adding margins, borders, and padding affects the
overall width of our element within the browser. This renders in a browser as shown in
 Figure 10-3.

 Figure 10-3. A simple paragraph with no margin, border, or padding declarations added

To highlight the block- level nature of our paragraph element, and to enable us to see the
effect of adding margins, borders, and padding, we add a declaration to our p rule setting
the paragraph’s background- color to display in light gray, as follows:

p
{
width: 400px;
line-height: 1.5;
background-color: #CCCCCC;
}

The result of this is shown in Figure 10-4.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

236

 Figure 10-4. Setting a background- color on our paragraph reveals its underlying block- level
nature.

Now it’s time to add some margins; before we do that, however, we’ll begin by removing
some margins (this might sound odd, but all will be revealed in a moment).

As you can see in Figure 10-4, our browser’s default style sheet is already applying some
default margin to both our body element and our block- level p element, adding space
above it and to the left of it (there’s also space below it and to the right of it, but to all
intents and purposes, it’s invisible in this example). This is the default margin that the
browser applies to our p and body elements in the event of no other style sheet specifying
a different amount.

We’ll remove the browser’s default margin by setting the margin on the body and p ele-
ments to 0. We do this by adding the following two declarations to our existing body and
p rules:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;
color: #000000;
background-color: #FFFFFF;
margin: 0;
}

p
{
width: 400px;
line-height: 1.5;
background-color: #CCCCCC;
margin: 0;
}

A ONE- COLUMN CSS LAYOUT

237

10

Removing the browser’s default margin results in the paragraph appearing as shown in
 Figure 10-5.

 Figure 10-5. Resetting the margin on the body and p elements removes any default margin from
the paragraph that would otherwise be applied by the browser’s default style sheet.

By removing the browser’s default margins, our paragraph now sits tight to the top left
corner of the browser window. Now we’re ready to start adding some margins, borders,
and padding of our own and see how they affect the paragraph.

We amend the rule styling our p element, changing the value of our margin declaration
and setting it to 40px:

p
{
width: 400px;
line-height: 1.5;
background-color: #CCCCCC;
margin: 40px;
}

What this does is set the margin on all four sides of the paragraph to 40 pixels as shown in
 Figure 10-6. Although we’ve only written 40px once, CSS shorthand is setting this on all
four sides of the p element. (Rest assured, we’ll be introducing you to the CSS shorthand
for margins, borders, and padding shortly.)

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

238

 Figure 10-6. Adding 40px of margin to our paragraph moves the paragraph 40px down and 40px
to the right. Although you can’t see it, 40px of margin has also been added to the right edge and
bottom edge of the paragraph.

Now it’s time to add a border to our paragraph element. We introduced you to the border
property in Chapter 9, when we added a border to our links, so the following additional
declaration shouldn’t be new to you:

p
{
width: 400px;
line-height: 1.5;
background-color: #CCCCCC;
margin: 40px;
border: 10px solid #666666;
}

Adding the border declaration results in our paragraph appearing as you see in
 Figure 10-7.

 Figure 10-7. Adding a 10px dark gray border to the paragraph

A ONE- COLUMN CSS LAYOUT

239

10

Essentially we’re setting a border on the paragraph to be 10px wide, solid, and a darker
shade of gray. We now have a border around our paragraph; however, the text of the
paragraph is sitting tight to the edge of its block- level box and sitting tight toward the
border. It’s time to add some padding.

We add a new declaration specifying a value for our padding as follows:

p
{
width: 400px;
line-height: 1.5;
background-color: #CCCCCC;
margin: 40px;
border: 10px solid #666666;
padding: 20px;
}

Adding this rule results in the layout shown in Figure 10-8.

 Figure 10-8. Adding some padding to our p element inserts some space between the paragraph
and the border.

So now you’ve seen how an element’s margins, borders, and padding relate to each other.
Let’s take a look at how the preceding additions measure up in the browser.

Understanding how the browser sees this, particularly how it calculates the width the ele-
ment is now occupying with the added margins, borders, and padding, is important as it
will have a bearing on our CSS layouts when we start to place the content of our web
pages into divs, assign them a specific width, and set any margin, border and padding
declarations.

In Figure 10-9 we’ve annotated the screenshot in Figure 10-8 to show how the added
 margin, border, and padding declarations affect the width of our element.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

240

 Figure 10-9. The combined width needed for our paragraph is 540 pixels; this consists of all
margins, borders, padding, and the width of the paragraph itself.

Looking at Figure 10-9, you can see that when margins, borders, and padding are all spec-
ified, the width of our element—or the space that it occupies within the browser win-
dow—is as follows:

margin-left + border- left + padding- left + element width + padding- right +
 border- right + margin- right

So, in the example in Figure 10-9, our total width is as follows:

40px + 10px + 20px + 400px + 20px + 10px + 40px = 540px

It’s worth noting—if only as a historical footnote—that Internet Explorer 5.5 and earlier
used a different method of calculating the total width of the box, which used to cause
web designers no end of problems. Luckily for you, those days are now, thankfully, a thing
of the past. Starting your document with a correct DOCTYPE, as we covered in Chapter 2,
instructs Internet Explorer 6 and 7 to use the correct, W3C box model interpretation.

So, now we know that the browser calculates the width an element occupies on a page by
totaling up the width of the element plus any added margins, borders, and padding. It’s
worth noting that in this example we applied margins, borders, and padding to a p ele-
ment; we could do exactly the same with a div filled with content, thereby enabling us to
 control layout.

Using CSS shorthand for margins, borders, and padding

By now you should be using View Source regularly to look at other designers’ source code
in addition to looking at the source code of the example pages we’ve been providing for

A ONE- COLUMN CSS LAYOUT

241

10

each of the chapters. You might have noticed that CSS rules can be written in a variety of
ways, in some instances using what’s known as shorthand to make rules more compact.

You briefly met some CSS shorthand in Chapter 9 when we introduced the border prop-
erty to apply a border to the bottom of our links as follows:

a:link
{
border-bottom: 1px solid #9CC4E5;
}

We can write the same rule in longhand, styling each of the properties separately, as
 follows:

a:link
{
border-bottom-width: 1px;
border-bottom-style: solid;
border-bottom-color: #9CC4E5;
}

Both of these rules style the border- bottom (the border at the bottom of our a:link
 pseudo- class) in exactly the same way; however, the first is clearly shorter.

Choosing a shorthand method over a longhand method is largely a matter of preference,
and it could be argued that a longhand approach allows you to clearly see at a glance
exactly what you’re styling. However, it’s also worth noting that in the preceding example,
the shorthand version is half the length of the longhand version. Multiply that over a num-
ber of rules, and you’re clearly reducing download times and bandwidth requirements.

Let’s take a look at another example, from the preceding walkthrough. We added a margin
to our paragraph as follows, setting a margin on all four sides of the p element with
a single declaration:

p
{
...
margin: 0;
}

We could have also written this as four declarations as follows:

p
{
...
margin-top: 0;
margin-right: 0;
margin-bottom: 0;
margin-left: 0;
}

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

242

The two are functionally equivalent and will result in exactly the same display within
a browser. When the value of a property is the same on all four sides, it can be specified
once, and the browser will apply this value to all four sides.

When specifying zero as a measurement, you don’t need to specify a unit of measure;
margin: 0px; and margin: 0; will display identically.

Let’s take a look at a couple of other examples of CSS shorthand in action. In the following
example, the values for the top and bottom margin are 20px and the values for left and
right margin are 10px:

margin: 20px 10px 20px 10px;

When the top and bottom, and left and right values are the same, CSS allows us to shorten
this even further, as follows:

margin: 20px 10px;

The first value (20px) styles both the top and bottom, and the second value (10px) styles
both the left and right.

It’s important to note that, when using shorthand, margins, borders, and padding
are defined in the following order: top, right, bottom, left.

An easy way to remember the order in which margins, borders, and padding are applied
to all four sides is to think of the numbers on a clock: top = 12 o’clock, right = 3 o’clock,
bottom = 6 o’clock, and left = 9 o’clock.

A longhand approach can prove useful when you’re styling an element with different val-
ues on each side as follows:

blockquote:
{
margin-top: 20px;
margin-right: 40px;
margin-bottom: 60px
margin-left: 10px;
}

In this example, our blockquote sits 20px from the base of any element above it, has 40px
of margin on the right- hand side, inserts 60px of space beneath it, and has 10px of margin
on the left- hand side.

This could, however, also be shortened and written as follows:

A ONE- COLUMN CSS LAYOUT

243

10

blockquote:
{
margin: 20px 40px 60px 10px;
}

As with everything we’ve covered, this can be a lot to take in, but practice makes perfect.
Use View Source to view others’ CSS, and you’ll pick up the preceding shorthand in next to
 no time.

Styling our <blockquote>

We’ve looked at specifying margin, border, and padding declarations for a simple p ele-
ment. We’ve also looked at using CSS shorthand to specify our different rules. Let’s com-
bine these two in a real- world example that we’ll apply to our King Kong page.

To show margins, borders, and padding in action we’ll take our blockquote as it stood at
the end of Chapter 9 and apply some style to it, giving it margins, a border (on one side
only), and some padding.

As it stood at the end of Chapter 9, our blockquote was styled using only the browser’s
default style sheet and the rules we had set on the body to style our typography. The result
of these combined rules is shown in Figure 10-10.

 Figure 10-10. Our blockquote as it stood at the end of Chapter 9. The default
styling isn’t doing it any justice.

We’ve taught you a great deal over the last few chapters, and we can combine this knowl-
edge to apply a little more style to our humble blockquote, helping to differentiate it from
the surrounding text.

Using the margin, border, and padding declarations we covered earlier and adding a few
more declarations we introduced in Chapter 9, we’ll differentiate the blockquote from the
surrounding text, helping to highlight it as a feature within the text. We add the following
CSS rule targeting the blockquote:

blockquote
{
font-family: Georgia, sans- serif;
font-size: 18px;

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

244

font-style: italic;
letter-spacing: 0.1em;
margin-left: 40px;
border-left: 10px solid #E0DFDA;
padding: 0 20px;
}

The first four rules should need no introduction, as we covered them in Chapter 9; essen-
tially they set the blockquote in a different typeface from that used on the rest of the
page and add a little typographic style, helping to visually highlight the quote.

The margin, border, and padding declarations highlight how we can creatively use these
properties to add some style to our blockquote. It’s worth noting that we’re not restricted
to setting the margins, borders, and padding on every side; we can selectively apply these
properties as in this example.

Applying a margin- left to the blockquote indents it by 40px, setting it apart from the
surrounding text. We also set a border- left that gives a strong visual focus to the left- hand
side of the blockquote and creates a more striking effect, visually distinguishing the
blockquote from the surrounding paragraphs and headings. Finally, we add some padding
to the left and right sides to ensure our blockquote isn’t sitting tight toward the left- hand
border and to give it an indent on the right- hand side.

The result of our newly added blockquote rule is shown in Figure 10-11.

 Figure 10-11. Creatively using margin, border, and padding declarations
allows us to style our blockquote a little more creatively.

By simply varying the values for our margin, border, and padding declarations, we can
apply a great deal of style to our blockquote element.

Dividing up your document
For the remainder of this chapter we’ll focus primarily on XHTML’s div and span elements
and their associated id and class attributes. Used together, these offer us a powerful

A ONE- COLUMN CSS LAYOUT

245

10

means of adding further structure to our XHTML documents by enabling us to divide it up
into logical sections.

Up until this point we’ve focused on the use of well- structured and semantic markup.
We’ve been using the right tag for the job. All good. Now we’re going to look at various
methods for grouping information together into logical sections.

Take a look at any well- designed web page and you’ll notice that information is generally
grouped into related clusters. For example, a page may have a header, an area where the
web page is branded; a content area, where the bulk of the page’s information is gathered;
a sidebar, for the site’s navigation and any supplementary information; and a footer, for
copyright and other related publishing information.

XHTML allows us to use div and span elements and their associated id and class attri-
butes to create these document sections. The W3C states the following:

The div and span elements, in conjunction with the id and class attributes, offer
a generic mechanism for adding structure to documents. These elements define content
to be inline (span) or block- level (div) but impose no other presentational idioms on the
content. Thus, authors may use these elements in conjunction with style sheets . . . to
tailor HTML to their own needs and tastes.

www.w3.org/TR/REC-html40/struct/global.html#h-7.5.4

But what does that mean in English? It means we have two additional elements and their
associated attributes to introduce. Once we’ve introduced them, we can begin to break
our King Kong page down into logical sections of related groups of information. This will
allow us to further style the document’s individual sections by allocating them space and
creating a CSS layout.

Identifying your document’s sections

Let’s take a look at our King Kong page. At this point it’s one long page with some
 well- structured and semantic content and some basic typographic styling. A closer look
reveals that this content falls into a number of sections that can be logically grouped.

We have a header area, where we have our Famous Primates brand. We have a content
area, where the page’s primary information is located. Finally, we have a footer area, where
we have some copyright information and the date the document was written. You can see
our King Kong page’s key sections in Figure 10-12.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

246

 Figure 10-12. Our King Kong web page with some key sections highlighted

As the W3C states, “The div and span elements, in conjunction with the id and class
attributes, offer a generic mechanism for adding structure to documents”; as such these
are perfectly suited for use to divide up our King Kong page into its header, content, and
footer sections.

So now that we’ve identified some of our web page’s key divisions and identified the div
element as a possible mechanism for adding some structure to our web page, how do we
target the different sections we’ve identified specifically? The answer is by using a combi-
nation of divs and spans, and ids and classes, which we introduce next.

Using div and span elements with id and class
attributes

Welcome to the wonderful world of divs and spans, two useful elements for providing
additional markup and meaning within your documents. As you saw earlier, the W3C states
that these elements are “a generic mechanism for adding structure to documents. These
elements define content to be inline (span) or block- level (div) but impose no other pre-
sentational idioms on the content.” This makes them perfect for adding additional struc-
ture to our King Kong page.

Where these elements differ from the ones we’ve introduced so far lies in the fact that
they are generic. All the elements we’ve introduced to this point have had an inherent
meaning: a ul is an unordered list, a p is a paragraph, and a blockquote is a quotation.
divs and spans are different; they have no inherent meaning and might therefore be
described as semantically neutral.

A ONE- COLUMN CSS LAYOUT

247

10

As div elements are generic elements that impart no deeper semantic meaning to the
content nested within them, it’s important to ensure that the content you group within
your div elements is itself marked up using meaningful and semantic elements: h1–h6, p,
ul, li, strong, em, etc.

Herein lies their power. As neutral or generic elements, the humble div and span are
extremely versatile items in the Web Standardistas’ toolkit. We can wrap a div element or
a span element around our existing markup and target style at that wrapping element,
allowing us to create document sections, for example, the header, content, and footer we
 identified earlier.

Before we introduce divs and spans properly, a note of caution. It’s easy to fall under
their spell, wrapping everything in a div or a span regardless of content.

The overuse of div and span elements—known as divitis and spanitis, respectively—is
itself a minor form of tag soup to be avoided. In the words of Spiderman’s Uncle Ben (or
was it Stan Lee?): “With great power comes great responsibility.” Use these elements
sparingly and only where necessary.

Let’s take a look at div and span elements and their associated id and class attributes in
a little more detail.

div and span elements
You now know that div elements are block- level and span elements are inline-level. Here
we’ll give you a look at some examples of both, introducing the markup needed to wrap
our content in either of these elements.

Let’s take a look at two different uses of the div element: the first used to wrap and iden-
tify a single section of a web page, the content section; the second used to wrap and
 classify one of a number of sections of a web page, a number of blog entries.

To identify a unique part of a web page, we wrap its contents in div tags and use an id
attribute as follows:

<div id="content">
 <!- - This is where the main content of the web page is situated.
 There can be only one div with an id of content on this page. -- >
</div>

We’re not limited to using div elements for main structural sections of a document, how-
ever. We can also use div elements to gather together groups of related information that
may occur more than once on a page, blog entries, for example. When styling multiple
instances of a div, we use a class attribute instead of an id attribute as in the following
example:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

248

<div class="blog_entry">
 <!- - This is where one of our blog entries is situated. We can have
 more than one div with a class of blog_entry on this page. -- >
</div>

<div class="blog_entry">
 <!- - This is another blog entry. Notice how we've used the class of
 blog_entry more than once on this page. -- >
</div>

The first example has an id, the second a class. The id is unique; the class can be used
more than once. We’ll explain the difference between id and class attributes in a little
more detail in the next section, but first let’s introduce the span element.

Where span elements differ from div elements lies in their inline- level nature. We can use
a span within a block- level element to differentiate that section from the surrounding sec-
tion. For instance, in the following example, we can write a CSS rule targeting the span
with the class highlighted to style it differently from the surrounding paragraph:

<p>I am a paragraph with some inline
text that is highlighted in a different color.</p>

We’ll show you some examples of spans in action later in this chapter.

id and class attributes
In the previous section we saw two examples of div elements in action, one used an id,
one used a class. What’s the difference between the id and class attributes in the
 examples?

The answer is simple: ids are unique, classes aren’t. We can have only one element with
a specific id attribute on a page, but we can have multiple elements with the same class
attribute on a page. This is an important point to grasp and worth spending some time
on.

The id attribute is about identification. Think of your identity—your id identifies you and
you only. Just like there’s only one of you, so too can there be only one element with
a particular id on a page.

The class attribute is about classification. You can have as many elements with a particu-
lar class on a page as you like.

An id is unique; there’s only one person with a specific id in a group of people. Within
that same group, however, are lots of people who belong to that group: id = one; class =
many. In short, an id attribute can only be used once per page, whereas a class attribute
can be used multiple times.

Looking at the examples in the section titled “div and span elements” earlier in the chap-
ter, you’ll notice we used an id of content when creating our content div, but we used
a class of blog_entry when creating our blog entry divs. Think about it—on a page there
will very likely be only one content area, but there might be several blog entries.

A ONE- COLUMN CSS LAYOUT

249

10

classes and ids are not restricted to divs and spans. In fact, any HTML element including
headings, paragraphs, and images can have a class or an id added. We’ll see this in action
later when we apply a class to our portrait of King Kong, applying a little style to it. For
now, let’s return to the examples we introduced earlier.

In our example markup earlier, we identified a div and gave it an id as follows:

<div id="content">
 <!- - This is where the main content of the web page is situated. -- >
</div>

We target this div’s id with the following CSS:

#content
{
/* This is where the rules styling the content div are situated. */
}

Note how we use a # (hash) to indicate that the CSS rule is targeting an id. To indicate that
a CSS rule is targeting a class, we use a . (period) as shown in the following example:

<div id="blog_entry">
 <!- - This is where each blog entry is situated. -- >
</div>

We target that div’s class with the following CSS:

.blog_entry
{
/* This is where the rules styling the blog_entry div are situated. */
}

As you’ll see in the following sections, the div and span elements and their associated id
and class attributes form the building blocks on which we build CSS layouts.

It’s all in a name

When creating our ids and classes, we’re not restricted to set terms like header, content
and footer, or blog_entry and diary_entry. In fact, we can choose any names we like.
However, when choosing names for ids or classes, it’s a good idea to choose names that
have semantic meaning, words that can give you pointers when you return to a project
after some time has elapsed. Consider the following two class names:

Some important content here.

and

Some important content here.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

250

Although the first class name, red, might be presentationally accurate—this year you’ve
decided to highlight important words in red—the second class name, important, is
 semantically accurate. Ask yourself, what are you really highlighting? The fact that the
words are in red? Or the fact that they’re important?

Next year, after your company’s extensive rebranding, important words might be high-
lighted in blue to reflect your company’s new (blue) corporate identity. The following rule
won’t make quite as much sense:

.red
{
color: blue;
}

Try to describe the content or function of your elements: primary_navigation is a more
meaningful name than right_column, and content is better than box. The point is to use
names for ids or classes that are meaningful and semantic; you’ll be grateful for this in
the long run.

When naming id or class names, we recommend only using the letters a–z in upper or
lowercase, the numbers 0–9, and underscores or hyphens. An id or a class name must
always start with a letter. It’s also worth noting that id and class names are case
 sensitive—to a browser, #Header and #header are different.

Keeping your id and class names in lowercase and making sure they always start with
a letter will help to keep you on the one true path.

Using div elements to create CSS layouts
Earlier in the chapter we ascertained that our King Kong page could be broken down into
three logical sections, a header, content, and footer. By creating divs for the different
sections of the document and nesting these within a container div, we can begin to cre-
ate a layout for our King Kong page using CSS. At this point, to create a single column
layout, we break our web page down into the key sections shown in Figure 10-13.

A ONE- COLUMN CSS LAYOUT

251

10

 Figure 10-13. The basic div structure that we’ll use to create our
single column layout

Let’s take a look at the markup required to create Figure 10-13. We’ve created a simplified
version of a web page as follows, wrapping the key sections in div elements, adding com-
ments to show where each div closes. (You’ll notice the div elements are nested using the
First In, Last Out approach we introduced in Chapter 2.) The markup we need is as follows:

<body>
 <div id="container">
 <div id="header">
 <!- - This is where the header information is situated. -- >
 </div> <!- - Closes the #header div. -- >

 <div id="content">
 <!- - This is where the main content of the page is situated. -- >
 </div> <!- - Closes the #content div. -- >

 <div id="footer">
 <!- - This is where the footer information is situated. -- >
 </div> <!- - Closes the #footer div. -- >
 </div> <!- - Closes the #container div. -- >
</body>

Once we’ve wrapped the key sections of our document in div elements, we can use CSS to
apply style to these different div elements just as we would any other element. This
includes controlling layout, giving the divs different widths and heights, changing their
background color, and positioning them within the browser window.

We’ll see div elements in action in the following section when we take the preceding sim-
plified markup and apply basic layout properties to it, demonstrating the effect that this
has within the context of a browser window.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

252

A one- column CSS layout

The first stage in our walkthrough is to create a simple web page with header, content,
and footer divs nested in a container div. Although this page’s content is simplified, the
essential document sections remain, mirroring our King Kong page.

You’ll notice the markup that follows is the same as that in the previous example, but with
some of the comments removed for the purpose of simplicity. You can see all of the stages
in the walkthrough at the book’s companion web site:

www.webstandardistas.com/10/walkthrough

Use View Source to look at each of the stages. Let’s get started. We create a page with the
following basic structure:

<body>
 <div id="container">
 <div id="header">
 <!- - This is where the header information is situated. -- >
 </div>

 <div id="content">
 <!- - This is where the main content of the page is situated. -- >
 </div>

 <div id="footer">
 <!- - This is where the footer information is situated. -- >
 </div>
 </div>
</body>

We add the following CSS to style some basic properties:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;
line-height: 1.6;
background-color: #FFFFFF;
}

h1
{
font-size: 16px;
text-transform: uppercase;
}

This markup and CSS renders in the browser as shown in Figure 10-14.

A ONE- COLUMN CSS LAYOUT

253

10

 Figure 10-14. Our simplified markup with CSS styling the typography only

Although the content of the web page we’re working on for this walkthrough has been
simplified, the page is structured identically to our King Kong page with a header, content,
and footer section. At the end of this walkthrough, we’ll replace the generic content with
our King Kong content, resulting in a one- column CSS layout for the page.

We’ll now walk through the process of applying some layout to this page using CSS, spe-
cifically adding CSS rules to target the four div elements we’ve added to the markup. We
add the following four CSS rules:

#container
{
width: 550px;
background-color: #FFFFFF;
}

#header
{
padding: 10px 20px;
background-color: #999999;
}

#content
{
padding: 10px 20px;
background-color: #CCCCCC;
}

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

254

#footer
{
padding: 10px 20px;
background-color: #999999;
}

These rules set a width on our container div of 550px. Looking again at the preceding
markup, you can see that the three remaining div elements—our header, content, and
footer—are nested within the container, so setting the width to 550px on the container
defines the width of all of our div elements in this example. The other rules we’ve added
set a background- color and add some padding on our other div elements; this is simply
to ensure the effect of adding our rules is easier to see.

The result of adding these rules is shown in Figure 10-15.

 Figure 10-15. Nested within the container div, our header, content, and footer now occupy
550 pixels of horizontal space.

The next step in the process is to add a declaration to the body rule to remove the margin
added by browser’s default style sheet. We add the following declaration, resetting the
margin on the body to 0:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;
line-height: 1.6;

A ONE- COLUMN CSS LAYOUT

255

10

background-color: #FFFFFF;
margin: 0;
}

The result of adding this rule is shown in Figure 10-16.

 Figure 10-16. Removing the default margin added by the browser’s default style sheet results in our
container sitting tight toward the top left corner of the browser window.

Now that we’ve reset the default margin, the next stage is to center the container div
within the browser window. We do this by adding a declaration to the rule styling the
 container. By adding margin: 0 auto; the browser centers the container div, giving it
a top and bottom margin of 0px and centering the div as a result of the auto value, which
controls the right and left margin.

#container
{
width: 550px;
background-color: #FFFFFF;
margin: 0 auto;
}

The result of this is shown in Figure 10-17.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

256

 Figure 10-17. Adding a margin: 0 auto; declaration centers our container div within the browser
window.

Our page is beginning to take shape. We’ll now center the contents of the header and
footer by using the text- align property. We add text- align declarations to both the
header and footer rules as follows:

#header
{
padding: 10px 20px;
background-color: #999999;
text-align: center;
}

...

#footer
{
padding: 10px 20px;
background-color: #999999;
text-align: center;
}

The result of adding these two declarations is shown in Figure 10-18.

A ONE- COLUMN CSS LAYOUT

257

10

 Figure 10-18. Adding a text- align: center; declaration to our header and footer centers the
content of these div elements.

The next stage in the process is to change the background- color we set on the header,
content, and footer. For the final layout we’d like the content div to form a focal point
with a darker background- color and set the background- color of the header and footer
to be the same as the background- color of the body.

We change the header, content, and footer background- color values as follows:

#header
{
padding: 10px 20px;
background-color: #FFFFFF;
text-align: center;
}

#content
{
padding: 10px 20px;
background-color: #999999;
}

#footer
{
padding: 10px 20px;
background-color: #FFFFFF;
text-align: center;
}

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

258

The result of this is shown in Figure 10-19.

 Figure 10-19. Changing the background- color of the header and footer visually distinguishes
them from the content div.

The final stage in the process is to add a border to the top of the body and to the base of
the container. We do this by adding the following two declarations:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;
line-height: 1.6;
background-color: #FFFFFF;
margin: 0;
border-top: 5px solid #000000;
}

...

#container
{
width: 550px;
background-color: #FFFFFF;
margin: 0 auto;
border-bottom: 5px solid #000000;
}

The result of adding these two declarations is shown in Figure 10-20.

A ONE- COLUMN CSS LAYOUT

259

10

 Figure 10-20. Note how the border at the top spans the entire width of the body, whereas
the border at the bottom spans only the width of the container div.

Note how the border on the body expands to fill the entire
width of the browser window, but the border on the
 container only occupies 550 pixels (the width of the
 container div).

That’s it! It might not seem like much, but once we popu-
late this layout with the content of our King Kong page as it
stood at the end of Chapter 9, you can see that things are
beginning to take shape. Simply adding the content we
styled in the last chapter (and adding a new Famous Primates
brand that we’ll be supplying for you) results in
 Figure 10-21.

In just three chapters we’ve moved from a well- structured
web page to a well- styled web page using a single-column
layout. Equally importantly, the web page we’ve been build-
ing is accessible and is designed to display across a wide
variety of devices, no small achievement.

