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Preface

What does this book try to do?

Managers operate in a world full of risk and uncertainty and all managers need
to manage the risks that they face. In this book I introduce a number of differ-
ent areas that I think are important in understanding risk and in making good
decisions when the future is uncertain. This is a book aimed at all students who
want to learn about risk management in a business environment.

The best way to achieve a clear understanding of risk is to use quantitative
tools and probability models, and this book is unashamedly quantitative in its
emphasis. However, that does not mean the use of advanced mathematics: the
material is carefully chosen to be accessible to those without a strong mathemat-
ical background.

The book is aimed at either postgraduate or senior undergraduate students. It
would be suitable for MBA students taking an elective course on Business Risk
Management. This text is for a course aimed at all business students rather than
those specializing in finance. The book could also be used for self-study by a
manager who wishes to improve their understanding of this important area.

Risk management is an area where a manager’s instinct may run counter
to the results of a careful analysis. This book explores the critical issues for
managers who need to understand both how to make wise decisions in risky
environments and how people respond to risk.

There are many different types of risk and there are existing textbooks that
look at specific kinds of risk: for example, environmental risk, engineering risk,
political risk (particularly for companies operating in an international environ-
ment), or health and safety risks. These books give advice on evaluating specific
types of risk, whether that be pollution issues or food safety, and they are aimed
at students who will work in specific industries. Their focus is on understanding
particular aspects of the business environment and how these generate risk; on
the other hand, my focus is on the decisions that managers must take.

This textbook is unusual in providing a comprehensive treatment of risk man-
agement from a quantitative perspective, while being aimed at general business
students rather than finance specialists. In fact, many of the topics that I discuss
can only be found in more advanced monographs or research papers.
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In writing this book I wanted to bring together a great range of material, and
to include some modern advanced approaches alongside the fundamentals. So
I discuss the basic probability ideas needed to understand the principle of diversi-
fication, but at the same time I include an introduction to the treatment of heavy
tails through extreme value theory. I discuss the fundamental ideas of utility the-
ory, but I also give an extensive discussion of Prospect Theory which describes
how people actually make decisions on risk. I introduce Monte Carlo methods for
making good decisions in a risky environment, but I also discuss modern ideas of
robust optimization. To bring all these topics together is an ambitious aim, but I
hope that this book will demonstrate that it is natural to teach this material together.

It is my belief that some important topics that have traditionally been seen
as the realm of finance specialists need to be made accessible to those with a
more general business focus. Thus, we will cover some of the classic financial
risk areas, such as the Basel framework of market, credit and operational risk;
the use of value at risk in practice; credit scoring; and real options. We do all
this without requiring any advanced financial mathematics.

The book has been developed from teaching material used in courses at both
advanced undergraduate and master’s level at the University of Sydney Business
School. These are full semester courses (13 weeks) but the design of the book
would enable a selection of chapters to be taught in a shorter course.

What is the structure of this book?

The first chapter is introductory: it sets out my understanding of the essence of
risk management and covers the framework for the rest of the book.

The next three chapters deal with the analysis of risk. Chapter 2 works through
some fundamental ideas about risks that depend on events and risks that depend
on values. It introduces the important idea of diversification of risk and looks in
detail at how this can fail when diversification takes place over a portfolio where
different elements tend to move in tandem. This leads up to a brief discussion
of copulas as a way to model dependence. Chapter 3 moves from the theory of
Chapter 2 to the more practical topic of value at risk. Anyone working in this area
needs to know what this is and how it is calculated; as well as understanding
both the strengths and the weaknesses of value at risk as a measure of risk.
This chapter also discusses expected shortfall as an alternative to value at risk.
Chapter 4 takes us deeper into the essential problems of risk management that
involve the tails of a probability distribution. The chapter introduces heavy-tailed
distributions and shows how extreme value theory can be used to help us estimate
risk from data that inevitably do not contain many extreme values.

The next four chapters are concerned with making decisions in a risky envi-
ronment. The fundamental insight here is that we need to think not only of how
much profit or loss is made, but also how those different outcomes affect us,
either as individuals or as a firm. This leads to the idea of a utility function that
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we want to maximize. Chapter 5 gives a thorough treatment of Expected Util-
ity Theory, which is a powerful normative description of how we should take
decisions. It turns out, however, that individual decision makers do not keep to
the ‘rules’ of Expected Utility Theory. Chapter 6 describes the way that choices
are made in risky environments by real people. Prospect Theory can be a help-
ful predictor of these decisions and I describe this in detail. Chapter 7 looks at
the difficulties of making the right decision in complex problems, particularly
where the situation evolves over time. We show how such problems can be for-
mulated and solved and explain how to use Monte Carlo simulation in finding
solutions. One of the problems with these methods is that they require a complete
description of the probability distributions involved. In practice, this can involve
more guesswork than actual knowledge. Chapter 8 discusses a modern approach,
termed ‘robust optimization’, to overcome this problem by specifying a range of
possible values rather than a complete distribution.

The last two chapters of the book have a different emphasis. Chapter 9
describes the important topic of real options. This switches the focus from the
negative events to the positive ones. It is enormously valuable for managers to
understand the concept of an option value: and how this implies that more vari-
ability will lead to a higher value for the project. In a sense, this is an example of
how risk can be good. The final chapter returns to the Basel distinction between
three different kinds of risk: market risk, credit risk and operational risk. After
Chapter 1 our emphasis has been mainly on market risk, but in Chapter 10
we discuss credit risk. We look at credit scoring approaches both at the firm
level, where agencies like Standard & Poor’s dominate, and also at the consumer
level, where credit scoring can determine the terms of a loan.

How can this book be used?

An important question in teaching quantitative risk management is how much
mathematical maturity one should assume. This book is aimed at students who
have taken an introductory statistics course or quantitative methods course, but do
not otherwise have much mathematical background. I have included an appendix
that gives a reminder of the probability theory that will be used. The idea of
finding the area under the tail of a distribution function to calculate a probability
is quite fundamental for risk management and so some knowledge of elementary
calculus will be helpful, but I have limited the material in which calculus is
used. There is no need for knowledge of matrix algebra. However, it should
not be thought that this implies a superficial treatment of the material. This text
requires students to come to grips with advanced concepts and students taught
from this material in Sydney have found it challenging. To make it easier to use
this textbook for a more elementary course, I have starred certain subsections
that can be omitted by those who want to understand the important ideas without
too much of the theoretical detail.



xvi PREFACE

Excel spreadsheets are used throughout to illustrate the material and for some
exercises. There is no requirement for any other special purpose software. The
excel spreadsheets mentioned can be found in the companion website to the book:
http://www.wiley.com/go/business_risk_management

Throughout the text I will discuss small examples set in fictitious companies.
The exercises too are often based around decision problems faced by imaginary
companies. I believe that the best way to come to grips with this sort of material
is to spend time working through the problems (while resisting the temptation to
look too quickly at the answer provided). I have provided a substantial number of
end-of-chapter exercises. The answers to the even-numbered exercises are given
in Appendix B and full worked solutions are available for instructors (see the
instructions in the companion website).

Early versions of this manuscript were used in my classes on Business Risk
Management at the University of Sydney in both 2011 and 2012. I would like to
thank everyone who took those classes for their comments and questions which
have helped me in improving the presentation, and I would particularly like to
thank Heying Shi who managed to uncover the greatest number of mistakes.

Eddie Anderson
Sydney

http://www.wiley.com/go/business_risk_management


1

What is risk management?

The biggest fraud of all time
A number of banks have succeeded in losing huge sums of money in their
trading operations, but Société Générale (‘SocGen’) has the distinction of losing
the largest amount of money as the result of a fraud. This took place in 2007, but
was uncovered in January 2008. SocGen is one of the largest banks in Europe and
the size of the fraud itself is staggering; SocGen estimated that it lost 4.9 billion
Euros as a result of unwinding the positions that had been entered into. With
a smaller firm this could well have caused the bank’s collapse, as happened to
Barings in 1995, but SocGen is large enough to weather the storm. The employee
responsible was Jérôme Kerviel, who did not profit personally (or at least only
through his bonus payments being increased). In effect, he was taking enormous
unauthorized gambles with his employer’s money. For a while these gambles
came off, but in the end they went very badly wrong.

In America the news broke on January 24, 2008, when the New York Times
reported as follows:

‘Société Générale, one of the largest banks in Europe, was thrown
into turmoil Thursday after it revealed that a rogue employee had
executed a series of “elaborate, fictitious transactions” that cost the
company more than $7 billion US, the biggest loss ever recorded in
the financial industry by a single trader.

Before the discovery of the fraud, Société Générale had been preparing
to announce pretax profit for 2007 of ¤5.5 billion, a figure that Bouton
(the Société Générale chairman) said would have shown the company’s
“capacity to absorb a very grave crisis.” Instead, Bouton – who is for-
going his salary through June as a sign of taking responsibility – said
the “unprecedented” magnitude of the loss had prompted it to seek

Business Risk Management: Models and Analysis, First Edition. Edward J. Anderson.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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2 BUSINESS RISK MANAGEMENT

about ¤5.5 billion in new capital to shore up its finances, a move that
secures the bank against collapse.

Société Générale said it had no indication whatsoever that the trader –
who joined the company in 2000 and worked for several years in the
bank’s French risk-management office before being moved to its Delta
One trading desk in Paris – “had taken massive fraudulent directional
positions in 2007 and 2008 far beyond his limited authority.” The bank
added: “Aided by his in-depth knowledge of the control procedures
resulting from his former employment in the middle-office, he man-
aged to conceal these positions through a scheme of elaborate fictitious
transactions.”

When the fraud was unveiled, Bouton said, it was “imperative that
the enormous position that he had built, and hidden, be closed out
as rapidly as possible.” The timing could hardly have been worse.
Société Générale was forced to begin unwinding the trades on Mon-
day “under conditions of extreme market volatility,” Bouton said, as
global stock markets plunged amid mounting fears of an economic
recession in the United States.’

A story like this inevitably prompts the question: How could this have hap-
pened? Later in this chapter we will give more details about what went wrong.
SocGen was a victim of an enormous fraud but the defense lawyers at Kerviel’s
trial argued that the company itself was primarily responsible. Whatever degree
of blame is assigned to SocGen, it clearly paid a heavy price. It is easy to be
wise after the event, but good business risk management calls on us to be wise
beforehand. Later in this chapter we will discuss the things that can be learnt
from this episode (and that need to be applied in a much wider sphere than just
the world of banks and traders.)

1.1 Introduction

In essence, risk management is about managing effectively in a risky and uncer-
tain world. Banks and financial services companies have developed some of the
key ideas in the area of risk management, but it is clearly vital for any manager.
All of us, every day, operate in a world where the future is uncertain.

When we look out into the future there is a myriad of possibilities: there can
be no comprehension of this in its totality. So our first step is to simplify in a way
that enables us to make choices amidst all the uncertainty. The task of finding
a way to simplify and comprehend what the future might hold is conceptually
challenging and different individuals will do this in different ways. One approach
is to set out to build, or imagine, a set of different possible futures, each of which
is a description of what might happen. In this way we will end up with a range
of possible future scenarios that are all believable, but have different likelihoods.
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Though it is obviously impossible to describe every possibility in the future, at
least having a set of possibilities will help us in planning.

One way to construct a scenario is to think of chains of linked events: if one
thing happens then another may follow. For example, if there is a typhoon in
Hong Kong, then the shipment of raw materials is likely to be late, and if this
happens then we will need to buy enough to deal with our immediate needs from
a local supplier, and so on. This creates a causal chain.

A causal chain may, in reality, be a more complicated network of linked events.
But in any case it is often helpful to identify a particular risk event within the chain
that may or may not occur. Then we can consider both the probability of the risk
event occurring and also the consequences and costs if it does. In the example of
the typhoon in Hong Kong, we need to bear in mind both the probability of the
typhoon and the costs involved in finding an alternative temporary source.

Risk management is about seeking better outcomes, and so it is critical to
identify different risk events and to understand both their causes and consequences.
Usually risk in this context refers to something that has a negative effect, so that
our interest in the causes of negative risk events is to reduce their probability or,
better still, eliminate them altogether. We are concerned about the consequences
of risk events so that we can act beforehand in a way that reduces the costs if a
negative risk event does occur. The open-ended nature of this exercise makes it
important to concentrate on the most important causal pathways – we can think of
this as identifying risk drivers.

At the same time as looking at actions specifically designed to reduce risk, we
may need to think about the risk consequences of management decisions that we
make. For example, we may be considering moving to an overseas supplier who
is able to deliver goods at a lower price but with a longer lead time, so that orders
will need to be placed earlier: then we need to ask what extra risks are involved
in making this change. In later chapters we will give much more attention to the
problems of making good decisions in a risky environment.

Risk management involves planning and acting before the risk event. This
is proactive rather than reactive management. We don’t just wait and see what
happens, with the hope that we can manage our way through the consequences;
instead we work out in advance what might happen and what the consequences
are likely to be. Then we plan what we should do to reduce the probability of
the risk event and to deal with the consequences if it occurs.

Sometimes the risk event is not in our control; for example, we might be
dealing with changes in exchange rates or government regulation – usually this is
called an external risk. On other occasions we can exercise some control over the
risk events, such as employee availability, supply and operations issues. These are
called internal risks. The same distinction between what we can and cannot control
occurs with consequences too. Sometimes we can take actions to limit negative
consequences (like installing sprinklers for a fire), but at other times there are
limits to what we can do and we might choose to insure against the event directly
(e.g. purchasing fire insurance).
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We will use the term risk management to refer to the entire process:

• Understanding risk: both its drivers and its consequences.

• Risk mitigation: reducing or eliminating the probability of risk events as
well as reducing the severity of their impact.

• Risk sharing: the use of insurance or similar arrangement so that some of
the risk is transferred to another party, or shared between two parties in
some contractual arrangement.

The risk framework we are discussing makes it sound as though all risk is bad,
but this is misleading in two ways. First we can use the same approach to consider
good outcomes as well as bad ones. This would lead us to try to understand the
most important causal chains, with the aim of maximizing the probability of a
positive chance event, and of optimizing the benefits if this event does occur.
Second we need to recognize that sometimes the more risky course of action is
ultimately the wiser one. Managers are schizophrenic about risk. Most see risk
taking as part of a manager’s role, but there is a tendency to judge whether a
decision about risk was good or bad simply by looking at the results. Though
it is rarely put in these terms, the idea seems to be that it is fine to take risks
provided that nothing actually goes badly wrong! Occasionally managers might
talk of ‘controlled risk’ by which they mean a course of action in which there
may be negative consequences but these are of small probability and the size of
the cost is tolerable.

In their discussion of the agile enterprise, Rice and Franks (2010) say, ‘While
uncertainty impacts risk, it does not necessarily make business perilous. In fact,
risk is critical to any business – for nothing can improve without change – and
change requires risk.’ Much the same point was made by Prussian Marshall
Helmuth von Moltke in the mid-1800s: ‘First weigh the considerations, then take
the risks.’

Our discussion so far may have implied an ability to list all the risks and dis-
cuss the probability that an individual risk event occurs. But often there is no way
to identify all the possible outcomes, let alone enter into a calculation of the prob-
ability of their occurrence. Some people use the term uncertainty (rather than risk)
to refer to this idea. Frank Knight was an economist who was amongst the first
to distinguish clearly between these two concepts and he used ‘risk’ to refer to
situations where the probabilities involved are computable. In many real environ-
ments there may be a total absence of information about, or awareness of, some
potentially significant event. In a much-parodied speech made at a press briefing
on February 12, 2002, former US Defense Secretary Donald Rumsfeld said:

‘There are known knowns. These are things we know that we know.
There are known unknowns. That is to say, there are things that we
now know we don’t know. But there are also unknown unknowns.
These are things we do not know we don’t know.’
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In Chapter 8 we will return to the question of how we should behave in situations
with uncertainty, when we need to make decisions without being able to assign
probabilities to different events.

1.2 Identifying and documenting risk

Many companies set up a formal risk register to document risks. This enables them
to have a single point at which information is gathered together and it encourages
a careful assessment of risk probabilities and likely responses to risk events.

A carefully documented risk management plan has a number of advantages.
There is first of all a benefit in making it more likely that risk will be man-
aged appropriately, with major risks identified and appropriate measures taken.
Secondly there is an advantage in defining the responsibility for managing and
responding to particular categories of risk. It is all too easy to find yourself in a
company in which something goes wrong and no person or department admits
to being the responsible party.

Moreover, a risk management plan allows stakeholders to approve the risk
management approach and helps to demonstrate that the company has exercised
an appropriate level of diligence in the event that things do go wrong.

There are really three steps in setting up a risk register:

1. Identify the important risk events. The first step is to make some kind of
list of different risks that may occur, and in doing this a systematic process
for identifying risk can be helpful. A good starting point is to think about
the context for the activity: the objectives; the external influences; the
stages that are gone through. The next step is to go through each element
of the activity asking what might happen that could cause external factors
to change, or that could affect the achievement of any objective.

2. Understand the causes of the risk events. Risk does not occur in a vacuum.
Having identified a set of risk events, the next step is to come to grips
with the factors that are involved in causing the risk events. In order
to understand what can be done to avoid these risks, we should ask the
following questions, for each risk:

• How are these events likely to occur?

• How probable are these events?

• What controls currently exist to make this risk less likely?

• What might stop the controls from working?

3. Assess the consequences of the risk events. The final step is to understand
what may happen as a result of these risk events. The aim is to find ways
to reduce the bad effects. For each risk we will want to know:

• Which stakeholders might be involved or affected? For example, does
it affect the return on share capital for shareholders? Does it affect the
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assurance of payment for suppliers? Does it affect the security that is
offered to our creditors? Does it affect the assurance of future employ-
ment for our employees?

• How damaging is this risk?

• What controls currently exist to make this risk less damaging?

• What might stop the controls from working?

At the end of this process we will be in a better position to build the risk
register. This will indicate, for each risk identified:

• its causes and impacts;

• the likelihood of this risk event;

• the controls that exist to deal with this risk;

• an assessment of the consequences.

Because the risk register will contain a great many different risks, it is impor-
tant to focus on the most important ones. We want to construct some sort of
priority rating – giving the overall level of risk. This then provides a tool so that
management can focus on the most important risk events and then determine a
risk treatment plan to reduce the level of risk. The most important risks are those
with serious consequences that are relatively likely to occur. We need to combine
the likelihood and the impact and Figure 1.1 shows the type of diagram that is
often used to do this, with risk levels labeled L = Low; M = Medium; H =
High; and E = Extreme.

This type of diagram of risk levels is sometimes called a heat map, and often
red is used for the extreme risk boxes; orange for the high risks; and yellow
for the medium risks. It is a common tool and is recommended in most risk
management standards. It should be seen as an important first step in drawing
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up a risk management plan, prior to making a much fuller investigation of some
specific risks, but nevertheless there are some significant challenges associated
with the use of this approach.

One problem is related to the use of a scale based on words like ‘likely’
or ‘rare’: these terms will mean very different things to different people. Some
people will use a term like ‘likely’ to mean a more than two thirds chance
of occurring (this is the specific meaning that is ascribed in the IPCC climate
change report). But in a risk management context, quite small probabilities over
the course of a year may seem to merit the phrase ‘likely’.

The use of vague terms in a scale of this sort will make misunderstandings far
more likely. Douglas Hubbard describes an occasion when he asked a manager
‘What does this mean when you say this risk is “very likely”?’ and was told that
it meant there was about a 20% chance of it happening. Someone else in the
room was surprised by the small probability, but the first manager responded,
‘Well this is a very high impact event and 20% is too likely for that kind of
impact.’ Hubbard describes the situation as ‘a roomful of people who looked at
each other as if they were just realizing that, after several tedious workshops
of evaluating risks, they had been speaking different languages all along.’ This
story illustrates how important it is to be absolutely clear about what is meant
when discussing probabilities or likelihoods in risk management.

The heat map method is clearly a rough and ready tool for the identification of
the most important risks. But its greatest value is in providing a common framework
in which a group of people can pool their knowledge. Far too often the methodology
fails to work as well as it might, simply because there has not been any prior
agreement as to what the terms mean. A critical point is to have a common view
of the time frame or horizon over which risks are assessed. Suppose that there
is a 20% probability of a particular risk event occurring in the next year, but the
group charged with risk management is using an implicit 10-year time horizon.
This would certainly allow them to assess the risk as very likely, since, if each year
is independent of the last and the probability does not vary, then the probability
that the event does not occur over 10 years is 0.810 = 0.107. So there is a roughly
90% chance that the event does occur at some point over a 10-year period.

More or less the same argument applies to the terms used to identify the
magnitude of the impact. It will not be practicable to give an exact dollar figure
associated with losses, just as there is little point in trying to ascribe exact
probabilities to risk events. But it is worthwhile having a discussion on what
a ‘minor’ or a ‘moderate’ impact really means. For example, we might initiate a
conversation about the evaluation we would give for the impact of an event that
led to an immediate 5% drop in the company share price.

1.3 Fallacies and traps in risk management

In this introductory chapter it is appropriate to give some ‘health warnings’ about
the practice of risk management. These are ideas about risk management that can
be misleading or dangerous.
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It is worth beginning with the observation that society at large is increasingly
intolerant of risk which has no obvious owner – no one who is responsible and
who can be sued in the event of a bad outcome. Increasingly it is no longer
acceptable to say ‘bad things happen’ and we are inclined to view any bad event
as someone’s fault. This is associated with much management activity that could
be characterized as ‘covering one’s back’. The important thing is no longer the
risk itself but the demonstration that appropriate action has been taken so that the
risk of legal liability is removed. The discussion of risk registers in the previous
section demonstrates exactly this divergence between what is done because it
brings real advantage, and what is done simply for legal reasons. Michael Power
makes the case that greater and greater attention is placed on what might be called
secondary risk management, with the sole aim of deflecting risk away from the
organization or the individuals within it. It is fundamentally wrong to spend more
time ensuring that we cannot be sued than we do in trying to reduce the dangers
involved in our business. But in addition to questions of morality, a focus on
secondary risk management means we never face up to the question of what
is an appropriate level of risk, and we may end up losing the ability to make
sound judgments on appropriate risks: the most fundamental requirement for risk
management professionals.

Another trap we may fall into is the feeling that good risk management
requires a scenario-based understanding of all the risks that may arise. Often this
is impossible, and trying to do so will distract attention from effective manage-
ment of important risks. As Stulz (2009) argues, there are two ways to avoid this
trap. First there is the use of statistical tools (which we will deal with in much
more detail in later chapters).

‘Contrary to what many people may believe, you can manage risks
without knowing exactly what they are – meaning that most of what
you’d call unknown risks can in fact be captured in statistical risk
management models. Think about how you measure stock price risk.
. . . As long as the historical volatility and mean are a good proxy for
the future behavior of stock returns, you will capture the relevant risk
characteristics of the stock through your estimation of the statistical
distribution of its returns. You do not need to know why the stock
return is +10% in one period and −15% in another.’

The second way to avoid getting bogged down in an unending set of almost
unknowable risks is to recognize that important risks are those that make a
difference to management decisions. Some risks are simply so low in probability
that a manager would not change her behavior even if this risk was brought to
her attention. This is like the risk of being hit by an asteroid – it must have some
small probability of occurring but it does not change our decisions.

A final word of caution relates to the use of historical statistical information
to project forward. We may find a long period in which something appears to be
varying according to a specific probability distribution, only to have this change
quite suddenly. An example with a particular relevance for the author is in the
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Figure 1.2 Australian dollars to one British pound 2004–2008.

exchange rate between the Australian dollar and the British pound. The graph in
Figure 1.2 shows what happened to this exchange rate over a five-year period from
2004 to 2008.

The weekly data here have a mean of 2.38 Australian dollars per pound and
the standard deviation is 0.133. Fifteen months later, in March 2010, the rate had
fallen to 1.65 (and continued to fall after that date). Now, if weekly exchange
rate data followed a normal distribution then the chance of observing a value
as low as 1.65 (more than five standard deviations below the mean) would be
completely negligible. Obviously the foreign exchange markets do not behave
in quite the way that this superficial historical analysis suggests. Looking over a
longer period and considering also other foreign exchange rates would suggest
that the relatively low variance over the five-year period taken as a base was
unusual. In this case the fallout from the global financial crisis quickly led to
exchange rate values that reflect historically very high levels for the Australian
dollar and a low level for the British pound.

We may be faced with the task of estimating the risk of certain events on the
basis of statistical data but without the benefit of a very long view and with no
opportunity to compare any related data. In this situation all that we might have to
guide us is a set of data like Figure 1.2. Understanding how hard it is in a foreign
exchange context to say what the probabilities are of certain outcomes should help
us to be cautious when faced with the same kind of task in a different context.

1.4 Why safety is different

This book is about business risk management and is aimed at those who will
have management responsibility. There are significant differences between how
we may behave as managers and how we behave in matters of our personal
safety. Every day as we grow up, and throughout our adult lives, we make
decisions which involve personal risk. The child who decides to try jumping
off the playground swing is weighing up the risk of getting hurt against the
excitement involved. And the driver who overtakes a slower vehicle on the road
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is weighing up the risks of that particular road environment against the time or
frustration saved. In that sense we are all risk experts; it’s what we do every day.

It is tempting to think about safety within the framework we have laid out of
different risk events, each with a likelihood and a magnitude of impact. With this
approach we could say that a car trip to the shops involves such a tiny likelihood
of being involved in a collision with a drunk driver that the overall level of risk
is easily outweighed by the benefits. But there are two important reasons why
thinking in this way can be misleading.

First we need to consider not only the likelihood of a bad event, but also its
consequences. And if I am worried about someone else driving into me, then the
consequence might be the loss of my life. Just how does that get weighed up
against the inconvenience of not using a car? Most of us would simply be unable
to put a monetary value on our own lives, and no matter how small the chance
of our being killed in a car crash, the balance will tilt against driving the car if
we make the value of our life high enough. But yet we still drive our cars and
do all sorts of other things that carry an element of personal risk.

A second problem with treating safety issues in the same way as other risks
is that the chance of an accident is critically determined by the degree of care
taken by the individual concerned. The probability of dying in a car crash on
the way to the shops is mostly determined by how carefully I drive. This makes
my decision on driving a car different to a decision on traveling by air, where
once on board I have no control over the level of risk. However, there are many
situations where being careful will dramatically reduce the risk to our personal
safety. Paradoxically, the more dangerous we perceive the activity to be then the
more careful we are. The risks from climbing a ladder may end up being greater
than from using a chain saw if we believe that the ladder is basically safe, but
that the chain saw is extremely dangerous.

A better way to consider personal safety is to think of each of us as having
an in-built ‘risk thermostat’ that measures our own comfort level with different
levels of risk. As we go about our lives there comes a time with certain activities
when we start to feel uncomfortable with the risk we are taking; this happens
when the amount of risk starts to exceed our own risk thermostat setting. The risk
we will tolerate varies according to our own personalities, our age, our experience
of life, etc. But if the level of risk is below this personal thermostat setting then
there is very little that holds us back from increasing the risk. So, if driving seems
relatively safe then we will not limit our driving to occasions when the benefits
are sufficiently large. John Adams points out that some people will actively seek
risk so that they return to the risk thermostat setting which they prefer. So, in
discussing the lives that might be saved if motorcycling was banned, he points out
that, ‘If it could be assumed that all the banned motorcyclists would sit at home
drinking tea, one could simply subtract motorcycle accident fatalities from the
total annual road accident death toll. But at least some frustrated motorcyclists
would buy old bangers and try to drive them in a way that pumped as much
adrenaline as their motorcycling’.
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These are important issues and need to faced by businesses in which health
and safety are big concerns, such as mining. If the aim is to get as close as possible
to eliminating accidents in the workplace, then it is vital to pay attention to the
workplace culture, which can have a role in resetting the risk thermostat of our
employees to a lower level.

1.5 The Basel framework

The Basel Accords refer to recommendations made by the Basel Committee on
Banking Supervision about banking regulations. The second of these accords
(Basel II) was first published in 2004 and defines three different types of risk for
banks – but the framework is quite general and can apply to any business.

Market risk. Market risk focuses on the uncertainties that are inherent in market
prices which can go up or down. Market risk applies to any uncertainty
where the value is dependent on prices that cannot be predicted fully in
advance. For example, we might build a plant to extract gold from a low-
yield resource, but there is a risk that the gold price will drop and our
plant will no longer be profitable. This is an example of a commodity risk.
Other types of market risk are equity risk (related to stock prices and their
volatility); interest rate risk; and currency risk (related to foreign exchange
rates and their volatility).

Credit risk. Any business will be involved in many different contractual
arrangements. If the counterparty to the contract does not deliver what
is promised then legal means can be used to extract what is owed. But this
assumes that the counterparty still has funds available. Credit risk is the
risk of a counterparty to a contract going out of business. For example, a
business might deliver products to its customers and have 30-day payment
terms. If the customer goes out of business there may be no way of getting
back more than a small percentage of what is owed. In its most direct form,
the contract is a loan made to another party and credit risk is about not
being repaid due to bankruptcy.

Operational risk. Operational risk is about something going badly wrong. This
category of risk includes many of the examples we have discussed so far
that are associated with negative risk events. Operational risk is defined
as arising from failures in internal processes, people or systems, or due to
external events.

Since we are interested in more general risk management concerns, not just
risk for banks, it is helpful to add a fourth category to the three discussed by
Basel II.

Business risk. Business risk relates to those parts of our business value propo-
sition where there is considerable uncertainty. For example, there may be
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a risk associated with changes in costs, or changes in customer demand,
or changes in the security of supply of raw materials. Business risk is like
market risk but does not relate directly to prices.

Both market risk and credit risk are, to some extent, entered into deliberately
as a result of calculation. Market risk is expected, and we can make calculations
on the basis of the likelihood of different market outcomes. Business risk also
often has this characteristic: for example, most businesses will have a clear idea
of what will happen under different scenarios for customer demand. Credit risk is
always present, and in many cases we assess credit risk explicitly through credit
ratings. But operational risk is different: it is not entered into in the expectation
of reward. It is inherent and is, in a sense, the unexpected risk in our business.
It may well fit into the ‘unknown unknown’ description in the quotation from
Rumsfeld that we gave earlier. Usually operational risk involves low-probability
and high-severity events and this makes it particularly challenging to deal with.

1.6 Hold or hedge?

When dealing with market or business risk a manager is often faced with an
ongoing risk, so that it recurs from day to day or month to month. In this case
there is the need to take strategic decisions related to these risks.

An example of a recurring risk occurs with airlines who face ongoing uncer-
tainty related to the price of fuel (which can only be partially offset by adding
fuel surcharges). The question that managers face is: when to hold on to that
risk, when to insure or hedge it, and when to attack the risk so that it is reduced?

A financial hedge is possible when we can buy some financial instrument
to lessen the risk of market movements. For example, a power utility company
might trade in futures for gas prices. If the utility is buying gas and selling
electricity then it is exposed to a market risk if the price of gas rises and it is
not able to raise the price of electricity to the same extent. By holding a futures
contract on the gas price, the company can obtain a benefit when the price of
gas increases: if the utility knows how much gas it will purchase then the net
effect will be to fix the gas price for the period of the contract and eliminate
this form of market risk. Even if the utility cannot exactly predict the amount of
gas it will burn, there will still be the opportunity to hedge the majority of its
potential losses from gas price rises.