 Figure 10-21.
Our King Kong page as it now stands using the preceding layout

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

260

Using descendant selectors to minimize markup

Astute readers will notice just one thing wrong with the web page as it currently stands in
 Figure 10-21. The p elements in our footer are inheriting the color we specified on the
body element, a shade of creamy white (#E0DFDA). This is fine for the text in the main con-
tent section, which has a dark brown background- color (#25201C); however, against the
light background of the footer, the text lacks contrast as shown in Figure 10-22.

 Figure 10-22. The text in our footer suffers from a lack of contrast,
rendering it very difficult to read.

In order to fix this we need to write a rule that targets only p elements in the footer. The
good news is we can use this fix to introduce another extremely useful aspect of CSS,
namely descendant selectors (sometimes referred to as contextual selectors).

Before we introduce you to descendant selectors, let’s look at one way we could resolve
the problem of our p elements that we don’t recommend. By showing you two ways of
achieving the same goal—one that relies on bad practice and one that relies on good
practice—we can highlight the better approach.

Earlier in the chapter we mentioned the twin evils of divitis and spanitis, or the overreli-
ance on div and span elements. Another problem that beginners often fall into is an over-
reliance on class attributes, using class attributes left, right, and center, resulting in
bloated and overcomplicated markup.

We could solve the problem of the footer by styling the p elements that are situated in
the footer, giving each of them a specific class as follows (we’ve removed the markup for
the links for the purpose of simplicity):

<p class="footer_text">The Famous Primates web site is a➥

Web Standardistas production.</p>
<p class="footer_text">XHTML + CSS released under a Creative Commons➥

Attribution 3.0 license.</p>
<p class="footer_text">Photography © iStockphoto</p>

By adding class="footer_text" to each of our p elements, we can then write a CSS rule,
as follows, that takes care of all instances of p with a class of footer_text:

.footer_text
{
font-size: 11px;

A ONE- COLUMN CSS LAYOUT

261

10

color: #383330;
}

While this will certainly work and will take care of styling the p elements in our footer,
differentiating them from the rest of the p elements on the page, it’s not the most efficient
solution to the problem. As you can see, it relies on us adding class="footer_text" to
each of our p elements. Not exactly the most efficient approach to writing lean and mean
markup, certainly not the Web Standardistas’ way.

Good news, CSS offers us a far better solution, which allows us to selectively target just
these p elements based on their context in the footer. We can write a descendant selector
that targets all p elements in the footer as follows:

#footer p
{
font-size: 11px;
color: #383330;
}

Essentially what this does is inform the browser to “look for any instance of the element p
within the div footer and apply this rule.” This allows us to target just these p elements
with laser like precision. This does away with the need for the additional markup—
class="footer_text"—on each of our p elements in our footer. The result: less markup
= less maintenance = faster downloads. The result of our new rule is shown in
 Figure 10-23.

 Figure 10-23. The p elements in our footer are now styled using a descendant
selector, differentiating them from all other instances of p on the page.

Now the paragraphs in our footer are much more legible, and the type is smaller than the
main p elements in our content section (which is appropriate given that this is the “small
print”). However, the links in light blue need a little more contrast. We’ll use a descendant
selector to style these differently from the other links on the page. We add the following
rule:

#footer a:link, #footer a:visited
{
color: #383330;
border-bottom: solid 1px #383330;
}

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

262

By using descendant selectors in conjunction with grouped selectors (introduced in Chapter
9), we can really minimize our markup, styling multiple elements with a single rule and
improving the efficiency of our style sheets considerably.

Essentially the preceding rule targets all instances of a:link and a:visited (i.e., links and
visited links) situated in the footer and sets their color to the same as the p elements in
the footer, differentiating them from the p elements through the inclusion of
a border- bottom. The result of this is shown in Figure 10-24.

 Figure 10-24. The a:link and a:visited pseudo- classes are now styled
differently, set in the same color as the p elements in the footer.

An understanding of how descendant selectors work can significantly help to reduce
markup. Applying style to different elements based on their context reduces the number
of CSS rules required and saves peppering your markup with redundant classes. Both
things the aspiring Web Standardista should be striving for.

Styling details with the span element
Where div elements are block- level, span elements are inline- level. Imagine you have
a paragraph that contains some content you’d like to style differently from the rest of the
paragraph—enter the span. Wrapping a span element around the inline content you’d like
to style differently allows you to target your CSS at the span to achieve the effect you’d
like.

In the next two sections we’ll take a look at this in action. In the first example, we’ll use
a span to style a specific part of our footer. In the second example, we’ll show how noted
Standardista Dan Cederholm uses a span to style part of his SimpleBits web site’s strapline
without needing to resort to image replacement techniques to create an elegant
 ampersand.

Using a span to style inline content

Let’s take a look at a span in action. We’ll work with the first line of our footer, which
contains our publishing and copyright information. At present it’s rendered as in
 Figure 10-24; however, we’d like to differentiate the words Famous Primates in the first
line, using the font- weight property to highlight the words in bold and transforming their
case to uppercase using the text- transform property. We add the following to our
markup (again, we’ve removed the markup for the link for the purpose of simplicity):

A ONE- COLUMN CSS LAYOUT

263

10

<p>The Famous Primates web site is a
Web Standardistas production.</p>

By wrapping the words Famous Primates in a span and giving it a class of primate, we can
write a rule targeting all instances of the class primate. We add the following CSS rule to
our style sheet:

.primate
{
text-transform: uppercase;
font-weight: bold;
}

 Figure 10-25 shows the result of wrapping the span around the words Famous Primates
and targeting a CSS rule at the span—exactly what we wanted, differentiating the words
from the rest of the paragraph.

 Figure 10-25. The words Famous Primates are now styled
in bold and uppercase, thanks to the added span.

Where possible it’s best to eschew the use of the span element in favor of more meaning-
ful markup; however, in some instances a span is the best option available.

Astute readers will notice one other change in the footer. At the end of Chapter 9, our
final line read “Photography Copyright iStockphoto”; in the preceding example, we’ve now
included a copyright (©) symbol. We do this by replacing the word Copyright with the
character entity for the copyright symbol:

©

The result is a copyright symbol, more clearly highlighting the fact that the copyright of
the photography we’re using belongs to iStockphoto.

In the next section, we take a look at another example of a span in action at noted
Standardista Dan Cederholm’s SimpleBits web site.

Dan Cederholm’s illustrious ampersand

One elegant example of a span in action is noted Standardista Dan Cederholm’s illustrious
ampersand, as featured in the strapline of his SimpleBits web site (www.simplebits.com).
Wrapping the ampersand in a span allows it to be differentiated from the surrounding text
to create a sophisticated, graceful, and eye- catching feature as shown in Figure 10-26.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

264

 Figure 10-26. Dan Cederholm’s illustrious ampersand, achieved by wrapping the ampersand in
a span element

By using a semantically neutral span element, the heading still displays perfectly in
a non- CSS environment, as shown, unstyled, in Figure 10-27.

 Figure 10-27. Unstyled, the illustrious ampersand is perfectly displayed in a non- CSS environment.

So you’ve now met divs and spans, two generic methods of marking up and adding struc-
ture to our documents. Of the two, the div is the one you’ll be using the most as we move
forward. Gathering information together in a div allows us to give that division a size, add
some style to it, and apply layout to it by giving it a width and a height.

The ability to create accurately sized divisions within our web pages allows us to embark
on layout using CSS. This is another area where CSS can prove powerful.

We’re not restricted to using id and class attributes with div and span elements, how-
ever. We can apply both to other elements, thereby helping us to avoid the overuse of div
and span elements, as you’ll see in the following section when we style our King Kong
image differently through the use of an added class attribute.

Styling with class attributes
At this point our King Kong web page features two images, the Famous Primates brand at
the top of the page and the portrait of the mighty King Kong. In this section we’ll look at
using a class attribute to give the King Kong portrait its own look and feel.

We’d like our portrait of King Kong to render in the browser with some additional style,
using margins, borders, and padding. To do this we need to differentiate our King Kong
image from the Famous Primates brand at the top of the page so that we can target our
CSS at just the King Kong image.

We add a class attribute to the King Kong image as follows:

<img src="images/king_kong.jpg" width="500" height="350" alt="The
mighty King Kong, a fearsome giant ape." title="King Kong
contemplates scaling yet another tall building." class="portrait" />

By adding a class to the portrait of King Kong, we can now write a rule targeting any
image with a class of portrait. We add the following rule to our style sheet:

.portrait
{
margin: 10px 0;

A ONE- COLUMN CSS LAYOUT

265

10

border: 1px solid #FFF7D7;
padding: 4px;
}

You should by now be able to tell that this rule is adding margins (10px top and bottom;
0px right and left), a border (1px solid #FFF7D7;) and padding (4px) to our King Kong
portrait. The result of this is shown in Figure 10-28.

 Figure 10-28. Our King Kong image with a 1 pixel border and 4 pixels of
padding around it

As you know by now, we’re not restricted to styling the image in this way; we could have
a thicker border, less padding—we could have anything we want—by changing our CSS
rule.

Enhancing your design by adding background
images with CSS

We can use CSS to apply a background- image to almost any element in XHTML including
our page’s body element (this can be useful for creating page backgrounds to give charac-
ter to a web page), our div elements, blockquotes, paragraphs, lists, and even inline- level
elements.

Creative use of background images can help to break up a page and, as you’ll see in this
section, help to create more dynamic layouts. In the following section we’ll demonstrate
how to add a background- image to our body element, in the process introducing you to
how to apply background images using CSS. We’ll then apply a background- image to our
blockquote to further enhance its presentation.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

266

Adding a background image to the body

We’ll start with a simplified web page with a single paragraph with 40px of margin applied.
We add the following rules to our style sheet to establish some basic style:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;
color: #000000;
background-color: #FFFFFF;
margin: 0;
}

p
{
width: 400px;
line-height: 1.5;
margin: 40px;
}

The result of this can be seen in Figure 10-29.

 Figure 10-29. A simple paragraph with minimal style added

We create a simple 8 ✕ 8 pixel tile in our image editor as shown in Figure 10-30. This is
designed to tile seamlessly, repeating horizontally and vertically across the background of
our web page like wallpaper.

Figure 10-30.
We create a simple image in our image editor (magnified here)
that we can tile as the background of our web page by setting
the image as a background- image on our body element.

A ONE- COLUMN CSS LAYOUT

267

10

 We add background- image and background- repeat declarations to our body rule as
 follows:

body
{
font-family: 'Lucida Grande', 'Lucida Sans', Arial, sans- serif;
font-size: 14px;
color: #000000;
background-color: #FFFFFF;
margin: 0;
background-image: url(diagonal_tile.png);
background-repeat: repeat;
}

The background- image declaration provides a relative link to the image file we’re using, in
this case with the relative location of our diagonal_tile.png image file. It’s worth noting
that the URL specifies the location of the image file in relation to the style sheet. In this
case we’re using an internal style sheet, so the preceding rule assumes the diagonal_tile.
png file is in the same folder as the web page.

The background- repeat declaration instructs the browser to repeat the image along both
the x and y axes. (Using repeat- x would repeat the image only along the x axis; using
 repeat- y would repeat the image only along the y axis; using no- repeat would display the
 background- image once only, not repeating it.)

The result of adding the preceding declarations is shown in Figure 10-31.

 Figure 10-31. A simple background- image tiled along both the x and y axes

Although we’ve only used a simple, repeating tile in this example, tiling across both the x
and y axes, it’s possible to creatively use the background- image property to help break up
the underlying grid of a simple web page and create layout effects.

One point worth noting is the importance of specifying a background- color in addition to
a background- image. Although the background- color sits behind the background image,

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

268

its good practice to specify a background- color (and a contrasting text color) when using
background images, in case a user is browsing your web site with images switched off.

It’s important to note that using background images in CSS is not the same as
adding images to a page using the img element. Images included with the img
 element are seen as content; images included using the background-image prop-
erties of CSS are seen as presentation.

Background images can add to a design considerably. One excellent resource for
 well- designed background images that are free to use and inspirational is Kaliber10000’s
Pixel Patterns Collection (www.k10k.net/pixelpatterns/).

Using background images with other elements

In the margins, borders, and padding walkthrough earlier in this chapter, we added
a background- color to our p element to highlight the space the paragraph occupied as
a block- level element. Although we used this to demonstrate the effects of adding our
margin, border, and padding declarations, we could have also employed the
 background- color property as a design element, perhaps using it to distinguish different
parts of our document by setting the background- color to a different color.

Let’s take a look at our blockquote again, now setting a complementary background- color
to further highlight the quotation. We add the following background- color declaration to
our CSS rule:

blockquote
{
font-family: Georgia, sans- serif;
font-size: 18px;
font-style: italic;
letter-spacing: 0.1em;
margin-left: 40px;
padding: 0 20px;
border-left: 10px solid #E0DFDA;
background-color: #3E322B;
}

The result of adding this rule is shown in Figure 10-32.

A ONE- COLUMN CSS LAYOUT

269

10

 Figure 10-32. Adding a background- color declaration to our blockquote
element helps to further differentiate it from the surrounding text.

With CSS we can control much more than background colors for our elements, however.
As we mentioned in the last section, we can also add background images to our different
elements using CSS to create a variety of presentational outcomes.

Let’s take a look at this in action as applied to our blockquote again. We’ve created an
image with a gradient, using the shades of brown employed on the King Kong page; we’ll
use this to create a background- image for our blockquote.

We add a background- image declaration to our CSS rule as follows:

blockquote
{
font-family: georgia, sans- serif;
font-size: 18px;
font-style: italic;
letter-spacing: 0.1em;
margin-left: 40px;
padding: 0 20px;
border-left: 10px solid #E0DFDA;
background-color: #3E322B;
background-image: url(blockquote_bg.png);
}

The result of this is shown in Figure 10-33.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

270

 Figure 10-33. Adding a background- image declaration to our blockquote
element helps to break up the grid on the page, while still differentiating
the blockquote from the surrounding text.

Both of the preceding examples of the background- image property barely scratch the
surface. Used creatively, background images can help to break up the grid in a typical CSS
layout, resulting in more interesting and innovative layouts.

We’ve added two background images to our King Kong web page—one on the body, one
on our blockquote—to give a glimpse of what’s possible using background images. You
can see these at the book’s companion web site:

www.webstandardistas.com/10/king_kong.html

To give you some experience of the background- image property, you’ll be adding back-
ground images to your Gordo web page for this chapter’s homework.

Summary
So what have we covered? It’s been a busy and important chapter, certainly one that’s well
worth reading again. We’ve covered a lot of fundamentals including dividing up complex
web pages into logical divisions using div elements, an understanding of which forms the
basis of creating CSS layouts.

We introduced the CSS box model and looked at adding margins, borders, and padding to
our elements with a specific focus on how these properties could be used creatively when
applied to our page’s different elements. Lastly, we looked at using background images in
CSS to help break up our web pages a little.

In the next chapter we’ll build on the fundamentals introduced in this chapter, showing
you how to create two- column layouts to develop your CSS layout skills considerably.

A ONE- COLUMN CSS LAYOUT

271

10

Homework: Creating a one- column
CSS layout

In this chapter we added some additional structure to our document by breaking our King
Kong page down into key sections or divisions. The primary focus of the chapter was the
creation of a one- column CSS layout to give our King Kong page a little more style and
presence. By following along with the examples covered throughout the chapter, you
should be capable of creating a single- column layout for your Gordo page in addition to
developing the design of its different elements.

We introduced the cascade in Cascading Style Sheets and looked at adding margins, bor-
ders, and padding to your elements, introducing you to the concept of the box model. As
a by-product of this we introduced CSS shorthand, which will enable you to write shorter
and more compact style sheets.

Using our King Kong page as an example, we applied our knowledge of margins, borders,
and padding to improve our blockquote, adding a background- image to it also, to further
differentiate it from the rest of the page.

The major focus of the chapter was on the introduction of div elements, which we used to
break our page down into different sections, which we then positioned and controlled
using CSS. Along the way, we looked at how we could use span elements to style details,
enabling you to zero in on specific inline- level sections to apply style to. We also intro-
duced the concept of descendant selectors, a powerful means of minimizing markup.

Finally we looked at enhancing your design by adding background images with CSS, both
to the body and to other elements.

Your homework for this chapter will be to apply what you’ve learned to your Gordo page,
improving its layout considerably.

1. Add the div tags

If you’ve been following along with the homework, your Gordo page should feature a sim-
ilar structure to our King Kong page. For the first stage of this chapter’s homework, we’d
like you to identify the key sections of your Gordo web page and add div tags where
appropriate.

Once you've wrapped your header, content and footer sections in divs, we’d like you to
wrap everything in a container div, which you’ll use to center your design.

2. Write the CSS

Referring to the examples in this chapter, create rules for your header, content, footer,
and container div elements to control the layout of the page.

Once you’ve taken care of the layout, we’d like you to address the issue of the footer.
You’ll need to create a rule that styles the text in the footer, overriding the font- size and
color declaration inherited from the body rule. Write this rule using a descendant selector
to minimize your markup.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

272

3. Upgrade the Famous Primates brand

As with the previous chapters, we’ve created everything you need to complete the home-
work. This includes an all-new-and-improved Famous Primates brand, in addition to two
 pre- baked gradient images to use as a background- image for your Gordo page and your
blockquote. You can download the assets here:

www.webstandardistas.com/10/assets.zip

Once you’ve downloaded these files, transfer the images to your images folder and
upgrade the Famous Primates brand.

4. Style the blockquote

Styling the blockquote is a two- stage process. Firstly we’d like you to apply margins, bor-
ders, and padding to distinguish the blockquote from the surrounding text. Once you’ve
achieved that, we’d like you to specify the image we supplied as a background- image for
your blockquote.

5. Style Gordo’s image

Style your image of Gordo by creating a class to differentiate it from the Famous Primates
brand and create margin, border, and padding declarations for the image. We added a
1 pixel border with 4 pixels of padding; you might like to experiment with an alternative,
for example, try adding a 5- pixel border with no padding in the light shade of blue we’ve
been using (#9CC4E5) as follows:

.portrait
{
margin: 10px 0;
border: 5px solid #9CC4E5;
}

Remember, you’ll need to add a class="portrait" attribute to the markup of your Gordo
image for this rule to take effect.

6. Add a background- image

The last part of the homework is to add the background- image we’ve supplied. This image
needs to be repeated along the x axis, which will tile it horizontally. You’ll also notice
from our King Kong example page that we’ve included an additional declaration
background- attachment: fixed;. The background- attachment property sets whether
a background- image is fixed or scrolls with the rest of the page. Try commenting out this
declaration and testing its effect on the background- image within a browser.

As usual, to help you with the different stages of this chapter’s homework, we’ve created
our own, similarly styled, page about King Kong featuring all of the enhancements we
covered in this chapter. You can refer to this, using your browser’s View Source menu com-
mand to see how we’ve updated our CSS, here:

www.webstandardistas.com/10/king_kong.html

A ONE- COLUMN CSS LAYOUT

273

10

Once you’ve completed the rollout of your one- column CSS layout for Gordo, put the
kettle on and enjoy a cup of Robert Fortune Blend 41 as you prepare yourself for the next
chapter.

CHAPTER 11

A TWO-COLUMN CSS LAYOUT

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

276

In this chapter we create a slightly more complex, two-column layout. Building upon the
one-column web page we created at the end of Chapter 10, we’ll add a second to sit
alongside the . We’ll use this to contain some additional sidebar content,
which could be anything: some supporting content, a navigation list, or any number of
other elements.

For the purposes of this chapter, and to keep the focus on layout, we’ll keep the content
of the simple. Inside it we’ll place a single followed by a short paragraph
containing links to our Cheeta and Cornelius pages. In the next chapter we’ll replace this

 content with a styled list of links, creating the navigation for our Famous Primates
web site.

As with the other chapters, we’ll be working with our King Kong web page, and you’ll be
working along with your Gordo page for the homework. By the end of the chapter you
should have a working knowledge of two-column layouts, floating elements, and the
importance of clearing floats.

The fundamental concepts discussed in this chapter will provide a solid foundation on
which you can build, providing the building blocks for more complex layouts down the
line.

A float-based CSS layout
There are a number of ways to create multicolumn layouts using CSS. These include float-
ing, absolute positioning, and using negative margins. We’ll be focusing on a float-based
approach as we find this the most flexible method, as well as being easy for beginners to
understand.

Although we’ve focused on float-based layouts in the book, we have featured a roundup
of other layout methods, including absolute positioning and the use of negative mar-
gins, in the periodical section of the book’s companion web site where we have also
provided links to a number of additional resources that deal with CSS-based layouts.

To get started with float-based layouts, we need to introduce the idea of floating elements
and removing them from the document flow. But what exactly do we mean by the docu-
ment flow?

Looking back at the XHTML web pages we created earlier in the book, you know that web
pages are linear by nature. The elements of your web pages flow down the page starting
with the first element at the top of the page and finishing with the last element at the bot-
tom of the page. Elements can be either block-level (forcing a line break) or inline-level.

In Western languages a paragraph of text starts at the top left corner of the page and
works its way down toward the bottom right corner of the page. When writing, each word
is placed just to the right of the preceding word until there is no more room on the line;
the next word is then placed at the very left of the next line.

A TWO-COLUMN CSS LAYOUT

277

11

Similarly, all elements on an XHTML page have a natural tendency to sit as close to the top
left of the page as possible. This is the natural flow of web pages (in the Western speaking
world) and is known as the document flow.

Using the property in CSS allows us to remove elements from this flow, enabling us
to position them on the page. A floated element is taken out of the normal top left to
bottom right flow and moved as far as possible to the left or right (depending upon the
CSS rules written to target it). This will become clearer to grasp when we introduce some
examples in this chapter.

Before we introduce you to some examples of floats in action, by floating some s, let’s
see what the W3C has to say about floats:

A float is a box that is shifted to the left or right on the current line. The most interesting
characteristic of a float (or “floated” or “floating” box) is that content may flow along
its side (or be prohibited from doing so by the “clear” property). Content flows down the
right side of a left-floated box and down the left side of a right-floated box.

A floated box is shifted to the left or right until its outer edge touches the containing
block edge or the outer edge of another float. If there’s a line box, the top of the floated
box is aligned with the top of the current line box.

While that might sound a little confusing just now, it should all become apparent as we
walk through some practical examples demonstrating how floats work, which we’ll do in
the following section. Using some simplified web pages we apply floats to our different
elements and show you how the floats we add affect the normal document flow.

Floating divs

We know from Chapter 10 that s are block-level elements; this means they force a line
break after they close. We can, however, use the property to alter their relationship
to the natural document flow of a web page.

To demonstrate how floats work, we’ve created a basic web page with a
and three nested elements. We’ve numbered the s so that you can see exactly how
the different elements are affected as we apply floats to them. Our markup looks like
this:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

278

We give the a and of and give the three s nested inside
it a and of ; lastly we’ve added 1-pixel borders and background colors
on all of the elements and the element to make our s easier to see. We do
this using the following CSS:

The preceding markup renders in the browser as shown in Figure 11-1.

As with all elements, our three smaller s are block-level; as such they force a line
break so that our three s sit one on top of the other. At this point, the three nested

s are in the normal document flow with the first box at the top and the last box at the
bottom.

Let’s now apply to the elements with the class of and see how this
affects the layout. We add the following additional declaration to our CSS:

The result of adding this declaration is shown in Figure 11-2.

A TWO-COLUMN CSS LAYOUT

279

11

Figure 11-1. Our three nested elements, each with a class of as they render nested
within the . No floats are added at this point.

Figure 11-2. By adding a declaration, our three nested elements, each with a
class of , are now removed from the normal document flow.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

280

As you can see, the addition of a declaration removes all s with a class
of from the normal document flow, in turn moving them as far left as possible within
their containing element (in this case the). The result is that the three
nested elements display horizontally and are aligned—or floated—to the left.

Let’s now apply to the same elements and see how this affects the lay-
out. We amend our CSS as follows:

The result is shown in Figure 11-3.

Figure 11-3. Changing our value from to alters the relationship of our nested
s to the .

Looking at Figure 11-3, you might be forgiven for wondering why the order of the s is
now Div 3, Div 2, Div 1.

A TWO-COLUMN CSS LAYOUT

281

11

At first glance this might appear confusing; however, the explanation is simple. The browser
is rendering Div 1 as far to the right as it will go, in this case aligning it to the top right
edge of the it’s nested in. It’s then rendering Div 2 in the markup, and then
Div 3. This is due to the declaration, which takes the s with the class of

 out of the normal document flow and floats them to the right.

This might be confusing to start with, but it’s important to get an understanding of how
floats remove elements from the normal flow of the document, as this will form the basis
of the layouts we’ll be creating later in this chapter.

Before we get on to applying this knowledge to our two-column layout, let’s take a look at
what happens when not all of our elements are floated. To do this, we’ve adjusted and
added to our markup as follows, introducing a different class for the first of our three
smaller boxes:

We now have two different classes— and . We alter our style sheet as fol-
lows, removing the property from the class, and adding a rule targeting the new

 class we’ve just created:

Let’s try and anticipate what’s going to happen. Div 1 has a class of , so it’s
going to be floated to the . Div 2 and Div 3, however, have no specified, so
they’re going to sit within the normal flow. Let’s take a look at how this renders in the
browser, as shown in Figure 11-4.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

282

Figure 11-4. By specifiying for Div 1, and specifying no float for Div 2 and Div 3,
Div 1 is removed from the normal flow of the document. Div 2 and Div 3, still within the normal
document flow, ignore it completely.

As you can see, Div 1 has been floated to the right and removed from the document flow;
this results in Div 2 and Div 3 occupying the space (at the top left) that Div 1 no longer
occupies. Div 3 is dropping below Div 2, because it is no longer floated and is block-level.

If you return back to the idea that floated boxes are removed from the document flow and
that boxes with no floats applied are still within the normal document flow, this should
make sense. Div 2 and Div 3 are essentially ignoring Div 1 because it has been floated and
removed from the document flow.

The preceding examples all deal with s that are the same size. In reality, however, our
different elements are likely to be different sizes (as they will be when we deal with
our two-column layout). Let’s see how three s of different size relate.

In the following example, we’ve amended our markup to give each a different class
(, , and), and we’ve written three rules, one for each class, that we add to
our style sheet as follows:

A TWO-COLUMN CSS LAYOUT

283

11

We’ve now changed the size of all three s; all are also now different heights. As in
Figure 11-2, all have a declaration, so they are removed from the normal
document flow. Figure 11-5 shows the result of our changes.

Figure 11-5. Div 1, Div 2, and Div 3 are now wide, so they will not fit side by side within the
. Note how Div 3 occupies the first available position in the document flow, as

far to the top left as it can go.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

284

As we increased the of our three s to , they no longer fit side by side in the
. The result is that Div 3 drops down to the next available space

within the document flow, positioned as far to the top left as it can go. It’s worth noting
that this isn’t below Div 1, but below Div 2, due to the space available beneath Div 2.

What if we’d like to drop Div 3 down so that it starts afresh on a new line and sits below
Div 1? The answer is we use the property to clear the floats of Div 1 and Div 2 and
instruct the browser to display Div 3 below them. (We’ll use this technique in due course
to clear our when we create the two-column layout for our upgraded King Kong
page.)

We amend our CSS as follows:

The result of adding the property is shown in Figure 11-6.

Figure 11-6. Adding a declaration to the rule styling Div 3 clears both the Div 1 and
Div 2 floats, dropping Div 3 beneath them.

A TWO-COLUMN CSS LAYOUT

285

11

Although all of our s have been removed from the normal document flow by being set
to , the addition of a declaration to Div 3 clears the above floats and
positions Div 3 below Div 1 and Div 2.

In the next section we put the preceding examples into practice as we begin to build our
two-column CSS layout using floats.

Applying floats to layouts

In the previous chapter we created a one-column layout and, in the process, subdivided
our content into a number of divisions or s. For the purposes of our one-column lay-
out, we created , , and s and nested them within a

 to hold everything together.

In this section we’ll introduce a further to our layout, a , which we’ll use to
gather some additional content to sit alongside our .

Simplified, we adjust our markup as follows, adding a :

We now know that we can use CSS to float elements to the left or to the right. Because
floated elements float until their outer edge meets the containing block they’re situated
within, or the outer edge of another floated element, we can nest our , ,

, and s inside our and build a layout.

Figure 11-7 illustrates what we’ll be building as we work through the examples in our two-
column layout section. We’ll float our to the left and our to the
right.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

286

Figure 11-7. How our s relate to each other once we add a into the mix

It’s worth noting, however, that, regardless of the order our content appears in our markup,
we can float the and s in either direction, changing the visual order
and display of the and as we wish.

This allows us to organize our markup in the best way possible, putting the most important
content first in the markup. As our s can be floated in either direction, this means we
can position the before the in our markup, but use floats to
visually position the before the if we’d like to.

We write our markup in the optimum order, putting the —which is more impor-
tant than the —first in the markup order, as follows:

We can then control how these display in the browser by using floats. By floating the
 to the and the to the , the content comes first in the
visual display in the browser as in Figure 11-8.

A TWO-COLUMN CSS LAYOUT

287

11

Figure 11-8. Floating the to the and the to the changes the
order our s display in in the browser.

By simply changing the values, we can float the to the left and the
 to the right, without changing the order of our markup as in Figure 11-9.

Figure 11-9. Simply switching the values changes the order of our s as they display in the
browser.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

288

In the next section, as we walk through the creation of our two-column layout, we’ll show
you how easy it is to switch our floats. Let’s start building the two-column layout.

Creating our two-column CSS layout

We’ll now take our markup with our , , , and s nested
within the and add some CSS to control our layout. This walkthrough
develops the one-column layout we created in Chapter 10 and gives us a basic layout upon
which we can build as we move forward.

We add the following rules to our style sheet:

A TWO-COLUMN CSS LAYOUT

289

11

With no floats applied, our document, as structured here, with our , ,
 , and s nested in a , will render using the browser’s nor-
mal document flow; that is, each will display one after the other, each forcing a line
break. You can see the result of this in Figure 11-10.

Figure 11-10. With no floats, our four nested block-level s force line breaks and so display
on separate lines.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

290

Clearly this isn’t what we want; we’d like our and s to float beside
each other, with the floated to the and the floated to the

, as indicated in Figure 11-8 earlier. To do this we need to inform the browser to float
the and s, and as you know from the preceding examples we can use
the property of CSS to align our and s to the and ,
respectively, effectively positioning them where we need them.

We do this by adding the following declarations to the and rules in our
style sheet:

The result of adding these floats is shown in Figure 11-11.

Figure 11-11. Adding declarations to both the and s positions our
elements as we’d like.

A TWO-COLUMN CSS LAYOUT

291

11

What we’ve done is float our to the left. Left-floated elements will move as far to
the left as possible until they are in contact with the edge of the containing element (or
another floated box); in this case the containing element is our .

Next, we’ve floated the to the right-hand edge of the . Following the
same principal as the left float, this pushes the as far to the right as possible, until
it touches the edge of the . As seen in the CSS markup earlier, we have explicitly
specified widths on both the and s.

It’s important to specify widths on floated elements. In theory a floated element without
a specific width should shrink to be as wide as the content within it; however, how this is
interpreted can vary between browsers. As a rule of thumb: always specify a on
floated elements. The only exception to this rule is when floating images, which, by their
nature, already occupy a specific width.

Imagine, however, that we’d like the to display before the . We
don’t need to adjust the order of our markup; all we need to do is change our floats as
follows:

The result of changing the value on the and s is shown in
Figure 11-12.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

292

Figure 11-12. Changing the and values changes the order the s display in
within the browser.

Simply changing the values of the floats changes the visual display within the browser. This
is a useful point to note as it allows us to create our markup in the most logical (and use-
ful) order and then control the order of its display using CSS.

Another thing to note in our examples is the height of the . We haven’t
specified a height for the , and as you can see in Figure 11-12, the is
only as tall as it needs to be to accommodate the content within it. This is the natural
behavior of block-level elements: unless a height is specified, a block-level element will
only ever occupy as much height as it needs.

As a consequence of this, the of our , inside which our
four other s are nested, shows through below the . We’ll cover a work-
around for this later in this chapter when we introduce the concept of Faux Columns, a
term coined by noted Standardista Dan Cederholm while writing for A List Apart in 2004.

One final point to note: by default, elements following other floated elements will try to
wrap around them, much like a paragraph of text wrapping around an image in a newspa-
per article. As we want our (which has no set on it) to display below both the

 and s, we apply a CSS declaration to the rule.
This moves the below all of the preceding floated elements on our page.

It’s worth noting that floats can be applied to other elements, not just s like our
and . Later in the chapter, in the section “Applying a float to an image,” we’ll take
a look at this in action and see how we can use floats to control the display of images on
our web pages. But first, a little mathematics . . .

A TWO-COLUMN CSS LAYOUT

293

11

Calculating the width of your elements
As we move on to two-column layouts, one thing worth noting is the importance of calcu-
lating the total our elements occupy when floated side by side to ensure that they
fit within their containing boxes. This once again brings us to the box model.

We touched on the box model—how we calculate the width of boxes in CSS—in Chapter
10, but it’s worth a short refresher here in the context of our new two-column layout. Now
that we’re dealing with our and s sitting side by side nested in a
 , a recap of the box model is well worth including.

A short box model recap

Let’s revisit the box model briefly; it has a bearing on two-column layouts (and more
advanced multicolumn layouts) so we want to ensure you fully understand how nested

s relate to the s they may be nested within.

As illustrated in Figure 11-13, the total width a box occupies in CSS is calculated by adding
the declared width of the element and adding any margins, borders, and padding.

Figure 11-13. The box model we acquainted you with in Chapter 10

Calculating the total width boxes occupy is the point at which beginners often stumble.
They give a a , and assume that this is the total width the occupies, forget-
ting to add any margins, borders, and padding.

Let’s apply the box model theory we introduced in Chapter 10 to our two-column layout.
Cue a little mathematics.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

294

We’d like our and s to sit side by side within the . To
do this we need to allow enough room in our to accommodate these s.
Let’s take a look at the figures. First let’s look at the , , and
rules in our CSS, in particular the relevant measurements. These are as follows:

Our is wide. Our and s (with any added mar-
gins, borders, and padding) need to fit within this , so we need to ensure their com-
bined width is less than . Our is wide with of on the
left and right (remember our CSS shorthand— —establishes a
 and of , and a and of

). Our is wide with of on the left and right.
Figure 11-14 shows how these measurements add up.

Let’s take a look at the measurements. The value of our is . Our
 and s have no margins or borders; this has the added benefit of mak-

ing our calculations a little bit easier. We need the and s to fit inside
the .

The total width the occupies is as follows:

 + + or + + =

The total width the occupies is as follows:

 + + or + + =

A TWO-COLUMN CSS LAYOUT

295

11

Figure 11-14. Calculating the actual widths of our and s, including any applied
margins, borders, and padding, gives us the total width of that we need to allocate for our

.

This gives us a combined for our and of , so the value of our
 is perfect. In the following section we’ll show you what happens if the

s we’re nesting occupy more space than the element that contains them, demonstrat-
ing the importance of getting your calculations right before you begin building your
 layouts.

What happens when your elements are too wide?

What happens when the elements we’re nesting occupy more space than the s
they’re nested within? Let’s take a look.

We’ve created two pages; both have a with a of . On the left
we’ve repeated Figure 11-11 where the combined of our and s
fits neatly within the they’re nested within. On the right, however, we’ve
increased the of our from to , increasing the combined
of the and to , too large for our .

The result is that the drops beneath the and is floated to the
left as specified in the rule that is controlling it. You can see the two results in
Figure 11-15.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

296

Figure 11-15. On the left our and s fit within our . On the
right the combined is too large to fit side by side, forcing the to display below the

.

Let’s take a look at the CSS behind the example on the right, simplified for brevity:

Again, we need the and s to fit inside the . Let’s take
a look at the figures. The total width the occupies is as follows:

 + + or + + =

The total width the occupies is as follows:

 + + or + + =

This gives us a combined for our and of , so the value of our
—specified as —is too small.

A TWO-COLUMN CSS LAYOUT

297

11

The result is that the , which we’d like to float to the right of our , floats
to the right, but beneath the . When a floated box is taken out of the normal flow
of the document, it will move as far to the left or right as possible, remaining in the same
position horizontally. However, if there isn’t enough space to accommodate the floated
box, it will move downward line by line until there is room for it—in this case, sitting
beneath the .

You can take a look at the source code for both of the preceding web pages at the Web
Standardistas web site:

Throughout the last section we looked at the importance of calculating widths when creat-
ing layouts. In the next section we’ll look at the measurement of heights, in particular
introducing you to the topic of collapsing margins.

Collapsing margins
One aspect of CSS-based layouts that can prove a little confusing for the beginner is the
concept of collapsing margins. To explain what collapsing margins are and how they
work, let’s revisit the example we created in Chapter 10 to show how margins, borders,
and padding work when applied to elements.

You might recall that the example we created in Chapter 10 demonstrated the effect of
applying margins, borders, and padding to a single paragraph. We’ll expand upon that
example now and use two paragraphs to see how they interrelate, looking in particular at
how the vertical margins between them interrelate.

To start with we’ve created a very short web page with two short paragraphs. We’ve writ-
ten the following two CSS rules:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

298

Our two paragraphs styled with these simple rules are displayed in Figure 11-16.

Figure 11-16. Note the distance between the top edge of the browser and the first paragraph
(). You might be forgiven for wondering why the margin between the two pararaphs is

 and not .

In the rules we established earlier, we set a on our elements. As we know
from Chapter 10, this CSS shorthand sets a on all four sides of our elements of

. However, as you can see from Figure 11-16, the distance between the top left edge
of the browser and the first paragraph appears to be , yet the distance between the
two paragraphs appears to be the same, also .

Surely, if we’ve set a on all four sides of our paragraphs of the distance
between the two paragraphs should be ? (on the first paragraph
plus on the second paragraph equals .) Why is the space between
the two paragraphs only ?

The answer to this conundrum is that we are witnessing collapsing margins in action. Put
simply, when the top and bottom margin of two elements within the normal document
flow touch vertically, the smaller of these margins collapses to zero, leaving only the larger
of the two margins separating the elements.

But why do collapsing margins collapse in the first place?

The reason this feature was implemented is that on most occasions, collapsing margins
make perfect sense from a design perspective, making your style sheets easier to write,
saving you from having to carefully calculate the top and bottom margin on each of the
elements of your page in relation to each other to achieve consistent margins between the
different elements in your layout.

Let’s expand on our preceding example to illustrate why collapsing margins can be helpful
when creating layouts. We’ve created two web pages in which we’ve added some additional
elements to our previous example, adding an element to both and including a couple
of additional paragraphs. We’ve set a on both the and the elements.

A TWO-COLUMN CSS LAYOUT

299

11

In Figure 11-17, the example on the left shows how collapsing margins should work, result-
ing in even spacing between our elements. In the example on the right we’ve added an
additional class to override the collapsing margins and demonstrate how the same web
page would look if the margins didn’t collapse. The doubled-up margins between the ele-
ments result in too much vertical space separating the elements.

Figure 11-17. The example on the left shows how collapsing margins work normally, improving
the visual consistency of the design. The example on the right shows how the page would look
if the margins didn’t collapse.

Collapsing margins can be a difficult topic to grasp at first, but hopefully these examples
will give you some basic understanding of the principles. We recommend the chapter
“Visual Formatting Model Recap” in CSS Mastery: Advanced Web Standards Solutions by
Andy Budd (friends of ED, 2006) for anyone wishing to earn a black belt in advanced CSS
visual formatting models.

Applying a float to an image
In the section “Creating our two-column CSS layout” earlier in this chapter, we promised
we’d show you how to apply floats to elements other than elements. In this section
we’ll look at applying floats to images.

In the earlier examples in this chapter, we floated our and s. In this
example, we’ve created a simple page layout where we’ve added an image to our

; we’ll use a to control the relationship of the image to the remainder of the
content within the . Before we look at how this image displays in the browser,
let’s take a look at the markup we’re using. Our simplified markup is as follows:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

300

By default the image is positioned within the normal document flow as shown in
Figure 11-18.

Figure 11-18. With no floats our image is placed within the normal flow of the document.

By default the image is positioned within the normal document flow with our paragraphs
appearing immediately after it. However, what if we’d like to wrap our text around the
image? Good news—we can do this by applying a to our image.

In Chapter 10 we introduced a of for our primates’ different portraits; in
this example we have a tall, tightly cropped image. We’ll create a class for any tall primate
images like this one, by adding the following CSS rule:

A TWO-COLUMN CSS LAYOUT

301

11

We then add the class to our markup as follows:

What this rule does is target any images on our web page with a of and
float them to the left. As you can also see, we’ve added of (to the ,

, and) of our class to create some space between the image and
the paragraph text that will now flow around it.

You can see the results of adding these rules in Figure 11-19.

Figure 11-19. Applying a results in our image being removed from the normal
document flow and the text wrapping around it.

Perfect, the paragraph text is now wrapping around the image just as we’d like. However,
what happens if the floated element, in this case our image, is taller than its containing
element? In other words, what would happen if we would remove half of our paragraphs?
Let’s take a look.

We remove all but two of our paragraphs from our . The result of this is
shown in Figure 11-20.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

302

Figure 11-20. By removing our with the from the normal document flow, it
is not counted when the height of the containing element is calculated, which is now only tall
enough for the two paragraphs.

Needless to say, this isn’t so great. Why is the image breaking out of the layout?

The first thing to note is that our image is placed inside our . The height of the
 is determined by the height of the content inside it (unless we have specified

a height for the element in the CSS). Since we’ve floated the image by specifying
 in our CSS, this image is taken out of the normal document flow and as a result is not

taken into account when the browser calculates the height of the . Instead,
the height of the is determined by the two paragraphs of text, which have no
floats applied.

The end result is that our floated image element now breaks out of our and
into the . This is clearly not what we want, so we need to add a few additional dec-
larations to our CSS to solve the problem.

Earlier in the chapter we introduced you to the property, which we can use to clear
floats. By adding a declaration to the , we’re taking care of our
problem. We add the following declaration to our rule:

A TWO-COLUMN CSS LAYOUT

303

11

Adding this rule results in the changes shown in Figure 11-21.

Figure 11-21. Adding a declaration drops the footer beneath the content above it.

Applying a declaration to an element moves it below all preceding floated
elements. This results in our image no longer breaking into the ; however, our
image is still breaking out of its containing element, the . We’ll resolve that
issue next . . .

The declaration that we applied to the won’t help us here as the
 property moves an element to a position below the preceding floated elements, and

our image is placed not above but inside the .

This looks like a sticky situation, and over the years many solutions involving advanced CSS
trickery and extra XHTML markup have been devised to crack this particular nut. There is,
however, one easy way of solving this problem. Applying one simple CSS declaration to the
containing element (in this case our) will ensure that the floated element no
longer breaks out of its container. We add the following declaration to our rule:

Figure 11-22 shows how our page looks after applying this declaration to our
.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

304

Figure 11-22. Applying to the ensures our floated image no longer
breaks out of it—perfect.

That’s it, a combination of to float our image to the left, to
clear the footer, and to ensure our allows for the image
being larger than the paragraph text in the solves the problem.

The CSS property determines how content inside a or other block-level
element should be displayed if its width or height exceeds that specified for the contain-
ing element. The declaration serves the primary purpose of instructing
the browser to add scrollbars if the dimensions of the containing element are less than
the declared dimensions of the content within. As a side effect, applying this declaration
has the benefit of solving our issue with a floated element breaking out of its container.

Faux Columns

One of the frustrating aspects of creating multicolumn CSS layouts is the fact that our
columns only expand to fill the content that they occupy. In Figure 11-23, we’ve created
two typical web pages, one that has a long and a short , and a
second that has a long and a short .

Ideally we’d like the backgrounds of the shorter columns to extend down so that they
occupy the same vertical space as the longer columns. As things stand the s only occupy
as much space as the content within them. There is, however, a deceptively simple solution
to the problem using a technique known as Faux Columns (a term originally coined by bon
vivant Dan Cederholm in a 2004 article for A List Apart).

A TWO-COLUMN CSS LAYOUT

305

11

Figure 11-23. The backgrounds on the shorter columns only occupy as much vertical space as the
respective columns’ contents.

By defining a for our that we tile vertically behind the
two columns, we can create the illusion that both columns are the same height. This is best
demonstrated with an example.

With no defined on our , our page displays as shown in
Figure 11-24.

Figure 11-24. Our layout with no applied to the . The result is
that the columns are of unequal height.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

306

The first thing we need to do is to create a that is wide (the
 of our) and that visually indicates the two columns. We’ve created a
 image as shown in Figure 11-25.

Figure 11-25. Our , which we’ll tile vertically within the , gives the
illusion of two columns.

We adjust our , , and s as follows, adding the
 to the and removing the on both the and

s:

The result of amending our , , and rules is shown in
Figure 11-26.

A TWO-COLUMN CSS LAYOUT

307

11

Figure 11-26. Our tiles vertically within the , giving the illusion of
two columns of equal height.

That’s it. Simply adding a to the and tiling it vertically
using the property gives the impression of two columns of equal
height.

Wrapping up with King Kong
By tying together the different elements we’ve covered in this chapter, we can create a
two-column CSS layout for our King Kong page, using floats to control the layout of the

 and s. In Figure 11-27, we’ve combined the two-column CSS layout
walkthrough with our Faux Columns walkthrough to create a two-column version of our of
King Kong web page. By applying a to the that features
a subtle gradient effect, we’ve distinguished both the and s, visually
differentiating them. All of this is built on a solid foundation of well-structured and well-
formed markup.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

308

Figure 11-27. By drawing together the different topics covered in this chapter our King Kong page is
really beginning to take shape.

Our King Kong page is now really coming together and, as you’ll see in the next chapter,
we’ll repurpose our to act as the perfect location for our Famous Primates
web site’s navigation, adding the web site’s one missing ingredient.

A TWO-COLUMN CSS LAYOUT

309

11

Summary
So what have we covered? In this chapter we introduced you to two-column CSS layouts,
demonstrating how we can use the property to remove elements from the ordinary
flow of our document. We used a float-based approach as the basis for creating a two-
column CSS layout.

We also refreshed your memory of the box model, particularly looking at its importance
when working out widths when nesting elements. Building on our walkthough from
Chapter 10 on adding margins, borders, and padding, we introduced the topic of collaps-
ing margins, demonstrating how they can make the layout process a little easier.

Finally, we covered the topic of Faux Columns, showcasing how we could creatively use a
 to visually distinguish our and s.

In the next chapter we’ll build on this layout by replacing the and elements in our
 with a navigation list styled using CSS. This will form the backbone of our Famous

Primates web site’s navigation. Good times.

Homework: Adding a second column to
Gordo’s web page

In this chapter our primary focus was the creation of a two-column CSS layout. Building
upon the one-column CSS layout we created in Chapter 10, we introduced you to floats,
explaining how they can be used to remove elements from the normal document flow.
Once we’d demonstrated how floats worked, we showed you how to create a two-column
float-based layout and used Faux Columns to create the illusion that your and

s were of equal height.

This chapter’s homework is to add a second column to your Gordo web page and include
some content we’ve provided you to temporarily occupy the until we repurpose
it in Chapter 12. Once you’ve added your second column, we’d like you to add Faux
Columns to your to tie together the and s of your
Gordo page.

1. Add a sidebar div

The first change we’d like you to make to your Gordo page is to add a to your
XHTML markup. Add this after your and before the as demon-
strated in our King Kong example in the chapter.

As with the previous chapters we’ve created everything you need to complete the home-
work, including providing some ready-made content for your brand-new so
you can focus on creating the two-column layout. You can download the assets here:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

310

Once you’ve downloaded the preceding files, transfer the Faux Column image we’ve sup-
plied to your folder, you’ll be using it shortly. Add the content we’ve provided to
your new ; we’ll leave it as an exercise for you to add the links to the Albert I
and Miss Baker pages where appropriate.

2. Add a sidebar rule to your style sheet

Now that you’ve created a for your Gordo page, you’ll need to add a rule to
apply some style to it in your style sheet. We’ll fill the rule with some declarations shortly.
First we’ll need to pause for a little mathematics.

3. Measure up the divs

In the last chapter, when we were creating our one-column layout, we only needed to set
a on our ; the other s nested within the expanded to
fill the available space within it. In this chapter, however, we’ll need to consider the relative
widths of the to the and s.

As you’ll have noticed from our example in this chapter, you’ll need to widen your
 and set a on both the and s, ensuring that
the is wide enough to accommodate your two columns. We could ask you
to take a look at the figures from our example earlier in the chapter, but we’ll save you
some time and provide them for you.

The first thing you’ll need to do is widen the ; remembering it needs to fit the
 and s, increase its to . You’ll now need to add a to

your and rules. Add a declaration to the and
a declaration to the .

4. Add the floats

In our example we floated our to the and our to the
. Add declarations to both your and rules and float them to

the and , respectively.

You might also like to try floating the to the and the to the
and refreshing the page. This should help underline that the order of your markup can be
changed visually with your CSS.

5. Add padding to your sidebar

Once you’ve floated your and s, we’d like you to add a declaration to
your rule to adjust its . Pay particular attention to the at the top
of the to ensure the in the lines up with the in the .
You might like to refer to our example as you do this. You’ll also notice from our example
that we’ve added of to the left and right of our ; this is to ensure
everything adds up to fill the new -wide .

A TWO-COLUMN CSS LAYOUT

311

11

6. Add the Faux Columns

As with the previous chapters we’ve provided an image for you to use to create your Faux
Columns. Following along with our example in the chapter, set the image provided as a

 on your and use a
declaration to repeat the image vertically within the . This will act as a back-
ground image to create the illusion that your and s are occupying the
same vertical height.

As usual, to help you with the different stages of this chapter’s homework, we’ve created
our own, two-column CSS layout for King Kong featuring our newly added
and Faux Columns . You can refer to this, using your browser’s View
Source menu command to see how we’ve updated our CSS, here:

Once you’ve created your two-column CSS layout for your Gordo web page and added the
Faux Columns we provided, put the kettle on and enjoy a cup of Java
Malabar as you prepare yourself for the next chapter.

CHAPTER 12

LIST-O-MATIC

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

314

As you might have guessed by the title, this chapter is all about lists. Why focus on lists?
Simple. As designers have moved toward adopting web standards they’ve learned to
embrace the humble list, turning lists from unstyled but semantically rich XHTML lists,
styled with the browser’s default style sheet, to well-styled lists that use CSS for design and
presentation.

One area where XHTML and CSS lists come into their own is for the creation of web site
navigation, and one of the primary focuses of this chapter will be on marking up and styl-
ing a list to create the Famous Primates web site’s navigation.

Before we get started though, credit where credit’s due. The title for this chapter is an
homage to Max Design’s excellent Listamatic:

Listamatic is an invaluable resource that’s well worth a visit. Designed to showcase
what’s possible with CSS, Listamatic shows the power and flexibility of CSS when applied
to a single, simple, well-structured list. By styling an identical XHTML list in a variety of
ways, Listamatic demonstrates how CSS can be used to completely change the look and
feel of lists, just by changing the CSS.

Once you’ve read this chapter, we strongly recommend you visit Listamatic to get a feel
for what’s possible when styling lists with CSS. You’ll find a variety of inspirational
approaches there that you might also like to experiment with.

In the last chapter we introduced a second column to our King Kong page’s layout, creat-
ing a . At that point our primary concern was to introduce basic layout prin-
ciples. As a consequence the content of our was a humble affair, a simple
paragraph sitting under a lone ; it served its purpose linking from our King Kong page to
our Cheeta and Cornelius pages.

This was fine for the purposes of Chapter 11, but if you’ve been diligent and worked along
with the homework, you’ll be aware that our Famous Primates web site is a little more
substantial than this . . .

We have a number of sections. Each section has its own “launch pad” page, providing the
reader with some useful ape and monkey facts—our primates are thespians and pioneers
after all. Each of these pages links to a number of additional primate-specific pages: homes
for King Kong, Cheeta, Cornelius, Gordo, Miss Baker, and Albert. Finally, we have our Links
and Contact Us pages.

In short, we have a great deal more content to link to. That content has an implicit struc-
ture and, as you’ll see at the end of this chapter, we can use nested lists to give that con-
tent some additional semantic meaning, creating a well-styled site map for the Famous
Primates web site.

LIST-O-MATIC

315

12

In this chapter we’ll replace the content we introduced in Chapter 11 with a list
that we’ll use to link to the different sections of the Famous Primates web site. This list will
act as the navigation for our finished web site.

We’ll use the property, which we introduced in Chapter 10, to replace
the browser’s default bullets with our own custom star images, fitting for our ape thespi-
ans and monkey pioneers, creating a visually engaging home for our web site’s navigation.
Lastly, as we promised in Chapter 4, we’ll take a look at styling ordered lists.

So, now that you know what we’re covering, let’s get started.

Styling lists
A long time ago in a galaxy far, far away . . . (in Chapter 4) we introduced you to the
humble list. By now you’re familiar with lists—both unordered and ordered—as we’ve
included examples of both on the King Kong and Gordo web pages. This chapter is where
we begin to style these lists using CSS.

As before, we’ll use a step-by-step approach. We’ll start by adding an unordered list to our
, listing the main sections of the Famous Primates web site. In the first pass we’ll

style this list using CSS, showing you how to turn a humble but well-structured XHTML list
into a well-designed and well-styled CSS list, add custom bullets to the list, and replace our
browser’s default bullets.

Once we’ve walked you through adding custom bullets, we’ll add some links into the mix;
these will form the backbone of our web site’s navigation and will give us an opportunity
to further style our list. Let’s get started.

Styling a simple list

The first step in the process is to amend our content, replacing the content we
added in Chapter 11 with an unordered list, listing the key sections of our Famous Primates
web site. We replace the and elements in our with an unordered list as
 follows:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

316

Without any additional CSS, this list renders in the browser as in Figure 12-1. This list will
form the basis of our Famous Primates web site’s navigation.

Figure 12-1.
Our unordered list as it appears in our with no
additional CSS added

Although this list could benefit from some additional styling, we now have an unordered
list in the that we can use as the basis for creating the navigation for our Famous
Primates web site.

One thing you’ll notice is that, as it stands, our list items could do with some additional
. You might recall we added some to the elements of our King

Kong page in Chapter 9. Although this took care of the on our elements,
the browser’s default style sheet is applying a different for our elements.
We override this by adding the following rule to our style sheet, which targets all the unor-
dered lists on our King Kong page:

The result of adding this rule is shown in Figure 12-2.