Sometimes we have an operational hedge which achieves the same thing
as a financial hedge through the way that our operations are organized. For
example, we may be concerned about currency risk if our costs are primarily in
US dollars but our sales are in the Euro zone. Thus, if the Euro’s value falls
sharply relative to the US dollar, then we may find our income insufficient to
meet our manufacturing expenses even though our sales have remained strong. An
option is to buy a futures contract which has the effect of locking in an exchange
rate. However, another ‘operational hedge’ could be achieved by moving some
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of our manufacturing activity into a country in the Euro zone, so that more of
our costs occur in the same currency as the majority of our sales.

In holding on to a risk the company deliberately decides to accept the vari-
ation in profit which results. This may be the best option when a company has
sufficient financial resources, and when it has aspects of its operations that will
limit the consequences of the risk. For example, a vertically integrated power
utility company that sets the price of electricity for its customers may decide
not to fully hedge the risks associated with rises in the cost of gas if there are
opportunities to quickly change the price of the electricity that it sells in order
to cover increased costs of generation.

1.7 Learning from a disaster

We began this chapter with the remarkable story of Jérôme Kerviel’s massive
fraud at Société Générale, which fits into the category of operational risk. Now we
return to this example with the aim of seeing what can be learnt. To understand
what happened we will start by giving some background information on the
world of bank trading. A bank, or any company involved in trading in a financial
marketplace, will usually divide its activities into three areas. First the traders
themselves: these are the people who decide what trades to make and when
to make them (the ‘front office’). Second, a risk management area responsible
for monitoring the traders’ activity measuring and modeling risk levels etc. (the
‘middle office’). And finally an area responsible for carrying out the trades,
making the required payments and dealing with the paperwork (the ‘back office’).

The trading activities are organized into desks: groups of traders working
with a particular type of asset. The Kerviel story takes place in SocGen’s Delta
One desk in Paris. Delta One trading refers to buying and selling straightforward
derivatives that do not involve any options. Options are derivatives which give
‘the right but not the opportunity’ to make a purchase or sale. The trading of
options gives a return that depends non-linearly on whatever is the underlying
security (we explain more about this in Chapter 9), but trading activities for a
Delta One desk are simpler than this – the returns just depend directly on what
happens to the underlying security. In fact, the delta in the terminology refers
to the first derivative of the return as a function of the underlying security, and
‘Delta One’ is shorthand for ‘delta equals one,’ implying this direct relationship.

For example, a trade might involve buying a future on the DAX, which is
the main index for the German stock market and comprises the 30 largest and
most actively traded German companies. Futures can be purchased in relation
to different dates (the end of each quarter) and are essentially a prediction of
what the index will be at that date. One can also buy futures in the individual
stocks that make up the index and by creating a portfolio of these futures in
the proportions given by the weights in the DAX index, one would mimic the
behavior of the future for the index as a whole. However, over time the weights in
the DAX index are updated (in an automatic way based on market capitalization),
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so holding the portfolio of futures on individual stocks would lead to a small
divergence from the DAX future over a period of time.

The original purpose of a Delta One trading desk is to carry out trades for the
bank’s clients, but around that purpose has grown up a large amount of proprietary
trading where the bank intends to make money on its own account. One approach
is for a trader to make a bet on the convergence of two prices that (in the
trader’s view) should be closer than they are. If the current price of portfolio A
is greater than that of portfolio B and the two prices will come back together
before long, then there will be an opportunity to profit by buying B and selling
A, and then reversing this transaction when the prices move closer together.
Since both portfolios are made up of derivatives, the ‘buying’ and ‘selling’ here
need not involve ownership of the underlying securities, just financial contracts
based on their prices. This type of trading, which intends to take advantage of
a mis-pricing in the market, is called an arbitrage trade, and since trades of one
sort are offset by trades in the opposite direction, the risk involved should, in
theory, be very low.

Many of these trading activities take advantage of quite small opportunities
for profit (in percentage terms) and therefore, in order to make it worthwhile,
they require large sums of money to be involved. Kerviel was supposed to act
as an arbitrageur, looking for small differences in price between different stock
index futures. In theory this means that trades in one direction are offset by
balancing trades in the other direction. But Kerviel was making fictitious trades:
reporting trades that did not occur. This enabled him to hold one half of the
combined position but not the other. The result of the fictitious trade is to change
an arbitrage opportunity with large nominal value but relatively small risk into
a simple (very large) bet on the movement of the futures price.

When Kerviel started on this process in 2006 things went reasonably well–his
bets came off and the bank profited. Traders are allowed to make some speculative
trades of this sort, but there is a strict limit on the amount of risk they take
on: Kerviel breached those limits repeatedly (and spectacularly). Over time the
amounts involved in these speculations became greater and greater, and things
still went well. During 2007 there were some ups and downs in the way that
these bets turned out, but by the end of the year Kerviel was well ahead. He has
claimed that his speculation made 1.5 billion Euros in profits for SocGen during
2007. None of this money made its way to him personally; he would only have
profited through earning a large bonus that year.

In January 2008, however, his good fortune was reversed when some large
bets went very wrong. The senior managers at the bank finally discovered what
was happening on January 18th 2008. There were enormous open positions and
SocGen decided that it had no option but to close off those positions and take
the losses, whatever these turned out to be. The timing was bad and the market
was in any case tumbling; the net result was that SocGen lost 4.9 billion Euros.
The news appeared on January 24th. The sums of money involved are enormous
and a smaller bank would certainly have been bankrupted by these losses, but
SocGen is very large and some other parts of its operation had been going well.
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Nevertheless, the bank was forced into seeking an additional 5.5 billion Euros in
new capital as a result of the losses.

Banks such as SocGen have elaborate mechanisms to ensure that they do
not fall into this kind of situation. Outstanding positions are checked on a daily
basis, but each evening Kerviel, working late into the night, would book offsetting
fictitious transactions, without any counterparties, and in this way ensure that his
open positions looked as if they were appropriately hedged. Investigations after
the event revealed more than a thousand fake trades; there is no doubt that these
should have been picked up.

Kerviel, who was 31 when the scandal broke, was tried in June 2010. He
acknowledged what he had done in booking fake trades, but he argued that his
superiors had been aware of what he was doing and had deliberately turned a
blind eye. He said ‘It wasn’t me who invented these techniques – others did
it, too.’ Finally, in October 2010, Kerviel was found guilty of breach of trust,
forging documents and entering false data into computers; he was sentenced
to three years in prison and ordered to repay SocGen’s entire trading loss of
4.9 billion Euros. The judge held Kerviel solely responsible for the loss and said
that his crimes had threatened the bank’s existence. The case came to appeal
in October 2012 and the original verdict was upheld. There is, of course, no
possibility of Kerviel ever repaying this vast sum, but SocGen’s lawyers have
said that they will pursue him for any earnings he makes by selling his story.

1.7.1 What went wrong?

There is no doubt that what happened at SocGen came about because of a com-
bination of factors. First there was Kerviel himself, who had some knowledge
of the risk management practices of the middle office through previously having
worked in this area. It seems that he kept some access appropriate to this, even
when he became a trader. This is exactly what happened with Nick Leeson at
Barings – another famous example of a trader causing enormous losses at a bank.
Kerviel was someone whose whole world was the trading room and, over the
course of a year or so, he was drawn into making larger and larger bets with
the company’s money. There remains a mystery about what might have been his
motivation. In his appeal he offered no real explanation, simply describing his
actions as ‘moronic’, but maintaining that he was someone trying ‘to do his job
as well as possible, to make money for the bank’.

A second factor was the immediate supervision at the Delta One desk.
Whether or not one accepts Kerviel’s claims that his bosses knew what was
going on, they certainly should have known and done something about it. It is
hard at this point to determine what is negligence and what is tacit endorsement.
Eric Cordelle, who was Kerviel’s direct superior, was only appointed head of
the Delta One desk in April 2007, and did not have any trading experience. He
was sacked for incompetence immediately after the fraud was discovered. He
claims that during this period his team was seriously understaffed and he had
insufficient time to look closely at the activities of individual traders.
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A third important factor is the general approach to risk management being
taken at SocGen in this period. It is easy to take a relaxed attitude to the risk
of losses when everything seems to be going well. During 2007 there was an
enormous increase in trading activity on the Delta One desk and large profits
were being made. The internal reports produced by SocGen following the scandal
were clear that there had been major deficiencies in the monitoring of risks by the
desk. The report by PriceWaterhouseCoopers on the fraud stated that: ‘The surge
in Delta One trading volumes and profits was accompanied by the emergence
of unauthorized practices, with limits regularly exceeded and results smoothed
or transferred between traders.’ Moreover, ‘there was a lack of an appropriate
awareness of the risk of fraud.’

In fact there were several things which should have alerted the company to
a problem:

• there was a huge jump in earnings for Kerviel’s desk in 2007;

• there were questions which were asked about Kerviel’s trades from Eurex,
the German derivatives exchange, who were concerned about the huge
positions that Kerviel had built up;

• there was an unusually high level of cash flow associated with Kerviel’s
trading;

• Kerviel did not take a vacation for more than a few days at a time – despite
a policy enforcing annual leave;

• there was a breach of Kerviel’s market risk limit on one position.

We can draw some important general lessons from this case. I list five of
these below.

1. Company culture is more important than the procedures. The organiza-
tional culture in SocGen gave precedence to the money-making side of
the business (trading) over the risk management side (middle office), and
this is very common. Whether or not procedures are followed carefully
will always depend on cultural factors, and the wrong sort of risk culture
is one of the biggest factors leading to firms making really disastrous
decisions.

2. Good times breed risky behavior. In the SocGen case the fact that Kerviel’s
part of the operation was doing well made it easy to be lax in the care
with which procedures were carried out. It may be true that the reverse of
this statement is also true: in bad times taking risks may seem the only
way through, but whether wise or not these are at least a conscious choice.
Risks that managers enter into unconsciously seem to generate the largest
disasters.

3. Companies often fail to learn from experience. One example occurs when
managers ignore risks in similar companies, such as we see in the uncanny



WHAT IS RISK MANAGEMENT? 17

resemblance between SocGen and Barings. But it can also be surprisingly
hard to learn from our own mistakes in a corporate setting. Often a scape-
goat is found and moved on, without a close look at what happened and
why. Dwelling on mistakes is a difficult thing to do and will inevitably
be perceived as threatening, and perhaps that is why a careful analysis of
bad outcomes is often ducked.

4. Controls need to be acted upon. On many occasions risks have been con-
sidered and controls put in place to avoid them. The problem occurs when
the controls that are in place are ignored in practice. SocGen had a clear
policy on taking leave (as is standard in the industry) but failed to act
upon it.

5. There must be adequate management oversight. Inadequate supervision is
a key ingredient in poor operational risk management. In the SocGen case,
Kerviel’s supervisor had inadequate experience and failed to do his job.
More generally, risks will escalate when a single person or a small group
can make decisions that end with large losses, either through fraud or sim-
ple error. Companies need to have systems that avoid this through having
effective oversight of individuals by managers, who need to supervise their
employees sufficiently closely to ensure that individuals do what they are
supposed to do.

This book is mostly concerned with the quantitative tools that managers can
use in order to deal with risk and uncertainty. It is impossible to put into a single
book everything that a manager might need to know about risk. In fact, the most
important aspects of risk management in practice are things that managers learn
through experience better than they learn in an MBA class. But paying attention
to the five key observations above will be worthwhile for anyone involved in
risk management, and may end up being more important than all the quantitative
methods we are going to explore later in this book.

It is hard to overstate the importance of the culture within an organization:
this will determine how carefully risks are considered; how reflective managers
are about risk issues; and whether or not risk policies are followed in practice.
A culture that is not frightened by risk (where employees are prepared to
discuss risk openly and consider the appropriate level of risk) is more likely
to avoid disasters than a culture that is paranoid about risk (where employees are
uncomfortable in admitting that risks have been not been eliminated entirely).
It seems that when we are frightened of risk we are more likely to ignore it, or
hide it, than to take steps to reduce it.

Notes

This chapter is rather different than the rest of the book: besides setting the scene
for what follows, it also avoids doing much in the way of quantification. I have
tried to distill some important lessons rather than give a set of models to be
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used. I have found the book by Douglas Hubbard one of the best resources for
understanding the basics of risk management applied in a broad business context.
His book covers not only some of the material in this chapter but also has useful
things to say about a number of topics we cover in later chapters (such as the
question of how risky decisions are actually made, which we cover in Chapter 6).

A good summary of approaches which can be used to generate scenarios
and think about causal chains as well as the business responses can be found in
Miller and Waller (2003). The discussion on why we need to think differently
about safety issues is taken from the influential book by John Adams, who is a
particular expert on road safety.

The material on the Société Générale fraud has been drawn from a number of
newspaper articles: Société Générale loses $7 billion in trading fraud, New York
Times, January 24, 2008; Bank Outlines How Trader Hid His Activities, New
York Times, January 28, 2008; A Société Générale Trader Remains a Mystery
as His Criminal Trial Ends, New York Times, June 25, 2010.; Rogue Trader
Jerome Kerviel ‘I Was Merely a Small Cog in the Machine’ Der Spiegel Online,
November 16, 2010.

We have said rather little about company culture and its bearing on risk, but
this is by no means a commentary on the importance of this aspect of risk, which
probably deserves a whole book to itself (some references on this are Bozeman
and Kingsley, 1998; Flin et al., 2000; Jeffcot et al., 2006 as well as the papers
in the book edited by Hutter and Power, 2005).
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Exercises

1.1 Supply risk for valves

DynoRam makes hydraulic rams for the mining industry in Australia. It
obtains a valve component from a supplier called Sytoc in Singapore. The
valves cost 250 Singapore dollars each and the company uses between 450
and 500 of these each year. There are minor differences between valves,
with a total of 25 different types being used by DynoRam. Sytoc delivers
the valves by air freight, typically about 48 hours after the order is placed.
Deliveries take place up to 10 times a month depending on the production
schedule at DynoRam. Because of the size of the order, Sytoc has agreed
a low price on condition that a minimum of 30 valves are ordered each
month. On the 10th of each month (or the next working day) DynoRam
pays in advance for the minimum of 30 valves to be used during that month
and also pays for any additional valves (above 30) used during the previous
month.

(a) Give one example of market risk, credit risk, operational risk and
business risk that could apply for DynoRam in relation to the Sytoc
arrangement.

(b) For each of the risks identified in part (a) suggest a management action
which would have the effect either of reducing the probability of the
risk event or minimizing the adverse consequences.

1.2 Connaught

The following is an excerpt from a newspaper report of July 21, 2010
appearing in the UK Daily Telegraph.

‘Troubled housing group Connaught has been driven deeper into
crisis after it discovered a senior executive sold hundreds of
thousands of pounds worth of shares ahead of last month’s shock
profit warning.

The company which lost more than 60% of its value in just three
trading days in June, and saw its chief executive and finance
director resign, has launched an internal investigation into the
breach of city rules. . . Selling shares with insider information
when a company is about to disclose a price-sensitive statement
is a clear breach of FSA rules.

Connaught, which specializes in repairing and maintaining low
cost (government owned) housing, has fallen a total of 68%
since it gave a warning that a number of public sector clients
had postponed capital expenditure, which would result in an
80 million pound fall in expected revenue this year.
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The group said that it had been hit by deferred local authority
contracts which would knock 13m pounds off this year’s profits
and 16m pounds from next year’s. It also scaled back the size
of its order book from the 2.9 billion pounds it said it was worth
in April to 2.5 billion.

The profit warning also sparked renewed concerns about how
Connaught accounts for its long-term repair and maintenance
contracts. Concerns first surfaced late last year with city analysts
questioning whether the company was being prudent when rec-
ognizing the revenue from, and costs of, its long term contracts.

The company vehemently defended its accounting practices at
the time and continues to do so. Chairman Sir Roy Gardner has
tried to steady the company since his arrival earlier this year.’

(a) How would you describe the ‘profits warning’ risk event: is it brought
about by market risk, credit risk, operational risk or business risk?

(b) From the newspaper report can you make any deductions about risk
management strategies the management of the company could have
taken in advance of this in order to reduce the loss to shareholders?

1.3 Bad news stories

Go through the business section of a newspaper and find a ‘bad news’ story,
where a company has lost money.

(a) Can you identify the type of risk event involved: market risk, credit
risk, operational risk or business risk?

(b) Look at the report with the aim of understanding the risk management
issues in relation to what happened. Was there a failure to anticipate
the risk event? Or a failure in the responses to the event?

1.4 Product form for heat map

Suppose that the risk level is calculated as the expected loss and that
the likelihoods are converted into probabilities over a 20-year period as
follows: ‘very likely’ = 0.9; ‘likely’ = 0.7; ‘moderate’ = 0.4; ‘unlikely’
= 0.2; and ‘rare’ = 0.1. Find a set of dollar losses associated with the five
different magnitudes of impact such that the expected losses are ordered in
the right way for Figure 1.1: in other words, so that the expected losses for
a risk level of low are always lower than the expected losses for a risk level
of medium, and these are lower than the expected losses for a risk level of
high, which in turn are lower than the expected losses for a risk level of
extreme. You should set the lowest level of loss (‘insignificant’) as $10 000.
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1.5 Publication of NHS reform risk register

Risk registers may take various forms, but the information they contain can
sometimes be extremely sensitive. In 2012 the UK government discussed
whether or not to release the full risk register that had been created for the
highly controversial reform of the National Health Service. The health sec-
retary, Andrew Lansley, told parliament in May 2012 that only an edited
version of this document would be made available, on the principle that
civil servants should be able to use ‘direct language and frank assessments’
when giving advice to ministers. Lansley argued that if this advice were
to be released routinely then ‘future risk registers [would] become ano-
dyne documents of little use.’ The net result would be that ‘Potential risks
would be more likely to develop without adequate mitigation. That would
be detrimental to good government and very much against the public inter-
est.’ Using this example as an illustration, discuss whether there is a tension
between realistic assessment of risk and the openness that may be implicit
in a risk register.
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The structure of risk

Did the global financial crisis signal a failure in diversification?
The idea of diversification is simple but vital in managing investments. Invest
everything in one stock and you may be unlucky with a bad result for that
particular stock; invest in 50 stocks and no single bad event will be able to trip
you up. That is the advantage of buying shares in a mutual fund (or investment
trust) – the investor is automatically diversifying through holding a whole range
of different stocks. But sometimes this principle of diversification seems to fail:
if you had $100 000 invested in the average US mutual fund at the beginning of
2008, you would have lost $39 500 during that year. That was a year in which all
stocks did badly. The US bear market that began in October 2007 ran till March
2009 and in that period US equity markets fell by 57%.

Diversification amongst different US stocks did not help in 2008. In fact, the
only way to avoid losses was not to diversify, but to invest in one of the small
number of stocks that did much better than the market (93% of all US equities lost
money in 2008 but not all: for example, McDonalds and Wal-Mart were exceptions).
So, if diversification is the answer then the right strategy in that year would include
investing in areas outside of equities. If you were a risk-averse investor then it would
have made sense to diversify into many different asset classes with the intention
of avoiding large losses. Unfortunately, not only did stocks fall, but commodities,
real estate and emerging markets fell as well. In fact, virtually every asset class
did badly and, as a result, even well-diversified portfolios saw massive losses. This
is exactly what diversification is supposed to avoid. So the difficult question that
needs to be faced is as follows: if it is the case that in really bad times everything
goes down at once, what is the point of diversification in the first place?

In order to understand the benefits of diversification and avoid being led
astray by models that leave out critical parts of the picture, we need to go back
to first principles.

Business Risk Management: Models and Analysis, First Edition. Edward J. Anderson.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/business_risk_management
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2.1 Introduction to probability and risk

The origin of our ideas of probability can be traced back to games of chance. There
have always been high stakes gamblers and whenever there is a large amount of
money involved there is also a powerful motivation for developing tools to predict
the chance of winning or losing. The intellectual history of the ideas of probability
and risk is a long one, but one early reference occurs in a book by Luca Paccioli that
appeared in 1494 with the title Summa de Arithmetic, Geometria et Proportionalita.
This is a book on mathematics but it includes an influential description of double
entry bookkeeping, as well as the following problem:

‘A and B are playing a fair game of balla. They agree to continue
until one has won six rounds. The game actually stops when A has
won five and B three. How should the stakes be divided?’

How would we answer this problem? Just one more win for A (Adam) will
seal his victory, but B (Ben) still has a chance: if he can win the next three
games then he will be the overall winner. A fair division of the stakes needs to
reflect the relative likelihood of one or other player winning. But at the time the
question was posed there was no language that could be used to capture these
ideas of likelihood. Perhaps it is not surprising that this problem (‘the problem
of the points’) would not be solved till many years later.

In fact the problem was discussed in the letters between two famous mathe-
maticians in the 1650s, Blaise Pascal and Pierre de Fermat. Both these men were
brilliant: Pascal was a child prodigy who worked on everything from calculating
machines and hydraulics to barometers, but renounced his scientific work at the
age of 31 after a mystical experience; while Fermat was a mathematical genius
who did far more than leave us the puzzle of ‘Fermat’s last theorem’. Pascal
describes the right form of division of the initial stakes in the problem of the
points by saying, ‘the rule determining that which will belong to them will be
proportional to that which they had the right to expect from fortune’.

Rather than leave the problem of the points hanging in the air, we can quickly
sketch how Pascal and Fermat approached this issue. The key is to think about
what may happen over the next three rounds. The game will certainly finish then
(after 11 rounds in all) if it has not finished already. But it does no harm to
suppose that all three rounds are played, with a total of eight possible outcomes,
e.g. one of the outcomes is first Ben wins, then Ben wins again, then finally Adam
wins. We can write down the possible sequences AAA, AAB, ABA, ABB, BAA,
BAB, BBA, BBB. Then the question of how to determine a fair distribution can
be resolved by appealing to the assumption that the underlying game is fair. Each
time that Adam plays Ben there is an equal chance that either of them will win
(making each of these eight possible outcomes equally likely). But since only
one of the eight, BBB, has Ben winning the stake, a fair division is to divide the
stake with a proportion 1/8 going to Ben and 7/8 to Adam. Pascal and Fermat
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discussed how this calculation could be effectively carried out for any possible
starting position and any number of rounds of play.

Notice that, even without knowing the exact rules of the game of balla, we
may object that Adam’s superior performance so far provides evidence that he
is the stronger player and, if that is so, then even giving Ben one eighth of the
stake is too generous.

Jakob Bernoulli had these issues in mind when he wrote Ars Conjectandi (The
Art of Conjecture) which was published posthumously in 1713 (eight years after
his death). At this stage some more modern ideas of probability were beginning
to emerge. Bernoulli was conscious of the need to use the past as an indicator
of the likelihood of future events and in particular drew attention to the way
that (if nothing changes in the underlying circumstances) an increasing number
of observations leads to increasing certainty regarding the actual probability of
something occurring. He wrote:

‘Because it should be assumed that each phenomenon can occur and
not occur in the same number of cases in which, under similar cir-
cumstances, it was previously observed to happen and not to happen.
Actually, if, for example, it was formerly noted that, from among
the observed three hundred men of the same age and complexion
as Titius now is and has, two hundred died after ten years with the
others still remaining alive, we may conclude with sufficient confi-
dence that Titius also has twice as many cases for paying his debt to
nature during the next ten years than for crossing this border. Again,
if someone will . . . be very often present at a game of two participants
and observe how many times either was the winner, he will thus dis-
cover the ratio of the number of cases in which the same event will
probably happen or not also in the future under circumstances similar
to those previously existing.’

There are clearly limitations in this approach. There are inevitable variations
between circumstances in the future and those in the past – so how do we know
that Titius really faces the same probability of an early death as the 300 men
‘of the same age and complexion’? There has always been a dispute about the
extent to which we can rely on calculations based on what has happened in the
past to guide us in our future actions. When dealing with everyday decisions we
are much more likely to be guided by a more subjective understanding of what
the future holds. Peter Bernstein talks of the ‘tension between those who assert
that the best decisions are based on quantification and numbers, determined by
the patterns of the past, and those who base their decisions on more subjective
degrees of belief about the uncertain future.’

In this book we will focus on the quantitative tools for modeling and managing
risk. But the student who wants to apply these tools needs to be aware constantly
of their limitations. We have now reached the point in the historical story at which
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the mathematical theory of probability takes off, but rather than talk about the
various contributions of de Moivre, Bayes, Laplace, Gauss, D’Alembert, Poisson
and others we will move on to the specifics of risk. A short discussion of all the
probability theory we will need in this book is given in Appendix A: Tutorial on
probability theory.

2.2 The structure of risk

Our contention is that probability and probability distributions are the right tools
to use in understanding risk. We will begin by thinking about the structure of the
risk that we face and see how this is reflected in the probabilities involved.

The first distinction to make is between event risk and quantity risk. Event
risk has a simple yes/no form: What is the risk that a particular company goes
bankrupt? What is the risk that a new drug fails to pass its safety checks? Quantity
risk relates to a value which can vary (a random variable in the parlance of
probability theory). Most often the value is measured in monetary terms. This is
a type of risk where there is no simple yes/no result: What is the risk of large
losses in an investment project? What is the risk of a high cost in a construction
project? Quantity risks can always be converted to event risks by adding some
sort of hurdle: for example, rather than asking about losses in general, we may
ask about the risk of losing more than $500 000.

2.2.1 Intersection and union risk

Sometimes event risk involves a number of separate things failing at once. For
example, we may consider the risk of a failure in power supply to a hospital as
the risk that there is a power cut and the emergency generator fails. We call this
an intersection risk, since it relates to the intersection of the two events: ‘mains
power fails’ and ‘emergency power fails’.

On the other hand, we may need to analyze risks where there are a number of
different failure paths, each of which leads to the same outcome. If we consider
the risk of a failure in a rocket launch then any one of a number of different
things can go wrong in the last few seconds before takeoff, and each will produce
the same end result. We call this a union risk, since the probability of failure is
the probability that one or more of the events takes place.

The basic tool to visualize these situations is a Venn diagram, where each
event is represented as a set in the diagram, and the overlap between sets A and
B represents the event that both A and B occur. This is shown for three risk
events A, B and C in Figure 2.1. The intersection risk is the probability of the
event described by the intersection of A, B and C. In the diagram, X is the set
around everything and represents all possible events.

We say that two events are independent if one of them occurring makes no
difference to the likelihood of the other occurring. This means that the probability
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A

B C

A∩B∩C

X

Figure 2.1 Venn diagram showing three different risk events.

of both A and B occurring is given by the product of the two individual prob-
abilities (see Appendix A: Tutorial on probability theory for more details about
this). This allows us to calculate the intersection risk for independent events.

Returning to the hospital power supply example, suppose we know that the
probability of a power cut on any given day is 0.0005 and the probability that
the hospital emergency power fails on any given attempt to start the generator
is 0.002. If the two events are independent (as seems likely in this example),
then the probability of a power supply failure at the hospital on any given day
is 0.0005 × 0.002 = 0.000001.

Now we want to consider union risk, and as an example of this consider
the probability of a catastrophic rocket launch failure during takeoff. Suppose
that the three main causes of failure are as follows: A = failure in fuel ignition
system; B = failure of the first stage separation from the main rocket; and C =
failure in the guidance and control systems. Suppose that the probabilities are as
follows Pr(A) = 0.001, Pr(B) = 0.0002, and Pr(C) = 0.003. What is the overall
probability of failure if the events A, B and C are all independent?

The probability that we want is the probability that one or other of A, B and
C occur. We want to find the entire area covered by the union of the sets A, B

and C in the Venn diagram. This is given by the formula

Pr(A) + Pr(B) + Pr(C) − Pr(A ∩ B) − Pr(B ∩ C) − Pr(A ∩ C)

+ Pr(A ∩ B ∩ C).

This is called the inclusion–exclusion formula – the idea is that if we just add
up the probabilities of A, B and C we will double count the intersections, so the
second three terms correct for this, but then anything in the intersection of all
three sets will have been counted three times initially and then been taken away
three times, so the final term restores the balance to make all the components of
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the Venn diagram end up being counted just once. With the probabilities given
and using the product form for the probability of the intersection of independent
events, we end up with a probability of launch failure given by:

10−3 + 2 × 10−4 + 3 × 10−3 − 2 × 10−7 − 6 × 10−7 − 3 × 10−6 + 6 × 10−10

= 0.004196.

This example shows how, when there are small risk probabilities and independent
events, we can more or less ignore the extra terms after the sum Pr(A) + Pr(B) +
Pr(C). In this example, simply adding the three probabilities gives the value
0.0042.

It is obvious that there is an enormous difference between the end result of
a union risk where (approximately) probabilities get added, and an intersection
risk where probabilities get multiplied.

There is an important trick which we will introduce here and that is often
helpful in calculating risk probabilities. We will write AC for the complement
of A; that is the event that A does not occur. Thus:

Pr(AC) = 1 − Pr(A).

It is helpful to look at the Venn diagram of Figure 2.1 where the event AC

corresponds to the set X with A removed. Notice that AC ∩ BC = (A ∪ B)C.
This is clear by looking at the diagram, and we can put this into words by saying
that ‘the intersection of complements is the complement of the union’. From the
point of view of calculating risk probabilities, the benefit of this rearrangement
arises from the way that we can multiply the probabilities of independent events
to get the probability of their intersection. If A and B are independent then so are
AC and BC. Thus we have the following chain of implications for independent
events A and B:

Pr(A ∪ B) = 1 − Pr((A ∪ B)C)

= 1 − Pr(AC ∩ BC)

= 1 − Pr(AC) Pr(BC)

= 1 − (1 − Pr(A))(1 − Pr(B)).

This might not seem like much of an advance, but the same trick can be used
for any number of independent events and this is helpful in avoiding the com-
plications of the inclusion–exclusion formula. For example, in dealing with the
probability of failure in the rocket launch example we have

Pr(A ∪ B ∪ C) = 1 − (1 − Pr(A))(1 − Pr(B))(1 − Pr(C))

= 1 − 0.999 × 0.9998 × 0.997 = 0.004196.

So we get to the same answer as we obtained before using inclusion–exclusion.
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2.2.2 Maximum of random variables

Now we consider quantity risks, involving random variables rather than events.
Again we need to start with an understanding of the structure of the risk and the
way that different random variables are combined. We first look at a situation
in which the risk we want to measure is determined by the largest of a set of
random variables.

Example 2.1 IBM stock price losses over 20 days

Suppose that we want to find the probability that the price of IBM shares drops
by more than 10% in one day at some point over the next four weeks, given that
the probability of a loss of more than 10% in a single day is 0.01 (so we expect
that it will happen on one trading day in 100), and the behavior on successive
days is independent.

There are 20 trading days and so this is a question about the probability that
the largest single-day drop in value over a 20-day period is more than 10%. To
calculate the answer we want, we begin by defining the event:

A = the daily loss in IBM stock price is less than 10%.