Figure 12-2.
Adding some to all elements on the page
inserts a little more vertical space between our unordered
list items, giving them a little more breathing room.

A welcome by-product of this additional rule is that it takes care of all unordered lists on
the page, including the two unordered lists beneath each of our King Kong films (listing
the respective directors and release dates).

By simply adding this one rule, we’ve added some to all the unordered lists
on the King Kong page. You can see the result of this rule on one of these unordered lists
in Figure 12-3.

LIST-O-MATIC

317

12

Figure 12-3. On the left our elements as they stood at the end of Chapter 11, a little tight.
On the right, as they now stand, a little more added makes a big difference.

The benefit of applying the to the element on our King Kong page is that
it uses inheritance to take care of all of the unordered lists on the page. This allows us to
take care of all of the unordered lists in one pass and later apply more specific rules to
those lists we’d like to style differently.

In the last pass we specified a for all the elements on our King Kong page.
As we move forward, however, we’d like to target the changes we’re making to the unor-
dered list in our only. In order to do this, we need to identify this specific list,
singling it out for the changes we’re about to make.

In Chapter 10 we introduced you to and attributes and covered how we could
use these to target specific elements of our web pages. We’ll now add an to our

; this will allow us to write additional rules that target just this list.

We add an to our markup as follows:

Now that we’ve identified this specific list, we can write rules targeted at this list only,
enabling us to specify properties for this list alone.

Before we move on to adding our own custom bullets to our list, it’s worth noting
that we can also use CSS to style the bullets of our unordered lists using any of a variety of
generic browser styles, including , , , and . We do this by simply
adding a rule to our style sheet targeting the property as follows:

Adding this rule replaces our default, unstyled list items’ bullets (styled with the
value) with the value, as you can see in Figure 12-4.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

318

Figure 12-4.
By adding a rule targeting the with the of , we
can change the default to instead of
the browser’s default .

This is a good start; however, we can go further than this by defining a
in CSS to specify custom bullets that relate to our site’s theme a little more closely. In
order to do this, we first need to switch off the browser’s default bullets.

We do this by amending our previous declaration as follows:

The result of changing this rule is shown in Figure 12-5.

Figure 12-5.
By changing our declaration to we
can switch off the bullets of the browser’s default style
sheet. This is the first stage in replacing these generic
bullets with our own.

Although we’ve switched off the default bullets of the browser’s default style sheet, the
default indentation for list items remains. This is due to the fact that, by default, unor-
dered lists have a certain amount of or (depending on which browser
you’re using) to accommodate the bullets. Before we apply our own bullet using a
 , we’ll switch off the default and by adding the follow-
ing declaration:

LIST-O-MATIC

319

12

The results of removing the browser’s default and can be seen in
Figure 12-6.

Figure 12-6.
Removing the browser’s default and turns
off our list items’ indentation.

Now that we’ve removed the default bullets and removed the indentation, it’s time to add
our own custom bullets using a specified in our style sheet. We could
do this using the property in CSS; however, this produces inconsistent
results with our bullets’ vertical positioning. A better approach is to use a

 on each element.

We add the following rule, which targets only the list items in the with the of ;
note how we’re using an to differentiate the in our from the other ele-
ments on the page:

Adding this rule results in the changes shown in Figure 12-7.

Figure 12-7.
By using the property to add a new,
custom bullet made from a star image, we can create a
list that’s more in keeping with our Famous Primates
web site.

What we’ve done with the last rule first of all is to specify a for all of
our list items, targeted at the with the of . We’ve set the

 to be a PNG we’ve created called , which is located in our folder.
We’ve then set the property to , instructing the browser not

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

320

to tile the . We covered both of these properties in Chapter 10 when we
introduced background images; however, in this example we’ve introduced a new back-
ground-related property, , which we'll introduce properly now.

The property allows us to position background images in relation to
the elements we apply them to. When no is specified, the browser
will default to , which sets the to the top
left edge of the element (the first value specifies the position from the left, and the sec-
ond value specifies the position from the top).

In this case we’ve used a of to position our
custom bullet 5 pixels from the left of each element and to center the image vertically
in relation to each list item.

Lastly, we’ve set some on each list item to allow our 9 9 pixel image
to show through completely, giving it 7 pixels of space at the top and bottom and 20 pixels
of space on the left-hand side. Without this on the left, our list item text would sit
on top of the . The amount of padding you add to the left-hand side of
the will depend on the size of your custom bullets.

The final stage in the process is to apply a little typographic style to the text of our list
items, a small but important touch. We add the following declarations to our
rule:

Figure 12-8 shows the results of adding these two declarations.

Figure 12-8.
To differentiate our unordered list in the from
the other unordered lists of the page, we use the

 property to transform our list into
 and we add a little .

This transforms the list items in the into and adds a little
, both properties covered in Chapter 9 when we covered styling text.

That’s it. Although we’ve not added any links yet, the preceding walkthrough covers every-
thing you need to know to transform your well-structured XHTML lists into well-styled lists
using CSS. By experimenting with the bullets you apply using the

LIST-O-MATIC

321

12

 property, you can achieve a variety of striking effects while still creating well-structured
lists that will display perfectly when CSS is switched off (as it might be in a nonbrowser
context).

All we need to do now is to add some links to the unordered list in our , and we’re
on our way to creating some much-needed navigation for our Famous Primates web site.

Styling a navigation list

In the last section we used CSS’s property to create custom bullets for
the list items in our , switching off the browser’s default bullets in favor of an
image that we defined using CSS. The one thing the last list was missing, however, was
links.

In this section we’ll add links to the unordered list in our . Before we do that, how-
ever, let’s regroup and refresh where we are, as we’ll be building on our existing XHTML
markup and CSS as we move forward. Our list is currently styled with the follow-
ing rules:

We showed you the result of these rules in Figure 12-8; we’re repeating the screenshot
here in Figure 12-9 as this is the starting point from which we’ll build as we move forward,
adding links into the mix.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

322

Figure 12-9.
Our unordered list as it stood at the end of the last
section. This will form the foundation on which we build
moving forward.

Before we add links to our unordered list, we’ll put in place a little advance groundwork,
adding some borders above and below our different list items; this will help to further dif-
ferentiate the Famous Primates web site’s different sections. We add the following declara-
tions to the rules shown previously:

Adding these two declarations results in the changes shown in Figure 12-10.

Figure 12-10.
By adding a border to the top of the unordered list in our

 and to the bottom of each of our list items, we
can help to draw out the structure of the navigation list.

LIST-O-MATIC

323

12

The two previous rules have added a () to the top of our unor-
dered list in the , targeted at this list’s unique of ; it’s also added a
with the same specifications to the bottom of every element in this particular list. This
helps to distinguish the different navigation sections of the Famous Primates web site.

We’ll now complete the process of building the navigation list by adding links to our
 list. We add the following relative links to our ’s list items:

Figure 12-11 shows the results of adding these links to the unordered list in our .

Figure 12-11.
Adding the links to the list in our gives us a
navigation list for the Famous Primates web site.

Adding the links to our unordered list adds a to the list of links (this is
inherited from the rule we wrote in Chapter 9 targeting our pseudo-class).

The next stage is a subtle one, but we’ll reap the benefits of it in a moment. We change the
selector targeting our list items () to a selector targeting anchors located
in our list items ().

By using a descendant selector, we’re targeting only elements that are elements in the
 with an of . (You might want to read that again, but it makes perfect sense—

essentially we’re targeting just these links with laserlike precision.) We covered the use of
descendant selectors to target specific elements based on the context in Chapter 10;
essentially we’re only targeting links that are list items in our list.

We do this by changing the selector for our existing rule as follows:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

324

Changing the selector results in what you see in Figure 12-12.

Figure 12-12.
In Figure 12-11 we used a selector of ; we’re
now using a more precise selector of .

The anchor elements that we’re now targeting are inline-level and so occupy less vertical
space than the block-level list items; however, we’ll resolve this in a moment by setting our
anchors to .

Although this change to our selector has resulted in the vertical space between the links
being reduced, we’ll resolve this now. Making this change allows us to more accurately
target the links within our list, which will prove useful in a moment. We add the
following to our rule:

Adding , coupled with a more precise selector targeting the anchors in
the list, instructs the browser to display our links as block-level elements
as shown in Figure 12-13.

LIST-O-MATIC

325

12

Figure 12-13.
Adding to the elements in our

 list forces them to display as block-level
elements, taking up the vertical space previously
occupied by the block-level list items.

By setting our elements in the to , they will display as block-
level elements as opposed to inline-level elements; this forces them to occupy the entire
vertical space that each block-level list item previously occupied, increasing the rollover
area of our links. The result of this is shown in Figure 12-14.

Hovering over these block-level elements now gives us a larger state, resulting
in a more generous rollover area in our links.

Figure 12-14.
Setting gives us a more generous
rollover state.

With the changes we’ve made to this rule, when we hover over the links, the
 is the same as that set on the links in our (). We could leave

this as is, but we’ll add one other twist by creating an additional rule for the
pseudo-class of our links.

By setting the and (the text color) on the pseudo-class
of our links, we can create a more compelling hover effect. We add a new rule as
follows:

By simply changing the on the state on our links, we
can create the effect of our link’s fading into the of

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

326

the , with the text of the links on the state set to the pale blue we’ve been
using for our links. The result of this change is shown in Figure 12-15.

Figure 12-15.
The addition of this one extra rule gives our links
an elegant fading effect.

With just a few additional rules we’ve created a well-styled, but equally well-structured,
navigation list for our Famous Primates web site in the .

Creating horizontal lists
In the first half of this chapter, we enabled you to add custom bullets to your lists using
CSS, allowing you to add to the design of your web pages. There are a number of other
presentational aspects, however, that we can also control with CSS, not least taking lists—
which are often imagined to be vertical—out of the normal flow of the document and, as
a consequence, creating horizontal lists.

We can achieve a horizontal list in one of two ways: using either —which you
now know removes the list items from the normal document flow—or, alternatively, set-
ting the list items, which are block-level elements, to , instructing the
browser to display them as inline-level elements.

In this section, we’ll explain how to use to change a simple unordered
list of links into a “breadcrumb trail” of links, enabling the user to see at a glance where
they are on the Famous Primates web site.

The first step is to create the list itself. We’ll do this by adding some additional markup to
our King Kong page, where each of our list items represents a level within the Famous
Primates web site, allowing you to easily traverse back up through the levels of the Famous
Primates web site using the links in the breadcrumb trail.

We add the following list to our King Kong web page (note the magic escalator we intro-
duced in Chapter 6):

LIST-O-MATIC

327

12

We’ve given the an of , which allows us to target this specific list with its own
set of rules. Before we start adding the CSS, the list looks as shown in Figure 12-16.

Figure 12-16. Our unordered list with links to the
Famous Primates home page and the Apes in the
Movies section page. As we are on the King Kong
page, there’s no need to link to it.

This gives us a solid foundation on which to build and some markup to apply our CSS to.
Let’s get started with the process of turning this into our horizontal breadcrumb trail. The
first stage in the process is to remove the default bullets, margins, and padding using the
following rule:

The result of this change—which should come as no surprise—is shown in Figure 12-17.

Figure 12-17. Removing the default bullets, margins,
and padding is the first step in the process of creating
our horizontal list.

The real magic resides in the following rule. Short, but to the point, it instructs the browser
to display the list items in our list as inline-level elements rather than block-level elements.
We add a rule styling all list items in the with the of ; this styles just these
particular list items.

As a result of adding this short rule, the default block-level line breaks above and below
these specific elements are removed, and the list is now horizontal instead of vertical,
as shown in Figure 12-18.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

328

Figure 12-18. Setting our list items to
creates a horizontal list.

We’ll now begin to fine-tune our design a little, starting by removing the
we set on our links in Chapter 9. We do this by adding a descendant selector, targeting
only anchors within list items in the unordered list with the of :

Figure 12-19 shows the result of adding this rule.

Figure 12-19. We remove the we set on
links in Chapter 9 with a rule targeting just this list.

Our breadcrumb trail is taking shape, but would benefit from some horizontal space
between the list items, which, at this point, are sitting tight against each other, separated
only by a blank space. We’ll once again leverage the power of margins and padding, com-
bined with a carefully chosen to insert some arrows into our horizontal
list to give the breadcrumb trail some style.

We add the following declarations to our rule:

Adding these additional declarations results in the changes you see in Figure 12-20.

LIST-O-MATIC

329

12

Figure 12-20. Using an arrow as a
and adding some margins and padding draws out the
structure of the breadcrumb trail.

Let’s have a look at what the declarations we’ve added are doing. First we’ve added
of to the right-hand side of our elements; this makes room for the

, which we position to the right of the links and center vertically using
. We also set the to display just once, using

. We use to create 5 pixels of space
to the right of the arrow image; this inserts space between the arrow and the next list
item.

By using a descendant selector to target just the anchors in this list, our arrows are applied
only to the right of the links. Note that the words King Kong don’t get the arrow, as they’re
not acting as an anchor element. Perfect. Figure 12-21 shows the list in action.

Figure 12-21. Our breadcrumb trail allows users to
retrace their steps back up the levels of the Famous
Primates web site, improving usability.

That’s it—targeting these three simple rules using an allows us to differentiate this list
from the others on our King Kong page, creating a useful navigation breadcrumb trail that
improves our web site’s usability.

Lists are not only semantically the right choice when marking up lists of items, but are also
extremely versatile when it comes to styling them with CSS. The ability to change a list’s
direction from vertical to horizontal makes the list a versatile and useful tool in any self-
respecting Web Standardista’s tool box.

Styling nested lists
Although we’ve focused on the King Kong and Gordo web pages in our walkthroughs and
homework, you should by now have an awareness of the entire Famous Primates web site’s
structure. In this section we’ll look at using nested lists to create a site map for the Famous
Primates web site.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

330

Nested lists are the perfect choice for a site map, indicating a site’s logical structure and
different sections’ and pages’ relationships. Admittedly our site—with an extensive eleven
pages—is a little small to merit a full site map; however, the principles we discuss here can
be scaled up and applied to larger sites with more pages, making this is a topic worth cov-
ering to prepare you for your ongoing journey as a Web Standardista.

Styling a site map with a nested list

In the following example we’ve added some additional, fictitious content to our Famous
Primates web site to give us a little more to material to work with. Our King Kong and
Cheeta entries now feature further nested lists, where we’ve added some imaginary sub-
sections covering various films starring these two renowned ape thespians.

For the purposes of simplicity, we’ve restricted ourselves to just a handful of the films
these two ape thespians starred in; however, you can see a more extensive version of this
site map at the book’s companion web site:

We’re focusing on styling nested lists, particularly looking at using descendant selectors to
target lists nested within other lists. With all of this nesting, things can get quite compli-
cated, so to keep things simple, we’re not adding links to our list items. With everything
we’ve covered so far, however, you should be more than capable of combining our differ-
ent examples to create nested navigation lists of some complexity.

To give us some material to work with, we create the following nested list (for a refresher
on nested lists you might like to refer back to Chapter 4):

LIST-O-MATIC

331

12

We now have a reasonably long nested list that we can add some style to using CSS.
Figure 12-22 shows how the preceding markup renders in a browser using our existing
style sheet.

Figure 12-22. With our existing style sheet, our nested
list is displayed with the browser’s default bullets.

Even without any additional CSS our Famous Primates web site’s structure is clearly indi-
cated, with the hierarchy of pages obvious. As it stands, however, this is looking a little
bland. We can use CSS to draw out the hierarchy further, highlighting the top-level pages
in the site—Famous Primates, Thespians, Pioneers, Links, and Contact Us—differentiating
them from the subsections and their related pages.

The first thing we need to do is give our unordered list an so that we can target our CSS
at this specific list without affecting any other lists on the page. We apply an of
to the containing as follows:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

332

We can now write a rule targeting the , applying some general style to the list.
We’ll then use shades of color to differentiate the different levels of our list, using a lighter
shade for the top-level list and progressively darker shades for the nested lists.

We add the following rule to take care of some basic styling:

This displays in the browser as shown in Figure 12-23.

Figure 12-23. Adding some to our
nested list gives the list a little more breathing
room. We’ve also set the list items to display in
a weight using the property.

Setting the property to and adding a little is the first stage
in the process of styling our list. We’re also setting a color for the list items to (the
light creamy text color we’ve been using). We’ll overwrite this in a moment for darker
shades on the nested list items.

LIST-O-MATIC

333

12

We now amend our rule as follows and add a second rule to remove all of the
list items’ bullets:

This displays in the browser as shown in Figure 12-24.

Figure 12-24. With the declaration,
we switch off the browser’s default bullets; we also
remove the indent on our first level list.

One point to note here is that resetting the and on the top-level list (with
the of) only resets the margin on this list. Remember, there are other lists

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

334

nested inside this list with their own default and . We’re leaving the
and on the nested lists untouched to reveal the hierarchy of the web site.

The second key point here is that our declaration is taking care of all
list items in the nested list. Essentially, the selector instructs the browser to
“look for any list items in the list with the of and remove the bullets.”

Now that we’ve removed the browser’s default bullets, we’ll add our own on the second-
and third-level lists, adding stars in keeping with the design we’ve created. We’ll target
these at the nested list items.

We add the following additional rules:

This displays in the browser as shown in Figure 12-25.

What’s important to note here is that we’re using our knowledge of descendant selectors
(targeted at specific elements) coupled with the use of inheritance to take care of the
 styling.

The first of the two rules we’ve added targets any unordered lists nested in the with the
 of (that’s all the nested lists at the second and third level) and sets their

to a slightly darker shade of brown () to differentiate them from the list items at
the top level. We also add some additional and to give our site map a little
more breathing room.

The second of the rules uses inheritance to apply a to our nested list
items. We’ve created a star image that’s the same as the we set in the last rule
(). In the next, and final, stage we’ll create a more specific rule that takes care of
the third-level list items, differentiating them further.

LIST-O-MATIC

335

12

Figure 12-25. Adding custom bullets to our list
items using a variant of the star image we used
for the navigation list ties this list into
our design.

We do this by adding the following rule, which targets our third-level lists with laserlike
precision:

This displays in the browser as shown in Figure 12-26.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

336

Figure 12-26. Changing the text and setting
the of our third-level list to
differentiates it from the lists above it in the hierarchy.

In the final stage of the process we’ve differentiated our third-level lists from the lists
above it in the hierarchy. Changing the of the text and the associated color of our
custom bullet in addition to using the declaration has helped to
further underline the hierarchy of our site map.

As with the previous stages in the walkthrough, we’re progressively targeting the elements
we want to style: in this case all instances of nested within a , nested within another

, nested within the with the of . That might seem a little complicated, and
in this case it is, but it’s completely logical!

Let’s take a look at our finished CSS with comments added to indicate which level of the
list the rules are targeting:

LIST-O-MATIC

337

12

Styling nested lists can take a bit of getting used to and is certainly not a beginner-level
topic. Dealing with inheritance in nested lists can be a little like a baptism of fire, but as
ever, practice makes perfect. (Remember Mr. Miyagi? “Wax on . . . wax off.”)

Styling an ordered list
In Chapter 4 we promised we’d introduce you to some of the alternative values we can use
when styling ordered lists. Good news, this is the section where we cover this in action.

To give this some context, let’s take a look at the references on our King Kong page where
we’ve used an ordered list. At present this list is styled using the browser’s default style
sheet, which gives each list item a numeral (using a default value of on the
 property). This displays as shown in Figure 12-27.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

338

Figure 12-27. Our references as they are currently styled, with the browser’s
default style sheet specifying a value of

However, as we indicated in Chapter 4, we’re not restricted to numbers for our list items;
we can also use, among others, and (to change the numbers for
letters), or and (to change the numbers for Roman numerals).

Let’s take a look at these in action. If we’d like to change our list markers from sequential
numbers to sequential letters (A, B, C . . .), we simply add the following rule to our style
sheet:

This results in the changes shown in Figure 12-28.

Figure 12-28. Our references are now ordered with sequential letters in
uppercase.

Our declaration is similar to the one we used previously to turn off the bullets
on our unordered lists earlier in this chapter, in this case replacing our numbering with an
ordered list of letters.

If we’d prefer a more Roman flavor, we can simply change the value of the
declaration to, for example, as follows:

LIST-O-MATIC

339

12

Figure 12-29 show the results of this change.

Figure 12-29. Our references are now numbered with lowercase Roman
numerals.

Although this barely scratches the surface of styling ordered lists, it should get you started
on your ordered list journey. There are a number of even more exotic ways to display
ordered lists, including Greek, Armenian, and katakana list markers.

Noted CSS and web standards advocate Eric Meyer has a comprehensive test page at his
web site that lists (pun intended) all available markers:

Summary
So what have we covered? In this chapter we’ve looked at a number of the ways you can
use CSS to style lists. We’ve looked at adding custom bullets to your lists by using the

 property, and we’ve created both vertical and horizontal lists of links,
creating block-level rollovers for the navigation we added to the of our Famous
Primates web site.

We also looked at styling nested lists to enable you to create well-structured and well-
styled site maps. Lastly, we briefly looked at some ways we can style ordered lists, intro-
ducing a variety of alternatives to plain old .

An understanding of this chapter will enable you to create navigation lists (and other lists)
for the web sites you build that are not only well-structured using semantic markup, but
also well-styled with CSS. Combining the techniques we’ve covered will give you a flexible
array of list styles to apply to your projects. As usual, experimenting with your own lists will
help you develop your abilities further.

In the next chapter we’ll introduce you to the benefits of using external style sheets, where
a web standards approach really comes into its own. We’ll also introduce you to a number
of useful troubleshooting tools and techniques to serve you as you continue on your jour-
ney toward Web Standardistas’ nirvana.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

340

Homework: Adding the Famous Primates web
site’s navigation

Over the last five chapters we’ve progressively added to your knowledge of CSS to enable
you to create well-styled web pages that are built on a solid foundation of well-structured
markup. This is the backbone of the Web Standardistas’ approach and one we’ll conclude
in the following chapter when we create an external style sheet for your Famous Primates
web site, tying all of the web site’s separate pages together.

In this chapter we showed you how to use CSS to create well-styled vertical and horizontal
lists; we also showed you how to add custom bullets to these lists to improve their look
and feel. We replaced the placeholder content we added to our in Chapter
11 with a list of links to form the Famous Primates web site’s navigation.

This chapter’s homework is to create the navigation list for the of your Gordo
page, once again following along with our King Kong page as an example. Once you’ve
added your navigation list to your Gordo page, we’d like you to implement the navigation
across the remainder of your Famous Primates web pages.

Lastly, we’d like you to explore the different ways you can style the ordered list of links in
your Gordo page’s references section by creating a rule to change the default
style with something a little more interesting.

1. Add the ul to the sidebar

In the last chapter we added some placeholder content to the when we
 created our two-column CSS layout. In this chapter we’d like you to replace this content
with an unordered list. This list will form the basis of your Famous Primates web site’s
navigation.

Following along with our King Kong example, give your an of . This will
allow you to create rules targeting this specific list on the page while leaving the other lists
on your Gordo page untouched.

2. Add the custom bullets to your sidebar list

As with the previous chapters we’ve created everything you need to complete the home-
work. You can download the assets here:

Once you’ve downloaded the preceding files, transfer the images to your folder.
You’ll be using the star images we’ve supplied for you to replace the bullets of the brows-
er’s default style sheet with images more in keeping with Gordo, your space-traveling
friend.

Following along with our King Kong example earlier, remove the bullets of the browser’s
default style sheet; reset your margins and padding; and specify the stars provided as

s on each of the list items in your .

LIST-O-MATIC

341

12

3. Add the links to the nav ul in the sidebar

Taking care to ensure your relative links are correct, add links to each of the list items in
the navigation list in the .

Following along with the second part of our King Kong navigation list walkthrough, use a
descendant selector to target only the elements that are elements in the with the

 of ; that is, you’ll be creating a rule for the following:

This is a moving into slightly more complicated territory, but if you’ve followed along, you
should be ready. Before you embark on this aspect of the homework, you might want to
re-read the second part of our navigation list walkthrough along with the introduction to
descendant selectors in Chapter 10, to see how you’re using descendant selectors to target
these specific elements with laserlike accuracy.

4. Style the ordered list in the references section

The final part of this chapter’s homework is to style the ordered list in your references
section. We set the on our to and —why not try
something different? You might like to refer to Eric Meyer’s comprehensive list of all avail-
able markers here:

As usual, to help you with the different stages of this chapter’s homework, we’ve created
our own, similarly styled, page about King Kong featuring our newly added sidebar naviga-
tion list. We’ve also styled the references section, changing the default to

. You can refer to this, using your browser’s View Source menu
command to see how we’ve updated our CSS, here:

Once you’ve added the navigation list to the sidebar of your Gordo web page and styled
the references, put the kettle on and enjoy a cup of Keemun Orchid as you prepare your-
self for the next chapter.

CHAPTER 13

HARNESSING THE POWER OF
EXTERNAL STYLE SHEETS

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

344

We’re almost there! This is our last practical, hands- on chapter, and we’ll use it to intro-
duce some quite advanced topics; but if you’ve been a diligent Web Standardista and done
your homework, we’re confident you’re ready.

At this point we have a well- structured and well- presented King Kong page; however, there
are still a number of fundamental ways in which we could improve it. Not least by intro-
ducing you to the power of using external style sheets, where the real benefit of a web
standards–based approach becomes clear.

We’ll use the contents of a typical element to form the basis of the majority of this
chapter’s journey, introducing a number of useful new tags and elements into the
that allow you to really get the most out of the Web Standardistas’ approach. In particular
we’ll cover the use of tags, looking at what they’re useful for and exposing a few
myths about them along the way. These are the tags and elements that will really set you
apart from your less well- trained peers.

The primary focus of the chapter will be to look at the benefits of using external style
sheets: taking the style sheet we’ve created for our King Kong page, removing it from the
King Kong page itself, and linking to it as a separate file. Doing this will allow us to link all
of our ape and monkey web pages to the same style sheet, allowing us to focus our efforts
on a single style sheet that styles all of the Famous Primates web site’s pages, improving
efficiency and ensuring consistency across the site. This is where the real power of CSS lies.
We’ll also show you how to create a separate print style sheet so your web pages look
fantastic in print too.

Lastly, we’ll cover testing and troubleshooting, two aspects essential to the Web
Standardistas’ approach. Without further ado, let’s get started.

The head elements that make it all happen
According to the W3C’s recommended standard, only a few elements are legal inside the

 element: , , , , , and . You’ve encountered some of
these elements before, not least the , , and elements with which you’re
now well and truly acquainted, but the remainder are probably new to you.

Now that we’re getting toward the end of the book and this kind of detail is no longer
intimidating to you, we’re going to take a look at a typical element that you might
encounter on a web page “in the wild.” We’ll break it apart and look at what each element
is doing. This will introduce some important new concepts that will form the closing part
of our Web Standardistas journey.

One element we’re not going to focus on is the element; you’re well acquainted by
now and we don’t need to reveal any more of its secrets to you. We will, however, look at
the element where, up until this point, we’ve been locating our CSS.

We’ll examine the element in relation to the element, showing how you can
use it to offload your CSS to an external style sheet so that all of your documents are
linked to one, easily updated style sheet stored in a central location. This is where the real

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

345

13

power of a combined XHTML and CSS approach lies: using a single CSS file to style all of
your web pages.