Note that A includes all the days with price rises too. The probability of a loss of
more than 10% is simply 1 − Pr(A), and this is the number we are told is 0.01.
Hence, we deduce that Pr(A) = 0.99. With independence, the probability that on
both day 1 and day 2 the loss is less than 10% is the intersection probability:

Pr(A) × Pr(A) = 0.992 = 0.9801.

The probability that the daily loss is less than 10% on all 20 days is just

Pr(A)20 = 0.9920 = 0.8179.

But if this doesn’t happen then there is at least one day when the loss is more
than 10%, which is exactly the probability we want to find. So the answer we
need is 1 − Pr(A)20 = 0.1821.

The task of determining the risk that the largest of a set of random variables
is higher than a certain value is just like the analysis for the union risk: it is
the probability that one or more of these random variables is greater than a
certain value. The analysis we have given here is an example of the use of
the complement trick to convert this problem into a problem of evaluating an
intersection risk. We can rewrite the analysis of the paragraph above in a slightly
more formal way as follows. We define the event:

Bi = IBM stock drops by more than 10% on day i.

So, Bi is the complement of Ai = IBM stock drops by less than 10% on day i.
Ai is the same as the event A, but we add a subscript to indicate the day in
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question. We have Pr(Bi) = 1 − Pr(Ai). Then, from our complement trick we
know that

Pr(B1 ∪ B2) = 1 − Pr(A1 ∩ A2),

and a similar expression holds when three or more days are considered. So the
number we want to find is

Pr(B1 ∪ B2 ∪ . . . ∪ B20) = 1 − Pr(A1 ∩ A2 ∩ . . . ∩ A20).

Now if all the Ai have the same probability and are independent (as we are
assuming here) then this becomes 1 − Pr(A)20. �

We can convert a discussion about the probabilities of events into a discussion
of cumulative distribution functions or CDFs. Remember that we define the CDF
for a random variable X as FX(z) = Pr(X ≤ z). Now consider a random variable
U defined as the maximum of two other random variables X and Y . Thus,
U = max(X, Y ). To find the CDF for U we need to find the probability that the
maximum of X and Y is less than a given value z. This is just the probability
that both X and Y are less than z, so

FU(z) = Pr(X ≤ z and Y ≤ z).

Hence, when X and Y are independent,

FU(z) = Pr(X ≤ z) × Pr(Y ≤ z) = FX(z) × FY (z).

The same idea can be used with more than two random variables.
When we are dealing with random variables having the same distribution,

the formula becomes simpler. Suppose that X1, X2, . . . , XN are identically dis-
tributed and independent random variables, all with the same CDF given by
FX(·). Then the CDF for the random variable U = max(X1, X2, . . . , XN) is
given by

FU(z) = (
FX(z)

)N
.

One of the most common questions we need to answer is not about the largest
(or smallest) of several different random variables, but instead relates to the risk
arising when random variables are added. Hence we are concerned with X + Y ,
rather than with max(X, Y ). In our example above we asked about the probability
that an IBM share price falls by more than 10% in a single day during a 20-day
period. But we are just as likely to be interested in the total change in price over
the 20-day period, and to calculate this we need to add together the successive
price movements over those 20 days. The fundamental insight here is that extreme
events in one day’s movement are quite likely to be canceled out by movements
on other days. As a result we can say that, unless price movements are strongly
positively correlated, the risk for the sum of many individual elements is less
than the sum of the individual risks. In the next section we explore this idea in
more detail.
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2.3 Portfolios and diversification

We began this chapter by talking about diversification in share portfolios and now
we return to this theme. The essential risk idea can be captured with the advice:
‘Don’t put all your eggs in one basket’. If there is the option to do so, then it is
better to spread risk so that different risk events act on different parts of an entire
portfolio of activities. In a stock market context, investing in a single share will
carry the risk that all one’s money is lost if that firm goes bankrupt. Splitting an
investment between a portfolio of many different shares automatically reduces
the probability of this very extreme result. The final result for the investor is the
sum of the results obtained for each share in the portfolio (weighted according
to the amount invested). Adding these together ensures that a bad result in one
part of the portfolio is likely to be balanced by a good (or less bad) result in
another part of the portfolio.

2.3.1 Adding random variables

We will start by looking in more detail at what happens when random vari-
ables are added together. If we consider the sum of two random variables X

and Y , each representing a loss, then we can ask: What is the probability that
the sum of the two is greater than a given value? To answer this question, we
take U = X + Y and consider Pr(U ≥ z) = 1 − FU(z). This is not an easy cal-
culation to do in general, since we need to balance the value of X with the
value of Y .

Example 2.2 Combination of two discrete random variables.

To illustrate this we look at an example where X and Y can each take values
between 1 and 5 with the probabilities given in Table 2.1.

We can calculate the probability of U = X + Y being 8 or more by consider-
ing the three possibilities: X = 3 and Y = 5; X = 4 and Y ≥ 4; and X = 5 and
Y ≥ 3. When X and Y are independent, this shows that the probability of U ≥ 8
is given by

0.2 × 0.1 + 0.2 × (0.1 + 0.1) + 0.2 × (0.3 + 0.1 + 0.1) = 0.16.

Table 2.1 Probability of different values for X and Y .

Value Probability for X Probability for Y

1 0.1 0.2
2 0.3 0.3
3 0.2 0.3
4 0.2 0.1
5 0.2 0.1
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At first sight the probability here is smaller than we might expect. There is
a probability of 0.4 that X ≥ 4 and a probability of 0.2 that Y ≥ 4. Yet the
probability that X + Y ≥ 8 is smaller than both these figures. This is a simple
example of the way that adding independent random variables tends to reduce
overall risk levels. �

The same kind of calculation can be made for more general random variables
taking integer values 1, 2, . . . , M , where we write pk = Pr(X = k) and qk =
Pr(Y = k). Then

Pr(X + Y ≥ z) = pz−M(qM) + pz−M+1(qM−1 + qM)

+ . . . + pM(qz−M + . . . + qM).

We need 2M ≥ z > M for this formula to hold (so that the subscript z − M is
in the range 1, 2, . . . , M).

We can translate this formula into an integral form for continuous random
variables. Suppose that X and Y are independent and the random variable X

has density function fX and CDF FX, while the random variable Y has density
function fY and CDF FY . To start with we suppose that both random variables
take values in the range [0,M]. As before, we take U = X + Y . Then

1 − FU(z) = Pr(X + Y ≥ z) =
∫ M

z−M

fX(x)(1 − FY (z − x))dx . (2.1)

Since fX is a probability density and integrates to 1, we have∫ M

z−M

fX(x)dx = 1 −
∫ z−M

0
fX(x)dx = 1 − FX(z − M).

So, Equation (2.1) can be written

1 − FU(z) = 1 − FX(z − M) −
∫ M

z−M

fX(x)FY (z − x)dx ,

and so

FU(z) = FX(z − M) +
∫ M

z−M

fX(x)FY (z − x)dx .

This is intuitively reasonable: the first term is the probability that X takes a value
so low that X + Y is guaranteed to be less than z.

There is an equivalent formula that applies when the variables do not have
finite ranges. This is like taking M infinitely large and we get

FU(z) =
∫ ∞

−∞
fX(x)FY (z − x)dx .

The integral here is called a convolution between the functions fX and FY .
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Worked Example 2.3 Failure and repair combination

Suppose that the time to the next breakdown of a piece of machinery is distributed
as an exponential distribution with mean 10 days. When the item fails it will
require repair, which will take anywhere between 0 and 20 days and the repair
time is equally likely to take any value in this range. Suppose that the repair
time is independent of the failure time. What is the probability that the item has
failed and already been repaired within 30 days? (You will need to use the fact
that the exponential distribution with mean λ has a CDF F(x) = 1 − e−x/λ).

Solution

We let Y = failure time. Then the CDF for Y is given by FY (x) = 1 − e−x/10.
We let X = repair time. Then the density for X is constant and given by fX(x) =
1/20 for x in the range 0 to 20. Thus, if U is the time till the repair of the first
failure, we have U = X + Y and we want to find the probability that U ≤ 30.
So we need to evaluate:

FU(30) =
∫ ∞

−∞
fX(x)FY (30 − x)dx .

Because fX(x) is zero unless x is in the range 0 to 20, we can take the integral
over this range and we get

FU(30) =
∫ 20

0
fX(x)FY (30 − x)dx

= 1

20

∫ 20

0

(
1 − e−(30−x)/10) dx .

Now e−(30−x)/10 = e−3ex/10 and ex/10 integrates to 10ex/10, so

FU(30) = 1

20

[
x − 10e−3ex/10]20

0

= 1

20

(
20 − 10e−3e2 + 10e−3)

= 1 − e−1

2
+ e−3

2
= 0.84095.

This is the probability we need: there is about a 16% chance that after 30 days
the item has either not yet failed or is still being repaired. �

It is often difficult to find mathematical expressions for the convolution inte-
grals that appear when adding distributions together. The equivalent formula if
we want to consider the sum of more than two variables is even harder. The
usual way to deal with these difficulties is to work with the moment generating
function of the distribution rather than the distribution itself. But to start to dis-
cuss moment generating functions will take us too far away from our main aim
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in this book. Instead we will introduce a different approach to evaluating risk in
a portfolio; we will give up something in terms of exact probabilities, but we
will make a big gain in terms of ease of evaluation.

Instead of looking at specific probabilities we look instead at the spread
of values, as measured by the standard deviation (or the variance). Again we
consider two independent random variables. Remember that when X and Y are
independent we can add their variances, i.e. for independent X and Y , the variance
of X + Y is the sum of the variances of X and Y , which we can write as

var(X + Y ) = var(X) + var(Y ).

The standard deviation of a random variable X, which we write as σX, is just
the square root of the variance, var(X), so when X and Y are independent,

σX+Y =
√

var(X) + var(Y ) =
√

σ 2
X + σ 2

Y .

We can extend this formula to any number of random variables. The simplest
case of all is where we have a set of random variables X1, X2, . . . , XN which
are all independent and also all have the same standard deviation, so we can
write

σX = σX1
= σX2

= . . . = σXN
.

Then

σX1+X2+...+XN
=

√
σ 2

X1
+ σ 2

X2
+ . . . + σ 2

XN
=

√
Nσ 2

X =
(√

N
)

σX.

This formula will obviously apply when all the variables have the same distri-
bution (automatically making their standard deviations equal). For example, the
individual random variables might be the demand for some product in successive
weeks, when we have no reason to expect changes in the average demand over
time. Then the standard deviation of the total demand over, say, 10 weeks is just
given by

√
10σ where σ is the standard deviation over a single week, provided

that demand in successive weeks is independent.
The key point to remember is:

The standard deviation of the sum of N identical independent random
variables is square root N times the standard deviation of one of the
random variables.

2.3.2 Portfolios with minimum variance

Now consider a situation where a portfolio is constructed from investing an
amount wi in a particular investment opportunity i, where i = 1, 2, . . . , N . We let
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Xi be the random variable giving the value of investment i at the end of the year.
So the value of the portfolio is

Z = w1X1 + w2X2 + . . . + wNXN.

We want to find the variance of Z, and again for simplicity we will suppose
not only that all the Xi are independent, but also that they all have the same
variance, σ 2

X (so σX is the standard deviation of Xi).
When a random variable is multiplied by w, the standard deviation is multi-

plied by w and the variance is multiplied by w2. So the variance of the value of
the entire portfolio is

var(Z) = var(w1X1) + var(w2X2) + . . . + var(wNXN)

= w2
1σ

2
X1

+ w2
2σ

2
X2

+ . . . + w2
Nσ 2

XN
= σ 2

X

(
w2

1 + w2
2 + . . . + w2

N

)
.

If we have a total amount W to invest and we split our investment equally (after
all, each investment opportunity has the same variance), then each wi = W/N

and
var(Z) = σ 2

XN(W/N)2 = (1/N)σ 2
XW 2.

We may want to minimize the standard deviation of the value of the portfolio
when the individual investments have different standard deviations. This will be
a good idea if there is no difference between the investments in terms of their
average performance. Perhaps the first thought we have is to put all of our money
into the best of the investment opportunities; in other words, put everything into
the single investment that has the smallest standard deviation. It will certainly
be sensible to invest more of our total wealth in investments with small standard
deviations, but the principle of diversification means that we can do better by
spreading our investment across more than one investment opportunity.

To illustrate the principle we can consider investing a total amount W in
one of two stocks which are independent of each other. We will suppose that
investing $1 in stock 1 gives a final value which is a random variable with mean
μ and standard deviation σ1. On the other hand, investing $1 in stock 2 gives
the same average final value μ, but with a standard deviation σ2. So, whatever
investment choice is made, the expected final value is μW . Then the problem of
minimizing the standard deviation can be written as an optimization problem

minimize
√

w2
1σ

2
1 + w2

2σ
2
2

subject to w1 + w2 = W,

w1 ≥ 0, w2 ≥ 0.

In this case, with just two investments, the problem has a simple geometrical

interpretation, since the expression
√

w2
1σ

2
1 + w2

2σ
2
2 gives the distance from a

point with coordinates (w1σ1, w2σ2) to the origin. Moreover, the constraints
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Wσ2

Wσ1

distance = (w1σ1)2 + (w2σ2)2 

(w1σ1,w2σ2) 

Figure 2.2 Choice of investment amounts to minimize standard deviation of
return.

imply that this point lies somewhere on the straight line between (Wσ1, 0) and
(0, Wσ2). These two endpoints correspond to what happens if we invest only in
one or other of the two options. All this is illustrated in Figure 2.2 for a case
with σ1 = 2σ2.

In the case shown in the figure (with σ1 = 2σ2) we can find the best choice
of weights simply by substituting w2 = W − w1, which means that the objective
is to minimize √

w2
14σ 2

2 + (
W − w1

)2
σ 2

2 .

We can use calculus to find the minimum of this expression, which occurs when
w1 = W/5 and w2 = 4W/5. The resulting standard deviation is√

4

25
W 2σ 2

2 + 16

25
W 2σ 2

2 =
√

20

5
Wσ2.

Worked Example 2.4 Minimizing variance with two investments

Andy has $100 000 to invest for three years and believes that investment in
US equities will deliver the same average returns as investment in an emerging
market fund. He wants to split his investment between a mutual fund investing
in US stocks, which he believes will, on average, deliver him $120 000 after
three years with a standard deviation of $4000; and an emerging market fund
that he believes will also deliver $120 000 after three years, but with a standard
deviation of $12 000. Assuming the returns in the two funds are independent,
how should he split his investment to minimize his risk?

Solution

We work in $1000s. Suppose Andy invests an amount x in the US fund and 100 −
x in the emerging market fund. His return after three years is xU + (100 − x)V ,
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where U is the return from the US fund and V is the return from the emerging
market fund. Thus, the expected return is

xE (U) + (100 − x)E(V ) = 120.

The variance of this return is

x2var(U) + (100 − x)2 var(V ) = 16x2 + 144(100 − x)2.

We want to choose x to minimize the square root of this, but the right choice of
x will also minimize the variance. To find the minimum we take the derivative
and set it equal to zero. So the optimal x is given by the solution to

32x − 288(100 − x) = 0.

Thus, x = 28800/320 = 90. Andy should invest $90 000 in the US fund and the
remaining $10 000 in the emerging market fund. �

We can also ask what happens with a large number of investment opportuni-
ties, so that the number N goes to infinity. We begin by thinking about the case
when all N stocks have the same standard deviation. We have already shown
that the standard deviation of the overall return when all the individual stocks
have standard deviation σX is given by

σX

√
w2

1 + w2
2 + . . . + w2

N.

This expression is minimized by splitting the investment of W equally, so that
wi = W/N for i = 1, 2 . . . N , giving a standard deviation of

σX

√
(W/N)2 + (W/N)2 + . . . + (W/N)2 = σX

W

N

√
N = σXW√

N
.

Hence, in the case of independent investments, as the number of different invest-
ments goes to infinity and the amount invested in each gets smaller and smaller,
the overall standard deviation goes to zero. And so the risk is also reduced to
zero.

We can establish that the same behavior occurs in the more general situation,
where stocks have different standard deviations (see Exercise 2.6). If none of
the standard deviations is more than σmax, then we can create a portfolio with
standard deviation less than Wσmax/

√
N . Again this expression approaches zero

as N gets larger and larger. Thus, we have established that there is really no upper
bound to the benefits of diversification. Provided we can find new investment
opportunities which are independent of our existing portfolio, and there is no
extra cost to investing in these, then we always reduce the risk by adding these
extra investments into our portfolio and rebalancing accordingly.
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2.3.3 Optimal portfolio theory

Now we will look at the case when different potential investments have different
expected profits as well as different variances. This is the foundation of what
is often called simply portfolio theory. When there are differences in expected
profit for individual investments, there will also be differences in the expected
profit for a portfolio and so we can no longer simply find the portfolio which
achieves the minimum standard deviation, we need to also consider the expected
return of the portfolio. This will mean a trade-off: greater diversification will
lead to less risk but will inevitably involve more of the lower return investments,
and along with this a reduction in the overall expected return.

To illustrate this idea, suppose that we have three potential investments: A, B

and C. We can explore the result of putting different weights on different com-
ponents within the portfolio, and end up with a set of possible trade-offs between
risk and return. Suppose that the expected profit from a $10 000 investment and
the standard deviations for A, B and C are as follows:

Expected profit Standard deviation
A RA = $1000 σA = 100
B RB = $950 σB = 80
C RC = $900 σC = 85

At first sight it may seem that investment C will not be used, since it is dominated
by investment B, which has a higher expected profit and at the same time a lower
risk (in the sense of a less variable return). But we will see that the advantage
of having one more investment in the portfolio may outweigh the fact that it is
an unattractive investment.

Consider the problem of finding the least risk way of achieving a given profit,
R. This can be written as an optimization problem:

minimize w2
Aσ 2

A + w2
Bσ 2

B + w2
Cσ 2

C

subject to wA + wB + wC = W,

wARA + wBRB + wCRC = R,

wA ≥ 0, wB ≥ 0, wC ≥ 0.

Here, wA, wB and wC are the sums invested, so W , the total amount, is set to
$10 000; RA, RB and RC are the expected profits obtained from investing $10 000
in the different investments; and σA, σB and σC are the standard deviations of
those profits. Notice that the objective we have chosen is to minimize the variance
of the overall profit return rather than the standard deviation. But as the standard
deviation is just the square root of the variance, whatever choice of weights
minimizes one will also minimize the other.

It is possible to write down a complex formula for the optimal solution to
this problem, but rather than do this we will just look at the numerical solution
to the problem with the particular data given above. Figure 2.3 shows what
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Figure 2.3 Profit versus standard deviation for random portfolios.

happens with a whole set of different random choices for the way that the total
investment is split up. This figure shows quite clearly the different trade-offs that
can be made: we can select a range of different overall standard deviations for
the portfolio down to a minimum of around 50 at an expected profit of about
$945.

We can look in more detail at the boundaries of the set of possible solutions.
If we just consider a combination of two investments then, when we plot the
expected profit against the standard deviation, we get a curved line joining the two
points. In this example there are three such curved lines depending on which pair
of the original investments we choose. These are the dashed lines in Figure 2.4.
The lightly shaded area is the set of all possible results from different portfolios.
The solid line is the boundary giving the minimum standard deviation that can
be achieved at any given value for overall expected profit. For example, the dot
at an expected profit of 960 and a standard deviation of 53.95 is the best possible
at this profit level and is achieved by making wA = 0.3924, wB = 0.4152 and
wC = 0.1924.

2.3.4 When risk follows a normal distribution

Our discussion of portfolio risk so far has simply looked at the standard deviations
for the overall profit (obtained from the sum of random variables). There is
a critical assumption about independence of the different investments, but no
assumption on the form of the distributions. When the distribution is known, then
we can say more about the risks involved, and in particular we can calculate the
probability of getting a result worse than some given benchmark level.

The most important distribution to look at is the normal distribution. Its
importance stems from the way that it approximates the result of adding together a
number of different random variables whatever their original distributions. This is
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Figure 2.4 Boundary of the region that can be achieved through a portfolio of
three investments.

the Central Limit Theorem discussed in Appendix A: Tutorial on probability
theory. At the same time, a normal distribution is easy to work with because the
sum of two or more random variables each with a normal distribution also has a
normal distribution. If the distribution of profit follows a normal distribution, we
can use tables or a spreadsheet to calculate any of the probabilities we might need.

Example 2.5 Probability calculation with two normal distributions

Consider an example where there are two independent investments, both having a
normal distribution for the profits after one year. The first has an expected profit of
$1000 with a standard deviation of $400 and the second has an expected profit of
$600 with a standard deviation of $200. If we hold both these investments, what is
the probability that we will lose money? Without information on the distribution
of the profit, this probability is not determined, but with the knowledge that the
profits follow a normal distribution it becomes easy to answer the question. The
sum of the two returns is also a normal distribution with mean of $1000 + $600 =
$1600 and, given that they are independent, the standard deviation is√

4002 + 2002 =
√

200 000 = 447.21.

The probability of getting a value less than $0 can be obtained from tables
(it’s the probability of being more than z standard deviations from the mean,
where z = 1600/447.21 = 3.5777) or, more simply, using the normdist
function in a spreadsheet. Specifically we have normdist(0, 1600, 447.21, 1) =
0.00017329. �
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2.4 The impact of correlation

We have discussed the way in which risk is reduced by diversification, but it
has to be genuine diversification. Things can go wrong if there is too close
a connection between different investments. To show what we mean, consider
an investor wishing to invest in German chemical stocks. Three examples of
these are: K+S AG, which is a major supplier of potash for fertilizer and also
the world’s biggest salt producer; Lanxess AG, which is a German specialty
chemicals group and was originally part of Bayer; and finally BASF SE, which
is the largest chemical company in the world. All these firms are part of the
German DAX stock index.

Figure 2.5 shows the weekly share price (sourced from Yahoo) for these three
stocks for a two-year period starting in 2010. It is not surprising that there is a
close connection between their share prices. Looking at the graphs, we can see
that they all climbed in value during the second half of 2011 and all fell quite
substantially in July 2012. Because their behavior over this period is quite similar,
the overall volatility of a share portfolio invested equally in these three stocks
would not be much less than investing in a single stock, so that diversification
would bring little benefit.

In fact, the main correlation here does not relate to the chemical industry,
but instead to overall movements in the German stock market, as shown by
Figure 2.6 which charts the behavior of the DAX Index over the same period.

In this section we want to look at the way that correlation between different
random variables will affect the behavior of their sum. This is a topic of great impor-
tance when assessing risk in practice but it is also best handled through some more
complex mathematical tools than we have used in the rest of this book (particularly
matrix algebra). So we will give a relatively broad brush treatment here.
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Figure 2.5 Three German chemical stocks: weekly prices in Euro.
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Figure 2.6 The DAX index over the period 2010–2011.

2.4.1 Using covariance in combining random variables

Figure 2.7 shows the monthly average prices over a 20-year period, starting in
1980, for lead and copper on the London metal exchange. It happens that the
prices for these two commodities at the end of this period in December 1999 were
not much greater than in January 1980. Suppose that we know that in a year’s
time we will need to purchase an amount of both lead and copper. The risk is
related to the total purchase price. Following our previous argument, if the two
commodity prices are independent then the risk associated with the combined
purchase is reduced in comparison with purchasing just one of the commodities,
since high prices for one commodity may well be balanced out by low prices
for the other. But the scatter plot of Figure 2.7 shows that there is quite a high
degree of correlation between these variables, and so the beneficial effect of
diversification is reduced.

To make the discussion specific, suppose that we are interested in a combined
price for 1 ton of copper and 2 tons of lead (which is cheaper). A good way to
think about this is to recognize that the points which have the same value of
X + 2Y all lie on a straight line drawn in the (X, Y ) plane. So if we looked at
the monthly price for the purchase of 1 ton of copper and 2 tons of lead then
the cost is the same at 1900 GBP if either (A) copper is 1500 GBP and lead is
200 GBP, or (B) copper is 500 GBP and lead is 700 GBP. And the same is true
for any point on the straight line between these two points. Figure 2.8 has the
price combinations (A) and (B) marked, and shows dashed lines for sets of price
combinations that lead to the same overall price for this purchase. The effect is
to project down onto the solid line all the different monthly combinations. The
choice of solid line does not matter here: usually a projection means a mapping
onto a line which is at right angles to the dashed contour lines of equal overall
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Figure 2.7 Lead and copper prices from 1980 to 2000.
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Figure 2.8 Price distribution for 1 ton of copper and 2 tons of lead.

price, but in this case some other choice of straight line just leads to a linear
scaling of the results.

The right-hand side of Figure 2.8 shows how the price of 1 ton of copper and
2 tons of lead varies over time together with the frequency histogram for these
prices. Notice how spread out this distribution is: the variance is high and the
distribution itself does not have the nice shape of a normal distribution.

It is the covariance that measures the extent to which these two data series are
correlated. Positive values of the covariance correspond to a positive correlation,
and the covariance will be zero if the two variables are independent. Remember
that the covariance between random variables X and Y is

cov(X, Y ) = E(XY ) − E(X)E(Y ).
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If we are interested in understanding the properties of a portfolio with weights wX

and wY then we can use the covariance between X and Y to get the variance of
the portfolio (for more details about the formula here, see Appendix A: Tutorial
on probability theory).

var(wXX + wY Y) = w2
X var(X) + w2

Y var(Y ) + 2wXwY cov(X, Y ).

We can see how this works out for the lead and copper price example. The
copper price has mean $1231.16 and standard deviation $312.40 (implying a
variance of 97 590.80). The lead price has mean $350.99 and standard deviation
$69.65 (implying a variance of 4851.55). The two sets of prices are positively cor-
related with a covariance 11 281.00. Thus, the formula implies that the variance
of the combination 1 ton of copper and 2 tons of lead is

97 590.80 + 4 × 4 851.55 + 4 × 11 281.00 = 162 121.00,

giving a standard deviation of $402.64. If the two prices had been independent,
then the third term would not appear and the overall standard deviation would
have been $342.05.

2.4.2 Minimum variance portfolio with covariance

We can switch focus from thinking about the distribution of values for a particular
combination purchase to deciding how we might invest if we had a choice of
portfolios over assets with a correlated behavior. Suppose that the initial prices
are X0 and Y0 and we will sell after one year at prices which are X and Y . How
should we split our available investment sum W? The decision here will depend
on the relationship between the purchase prices X0 and Y0 and the expected values
for X and Y . In order to eliminate the question of different relative returns, let
us assume that μX, the mean value of X, is a certain multiple of X0, and μY ,
the mean value of Y , is the same multiple of Y0, so μX = kX0 and μY = kY0.
Thus, the expected result from this investment after one year is that the initial
investment is multiplied by k, no matter how we split the investment between
X and Y . In this situation it makes sense to invest in a way that minimizes the
variance of the return. Given a purchase of wX units of asset X then we have a
remaining W − wXX0 to invest. This means that we can purchase wY units of
asset Y where

wY = (W − wXX0)/Y0.

Then the variance of the portfolio is

w2
X var(X) + (W − wXX0)

2 var(Y )/Y 2
0 + 2wX(W − wXX0) cov(X, Y )/Y0,

which (using calculus) we can show is minimized when

2wX var(X) − 2X0(W − wXX0) var(Y )/Y 2
0

+ (−2X0wX + 2(W − wXX0)
)

cov(X, Y )/Y0 = 0.
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Simplifying we get

wX var(X) − X0(W − wXX0) var(Y )/Y 2
0 + (W − 2wXX0) cov(X, Y )/Y0 = 0,

and we can solve this to find the wX that minimizes the variance:

wX =
(

W

Y0

)
(X0/Y0) var(Y ) − cov(X, Y )

var(X) + (X2
0/Y 2

0 ) var(Y ) − 2(X0/Y0) cov(X, Y )
.

Example 2.6 Optimal portfolio weights with covariance

We look again at the example of lead and copper prices. Suppose that we have
$1000 to invest, and the current prices of lead and copper are at their average
for the 20-year period shown in Figure 2.7, so X0 (for copper) is $1231.16 and
Y0 (for lead) is $350.99. Let α = X0/Y0 = 3.51. Then we get that the optimal
weight of the portfolio in copper is given by

wcopper =
(

W

Y0

)
α var(lead) − cov(copper, lead)

var(copper) + α2 var(lead) − 2α cov(copper, lead)

=
(

1000

350.99

)
3.51 × 4851.55 − 11 281.00

97 590.80 + (3.51)2 × 4851.55 − 2 × 3.51 × 11 281.00

= 0.2095,

wlead = W − wcopperμcopper

μlead
= 1000 − 0.2095 × 1231.16

350.99
= 2.1142,

with expenditure of 0.2095 × 1231.16 = $257.93 on copper and 2.1142 ×
350.99 = $742.06 on lead (this is one cent less than $1000 which has disappeared
in the rounding of these calculations). �

The result of this calculation may give a negative value for one of the weights
wX or wY . This would imply a benefit from selling one commodity in order to buy
more of the other. The process to do this may well be available in the marketplace:
in the language of finance this amounts to going short on one commodity and long
on another. However, we will not pursue the idea here.

We have seen how a positive correlation between two investments reduces
the diversification benefits on risk if both investments are held. Exactly the same
thing takes place with more than two investments.

2.4.3 The maximum of variables that are positively correlated

Now we consider the other scenario in which the maximum value of two ran-
dom variables is of interest (rather than their sum) and we ask how a positive
correlation will impact on this measure. The probability of both X and Y being
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Figure 2.9 How does correlation affect the risk for the maximum of zinc and
copper prices?

less than z is given by FX(z) × FY (z) if the two variables are independent. The
probability will be more than this if they are positively correlated, since a low
value for one tends to happen at the same time as a low value for the other.
Hence, if we define U = max(X, Y ) then

FU(z) = Pr(max(X, Y ) < z)

> FX(z) × FY (z).

We can look at this in the other direction and say that the probability of U being
more than a given value is reduced when X and Y are positively correlated.

To see what this looks like for a specific example, we consider the behavior of
zinc and copper prices shown in Figure 2.9. Again this shows monthly prices over
the 20-year period starting in January 1980. There are 51 occasions out of 240 in
which the copper price is greater than $1500 per ton and 24 occasions in which
the zinc price is greater. So (approximately) Fcopper(1500) = 189/240 = 0.7875
and Fzinc(1500) = 216/240 = 0.9. If these were independent then FU(1500) =
0.9 × 0.7875 = 0.709 and we would expect 0.709 × 240 = 170 occasions when
the maximum of the two prices is below 1500 and 70 when it is greater than
1500. In fact there are only three occasions when the price of zinc is higher
than 1500 and copper is not, meaning a total of 51 + 3 = 54 occasions when
the maximum of the two is greater than 1500 (much less than the 70 we might
expect with independence). Thus, in this case the correlation between the two
prices has reduced the risk that the maximum is very high, which is the opposite
of what happens when looking at a sum (or average) of prices.
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2.4.4 Multivariate normal

If different quantities are not independent then detailed calculation of the prob-
ability of a high value, either for the sum or the maximum, will not be possible
unless we know more than just their covariance. One model we can look at is the
multivariate normal. Just as we can calculate exact probabilities from the mean
and standard deviations alone when the underlying risk distribution is normal,
we can do the same thing when the combined distribution is multivariate nor-
mal provided we know the means, standard deviations and covariances. A more
detailed discussion of this would involve looking at N-dimensional problems but
all the important ideas can be understood by just looking at two-dimensional or
bivariate distributions, and so we concentrate on this case, which also means we
can easily plot what is going on. A multivariate normal distribution is shown in
Figures 2.10 and 2.11. These show the density function giving the relative proba-
bilities of different combinations of the two variables X and Y , together with the
contours of this. The rules for a multivariate density function are just the same as
for a univariate one – to calculate the probability of the (X, Y ) pair being in any
region of the (X, Y ) plane, we just integrate the density function over that region.