Once we’ve covered that, we’ll run through the remainder of the elements you’ll find in
the section, introducing you to each, one by one. This will give the chapter some
structure around which we can build, as we introduce each new element and its purpose.

The following example shows some markup that you might expect to find on a typical web
page. We’ve expanded upon our King Kong page to tie it back into the process we’ve been
working through for the last few chapters. Many of these elements are new; however, we’ll
walk through them one by one and introduce you to them.

Clearly the preceding is a little more complicated than the web pages we’ve been creating
up until this point. At first glance all these extra elements in the might appear a little
intimidating; however, as we introduce each of them to you, you’ll become familiar with
them in no time.

The importance of meta tags
The first element we’re going to introduce properly is the tag and its attributes.
You first met a tag in Chapter 2 when we introduced character encoding, and if
you’ve been using the template file we provided for you, you should be used to seeing it
by now. In this section we’ll formally introduce you, revealing its secrets. tags are
used for much more than character encoding, however; let’s take a look at them in a little
more detail now.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

346

In computing terms, metadata is data that describes other data and, as you’ll see, one use
of the tag is to describe the contents of a web page. In this section we’ll look at
some uses of the tag and its various attributes in action.

To save you constantly referring back to our introductory example, we’ll include the rele-
vant lines of code from the element as we introduce each section. In this section we’ll
be looking at the tags as follows:

You might have heard of tags in discussions about Google and search engine opti-
mization that possibly express the importance of “using keywords in meta tags” and the
benefits of using tags to provide a description for search engine purposes.

In fact Google relies less on tags for keywords now, looking instead at the actual
content of a page to establish search rankings. This is largely due to the manipulation of
keywords, where less-than-scrupulous search engine optimization (SEO) consultants would
fill the attribute with content often of no relevance to the page in an effort to
boost search engine rankings (a tactic known as keyword stuffing). As search engine
robots—the programs that index your web pages—have become more sophisticated, the
value of keywords in tags has declined considerably.

Although tags are no longer really relevant, tags are still
relevant and can be used to provide the description that the search engine will use in its
listing of your site as shown in Figure 13-1.

 Figure 13-1. The King Kong page’s attribute displaying as a description of the
page in Google

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

347

13

 tags aren’t just for search engines, however, as the example of a typical ele-
ment earlier in the chapter showed. We’ve included two other tags; the first con-
tains a character encoding that we introduced in Chapter 2, but will explain in detail in a
moment:

The second specifies the authors of the specific page:

As the three examples in this section suggest, tags can be created for almost any-
thing. There are a number of initiatives, not the least the Dublin Core Metadata Initiative
(DCMI), that are developing metadata standards. The DCMI (), estab-
lished in 1995, is dedicated to creating a simple and standardized set of metadata conven-
tions for describing documents online in ways that make them easier to find. Microformats
(), a more recently emerging set of markup principles, is also aimed
at exploring metadata and information markup.

It’s all in a name

 tags have four types of attribute: iv, , , and . You met
the attribute earlier, when we introduced the attribute. In fact there are
a number of potential values for the attribute, one of which is included in our typical

 element example:

No prizes for guessing that this is used to identify the authors of the particular page (in
this case the authors of the book you’re now holding). The following are a few other
attributes:

 : As we already mentioned earlier, Google and other search engines no
longer place any emphasis on keywords in tags. You should instead ensure
your web page’s content has a rich mix of keywords marked up within the , ,
and elements on the page itself.

 : This attribute is useful for including copyright declarations and infor-
mation.

 : This attribute is useful for informing search engines which pages you would
like to be indexed (and equally importantly, which pages you wouldn’t).

There are a number of other potential values for the attribute. We’ve covered these
and the topic of the tag and its attributes in greater depth at the book’s compan-
ion web site:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

348

Speaking a foreign language

You first met the attribute in Chapter 2 when we briefly introduced you to
character encodings. The following tag provides information to the browser about
how to interpret the contents of our XHTML page. Let’s take a look at it more closely now
to see how it works its magic:

The parts we’re interested in are the values in the attribute: the first value,
, informs the browser that the document should be treated as , and the

second instructs the browser to use a character set () of 8. Lost yet? Resist the
urge to skip this section; we encourage you to stick with us to the end as the UTF- 8 char-
acter set is important.

UTF-8 (which stands for 8- bit Unicode Transformation Format) supports a large character
set allowing you to, for example, include words with umlauts and accents on your web
pages.

The easiest way to explain the benefits of using UTF- 8 is to show two examples in action:
one web page with UTF- 8 specified as a character set and one without. We’ll use an
invented but very foreign- looking word—Iñtërnâtiônàlizætiøn—that uses a variety of
unusual characters in two different web pages and look at how the character encoding, or
lack of, affects the display of the characters in the browser.

The following very short page has no character encoding specified:

This page displays in the browser as shown in Figure 13-2. Note the page’s and the
 within the . Disaster. With no character encoding specified, the web page doesn’t

display what we’d like it to. Clearly we need to fix this.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

349

13

 Figure 13-2. Our web page with no character encoding struggles with obscure characters.

Now take a look at the same page, with our character encoding specified as UTF- 8:

This page displays in the browser as shown in Figure 13-3—perfect. By specifying UTF- 8 as
a character set, our web page can now support a wide variety of characters, allowing us to
create pages that are internationally friendly.

 Figure 13-3. Our web page with UTF- 8 character encoding specified works fine.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

350

Character encoding is a tricky topic, and we’ve barely scratched the surface here. We’d
strongly suggest that anyone involved in working with an international character set reads
up further on this. To help with this, we’ve provided additional resources at the book’s
companion web site:

External Style Sheets
Next on our quest to unravel the is the element. As we briefly alluded to earlier,
we’ll use the element to enable us to offload our style sheets and link to them. Up
until this point all of our style sheets have been written on the pages we’ve been working
on and embedded within them; now we’ll separate our XHTML pages (the content) and
CSS files (the presentation).

This section is where the real power of CSS comes into play in full effect.

Although it’s useful during the development phase to work with all the XHTML and CSS in
one file, we’ve now reached a point with our King Kong page that it’s nearly finished. This
is the stage at which we take all the information we’ve developed in the embedded style
sheet and offload it to an external style sheet, creating a single, external style sheet that all
of our documents link to.

Before we show you the relevant markup, we’ll pause for a moment and consider the pros
and cons of embedded style sheets as opposed to linked style sheets.

Embedded vs. linked style sheets

As we’ve mentioned, throughout the previous chapters we’ve used an embedded style
sheet to develop our King Kong web page. The benefit of using an embedded style sheet
during the development phase is that it allows you to tightly control and test your web
page as it evolves from within one easy location.

However, there are a number of downsides to using embedded style sheets. Unless every
single page on your web site is different—an unlikely event—linking to a single CSS file is
a better approach for a number of reasons.

First, by linking all of the web pages in your web site to a single CSS file, your users’
browser will only need to download the CSS file once, after which it will be accessed from
the browser’s cache. This speeds up download times considerably and reduces bandwidth
requirements. With embedded CSS every time a page is downloaded, the CSS is down-
loaded, an inefficient and bandwidth- intensive process. Not only will a page with an
embedded CSS file take longer to download, it will also place a heavier load on the
server.

Another reason to link all your files to a single CSS file to control presentation is to improve
consistency and reduce the number of files that need to be updated. Imagine every single
page in your web site has the same embedded CSS. If you need to make just one change,

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

351

13

you’ll need to update all of the web pages. Clearly a single, linked, external style sheet is
a better approach.

Linking to an external style sheet

The relevant part of our element that handles the link to our external style sheet is
the following line:

Let’s take a look at this in detail and work out what’s going on. The first attribute, ,
defines the relationship of the linked document with the current document, in this case
highlighting that the link is to a . The second attribute, , specifies the style
sheet language: . The attribute, which you’re familiar with, specifies a URL
pinpointing where the style sheet can be found and what it’s called, in this case a file
named in a folder called . Lastly, the attribute specifies the intended
rendering medium or media, in this case .

In the preceding example we’ve set the attribute to , but there are a number
of other media attributes we can use.

Media types
CSS supports a wide variety of media types, although support for a number of them is
inconsistent. The following media types are supported as specified by the W3C’s CSS 2.1
specification ():

 : Suitable for all devices

 : Intended for speech synthesizers

 : Intended for Braille tactile feedback devices

 : Intended for paged Braille printers

 : Intended for handheld devices

 : Intended for printed material and for documents viewed on screen in print
preview mode

 : Intended for projected presentations, for example, using data
 projectors

 : Intended primarily for color computer screens

 : Intended for media using a fixed- pitch character grid, such as teletypes, termi-
nals, or portable devices with limited display capabilities

 : Intended for television- type devices

In this chapter we’ll be focusing on and styles, the two you are likely to find
yourself using most.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

352

It’s worth noting that many of these media types are not supported by any devices at all
and possibly may never be, for example, and both Braille types (which is perhaps no
bad thing given the specialist knowledge that would be required to create effective
Braille style sheets).

Using @import

An alternative method to using the element to link to our style sheet is to use an
 rule instead as in the following example:

Essentially what this does is inform the browser to look for a CSS file called ,
import it, and use it to style the document. This was a popular method of importing styles
as support for web standards evolved.

The original motivation for the rule was to hide CSS from old browsers that didn’t
understand CSS very well, most notably Netscape 4 (a browser you’re highly unlikely to
encounter in this day and age). The idea of the rule was to serve a simple style
sheet or no style sheet at all to CSS- challenged browsers, while sending a full style sheet to
 standards- aware browsers. However, since these browsers are over a decade old, support-
ing them should become less and less of a concern.

One area where the rule has an advantage over the element is that its use is
not restricted to the element of a web page; it can also be used within an external
style sheet.

This allows us, for example, to link to a separate CSS file that contains a number of
 rules pulling in other, additional style sheets. When dealing with multiple style

sheets, this approach enables you to easily manage importing external style sheets, while
keeping the of your XHTML files neat and tidy. We cover this in greater depth at the
book’s companion web site:

In this day and age, whether to use or the element to link to your style
sheets is largely a matter of taste; both methods work, and all modern browsers under-
stand either.

Creating our external CSS file

The creation of our external CSS file is simple and should take only a few moments. We
create a new plain text document in our plain text editor and save it as . The

 extension, like the extension, identifies the file type to the browser, in this case
indicating it is a Cascading Style Sheet.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

353

13

We open our King Kong web page and select everything between the opening
 and the closing tags (but not the tags themselves).

We simply copy all of our CSS rules (and any relevant comments) and paste them into the
 document we just created and save it.

Like the folder we created in Chapter 6 to organize our images, it’s a good idea to
create a folder to store your style sheets in. Although at this point you only have one
style sheet, later in the chapter we’ll create a style sheet to style printed pages.
Storing these separate style sheets in one location will make the management of our web
site easier as it grows.

The next stage is to create a link from all the XHTML pages we’d like to style with this style
sheet using the attribute. This process is identical to creating any other link (to an
image for example). Bear in mind the path to the CSS file will be relative to the different
web pages we’re linking from. Our example in the typical element follows:

In this example our file is located within a folder called sitting in a folder
above the file we’re linking from.

That’s it. Now we can delete any internal style sheets from any XHTML documents we’ve
linked to this external style sheet; the element will now take care of the link to the
CSS, styling the pages. One file, styling everything. Once we’ve deleted our tags
we load our page in a browser and test it. The result is shown in Figure 13-4.

One thing worth noting is that when you transfer your file into your
folder, you’ll need to check and amend the relationship of any images you have used in
your style sheet, ensuring their relative links are fixed to take into account the relative
locations of the style sheet and the images specified.

For our Famous Primates home page we’ve specified three background images in our style
sheet. If we take one as an example, and see the effect of moving the file into
the folder, it should help you understand the principle. We take the original rule, as
 follows:

and change it to the following:

This step is essentially the same as the one you took in Chapter 6 when you fixed the links
to your images after putting them into the folder.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

354

 Figure 13-4. Our King Kong page with the linked style sheet displays exactly the
same as it did when the style sheet was embedded.

The real power of CSS

By moving all of our styles to an external style sheet and linking all of our Famous Primates
web pages to this one file, we can style everything from one central location. This is where
the real power of CSS lies.

Using linked style sheets will save you a significant amount of time in the long run and
considerably cut down the amount of time and effort it takes to make changes to the
presentational aspects of your web site. Change the one CSS file, and the entire web
site is updated automatically. Good times!

But it gets better; we can build multiple style sheets for different purposes, all styling the
same well- structured markup. For example, we might build a print style sheet for printed
pages or a high- contrast style sheet with larger type for visually impaired users. The flexi-
bility is the key.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

355

13

In the next section we demonstrate this by building a print style sheet, showing how we
can completely alter the look and feel of the King Kong page just by changing the style
sheet.

Adding a print style sheet

One of the beauties of CSS lies in its flexibility. Having built a solid foundation of
 well- structured semantic markup, we can now quickly and easily restyle the very same
markup to create a print style sheet that is tailored to the world of the printed page.

Clearly, printed pages have different characteristics from pages viewed onscreen. Screen
and print are two different media with two distinctive sets of requirements. It makes sense
to provide a print style sheet for your users that is optimized for the medium of print.
Some key aspects to consider when designing a print style sheet include the following:

 Hide elements that aren’t useful in print. It makes sense to hide certain aspects of
your markup when developing the print style sheet, for example, navigation (after
all, a user can’t click links on a printed page!). CSS allows you to use

 to switch off the elements you’d prefer not to show in print, perfect for this
purpose.

 Create a print- specific logo. If you’ve used subtle gradients for onscreen purposes
that might not print well, include a version of your logo and hide it in the screen
style sheet, but show it in your print style sheet.

 Ensure your print style sheet works in black and white and high contrast. When set-
ting white text on a dark background color, bear in mind that background images
and colors do not print by default. Some browsers will print just the text—in
white—and no background; the resulting printed page will be a challenge to read!

 Ensure the sizes you specify work in print. A set at 760 pixels for screen
is better set in inches (or centimeters, for countries that have embraced the metric
system). Consider the width of the printed page and design accordingly.

 Use points for font sizes. In print—as with any common word processors—you’ll
notice type is set in points, usually 10 pt for legible body copy. When designing
your print style sheet, use sizes geared toward the world of the printed page for
the best results.

Building the print style sheet

Let’s get started. In our example of a typical element earlier, we have the following
 element, specifying a link to a print style sheet:

We’ll now walk you through the process of creating this style sheet. The first step in the
process is to open a new file in our plain text editor and save it as ; we’ll save it
in the folder to keep all of our CSS files organized.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

356

Style the body
We add our first rule as follows, styling the so that it’s perfect for print:

By now you should know enough about CSS to have a clear understanding of what’s hap-
pening here. We’ve specified Georgia, a serif font, for our print style sheet. We could have
used Lucida Grande as we specified in our style sheet; however, serif fonts are
generally considered easier on the eye on paper (and Georgia is a beautifully designed
typeface).

You’ll notice we’ve set the to , using points as a unit of measure instead of
pixels. Pixels are perfect for screen; points are perfect for paper. We’ve set the page to
print black on white, not the dark of our screen style sheet; think how
much toner that would eat up!

Lastly, we set the of the page to , filling the page to use less paper, and set
a margin of on the left and right, adding a little space around our content.

Hide unnecessary content
Onscreen and in a browser our list of links in the is perfect, enabling us to navi-
gate throughout the site. In print, links aren’t clickable, so printing them is of no benefit to
the user. We hide the using the property of CSS, setting the to

 as follows:

Style the headings
The next stage is to style the headings and add a little padding to space out our paragraphs
a little to aid our printed page’s legibility. We do this by adding the following rules:

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

357

13

Style the links
Although we switched off the links in our by using , we’d like to
display our links in our references section and the copyright information and links in our

. We use a grouped selector to target both our and pseudo- classes,
styling them black and switching off the links’ default (we’ll indicate that
they’re links by including the URLs in a moment):

The last thing we do, which we’re introducing here for the first time, is to use CSS’s
 pseudo- class, which will enable us to write a rule that displays the URLs of our links after
the link text. This will be useful for anyone reading the King Kong page and wanting to find
out a little more about the mighty ape online. We add the following:

What this declaration does is to write some content to the page after our and
 elements in standards compliant browsers. Essentially it writes the following:

a space and an opening bracket, the attribute, and a closing bracket and a space.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

358

We add the following two declarations to our rule to style the URLs in a light shade of gray
to reduce their prominence and set their to .

Click Print and check the results
That’s it, we’re finished. Simple. The only thing we need to do now is check the results
when printed. Figure 13-5 shows the results of printing out our page. Perfect!

 Figure 13-5. Our King Kong page restyled
for the wonderful world of paper

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

359

13

Conditional comments for Internet Explorer

Conditional comments only work in Internet Explorer and provide a mechanism for target-
ing specific versions of the browser. The conditional comment in our example looks
like this:

The conditional comment starts with a and ends with a >, so to all browsers other
than IE the conditional comment will look just like one of the comments you met in
Chapter 2 and be ignored. However, IE 6 and earlier versions of the browser will see the
main style sheet we’ve linked to () and the linked style sheet within the condi-
tional comment (), which contains additional rules specifically written for IE
that override the main style sheet.

It’s worth noting that the reason the IE- specific rules in the style sheet over-
ride our style sheet is due to the fact that the link is below the

 link in our markup and so overrides any styles set in the style
sheet. (To refresh your memory about this topic, you might like to revisit the section titled
“The order of your CSS rules is important” in Chapter 10.)

As older versions of Internet Explorer notoriously suffered from shortcomings in the inter-
pretation of CSS compared to browsers with better standards compliance, several meth-
ods of targeting CSS specifically at IE were developed. Known as CSS hacks, these
workarounds took advantage of known bugs in different browsers’ CSS interpretations to
target rules to specific browsers.

One of the best-known CSS hacks is Tantek Çelik’s box model hack, used to work around
Internet Explorer 5’s box model bug. To illustrate what a CSS hack looks like, we’ve included
an example of this hack here:

The first declaration in the rule specifies a width for IE 5/Windows of . What follows
is designed to bamboozle IE 5 with a set of obscure rules that effectively force it to throw
its hands in the air and give up on attempting to parse the remaining declarations. Smarter
browsers, however, continue parsing and get the correct width of on the last line of
the rule. In a nutshell, IE 5 sets the width of the content to , while smarter browsers
set it to .

If this looks complicated, it’s because it is. As we said at the start of the example, this was
a hack—a workaround web designers were forced into, as support for standards in older

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

360

browsers evolved. While there might be times you’re forced to use hacks, they should be
avoided unless absolutely necessary.

Although a proprietary extension of regular HTML comments by Microsoft, conditional
comments offer us a method of serving specific CSS to specific versions of Internet Explorer
(arguably the number one culprit for browser bad behavior). Conditional comments allow
us to write “good” CSS for all browsers and then add an additional set of amended rules
for IE only.

This allows us to keep our main style sheet clean of obscure hacks and separate the
 IE- specific workarounds into a separate file. You can target specific versions of Internet
Explorer using this method; in our example, in the typical element we’ve used

, which targets versions less than or equal to IE 6 ().

The following example would target all versions of Internet Explorer 5 and above (condi-
tional comments were introduced in IE 5, so they are supported from IE 5 onward):

If we just want to target IE 5 and IE 5.5, we could use the following, which targets versions
of IE (less than) IE 6:

We can also use (greater than) and (greater than or equal to) as in the following
example, which targets all versions of IE from 5.5 onward:

In the following section we’ll look at a conditional comment in action as we use it to target
a style sheet at IE 6 and earlier.

A conditional comment in action

In Chapter 10 we specified a 24- bit PNG image with a transparent background as part of
our King Kong page. In the main style sheet (which we’re now linking to) we’ve linked to
this image. Unfortunately IE 6 doesn’t natively support alpha transparency, resulting in
unpredictable rendering. We can, however, use the conditional comment from our
element example to point IE 6 and below to , a style sheet built just for IE 6
and earlier where we address this problem:

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

361

13

We’ll use this style sheet to set the transparent PNG used for all well- behaved browsers to
a less pretty, but still workable, GIF image with a solid background color for IE. So, all other
browsers will get via the main style sheet:

The conditional comment will ensure IE 6 and older gets via our IE
hacks style sheet:

It’s worth stressing that conditional comments, like hacks, should be used as a last resort;
it’s much better to find CSS solutions that work across all browsers. However, conditional
comments are better than CSS hacks that rely on browser bugs; one reason for this is the
ability to remove browser- specific CSS from your main style sheet, another is that any
workaround rules are guaranteed not to have an impact on browsers other than those
intended.

Adding a favicon

Adding a favicon (short for favorites icon) is by no means necessary; it is, however, the sort
of attention to detail that the true Web Standardista should aspire to. Favicons appear in
a number of places, including address bars, tabs, bookmarks, history, and browser tool-
bars. They provide an instant visual cue to the user, especially useful when scrolling back
through browsing history, in addition to providing a valuable branding opportunity (admit-
tedly small at just 16 16 pixels).

We add a favicon to our site using a element as shown in the following example:

Like the elements we used for linking to our external style sheets, our link to our
favicon contains a number of attributes and values: first, a attribute with a value of

; second, a attribute with a value of , informing the browser
that the file being linked to is a favicon; lastly, an attribute with a path to where the
favicon is located in relation to the web page.

An example of a favicon is shown in Figure 13-6, at the Web Standardistas web site, where
the URL is accompanied by a tiny gold star.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

362

 Figure 13-6. Our Web Standardistas’ favicon as it displays in Safari’s address bar

Originally favicons had to be saved in an ICO format; however, a majority of browsers now
support PNGs and GIFs too. You can even make animated favicons, although their support
is limited at present.

Adding scripts
Although adding JavaScript to your page is beyond the scope of this book, we felt it impor-
tant to introduce you to a element so that you would know one when you encoun-
tered it on a typical web page when using View Source. Unsurprisingly, JavaScript is
referenced using the element as follows:

This example, from our typical element introduced at the start of the chapter, shows
a link to a JavaScript file called located in a folder called .

It’s worth noting that JavaScripts don’t always need to be linked to; they can also be added
between the opening and closing tags as in the following example:

This page, when loaded in a browser, will display identically to the very first “Hello World!”
web page we created back in Chapter 2.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

363

13

Contrary to what many beginning web designers mistakenly think, JavaScript is not Java
and Java is not JavaScript. Both were initially developed in 1995, but both are different.

Java, developed by Sun Microsystems, is a full- fledged object- oriented programming lan-
guage that can be used to create stand- alone applications in addition to mini applica-
tions, called applets.

JavaScript, developed by Netscape, is a smaller programming language commonly used
to extend XHTML documents to provide levels of interactivity beyond what is possible
with typically static XHTML pages. JavaScript is not used to create stand- alone applica-
tions or applets.

Testing and troubleshooting
We would be remiss if we didn’t include a section on testing and troubleshooting. Both are
important topics, and both will have an impact on your day-to- day progress as a Web
Standardista.

By now you’re well aware of the importance of testing your web pages using the W3C
Markup Validation Service and CSS Validation Service, but by the very nature of the Web,
and with the rapid emergence of the mobile Web, your web pages are likely to be seen in
a variety of contexts, so testing in browsers is an equally important part of the testing
process. The browser you’re using isn’t necessarily the browser your user is using, and as
a consequence of this a thorough testing process should lie at the heart of your approach.
A failure to test your web site can result in unexpected errors or worse, inaccessible con-
tent, a glaring Web Standardista faux pas.

Thoroughly testing your web pages invariably highlights issues that will need troubleshoot-
ing if their cause isn’t immediately apparent. To help you with this, we’ve highlighted
a number of troubleshooting techniques in this section, a checklist if you will, that you can
run through, prelaunch, to ensure any errors have been picked up and resolved.

Testing

The golden rule when developing and designing web sites is test, test, test! When you con-
sider that your carefully crafted web site, overflowing with XHTML and CSS goodness,
might be seen on anything from a laptop running Mac OS X using Safari, to a desktop run-
ning Windows Vista using Internet Explorer, to a tablet running Linux using a Mozilla- based
browser, the potential for browser- related display issues becomes clear.

Mac OS X alone supports a variety of browsers including Safari, Firefox, Opera, and Camino
(not to mention Lynx, which has reemerged as a Universal Access web browser for the
visually impaired). One operating system, a variety of browsers. Windows and Linux are no
different, supporting an extensive array of browsers from popular, well- established brows-
ers to niche browsers.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

364

 Figure 13-7 shows a typical range of browsers as displayed in Shaun Inman’s popular web
site analytics program Mint (). Clearly the list is a long one with some
of the usual suspects: Firefox, Internet Explorer, and Safari. However, it also includes a vari-
ety of lesser- known suspects: Camino, Konqueror, and Lynx, all clocking in at less than 1%.

 Figure 13-7. A typical list of user agents (or browsers) as shown
in Mint

As you can see in Figure 13-7, not only do we need to factor in a variety of browsers when
testing, we also need to consider screen size, not to mention the color depth of our users’
screens. Testing for all of these eventualities is almost impossible, of course, so how do you
test your web site across a variety of contexts? One answer lies in web- based browser test
services, which allow you to see your web site through the eyes of another platform and
browser.

Web-based browser test services
There are a number of web- based browser test services that, like the W3C validators, offer
you a way of testing your web site. Essentially tools that allow you to see how your web
site displays across a variety of operating systems and in a broad range of browsers, these
range from paid- for services to open source initiatives that allow you to quickly test your
web site in a variety of browsers. One that’s well worth exploring is Browsershots. The
description on the Browsershots web site describes it best:

Browsershots makes screenshots of your web design in different browsers. It is a free
 open- source online service created by Johann C. Rocholl. When you submit your web
address, it will be added to the job queue. A number of distributed computers will open
your website in their browser. Then they will make screenshots and upload them to the
central server.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

365

13

Essentially, Browsershots uses an open source, distributed computing approach to create
browser screenshots, splitting the workload across a number of distributed computers.
Typically, the results take a few minutes to arrive upon submitting a URL; however, what
you get over that few minutes is an extensive snapshot of how your web pages are looking
in a variety of contexts.

Another service worth mentioning is Litmus ()—a subscription- based
browser and e-mail client test service. Through an elegant interface, shown in Figure 13-8,
Litmus shows you exactly how your web site designs look on every platform, across every
popular web browser. It also tests rich, HTML e-mail campaigns across a variety of different
 e-mail clients. Better still, once you’ve finished testing, a single click publishes a full com-
patibility report ready for review.

 Figure 13-8. Litmus returns screenshots of the web page we’ve tested, allowing us to see how it
looks across a variety of browsers.

Although these web- based browser test services are convenient and useful, they do, how-
ever, have one drawback. What they return is a static image, essentially only testing one
state of your page and showing you the results. By their nature they can’t show you how
your web site loads and is displayed over time.

As you evolve as a Web Standardista and begin to embrace more advanced topics, for
example, adding animation and scripting, or including dynamic, user- interface effects on
your web pages, a service that returns a static image can’t give you any insight into how
these elements of your page are working.

There is a solution at hand, however: building a guerilla testing suite.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

366

Building a guerilla testing suite
Given the focus of this book’s homework on the Famous Primates web site, you might be
forgiven for thinking a guerilla testing suite is one manned by a staff of apes. We can’t be
sure what you call your friends, but we do not call our friends apes (except under extreme
circumstances). A guerilla (not gorilla) testing suite is a great way to build a low- cost,
 high- feedback testing suite for checking your web site.

Essentially an ad hoc testing service, manned by friends and fellow designers and develop-
ers using different platforms, a guerilla testing suite allows you to use your network of
contacts to test out pages in a variety of situations.

Built on a trust- based model—if you test my pages, I’ll test yours—this approach offers
you a much deeper level of feedback: “Your dynamic, JavaScript-driven image rotator took
forever to load!” or “There’s a real problem with your images. There are far too many and
they’re far too large—I was able to boil the kettle and enjoy a pleasant cup of Orange
Pekoe while I waited for the page to load.”

This kind of critical and objective feedback is invaluable and is something that
 screenshot- driven services just don’t offer. Even better, all it costs you is time.

Graded browser support
After reading the last few sections, you might be forgiven for wondering if you really need
to support absolutely every possible combination of platform, operating system, and
browser out there. The answer is that—in practical terms—you don’t, especially if you
embrace the concept of Graded Browser Support.

We have Yahoo! to thank for the concept of Graded Browser Support—essentially
a broader and more encompassing definition of the word support coupled with the idea of
grades of support. Yahoo! states the following about this concept:

In the first 10 years of professional web development, back in the early 90s, browser sup-
port was binary: Do you—or don’t you—support a given browser? When the answer was
“No”, user access to the site was often actively prevented. . . . By contrast, in modern web
development we must support all browsers. Choosing to exclude a segment of users is
inappropriate, and, with a “Graded Browser Support” strategy, unnecessary.

Essentially browsers are graded. Figure 13-9 shows Yahoo!’s current A- grade browser list.
There are three grades: A- , C- , and X- grade, defined as follows:

 A-grade: A- grade support is the highest support level. By taking full advantage of
the powerful capabilities of modern web standards, the A- grade experience pro-
vides advanced functionality and visual fidelity.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

367

13

 C-grade: C- grade is the base level of support, providing core content and function-
ality. It is sometimes called core support. Delivered via nothing more than seman-
tic XHTML, the content and experience is highly accessible, unenhanced by
decoration or advanced functionality, and forward and backward compatible.
Layers of style and behavior are omitted.

 X-grade: X- grade provides support for unknown, fringe, or rare browsers. Browsers
receiving X- grade support are assumed to be capable. (If a browser is shown to be
incapable—if it chokes on modern methodologies and its user would be better
served without decoration or functionality—then it is considered a C- grade
browser.)

 Figure 13-9. Yahoo!’s list of browsers that receive A- grade support

One important aspect of a Graded Browser Support strategy is to understand that not
everyone gets the same experience. Expecting two users using different combinations of
operating system and browser to have an identical experience fails to acknowledge the
very essence of the Web, namely its diversity. Further, requiring the same experience for all
users creates a barrier to participation—accessibility should be our key priority, as we’ve
stressed throughout this book.

What does this mean in the context of troubleshooting and testing? Essentially, not every-
thing will display as you expect it to all of the time, but that’s to be expected. The Web is
evolving, as you know by now, and things change. Quickly. Designing for the Web has
always been a delicate balancing act between progressive enhancement and graceful
 degradation.

When designing for the Web, it’s important to make an intelligent and informed decision
about what you will support and what you won’t. This is not a question of stating, “This
web site is best viewed at 1024 768 or higher resolution with Microsoft Internet Explorer
6 or newer.” We shudder when we read these declarations, and so should you. Tim
 Berners- Lee summarized this nicely in 1996 when he stated the following:

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

368

Anyone who slaps a “this page is best viewed with Browser X” label on a Web page
appears to be yearning for the bad old days, before the Web, when you had very little
chance of reading a document written on another computer, another word processor, or
another network.

A far better approach is to point people in the direction of web standards, informing and
educating them, an approach that lay at the heart of the WaSP’s successful Browser
Upgrade Campaign c/), which
began in 2001.

As a Web Standardista, you can do a great deal of good for the Web, helping to ensure
that the road for future development is fundamentally standards based. At the end of the
day, this book has been about enabling you to create sites that look fantastic in
 standards- compliant browsers. Spread that web standards message.

Troubleshooting

Yes, troubleshooting is frustrating, but isn’t it helpful when a manufacturer has put a little
thought into what might go wrong and suggested some possible techniques for turning
those wrongs into rights? How many times have you returned home with your
 fresh-from-the- shop, shiny new breakthrough Internet communication device, only to dis-
cover it isn’t quite working as you’d expected it to, right out of the box? You look for the
instructions in frustration, hoping—praying even—that you’ll find the word Troubleshooting
on the contents page.

Good news, this is that section of the book (and we’ve even neatly listed it, clearly labeled
“Troubleshooting,” in the book’s table of contents for future reference). This is the page
you should be turning to when things are going wrong and you just can’t even begin to
work out why.

When something goes wrong, there’s always a reason, of course, and finding it can be
made a lot simpler by adopting a systematic approach using a few tried and tested tech-
niques, which we introduce now.

Validate, validate, validate!
In Chapter 3 we introduced you to the W3C Markup Validation Service. When things go
wrong, this should usually be your first port of call. Of course, if you’ve been a diligent
Web Standardista, you should by now be using this validator as a matter of habit. Did you
stray from the path? (Guilty? You know who you are!) If you did, learn to love this validator
all over again. It is your friend.

Yes, the language used by the validator is a little dry and technical (and we’d love to meet
the person who wrote “character “&” is the first character of a delimiter but occurred as
data”), but, as we demonstrated in Chapter 3, the validator is the perfect tool for pinpoint-
ing any mistakes with laserlike precision:

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

369

13

Line 56, Column 8: character “&” is the first character of a delimiter but occurred as data.

Knowing that the possible source of the problem lies in Line 56 is a lot more helpful than
knowing that the possible source of the problem lies in one of, say, 1,816 lines of
markup.

It’s also worth noting at this point that the W3C Markup Validation Service isn’t the only
free validation service the W3C offers. It also offers a CSS validator, which you’ve already
seen, in addition to a number of others. If your web pages are passing the W3C Markup
Validation Service, but still posing problems, test them by using the W3C CSS Validation
Service. Like the W3C Markup Validation Service, the W3C CSS Validation Service helps
you narrow down the potential source of problems, making the troubleshooting process
easier. You can access the W3C CSS Validation Service here:

Leanr to spel
Again, our next bit of advice sounds obvious and you should by now be used to this type
of error, but spelling mistakes and accidental typos can often cause your carefully crafted
web page to display in an unexpected manner. When writing markup by hand—a good
thing as you now know—it’s possible for the occasional error to creep in here or there;
we’re only human after all.

Checking your spelling can often highlight the cause of problems—again, the W3C’s vali-
dators are great tools for highlighting these issues.

The following is invalid:

The following is valid:

In this case a simple spelling mistake, instead of , has caused the
problem. An easy mistake to make, but one that is often overlooked. Looking on the
bright side, writing your markup and CSS by hand in a plain text editor will improve your
spelling and attention to detail, and that’s no bad thing.

Another spelling- related issue that can occur from time to time—again an easy mistake to
make—is when a word is spelled correctly in HTML, for example, but
spelled incorrectly in the corresponding CSS, for example, or
vice versa. Again, the result is an error; frustrating, but understandable when you find it.
Case sensitivity can also be an issue, for example, and are not the
same.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

370

Finally, it’s worth mentioning that mistakes can also crop up even when you’ve diligently
checked all of your spelling. The following example, where the HTML doesn’t match up
with the CSS , might cause a few sleepless nights. This HTML:

will obviously not be styled by this CSS:

The bottom line when mistakes occur is to check everything carefully, using the validators
to help you find the needles in the haystack.

Adopt a lurid palette
Another useful technique, especially when troubleshooting CSS layout issues, is to tempo-
rarily adopt a lurid palette of background colors to clearly highlight the different sections
or s within your document. Using a distinctive color scheme, setting background colors
to bright, easily distinguishable colors—for example , , , , and

—allows you to clearly indicate the areas your different s are occupying and their
relationship to each other.

This can also be a useful approach for other elements as well, for example, applying
a to text elements to highlight them and clearly indicate how much
space they occupy on the page. (We used this technique in Chapter 10 when we intro-
duced margins, borders and padding on a simple element.)

Check for repetition
In Chapter 10 we explained how rules lower in a style sheet override rules targeting the
same element that occur above them. This might not seem to be a likely occurrence in
a short page, but as your style sheets get longer and more complex, it’s an easy mistake to
make. The s in the following example will appear , as the rule styling s in
appears lower than the first rule, which styles the s in .

Using your plain text editor’s Find command can help pick these sorts of mistake up
quickly.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

371

13

Reduce to deduce
When all else fails: reduce to deduce. Simplify your XHTML and CSS by selectively removing
parts of your code from the picture, and then refresh your web page in the browser.
Removing CSS rules one by one will usually help identify the causes of any problems.
Before embarking on this process, however, it’s a good idea to make a backup copy of the
file you’re testing.

An easy way to achieve this is through the use of comments to selectively switch off
aspects of your XHTML or CSS (a process known as commenting out). The following
example shows a rule styling our s that has had the commented out:

Commenting out the in this example and refreshing the page in the browser
allows us to quickly test the effect that this declaration has on our markup.

XHTML rule reference
To assist you with your troubleshooting, we’ve included a ready reference of XHTML rules
in this section.

Remember that adopting XHTML Strict forces us to use stricter rules that are easy to for-
get. Your mind wanders, a mistake creeps in, and as a consequence your page throws up
a glaring error. Although we’ve covered these rules throughout the book, we’ve listed
them again here for easy reference:

 Ensure you’ve opened with the proper DOCTYPE and namespace (if you’ve been
working from the file we provided at the book’s companion web site—

—you should be fine).

 All markup must be written in lowercase: is valid, isn’t.

 Every tag you open must close. “Empty” elements— , ,
, and , for example—must be closed with a space and

slash—“ ”.

 Nesting must be symmetrical. Remember the First In, Last Out rule:
 is valid,

isn’t.

 Encode all <, >, and & characters. Less than or more than signs—(<) and (>)—that
aren’t part of a tag must be encoded as and , respectively; likewise
ampersands (&) must be encoded as .

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

372

 All attribute values must be enclosed in quotes: is valid,
isn’t. You also need to separate attributes with spaces:
is valid, isn’t.

 Don’t put double dashes within comments: is valid,
 isn’t.

Summary
So what have we covered? In this chapter we’ve tied up a lot of loose ends. The most sig-
nificant thing we’ve covered is how to move from an embedded style sheet, useful during
the design, development, and build phases, to an external sheet that maximizes the real
benefits of a CSS- based approach: strength, power, and flexibility.

We’ve also looked at the contents of a typical element, introducing you to
tags, exploring how they can be used to provide additional information about our web
pages; the element, looking at how it can be used to link to external style sheets and
to include a favicon for our web pages; and lastly the element, acquainting you
with it and briefly showing an example of JavaScript in action to create a simple JavaScript
“Hello World!” page.

Finally, we took a look at the importance of testing and troubleshooting, giving you a trou-
bleshooting checklist that you can refer to if things go wrong.

In the next chapter we ask, “Where to from here?” and answer that question with some
pointers—a few suggestions for what you might focus on after you’ve completed this
book.

Homework: Linking to external style sheets
In this chapter we introduced you to the typical contents of a element to highlight
some additional elements you might encounter as you use View Source to view web
pages “in the wild.”

We used our journey through the to introduce you to a number of elements you
might find useful, not least the tags we introduced. We also used this journey to
demonstrate the power of putting external style sheets to work, introducing you to style
sheets for both screen and print media.

As we had reached the culmination of the design process, we took our completed internal
style sheet and showed you how to use it as the basis for creating an external style sheet.
This will allow you to take full advantage of the benefits of using a single style sheet that
you can link all of your web pages to. We also introduced print style sheets that allow you
to create perfectly printed web pages optimized for the medium of print.

HARNESSING THE POWER OF EXTERNAL STYLE SHEETS

373

13

Along the way we introduced you to favicons, explaining how they can prove useful as
a usability aid. Finally, we introduced you to a number of techniques and tools that can
prove useful in troubleshooting your web pages.

Your homework for this chapter will be to apply what you’ve learned to your Gordo page,
adding to its element and creating an external style sheet that you can then use to
style all of your Famous Primates pages.

1. Add some <meta> tags

Using the tag we created for our King Kong web page as a guide, create
a tag for your Gordo page. We’ve left it to your discretion to write the
contents of the attribute; however, bear in mind that the first words you use
are the important ones. Search engines will often truncate longer , so
make your first words count.

You can find out a little more about writing good- quality tags here:

Once you’ve added your tag, add a tag and insert your name
in the attribute, as in the following example:

2. Create an external style sheet

In your plain text editor, create a new document and save it as ; you’ll transfer
the rules you’ve written up to this point on your Gordo page to this document. Referring
to the examples covered in this chapter, remove the rules you’ve written for your Gordo
page and add them to your file.

Create a folder for your screen and print style sheets; this is where you’ll store your
CSS files. Add a element to the element of your page and create a link to your
brand-new CSS file.

3. Link to a print style sheet

We’ve provided a ready- made print style sheet for you to link to. You can download the
print style sheet (along with a number of other assets) from the following location:

Once you’ve downloaded these files, transfer the file into your folder and
add a link to it. Remember to include a attribute for both of your linked style sheets
to inform the browser of their purpose.

4. Add a favicon

You’ll see that we’ve provided a favicon for you, which was included with the other assets
for this chapter. Referring to our example, add a link to your new favicon and test it in
your browser.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

374

5. Test and troubleshoot

Using your Gordo page as an example page, test out the page using both Browsershots
() and Litmus (). This will give you some idea of
how others see it. Needless to say, we expect you to take care of any troubleshooting that
might be required (you can use our checklist to assist you in this process).

As before, to help you with creating your external style sheet, we’ve created our own,
similarly styled, page about King Kong featuring all of the additional material we covered
in this chapter. You can refer to this, using your browser’s View Source menu command to
see how we’ve created our external style sheet, here:

Once you’ve created your external style sheet, linked to the print style sheet we supplied,
and tested it out by printing your Gordo page, put the kettle on and enjoy a cup of Assam
SFTGFOP Mangalam as you prepare yourself for the next chapter.

CHAPTER 14

WHERE TO FROM HERE?

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

378

To paraphrase Sid Vicious (or was it Frank Sinatra?): “And now, the end is near, and so we
face the final curtain . . . ”

As we embark on our final chapter together, we’ve gathered together a number of
resources that will help ensure your ongoing journey as a Web Standardista is a smooth
one. To help you along on your journey, we’ve

 Suggested a number of web design–related topics—covering both established and
emerging technologies—that you might like to consider exploring next

 Developed a free web-based resource for you where we’re publishing additional
content in the form of a periodical, reviewing web design–related books, and col-
lecting additional links you’ll find useful (we’ve even organized the links by category
and provided short reviews for each)

 Highlighted some useful tools to add to your Web Standardistas’ toolbox to make
your life as a fully fledged web designer a little easier

 Recommended a number of books that fit well with topics you might want to cover
once you’ve completed this book

 Suggested a number of web sites we recommend you bookmark and explore

This chapter, like the other chapters, is tightly tied to the book’s companion web site
where we’re maintaining an up-to-date resource comprising book recommendations, links
to recommended web sites and online resources, emerging tools, a periodical, and more.
This resource allows us to keep you informed about new and emerging trends in a rapidly
evolving medium.

Although you’ve reached the end of this book, your journey as a Web Standardista is only
just beginning. Just like the journey toward nirvana, or the path to enlightenment, your
Web Standardista journey is a lifelong one. With that thought in mind, think of this chapter
as a map, pointing you in the right direction and giving you a clear indication of what to
explore next.

So, without further ado, let’s get started on the final part of our journey . . .

But really, where to from here?
Not coincidentally the title of this chapter is “Where to from Here?”—a question you’re
probably asking yourself now. You’ve almost concluded this book, you’ve followed all the
exercises, you’ve diligently done all of your homework, and you hopefully have a com-
pleted Famous Primates web site. What next? Where to from here?

There are a number of additional technologies—both established and emerging trends—
that you are now well and truly prepared to explore, and we cover some of them here. It’s
an exciting time to be embarking on a career as a web designer. The Web is maturing,
technologies are evolving rapidly, and, just as importantly, the support for these technolo-
gies is becoming more dependable.

WHERE TO FROM HERE?

379

14

With a solid grounding in web standards you should be more than capable of integrating
emerging technologies into your practice and expanding your portfolio of skills. So, what’s
out there? The last few years have seen a number of exciting developments, not least the
following:

 The collaborative web, think Wikipedia (), TripAdvisor (
), and Urban Dictionary ()

 User-generated content, think Flickr (), Newsvine (
), and YouTube ()

 Community-driven sites (sometimes characterized as “conversational media”), think
Twitter (), Facebook (), and Slashdot (

)

 Social-bookmarking services, think Delicious (), FFFFOUND
(), and Digg ()

 Web-based applications, think Basecamp (), Gmail (
), and Harvest ()

The emergence of these services—both delivered via the Web and a product of the Web—
has resulted in a rich online tapestry. The collaborative Web, user-generated content, con-
versational media, social- and community-driven sites, web-based applications . . . all have
clear potential in isolation, but what’s exciting about the Web now is the way in which
these technologies are being combined in innovative and often unexpected ways.

The decision by many companies and developers to embrace the use of open application
programming interfaces (APIs) that allow users to combine data from diverse sources and
reconfigure and shape content in a variety of ways has resulted in a proliferation of web-
based services and applications.

Known as mashups, these web-based applications combine data from more than one
source, creating single, integrated tools that were unimaginable only a few years ago.

The decision of companies like Google, Amazon, Flickr, and Twitter (to name just a few) to
freely open up access to their information—the core of their respective businesses—is
giving rise to innovative new applications as the Web moves forward.

Figure 14-1 shows an example of this in action. Building on Google’s Google Maps API and
combining this with social-networking aspects allows Platial to create a web-based, shared
mapping tool. As its cofounder Jason Wilson states, “Platial enables anyone to find, create,
and use meaningful maps of Places that matter to them. Our dream is to connect people,
neighborhoods, cities, and countries through a citizen-driven common context that goes
beyond geopolitical boundaries. We are building Platial because we adore Places.”

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

380

Figure 14-1. Platial, a social mapping service that is built on a number of APIs

Last.fm—self-styled home to “The Social Music Revolution”—proclaims the following on
its home page:

Right now, all over the world . . .

433 people are listening to Ted Sulkowicz—Black Dot

43,206 people love Stephan Mathieu

4,832 people are attending Kraftwerk in Dublin

This kind of information, constantly updated, constantly changing, and pulled from the
ether, where it’s openly shared, suggests possibilities that perhaps even Tim Berners-Lee
didn’t see: particularly the unexpected manner in which information—the very fabric of
the Web—can now be shaped, merged, blended, and reconfigured as the Web evolves.

So, what might you explore now?

What you’ve learned so far is a solid foundation on which you can build. Some things to
look at might be JavaScript libraries, to add dynamic features to your site; PHP and MySQL,
for the creation of dynamic, database-driven web sites; and AJAX (Asynchronous JavaScript
and XML) to create web-based applications.

The Web is changing, it’s rapidly evolving, and—with the solid foundation you now have—
you can become a part of this rapidly evolving landscape.

WHERE TO FROM HERE?

381

14

JavaScript libraries

What is a JavaScript library? Essentially a collection of prewritten JavaScript functions that
allow for easier development of JavaScript-based applications, JavaScript libraries have the
potential to enhance web site functionality and can improve user experience considerably.
Combined with well-structured XHTML markup and CSS, both of which you should by now
be well acquainted with, JavaScript libraries make it easier and quicker to create truly
accessible dynamic web sites.

The first thing to note is that there are a number of JavaScript libraries in existence, all
with particular strengths. By now you’ll be unsurprised to hear that some research is
required in order to select the one that best fits your needs. Some libraries worth explor-
ing include jQuery (), Prototype (), MooTools (

), and the Yahoo! User Interface Library (
). All have extensive resources and tutorials available online.

Not only are JavaScript libraries making advanced JavaScript capabilities available to non-
programmers, they are also easing and accelerating the development process. Easy to
integrate into a web site, they enable mere mortals to add advanced functionality and
dynamic effects to web pages that would once have been the exclusive domain of JavaScript
programmer demi-gods. Figure 14-2 shows one example of a JavaScript-driven user inter-
face in action, in this case a gallery window opening in an overlay on top of the current
web page using Lokesh Dhakar’s popular Lightbox plug-in.

Figure 14-2. Lokesh Dhakar’s Lightbox plug-in is an elegant and unobtrusive mechanism to
overlay images on the current page through the power and flexibility of the Prototype framework
and script.aculo.us effects library.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

382

The emergence of various libraries—and equally importantly, their support in standards-
compliant browsers—has positioned JavaScript as a serious contender to Flash thanks to
its ability to easily create dynamic effects. They also form a basis for the emergence of
AJAX.

The road map for JavaScript libraries looks set to only improve as browser manufacturers
invest significant resources into this area due to the richness of user experiences that can
be created using JavaScript to enhance otherwise static web sites.

Database-driven sites

When developing small web sites with only a few pages, it’s fine to build each page by
hand, creating and adding the content for each page as it is added to the site. If, however,
your site grows substantially, possibly expanding to include multiple authors, all adding
and editing content, there are more efficient ways of developing and maintaining your
web site. Enter databases.

By storing your content in a database and dynamically populating your pages with content,
you can build large and complex sites that have the additional advantage of allowing your
content to be searched and output in a variety of ways.

One approach worth considering is a combination of PHP and MySQL, a popular choice for
database-driven sites. Both are free to use and are supported via a variety of online
resources.

AJAX and Rich Internet Applications

Rolling both of the preceding together—JavaScript and the seamless exchange of informa-
tion between a browser and a database—without refreshing a web page, moves the dis-
cussion toward AJAX (Asynchronous JavaScript and XML).

AJAX is often confused with the use of JavaScript in general, with beginning developers
considering the integration of dynamic, user interface effects via the use of JavaScript—in
particular through the use of JavaScript libraries—to be equivalent to AJAX: “Check it out,
my page is using AJAX!”

The clue to what AJAX really is lies in its name, suggesting the asynchronous exchange of
data between a database and a web page.

AJAX enables the creation of application-like interfaces that have the ability to send and
receive data to and from the server in the background without the need to reload the
page for every exchange of data made, as is the case with normal XHTML pages.

One example of this process can be seen in Figure 14-3, which shows Google’s Google
Suggest feature. As you type into the search box, Google Suggest anticipates what you
might be typing, offering possible search term suggestions in real time. Essentially these
search results are retrieved from the server and displayed in the browser as you type,
enabling you to accelerate the search process.

WHERE TO FROM HERE?

383

14

Figure 14-3. Google Suggest, an example of AJAX adding dynamic functionality to
an otherwise static XHTML page

Popular micro-blogging site Twitter summarizes the benefits of an AJAX approach nicely:
“Updates are now refreshed via AJAX, instead of loading the whole page, which should be
faster.” What this means is that parts of a web page can be refreshed dynamically by que-
rying a database without reloading the entire page, resulting in more dynamic pages.

One reason for the rapid growth in interest in AJAX lies in the widespread adoption of
Gmail, an application that relies heavily on the technology. AJAX, coupled with the wide-
spread availability of faster Internet connections, has been behind the growth of a number
of web-based applications that use AJAX components as a part of the fabric of their
design.

Web Development Solutions: Ajax, APIs, Libraries, and Hosted Services Made Easy by Mark
Norman Francis and Christian Heilmann (friends of ED, 2007) provides a comprehensive
introduction to AJAX and the use of JavaScript libraries as you continue your journey.

www.webstandardistas.com
First and foremost, as you embark on your journey as a fully fledged Web Standardista,
you’re not alone. We’ve built a solid resource to assist you on your journey, which is avail-
able at the book’s companion web site:

What’s available at the site? Well, apart from all the files you need for the Famous Primates
web site and example files showing what we’ve covered in each chapter of the book, we’ve
gathered together a number of other resources to make your journey from here as easy as
possible.

We’ve organized the web site into a number of sections that not only cover tools and
resources mentioned in the book, but also highlight and review new or upgraded tools as
they emerge. The web site also features a periodical through which we’re continuing to
add to the dialog as the Web evolves—a lively and engaging resource that we hope you
will keep returning to after you’ve put this book down.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

384

The Web Standardistas’ periodical

The Web is constantly changing, and to reflect this we’ve created a periodical section at
the book’s companion web site where we cover new and emerging technologies in addi-
tion to other topics that should be of interest to the aspiring Web Standardista. Some
topics we’re covering include usability, design, culture, and code.

The periodical section also contains interviews with internationally respected designers
and developers allowing you to gain an insight into how other practitioners work and to
see examples of their work.

You can follow the Web Standardistas’ periodical here:

Book reviews

Although we’ve recommended some books in this chapter, this list is by no means com-
prehensive. Our reading lists for our final year interactive design students are extensive,
and we’ve integrated them into the Web Standardistas’ web site. All feature reviews that
give you a concise overview of the books we recommend. We’ve built on those lists and
included a number of other books we recommend highly.

These books aren’t just restricted to those covering XHTML and CSS, but also include titles
that cover a broader range of topics including usability, design, culture, and code. You can
find our recommended list of books here:

Resources

As you by now know, we’ve listed a number of resources throughout the book. We’ll be
adding to this list as new resources become available. You can find the latest list at the
book’s companion web site:

Tools

In addition to our lists of recommended plain text editors, image editors, and FTP clients,
we’ve also included links to a number of other tools that might prove useful to the aspir-
ing Web Standardista. You can find links to the relevant applications’ web sites at the
book’s companion web site:

WHERE TO FROM HERE?

385

14

Badges

We mentioned badges back in Chapter 1; we have created a number of badges for you to
put on your site, proudly displaying your Web Standardista credentials for the world to
see. You can find them here:

For those of you not satisfied with pixels, a limited edition of real badges have been care-
fully crafted and are ready to be delivered on a first come, first served basis. The details on
how to obtain these rare collectibles are outlined in the “Homework” section at the end of
this chapter.

Tea

Those of you who have been following along with the homework diligently will notice that
each our chapters’ “Homework” sections has finished with a recommended tea. Should
you wish to avail yourself of these teas—perhaps you’d like to relax over a cup of China
White Monkey or perhaps you need a refreshing pick-me-up courtesy of a cup of
China After the Snow Sprouting Reserve Organic—you can find links to tea suppliers here:

Tools to make your life easier
In this section we’ve introduced a number of tools to make your life easier as a Web
Standardista. All are either web-based or cross-platform; better still all are free or have
free options.

As with our other recommended tools, you’ll find links to the latest versions of these tools
at the book’s companion web site:

As a conscientious Web Standardista you’ll naturally be spending a good proportion of
your time testing and troubleshooting your designs. There are a number of tools that
make this process easier; in this section we’ll outline a few options.

Firefox Web Developer Add-on

Developed by Chris Pederick, the Web Developer Add-on for Firefox is an excellent utility
that will help you considerably in your ongoing journey as a Web Standardista. Generously
distributed for free under the terms of the GNU General Public License (

), Pederick’s extension is well worth installing. The Web Developer
Add-on adds a toolbar to Firefox as illustrated in Figure 14-4.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

386

Figure 14-4. Chris Pederick’s excellent Web Developer Add-on toolbar in action,
disabling a web page’s embedded style sheet

The Web Developer Add-on toolbar allows you to do the following:

 Visually outline the different elements on your web page, which helps considerably
when creating and debugging layouts.