The formula for a two-dimensional multivariate normal density function is

f (x, y) = K exp

(
− 1

2(1 − ρ2)

((
x − μX

σX

)2

+
(

y − μY

σY

)2

−2ρ(x − μX)(y − μY )

σXσY

))
,
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Figure 2.10 Density function for a bivariate normal distribution.
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Figure 2.11 Contours of the density of the bivariate normal distribution.

where

K = 1

2πσXσY

√
1 − ρ2

and ρ = cov(X, Y )

σXσY

(K is a normalizing constant and ρ is the correlation between X and Y ). The
figures show an example with μX = μY = 10, σX = 3, σY = 2 and ρ = 0.5. The
contours in Figure 2.11 are all ellipses.

One of the most important properties of a multivariate normal is that any
linear combination of the variables also has a multivariate normal distribution. It
is easy to imagine that any vertical straight slice through the density function of
Figure 2.10 would give a bell-shaped normal distribution curve. But this property
is saying something a little different, since it involves the kind of projection down
onto a straight line that we described in Figure 2.8.

Example 2.7 Children’s shoes and linear combinations of values

Consider a children’s shoe manufacturer interested in the distribution of chil-
dren’s foot sizes (widths and lengths). Table 2.2 gives the data collected for 20
fourth grade boys.1

Figure 2.12 shows a scatter plot of the data from Table 2.2. We find that the
mean length is 23.105 (sample standard deviation = 1.217) and the mean width
is 9.19 (sample standard deviation = 0.452). The covariance is 0.299. If we fit
a multivariate normal then we expect that the distribution of any combination of
height and width is also normal. For example, (Length) + 2 × (Width) should
have a normal distribution with mean 23.105 + 2 × 9.19 = 41.485. Writing L

and W for the two random variables, the variance of L + 2W is

var(L) + 4 var(W) + 4 cov(L,W) = 1.2172 + 4 × 0.4522 + 4 × 0.299 = 3.494,

1 Data are taken from kidsfeet.dat at http://www.amstat.org/publications/jse/jse_data_archive.htm

http://www.amstat.org/publications/jse/jse_data_archive.htm
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Table 2.2 Data on children’s foot sizes.

length width length width length width length width

20.9 8.8 22.4 8.4 23.1 8.9 24.1 9.6
21.6 9.0 22.4 8.6 23.2 9.8 24.1 9.1
21.9 9.3 22.5 9.7 23.4 8.8 25.0 9.8
22.0 9.2 22.7 8.6 23.5 9.5 25.1 9.4
22.2 8.9 22.8 8.9 23.7 9.7 25.5 9.8
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Figure 2.12 Data on foot sizes for 20 fourth grade boys.

giving a standard deviation of
√

3.494 = 1.869. From this we can calculate the
probability of getting different ranges of values for this linear combination. For
example, suppose that we wish to estimate the probability that an individual
has an L + 2W value greater than 44cm. This corresponds to the dashed line
in Figure 2.12. The z value is (44 − 41.485)/1.869 = 1.346. Under the nor-
mal assumption this would imply a probability of 1 − 	(1.346) = 1 − 0.9108 =
0.0892 of achieving this value. Here, 	 is the cumulative distribution function for
the standard N(0, 1) normal distribution. Given 20 observations this would lead
us to expect around 1.8 individuals with this characteristic. In fact, we observe
two individuals – very much in line with our prediction. �

The value of an explicit model is that it can help us to make predictions
about the likelihood of events we have only occasionally (or never) observed.
For example, in the children’s shoes example we can estimate the probability of
having an individual where the composite score is more than 45.5, which does
not occur in this group of 20. However, we should be cautious in extrapolating
beyond the data we have observed, and it is possible that the approximation of
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a multivariate normal fails as a predictor for more extreme results. We shall say
more in Chapter 4 about modeling the tails of distributions.

Worked Example 2.8 One variable more than x times higher than the other

We return to the copper–lead example of Figure 2.7. We already know that for
these data the copper price has mean $1231.16 and standard deviation $312.40;
the lead price has mean $350.99 and standard deviation $69.65 and the two
prices have a covariance 11 281.00. Suppose that the distribution is a multivariate
normal. What is the probability that the copper price is more than five times as
high as the lead price?

Solution

Write X for the copper price and Y for the lead price. We want to find the
probability that X > 5Y . Thus, if we let W = X − 5Y we want the probability
that W > 0. Given the multivariate normal assumption, W is a normal random
variable with mean and variance as follows:

E(W) = E(X) − 5E(Y )

= 1231.16 − 5 × 350.99 = −523.8,

var(W) = var(X) + 25 var(Y ) − 10 cov(X, Y )

= (312.40)2 + 25(69.65)2 − 11 2810 = 106 062.

This gives a standard deviation for W of
√

106 062 = 325.7. With this mean the
probability of being greater than 0 is given by 1 − 	(523.8/325.7) = 0.0539. In
the data there are 7 out of 240 data points for which the inequality holds, giving
an empirical probability of 0.029, rather less than the multivariate normal model
predicts. �

2.5 Using copulas to model multivariate distributions

On many occasions the multivariate normal is not a good approximation for the
dependence between two or more variables and we need to look for a more
flexible model. A good choice is to use copula models, which are a relatively
modern development in probability theory. We will talk about a two-dimensional
copula describing the joint behavior of variables X and Y , but the same ideas
can be applied to multivariate models with three or more variables. The idea is
to look at the distribution over values (x, y) expressed in terms of the positions
of x and y within the distributions for X and Y respectively. This gives a way
of distinguishing between what is happening as a result of the distribution of the
underlying variables X and Y , and what is happening as a result of the dependence
of one variable on the other. This means that we can, if we wish, apply the same
copula model for different distributions of the underlying variables.
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We begin by looking again at the data on lead and copper prices. Rather than
look at the scatter plot of Figure 2.7 we will plot the points with their rank ordering
for copper price on the horizontal axis and the rank ordering for lead price on the
vertical axis. There are 240 points and we scale the ranks by dividing by 240, so
that the scale is between 0 and 1. Thus, the lowest copper price has an x value of
1/240 and the highest copper price translates to 240/240 = 1 (and the same with
lead prices). The result is shown in Figure 2.13, and this kind of scatter diagram is
called an empirical copula plot.

Figure 2.13 shows some features of the data more clearly than the basic scatter
plot of Figure 2.7. In this diagram we can see that the dependence between prices
is stronger at the higher end than it is at the lower end. For example, we can see
that a copper price that is in the top 10% corresponds to a lead price that is in
the top 40% (roughly) of possible values. On the other hand, knowing that the
copper price is in the bottom 10% of possible values implies much less: that the
lead price is in the bottom 70% (roughly) of possible values.

The empirical copula scatter diagram is really a sample from the underlying
copula, which is a way of describing the dependence between two variables. The
copula density is the underlying function which gives the relative probabilities of
different points occurring in the (0, 1) × (0, 1) square. We might expect this copula
density to be smooth and well-behaved, but we will make deductions on the basis
of a sample from it. It is helpful to think of a copula as part of a decomposition of a
bivariate distribution. The idea is to take the overall distribution of the two values
together and split this up by looking at the distribution of each value separately;
often these are called the marginal distributions. The copula describes the way that
the two marginal distributions are put together into the overall distribution.
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Figure 2.13 An empirical copula plot of copper and lead prices for 20 years
from 1980.
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Figure 2.14 Decomposition using a copula. Sample for x first, then sample from
the copula to get u2, from which y is deduced.

If we have the two marginal distributions (say, for copper and lead prices)
and the copula function that links them, then the process to generate a sample
for the full bivariate distribution is illustrated in Figure 2.14. We take a sample,
x, from the copper distribution according to its marginal distribution. Suppose
this has a proportion u1 of the distribution below it, then we look at the copula
density on a vertical line through the point u1 on the horizontal axis and use this
density to sample a point u2. This gives the proportion of lead prices below our
required sample point and can be converted to a lead price y. The (x, y) pair
then has the correct joint distribution.

The important thing about copulas is that they can indicate when dependence
may increase. They are flexible enough to deal differently with the tails of the
distribution than with the central parts. A good question to ask when dealing with
multivariate data that include some correlation is whether the correlation will be
greater or less at extreme values. This may be a question which is easier to ask
than to answer, but giving it attention will at least ensure that we avoid some
important risk management pitfalls. For example, if two variables are weakly
correlated with a covariance close to 0, then we might be tempted to conclude
that the diversification effect will imply a substantially reduced risk for their
average value (e.g. a portfolio split equally between them) than either on its own.
This is usually a correct deduction, but it will fail if the correlation between them
is very low except at points where they take extremely large values, when they
become closely correlated. In this case the risk of their average becoming very
large will be close to the risk of an individual variable becoming large, and the
diversification benefits we might expect will not occur.

The problem with making statements about correlation in the tails is that these
are events we rarely see, and so there is unlikely to be much historical evidence to
guide us. It is worth thinking about the underlying reasons for very large values in
one or other of the variables. For example, consider the relationship between two
stocks both traded in the New York stock exchange, let’s say Amazon and Ford.
They are both affected by market sentiment and by general economic conditions,
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and this will lead to correlation between their prices. But will this correlation
be amplified when one of them falls sharply? For example, does knowing that
Amazon’s share price has fallen by 30% in one day give correspondingly more
information about Ford’s share price than knowing that Amazon’s share price
has fallen by 15%? Perhaps a sudden price drop of 30% in a day is most likely to
arise from very specific factors (like an earnings announcement) and less likely
to relate to general factors (like a market collapse) that would tend to lead to a
drop in Ford’s share price too. Whichever way round this is, copulas give us a
way to model what is going on.

Now we return to our discussion at the start of this chapter about the failure
of diversification to protect investors during the crisis of 2008. We can view this
as a sudden increase in correlation as losses mounted. The implication is that
the covariance dependence between different asset prices may not be symmetric
between gains and losses. If Wall Street moves up by a large amount, the cor-
responding effect on the London stock market may be less than if Wall Street
falls sharply. There is good empirical evidence to support exactly this behavior.
A cynic might say that fear is an even more contagious emotion than greed, but
whatever the mechanism, it is clear from a number of empirical studies that these
asymmetries exist. The copula approach is a good way to make this explicit, for
example through the use of a model for losses with upper tail dependence, but
no lower tail dependence.

The next section gives a more detailed discussion of the mathematics that
lies behind copula modeling.

2.5.1 *Details on copula modeling

A copula density c(u1, u2)is a density defined on the unit square 0 ≤ u1 ≤ 1,
0 ≤ u2 ≤ 1, with the property that the resulting (marginal) distribution for u1 is
uniform on [0, 1], and the distribution for u2 is also uniform on [0, 1]. We can
write these conditions as∫ 1

0
c(u, u2)du = 1, for each u2 in [0, 1],

∫ 1

0
c(u1, u)du = 1, for each u1 in [0, 1].

The simplest way to make these conditions hold is to make the copula density
uniform on the unit square, so that c(u1, u2) = 1 for every u1 and u2.

Before we talk about different examples of copula densities and how they
relate to different kinds of dependence we need to show how to convert a copula
density and the information on the underlying distributions into a distribution for
the multivariate distribution as a whole. To do this we will change from densities
(which are easier to visualize) into cumulative distribution functions (which are
easier to work with). So we define a copula (really a cumulative copula distri-
bution) as the distribution function C(u1, u2) obtained from the copula density
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function c(u1, u2). So C(v1, v2) is the probability that both u1 ≤ v1 and u2 ≤ v2
when (u1, u2) has density function c, or, more formally,

C(v1, v2) =
∫ v1

0

(∫ v2

0
c(u1, u2)du1

)
du2.

Then the cumulative distribution for the multivariate distribution is obtained from
the copula C and the underlying distribution functions FX and FY for X and Y

through the fundamental copula equation:

Pr(X ≤ x and Y ≤ y) = C(FX(x), FY (y)). (2.2)

In words, we take x and y and convert them into quantiles for the appropriate
distributions, F(x) and F(y), and then use the copula function to determine the
probability of being in the rectangle with (x, y) at its top-right corner.

To illustrate how this works, let’s go back to the uniform copula density:
c(u1, u2) = 1. This can be converted into a copula

C(v1, v2) =
∫ v1

0

(∫ v2

0
du1

)
du2 = v1v2,

which is in product form. Then, from Equation (2.2), we have

Pr(X ≤ x and Y ≤ y) = FX(x)FY (y) = Pr(X ≤ x) Pr(Y ≤ y).

This is exactly the formula for the probability if the two variables are independent.
From this observation we get the result that a uniform copula density (or product
form copula) is equivalent to the variables being independent.

We can also move from a copula back to its density by taking derivatives;
more precisely we have

c(v1, v2) = ∂2C(v1, v2)/∂v1∂v2.

Taking derivatives with respect to x and y of Equation (2.2) we obtain the
formula

f (x, y) = ∂2

∂x∂y
C(FX(x), FY (y)) = c(FX(x), FY (y))fX(x)fY (y),

where f is the joint density over X and Y and fX, fY are the individual density
functions. We can rewrite this as

c(FX(x), FY (y)) = f (x, y)

fX(x)fY (y)
. (2.3)

The formula here shows how the copula density is obtained from the usual density
function f by squeezing it up at places where X and Y have low probabilities
and spreading it out at places where X and Y have high probabilities.
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Using copulas rather than copula densities makes it easier to handle some of
the equations, but we need to check three properties we require of the copula in
order to match the properties of the copula density:

• Increasing in each variable: C is non-decreasing in each variable, so if
0 ≤ a1 ≤ b1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ 1 then

C(a1, a2) ≤ C(b1, b2).

• The rectangle inequality: If 0 ≤ a1 ≤ b1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ 1 then the
probability of being in the rectangle [a1, b1] × [a2, b2] can be obtained by
looking at the right combination of the four possible rectangles with a
corner at 0. For c to be a density this must be non-negative and we derive
the inequality

C(a1, a2) + C (b1, b2) − C(a1, b2) − C(b1, a2) ≥ 0.

• Uniform marginal distribution: Notice that C(v, 1) is simply the probability
that u1 is less than v, and similarly C(1, v) is simply the probability that
u2 is less than v. So the condition that the distributions of both u1 and u2
are uniform becomes: C(1, v) = C(v, 1) = v for all 0 ≤ v ≤ 1.

At first sight it might seem as though the rectangle inequality might follow
from the fact that the copula is increasing in each variable, but this is not the
case (see Exercise 2.10).

An important copula is that which represents the dependence behavior occur-
ring in a multivariate normal, and this is called the Gaussian copula. The copula
density is related to the density for the multivariate normal but each component
is scaled to ensure that the marginals are uniform. We begin by doing the cal-
culations working with the (cumulative) copula functions. From the fundamental
copula equation and the density function for the multivariate normal with corre-
lation ρ and with each variable having zero mean and standard deviation of 1,

we have

C(FX(x), FY (y))

= C(	(x), 	(y)) = Pr(X ≤ x and Y ≤ y)

= 1

2π
√

1 − ρ2

∫ x

−∞

(∫ y

−∞
exp

(
− 1

2(1 − ρ2)

(
s2

1 + s2
2 − 2ρs1s2

))
ds1

)
ds2.

Here we have used the usual notation in which 	(x) is written for the cumulative
normal distribution function with mean zero and standard deviation 1. The inte-
grand comes from the multivariate normal with μX = μY = 0 and σX = σY = 1.
To obtain a formula for C(v1, v2) we want to substitute values of x and y for
which FX(x) = v1 and FY (y) = v2. So we set x = 	−1(v1) and y = 	−1(v2) to
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obtain

C(v1, v2) = 1

2π
√

1 − ρ2

∫ 	−1(v1)

−∞

×
(∫ 	−1(v2)

−∞
exp

(
− 1

2(1 − ρ2)

(
s2

1 + s2
2 − 2ρs1s2

))
ds1

)
ds2.

The equivalent formula for the copula density from Equation (2.3) is

c(FX(x), FY (y)) =
1

2π
√

1−ρ2
exp

(
− 1

2(1−ρ2)

(
x2 + y2 − 2ρxy

))
1√
2π

exp
(− 1

2x2
) 1√

2π
exp

(− 1
2y2

)
= 1√

1 − ρ2
exp

(
1

2
x2 + 1

2
y2 − 1

2(1 − ρ2)

(
x2 + y2 − 2ρxy

))

= 1√
1 − ρ2

exp

(
− 1

2(1 − ρ2)

(
ρ2x2 + ρ2y2 − 2ρxy

))
.

And hence

c(v1, v2) = 1√
1 − ρ2

× exp

(
− 1

2(1 − ρ2)

(
ρ2	−1(v1)

2 + ρ2	−1(v2)
2 − 2ρ	−1(v1)	

−1(v2)
))

.

There are versions of this formula for a higher number of variables. It has
become somewhat infamous since the use of Gaussian copulas as a standard
approach in measuring risk was blamed in some quarters for the failures of Wall
Street ‘quants’ in predicting the high systemic risks in CDOs that in turn kicked
off the financial crisis of 2008. In 2009 the Financial Times carried an article
discussing the use of Gaussian copula models titled ‘The formula that felled Wall
Street’ (The Financial Times, S. Jones, April 24, 2009.)

To help in understanding the Gaussian copula formula we really need to plot
it, and it is most useful to plot the copula density function. This is simply a
function defined over the unit square and is shown in Figure 2.15.

In this figure the corners (0, 0) and (1, 1) represent what happens to the
relationship when both variables are very large and positive or very large and
negative. The existence of correlation pushes these corners up and the opposite
corners (0, 1) and (1, 0) are pushed down. Remember there is a restriction on
the densities integrating to 1 along a line in which one or other variable is held
constant, so the lifting of one corner can be seen as balancing the pushing down
of an adjacent corner. When ρ = 0 the multivariate normal has circular contours,
and the variables are independent – as we said earlier, this means a flat copula



56 BUSINESS RISK MANAGEMENT

density at value 1 (which serves as a reminder that the copula abstracts away
from the distributions of the underlying variables).

There are many different copula formulas that have been proposed. One
example is the Clayton copula given, for two variables, by the formula:

Cθ(v1, v2) =
(

1

vθ
1

+ 1

vθ
2

− 1

)− 1
θ

,

where θ is a parameter that can take any value strictly greater than zero (we can
also make this formula work when θ is strictly less than zero and greater than
−1). Figure 2.16 shows what this copula looks like when θ = 2. The copula
density is then

cθ (v1, v2) = 3

v3
1v

3
2

(
1

v2
1

+ 1

v2
2

− 1

)− 5
2

.

In the figure, the peak at (0, 0) shows a very tight correlation between the values
that occur in the lower tails of the two underlying distributions. In fact, this peak
has been cut off at a value of 8 for the purposes of drawing it.

There is another approach we can take to the way that random variables
become highly correlated at extreme values and this is to measure tail dependence
directly. We know that independence means that information on one variable does
not convey anything about the other. So we could say that the probability of X

being in the upper decile (i.e. X taking a value where FX(X) > 0.9) is unchanged
(at exactly 0.1) even if we also know that Y is also in its upper decile. Thus,
with independence

Pr(X > F−1
X (0.9)|Y > F−1

Y (0.9)) = Pr(X > F−1
X (0.9)) = 0.1.

Letting the 0.9 in this expression tend to 1 would make the limit of the conditional
probability zero. However, if the variables are not independent, and there is a
strong relationship between the variables at the extremes, then this limit will
be greater than zero. Notice also that we can rewrite this type of conditional
probability as follows (using Bayes’ formula) as

Pr(X > F−1
X (α)|Y > F−1

X (α)) = Pr(X > F−1
X (α) and Y > F−1

X (α))

Pr(Y > F−1
Y (α))

= Pr(X > F−1
X (α) and Y > F−1

X (α))

(1 − α)
.

This motivates us to define a coefficient of upper tail dependence through

λu = lim
α→1

Pr(X > F−1
X (α)|Y > F−1

X (α))

= lim
α→1

Pr(X > F−1
X (α) and Y > F−1

X (α))

(1 − α)
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and a corresponding coefficient of lower tail dependence as

λ� = lim
α→1

Pr(X ≤ F−1
X (α)|Y ≤ F−1

X (α))

= lim
α→0

Pr(X ≤ F−1
X (α) and Y ≤ F−1

X (α))

α
.

We say that X and Y have upper tail dependence if λu > 0, and that there
is no upper tail dependence if λu = 0. The same definitions work for lower tail
dependence using λ� instead of λu. We can convert this into a statement about
the copula functions, since λ� = lim

α→0
(C(α, α)/α).

The existence of tail dependence is quite a strong property, and certainly
is much stronger than saying that at high (or low) values the variables fail an
independence test. If there is tail dependence then the copula density will go to
infinity at the appropriate corner. We will not prove this in a formal way, but we
can observe that with lower tail dependence, the definition of λ� implies that in
the limit of small α then C(α, α) 
 αλ�. But at this limit C(α, α) 
 α2c(α, α),
so we have c(α, α) 
 λ�/α. As α goes to zero, the left-hand side approaches
c(0, 0) and the right-hand side goes to infinity unless λ� = 0. Hence, we can
deduce that c(x, y) → ∞ when x, y → 0 and λ� > 0. A similar argument can
be made in the case of upper tail dependence.

So, in two-dimensional cases we can look at a plot of the copula density and
get a good idea of whether there is tail dependence. Figure 2.15 suggests that
there is neither upper nor lower tail dependence for the Gaussian copula for this
value of ρ, and from Figure 2.16 we see there is no upper tail dependence for
the Clayton copula. However, there seems to be a lower tail dependence for this
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Figure 2.15 Gaussian copula density with ρ = 0.25.
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Figure 2.16 Clayton copula density for θ = 2.

copula, and we can confirm this since, for the Clayton copula,

C(α, α)/α = (1/α)

(
1

αθ
+ 1

αθ
− 1

)− 1
θ

= (
αθ

)− 1
θ

(
2

αθ
− 1

)− 1
θ

= (
2 − αθ

)− 1
θ = 1(

2 − αθ
) 1

θ

.

Thus

λ� = lim
α→0

1(
2 − αθ

) 1
θ

= 1

2
1
θ

> 0.

Notes

The historical introduction to probability has drawn extensively from the book
Against the Gods: The Remarkable Story of Risk by Peter Bernstein. This is the
source for the Paccioli quote at the start of this chapter, and Bernstein gives
a fascinating description of the entire history of scientists’ struggle to find the
right framework to deal with risk. The quote from Jakob Bernoulli is taken from
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Oscar Sheynin’s translation of his work: The Art of Conjecturing; Part Four,
Showing the Use and Application of the Previous Doctrine to Civil, Moral and
Economic Affairs.

Our discussion of optimal portfolio theory in this chapter is very brief.
An excellent and much more comprehensive treatment is given by Luenberger
(1998). The theory was originally developed by Harry Markowitz and first
published in a 1952 paper; in 1990 Markowitz received a Nobel prize in
Economics for his work.

A straightforward introduction to copulas is given by Schmidt (2006). Also
the book by McNeil et al. (2005) gives a thorough discussion of the topic. The
observations we make about the increase in correlation when markets move
downwards are well known, for example see Ang and Chen (2002) or Chua
et al. (2009).
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Exercises

2.1 Problem of the points

Calculate a fair division of the stake in the ‘Problem of the points’
described in Section 2.1 if we assume that the current record of suc-
cess of A against B is an accurate forecast of the probability of winning
future games.

2.2 Changing a daily failure rate into a yearly one

A taxi is in use seven days a week. Suppose that the probability that the
taxi suffers a mechanical fault on any given day is 0.001 and this stays
constant over time.

(a) Find the expected number of failures in a year (of 365 days).

(b) Assuming the failures on different days are independent, find the prob-
ability of a failure at least once during the course of 365 days (and
show that this probability is less than 0.365).

2.3 Late for the class

James needs to get to his class on time, which means arriving at the
university by 10 am. The options are to take the number 12 bus, which
takes 40 minutes, or the number 15, which takes 30 minutes, or the express
bus, which takes 20 minutes. Arriving at the bus stop at 9.15 am, what
is the probability that he will be at his class on time if the number 12 is
equally likely to arrive at any time between 9.10 and 9.30, if the number
15 bus is equally likely to arrive at any time between 9.20 and 9.40
and there are two possible express services James may catch: the first is
equally likely to arrive at any time between 9.05 and 9.20 and the second
is equally likely to arrive at any time between 9.35 and 9.50? Assume that
all the buses have arrival times that are independent.

2.4 Combining union and intersection risk

A building project is running late, and if it is more than four weeks late
an alternative venue will need to be found for an event planned in the new
building. There is a 20% chance of poor weather causing a delay by three
weeks, and there is a 10% chance of late delivery of a critical component
that would lead to a delay of between two weeks and four weeks, on top
of any weather-related delay. The construction involves some excavation
of a drain line in an area of some archaeological interest. Archaeologists
are at work and there is a small (5%) chance that significant finds will be
made that force a delay of around two months.

(a) Use a Venn diagram to show the events that will lead to a delay of
more than four weeks.
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(b) Assuming that all three events are independent, calculate the proba-
bility of more than four weeks’ delay.

2.5 Probability for maximum from empirical distribution

You have observed the rainfall amounts on all days in April over the last
three years. There are 90 data points and the largest 10 are as follows
(in mm): 305, 320, 325, 333, 340, 342, 351, 370, 397, 420. Assuming
that rainfall on successive days is independent, use the empirical data to
estimate the probability that the maximum daily rainfall during a five-day
period next year is less than 350 mm (i.e. rainfall is less than 350 mm on
each of the five days).

2.6 Portfolios with large numbers and different variances

There are N independent stock returns Xi , and σi is the standard deviation
of Xi . If σmax is an upper bound on the size of any σi show that by investing
an amount W in a way that gives stock i a weight proportional to 1/σi ,
then the overall standard deviation of the portfolio is less than Wσmax/

√
N ,

and this expression approaches zero as N gets larger and larger.

2.7 Optimal portfolio

There are three stocks to invest in: A, B and C. In one year the expected
increases in price are: 10% for stock A, 15% for stock B, and 5% for
stock C. The standard deviations of these numbers are 2% for A and B
and 1% for C. In other words, if X is the random variable giving the
increase in value for A measured in %, then the standard deviation of
X is 2. If the returns are all independent, what is the minimum variance
portfolio that achieves a 10% return? (Use a spreadsheet and ‘Solver’ for
this calculation).

2.8 Optimal portfolio with a risk-free asset

Using the same arrangement as for Exercise 2.7, suppose that there is
a risk-free investment D that always increases in value by 4% over the
course of a year.

(a) Recalculate the minimum variance portfolio for a 10% return, a 7%
return, and a 5% return. (Use a spreadsheet and ‘Solver’ for this cal-
culation).

(b) Show that these three portfolios lie on the same straight line in the
standard deviation versus expected profit diagram.

(c) Show that each of the three portfolios is a combination involving some
proportion of D and some proportion of a fixed portfolio of the A, B
and C stocks (this is an example of the ‘one-fund theorem’ in portfolio
theory).
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2.9 Multivariate normal

A company wishes to estimate the probability that a storm and high tide
combined will lead to flooding at a critical coastal installation. There are 10
high tide events each year when the installation is at risk. The two critical
components here are wind velocity in the shore direction and wave height.
The wind velocity has mean 10 km/hr and standard deviation 8 km/hr
and the wave height has mean 2 meters and standard deviation 1 meter.
The estimated covariance between these two variables is 4. Suppose that
the behavior is modeled as a multivariate normal distribution (ignoring
issues of negative wave height). Estimate the probability that there will be
flooding next year assuming that flooding occurs when the wave height +
0.05×(wind velocity) is greater than 6.

2.10 Copula properties

Suppose that we define the copula density c(u1, u2) = 2/3 when both
u1 < 3/4 and u2 < 3/4; c(u1, u2) = 2 when one of u1 < 3/4 and u2 <

3/4; and c(u1, u2) = −2 otherwise. Show that if C(u1, u2) is defined in
the usual way from c that it will be increasing in both arguments and have
uniform marginals, but will not satisfy the rectangle inequality (since its
density is negative on part of the unit square).

2.11 Gumbel copula

The Gumbel copula with parameter 2 is given by

C(u1, u2) = exp

(
−
√

(log(u1))
2 + (log(u2))

2

)
.

If two variables each have an exponential distribution with parameter 1
(so they have CDF F(x) = 1 − e−x for x ≥ 0) and their joint behavior
is determined by a Gumbel copula with parameter 2, calculate the prob-
ability that the maximum of the two variables has a value greater than
3 and compare this with the case where the two random variables are
independent.

2.12 Upper tail dependence

Show that the formula for λu given in the text can be converted to

λu = 2 + lim
δ→0

C(1 − δ, 1 − δ) − 1

δ
,

and use this formula to check that the Clayton copula with θ = 2 has no
upper tail dependence. You will find it helpful to set g(x) = C(x, x) − 1
and use the fact that

lim
δ→0

g(1 − δ) − g(1)

δ
= −dg(x)

dx
evaluated at x = 1.
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Measuring risk

The genesis of VaR
Dennis Weatherstone was chairman and later chief executive of J.P. Morgan.
In many ways he was an unlikely figure to become one of the world’s most
respected bankers. As the son of a London Transport clerk who was born in
Islington and left school at 16, he was a far cry from the expensively-educated
people who typically run major Wall Street firms. He moved into the chairman’s
role from a position running the foreign-exchange trading desk. He was perceived
as an expert on risk, but when he looked at the firm as a whole he found that
he had little idea of the overall level of risk at J.P. Morgan. Over a period of
several years the concept of ‘value at risk’ was developed by the analysts and
‘quants’ working at J.P. Morgan as a way to answer this question. The need was
to measure the risk inherent in any kind of portfolio. The value at risk, or VaR,
was recalculated every day in response to changes in the portfolio as traders
bought and sold individual securities.

This turned out to bring huge benefits when looking across the many activities
going on at J.P. Morgan. It became possible to look at profits from different
traders and compare them with the level of risk measured by value at risk. In
the early 1990s, Weatherstone began to ask for daily reports from every trading
desk. This became known as the 415 report: they were created at 4.15 pm every
day just after the market closed. These reports enabled Weatherstone not only to
compare every desk’s estimated profit in comparison to a common measure of
risk, but also to form a view for the firm as a whole.

In 1993 the theme of the J.P. Morgan annual client conference was risk, and
these clients were given an insight into the value at risk methodology. When
clients came to ask if they could purchase the same kind of system for their
own companies, J.P. Morgan set up a small group called RiskMetrics to help
them. At that stage this was a proprietary methodology that was being given

Business Risk Management: Models and Analysis, First Edition. Edward J. Anderson.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/business_risk_management
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away for free, with the aim of helping clients and establishing the reputation of
J.P. Morgan in the risk area. VaR became a more and more popular tool and in
1998 RiskMetrics was spun off as a separate company.

This was a time when the regulatory authorities were beginning to pay more
attention to risk. For example, the Securities and Exchange Commission was con-
cerned about the amount of risk arising from trading in derivatives, and created
new rules forcing financial firms to disclose that risk to their investors. Inevitably
the measure that was used was value at risk. All this was part of a slow but inex-
orable change that took VaR from being a specific set of tools developed within
J.P. Morgan and sold by RiskMetrics into a risk management standard applied
throughout the financial world.

3.1 How can we measure risk?

In this chapter we will look in more depth at how to measure risk. Does it make
sense to talk of one course of action being more risky than another? And if so,
what does this mean? In the simplest case we have a range of outcomes all with
different probabilities and with different consequences. When the consequences
can be accurately turned into dollar amounts, we obtain a distribution over dollar
outcomes.

Our discussion in Chapter 2 has essentially assumed that the distribution
of outcomes is given by a known probability distribution, but in practice there
are great difficulties in knowing the distribution that we are dealing with. It is
always hard to estimate the probabilities associated with different outcomes and
the monetary consequences of these events. In a financial calculation we may
have some chance of estimating the relevant numbers. For example, we might ask
how likely it is that the price of gold gets above a certain level and (assuming we
are betting against gold prices rising) what we lose if this happens. But in most
management roles it is much harder than this. How can I calculate the probability
that sales of my new product are less than 1000 units in the first year? How can
I know how much it will cost me if the government introduces a revised safety
code in my industry? For the moment we set these problems aside and assume
that we have access to the numbers we need.

Often the best starting point for the estimation of risk is to consider what has
happened in the past. Even if we think that the world has changed, it would still be
foolish not to pay any attention to the pattern of results we have observed so far.

To make our discussion more concrete, let us look at some weather-related
data, specifically the daily maximum temperature for different cities in Australia.
We will look at data from 2010. This information would be of interest if we
were trying to sell air-conditioning units, or trying to decide whether to spend
money on air conditioning our premises. The demand for air conditioning spikes
upwards when temperatures are high. Let’s compare Perth and Adelaide weather.

A starting point might be to look at the average of the maximum temper-
atures. The average daily maximum temperature in Perth in 2010 was 25.27◦
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(all temperatures are in centigrade), while the average daily maximum temper-
ature for Adelaide was 22.44◦, more than 2 degrees cooler. But we could also
measure variability. The usual way to do this is to use the standard deviation σ .
A spreadsheet can be used to calculate this for the two cities. The standard devi-
ation for Perth is 6.41 and the standard deviation for Adelaide is 7.00, which is
significantly larger. But if we are interested in how many very hot days occur,
neither of these figures is very informative. It is better to draw a frequency
histogram of the data. This has been done in Figure 3.1.

The graphs show that there is not much to choose between the two cities as
regards the probability of really hot days. In 2010 the five hottest days in Perth
were 42.9◦, 42.7◦, 41.5◦, 41.1◦ and 40.0◦ and the five hottest days in Adelaide
were 42.8◦, 42.0◦, 41.3◦, 41.0◦ and 40.2◦.

The critical point here is that if we are interested in the extreme results
then the mean and standard deviation, which are mainly determined by the mass
of more or less average results, will not give us the information we need. We
must either look at the record of actual historical data or have some idea of the
probability distribution that generates these data.

Now we turn more directly to a risk example. Suppose that we have agreed
to sell 1000 tons of wheat in three years’ time at a price of US$300 per metric
ton. If wheat prices are high, we will make a loss, but if wheat prices are low, we
will make a profit. In order to estimate the probability of a loss we consider the
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Figure 3.1 Frequency histograms of daily maximum temperature during 2010.
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Figure 3.2 Frequency histogram of profits per ton made on a $300 per ton wheat
contract.

historical record of wheat prices over the five-year period from January 2005 on
a monthly basis.1 Factoring in the US$300 price, we get the frequency histogram
of profits per ton shown in Figure 3.2.

Wheat prices spiked in February and March 2008 to a value of around $450,
but by April they had retreated to $387. So for two months (out of the 60) losses
would have been $146 and $154 per ton, and then for a further three months
losses would have been between $80 and $90 per ton. If we are interested in risk
then we must concentrate on the losses that occur in this left-hand tail. It will
require a judgment call as to whether we think overall movements are likely to
be up or down in the future, but certainly the pattern of price spikes that has
been seen in the past would make one guess that the same sort of price spike
might occur in the future. This set of data suggests that a price spike may happen
about 1 month in 30, so it would certainly be prudent to allow for this happening
again! But notice that the mean ($41.8) and standard deviation (69.5) tell us very
little about what is going on – the distribution of profits is very far from being
a normal distribution in this case.

So, looking at the history of prices since 2005 will give us some idea about
the distribution of outcomes and hence the risks involved. Suppose now that we
want to extract a single measure of risk from this. One question we might ask
is: What is the worst outcome that could occur? Historically, the answer is $154
per ton, but our instincts should tell us that this is not a reliable estimate for
the worst that might happen. Even if the underlying factors don’t change over
time, we may still have been lucky in some way, and if we were to look at a
different five years of data perhaps we would observe a larger loss. In looking at
the largest loss we are looking at a single month, and this is bound to mean a lot
of fluctuation in what we observe. We will come back to this estimation problem

1 Data are for Wheat, United States, no 2 Hard Red Winter (ordinary), FOB Gulf and have been
downloaded from www.unctad.org.

http://www.unctad.org
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in our discussion of extreme value theory in the next chapter. In a sense, the
problem of measuring risk, which is a problem of describing what happens in
the tails of the distribution, inevitably leads to difficulties when we want to use
historical data (since, by definition, it all comes down to the values that occur at
only a handful of points).

3.2 Value at risk

When dealing with a distribution of profits, risk is all about the size of the left-
hand tail of the distribution, and so it becomes clear that there is no single right
way to measure the risk. But by far the most common way is to measure value
at risk, most often shortened to VaR. This is measured at a particular percentage.
For example, we might say that the 99% value at risk figure is $300 000. This is
equivalent to the statement that 99% of outcomes will lose less than $300 000,
or we can be 99% sure that losses will not exceed $300 000. So, giving a VaR
number corresponds to picking a single point in the distribution.

Now we set about giving an exact definition for value at risk. Since we are
concerned with potential losses, it is easier to describe everything in terms of
losses rather than in terms of profits. So the horizontal axis is reversed in order
to have higher losses to the right-hand side and the right-hand tail becomes the
area of interest. To make all this clearer, Figure 3.3 shows the 95% and 99% VaR
numbers for a distribution of losses over the range (−1.5, 0.5) (all values are
assumed to be denominated in units of $100 000 dollars). The density function
shown is given by the equation

f (x) = 15

16

[
(x + 0.5)4 − 2(x + 0.5)2 + 1

]
. (3.1)

−1.5−2 −1 −0.5 0 0.5 1

99% VaR value 95% VaR value

Figure 3.3 95% and 99% value at risk points.
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Figure 3.4 A quantile interpretation of value at risk.

Occasionally people will talk about a 1% VaR or a 5% VaR, but this just
means the 99% and 95% values. Also, sometimes people will talk about ‘VaR
with a confidence level of 99%’. This is natural, since a 99% VaR of $100 000
means that we can be 99% confident that losses will not exceed $100 000.

The VaR approach can be seen as an example of using quantiles to describe
the tails of a distribution. We will use the terminology of the α% quantile to
mean the x value such that F(x) = α/100 where F is the cumulative distribution
function, so F(x) = Pr(X < x) where X is the random variable in question. Thus,
the 50% quantile is the x value with F(x) = 0.5, i.e. the x value for which half
the distribution is below it and half above – this is just the median. The 99%
VaR value is just the 99% quantile for the distribution of losses.

We can convert our previous example with density given by Equation (3.1)
into a CDF form. After integrating the expression for the density function, we get

F(x) = 3

16
(x + 0.5)5 − 5

8
(x + 0.5)3 + 15

16
(x) + 31

32
.

This is graphed in Figure 3.4, which also shows the 95% quantile which is also
the 95% VaR, being the value of x for which F(x) = 0.95. This turns out to be
x = 0.12149, or a loss of $12 149.

Worked Example 3.1 VaR for flood risk

A firm is unable to take out flood insurance on its factory because of a history of
flooding. The losses in the event of flooding are thought to be anywhere between
$10 000 and $160 000, with all values equally likely. Flooding occurs on average
once every 10 years, and does not occur more than once in a year. What is the
annual 98% VaR due to flooding?
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Solution

We calculate the CDF for the losses (in $1000s) due to flooding in one year, a
random variable we write as L. Then F(x) = Pr(L ≤ x). We have no chance of
negative losses, so F(x) = 0 for x < 0. There is a probability of 0.9 that L = 0,
so at 0 the CDF jumps up and F(0) = 0.9. The probability that losses are less
than x for x ≤ 10 is also 0.9, since flood losses are never less than $10 000. The
probability that losses are less than x when x > 10 is given by

0.9 + 0.1(x − 10)/150.

Observe that with this expression the probability increases linearly from 0.9 at
x = 10 to 1 at x = 16, which is the defining property for the uniform distribution
of losses, since when the density function f is constant, its integral, F , is linear.
To find the 98% value at risk we solve

0.9 + 0.1(x − 10)/150 = 0.98,

giving
x = 0.8 × 150 + 10 = 130.

Thus, we have shown that VaR0.98 =$130 000. �

Writing down a definition for the 95% VaR needs care. If L is the (uncertain)
value of the losses, we would naturally set VaR0.95 to be the x value such that
Pr(L ≤ x) = 0.95, so

F(VaR0.95) = 0.95

where F is the CDF of the loss function. We can write this as

VaR0.95 = F−1(0.95)

where the notation F−1 is used for the inverse of F (i.e. F−1(y) is the value of
x such that F(x) = y).

Unfortunately this definition will not quite work. The problem is that when
the losses do not have a continuous distribution there may be no value at which
Pr(L ≤ x) = F(x) = 0.95. For example, suppose the following losses occur:

loss of $11 000 probability 0.02
loss of $10 500 probability 0.02
loss of $10 000 probability 0.02
loss of $9000 probability 0.04
loss of $0 probability 0.9

Then, setting x = 10 000 gives Pr(L ≤ 10 000) = 0.96 but for x even slightly
less than 10 000 the probability is smaller than 0.95, e.g. Pr(L ≤ 9999) = 0.94.
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Figure 3.5 95% cumulative distribution function intersection at $10 000.

The best way to resolve this is to draw a graph. With this kind of discrete
distribution (i.e. not continuous), the CDF is a step function. Figure 3.5 shows
the graph of F(x) = Pr(L ≤ x) for this example. It is easy to see that the graph
of F(x) goes through the value 0.95 at x = 10 000 and so this is the 95% VaR.

But what is easy with a graph is a little more complex with a formula. VaR
is usually defined as follows

VaRα = inf(x : Pr(L > x) ≤ 1 − α),

so, for a 95% VaR we have

VaR0.95 = inf(x : Pr(L > x) ≤ 0.05),

which we can read as ‘The lowest value of x such that the probability of L being
larger than x is less than 0.05’.

The idea here is that we think of a very large value of x for which this prob-
ability is definitely less than 0.05, then we slowly reduce x until the probability
increases to 0.05 or more and that is where we stop. This is exactly the same as
taking a large value of x where F(x) is definitely greater than 0.95 and slowly
reducing it till the value of F(x) drops to 0.95 or less.

The use of inf here and the choices of inequalities that are strict (L > x)
or not (≤ 1 − α) is something that you do not need to worry about: it covers
the definition for discrete probability distributions when there might be a range
of values for which F(x) = 0.95 (i.e. a horizontal section in the graph of F ).
A simple way to describe the formula for VaR is as follows:

VaR is the loss value at which the graph of F(x) first reaches the correct
percentile.
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In financial environments the average return is often built into calculations on
expected returns, and the thing which is of most interest is the risk that the final
outcome will be much worse than the expected returns. In these cases VaR is
calculated relative to the mean result. Thus, in the example given in Figure 3.3 the
mean profit is 0.5 or $50 000. So it would be normal to quote the 95% relative
VaR as a loss of $62 149 rather than the ‘absolute VaR’ which we calculated
previously as $12 149.

Sometimes the relative VaR is called the mean-VaR and is written VaRmean
α . In

market risk management the period of time involved is very short – for example,
one day – and VaRmean

α is called the ‘daily earnings at risk’. But in this case the
expected market movement is bound to be close to zero and so the two definitions
of VaR will, in any case, be essentially the same. The distinction between relative
and absolute VaR is more important when dealing with longer time horizons.

As an example of how VaR is reported by companies, we give the following
excerpt from the Microsoft annual report for 2012:

(Microsoft) Quantitative and Qualitative Disclosures about
Market Risk

We are exposed to economic risk from foreign currency exchange rates,
interest rates, credit risk, equity prices, and commodity prices. A portion of
these risks is hedged, but they may impact our financial statements.

Foreign currency: Certain forecasted transactions, assets, and liabilities are
exposed to foreign currency risk. We monitor our foreign currency expo-
sures daily and use hedges where practicable to offset the risks and
maximize the economic effectiveness of our foreign currency positions.
Principal currencies hedged include the euro, Japanese yen, British pound,
and Canadian dollar.

Interest rate: Our fixed-income portfolio is diversified across credit sectors
and maturities, consisting primarily of investment-grade securities. The
credit risk and average maturity of the fixed-income portfolio is managed
to achieve economic returns that correlate to certain global and domestic
fixed-income indices. In addition, we use ‘To Be Announced’ forward
purchase commitments of mortgage-backed assets to gain exposure to
agency and mortgage-backed securities.

Equity: Our equity portfolio consists of global, developed, and emerging
market securities that are subject to market price risk. We manage the
securities relative to certain global and domestic indices and expect their
economic risk and return to correlate with these indices.

Commodity: We use broad-based commodity exposures to enhance portfolio
returns and facilitate portfolio diversification. Our investment portfolio
has exposure to a variety of commodities, including precious metals,
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energy, and grain. We manage these exposures relative to global com-
modity indices and expect their economic risk and return to correlate
with these indices.

Value-at-Risk

We use a value-at-risk (‘VaR’) model to estimate and quantify our market
risks. VaR is the expected loss, for a given confidence level, in the fair
value of our portfolio due to adverse market movements over a defined time
horizon. The VaR model is not intended to represent actual losses in fair
value, including determinations of other-than-temporary losses in fair value
in accordance with accounting principles generally accepted in the United
States (‘U.S. GAAP’), but is used as a risk estimation and management
tool. The distribution of the potential changes in total market value of all
holdings is computed based on the historical volatilities and correlations
among foreign currency exchange rates, interest rates, equity prices, and
commodity prices, assuming normal market conditions.

The VaR is calculated as the total loss that will not be exceeded at the 97.5
percentile confidence level or, alternatively stated, the losses could exceed
the VaR in 25 out of 1000 cases. Several risk factors are not captured in the
model, including liquidity risk, operational risk, and legal risk.

The following table sets forth the one-day VaR for substantially all of
our positions as of June 30, 2012 and June 30, 2011 and for the year ended
June 30, 2012 (in millions):

June 30,
2012

June 30,
2011

2011–2012

Risk Categories Average High Low

Foreign currency $ 98 $ 86 $173 $229 $ 84
Interest rate $ 71 $ 58 $ 64 $ 73 $ 57
Equity $205 $212 $194 $248 $165
Commodity $ 18 $ 28 $ 20 $ 29 $ 15

Total one-day VaR for the combined risk categories was $292 million
at June 30, 2012 and $290 million at June 30, 2011. The total VaR is 26%
less at June 30, 2012, and 25% less at June 30, 2011, than the sum of the
separate risk categories in the above table due to the diversification benefit
of the combination of risks.
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3.3 Combining and comparing risks

One great advantage of VaR as a way of measuring risk is that it takes the
complexity inherent in a probability distribution of possible outcomes and turns
it into a single number. In general terms we want a single measure of risk because
we want to compare different situations. Is the current environment more risky
for our firm than it was a year ago? Is this potential business opportunity more
risky than that one? Does our direct report, Tom, have a more risky management
approach than Dick, another direct report?

We suppose that X is a random variable giving the losses, and we write ψ(X)

for the risk measure for a random variable X. We can think of the risk measure
ψ as a way of judging the riskiness of the situation described by X. This way
of thinking leads to some natural properties that a risk measure should have.

1. Monotonicity: If losses in every situation get larger then the risk measure
increases. Often we write X ≤ Y to mean that under any scenario, the
random variable X takes a value that is less than or equal to the value of
the random variable Y . So this condition can be expressed succinctly as:

If X ≤ Y then ψ(X) ≤ ψ(Y ).

2. Positive homogeneity: Multiplying risks by a positive constant also multi-
plies the risk measure by the same constant. Another way to think about
this is to say that a change in the unit of currency leads to the risk measure
changing in the appropriate way. In symbols:

ψ(bX) = bψ(X) for any positive constant b.

3. Translation invariance: If every outcome is changed by a certain fixed
amount, this is also the change that occurs in the risk measure. In financial
terms we can see this as a statement that adding a certain amount of cash
to a portfolio decreases the risk by the same amount. (This is the property
that ties the risk measure back to actual dollar amounts.) We can write
this condition as:

ψ(c + X) = c + ψ(X) for any constant c.

Example 3.2 Mean plus three standard deviations

A firm could assess risk by looking at the worst value that might occur, basing
this on a calculation of the average loss plus three standard deviations. So, if X

is the random variable of losses and this has mean μ, and standard deviation σ ,
then the risk measure is

ψ(X) = μ + 3σ.

It is commonplace to take three standard deviations as the largest deviation we
are likely to observe in normal operation, and if X has a normal distribution
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then we can look up the probability: we have Pr(X > μ + 3σ) = 0.0013. Two
investment opportunities are compared. Over the last two years investment A

has earned a mean return of $6000 a day with standard deviation $2500 and
investment B has earned a mean return of $8000 a day with standard deviation
$3000. To compare these we need to remember to convert returns to losses. We
get a risk measure for A of −6000 + 7500 = 1500 and a risk measure for B

of −8000 + 9000 = 1000, so on this basis investment A is the most risky. It is
surprising that this risk measure is not necessarily monotonic (see Exercise 3.3),
though it satisfies the other two conditions. �

It is not hard to show that VaR satisfies each of these three conditions. Since
VaR is a quantile, changing outcomes has no effect unless a scenario moves
across the quantile value, and then an increase in loss can only increase the
quantile value – this is the monotonicity property. We can also show this property
algebraically, if we wish. For random variables X and Y , if X ≤ Y then, for any x,

Pr(X > x) ≥ Pr(Y > x)

and hence if Pr(X > x) ≤ 1 − α for some α, then Pr(Y > x) ≤ 1 − α. From this
we can deduce that

inf(x : Pr(Y > x) ≤ 1 − α) ≤ inf(x : Pr(X > x) ≤ 1 − α)

which is the inequality we need to show VaRα(X) ≥VaRα(Y ).
The other two properties are also easy to establish.

VaRα(bX) = inf(y : Pr(bX > y) ≤ 1 − α)

= inf(v : Pr(X > v/b) ≤ 1 − α)

= b inf(w : Pr(X > w) ≤ 1 − α) = bVaRα(X),

so VaR satisfies the positive homogeneity condition. Also

VaRα(X + c) = inf(y : Pr(X + c > y) ≤ 1 − α)

= inf(y : Pr(X > y − c) ≤ 1 − α)

= inf(v : Pr(X > v) ≤ 1 − α) + c

= VaRα(X) + c,

and so there is translation invariance as well.
Thus, VaR has the three properties we have discussed as being appropriate

for a measure of risk, but the area in which VaR is much less satisfactory relates
to the combination of different risks. There is a natural fourth property of risk
measures to add to the three properties introduced above.
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4. Subadditivity. Combining two risks together does not increase the overall
amount of risk. This is based on the principle that diversification should
lead to a decrease in overall risk. Mathematically we write this as

ψ(X + Y ) ≤ ψ(X) + ψ(Y ).

A risk measure that satisfies all four properties (monotonicity, positive homo-
geneity, translation invariance and subadditivity) is called coherent. It is important
to note that VaR does not satisfy subadditivity and so is not a coherent risk mea-
sure. In order to show that VaR fails to be subadditive, we consider a specific
example.

Example 3.3 Combining two risks might make the VaR value worse

Suppose that we can invest $10 000 in a bond A which will normally pay back
$11 000 in a year’s time, but there is some credit risk. Specifically, there is a
small chance (which we estimate as 4%) that the bond issuer goes bankrupt and
then we will get only a fraction of our money back (an amount we estimate as
30% of our investment, i.e. $3000). Assuming we are right in all our estimates,
then the 95% absolute VaR is actually a negative amount −$1000 (equivalent to
a profit of $1000). This is because the credit risk is too small to appear in the
VaR calculation.

Now, consider making a second investment in a bond B with exactly the
same characteristics as A and suppose that bond B fails in a way that is quite
independent of what happens to A. Then we get the following outcomes

Neither bond fails Probability 0.96 × 0.96 = 0.9216 profit $2000
A fails, B does not fail Probability 0.96 × 0.04 = 0.0384 loss $6000
B fails, A does not fail Probability 0.96 × 0.04 = 0.0384 loss $6000
Both bonds fail Probability 0.04 × 0.04 = 0.0016 loss $14 000

We can see that the combined portfolio makes a loss with probability 0.0784 and
the 95% absolute VaR value is a loss of $6000. The credit risk is too small to
influence the VaR on a single bond, but with a portfolio of bonds it can no longer
be ignored. Notice, however, that the diversification benefit does not disappear
(see Exercise 3.4), it is just canceled out by the effect of a big loss crossing this
particular 95% quantile boundary. �

The problems with subadditivity highlight one of the limitations of VaR: there
is something arbitrary about the confidence level 1 − α. VaR does not give a full
picture of what happens in the tail of the distribution, and it says nothing at all
about the maximum losses that may occur. Usually the worst that can happen is
that a portfolio becomes worthless; so if we want to know how much we can
lose, the answer may well be ‘everything’! In a business environment there will
usually be some events that lead to losses that simply cannot be estimated in
advance. In one sense VaR is helpful, because at least it does not assume any
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estimates for extreme losses: its treatment of these extreme events means we
need to estimate their probability, but allows us to pass over any estimation of
the exact consequences.

3.4 VaR in practice

It is odd that VaR is both very widely used and at the same time very controversial.
Much of the controversy arises because the basic technique can be used in dif-
ferent ways – and some approaches can be misleading, perhaps even dangerous.
However, there is no getting away from VaR – for banks it is part of the Basel II
framework which links capital requirements to market risk, and in the US some
quantitative measures of risk are mandated by the SEC for company annual reports.

A sense of what is required under Basel II can be seen from the following
excerpt from Clause 718 (section 76) (taken from http://www.basel-ii-accord
.com).

Banks will have flexibility in devising the precise nature of their models, but
the following minimum standards will apply for the purpose of calculating
their capital charge.

. . .

(a) ‘Value-at-risk’ must be computed on a daily basis.

(b) In calculating the value-at-risk, a 99th percentile, one-tailed confidence
interval is to be used.

(c) In calculating value-at-risk, an instantaneous price shock equivalent to
a 10 day movement in prices is to be used, i.e. the minimum ‘holding
period’ will be ten trading days. Banks may use value-at-risk numbers
calculated according to shorter holding periods scaled up to ten days by
the square root of time.

(d) The choice of historical observation period (sample period) for calculat-
ing value-at-risk will be constrained to a minimum length of one year.
. . .

(f) No particular type of model is prescribed. So long as each model used
captures all the material risks run by the bank, banks will be free to use
models based, for example, on variance-covariance matrices, historical
simulations, or Monte Carlo simulations.

(g) Banks will have discretion to recognise empirical correlations within
broad risk categories (e.g. interest rates, exchange rates, equity prices

http://www.basel-ii-accord
http://www.basel-ii-accord.com
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and commodity prices, including related options volatilities in each risk
factor category).
. . .

(i) Each bank must meet, on a daily basis, a capital requirement expressed
as the higher of (a) its previous day’s value-at-risk number measured
according to the parameters specified in this section and (b) an average of
the daily value-at-risk measures on each of the preceding sixty business
days, multiplied by a multiplication factor.

(j) The multiplication factor will be set by individual supervisory author-
ities on the basis of their assessment of the quality of the bank’s risk
management system, subject to an absolute minimum of 3.

In practice there are three different approaches to calculating VaR figures.
We may use historical price distributions (non-parametric VaR), we may use
mathematical models of prices (perhaps including normal distributions for some
risk factors), or we may use Monte Carlo simulation.

The historical approach is simple: we look at our current market portfolio and
then use historical information to see how this portfolio would have performed
over a period (of at least a year). Assuming that we use a year as the period,
we will have about 250 trading days. If, like Microsoft, we want to calculate
a 97.5% VaR then this would mean between six and seven occasions during
the year when VaR is exceeded. So we could take the seventh smallest daily
loss recorded during the year on our portfolio as the VaR estimate. One great
advantage of this approach is that by dealing with historical data, we already
capture the relationships between the different stocks in our portfolio. So we do
not have to start making estimates, for example, of how correlated the stock price
movements of Microsoft and Google are.

One disadvantage of this approach is that it is hard to know how long a data
series to include. Is there something about current market conditions that is different
to the long bull run up to 2008? If so, then we should not include too much of
that earlier period in our analysis. But, on the other hand, if we give our historical
analysis too short a period to work with, then we may well be overly influenced by
particular events during that period. In general, a historical approach is less likely
to be appropriate when there has been a significant change in the marketplace.

The parametric approach is flexible and can take account of different correla-
tion structures. A weakness in practical terms is that once the problem becomes of
a reasonable size, we will need to make some strong assumptions on the distribu-
tion of returns (often that the log returns have a normal distribution). However,
once this is done the calculations can be completed very quickly. Typically a
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parametric approach looks at the response of instruments like options to varia-
tions in the underlying securities (a very popular method in this class is provided
by RiskMetrics). The danger of a parametric approach is that we are unlikely to
model the actual behavior correctly at the tails of the distribution. If there are ‘fat
tails’ then this approach may be very misleading (we will discuss these problems
further in the next chapter).

A third option is to use a Monte Carlo simulation. This uses the parametric
technique of modeling the individual components that generate risk, but rather
than look for analytical solutions, it instead simulates what might happen. A long
enough simulation can capture the entire distribution of behavior without the need
for very specific choices of distribution and at the same time can represent any
degree of complexity in the correlation structure. The weakness of this approach
is that it still requires assumptions to be made on distributional forms; it can also
be computationally demanding.

Having decided the method that will be used to compute VaR numbers, there
are two further decisions that need to be taken. First a risk manager must decide
on a risk horizon. This is the period of time over which losses may occur. Using
a one-day VaR is about looking at price movements during a single day. But
Basel specifies a 10-day period, and for many firms an even longer period will
be appropriate. However, the longer the period chosen, the longer the time series
data that will be needed in order to estimate it. In any event, even with a longer
period it is important to ensure that VaR calculations are done regularly and at
least as often as the risk horizon (Basel II requires VaR to be calculated daily).

A second decision is the confidence level or quantile that will be used. Basel
requires a 99% VaR to be calculated, but we have already seen how Microsoft
uses a 97.5% VaR.

It is also important to check how the VaR estimates match actual risk perfor-
mance, which is called back-testing. The simplest way to do this is to apply the
method currently in use to the company’s past performance, to get an estimate
of the VaR that would have been calculated on each day over the last year. The
theory of VaR then tells us how many times we would expect to see losses greater
than VaR (2.5 times if a 99% VaR level is used for 250 trading days). If we find
that VaR limits have been breached more often than this, we need to investigate
further and should consider changing the method of calculation.

Whichever approach is used, the generation of VaR numbers can be
immensely helpful to managers, and it is worth reviewing why this is so.

• VaR is easily understood and is now familiar to many senior managers.

• VaR provides a single consistent measure of risk that can be used through-
out the firm and can form the focus of discussion about risk.

• VaR can be calculated at the level of individual operational entities (or
trading desks in a bank). This gives good visibility down to the lower levels
of the company. It provides a tool that can be used to impose a consistent
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risk strategy through the organization, at the same time as enabling senior
managers to understand more of where and how risk arises within their
organization.

• VaR provides a good tool for assessing capital adequacy (and is required
for that purpose by banking regulators).

• VaR has become the standard way of reporting risk externally.

3.5 Criticisms of VaR

As we mentioned earlier, the use of VaR is still controversial, and it is important
to understand the criticisms that have been made. The primary problem with VaR
is that it does not deal with events within the tail – it gives no guidance on how
large extreme losses may turn out to be. There is a lot of difference between
saying that on 99% of days I will lose no more than $100 000 and saying that
on one day in each year (on average) I will lose $20 million. Yet these two
statements are quite consistent with each other. Almost all the time everything
is well-controlled and my losses remain modest, but once in a while things will
go very badly wrong and I will lose a lot.

David Einhorn, a well-known hedge fund manager, made a speech in 2008
(prophetically warning about Lehman Brothers’ potential problems) in which
he said that VaR is ‘relatively useless as a risk-management tool and potentially
catastrophic when its use creates a false sense of security among senior managers
and watchdogs. This is like an air bag that works all the time, except when you
have a car accident.’

In an influential book called The Black Swan, Nassim Nicholas Taleb has
argued that we habitually take insufficient account of very rare but very important
events – these are, in his terminology, black swans. They are sufficiently rare
that we have not observed them before and so it makes little sense to talk about
predicting their probability. At the same time they have very large effects. They
are the unknowns that turn out to be more important than the things we do know
about. Who could have predicted the changes that came about after the terrorist
attack on the twin towers in 2001? Who could have anticipated the rise of social
media on the internet? And these large-scale phenomena are mirrored at the level
of the firm by much that comes ‘out of left field’.

When we use VaR as a risk measure we deliberately exclude these events
and their consequences. Even using a 99% one-day VaR (which sounds quite
conservative) we deliberately exclude any events that happen less often than
once every six months. For Taleb something that happens twice a year should
be regarded as an ‘everyday’ occurrence. He argues that across many fields the
exclusion of the 1% tail involves excluding events and data that turn out to have
a very significant effect on the overall picture. For example, if we were to look
at iTunes downloads and exclude the 1% most downloaded tunes, our estimate
of how much money iTunes makes would probably be very inaccurate.
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Another problem with VaR is that it may encourage inappropriate behavior by
managers. In a NY Times article, Joe Nocera describes how VaR can be gamed.