 View and edit your XHTML and CSS within the browser and see live previews of
these edits, which is extremely useful when developing web pages and trouble-
shooting.

 Switch off your web page’s CSS to see how it looks unstyled, as it might be seen by
a mobile phone, PDA, or screen reader.

 Access the W3C’s various validators via keyboard shortcuts.

This list barely scratches the surface. The best way to get a feel for the Web Developer
Add-on and its extensive array of functions is to install the Add-on to your copy of Firefox
and try it out. You can find out more about it and download it at Chris Pederick’s web
site:

Firebug

Firebug, shown in Figure 14-5, is another indispensable Firefox add-on, using a slightly
more visual approach than the Web Developer toolbar. Created by the talented Joe Hewitt,
one of the original developers of Firefox (and a classically trained kazoo player), Firebug is
released as an open source project and maintained by a small team of developers. It is free
to use and should occupy pride of place in any aspiring Web Standardista’s toolbox.

WHERE TO FROM HERE?

387

14

Figure 14-5. Firebug’s three-pane interface allows you to edit your XHTML and CSS and see the
resulting changes displayed live in the browser window.

Once installed, Firebug can be easily invoked by simply using keyboard shortcuts. Firebug
allows you to do the following:

 Inspect and edit your CSS and XHTML markup, allowing you to make experimental
real-time edits to the source of your page that update live in the browser as you
type. (The CSS editor even features autocompletion and several tools that make
editing your style sheets easier.)

 Visualize your CSS by providing previews of colors and even background images as
you hover your mouse over your different CSS declarations.

 Disable individual CSS rules with a simple click of the mouse, making debugging
live pages easier and faster.

 Check for errors in your CSS and XHTML markup without leaving the page. Firebug
features a status indicator that immediately tells you if something isn’t right, and
shows you a list of possible errors.

Firebug has an array of other features, including advanced JavaScript inspectors, CSS met-
rics display, and much more. It even comes in a “Firebug Lite” version, a piece of JavaScript
that you can install for IE, Opera, or Safari, enabling you to take some of Firebug’s features
with you to other browsers. As with the Web Developer Add-on, the best way to discover

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

388

what Firebug can do is to install the add-on to your copy of Firefox and try it out. You can
find out more about it and download it at the Firebug web site:

Tools for other browsers

There are a number of other tools available for exploring, debugging, and analyzing web
pages, and most modern, standards-compliant browsers include some built-in or add-on-
based development tools that will make your development process easier.

Safari’s Web Inspector allows you to view the XHTML markup and CSS associated with any
element of a web page using its Inspect Element feature, available by right-clicking within a
web page and selecting the appropriate menu command.

Opera’s Dragonfly is a set of web development tools built into the latest versions of the
Opera browser, sporting similar features to Firebug, albeit available through a slightly more
complex interface. Another feature Opera offers that’s worth mentioning is its ability to
display web pages using built-in accessible style sheets, including both a High Contrast and
an Accessibility Layout.

Even Internet Explorer gets in on the game with the Internet Explorer Developer Toolbar,
available as a downloadable extension for older versions of IE. Internet Explorer 8 goes
one step further, including developer tools built into the browser itself.

Using these tools can make your life easier and save you tearing your hair out trying to
determine exactly what is going wrong, if and when something on your web page isn’t
working the way you expected.

Basecamp

Web development isn’t all about debugging web pages, however. 37signals’ excellent
Basecamp allows you to easily track and organize all aspects of a project in one place,
making it the perfect tool to keep track of the web sites you’re developing.

A web-based application, Basecamp lets you manage and track projects and quickly create
resources for them, allowing you to easily create shareable to-do lists; manage user-
friendly, shared project calendars that highlight project milestones and deliverables; and
gather discussion about projects in a central location.

37signals offers a free plan that allows you to manage a single project with unlimited users,
enabling you to try out the software fully. Find out more about Basecamp here:

WHERE TO FROM HERE?

389

14

What else is out there?

The preceding list is a good start, although there are a great deal more resources out
there. If you haven’t already downloaded and installed Firefox, it’s certainly worth doing
so. Its open Add-ons architecture has resulted in a number of useful extensions aimed
specifically at web developers including LinkChecker, EditCSS, and ColorZilla.

You can download Firefox here:

An open and standards-compliant browser, Firefox’s Add-ons architecture allows for the
easy installation of extensions to the browser that can prove invaluable in extending its use
beyond a stand-alone web browser, making it a perfect environment for web develop-
ment. Throughout the development of your web site you should make a point of testing
your site in a variety of browsers to make sure that the site you’re developing works as it
should across a broad base of browsers.

As we suggested in Chapter 13, install and test your site in all the browsers available for
your platform, and then get a friend using a different operating system to check your web
site in the browsers available on that platform. Establishing a guerilla testing suite like this
can quickly and painlessly point out browser-related issues early in the development
 process.

We’ve already recommended using Firefox as a development browser; one thing we would
highly recommend against is using Internet Explorer as a development browser. By devel-
oping for IE first you run the risk that your XHTML markup and CSS is tailored to the bugs
sadly still present in IE. The result can be a web site that only works as it should in IE.

A far better and easier approach is to build your web site the right way first, making sure
it works in standards-compliant browsers, before making adjustments for less-compliant
browsers.

Recommended books
When we embarked on writing this weighty tome, our intention was to create a book that
would tie neatly into the list of books we already recommend to the final year interactive
design students we teach at degree level and the masters students that we mentor.

To that end we’ve recommended a number of additional books in this section. Literally
hundreds of books cover web design; however, we’ve focused here on books that we feel
fit well with the “where to from here” approach of this chapter.

You’ve read this book, what next?

There are a lot of excellent books that we point our students toward: Dan Cederholm’s
inspiring Web Standards Solutions, Paul Haine’s meticulous HTML Mastery, and Andy
Budd’s CSS Mastery, to name but a few. All are fantastic books, and we urge readers to

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

390

continue their learning by selecting a few and reading further. We’ve made a number of
recommendations here.

Bulletproof Web Design

By Dan Cederholm (New Riders, 2007)

Following the success of his first book, Web Standards Solutions (friends of ED, 2004),
another book that should be at the top of any self-respecting Web Standardista’s reading
list, Dan Cederholm’s second book focuses on creating CSS solutions that are robust and
flexible, and that degrade gracefully in worst-case scenarios.

Bulletproof Web Design, now in its second edition, follows a similar approach to Web
Standards Solutions, applying a variety of alternative approaches to everyday web design
challenges: deconstructing existing approaches and noting their potential pitfalls before
proposing bulletproof alternatives using XHTML and CSS.

Bulletproof Web Design concludes with a chapter that ties together all of the case studies
discussed in the book, culminating in a single, bulletproof page template.

CSS Artistry

By Andy Clarke (New Riders, 2008)

CSS Artistry is a web design masterclass in a box. Combining Andy Clarke’s excellent book
Transcending CSS with Inspired CSS, a 2 1/2-hour masterclass on DVD, the resulting boxed
set is a resource that you can return to again and again, for inspiration and reference.

With a heavy focus on the creative design aspects of the web development process,
Clarke—an internationally recognized speaker and designer who focuses on creative and
accessible web design—brings his trademark charisma and unbridled enthusiasm to an
excellent web design resource.

Given that the cost of a one-day masterclass with the aforementioned Mr. Clarke runs to
more than ten times the cost of the combined book and DVD, CSS Artistry is, shall we say,
a bargain.

The Zen of CSS Design

By Dave Shea and Molly E. Holzschlag (New Riders, 2005)

Driven by practical examples, The Zen of CSS Design is an enlightening, design-focused
book that showcases the potential of CSS-based design by systematically walking through
36 of the most inspiring designs from the CSS Zen Garden ().

By using real-world examples, Dave Shea and Molly E. Holzschlag reveal the wealth of pos-
sibilities that CSS-based design can offer. With a first chapter titled “View Source” and

WHERE TO FROM HERE?

391

14

subsequent chapters covering, among other topics, design, layout, imagery, and typography,
The Zen of CSS Design is the perfect book to provide inspiration for any project.

Eric Meyer, widely respected web standards advocate, states, “This is the book I’ve been
waiting for: a combination of design theory and real-world Web Design all rolled into a
beautiful package.”

CSS Mastery

By Andy Budd (friends of ED, 2006)

As its title suggests, CSS Mastery is aimed at web designers with some experience of XHTML
and CSS (after reading this book, that’s you!). Andy Budd’s book picks up where this book
leaves off, introducing a variety of useful techniques including styling forms and tables,
introducing a number of helpful hacks and filters, and troubleshooting a variety of com-
mon CSS problems.

The book closes with two case studies—imaginary real-world examples—by noted web
designers Cameron Moll and Simon Collison that show the book’s content in action.

HTML Mastery

By Paul Haine (friends of ED, 2006)

We were delighted when we discovered Paul Haine was assigned to be our technical
reviewer. We’ve been recommending his book, HTML Mastery, to our final year interactive
design students since it was published in 2006. As he states, “Markup is the fabric that
holds the web together, but most people only scratch the surface of what can be achieved
using (X)HTML.”

It’s no mistake that half of the book you’re now holding in your hands and reading is
dedicated to a solid understanding of XHTML. Haine’s HTML Mastery will allow you to
further that understanding, deepening your knowledge of HTML, and enabling you to cre-
ate better, well-crafted, and more meaningful web pages.

Other books we recommend

We could go on, listing an extensive range of books—there are a great many that are use-
ful to the beginning web designer; however, rather than list every book we think is useful,
we recommend you focus on the core set of books we’ve highlighted above.

Once you’ve read these, we strongly recommend the following books—in no small part
because they deal with everyday usability issues. You can find a full, updated list at the
Web Standardistas web site.

 Don’t Make Me Think! A Common Sense Approach to Web Usability by Steve Krug
(New Riders, 2005)

 Defensive Design for the Web by 37signals (New Riders, 2004)

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

392

 Designing with Web Standards, Second Edition by Jeffrey Zeldman (New Riders,
2007)

 Web Standards Creativity: Innovations in Web Design with XHTML, CSS, and DOM
Scripting by Cameron Adams et al. (friends of ED, 2007)

Recommended sites
The beauty of working on the Web is that it serves up a wealth of resources at your finger-
tips, all just a click of a mouse away. Better still they’re all, for the most part, free. We’ve
listed a number of recommended sites here along with short reviews, outlining what each
site is about and why we think it’s worth a visit.

Rather than overwhelm you with a long, unstructured list, we’ve broken our recommenda-
tions down and organized them by topic (think of the following organized and structured
list as a parting shot in structured markup!).

We’ll be updating this list to take account of the Web’s constant evolution at the book’s
companion web site:

Check this link for frequent updates and recommendations.

Organizations and publications

To list every organization or publication with a bearing on the evolution of the Web would,
as you can probably imagine, result in a book (or at the very least a chapter) in itself. The
following organizations, however, are worth bookmarking and checking into periodically
as the Web evolves.

W3C

The W3C’s XHTML and CSS validators aren’t the only thing we have to thank our friends at
the W3C for. They also maintain an extensive resource that includes the W3C A to Z
(a comprehensive rundown covering everything you ever needed to know about web
 standards).

At first glance the W3C web site might seem a little dry; on closer inspection, however, it
provides a wealth of information well worth tapping into.

Web Standards Project

The Web Standards Project (WaSP) is, in their own words, “a grassroots coalition fighting
for standards which ensure simple, affordable access to web technologies for all.”

WHERE TO FROM HERE?

393

14

We have the WaSP to thank for the standards-compliant browser support we’ve now come
to expect as a matter of course. Before it was established, standards support among
browser makers was less than stellar to say the least, so thank you WaSP.

A List Apart

As their strapline states, A List Apart is “For people who make websites.” Its secondary
strapline, in the web site’s footer, adds “From pixels to prose; coding to content.” Both
cover it well. A List Apart features an excellent and diverse range of topics exploring all
aspects of web development.

Better still, it has a writing team to die for: Jeffery Zeldman, Eric Meyer, Dave Shea, and
Cameron Moll, to name but a few. A List Apart should be at the top of any self-respecting
Web Standardista’s list of bookmarks, no question.

Digital Web Magazine

A great source of inspiration and web-related discussion, Digital Web magazine’s stated
goal is “to encourage designers to be creative, developers to be innovative, information
architects to be strategic, and overall [for all] to be well versed in the web environment.”

Digital Web magazine gathers a broad range of articles, reviews, and tutorials by a wide
variety of leading writers. Covering everything from APIs to XML, Digital Web magazine is
a fantastic resource for any aspiring Web Standardista.

Design and inspiration

There are a wealth of design-related resources online, and we’ve collected an extensive list
of links to these resources at the book’s companion web site. The following web sites are
well worth a visit for inspiration and will help you develop a solid understanding of
design.

Design Observer

Subtitled “Writings on Design and Culture,” Design Observer is a vibrant community-based
web site gathering articles by an internationally respected collection of writers at the top
of their form.

With articles on all manner of topics from, among others, Michael Bierut, Rick Poyner,
Adrian Shaughnessy, and Lorraine Wild, Design Observer is an excellent resource you’ll
want to tap into. Covering topics as diverse as the “Aesthetics of Wind Farms” to “What
Design Schools Don’t Teach” Design Observer is the perfect source of design inspiration for
web designers and non web designers alike.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

394

The Elements of Typographic Style Applied to the Web

Based on Robert Bringhurst’s excellent The Elements of Typographic Style (Hartley and
Marks Publishers, 2004), Richard Rutter’s The Elements of Typographic Style Applied to the
Web introduces a wealth of typographic resources with a specific emphasis on how typo-
graphy can be used to improve the Web.

Rutter’s personal web site () is also well worth bookmarking.

Stylegala

A “publication about web design and standards,” Stylegala gathers together news and
reviews about standards-based design including features on typography, design, standards,
and style.

Stylegala’s gallery is more than a generic list of screenshots, with all its entries reviewed
and rated. Stylegala’s CSS reference is also an excellent and comprehensive guide to CSS
that’s you’ll come back to again and again.

CSS Zen Garden

Although now over five years old, Dave Shea’s CSS Zen Garden was one of the driving
forces behind the promotion of CSS-based design and still provides inspiration today.

With style sheets contributed by designers from all over the world, the CSS Zen Garden
shows the power of CSS to change the visual presentation of a single, well-structured
XHTML page in a multitude of ways, underlining what it’s possible to achieve with CSS.

Accessibility

Throughout this book we’ve underlined the importance of ensuring the web pages you
create are accessible to as wide an audience as possible. One by-product of the Web
Standardistas’ approach is the creation of well-formed, accessible web pages. The follow-
ing web sites are well worth exploring to further your knowledge of accessible design.

456 Berea Street

Roger Johansson’s excellent web site places a heavy emphasis on accessibility and should
be a first port of call for anyone wishing to improve their web site’s accessibility.

456 Berea Street isn’t just about accessibility, however; Johansson’s writing covers a broad
range of web design–related topics. This, coupled with his excellent book reviews, makes
456 Berea Street an excellent resource.

WHERE TO FROM HERE?

395

14

Dive Into Accessibility

Although it was created by Mark Pilgrim in 2002, Dive Into Accessibility is still very much
relevant today. Presented as a 30-day course—which is free to take—Dive Into Accessibility
is essential reading for any aspiring web designer wishing to improve the accessibility of
the web sites they create.

Did we mention that the course is free?

Joe Clark

Joe Clark’s excellent Building Accessible Websites (New Riders, 2002) is now available to
read in its entirety online. An exhaustive introduction to accessible web design, Clarke’s
book is required reading for anyone wishing to improve their understanding of accessible
design.

Having written for a variety of publications—from Applied Arts to Bicycle Retailer and
Industry News—Clark’s critical writings on design, typography, and a variety of other topics
are also well worth reading.

North Temple Journal of Design

Subtitled “A collection of original design thought, commentary, and study,” North Temple
is a web site created by a collective of designers from Salt Lake City, Utah.

On a mission to spread the good word about design, North Temple’s accessibility articles
are both well written and well considered, and should inform any aspiring Web
Standardista’s approach to the creation of accessible web sites.

People

The Web is all about people. We follow too many writers to list here (check the book’s
companion web site for an extensive list). The following writers are not only extremely
knowledgeable, but are also very good writers.

Dan Cederholm

Dan Cederholm’s books have established him as a leading voice in the field of web stan-
dards–based design. His web site is equally inspiring, gathering together a wealth of articles
and links to emerging trends. It’s also home to Cederholm’s excellent SimpleQuiz, which
formed the basis of his first book.

Cederholm’s IconShoppe () is also well worth visiting, home to a
wealth of lovingly handcrafted royalty-free stock icons for the Web, all guaranteed to add
a little sparkle to any web site.

HTML AND CSS WEB STANDARDS SOLUTIONS—A WEB STANDARDISTAS’ APPROACH

396

John Gruber

Although not strictly focused on web design per se, John Gruber’s Daring Fireball is well
worth bookmarking for a daily dose of well-founded hyperbole. With a focus on “Mac
Nerdery, Etc.,” Gruber’s eye is well and truly on the technical pulse; highlighting emerging
trends, his no-nonsense posts are entertaining and thoughtful.

Gruber is also the creator of the excellent Markdown (
), a tool that allows you to write using an easy-to-read, easy-to-write

plain text format, and then convert it to structurally valid XHTML.

Jon Hicks

Jon Hicks, the creator of Firefox’s eye-catching icon and the excellent primate illustrations
behind Silverback and MailChimp, gathers together a variety of writings on web develop-
ment and design at his web site’s journal. His openness about his design process, in par-
ticular the way in which he shows step by step how he creates his excellent illustrations, is
both inspiring and educational.

He also likes tea (and cheese).

Jeffrey Zeldman

The publisher of A List Apart and author of the excellent Designing with Web Standards,
now in its second edition, Jeffrey Zeldman also cofounded the Web Standards Project in
1998. Zeldman’s writing on standards, design, code, and culture at the Daily Report (pub-
lished since 1995) are inspirational and well worth following.

Zeldman’s role as an advocate for a web standards approach can’t be overstated; his exten-
sive writing has helped to promote a huge improvement in the technical and visual design,
usability, and accessibility of web sites through the careful use of XHTML and CSS.

A fond farewell
So, that’s it . . . Rather than wish you goodbye, however, we wish you à bientôt, until next
time.

We hope you’ve enjoyed the book, and we hope you’ll find the book’s companion web site
useful. We welcome your feedback on the book and its companion web site. Get in touch,
we’d love to hear from you:

Thanks and good luck!

WHERE TO FROM HERE?

397

14

Summary
So what have we covered? In this chapter we’ve given you some pointers for the future,
and we’ve suggested where you might head from here now that you have a solid under-
standing of XHTML and CSS.

Along the way we introduced JavaScript libraries, the benefits of database-driven web
sites, and how AJAX is changing the nature of the Web. We also introduced you to a broad
range of tools to help you in your ongoing journey as a fully fledged Web Standardista.
Lastly, we introduced you to some emerging trends on the Web and provided you with a
list of resources to help you continue your learning, all of which can be accessed from the
book’s companion web site.

Homework: You’ve earned the badges—now
use them!

This chapter’s homework isn’t too complicated. In fact it only consists of one step: adding
a badge to your Famous Primates web site. If you’ve made it this far, you’ve earned it. Well
done.

1. Get a badge

In Chapter 1 we promised you we’d give you a badge if you made it to the end of the
book. Would we lie to you?

We’ve actually created a number of Web Standardistas badges available to download at
the book’s companion web site. Wear them with pride on your web site and help spread
the Web Standardistas’ word! You can download them here:

As we also mentioned we’ve created a very limited edition of “real” badges, ones that you
can pin onto the lapel of your “real” tweed jacket. All we ask you to do in order to earn
the special honor of receiving one is to complete the “Homework” sections in this book
and supply us with a link to your finished Famous Primates web site.

When you’re ready, visit the preceding address, enter your details into the form and, once
we’ve checked your web site validates, a badge will be hurried your way posthaste. We
only have a limited number of these collector’s items available, so please note:

First come, first served!

That’s it! Once you’ve added your Web Standardistas’ badge to your site, feel free to surf
the interwebs, put the kettle on, and enjoy a cup of ISO 3103 as you prepare yourself for
your career as a fully fledged Web Standardista.

INDEX

INDEX

400

bandwidth, 152
Basecamp, 388
Berners-Lee, Tim, 4–5, 6
Bézier curves, 110–112
Bina, Eric, 4–5
bitmaps, 110
block-level elements, 51–53, 292, 324–325
<blockquote> tag, 79–80, 243–244
Bluefish, 13
body element, styling, with CSS, 180–183
body style, for print style sheet, 356
<body> tag, 25–26
bold, 50–51
book reviews, 384
books, 389–392
border-bottom property, 323, 328
border declarations, 322
borders

applying, 234–240, 258–259
CSS shorthand for, 240–243
example, 243–244
relationship between elements and, 233–234

box model hack, 359–360
box models, 293–295
Braille media type, 351
browsers

cross-browser compatibility, 10
default style sheet, 201, 230–231
for development, 389
Graded Browser Support, 366–368
testing web pages in various, 363–364

Browsershots, 364–365
Browser Upgrade Campaign, 368
browser wars, 5
Budd, Andy, 389–390, 391
Building Accessible Websites, 395
Bulletproof Web Design, 390
bullets, styling, 317–321

C
captions, table, 76–77
cascade, defined, 230–232
Cascading Style Sheets (CSS)

adding background images using, 265–270
adding to web pages, 176–178
advantages of, 170–172, 197–198
body, styling, 180–183
cascade, 230–232
colors, 179–180
comments, 187–191
conditional comments, 359–361
declaration in, 174
descendant selectors, 260–262
example, 179–191

Numbers and Symbols
456 Berea Street, 394
& (ampersand) character, 123–124
: (colon), 174
> (greater than) character, 124
(hash sign), 126
@import rule, 352
< (less than) character, 124
. . / (magic escalator), 137
; (semicolon), 174

A
abbr element, 51, 82–83
abbreviations, 82–83
absolute links, 129–130
accessibility

alt attribute, 94–96
alternative style sheets for, 197–198
resources, 394–395
table, 76–78

a:hover state, 325
acronym element, 51, 82–83
active pseudo-class, 220, 223–224
Add-ons architecture, Firefox, 389
Adobe Illustrator, 111
A-grade browsers, 366
AJAX, 382
all media type, 351
alpha transparency, 107–108
alt attribute, 94–96
alternative style sheets, accessibility and, 197–198
ampersand (&) character, 123–124
<anchor> tag, 118–122
Andreessen, Marc, 4–5
animation, frame-by-frame, 106
application programming interfaces (APIs), 379
artifacts, 104
aural media type, 351
author styles, 201

B
background, styling, with CSS, 180–182
background color, 180–182
background-color property, 257–264, 267–268
background-image property, 266–267, 305–307, 315

for links, 325–326
styling bullets using, 318–321

background images
adding, with CSS, 265–270
using with other elements, 268–270

background-position property, 319–320
background-repeat property, 266–267
badges, 385

INDEX

401

content, separating from presentation, 9, 168, 172, 197
content attribute, 347–348
content div, positioning with floats, 285–286
contextual selectors, 260–262
control panel, web hosting, 152
copyright, of images, 92
copyright attribute, 347
Core FTP, 156
Core Web Fonts, 203–205
country-specific domains (ccTLDs), 148
Creative Commons, 112
cross-browser compatibility, 10
CSS. See Cascading Style Sheets
CSS Artistry, 390
CSS files, creating external, 352–353
CSS hacks, 359–360
CSS layouts

applying floats to, 285–288
applying floats to images, 299–307
collapsing margins, 297–299
Faux Columns, 304–307
float-based, 276–292
one-column, 250–262
two-column, 276–311
using div elements to create, 250–262

CSS Mastery, 389–390, 391
CSS rules, 172–174

commenting out, 371–176
for fonts, 204–206
formatting, 174–175
grouping selectors for efficient, 209–211
IE specific, 359–249
inheritance, 198–200
order of, 232–233
property, 173
reducing, for troubleshooting, 371
selectors, 173
shorthand for, 240–243
specificity of, 200–202
syntax, 174
targeting div elements, 253–259
targeting, to specific elements, 317, 323–325, 328–329,

334
for typeface, 211–212
value, 173–176

CSS Validation Service, 363, 369
CSS Zen Garden, 394
cursive fonts, 206
Cyberduck, 156, 157–161

D
data, tabular, 74–76
database-driven sites, 382
DCMI (Dublin Core Metadata Initiative), 347

flexibility provided by, 197
grouping selectors, 209–211
headings, styling, 183–185
inheritance, 185, 198–200
introduction to, 168
link styling, 220–225
lists, styling, 315–326
media types supported by, 351–352
paragraphs, styling, 186–187
rules, 172–174
sizing text with, 206–209
specificity, 200–202
specifying typeface with, 202–206
text, styling, 196–227
See also CSS layouts; CSS rules

Cederholm, Dan, 389–390, 395
C-grade browsers, 367
character encoding, 348–350
character sets, UTF-8, 348–350
child elements, 198–200
citations, 80–81
cite element, 51, 80–81
Clarke, Andy, 390, 395
class attributes, 317

about, 248
naming, 249–250
overuse of, 260
styling with, 264–265
using with div and span elements, 246–249

clear property, 284–285, 302
closing tags, 20–21
code samples, displaying, 85
<code> tag, 51, 85
code validation, 53–58, 62
collaborative web, 379
collapsing margins, 297–299
colon, 174
colors

background, 180–182
in CSS, 179–180
dithering, 105–106
GIF, 105
hexadecimal, 179–180

columns, 75–76
commenting out, 371
comments

conditional, 359–361
CSS, 187–191
in markup, 32–34

community driven sites, 379
conditional comments

example, 360–361
in Internet Explorer, 359–361

contact forms, 128

INDEX

402

E
efficiency, 9–10
elements

block-level, 51–53, 324–325
calculating width of, 293–297
child, 198–200
floated. See floats
inline, 51–53, 326–329
parent, 198–200, 208–209
phrase, 49–51
removing from normal document flow, 326
targeting specific, 317, 323–325, 328–329, 334
See also specific elements

Elements of Typographic Style Applied to the Web, The, 394
Emacs, 13
e-mail addresses, 152
e-mail links, 127–128
embedded style sheets, 176

adding, 177–178
versus linked style sheets, 350–351

embossed media type, 351
emphasis, 50–51
ems, sizing text with, 207–209
 tag, 50–51
encoded characters, 123
end tags, 20–21
Enkoder, 128
Extensible Hypertext Markup Language. See XHTML
extension, 22
external links, 122–125, 128
external style sheets, 176, 230–231, 344–374

creating external CSS file, 352–353
vs. embedded style sheets, 350–351
head elements and, 344–345
@import rule, 352
link element, 350
linking images to, 353
linking to, 351–352
power of, 354–355

F
fallback font option, 204–206
fantasy fonts, 206
Faux Columns, 292, 304–307
favicons, 361–362
file extension, 22
file names, 22–23
files, uploading to server, 153–161
file structure, 130–134
File Transfer Protocol (FTP), 146, 154
file transfers, 153–161
FileZilla, 155
Firebug, 386–388