‘To motivate managers, the banks began to compensate them not just
for making big profits but also for making profits with low risks. The
result was an incentive to take on what might be called asymmetric
risk positions where there are usually small profits and only infre-
quent losses, but losses when they do occur can be enormous. These
positions made a manager’s VaR look good because VaR ignored
the slim likelihood of giant losses, which could only come about
in the event of a true catastrophe. A good example was a credit-
default swap, which is essentially insurance that a company won’t
default. The gains made from selling credit-default swaps are small
and steady – and the chance of ever having to pay off that insurance
was assumed to be minuscule. It was outside the 99% probability, so
it didn’t show up in the VaR number.’

In fact, the incentives to take actions which produce a skewed, or asymmetric,
risk position are quite widespread. This will often happen when there is a reward
based on relative ranking. Suppose, for example, that we are a fund manager.
We may have choices available to us which will make our returns look like the
average return for the type of stocks we are investing in. This can be achieved
simply by spreading our portfolio widely, and corresponds to a low-risk option
if we are being compared with this average performance (or the performance of
other fund managers). On the other hand, we could concentrate our portfolio on
a few stocks. This would be riskier but may pay off handsomely if these stocks
are good performers. Since fund managers are paid partly on the basis of funds
under management, and flows into a fund are often determined by its relative
ranking, there is a big incentive to do better than other funds. This could lead to
behavior which gambles (by stock picking) if things are going badly (perhaps the
fund manager can catch up) and plays safe if things are going well (‘quit when
we are ahead’). Now gambling spreads out the returns, with the probability of
catching up being balanced by a chance of doing badly. The end result is that
the distribution of returns is spread out on the negative side and compressed on
the positive side: it ends up looking like Figure 3.6, with a long negative tail.
This will mean a relatively small chance of very poor returns and quite a good
chance of reasonably good returns.

The right approach here is to recognize what VaR measures and what it does
not measure. It picks a single quantile and estimates where this is: it makes no
attempt to say how far the tail stretches (how large the losses may be).

The most common approach to the shortcomings of VaR around extreme
events is to use stress testing. As with several other risk management approaches,
this is a technique that originated within the banking industry. The idea here is
that the firm, in addition to a VaR analysis, should try to understand more about
what is going on in the tails of the distributions. It does this by looking at a set
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Figure 3.6 Asymmetric return distribution.

of different ‘bad’ scenarios and working out for each one what the implications
might be. As an example, HSBC,2 after discussing some of the limitations of
using 99% daily VaR as a risk measure, states:

In recognition of the limitations of VaR, HSBC augments it with stress
testing to evaluate the potential impact on portfolio values of more
extreme, although plausible, events or movements in a set of financial
variables. The scenarios to be applied at portfolio and consolidated
levels, are as follows:

• sensitivity scenarios, which consider the impact of any single risk factor
or set of factors that are unlikely to be captured within the VaR models,
such as the break of a currency peg;

• technical scenarios, which consider the largest move in each risk factor,
without consideration of any underlying market correlation;

• hypothetical scenarios, which consider potential macro economic events,
for example, a global flu pandemic; and

• historical scenarios, which incorporate historical observations of market
movements during previous periods of stress which would not be captured
within VaR.

The use of stress testing to explore the consequences of risks that occur in
the tail is an approach that is complementary to VaR (which ignores the size of
these risks) and may be useful for a wide range of firms.

Another approach to stress testing against a range of bad scenarios is to search
systematically for the worst scenario amongst a given set; this is called reverse

2 HSBC 2010 Annual report, 21 April 2011 http://www.hsbc.com/investor-relations/financial-
results

http://www.hsbc.com/investor-relations/financial-results
http://www.hsbc.com/investor-relations/financial-results
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stress testing. For example, we may impose limits on what certain prices or volatil-
ities may be, and then use an optimization procedure (like Solver in a spreadsheet)
to find the combination that gives the worst overall result. Particularly when there
are financial derivatives involved it can be hard to tell in advance exactly which set
of values will be the worst possible. Reverse stress testing identifies, from amongst
a defined set of possibilities for various variables, the exact choice that gives the
worst result. This is likely to be revealing, but may be only the starting point for
further analysis. Once we know the most damaging scenario we can look again to
see whether we believe it is possible; if not, it may suggest an adjustment of the
constraints on the variables and the procedure can be run again.

3.6 Beyond value at risk

The value at risk measure is concerned with the tail of a distribution in a way that
the variance is not. But even though VaR focuses on the tail, it is uninformative
about what happens within the tail. The two loss distributions (density functions)
drawn in Figure 3.7 have exactly the same 95% VaR value of 25 but the potential
losses for the distribution drawn with a solid line are significantly higher. It is
natural to talk of a distribution having fatter tails if the probability of getting
values at the extremes is higher. The comparator here is the normal distribution
(which is the dashed line in the figure) for which the probabilities go towards
zero in the same way as e−x2 = 1/ex2

which is a very fast decrease.
One way around this problem is to look at VaR values at different proba-

bilities. The solid line distribution with the fatter tails has a 99% VaR of 41,
while the 99% VaR for the dashed line, which is a normal distribution, is 36.
So by moving farther out in the tail, the difference between the two distributions
becomes more obvious from VaR alone.

An alternative approach is to use what is often called the expected shortfall,
though other terminology is sometimes used (tail value at risk or conditional value

−75 −50 −25 0 25 50 75 20 45 70

Figure 3.7 Solid line has a fatter tail (shown enlarged in right-hand panel). Both
distributions have 95% VaR of 25.
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at risk (CVaR)). The expected shortfall at a level α for a random variable X of
losses is written ESα(X) and is the expected loss conditional on the VaRα level
being exceeded. It is the average value over that part of the distribution which
is greater than VaRα(X), i.e. over loss values which occur with only a 1 − α

probability. The expected shortfall is very closely related to value at risk, but
captures more about what may happen in the worst cases. In comparison with
value at risk the expected shortfall is a more natural measure of risk. The 95%
value at risk, is obtained by asking ‘What is the minimum loss amongst the 5%
of worst outcomes?’, whereas the 95% expected shortfall value is obtained by
asking ‘What is the average loss amongst the 5% of worst outcomes?’

We can more formally write the expected shortfall as

ESα(X) = E(X | X > VaRα(X)). (3.2)

We should stop and unpack what we mean by an expectation conditional on
another event. For a discrete random variable X taking values x1, x2, . . . , xN with
respective probabilities p1, p2, . . . , pN the expectation has the form E(X) =∑N

i=1 pixi . The expected shortfall is obtained by changing the probabilities so
that instead of pi we have

p′
i = Pr(X = xi | X > VaRα(X))

= Pr(X = xi and X > VaRα(X))

Pr(X > VaRα(X))
.

Now suppose that the xi are ordered so that they are increasing with the first m

being less than the VaRα level and then the other values all being greater than
the VaRα level (i.e. xi ≤ VaRα(X) for i = 1, 2, . . . , m and xi > VaRα(X) for
i = m + 1, m + 2, . . . , N .) Then we see that p′

i = 0 for i = 1, 2, . . . , m and

p′
i = pi

pm+1 + pm+2 + . . . + pN

for i = m + 1, m + 2, . . . , N.

Hence, we have the following formula for the expected shortfall:

ESα(X) =
N∑

i=1

p′
ixi =

∑N
i=m+1 pixi∑N
i=m+1 pi

.

We can rewrite the formula for the expected shortfall when X has a continuous
density function f (x). In this case we can write the expectation in terms of the
integral of f :

ESα(X) =
∫ ∞

VaRα(X)
xf (x)dx

Pr(X > VaRα(X))

= 1

1 − α

∫ ∞

VaRα(X)

xf (x)dx .
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Worked Example 3.4 Calculating VaR and ES with insurance against
extreme weather

Suppose that we buy insurance against extreme weather events that occur ran-
domly, with an average of one event every 10 years. We pay $10 000 a year as
a premium and receive a payout total of $95 000 in the event of the claim being
made. Once a claim is made, the insurance contract ceases. Premium payments
are made monthly in advance, and in the event of a claim are refunded for any
period after the claim event. Ignoring discounting and any inflationary increases
in premiums or a payout, what are the VaR0.95 and ES0.95 values for our losses
on this contract?

Solution

With random occurrences the time to the first weather event is a random variable
with an exponential distribution. if we take years as units of time then we have an
exponential with parameter 0.1. The loss (in $1000s) is given by L = 10X − 95,
where X is the time till we make a claim and has a density function f (x) =
0.1e−0.1x . To calculate VaR0.95(L) note that

VaR0.95(L) = 10VaR0.95(X) − 95.

Now the probability in the tail of the exponential is∫ ∞

u

f (x)dx =
∫ ∞

u

0.1e−0.1xdx

= [−e−0.1x
]∞
u

= e−0.1u.

To find VaR0.95(X) we want to find a u value that makes this probability 0.05, so
we should set u so that e−0.1u = 0.05, i.e. u = −10 loge(0.05) = 29.957. Thus,
there is a one in 20 chance that the weather event doesn’t happen for about
30 years and the downside risk from the point of view of the person buying
insurance is VaR0.95(L) = 10 × 29.957 − 95 = 204.57 or $204 570.

But looking at expected shortfall gives an even larger figure: we have
ES0.95(L) = 10ES0.95(X) − 95 and

ES0.95(X) = 1

1 − α

∫ ∞

VaRα(X)

xf (x)dx

= 1

0.05

∫ ∞

29.957
0.1xe−0.1xdx

= 1

0.05

[−10e−0.1x − xe−0.1x
]∞

29.957

= 1

0.05

(
10e−2.996 + 29.957e−2.996)

= 39.946.
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(You should check that the expression we quoted as the integral here really does
differentiate back to 0.1xe−0.1x). Thus, we have an expected shortfall of

ES0.95(L) = 10 × 39.946 − 75 = 304.46

or $304 460, which is about $100 000 more than the value at risk. This is a greater
difference than will occur for many distributions and is due to the particular shape
of the exponential distribution with a long tail to the right. �

Expected shortfall has many advantages over VaR; not only does it give
greater visibility into the tails of the loss distribution but it also has better the-
oretical properties. As we show in the next section, it satisfies the subadditivity
property and is coherent. For these reasons it has become more and more pop-
ular as a way of keeping track of risk. It has now been proposed as a preferred
alternative to VaR by the Basel Committee on Banking Supervision.

Since expected shortfall is much better at giving an indication of tail risk, it
may be appropriate to lower the α-level. In other words, the use of 99% VaR rather
than a lower level is, in part, because a high alpha level gives a better indication of
what is happening relatively far out in the tail. But using expected shortfall with
a lower level like 98% or 97.5% can work equally well (and automatically allows
for what is happening in the tail). The big advantage of a lower α level is that more
data points get considered when testing the expected shortfall estimates.

We need to say more about how a company can back-test for expected short-
fall (this has sometimes been raised as a concern in moving from VaR to expected
shortfall). The important thing to realize here is that expected shortfall is not gen-
erated on its own: it needs an estimate of the VaR value as well. Thus, if we
work on a daily basis at a 99% level, we will end up with two daily numbers: the
99% VaR and the 99% expected shortfall. The back-testing process then looks at
the occasions when the VaR level is breached and considers the losses on those
occasions. These are the losses whose mean is given by the expected shortfall
estimates. If the expected shortfall was the same from one day to the next, then
the back-testing would be simple: it would simply be a matter of checking the
average losses on the days when the VaR level was breached and comparing
these with the expected shortfall estimate.

When the expected shortfall estimates vary from day to day, we can still
compare these two. If the loss on a certain day with a VaR breach is X then this
has mean value of ESα , and hence E(X−ESα) = 0. We write Xi for the loss on
day i (restricting this to days when there is a VaR breach) and ES(i)

α for the value
of ESα on day i. Since the difference, Xi−ES(i)

α , has a mean value of zero, we
can consider the observed value of the average

1

N

N∑
i=1

(Xi − ES(i)
α )

over N days when VaR breaches occur. This will also have mean zero if the
model is correct.
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There is an argument for scaling these differences to allow for the scaling up
of all values that occur on days with a high expected shortfall. This would mean
considering the ratio (X−ESα)/ESα . Obviously, since X−ESα has a zero mean,
the ratio will also have a mean of zero. So we can evaluate this ratio for different
VaR breach days and again check the average, which should be close to zero.

Notice that losses on the VaR breach days will have a highly asymmetric form;
we expect many data points that are just above the VaR level and progressively
fewer at higher and higher levels. So (X−ESα) on VaR breach days is much
more likely to be negative than positive, with a small probability of a very large
positive value making the mean zero. More often than not, a back-test procedure
will have limited data on VaR breach days and it will be a matter of chance as to
whether an appropriate number of these large positive values have been observed
to compensate for the many negative ones. This makes it hard to be confident of
the expected shortfall estimates and is behind the concern over the effectiveness
of back-testing for expected shortfall.

3.6.1 *More details on expected shortfall

Another way to define expected shortfall is to average the values of VaRu for all
u ≥ α. To see why this works, we start from the expression

ESα(X) = 1

1 − α

∫ ∞

VaRα(X)

xf (x)dx . (3.3)

Now we are going to make a change of variable from x to a new variable u,
which is defined as u = F(x). To do this we use the normal procedure of taking
derivatives to see that du = f (x)dx . Also we note that

x = F−1(u) = VaRu(X).

Moreover, at the lower limit of the integral x =VaRα(X), so u = α, and at the
upper limit u = F(∞) = 1. Thus∫ ∞

VaRα(X)

xf (x)dx =
∫ 1

α

VaRu(X)du

and

ESα(X) = 1

1 − α

∫ 1

α

VaRu(X)du. (3.4)

Thus, Equations (3.3) and (3.4) provide two alternative expressions for expected
shortfall at level α, when the random variable of losses, X, is continuous.

There is an important warning here for discrete distributions, where there
is no density function f , then the original definition Equation (3.2) and
Equation (3.4) are no longer equivalent and we should use the second definition
of Equation (3.4) to avoid problems (or use a more complicated definition
instead of Equation (3.2)).
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As we discussed earlier, one of the problems with VaR is that it is not a
coherent risk measure. Specifically, we do not have the subadditivity property
that VaRα(X) + VaRα(Y ) ≥ VaRα(X + Y ). It turns out that expected shortfall is a
coherent risk measure. There are four properties to check: monotonicity; positive
homogeneity; translation invariance and subadditivity. The fact that value at risk
has the first three properties means that we can use Equation (3.4) to show that
expected shortfall also has these properties, so

If X ≤ Y then ESα(X) ≤ ESα(Y );
ESα(bX) = b ESα(X);

ESα(X + c) = ESα(X) + c.

Now we will explain why expected shortfall is also subadditive. The key
observation is that expected shortfall for X is an average of the highest values
of X that can occur, where the events generating these values have a given
probability 1 − α. If we choose a different set of events which has the same
probability 1 − α and look at the average of the values of X that occur under
these events, then the value must be lower than the expected shortfall. We can
represent this in a diagram, as shown in Figure 3.8.

Here we take both X and Y as having finite ranges so that the diagram is
easier to draw. We define a new random variable Z = X + Y . The regions B
and C involve the highest possible values of the loss variable X. Suppose that
they in total have a probability of 1 − α, so that the point shown as x0 will be
at VaRα(X). Now suppose that the combined A and B regions are where the
highest values of Z occur and A and C have the same probability. Then A and B
will also have a total probability of 1 − α and the value Z = z0, which marks the
lower boundary of this region, will be at VaRα(Z). Now notice that taking the
expected value of X over the region B and C and comparing it with the expected

X

Y

Z = X + Y

A

B

C

x0

z0

Figure 3.8 Diagram to show subadditivity of expected shortfall.
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value of X over the region A and B involves changing a set of events where
X > x0 to another set of events (with the same probability) where X < x0. Hence

E(X | X > VaRα(X)) ≥ E(X | Z > VaRα(Z)).

Exactly the same argument can be used to show that

E(Y | Y > VaRα(Y )) ≥ E(Y | Z > VaRα(Z)).

Then we add these two inequalities together to establish subadditivity:

ESα(X) + ESα(Y ) = E(X | X > VaRα(X)) + E(Y | Y > VaRα(Y ))

≥ E(X | Z > VaRα(Z)) + E(Y | Z > VaRα(Z))

= E(Z | Z > VaRα(Z)) = ESα(Z).

Notes

An excellent introduction for this area is the newspaper article by Joe Nocera and
I have drawn on this at various points in this chapter. The book by Crouhy, Galai
and Mark is very helpful in understanding what VaR measures really mean in
practice and the book by Culp (2001) also treats the more practical aspect of VaR
calculation. Nicholas Taleb’s famous book called The Black Swan is well worth
reading for its trenchant views on what is wrong with many of the quantitative
approaches to risk measurement. For more on the way that competition for ranking
can lead to asymmetric distributions with long negative tails, see Anderson (2012).

The Basel recommendations on a move to expected shortfall are in the Con-
sultative Document issued in May 2012. A more formal proof of the result on
the coherence of expected shortfall can be found in Acerbi and Tasche (2002).
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Exercises

3.1 VaR for normal distributions

.(a) If the profits made each day by a trading desk are, on average, $100 000
and have a normal distribution with standard deviation $60 000, calcu-
late a 99% and 95% absolute VaR.

(b) A second trading desk has exactly the same properties as the first (nor-
mal distribution with average profit of $100 000 and standard deviation
of $60 000). If the second desk makes returns that are completely inde-
pendent of the first, what are the 99% and 95% absolute VaR values
for the combination of the two trading desks?

(c) If the results of the second trading desk are not independent of the first,
what is the highest value (i.e. greatest losses) for 99% absolute VaR
that might be achieved for the combination of the two trading desks?

3.2 VaR for a triangle distribution

Consider a distribution of losses over the range −$100 000 to $100 000
where the density follows a triangle distribution f (x) = −x/X2 for −X ≤
x ≤ 0 and f (x) = (X − x)/X2 for 0 < x ≤ X where X = $100 000. Cal-
culate 99% and 95% absolute VaR figures. (In this case you can calculate
the CDF by drawing the graph of f and directly calculating the area under
the graph.)

3.3 A non-monotonic measure of risk

Example 3.2 gives a way of calculating a risk measure from the mean and
standard deviation. Give an example where increasing the loss on some
outcomes would lead to a reduction of the value of μ + 3σ . (Hint: Consider
a distribution for losses that is z with probability 0.1, 0 with probability 0.8,
and 1 with probability 0.1. Start with z = −1 and then try increasing z.)

3.4 Diversification reduces VaR

In Example 3.3, use a 98% absolute VaR to show that there is some diversi-
fication benefit in investing $10 000 in each of A and B rather than putting
$20 000 in two bonds from A.

3.5 From one day to ten days

The Basel II framework asks for a 10-day VaR and then states that ‘Banks
may use value-at-risk numbers calculated according to shorter holding peri-
ods scaled up to 10 days by the square root of time.’ By this is meant
that if the 1-day VaR is x then the 10-day VaR can be estimated as
x
√

10 = 3.1623x.
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(a) Explain why this formula could only be appropriate for (relative) VaR
and not for absolute VaR.

(b) Show that if daily returns are independent and normally distributed then
the proposed formula will give the correct result.

3.6 VaR estimates are a process

You are a manager with a VaR system in place to calculate 99% (relative)
VaR values on a daily basis. Over the last 500 trading days (two years)
there have been five occasions when the VaR values have been breached.
A subordinate comes to you with some serious concerns in relation to the
current VaR calculations, arguing that they wrongly represent correlations
in behavior occurring at times when the markets make large movements.
He has carried out a set of alternative calculations of daily (relative) VaR
values over the last two years, which also has five occasions when the VaR
values have been breached.

(a) Explain why the alternative daily VaR values may differ markedly from
the values from the current system, but have the same number of VaR
breaches.

(b) Suppose two systems have the same performance on back-test, can we
deduce that they are equally good? And what would it mean for one to
be better than the other?

3.7 Expected shortfall for a normal distribution

Show that the expected shortfall at the 99% level if losses follow a normal
distribution with mean 0 and standard deviation 1 is given by ES0.99 =
2.667 using the fact that∫ ∞

v

x exp(−x2/2)dx = exp(−v2/2).

3.8 Expected shortfall is subadditive

.(a) Use the fact that ES0.99 = 2.667 for a normal distribution with mean
0 and standard deviation 1 (given in Exercise 3.7) to find the 99%
expected shortfall if the losses in project A have a normal distribution
with mean −$5000 and standard deviation $3000 (thus, on average, we
make a profit).

(b) Now suppose that the losses in project B have a normal distribution
with mean −$3000 and standard deviation $1500. Assuming that the
projects are independent, calculate the 99% expected shortfall for the
sum of the two projects and hence check subadditivity in this case.
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3.9 Bound on expected shortfall

Suppose that the density function f of the distribution for the loss random
variable X is decreasing above the 0.95 percentile. Show, by considering
the shape of the CDF function F , that VaRu(X) is a convex function of u

for u > 0.95 (i.e. has a slope increasing with u). Use a sketch to convince
yourself that the average value of a convex function over an interval is
greater than the value half way along the interval (this can also be proved
formally). Finally use Equation (3.4) to show that

ES0.95(X) ≥ VaR0.975(X).
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Understanding the tails

Extrapolating beyond the data
Maria works in a large teaching hospital and has responsibility for ordering
supplies. Today she faces what seems like an impossible situation: as she
explained to her friend Anna ‘I need three years of data but I only have two
years’. Anna asks her to explain, and she launches into the problems that she
has been mulling over for the last few days.

‘For the last two years we have had a diagnostic test for a certain type of
infant bronchial condition and have been recording patients with this condition,
and now at last there is a drug that is effective. But it is in short supply and
expensive. Worse still, it contains some unstable components so can only be
used in the first six weeks after manufacture. An urgent order still takes a week
to arrive from the manufacturing facility in Switzerland, so we need to keep a
minimum of a week’s worth of stock and I now have to determine how much
that is. In this kind of situation our usual rules suggest that we should run out no
more often than once every three years on average. I can see how much we would
have needed in each of the last 104 weeks, but that’s not a long enough period.’

Anna has just finished a risk management course as part of her MBA and
wonders if there is some way to use some of what she has learnt to help her
friend. ‘So you have 104 weekly data points and your problem is to estimate
what the highest value would be if the series were extended to three years, i.e.
3 × 52 = 156 data points.’

‘That’s it exactly,’ said Maria. ‘Come to think of it, even three years of data
would not really be sufficient – just because something didn’t happen over the
last three years does not mean it will not happen over the next three years.’

‘Have you thought of modeling the weekly usage with a normal distribution,
or maybe some other sort of distribution?’

Business Risk Management: Models and Analysis, First Edition. Edward J. Anderson.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/business_risk_management
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‘That was the same idea that I had,’ Maria replied ‘but I have looked at the
numbers and there are more weeks with high demand than seems possible if it
really was a normal distribution. What seems to happen is that the incidence of
this condition varies according to a whole lot of factors that I don’t know about;
things like the weather, and the number of chest infections in the population.
I don’t think that I can use a model to make predictions here, there is just too
much uncertainty, so we are left with the inadequate data.’

‘So, in essence you need to use the data you have, but extrapolate to higher
values that have not yet occurred and at the same time you do not want to make
any assumptions about the kind of distribution,’ said Anna.

‘That’s right: without enough data and without a specific model of the distri-
bution it seems impossible to estimate the number I need.’

‘I am not so sure,’ said Anna, ‘even without making an assumption that the
weekly numbers match a given distribution, they surely cannot be too badly
behaved. Any kind of regularity should give you a handle on the extrapolation
problem. It may be hard to extract information about this “upper tail” of the distri-
bution from the data you have, but perhaps not impossible. I heard my professor
talk about extreme value theory and perhaps that could help in some way.’

4.1 Heavy-tailed distributions

4.1.1 Defining the tail index

The challenge of using quantitative techniques to measure risk is that it forces us
to pay attention to the tails of the distribution. This is exactly the area of greatest
difficulty in estimation: we rarely see enough tail events to make firm deductions
about the underlying distributions. In this chapter we will look in more detail at
some tools for handling the tails of distributions.

When dealing with risk we are most often interested in random variables
that have the possibility (at least theoretically) of infinitely large values. Like the
normal distribution, the random variables do not have a finite range. Obviously
in practice there will most often be a finite limit on the distribution: for example,
if dealing with a loss distribution there will be a maximum loss determined by
our company’s ability to avoid bankruptcy. But it is usually more revealing to
model the losses as though there were no maximum limit. In this context it makes
sense to look at the shape of the tail of the distribution as it goes to infinity.

The normal distribution gives a natural point of comparison for other distri-
butions. A distribution is called ‘heavy-tailed’ if it has more weight in the tails
than a normal distribution. But we have to stop and think about what we might
mean by such a statement. Because the standard deviation of a normal can be set
to whatever we like, it is always possible to find a normal distribution which has
a zero mean but a large probability of being greater than some given value. We
just need to make the standard deviation large enough. So, to make sense of a
heavy-tailed distribution we need to think about the behavior of the distribution
across a whole range of values and not just at a single point.
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One way to understand the behavior of the tail of a distribution is to ask how
quickly the CDF of the distribution approaches 1. A good way to do this is to
consider the product (1 − F(x))xk for some power k. The first term 1 − F(x)

will get closer and closer to zero as x increases, while the second term xk will get
larger and larger, so we can ask which of these two will win? Does the product
go to zero or go to infinity? We can guess that as we make the power k larger,
there will be some point k0 at which the xk term starts to dominate. For k < k0
the product will approach zero and for k > k0 the product will go to infinity.
If the tail is heavy then there are high chances of seeing a large value and that
means that F(x) approaches 1 only slowly. So we will not be able to multiply by
such a large value of xk and still get the product going to zero. Hence, a heavy
tail is associated with a low value of k0.

When we can define a value of k0 in this way, with (1 − F(x))xk going to
either zero or infinity according to whether k is either below or above k0, then we
say that the distribution has a tail index of k0. So, for example, a tail index of 2
is roughly equivalent to the statement that 1 − F(x) goes to zero in the same
way as 1/x2 = x−2. But the definition we have given, in terms of a dividing
point between two regimes, is more precise.

Example 4.1 A heavy-tailed distribution

A random variable has distribution with density function

f (x) = 1

(2 + |x|)2

This is symmetric around 0 because the f values do not depend on the sign
of x. The density function is graphed in Figure 4.1. We can check that this is a
distribution by showing that its integral approaches 1 as x → ∞. To do this we
note that for z > 0∫ z

0
f (x)dx =

∫ z

0

1

(2 + x)2
dx =

[ −1

2 + x

]z

0
= 1

2
− 1

2 + z
,

which clearly approaches 1/2 as z → ∞, and hence the area under the whole
curve will be 1 as we require. To determine the CDF we can use symmetry to
see that

F(0) =
∫ 0

−∞
f (x)dx = 1

2

and so for z > 0,

F(z) =
∫ 0

−∞
f (x)dx +

∫ z

0
f (x)dx = 1 − 1

2 + z
.

Hence, 1 − F(z) = (2 + z)−1 and this distribution has a tail index of 1. This is
an extreme case of a distribution with heavy tails. �
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Figure 4.1 An example of a density function with tail index of 1.

It is important to recognize that not all distributions have a well-defined
variance and standard deviation. The variance of a random variable X is defined
as E

[
(X − E(X))2

]
and if the distribution has a heavy tail then this expectation

may be infinite. In this case it also makes no sense to talk about the standard
deviation of the random variable. The smaller the tail index, the fatter the tails of
the distribution will be and the more likely it is that the variance will not exist.
The key result here is that if the tail index is less than k then E(Xk) will be
infinite (we show why this is true in the next section).

There is a whole set of distributions for which the tail index is infinite and
all moments exist. These are distributions, like the normal, where the probability
in the tail, 1 − F(x), approaches 0 faster than any power of x. At the other
extreme is a distribution like that of Example 4.1 for which there is a problem
even defining the mean. Obviously the distribution is symmetric about zero, and
so the mean should be zero, but if we look only at the tail of the distribution
then we are interested in integrals of the form

∫ ∞
u

x f (x)dx for some threshold
value u, and it turns out that this integral has an infinite value.

4.1.2 Estimating the tail index

Given a set of data points we may want to estimate how quickly the tail of
the distribution goes to zero to find out whether or not we are dealing with a
heavy-tailed distribution. For example, this is an important question to answer if
we need to estimate an expected shortfall measure from the data. Later in this
chapter we will give a more detailed discussion of the way that the estimation of
a risk measure can be carried out using extreme value theory, but here we want
to give a more elementary approach to estimating tail indexes.

Suppose that a distribution has a tail index of α, then, for large values of x,
we expect the CDF to be given approximately by

F(x) = 1 − kx−α,
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for some constant k. If this is true then

log(1 − F(x)) = log(kx−α) = log(k) − α log(x).

Since 1 − F(x) is between 0 and 1, and the log of a number less than 1 is
negative, it can be helpful to multiply this equation by −1 to get

− log(1 − F(x)) = − log(k) + α log(x).

This shows that if we plot − log(1 − F(x)) against log(x) then we should get a
straight line with a slope of α.

Given a set of data points it is simple to form an estimate of 1 − F(x) by
looking at the proportion of the points in the sample above the value x. Hence,
the procedure is to plot minus the log of this estimate against the log of x to
estimate the tail index.

Example 4.2 Tail behavior for Forex rates

To illustrate this, Figure 4.2 shows a plot of this form for the exchange rate
between the British pound and US dollar for a 500-day period starting in May
2010. The data are for the daily percentage change in the closing price. We are
interested in losses from one day to the next if pounds are purchased (pound
moving down relative to the dollar), so this gives 499 different data points.
During this period the greatest loss was 1.74% on 13 May 2010. This is plotted
at an ‘x’ value of log(1.74) = 0.55 (using natural logs). This point has 498 points
below it in terms of losses and so we estimate the F(x) value to be 498/499 and
so the y value in the plot is given by

− log(1 − F(x)) = − log(1/499) = 6.21.
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Figure 4.2 Tail data for percentage daily loss in exchange rate GBP/USD.
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The figure shows the behavior for the 17 days on which the losses were more
than 1%. The straight line fitted to these points has a slope of 4.9. So, from these
data alone, we would estimate the tail index as being around 5, and there is some
evidence of heavy-tailed behavior. �

When the tails are not heavy then the tail index will be infinite. Of course, in
practice this translates simply into a high slope, and drawing this type of log-log
plot for data drawn from a normal distribution we would expect a higher slope
than we see in Example 4.2. However, since we only ever have a finite sample
to look at, from a practical perspective it is impossible to know what the exact
tail behavior is. The larger the sample, the better our estimate will be, but the tail
behavior is, by definition, something that happens at the extreme, and we will
never have enough data to be sure about this.

Example 4.3 Looking at tail behavior for a normal distribution

We can easily simulate data drawn from a normal distribution. Figure 4.3 shows
the result of two different samples from a normal distribution with mean 0 and
standard deviation 1. On the left is a plot based on a sample of 500 points. The
figure shows − log(1 − F(x)) plotted against log(x) for the top 20 points; in this
sample the highest value is 2.859. The fitted straight line to these points has a
slope of 5.38. Note that a different sample could well produce a different estimate.

On the right of the figure, a new sample of 4000 points has been made.
Again, the plot shows the top 20 points. This time the highest point is 3.48 and
corresponds to an estimated value for F(x) of 3999/4000, leading to a y value
in the plot of

− log(1 − F(x)) = − log(1/4000) = 8.29.

The straight line fitted to the points on the right-hand plot has slope 9.57, sub-
stantially higher than the number obtained from the smaller sample. We can see
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Figure 4.3 Two different estimates for the tail index using samples from a normal
distribution.
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that, by taking a much larger sample, the top 20 points correspond to part of the
distribution that is farther out in the tail. This gives the method more of a chance
to pick up the thin tail behavior and the tail index estimates become larger. But
this example also shows the difficulty of being sure about the tail index on the
basis of a sample of a few hundred points. It demonstrates, in particular, that
the evidence for heavy tails in the foreign exchange data of Example 4.2 is
quite weak. �

4.1.3 *More details on the tail index

We have assumed in our definition of a tail index that there is a single value of k0
that lies between the region where (1 − F(x))xk goes to infinity and the region
where it goes to zero. But what if there is a range of values where (1 − F(x))xk

neither approaches zero nor approaches infinity? In this case there will not be
a well-defined tail index. In fact, this is a very unlikely occurrence; sufficiently
unlikely that we can really ignore the possibility. Let’s try to see why this is so.

We start by being more precise about what it means for a function G(x) not to
go to infinity and not to go to zero. Not going to infinity means that there is some
value M such that G(x) < M for an infinite sequence of x values: x1, x2, . . . .
Thus, no matter how large we take x we can always find a larger point where
G(x) < M . This is the logical negative of a statement that G(x) tends to infinity,
which is equivalent to saying that for every M , G(x) will end up above M and
stay there. In the other direction, G(x) not going to zero means there is some
value of m such that G(x) > m for an infinite sequence of x values: x1, x2, . . . .
Now suppose that this happens for G(x) = (1 − F(x))xk for all k in a range
[k0 − δ, k0 + δ]. Now if

(1 − F(xi))x
k0+δ

i < M for xi → ∞,

then
(1 − F(xi))x

k0
i < Mx−δ

i .

Notice that the right-hand side of this inequality goes to zero as xi gets larger.
In the same way from

(1 − F(xi))x
k0−δ

i > m for xi → ∞,

we have
(1 − F(xi))x

k0
i > mxδ

i

and the right-hand side goes to infinity as xi gets larger. So, at one and the same
time, there are xi sequences where (1 − F(xi))x

k0
i goes to infinity and where it

goes to zero. The only way this can happen is for the function (1 − F(xi))x
k0
i

to oscillate up and down with the peaks being larger and larger and the troughs
getting closer and closer to zero. We could construct such a function if we tried,
but it is definitely not something that would occur in practice.
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When we talk of a tail index of k then we do not have to specify whether the
critical expression L(x) = (1 − F(x))xk itself goes to zero or infinity. In fact,
either of these options is possible, but the function L(x) must not go to infinity
or to zero too quickly. There is a specific condition required for this: L(x) must
be slowly varying, meaning that

lim
x→∞

L(tx)

L(x)
= 1

for any value of t > 0. So, for example, taking t = 2, doubling the value of x

cannot (in the limit of large x) look like applying any particular multiplier other
than 1. Notice that if L(x) = kxβ then limx→∞L(tx)/L(x) = tβ and so this can
only equal 1 (and L be slowly varying) if β = 0.

There are some complications here that we don’t want to get sucked into.
The condition that (1 − F(x))xα is slowly varying is actually a stronger condi-
tion than saying that the exponent α marks the dividing point between functions
approaching zero and functions approaching infinity. (We can see this by observ-
ing that a periodic function like 2 + sin x is not slowly varying but will be
dominated by xε for even tiny values of ε.) The ‘slowly varying’ condition is
the one that is required to prove the extreme value results that we give later on,
even though the way we have defined a tail index is a bit simpler.

As we have mentioned already, there is a very close connection between the
existence of moments for a distribution and the tail indices involved. We start
by looking at the condition that the second moment E(X2) exists. When X has
a density function f and a CDF F , we can write

E(X2) = lim
R→∞

∫ R

−R

f (x)x2dx .

Here we have written the upper and lower limits of the integral as −R and R

(rather than infinity) because the integral from −∞ to ∞ is only defined when
the limit as R → ∞ exists, and the question of existence or not is precisely what
we are interested in. Now, choosing an arbitrary point u and integrating in the
range above u (noting that in this range x ≥ u) we get the inequality∫ R

u

f (x)x2dx ≥
∫ R

u

f (x)u2dx = (F (R) − F(u))u2.

Letting R go to infinity shows that limR→∞
∫ R

u
f (x)x2dx ≥ (1 − F(u))u2.

Now consider a distribution with a tail index α strictly less than 2. Then
(1 − F(u))u2 approaches infinity. Hence, for any large number M we can choose
a u with (1 − F(u))u2 > M and so, for this u, limR→∞

∫ R

u
f (x)x2dx > M . The

integral over the whole range −R to R has to be larger than this, i.e.

lim
R→∞

∫ R

−R

f (x)x2dx > M.
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But, since M can be chosen to be any number we like, this limit as R → ∞
cannot exist, i.e. E(X2) = ∞.

More generally, we can use this argument to show that if a distribution has
a tail index of α then the moments E(Xk) will not exist for any k > α.

4.2 Limiting distributions for the maximum

In this section we look at problems where the maximum of a number of values
is of interest. Suppose that we are concerned with predicting the maximum of N

different random variables X1, X2, . . ., XN all with the same distribution. For
example, we might be interested in the maximum wealth from 100 individuals
that we sample at random, so that Xi is the wealth of the ith individual. We
know that if all the Xi are independent, there are N of them, and each has the
same CDF, F(x), then the distribution of their maximum, which we call Fmax,
has CDF (F (x))N . When N is large, it is only the tail of the original distribution
that matters, since any value of x where F(x) is substantially below 1 will
automatically have (F (x))N very small. This makes sense: when we take the
maximum over a large number of draws from a random variable we are pretty
much bound to see a value in the right-hand tail of the distribution, and so the
behavior of the distribution in the tail is the only thing that counts.

We are going to show that, in a way that we will make clear in a moment,
the distribution of the maximum of N values, for N large, will only depend on
the tail index of the original distribution. We consider a distribution with tail
index α, and in particular we suppose that F is a distribution where, in the tail
of the distribution, 1 − F(x) = kx−α , i.e. F(x) = 1 − kx−α . We need to define
a specific multiplier bN which will act as a scaling parameter. Set

bN = (kN )1/α.

Then
Fmax(bNx) = (F (bNx))N = (1 − kb−α

N x−α)N .

But
b−α

N = ((kN )1/α)−α = (kN )−1,

so

Fmax(bNx) =
(

1 − x−α

N

)N

. (4.1)

We will need to make a lot of use of powers of e in this section and it is
sometimes clearer to use the notation exp(x) to mean ex . We will swap between
these two (and also combine them) with the aim of avoiding superscripts of super-
scripts so that the expressions are easier to read. One fact about the exponential



UNDERSTANDING THE TAILS 101

function is that it can be given as the limit:

exp(x) = lim
N→∞

(1 + x/N)N, (4.2)

so, from Equation (4.1) we see that when N is large, we have Fmax(bNx) is
approximately exp(−x−α).

We have shown that if we take the maximum of, say, 50 independent identi-
cally distributed random variables where 1 − F(x) goes to zero, like x−α , then
the distribution is approximately a scaled version of one with distribution function
exp(−x−α), where the shape stays the same but the horizontal axis is multiplied
by b50 = (50k)1/α .

Thus, the tail index, α, is the only thing that determines the shape of the
distribution, and the distribution of maximum values has a CDF which is of the
form F(x) = exp(−x−α), but this gets scaled by an amount that depends on N

and the particular distribution that is involved.
The distribution with a CDF given by F(x) = exp(−x−α) is called the

Fréchet distribution, after the very eminent French mathematician Maurice
Fréchet. The density function for a Fréchet is obtained using the rules of
calculus: we have

(d/dx) exp(g(x)) = g′(x) exp(g(x))

where we write g′(x) for the derivative of a function g(x). Thus, the density is

f (x) = αx−α−1 exp(−x−α).

Figure 4.4 shows the density of the Fréchet distribution for different values of α.
The three curves on the left of the figure show the density function when α = 1,
α = 2 and α = 3 (with higher values of α giving higher peaks).

Also shown in Figure 4.4 is the distribution of the maximum of 16 draws from
a distribution with F(x) = 1 − x−2, for x > 1. This should approximately match
the Fréchet with α = 2 scaled horizontally. Since F(x) = 1 − kx−α with k = 1
and α = 2, the scaling parameter is aN = (kN )1/α = 161/2 = 4. This comparison
is also shown (the two curves with peaks at around 3): the appropriately scaled
Fréchet density is the dashed line and the distribution of the maximum is the solid
line. The horizontal scaling applied to the CDF will require a matching vertical
scaling of the density function by a factor of 4 (so that the density function still
integrates to 1) and this is why the peak here is lower than the standard Fréchet
with α = 2. The match between the solid and dashed lines is extremely good,
especially given the relatively small size of N = 16.

We now have a clear picture of what happens when the original distribution
has a fixed tail index, but what will happen if we try the same approach with tails
that approach zero faster than any polynomial (i.e. they have infinite tail index)?
The best way to understand this situation is to work through an example, so
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Figure 4.4 Fréchet densities for different values of α.

we consider the exponential distribution, which has CDF F(x) = 1 − e−x (and
density function f (x) = e−x) for x > 0. This does indeed have the property of
an infinite tail index. With a finite tail index we used a horizontal scaling of
bN = (kN )1/α , but when α is effectively infinite this becomes a scaling by 1, i.e.
no scaling at all. In fact, rather than scale the horizontal axis we will shift it by
a certain amount that depends on N . For this example we want to shift by an
amount log(N). Note that

F(log(N) + x) = 1 − e− log(N)e−x = 1 − exp(−x)

N
.

Thus

Fmax(log(N) + x) = (F (log(N) + x))N

=
(

1 − exp(−x)

N

)N

.

From our previous observation, Equation (4.2), about the exponential as a limit
we can see that as N gets large,

Fmax(log(kN ) + x) → exp(−e−x).

Again we have a distribution that is reached in the limit. In fact this dis-
tribution where F(x) = exp(−e−x) is called the Gumbel distribution. We have
shown that the maximum of, say, 50 draws from the exponential distribution
where F(x) = 1 − e−x has a distribution that is approximately Gumbel shifted
by an amount log(50) = 3.91.

At first sight the Gumbel distribution looks forbidding: it has a CDF where
e is raised to a power which itself involves e raised to a power. The density
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Figure 4.5 The density function for the Gumbel distribution.

function for the Gumbel is

f (x) = (d/dx) exp(−e−x) = e−x exp(−e−x).

The density function for the Gumbel is shown in Figure 4.5 and we can see that
it looks pretty ‘ordinary’ (given all the exponentials in its definition).

Though the exponential distribution has an infinite tail index, it still has tails
that are thicker than the normal distribution which involves an exp(−x2) behavior
for the density function. The cumulative for a normal distribution is hard to deal
with, so we will consider a simpler distribution but which also has an exp(−x2)

characteristic. So we take as our second example the distribution with CDF
given by F(x) = 1 − exp(−x2) (this has density f (x) = 2x exp(−x2)). To find
the limiting distribution for a maximum of N draws from this we will need to
use both scaling (by a factor bN ) and shifting (by an amount aN ). We set

aN =
√

log N and bN = 1/(2
√

log N).

We seem to have pulled these values for aN and bN out of the air, but later we
will give an indication of how they are chosen. Now note that

F(aN + xbN) = 1 − exp
(−(aN + xbN)2)

= 1 − exp

⎛
⎝−

(√
log N + x

2
√

log N

)2
⎞
⎠

= 1 − exp

(
−

(
log N + x + x2

4 log N

))

= 1 − 1

N
exp(−x)zN(x),

where
zN(x) = exp(−x2/(4 log N)).
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So

Fmax(aN + bNx) = (F (aN + xbN))N

=
(

1 − zN(x) exp(−x)

N

)N

.

Observe that for fixed x, zN(x) will approach 1 as N → ∞. This is enough to
show that

lim
N→∞

Fmax(aN + xbN) = lim
N→∞

(
1 − exp(−x)

N

)N

= exp(−e−x). (4.3)

We end up with a Gumbel distribution: exactly the same limit distribution as
for the exponential case. This might be surprising, since we would not expect to
reach the same limit distribution for two such different tail behaviors: there is an
enormous difference between exp(−x) and exp(−x2) (for example, when x = 5
we get e−5 = 6.7 × 10−3 and e−25 = 1.4 × 10−11). An important observation is
that the multiplier bN goes to zero as N → ∞. This corresponds to a bunching
up of the distribution that does not occur with the exponential. So here there is a
qualitative difference between the two cases: with the thinner tail associated with
exp(−x2) we find that we can be more and more accurate with our prediction of
what the maximum value of N draws from the distribution will be.

The two examples we have given are particular instances of a more general
result called the Fisher–Tippett theorem. This theorem shows that, for most dis-
tributions with an infinite tail index (essentially exponential decay), the Gumbel
distribution occurs as the limit when considering maxima of repeated draws. In
fact, the conditions for this to occur are sufficiently general that we can assume
it will happen with any infinite tail index distribution. To make this more precise
we define aN as the 1 − 1/N quantile for the distribution, i.e.

aN = F−1(1 − 1/N)

and
bN = 1/(N f (aN)),

where f is the density function for F . Then the theorem shows that, when the
tail index is infinite,

lim
N→∞

Fmax(aN + xbN) = exp(−e−x).

We will give a formal statement of the Fisher–Tippett theorem with some further
discussion in the next subsection.
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Example 4.4 Application of Fisher–Tippett theorem to a normal

Now we will apply the Fisher–Tippett theorem to the case of finding the dis-
tribution of the maximum of 50 independent samples from a standard normal
distribution. This has density function

ϕ(x) = 1√
2π

e−x2/2

and we write 	(x) for the standard normal CDF,
∫ x

−∞ ϕ(s)ds . The first step is
to find the right values of aN and bN for N = 50. We have

aN = 	−1(1 − 1/N) = 	−1(0.98) = 2.054,

bN = 1/(Nϕ(aN)) = 1/(50ϕ(2.054)) = 0.413.

With these values we can say that Fmax(aN + bNx) is approximately Gumbel, i.e.

Fmax(2.054 + 0.413x) ≈ exp(−e−x).

We can also reverse this and say that Fmax(y), the chance that the maximum of
50 samples is less than y, is approximately

F̂ (y) = exp

(
− exp

(
− (y − 2.054)

0.413

))
.

This has a corresponding density

f̂ (y) = 1

0.413
exp

(
− (y − 2.054)

0.413

)
exp

(
− exp

(
− (y − 2.054)

0.413

))
.

In Figure 4.6 we show the density of the maximum of 50 draws from a normal
distribution (the solid line) compared with the Gumbel distribution given by f̂

(the dashed line). This is not a particularly good match, which shows that con-
vergence in the case of the normal distribution is rather slow. Using different
scaling constants aN and bN can improve this slightly, but no matter what values
are used, the approximation will not be exact. (Note that the values of aN and bN

are not unique – different choices of these sequences can give the same result in
the limit and may do a slightly better job for lower values of N .) �

Up to this point we have assumed that we are dealing with distributions
having an infinite range. Whether the tail index is finite or infinite is a matter
of how quickly the density in the tail drops to zero, but we have assumed that
the density remains positive. Now we turn to the case that there is a maximum
value for the distribution. So there is a fixed right-hand end point, xmax say, and
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Figure 4.6 Gumbel compared with maximum from 50 samples from the standard
normal distribution.

obviously the distribution of the maximum of N samples from this distribution
will also have this as its maximum value. Now it makes sense to look at how
quickly the CDF of the original distribution, F(x), approaches 1 as x approaches
the point xmax, or (equivalently) how quickly the density function approaches
zero there. It turns out that the distribution of the maximum also approaches a
particular type of distribution in this case. In fact, the limit becomes a Weibull
distribution, which has a CDF H(x) = exp(−(−x)α) for x < 0 for some choice
of α > 0. The density function for the Weibull is h(x) = α(−x)α−1 exp(−(−x)α)

for x < 0.
In fact this case is also described by the Fisher–Tippett theorem. Just as with

the other cases we have shifting and scaling parameters aN and bN to apply.
Since the Weibull finishes at 0, the shift must be by an amount xmax. So we end
up with a set of numbers bN where

lim
N→∞

Fmax(xmax + xbN) = exp(−(−x)α) for x < 0.

The parameter α for the Weibull will be determined by the behavior of F near
xmax. If, for example, F(x) = 1 − k(xmax − x)2 for some k, then the limiting
distribution is Weibull with α = 2.

4.2.1 *More details on maximum distributions
and Fisher–Tippett

In this section we want to fill in some of the missing mathematical details. We
start with the question of why a distribution having a certain tail index has a
maximum (of N independent samples) which approaches a Fréchet distribution.
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The discussion we gave in the previous subsection assumes a particular form for
the CDF, but the definition of a tail index is more general than this.

We need to work with a slowly varying function. Suppose that L(t) = (1 −
F(t))tα is a slowly varying function of t (this implies that α is the tail index of
F but is a slightly stronger claim). Thus, limz→∞ L(tz )/L(z) = 1 for any value
of t > 0. In this expression we set z = bN and t = x and we see that when we
define

zN(x) = (1 − F(bNx))bα
Nxα

(1 − F(bN))bα
N

= (1 − F(bNx))xα

(1 − F(bN))
, (4.4)

then the slowly varying condition implies that, for any fixed x, zN(x) → 1 pro-
vided that bN → ∞.

Now we set

bN = F−1
(

1 − 1

N

)
,

which is the 1 − (1/N) quantile for the distribution, and the right choice for the
scaling factor. This will indeed approach ∞ as N gets large. Now we notice that
we can rearrange Equation (4.4) to get

1 − F(bNx) = zN(x)(1 − F(bN))x−α

= zN(x)x−α

N
.

Thus

Fmax(bNx) = (F (bNx))N =
(

1 − zN(x)x−α

N

)N

.

Because of the limit behavior of zn, we know that any ε > 0 will have 1 − ε <

zN < 1 + ε for N large enough. Hence

lim
N→∞

(
1 − (1 − ε)x−α

N

)N

> lim
N→∞

Fmax(bNx) > lim
N→∞

(
1 − (1 + ε)x−α

N

)N

.

Since the left- and right-hand sides can both be made as close as we like to
exp(−x−α) by choosing ε small enough, we have established that

lim
N→∞

Fmax(bNx) = exp(−x−α),

and this is the Fréchet distribution we have been working towards.
This argument, which sandwiches the Fmax limit between two expressions

that can be chosen as close as we like to the exp function, is also exactly what
we need to show that the limit in Equation (4.3) is correct.

Now we want to move towards a more formal description of the Fisher–
Tippett theorem. Notice that when we say that the distribution of maxima
approaches a limiting distribution, what we mean is that the distribution is
obtained by a scaling and shifting procedure (with this scaling and shifting
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depending on the number N of draws from the original distribution). So anything
that is a scaled and shifted version of the limiting distribution could be used
instead. We use the terminology of types: two distributions F1 and F2 are of the
same type if they can be obtained from each other by scaling and shifting, i.e. if
F1(x) = F2(a + bx) for the right choice of a and b. For example, any normal
distribution, no matter what its mean and standard deviation, is of the same type.

We say that the distribution F is in the maximum domain of attraction of
a distribution H if there are sequences aN and bN with (F (aN + bNx))N →
H(x) for every x. We write this as F ∈ MDA(H). The terminology here can
be misleading – the maximum domain of attraction sounds like it is the largest
domain of attraction in some sense, but instead what is meant is that it is the
domain of attraction under a maximum operator. Saying F ∈ MDA(H) is exactly
the same as saying that the maximum of N samples from F has a distribution
which is the same shape as H (after scaling by bN and shifting by aN ).

Because the choice of aN and bN is arbitrary, this is really a statement about
types of distribution: if F̃ is a distribution of the same type as F , and H̃ is of the
same type as H , then F ∈ MDA(H) and F̃ ∈ MDA(H̃ ) are exactly equivalent
statements.

Now we are ready to state the Fisher–Tippett theorem in the form it is usually
given.

Theorem 4.1 If F is in MDA(H) for some distribution H (and H is not con-
centrated on a single point) then there is a parameter ξ for which H is the same
type as

Hξ(x) =
{

exp(−(1 + ξx)−1/ξ ) for ξ �= 0,

exp(−e−x) for ξ = 0.

The formula for Hξ defines a set of distributions usually called generalized
extreme value (or GEV) distributions. The formula also implies the range of x

values that apply, since we need Hξ(x) increasing from 0 to 1. When ξ < 0, we
need x ≤ −1/ξ and when ξ > 0, we need x ≥ 1/ξ .

Essentially there are three cases to consider according to whether the ξ

value is positive, zero, or negative. We have already met two examples of
the generalized extreme value distributions. The ξ = 0 case is the Gumbel
distribution. When ξ > 0 we can set α = 1/ξ and get a distribution function
H(x) = exp(−(1 + x/α)−α), which is of the same type as the Fréchet
distribution exp(−x−α) (we just have to scale by 1/α and shift by 1). The
reason for giving this result in the more complicated form, with ξ rather than
α, is that it makes it clearer that the ξ = 0 case can be reached in the limit as
ξ → 0 from either above or below. In both cases we are just using our standard
observation, Equation (4.2), that (1 + x/n)n approaches ex as n → ∞.

We need to say more about the case with ξ < 0. In this case the GEV dis-
tribution has a fixed right-hand end point, since exp(−(1 + ξx)−1/ξ ) reaches
a maximum value of 1 when x = −1/ξ , marking the right-hand end of the
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distribution. It is not hard to see that this GEV is of the same type as a Weibull
distribution. To link the parameter ξ to the behavior of the original distribution
function, we need to go back to a slowly varying function. However, the idea
of a slowly varying function is all about how the function behaves as it goes to
infinity, so we need to do some manipulation and work with the inverse of the
difference between x and xmax. If

(1 − F(xmax − (1/z)))zα

is a slowly varying function then the maximum of N draws from the distribution
is approximately (after scaling and shifting) a Weibull with parameter α (or GEV
with parameter −1/α).

The Fisher–Tippett theorem as it stands doesn’t say how likely it is that
there will be a limiting distribution for Fmax, it just specifies the form of that
distribution, if it occurs. But in fact it is extremely difficult to find any example
without some limiting distribution. Remember that we allow scaling and shifting,
so it is only the shape of the distribution that is important. We could, for example,
use scaling and shifting to fix the fifth percentile and ninety fifth percentile points.
Then we can watch what happens to the other quantile points as N increases.
If they all converge then we will have a limiting distribution. If we imagine
that there is no limiting distribution then it is hard to see how we could ever
cycle between different shapes, but if there is no cycling then the quantile points
which are constrained to be between the 5th and 95th percentile are bound to
converge. So it is only at the extremes that things could go wrong, e.g. by having
tail behavior like x−k with k getting larger and larger as N increases, but doing
this in a way that does not lead to some other limiting distribution. It turns out
that this will not happen for distributions that occur in practice, and this can be
demonstrated by looking in more detail at conditions sufficient to guarantee that
F is in MDA(Hξ ). We have already shown how a slowly varying condition is
enough when there is a tail index of α (and a similar condition applies with a
fixed right-hand limit), but we need something more complicated to deal with
the ξ = 0 case and we will not give any details here.

4.3 Excess distributions

Now we turn to a different, but related, topic. Instead of looking at the maximum
of N random variables, in this section we will look more directly at the behavior
of the tail of a distribution. The idea is similar to the discussion of the previous
section, where we were concerned with the shape of the distribution of maximum
values. Now we are interested in the shape of the distribution above a threshold
u. As this threshold increases, we ask whether there is a limiting distribution
for the excess (i.e. the part of the distribution above the threshold u) always
assuming that we scale appropriately. The idea is illustrated in Figure 4.7 where
two different threshold values u have excess distributions that look similar.
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Figure 4.7 The distribution above threshold u1 and the distribution above thresh-
old u2 can be scaled to become very similar.

The excess distribution is obtained by considering the distribution of X − u

for some threshold u, conditional on X being greater than u. We write this as
Fu(x), thus

Fu(x) = Pr(X − u ≤ x|X > u), for x > 0.

This is simply the probability that the random variable X is in the range u to
x + u given that it is greater than u, i.e. using Bayes’ rule

Fu(x) = F(x + u) − F(u)

1 − F(u)
, for x > 0.

This expression for Fu can be rewritten as

Fu(x) = 1 − 1 − F(x + u)

1 − F(u)
.

We will discover that for many distributions F there will be a limiting distribution
(defined up to scaling) for Fu as u gets very large. This theory closely parallels
the theory of the distribution of the maximum of N samples given in the previous
section.

To illustrate this, suppose that F(x) = 1 − kx−α , so that F has a tail index
of α. Then

Fu(x) = 1 − k(x + u)−α

k(u)−α

= 1 −
(

1 + x

u

)−α

, for x > 0.
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Thus, if we scale by u we see that

Fu(ux) = 1 − (1 + x)−α , for x > 0.

Here there is no approximation; the excess distribution (after scaling) is exactly
given by this formula. The distribution is called a Type 2 Pareto distribution.
A more exact treatment (which we give in the next subsection) shows that this
form of limiting distribution is the only one that can arise with a tail index of α.

We can carry out the same kind of calculation with distributions having an
infinite tail index. So we suppose that

F(x) = 1 − exp(−x2).

Then

Fu(x) = 1 − exp(−(x + u)2)

exp(−u2)

= 1 − exp(−x2 − 2ux) exp(−u2)

exp(−u2)

= 1 − exp(−x2 − 2ux), for x > 0.

Now consider scaling by 1/(2u). We have

Fu

( x

2u

)
= 1 − exp

(
− x2

4u2

)
exp(−x), for x > 0.

Since exp(−x2/(4u2)) approaches 1 as u → ∞ we see that

Fu

( x

2u

)
→ 1 − exp(−x), for x > 0.

as u → ∞. Thus, in this case scaling by 1/(2u) gives approximately an exponen-
tial distribution. It turns out that the right choice of scaling constant will achieve
an exponential distribution in the limit for any reasonable distribution with an
infinite tail index.

Thus, when the tail index is finite a Pareto distribution emerges in the limit,
and when the tail index is infinite an exponential distribution occurs. This is
reminiscent of the kind of thing that happens with the Fisher–Tippett theorem,
for the distribution of the maximum of N samples from the same distribution.
In fact, as we discuss in the next subsection, the conditions for convergence are
also exactly the same.

Again we can summarize the final position in a single theorem, but this time
we use a generalized Pareto distribution to capture the different distributional
forms that may occur. We state the theorem more carefully in the discussion of
the next subsection. But for the moment we just want to see how to use the
result. The idea is that we will fix on a large value of u and then approximate
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Fu(x) with the generalized Pareto distribution (GPD) which has the following
distribution function:

Gξ,β(x) =
{

1 − (1 + ξx/β)−1/ξ for ξ �= 0

1 − exp(−x/β) for ξ = 0
, (4.5)

where β > 0. When ξ ≥ 0 we require x ≥ 0. The ξ < 0 case corresponds to a
distribution for F with a maximum value xmax, and here we require 0 ≤ x ≤
−β/ξ .

In general, the parameter ξ captures the shape and β simply acts as a scaling
constant. The parameter ξ is really the inverse of the tail index, so ξ = 1/α. The
reason for working with ξ , rather than α, is that it becomes clearer that the form
of the generalized Pareto is consistent for different ξ values, since the ξ = 0 case
is obtained in the limit as ξ approaches zero.

If F has a tail index of α < ∞ (i.e. ξ > 0) then we know that

Fu(x) = 1 −
(

1 + x

u

)−α

, for x > 0.

We can compare this expression to the GPD given by Equation (4.5). Converting
from ξ to α shows that the scaling parameter β is given by uξ in this case.

With an infinite α (i.e. ξ = 0) the scaling parameter will be determined by
the exact shape of the tail. The example that we discussed above with F(x) =
1 − exp(−x2) has a β value of 1/(2u). Other examples of distributions with
infinite tail index will give different values of β.

The density function for the generalized Pareto distribution is given by

gξ,β(x) = (1/β)(1 + ξx/β)−(1/ξ)−1,

as is simple to see by differentiating Equation (4.5). The density when ξ = 0 is
given by gβ(x) = (1/β) exp(−x/β), which is the limit of gξ,β(x) as ξ approaches
zero. Figure 4.8 plots this density for different values of ξ , in each case with a
β value of 1.

If the excess has a GPD distribution, then it is natural to ask about the
mean of the distribution: this will be the mean value of the excess over u, i.e.
E(X − u | X > u). When X is distributed as Gξ,β it turns out that the mean
value is given by

E(X) = β/(1 − ξ).

Exercise 4.4 asks you to carry out the integration to show this formula is true. The
same formula holds when ξ = 0 since the exponential distribution with density
(1/β) exp(−x/β) has mean β. Notice that in Figure 4.8 the differences between
the three distributions do not seem enormous, but the mean of the density shown
with a solid line is 5; the mean of the dashed line is 5/3 and the mean of the
dotted line is 1.
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Figure 4.8 Density functions for generalized Pareto distribution with different
parameters. All β values are 1.

In the case that ξ ≥ 1 then the formula no longer makes sense (giving a
result which is negative or infinite). This is exactly what we would expect: the
tail index is 1/ξ , and if this index is less than 1 then the mean does not exist.

Given a distribution defined by F , the GPD describes the excess distribution
above a threshold u. Now we ask what happens when a different threshold is
used. Suppose that Fu is given. Then the formula which defines Fu is

1 − Fu(x) = 1 − F(x + u)

1 − F(u)

and this can be rewritten

1 − F(x + u) = (1 − Fu(x))(1 − F(u)). (4.6)

Suppose we have a v > u. Then, from Equation (4.6), we deduce that

1 − Fv(x) = 1 − F(x + v)

1 − F(v)

= (1 − Fu(x + v − u))(1 − F(u))

(1 − Fu(v − u))(1 − F(u))

= (1 − Fu(x + v − u))

(1 − Fu(v − u))
.

In the case where ξ �= 0 and Fu is given by the GPD formula, we get

1 − Fv(x) = (1 + ξ(x + v − u)/β)−1/ξ

(1 + ξ(v − u)/β)−1/ξ
=

(
1 + ξx

β + ξ(v − u)

)−1/ξ

.
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This is also of GPD form but with the parameter β replaced by β + ξ(v − u). In
other words, increasing the threshold by an amount � = v − u leaves the shape
parameter ξ unchanged, but increases the scaling parameter by an amount ξ�.