<dd> tag, 71
declarations

commenting out, 188–190
in CSS, 174

dedicated IP address, 147
default styles, 201
default style sheet, 168, 201, 230–231
default typeface, 203
definition descriptions, 71–72
definition lists, 71–73
definition terms, 71, 72
 (delete) tag, 51, 86
descendant selectors, 260–262, 323–325, 328–329, 334
description attribute, in meta tags, 346
design fundamentals, 168
Design Observer, 393
design phase, 40
destination anchor, 118
development browsers, 389
Digital Web magazine, 393
disk space, 151
display: inline, 326–329
dithering, 105–106
div element

creating CSS layouts using, 250–262
floating, 277–285, 288–292
as generic element, 246–247
with id and class attributes, 246–249
nested, 293
overly wide, 295–297
overuse of, 247, 260
structuring document with, 244–264
uses of, 247–248

Dive into Accessibility, 395
<dl> tag, 71–73
DNS (Domain Name System) servers, 147
DOCTYPE, 28–30
document flow, 276–277

floats and, 277–289
removing elements from, 326

document type, defining, 28–30
Document Type Definition (DTD), 28–30
domain names

creating, 148–149
defined, 146–147
human-readable, 146
propagation of, 155
registering, 149–150
top-level domains, 147–148

dots per inch (dpi), 109
Dragonfly, 388
<dt> tag, 71
Dublin Core Metadata Initiative (DCMI), 347

INDEX

403

Google, 146, 346
Google-friendly markup, 58–60
Google Maps API, 379
Google Suggest feature, 382
graceful degradation, 367
Graded Browser Support, 366–368
graphics. See images
greater than (>) character, 124
grouped selectors, 209–211, 262
Gruber, John, 396
guerilla testing suite, 365–366

H
<h1> element, 183–185
<h2> element, 184–185
Haine, Paul, 389–390, 391
handheld media type, 351–352
hash sign (#), 126
head element, 24, 26, 344–345
headings

creating structure with, 44
styling, for print style sheet, 356
styling, with CSS, 183–185

<head> tag, 24, 26, 44
height, of block-level elements, 292
Hello World! web page, 22–26, 30
Hewitt, Joe, 386
hexadecimal colors, 179–180
Hicks, Jon, 396
Holzschlag, Molly E., 390
horizontal lists, creating, 326–329
horizontal rule, 83–84
hosting companies, 151–153
hover pseudo-class, 220
href attribute, 119, 120, 122, 126–127, 351, 361
<hr> tag, 83–84
HTML (Hypertext Markup Language), 5–6, 169
HTML 2.0, 6
HTML 4.01, 6
HTML 5, 6
HTML documents

identifying sections of, 245–246
structuring, with div and span elements, 244–264

HTML Mastery, 389–390, 391
<html> tag, 24
HTML tags. See tags
http://, 122
http-equiv attribute, 347–348
human-readable address, 146
hypertext, 118
Hypertext Markup Language. See HTML
hypertext reference, 119

Firefox, 389
Firefox Web Developer Add-on, 385–386
Fireworks, 99
Flickr, 112
float-based CSS layout, 276–292
float: left, 326
float property, 277–280, 290, 326
floats, 276–292

applying to images, 299–307
applying to layouts, 285–288
calculating width of elements and, 293–297
clear property, 284–285, 302
creating two-column layouts with, 288–292
floating divs, 277–285, 288–292
overflow property, 303–304
specifying widths on, 291

focus pseudo-class, 220
folders

linking between, 134–139
organizing, 130–134

font families, 185–186, 205–206, 211–212
font-family property, 185–186, 211–212
fonts

Core Web Fonts, 203–205
CSS rules for, 204–206
cursive, 206
defined, 197
fallback, 204–206
fantasy, 206
monospace, 206
names, enclosing in quotes, 212
sans serif, 206
serif, 205
size, 206–209
specifying, 202–206
styling, with CSS, 184–185

font-size property, 206–209, 211–212
font sizes, points for, 355
font-weight property, 212, 332, 336
forward compatibility, 11
frame-by-frame animation, 106
free web hosting, 150
FTP, 146, 154
FTP clients, 156

G
gFTP, 156
GIF (Graphic Interchange Format), 100–101, 105–106
GIMP (GNU Image Manipulation Program), 100
Gmail, 383
GNU General Public License, 385
google, 146

INDEX

404

J
Java, 363
JavaScript, 128, 362–363
JavaScript libraries, 381–382
JPEG (Joint Photographic Experts Group), 100–101, 103
JPG format, 100–101, 103–105
jQuery, 381
justification, 218–219

K
keywords

font-size, 206
in meta tags, 346–347

keyword stuffing, 346
Komodo Edit, 13

L
layouts

float-based, 276–292
one-column, 250–262
table-based, 73–74
two-column, 276–311
See also CSS layouts

leading, 215
less than (<) character, 124
letter-spacing property, 214–215
libraries, JavaScript, 381–382
licensed country-specific domains, 148
 element, 67–68
line breaks, in markup, 35
line-height property, 215–217, 316–338
line length

measure, 183
styling, with CSS, 182

linked style sheets. See external style sheets
link element, 350–351
link pseudo-class, 220–222
links, 118–142

absolute, 129–130
adding to lists, 321–326
anchor tag, 118–122
between folders, 134–139
checking, 124
default style, 119
descriptive text for, 119–120
e-mail, 127–128
external, 122–125, 128
internal, 122, 126–128
local, 122, 125, 128
opening in new window, 124–125
relative, 129–130, 134, 138
styling, 220–225, 357
target attribute, 124–125

I
ICANN (Internet Corporation for Assigned Names and

Numbers), 148
id attributes, 127, 317, 331

about, 248
naming, 249–250
using with div and span elements, 246–249

iehacks.css, 359
image editors, 98–100
image formats, 92, 103–108

GIF, 105–106
JPG (JPEG), 100–101, 103–105
PNG, 106–108

images, 92–114
alt text, 94–96
applying floats to, 299–307
background, 265–270
bitmap, 110
compressing, 101–105
copyright protection on, 92
dimensions of, 109
external style sheets and, 353
finding, 112–113
 tag, 92–97
low-cost, 112
optimization of, 100–102
resolution, 109
styling bullets using, 318–321
title attribute, 96–97
vector graphics, 110–112
width and height attributes, 96
working with, 97–100

 tag, 92–97
index file, 132–134
information hierarchy, 43–46, 61–62
inheritance, 185, 198–203

specificity and, 200–202
styling lists using, 334

inline content, 264
inline elements, 51–53, 326–329
inline styles, 177, 230–232
<ins> (insert) tag, 51, 86
Instant Domain Search, 149
internal links, 122, 126–128
internal style sheets, 230–231
Internet, 4
Internet Explorer, 389

conditional comments for, 359–361
Developer Toolbar, 388

Internet Protocol (IP) address, 146–147
iStockphoto, 112
italics, 50–51

INDEX

405

media types, 351–352
metadata, 346
meta tags

importance of, 345–350
types of attributes for, 347–350

microformats, 347
Microsoft, 5
mobile media, image compression and, 101
monospace fonts, 206
MooTools, 381
Mosaic, 5
multicolumn layouts

creating, 288–292
Faux Columns, 304–307
float-based, 276–292

N
name attribute, 347
namespace declaration, 29
National Center for Supercomputing Applications (NCSA),

4–5
navigation lists, 314–326
nested divs, 293
nested elements, 30–32
nested lists, 70, 329–337
Netscape Navigator, 5
nonbrowser compatibility, 10
North Temple Journal of Design, 395

O
 tag, 68–70
1-bit transparency, 106
opening tags, 20–21
Opera, 388
operating system (OS), 13
optimization, image, 100–102
ordered lists, 68–70, 337–339
organizations, 392
overflow property, 303–304

P
<p> tag, 25
padding

applying, 234–240
CSS shorthand for, 240–243
example, 243–244
relationship between elements and, 233–234
resetting, 333–334

padding property, 318, 320, 333–334
page titles, 26–27
Page Zoom feature, 207

link states, 220–224
link text, 118–120
Linux, 13
Listamatic, 314
List Apart, A, 393
list items, 67–68, 326–329
lists, 66–73, 314–341

adding links to, 321–326
bullets, styling, 317–321
definition, 71–73
displaying items as inline elements, 326–329
horizontal, 326–329
for navigation, 314, 315–326
nested, 70, 329–337
ordered, 68–70, 337–339
reasons to use, 66–67
styling, 315–326

navigation, 321–326
nested, 329–337
ordered, 337–339
simple, 315–321

unordered, 67–68
list-style: none declaration, 333–334
list-style property, 317–318, 333, 337–338
list-style-image property, 319
Litmus, 365
local links, 122, 125, 128
local machine, 153–154
lowercase letters, 214
lurid palette, for troubleshooting, 370

M
machine-readable address, 146
Mac OS X, 13
magic escalator, 137
margins, 318

applying, 234–240, 254–255
collapsing, 297–299
CSS shorthand for, 240–243
example, 243–244
relationship between elements and, 233–234
resetting, 333–334

markup
commenting, 32–34
line breaks in, 35
meaningful, 42–43
semantic, 40–42
tabs in, 35
white space in, 34–35
See also structured markup

mashups, 379
measure, 183
media attributes, 351–352

INDEX

406

repetition, checking for, 370
reserved characters, 123–124
resources, 383–385, 385–396
rich Internet applications, 382–383
robots attribute, 347
roman numerals, for ordered lists, 338
rows, 75–76
Rutter, Richard, 394

S
Safari Web Inspector, 388
sans serif fonts, 206
Save for Web and Devices feature, 102, 103
Scalable Vector Graphics (SVG), 112
scheme attribute, 347
screen media type, 351
screen readers, summary attribute and, 77–78
scripts, adding, 362–363
search engine optimization (SEO), 346
search engines, structured markup and, 58–60
section separators, 83–84
Secure File Transfer Protocol (SFTP), 146, 154
selectors, 173

descendant, 260–262, 323–325, 328–329, 334
grouped, 209–211, 262

self-closing tags, 93, 84
semantic markup, 40–42
semicolon (;), 174
serif fonts, 205
server address, 157
server connections, 157–159
servers

shared, 147
uploading files to, 153–161

set width, 182–183
SFTP (Secure File Transfer Protocol), 146, 154
shared servers, 147
Shea, Dave, 390, 394
shorthand, for CSS rules, 240–243
sidebar div, 285–288
site maps, styling, with nested lists, 330–337
social bookmarking services, 379
spaces, in file names, 22–23
span element

as generic element, 246–247
overuse of, 247, 260
structuring document with, 244–264
using with id and class attributes, 246–249

specificity, 186, 200–202
spelling mistakes, 369–370
start tags, 20–21
stock.xchng, 112
strong tag, 50–51

paragraphs
aligning text, 218–219
creating structure with, 44
indents, 217–218
setting line height, 215–217
styling, 186–187, 215–219

parent elements, 198–200, 208–209
parent folders, linking to, 137–138
passwords, web hosting, 157
path, 160–249
Pederick, Chris, 385
Photoshop, 98–99, 103
Photoshop Express, 98–99
phrase elements, 49–51
Pilgrim, Mark, 395
pixels, 109, 207
Plain Old Semantic HTML (POSH), 4, 40, 43
plain text editors, 13
Platial, 379
PNG (Portable Network Graphic), 100–101, 106–108
PNG-8, 107
PNG-24, 107–108
POSH. See Plain Old Semantic HTML
presentation, separating from content, 9, 168, 172, 197
presentational markup, inefficiency of, 171
<pre> tag, 85
print media type, 351
print style sheet

adding, 355
body style, 356
building, 355–358
heading styles, 356
hiding unnecessary content, 356
link styles, 357

Process Type Foundry, 202
progressive enhancement, 367
projection media type, 351
propagation, 155
property, 173
prototype, 381
pseudo-classes, for styling links, 220–224
publications, 392

Q
<q> tag, 51, 81–82
Quirks Mode, 28
quotation marks, 212
quotations, 51, 79–82

R
relative links, 129–130, 134, 138
rel attribute, 351, 361
remote machine, 153–154

INDEX

407

text
accessibility of, 197–198
aligning, 218–219, 256
color, 182
letter spacing, 214–215
link styling, 220–225
paragraph styling, 215–219
quotations, 79–82
sizing, 206–209
styling, 196–227
transforming display of, 213
typefaces, 202–206
underlined, 86
word spacing, 214
styling, with CSS, 182

text editors, 13
text-indent property, 217–218
text-level elements, 51–53
text-transform property, 213, 320
TextWrangler, 13
<th> tag, 76
Times New Roman, 203
title attribute, 96–97, 120–122
title element, 24, 26–27, 344
tools, 384, 385, 389
top-level domains (TLDs), 147–148
Transmit, 156
transparency, full alpha, 107–108
troubleshooting, 363, 368–372
<tr> tag, 75–76
tty media type, 351
tv media type, 351
Twitter, 383
two-column CSS layouts, 276–311

applying floats to, 285–288
applying floats to images, 299–307
box model theory and, 293–295
calculating width of elements, 293–297
collapsing margins, 297–299
creating, 288–292
Faux Columns, 304–307
float-based, 276–292
for King Kong page, 307–308

type attribute, 177, 351, 361
typefaces

default, 203
defined, 197
fallback, 204–206
sizing, 206–209
specifying, 202–206, 211–212

typography, 196–198
typos, 369–370

structured markup, 40–62
block-level elements, 51–53
case study, The Guardian, 46–48
code validation, 53–58
creating structure with headings and paragraphs, 44–46
inline elements, 51–53
overview, 40–43
phrase elements, 49–51
search engines and, 58–60

style element, 177, 344–345
Stylegala, 394
style sheets

browser's default, 168, 201, 230–231
embedded, 176–178
external. See external style sheets
internal, 230–231
print, 355–358
title for, with comments, 190
See also Cascading Style Sheets

subfolders, linking to, 136
sub (subscript) tag, 86–87
summary attribute, 76–78
<sup> (superscript) tag, 86–87

T
tabbed browsing, 125
table headers, 76
tables, 73–78

accessibility, 76–78
captions, 76–77
columns, 75–76
for layouts, 73–74
rows, 75–76
summary attribute, 76–78

<table> tag, 75–76
tabs, in markup, 35
tabular data, 74–76
tags, 18–22

closing, 20–21
nested, 30–32
opening, 20–21
overview, 18–20
relationships between, 43–48
self-closing, 84, 93
See also specific tags

tag soup, 170–171
target attribute, 124–125
<td> tag, 75–76
teas, 385
testing, 363–368

guerilla testing suite, 365–366
suite, 389
in various browsers, 363–364
Web-based browser test services, 364–365

INDEX

408

including images on, 92–114
styling, with CSS, 169, 172, 179–191
validating, 363, 368–369

web sites
database-driven, 382
getting online, 146–163
recommended, 392–396
structuring files and folders, 130–134
testing, 363–368
troubleshooting, 363, 368–372
updating, with external style sheets, 354–355
uploading files, 153–155

Web Standardistas, 4–15
webstandardistas.com, 383–385
Web Standardistas periodical, 384
web standards, 7–14

approach to, 11–12
definition of, 7–8
reasons to use, 8–11
tools for, 12–14

Web Standards Project (WaSP), 5, 7, 392
Web Standards Solutions, 389–390
white space, in markup, 34–35
width

calculating, of elements, 293–297
overflow property, 303–304
specifying, of floated elements, 291

Windows, 13
word-spacing property, 214
World Wide Web, 4–7
World Wide Web Consortium (W3C), 5– 6
WYSIWYG (What You See Is What You Get), 12–13, 169

X
X-grade browsers, 367
XHTML (Extensible Hypertext Markup Language), 7, 12
XHTML pages, creating, 35–37
XHTML rule reference, 371–372
XHTML Strict, 371–372
XML (Extensible Markup Language), 7
XML namespace declaration, 29

Y
Yahoo! User Interface Library, 381

Z
Zeldman, Jeffrey, 396
Zen of CSS Design, 390

U
 element, 67–68
underlined text, 86
underscores, 22–23
unique IP address, 147
unordered lists, 67–68
URLs (Uniform Resource Locators), 122–124
user agent styles, 201
user-generated content, 379
username, web hosting, 157
user styles, 201
UTF-8 character set, 348–350

V
validation, 53–58, 123–124, 368–369
validation output, 56
validation services, 29, 53–58, 62, 123, 363, 368–369
valid code, 53–58
value, 173
vector graphics, 110–112
Vim, 13
visited pseudo-class, 220, 222–223
visual breaks, comments as, 190

W
W3C, 392
W3C Markup Validation Service, 29, 53–58, 62, 123, 363,

368–369
web addresses

human-readable, 146
machine-readable, 146
registering, 146–150

web-based applications, 379
web-based browser test services, 364–365
web browsers. See browsers
Web Developer Add-on, Firefox, 385–386
web hosting

bandwidth, 152
changing hosts, 153
control panel, 152
disk space, 151
e-mail, 152
free, 150
on shared servers, 147
support, 152

web hosting companies, 149, 151–153
Web Inspector, 388
web pages

adding CSS to, 176–178
basic construction of, 24–25
building basic, 18–37
generated with WYSIWYG editors, 169
Hello World!, 22–26, 30

	Cover
	HTML and CSS WebStandards Solutions
	ISBN-13 (pbk): 9781430216063
	CONTENTS AT A GLANCE
	Table of Contents
	ABOUT THE AUTHORS
	About the Technical Reviewer

	ACKNOWLEDGMENTS
	INTRODUCTION
	A little background
	Who is this book aimed at?
	What you’ll achieve
	Conventions used in this book
	Accessing the code

	PART ONEA SOLID XHTML FOUNDATION
	Chapter 1: Are You a Web Standardista?
	A brief history of the World Wide Web
	The Web is born
	The perfect Web
	The chaotic Web

	HTML rewind
	HTML evolved
	The X in XHTML

	A web standards approach
	What are standards?
	So, web standards?

	Why use web standards?
	Separating content and presentation
	Efficiency through reduced markup
	Increased accessibility
	Cross-browser compatibility
	Nonbrowser compatibility
	Forward compatibility

	The Web Standardistas’ approach
	Wax on . . . wax off
	Why use XHTML?
	The benefits of CSS

	The Web Standardistas’ toolbox
	We’re not WYSIWYG
	What’s your favorite plain text editor?
	Mac OS X, Windows, or Linux?

	Summary
	Homework: Set up your work environment

	Chapter 2: Building Basic Web Pages
	HTML: Tags in action
	What are tags?
	Tags come in pairs, usually
	It’s an element, my dear Watson

	Your first web page: Hello World!
	To mark up a web page, you just type
	The markup makes the web page
	Learning from others: How to view source

	Every page has a <head> and a <body>
	The importance of using the title element

	Defining your document type
	It all starts with a DOCTYPE
	A short Quirks Mode interlude
	It’s all in a namespace
	Just one more thing

	You don’t have to memorize all this
	Hello World!: DOCTYPE edition

	Tags have structure too: Nested elements
	Making your markup easier to follow
	Commenting your markup
	White space

	Summary
	Homework: Create your first space-monkey- themed XHTML page

	Chapter 3: Structured Markup
	Adding structure and meaning
	What is structured markup?
	What is semantic markup?
	Making markup meaningful
	POSH and proud

	Signposts for reading
	Creating structure with headings and paragraphs
	Applying information hierarchy
	Case study: The Guardian

	An introduction to phrase elements
	What is an element?
	Adding meaning to fragments of text
	Adding emphasis: and
	Other phrase elements

	Block-level and inline-level elements
	Imagine a box
	The difference between block- level and inline-level elements

	Valid code is browser- friendly code
	The W3C Markup Validation Service
	Valid code is not necessarily well- structured code

	Getting the search mix right
	Summary
	Homework: Introducing Miss Baker

	Chapter 4: Markup That Adds Meaning
	Lists: First- level organizers
	Why use lists?
	Unordered and ordered lists
	Enter the ordered list
	Nesting lists
	Definition lists

	Tables: The good, the bad, and the alternatives
	What is tabular data?
	<table>, <tr>, and <td>
	Improving table accessibility
	Adding a descriptive summary to a table

	Quoting text
	What’s a <blockquote>?
	Citations (or <cite>)
	Quotations (or <q>)

	Other tags in the Standardistas’ toolbox
	Abbreviations
	Making a case for rules: <hr />
	A note on self- closing tags
	<code> and <pre>
	Marking up changes with and <ins>
	<sup> and <sub>

	Summary
	Homework: Gordo’s Adventure

	Chapter 5: Including Images
	Introducing the tag
	An tag in action
	Adding width, height, and title attributes to images

	Working with images
	Which image editor? (Or how long is a piece of string?)
	Photoshop
	Fireworks
	Photoshop Express
	Bring out the GIMP (and its friends)

	Image optimization
	Why compressing your files is important
	Save for Web

	Image formats for the Web
	JPG: Photographs
	GIF: Graphics and type
	PNG: The new (old) kid on the block
	PNG-8
	PNG-24

	A pixel is a pixel is a pixel
	Size matters
	The limitations of bitmaps
	Vector graphics

	Finding the right image
	Low-cost images
	Flickr and Creative Commons

	Summary
	Homework: A picture is worth a thousand words

	Chapter 6: Creating Links with Anchors
	Meet <a>
	Using descriptive link text
	The title attribute

	Let’s create some links!
	External links
	The dreaded ampersand and the validator
	Checking your links
	The (evil) target attribute

	Local links
	Internal links
	E-mail links
	Wrapping up

	Absolute vs. relative links
	Structuring your site
	Organizing your files and folders
	The magic index file

	Linking between different folders in our site
	Linking within a folder
	Linking down into a subfolder
	Linking up into a “parent” folder
	Linking up and then linking down

	Summary
	Homework: Housekeeping first; links second

	Chapter 7: Getting Your Site Online
	Your address on the Web
	What is a domain name?
	What’s a TLD?
	Think of a name!
	Registering a domain name

	Web hosting
	Free web hosting?
	Getting the balance right
	Things to look for in a hosting company
	Disk space
	Bandwidth
	E-mail
	A control panel
	Support

	Moving web hosts

	Uploading your files
	Local vs. remote
	File Transfer Protocol
	Propagation

	Tools we’re using
	Which FTP client?
	Transferring files to the server: A walkthrough
	What you need
	The address of the server
	Your username
	Your password

	Let’s get started
	Online walkthrough

	Summary
	Homework: Getting your site online

	PART TWOADDING STYLE WITH CSS
	Chapter 8: CSS 101
	Adding some style
	HTML: A brief refresher
	CSS isn’t new
	Tag soup or lean and mean?
	CSS to the rescue

	Meet CSS
	Anatomy of a CSS rule
	A note on formatting
	A slightly more complex rule

	Adding CSS to a web page
	Adding an embedded style sheet

	A simple walkthrough
	Getting colorful
	Styling the <body>
	Styling the headings: <h1> and <h2>
	Styling the <p>
	Commenting your CSS

	Summary
	Homework: Adding some CSS to Gordo’s web page

	Chapter 9: Styling Text
	Typography on the Web
	What is typography?
	CSS: Our flexible friend
	Making your text accessible

	Inheritance and specificity
	Inheritance
	Meet specificity

	Specifying type on the Web
	Core Web Fonts
	Writing more reliable CSS rules to specify fonts
	Serif
	Sans serif
	Monospace
	Cursive
	Fantasy

	Size matters
	Sizing text with pixels
	Sizing text with ems

	Writing more efficient rules
	Show and tell: Adding a few more rules
	Specifying a typeface
	Let’s lose some weight
	Text transform
	Letter spacing
	Styling paragraphs
	Setting a line height
	Adding paragraph indents
	Aligning text using text-align

	Styling links
	Using pseudo-classes to style links
	LoVe HAte your links

	Summary
	Homework: Improving Gordo’s typography

	Chapter 10: A One-Column CSS Layout
	The Cascade in Cascading Style Sheets
	So what exactly is the cascade?
	The order of your CSS rules is important

	Introducing margins, borders, and padding
	Meet the box model
	Applying margins, borders, and padding
	Using CSS shorthand for margins, borders, and padding
	Styling our <blockquote>

	Dividing up your document
	Identifying your document’s sections
	Using div and span elements with id and class attributes
	div and span elements
	id and class attributes

	It’s all in a name

	Using div elements to create CSS layouts
	A one-column CSS layout
	Using descendant selectors to minimize markup

	Styling details with the span element
	Using a span to style inline content
	Dan Cederholm’s illustrious ampersand

	Styling with class attributes
	Enhancing your design by adding background images with CSS
	Adding a background image to the body
	Using background images with other elements

	Summary
	Homework: Creating a one- column CSS layout

	Chapter 11: A Two-Column CSS Layout
	A float-based CSS layout
	Floating divs
	Applying floats to layouts
	Creating our two-column CSS layout

	Calculating the width of your elements
	A short box model recap
	What happens when your elements are too wide?

	Collapsing margins
	Applying a float to an image
	Faux Columns

	Wrapping up with King Kong
	Summary
	Homework: Adding a second column to Gordo’s web page

	Chapter 12: List-O-Matic
	Styling lists
	Styling a simple list
	Styling a navigation list

	Creating horizontal lists
	Styling nested lists
	Styling a site map with a nested list

	Styling an ordered list
	Summary
	Homework: Adding the Famous Primates web site’s navigation

	Chapter 13: Harnessing the Power of External Style Sheets
	The head elements that make it all happen
	The importance of meta tags
	It’s all in a name
	Speaking a foreign language

	External Style Sheets
	Embedded vs. linked style sheets
	Linking to an external style sheet
	Media types

	Using @import
	Creating our external CSS file
	The real power of CSS
	Adding a print style sheet
	Building the print style sheet
	Style the body
	Hide unnecessary content
	Style the headings
	Style the links
	Click Print and check the results

	Conditional comments for Internet Explorer
	A conditional comment in action
	Adding a favicon

	Adding scripts
	Testing and troubleshooting
	Testing
	Web-based browser test services
	Building a guerilla testing suite
	Graded browser support

	Troubleshooting
	Validate, validate, validate!
	Leanr to spel
	Adopt a lurid palette
	Check for repetition
	Reduce to deduce
	XHTML rule reference

	Summary
	Homework: Linking to external style sheets

	Chapter 14: Where to from Here?
	But really, where to from here?
	JavaScript libraries
	Database-driven sites
	AJAX and Rich Internet Applications
	www.webstandardistas.com
	The Web Standardistas’ periodical
	Book reviews
	Resources
	Tools
	Badges
	Tea

	Tools to make your life easier
	Firefox Web Developer Add-on
	Firebug
	Tools for other browsers
	Basecamp
	What else is out there?

	Recommended books
	Bulletproof Web Design
	CSS Artistry
	The Zen of CSS Design
	CSS Mastery
	HTML Mastery
	Other books we recommend

	Recommended sites
	Organizations and publications
	W3C
	Web Standards Project
	A List Apart
	Digital Web Magazine

	Design and inspiration
	Design Observer
	The Elements of Typographic Style Applied to the Web
	Stylegala
	CSS Zen Garden

	Accessibility
	456 Berea Street
	Dive Into Accessibility
	Joe Clark
	North Temple Journal of Design

	People
	Dan Cederholm
	John Gruber
	John Hicks
	Jeffrey Zeldman

	A fond farewell
	Summary
	Homework: You’ve earned the badges—now use them!

	Index