In the case where ξ = 0 and Fu is given by the GPD formula, then

1 − Fv(x) = exp((x + v − u)/β)

exp((v − u)/β)
= exp(x/β).

When ξ = 0, increasing the threshold makes no difference to the excess distribu-
tion; it stays as an exponential with the same parameter. This is the well-known
memoryless property of the exponential distribution: if the time between events
is an exponential distribution then knowing that nothing has happened so far
makes no difference to the distribution of the time to the next event.

This result about the way that β changes (or doesn’t change) with the thresh-
old needs to be treated with care, since it assumes that the excess distribution is
exactly a GPD, and this is only an approximation. For example, in our discus-
sion earlier of the case where F(x) = 1 − exp(−x2) we found that the excess
distribution Fu had the property that Fu(x/(2u)) approaches the CDF for an
exponential distribution. In other words, Fu(x) is given approximately by Gξ,β(x)

with β(u) = 1/(2u) and ξ = 0. So, in this case, we do see a change in β as u

changes, even though this is the case where β is supposed to be fixed. However,
expressed as a multiple of the change in u, the difference is very small. If we
take v > u and let � = v − u then

β(v) = 1

2v
= 1

2u
+ u − v

2uv
= β(u) − 1

2uv
�.

4.3.1 *More details on threshold exceedances

First we return to the question of the behavior of the excess distribution when F

has a tail index of α. As we have done before, we use the marginally stronger
idea of a slowly varying function and suppose (1 − F(t))tα is a slowly varying
function of t (this implies that α is the tail index of F ). Thus, if

zu(k) = (1 − F(ku))uαkα

(1 − F(u))uα
= (1 − F(ku))kα

(1 − F(u))
,

then, for any fixed k, zu(k) → 1 as u → ∞. Thus

Fu(ux) = 1 − 1 − F(ux + u)

1 − F(u)

= 1 − (1 + x)−αzu(1 + x),

where we have used the definition of zu(k) with k = 1 + x. So, as u → ∞ we
have

Fu(ux) → 1 − (1 + x)−α for x > 0. (4.7)



UNDERSTANDING THE TAILS 115

In general, we say that X is distributed as a Pareto distribution Pa(α, κ) if
the CDF is given by

F(x) = 1 −
(

1 + x

κ

)−α

,

so, in this case we have shown that, after scaling by u, the excess distribution is
a Pareto with κ = 1.

Now we will give the equivalent of the Fisher–Tippett theorem in this setting,
which demonstrates the role of the generalized Pareto distribution introduced
above.

Theorem 4.2 If F is in MDA(Hξ ) then there is a function β(u) with

lim
u→∞ Fu(β(u)x) =

{
1 − (1 + ξx)−1/ξ for ξ �= 0,

1 − e−x for ξ = 0.

Notice that there is not only a similarity of form between this result and the
Fisher–Tippett theorem; it is exactly the set of distributions whose maximum
converges to a distribution of the form Hξ that turns out to have an excess
distribution converging to Gξ,β(x) for some choice of function β(u).

With this formulation we obtain the exponential distribution in the limit as
ξ → 0, so the distribution shape changes in a way that is continuous with ξ .
However, since there is an arbitrary β(u) involved, we could scale x by a further
factor of ξ and get back to the form we gave earlier, i.e. with 1 − (1 + x)−α as
the limit. For ξ ≥ 0, the limiting distribution is defined over the range x ≥ 0 and
when ξ < 0 we require 0 ≤ x ≤ −1/ξ .

It is interesting to compare this result with the Fisher–Tippett theorem. There
we work with a maximum over N samples, and look at the limit as N → ∞,
while here we consider an excess over u and look at the limit as u → ∞. In the
Fisher–Tippett theorem the limiting CDF has the form exp(−Z(x)) where the
CDF moves from 0 to 1 as the expression Z(x) moves from ∞ to 0, while here
the limiting distribution is simply 1 − Z(x) and is defined over the range where
Z moves from 1 to 0. Moreover, in the Fisher–Tippett theorem we may require
both scaling and shifting (i.e. both aN and bN non-zero) whereas here we only
need to scale by β(u).

4.4 Estimation using extreme value theory

An understanding of the tail of a distribution is particularly valuable if we want
to estimate probabilities associated with events that we have not seen, or have
only seen rarely. The idea here is to estimate the shape and scale parameters from
the data and then use these to estimate the probability of interest. Of course, we
will need to assume that there is sufficient consistency in the tail behavior that
the theory we have discussed applies, but this is a caveat that needs to be borne
in mind whatever estimation we carry out. Estimation is always in some sense
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a deduction about what happens at a point where we do not have data, and this
deduction is bound to make use of some modeling assumptions.

This takes us back to the opening scenario of this chapter, in which the
requirement is to estimate a quantile of a distribution of weekly requirements
for a particular drug. In that example, Maria wanted to know the x value which
would be exceeded on only one week in 156. This is extrapolation well beyond
the 104 data points that she has observed, and so any estimate she makes is
bound to be very uncertain. Nevertheless the ideas we are exploring here allow
us to use quite unrestrictive assumptions to say something about what happens
well out in the tail. We don’t need to use a particular model of the distribution
(whether that be normal, exponential or something else) since the estimates we
make will apply to all these distributions and many more. All we need to assume
is that there is enough regularity in the behavior in the tail – the existence of a
specific tail index would be enough.

The idea of using assumptions on reasonably regular behavior in order to
make extrapolations is not too different in kind from what we do when we interpo-
late (i.e. when we estimate behavior between existing data points). Extrapolation
makes an assumption that the behavior of the distribution does not change sud-
denly for extreme values, while making estimates from within the range of values
that we have observed makes an assumption that there is no sudden change of
behavior within that range. The difference is that when we extrapolate there is,
by definition, nothing in the data which can warn us about changes, whereas a big
change in the distribution at a point within the range of data we observe might
be detected by looking at the data. This might seem like an important distinction,
but in practice we would need quite a lot of data to spot such a change. For the
problem that Maria faces, even four or five years of data would give much the
same issue. If, for some reason, there is a change in behavior of the distribution
of weekly requirements that occurs at the 99% point, then looking at empirical
data where only two or three data points are expected to be larger than this value
will never reveal what is going on. So, having double the amount of data will
certainly help in making a good estimate, but there will still be a need to assume
some regularity in the data.

In this section we will introduce a three-step method for estimating value
at risk or expected shortfall (or other risk measure). However, it is important to
realize that this is just one of several methods that might be employed. Particularly
for time series data there are good arguments for using a more sophisticated
approach that takes account of changes in volatility over time (as often happens
with financial data). Nevertheless when the correlations between data points are
not too strong and when there is no reason to expect changes in the underlying
distribution over time, the method we will describe can be very effective.

4.4.1 Step 1. Choose a threshold u

The idea is to approximate the distribution of losses above a certain threshold
level, u, using a generalized Pareto distribution. We need to make u reasonably
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large so that the extreme value theory will apply. However, since we will end
up estimating the parameters of the GPD from the data that occur above the
threshold, we must ensure that there are enough data points to do this. It is not
so hard to choose a reasonable value of the threshold given a large data set, but
it can be difficult if the data set is small. The approach we will illustrate uses
a sample mean excess plot. For any threshold value v, we look at the average
amount by which the data points exceed this threshold, averaging just over the
data points larger than v. The sample mean excess is an estimate of the true value,
and, as we have already seen, this will be β/(1 − ξ) if the excess distribution
is a GPD Gξ,β . The discussion in the previous section also demonstrates that
once we have chosen a threshold large enough for the GPD approximation to be
accurate then we expect that increasing the threshold by an amount � leaves ξ

unchanged but increases β by an amount ξ�. Thus, we expect that in the tail
of the distribution the mean excess will be linear as a function of the threshold
with a slope of ξ/(1 − ξ) provided that ξ < 1.

Hence, if we plot the mean excess for different thresholds, we should get a
rough straight line for values of the threshold large enough for the GPD approx-
imation to apply but small enough for there to be enough points above the
threshold for the sample estimate of the mean to be accurate. It is reasonable to
carry out the estimation procedure with a value of u that is near the start of this
final straight line section if it exists.

Example 4.5 Estimating risk measures for Amazon.com

To illustrate this, we look at some stock price data: Figure 4.9 shows the percent-
age weekly loss (negative values are gains) for the share price of Amazon.com
over the 14-year period from the start of 1998 to the end of 2011. There are 730
weekly data points from which we calculate 729 percentage losses. Obviously
there was significantly higher volatility in the early part of this period, but we
will not try to use these changes in volatility within our estimation procedure.
Figure 4.10 shows the mean excess data as the threshold varies. We can see that
for thresholds in the range 0 to 2%, the mean excess stays around 6% loss, but
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Figure 4.9 Weekly losses/gains for Amazon.com stock over period 1998 to 2011.
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Figure 4.10 Mean excess plot for Amazon stock price data.

for thresholds larger than a 2% loss, the mean excess starts to rise. It does this
in an erratic way, but there is a definite upward trend. This suggests that we can
use a value of 2% loss for the threshold u. But the best choice of threshold is
fairly arbitrary, and for these data we could also take a threshold value around
6%, which would still give 125 exceedances. �

4.4.2 Step 2. Estimate the parameters ξ and β

Having fixed a value of u, the second step in our procedure is to estimate the
parameters ξ and β in the generalized Pareto distribution that applies above u.
We can do this using a maximum likelihood approach. This is a fairly standard
method from statistics, but we will give a summary of how it works.

Suppose that we have M observed values and we ask what is the probability
that we would observe these values if the distribution were really GPD Gξ,β and
each observation was chosen independently? Clearly the probability of getting
any exact set of values is zero but we can consider the likelihood defined as the
probability density of the overall distribution of M possible values evaluated at
the set of observations we observe. Another way to think of the likelihood is as
the limit of the probability of getting points in small intervals around those we
actually observe, but normalized to allow for the effect of the interval sizes.

For example, suppose there are just three points that are above the level u

and the amounts by which they exceed u are Y1, Y2 and Y3. Since the density of
the GPD is (1/β)(1 + ξx/β)−1/ξ−1 the density of the joint distribution assuming
independence is the product of this, i.e. the likelihood is

(1/β3)(1 + ξY1/β)−1/ξ−1(1 + ξY2/β)−1/ξ−1(1 + ξY3/β)−1/ξ−1.
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The idea is now to look for the values of the two parameters which make this
as large as possible. The product form here is awkward to deal with, particularly
when we have many more than three observations. But maximizing likelihood
will end up at the same choice of ξ and β as maximizing any increasing function
of likelihood, such as the square of the likelihood. The increasing function which
works best is to maximize the log likelihood in order to turn the product into a
sum. So we maximize

log((1/β3)(1 + ξY1/β)−1/ξ−1(1 + ξY2/β)−1/ξ−1(1 + ξY3/β)−1/ξ−1)

= −3 log β + (−1/ξ − 1)(log(1 + ξY1/β) + log(1 + ξY2/β) + log(1 + ξY3/β)).

More generally, with M observed excess values Y1, Y2, . . . YM we make the
estimate of ξ and β by choosing the values ξ̂ and β̂ which maximize

−M log β −
(

1 + 1

ξ

) M∑
i=1

log

(
1 + ξYi

β

)
. (4.8)

subject to the constraints β > 0 and 1 + ξYi/β > 0 for all Yi . This calculation
can be carried out using Solver in a spreadsheet (all you need is guesses of β

and ξ , a column of Yi values, a column in which log(1 + ξYi/β) is calculated,
and then a cell holding the objective given by Formula (4.8)).

Example 4.5 (continued) Estimating risk measures for Amazon.com

Returning to the Amazon.com data, we have 264 weeks in which the loss was
greater than 2%. The log likelihood expression is maximized by taking ξ̂ = 0.27
and β̂ = 4.51. This corresponds to a tail index value of 1/ξ̂ = 3.7. Figure 4.11
shows how well the fitted CDF fits the data for the 264 data points above the
threshold. We show the estimated value of Fu(x) as a line and the empirical data
as points. For example, the 10th largest loss is 20.73 and this is plotted with a y

value of 254/264 = 0.962. �

4.4.3 Step 3. Estimate the risk measures of interest

The third and final step is to use the fitted distribution to estimate values of
interest. We will consider estimating both value at risk and expected shortfall.
First consider value at risk. VaRα(X) is the x such that F(x) = α. If we are
working with a fixed threshold u and x > u then

F(x) = 1 − Pr(X > x)

= 1 − Pr(X > u) Pr(X > x | X > u)

= 1 − (1 − F(u))(1 − Fu(x − u)).
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Figure 4.11 The estimated GPD distribution compared with empirical data for
the Amazon.com % weekly loss with a threshold of 2.

Since we assume that the Fu distribution is Gξ,β with the estimated values of ξ̂

and β̂, then for F(x) = α we require

α = 1 − (1 − F(u))(1 + ξ̂ (x − u)/β̂)−1/ξ̂ . (4.9)

Solving for x gives the value at risk we want, and we can rearrange Equation (4.9)
to get x in terms of the other parameters and so obtain the following estimate

VaRα(X) = u + β̂

ξ̂

((
1 − α

1 − F(u)

)−ξ̂

− 1

)
.

The expected shortfall at a level α is ESα(X) = E(X|X >VaRα(X)). To
calculate this we can set v =VaRα(X) and use our previous calculation that in the
tail of the distribution for v > u the excess distribution is Fv(x) = Gξ,β ′(x) where
β ′ = β + ξ(v − u). Moreover, we know that the mean value of the distribution
Gξ,β is β/(1 − ξ). Hence, the expected shortfall is

E(X|X > VaRα(X)) = VaRα(X) + E(excess over VaRα(X))

= VaRα(X) + βV

1 − ξ̂
,

where βV is the estimated β value for the tail above VaRα(X), so βV = β̂ +
ξ̂ (VaRα(X) − u). Thus

ESα(X) = VaRα(X) + β̂ + ξ̂ (VaRα(X) − u)

1 − ξ̂
,
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which can be simplified to give the final formula:

ESα(X) = VaRα(X) + β̂ − ξ̂u

1 − ξ̂
.

Example 4.5 (continued) Estimating risk measures for Amazon.com

We can calculate the estimated 99% VaR and expected shortfall values for the
Amazon.com data in exactly this way. We use our earlier estimates of ξ̂ = 0.27
and β̂ = 4.51 with the threshold value of u = 2. We also need 1 − F(u), which is
the probability of a loss greater than u, and we estimate this from the proportion
of observations over the threshold of 2, i.e. 1 − F(u) = 264/729. This gives

VaR0.99(X) = 2 + 4.51

0.27

((
0.01

(264/729)

)−0.27

− 1

)
= 29.3.

The expected shortfall is therefore estimated by

ES0.99(X) = 29.3 + 4.51 − 0.27 × 2

1 − 0.27
= 45.6.

We can compare these figures with the observations. Out of 729 observations we
would expect to see 7 above the VaR0.99 level: the seventh highest observation
is 27.86 and the eighth highest is 26.35. So the GPD method is giving a slightly
higher VaR than is suggested by looking just at the handful of highest losses. It
would be a matter of argument as to whether the 29.3 estimate is substantially
better than an estimate based simply on the seventh highest observation. However,
there is no doubt that the more sophisticated approach we have given will be
better at predicting the expected shortfall, since this is where the extrapolation
element in the estimation becomes more critical. The empirical data give an
average loss amongst the top seven data points of 38.4, whereas the GPD estimate
suggests a higher figure of 45.6. �

Notes

This chapter has the most sophisticated analysis of any part of this book, but at
the same time it covers ground where much more could be said. The book by
McNeil, Frey and Embrechts also gives a comprehensive introduction to many
different techniques in this area, and this is a good starting point for anyone who
wants to know more.

We have given a simple approach for estimating tail indices at the start of
the chapter, and at the end of the chapter, we have a more complex approach
using maximum likelihood to estimate ξ (which is the inverse of the tail index).
But there are other approaches; the most common technique is called the Hills
estimator.
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The distribution given in Example 4.1 is quite closely related to the well-
known Cauchy distribution which has a density function

f (x) = 1

π(1 + x2)
,

and which also does not have a properly defined mean.
The Fisher–Tippett theorem goes back to a paper by these authors in 1928,

but there was not a complete proof until the work of Gnedenko in 1943 and
his name is often added to the name of the result, which becomes the Fisher–
Tippett–Gnedenko theorem. But even Gnedenko’s research did not answer all
the questions in relation to this result, and work on the theorem, with new proofs,
continued into the 1970s.

The material we have described on excess distributions is often called ‘peaks
over threshold’ theory (POT). This is now the dominant version of extreme
value theory, and is more useful than its cousin dealing with the maximum of N

samples.
The book by Embrechts, Kluppelberg and Mikosch covers the main theo-

retical ideas of extreme value theory and contains proofs of the two theorems
we quote. The paper by De Haan also gives an accessible proof of the Gener-
alized Extreme Value result and provides the sequence of normalizing constants
aN = F−1(1 − 1/N) and bN = 1/(Nf (aN)), which have the advantage of being
relatively simple to use in examples. These references also provide more spe-
cific conditions for a distribution to be in MDA(H0) (for example, this will be
guaranteed if limx→∞f ′(x)(1 − F(x))/(f (x)2) = −1).
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Exercises

4.1 Comparing upper and lower tails for exchange rate

Figure 4.2 is generated using the data in spreadsheet BRMch4-
ExchangeRateData.xlsx. Use these same data to carry out a similar analysis
for movements in exchange rate in the opposite direction (a drop in value
of the US$ in comparison with the pound). Do you think a tail index of
about 5 is also appropriate in this case?

4.2 Fréchet distribution

A company is concerned about the possible bad publicity arising out of a
guarantee made on its website (‘We will fix your router- related problem in
less than 20 minutes or we will give you free internet for a year’). Assume
that the manager looks at the data on the 20 working days to assess, for each
day, the maximum time that a router- related problem took to fix. On each
day there were between 25 and 30 customer enquiries of this sort made.
The maximum from amongst these times varies from day to day but the
average value for the 20 different maximum times is 12 minutes. Assume
that the time required is heavy-tailed with a tail index of α = 5, and hence
determine the distribution of daily maximum times. Use this distribution to
estimate the probability that the guarantee will be broken on a given day
and hence the expected number of days before this occurs. [You will need to
use a formula for the mean of a Fréchet distribution. If F(x) = exp(−x−α)

then the mean is given by a gamma function, �(1 − (1/α)). Here we need
�(0.8) = 1.164.]

4.3 Tail behavior in a mixture of normals

Suppose that we model the cost of gold at some fixed time in the future (say
10 January 2020) as given by a normal distribution with mean μ and stan-
dard deviation σ . Our idea is that there will be an average value that gold
has in 2020 but that the price will fluctuate around that value. We do not
know what either of these numbers will be, but we think that μ will be about
$1500 per oz and we think that the daily volatility, which is measured by σ ,
will be about $100. More precisely, we represent our uncertainty about μ by
saying that μ is drawn from a normal distribution with mean 1500 and stan-
dard deviation 100 and we represent our uncertainty about σ by saying that
σ is drawn from a normal distribution with mean 100 and standard deviation
20. This process produces what is called a mixture of normal distributions.
Use the spreadsheet model BRMch4-MixtureOfNormals.xlsx to explore the
way that mixtures of normal distributions impact on tail behavior.
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4.4 Calculating the mean of the GPD

Show that if a distribution has density f (x) = (1/β)(1 + ξx/β)−1/ξ−1 then
its mean is β/(1 − ξ). [ Hint: use the indefinite integral∫

(x/β)(1 + ξx/β)−(1/ξ)−1dx = x + β

ξ − 1
(1 + ξx/β)−(1/ξ)

and consider an integral from 0 to R, and then let the upper limit R go to
infinity.]

4.5 Mean excess plot when means are not defined

Generate some data from a distribution with a value of ξ = 1.2 by using
the cell formula =1/(1-RAND())^1.2 in a spreadsheet (with such a low tail
index the mean of the distribution will not exist). Check what happens to the
mean excess plot in this case. You should find that it seems surprisingly well-
behaved with a straight line feel through most of the range. Can you explain
what is going on? (This shows the value of checking the fit obtained from the
maximum likelihood estimator in the way that is done in Figure 4.11.)

4.6 Estimating parameters from mean excess figures

An analyst is looking at data on fee costs from winding up businesses after
firm bankruptcy events. He has data on 900 such events and he calculates
the mean excess figures using thresholds of $10 million and $20 million.
There are 50 events with total fee costs greater than $10 million, with an
average for those 50 of $19 million (giving a mean excess of $9 million),
and there are 15 events with total fee costs in excess of $20 million, with an
average for those 15 of $32 million (giving a mean excess of $12 million).
Estimate the values of β and ξ for the generalized Pareto distribution for
the excess above $25 million.

4.7 Estimating VaR and ES using extreme value theory

Use the process described for the Amazon stock data to estimate the 99%
VaR and 99% ES for daily losses on the S&P 500 index. The data are given
in the spreadsheet model BRMch4-S&P500.xlsx.
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Making decisions under
uncertainty

Do we want stable prices?
Rico Tasker is in charge of fresh fruit and vegetable sales at a large retail chain.
An important product for Rico is tomatoes. The price the retailer pays is fixed
at wholesale fruit markets and varies according to the weather and the season.
The retailer makes a markup of between 60% and 72% on sales, with an average
markup of 66%. These high markups are needed to cover the cost of storage, han-
dling and other retail expenses. Any tomatoes not sold after five days are thrown
away and, on average, this amounts to 10% of the tomatoes bought. The average
wholesale price of tomatoes is $3 per kilo. After discussions with the particu-
lar grower who currently provides about three quarters of the tomatoes that the
retailer sells, Rico goes to his boss, Suvi Marshall, with a proposal that the grower
be offered a fixed price of $3 per kilo throughout the year and that the retailer
sell the product with a price promise at $4.99 a kilo. This guarantees the same
markup (1.99/3 = 0.663) and by working with a single grower with fixed prices
the whole process will be simpler. The grower has agreed to meet all the retailer’s
requirements up to a limit given by the grower’s entire output in any week. Rico
argues that, in addition to reducing management costs, making this choice will
remove part of the risk faced by the retailer by eliminating volatility in price.

‘But what happens when there are a large number of tomatoes and everyone
else has low prices?’ says Suvi ‘Won’t that make our sales much lower?’

‘Yes, I guess there will be a drop, but many people come to our shop for
all their fruit and vegetables,’ Rico says, ‘so we will still have healthy sales.
Besides, we should make more sales at times when there is a shortage when
everyone else has higher prices.’

Business Risk Management: Models and Analysis, First Edition. Edward J. Anderson.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/business_risk_management
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Suvi is still not entirely convinced. ‘What about the minimum level of supply
from the grower?’ she asks. ‘If there is a general shortage, don’t we normally sell
most of what we have anyway? So will we really sell more in those periods?’

On the other hand, Suvi is quite attracted by the idea of a price promise,
seeing the marketing potential of a guarantee that prices will be fixed for a full
year. But this is a commitment that could lead to a bad outcome. Sometimes
weather patterns persist for a long time. What if there was six months of high
availability and low wholesale prices? Or six months of shortage? Moreover,
she knows that the actual profit made depends critically on the amount that
goes to waste. If the 10% average was to creep up to 12% or 13% it would
make a big difference. Overall she faces a difficult decision: paradoxically it
is uncertainty about outcomes that makes this hard, even though the proposed
change is designed to reduce uncertainty.

5.1 Decisions, states and outcomes

In the previous chapters we were concerned with understanding (and measuring)
the characteristics of risk in terms of probabilities, and the consequences in
terms of costs. Now we turn to the question of how a manager should behave
in a risky environment. In Chapter 6 we will focus on how individuals actually
behave when there are uncertainties. But we start with a normative, rather than
descriptive, view: given the need to make a decision between alternatives, each
of which carries risks, how should a manager make this decision?

It is helpful to distinguish carefully between the things that we can control,
these are the decisions we take, and the things that happen that are outside of our
control, these are the events that occur. We can think of the complete decision
problem as having five elements: decisions; events; different possible outcomes;
probabilities of different events; and the value we place on different outcomes.
We will deal with these in turn.

5.1.1 Decisions

A decision is actually a choice between possible actions. If only one thing can
be done, then there is no decision to be made. In this chapter we will focus
on decisions made at a single point in time and that makes things simpler. (In
Chapter 7 we will look in more detail at dynamic problems where a succession of
decisions needs to be made.) A decision could involve the choice of a variable, for
example we might decide how high to build a sea wall, or how much inventory
of some product to hold. In these cases there are effectively an infinite number of
possible choices, but we will concentrate on the situation in which there is only
a finite set of possible actions. This will make our discussion much simpler, and
in practice a decision with an entirely free choice for some continuous variable
can usually be approximated through giving a large enough menu of possible
choices.
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5.1.2 States

We treat events as random; we may have knowledge of the likelihood of different
events, but we cannot forecast exactly what will happen. We refer to the uncertain
events, or the values of any uncertain variables, as the state. The state is unknown
to the decision maker at the time when the choice of an action is made. The list
of all possible states that could possibly occur is called the state space. One good
way to think about the states is to imagine a game in which one of the players
is the decision maker and the other player is ‘nature’. Both players get a chance
to move: the decision maker chooses his actions and nature chooses hers. In this
view the state is simply what nature chooses to do.

The state captures all of the uncertainty involved in the decision problem. For
example, suppose that we want to model a situation in which we invest $1000 in
a stock on Wednesday if its price is higher at the close on Tuesday than it was
at the close on Monday. We will need to decide what to do if the closing prices
on the two days are the same: suppose that we toss a coin to decide whether
to invest in this case. We might decide to model this by saying that the states
are the difference in prices between Monday and Tuesday and there are three
actions: invest, not invest and toss a coin. But this leaves some uncertainty out
of the state description, and instead we need to include both the change in price
and the coin toss result within the description of the state.

5.1.3 Outcomes

The action we take, and the random events that occur, together determine what
happens to us: this is the outcome or consequence of taking a particular decision.
The outcome will often contain several dimensions: for example, an investment
decision will lead to a dividend income stream as well as a final portfolio value;
a decision to abandon a new product launch will lead to consequences not only
for profit but also for reputation; a decision to relocate a manufacturing facility
will lead to both direct costs and more indirect costs associated with travel to
work times for employees. The outcome needs to take into account everything
that can have an impact on the decision we make.

We can summarize this framework through the diagram of Figure 5.1, which
shows:

• The decision maker choosing between a set of available actions.

• The possible states that can occur.

• The outcome that is reached as a result of the combination of the choice
of action by the decision maker and the state that occurs.

All this is relatively straightforward, but a word of warning is in order. The
terminology that we have used is not quite universal. Sometimes the word ‘out-
come’ is used simply to refer to the particular state that occurs rather than the
consequence of a decision. Also it is quite common for people to use the word
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Uncertainty
is resolved
to a specific

state

Outcome
from the

action and
state

Decision maker
chooses an action

Figure 5.1 Framework for actions, states and outcomes.

‘state’ to refer to the information available to a decision maker at a certain point
in time (this happens often when dealing with problems which evolve over time).
So, for example, we might follow the amount of money that a gambler has after
a number of different gambles at the roulette wheel and refer to this as the state
at time t . This is really the state of the gambler and not a state of nature. When
the term ‘state’ is used in this way it will be determined by the random states
of nature as well as the decisions made by the gambler; so, in our terminology,
this is more of an outcome than a state.

Once we have set in place the framework of decisions and states together
with the outcomes that arise from every combination of action and state, we
need two further components to complete our decision model.

5.1.4 Probabilities

We need to know the probability that different states occur. In previous chapters
we have been happy to talk about probabilities for events (i.e. probabilities for
subsets of the state space). In doing so we have sidestepped what is really a topic
of considerable debate. It may be obvious what we mean when we say that the
probability of rolling a six with a dice is 1/6, but few real events can have their
probabilities calculated so simply. We may say that the probability that the US
has a recession (two quarters of negative growth) at some point in the next 10
years is 60%. But this is simply an informed guess: either this event happens or it
doesn’t, and the chances are greatly influenced by innumerable factors both within
and outside the US (for example, policy decisions by governments around the
world). Moreover, there are factors that can affect the likelihood of a recession
that go beyond a simple political calculation, such as climate change, natural
disasters, terrorist action and wars. However, if we have to make a business
decision that is impacted by the state of the economy in the future, then there is
an implication that we need to take account of the possibility of a recession. This
leads us to make some sort of subjective judgment of this probability, and even
if we don’t write down probability values (or include them in spreadsheets), if
a business decision has outcomes that depend on this uncertain event then the
probabilities are likely to be taken account of in our decision process in some
implicit way – in which case it is probably better to have them out in the open
and subject to debate. Here we will proceed on the assumption that the decision
maker has an agreed set of probabilities for the events involved in the decision
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problem. There are some alternative approaches to decision problems that can
be used when the uncertainties are large enough that working with a specific
subjective probability is dangerous: these techniques of robust optimization are
discussed in Chapter 8.

5.1.5 Values

Finally, and critically, we need to know the value that we place on different
outcomes. Our decision model has to have a well-defined way of comparing
different outcomes. In fact, we need to go beyond the comparison of simple
outcomes; one choice of action might be certain to lead to outcome A, while an
alternative is equally likely to lead to either outcome B or outcome C. If C is
preferable to A, but A is preferable to B then making a decision between the
two possible actions will be hard. This is the central problem that we address in
this chapter: ‘How can a decision maker choose between different actions when
each possible choice leads not to a single outcome but to a range of outcomes
with different probabilities?’

Another way to represent a situation like this is to draw a decision tree with
different paths in the tree indicating different decisions and different states that
can occur. This has been done for a simple problem in Figure 5.2. In this case
there are just two choices of action for the decision maker and two states that
can occur. This gives a combination of four different outcomes. Often we will
write probabilities against the different states so that we can see the likelihood
of different outcomes.

Decision 
maker

Nature

Outcome 
1

Action 1

State A

Action 2

State B

Outcome 
2

Nature

Outcome 
3State A

State B

Outcome 
4

Figure 5.2 A decision tree with two actions and two states.
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In the model we have described, the arrows suggest a movement in time as
well. It makes sense to start at the point where a choice of action is made, since
our whole interest is in the best choice for the decision maker. Any uncertainty
in the state of nature that is resolved before the decision point will no longer be
relevant. The state space needs to deal with all the uncertainty about the state
of nature which will be resolved after the decision is made. Often the choice of
action determines what happens, and thus the probabilities and possible states
evolve differently depending on the action that is taken (we will see this in
some of the examples that we look at later). From a conceptual point of view,
this makes things more complicated since it introduces a dependence between
actions and states (rather than the interaction between the two only occurring
with the outcome), but from a practical point of view, there is no difficulty with
drawing an appropriate decision tree and making the required calculations.

5.2 Expected Utility Theory

5.2.1 Maximizing expected profit

We want to start with the simplest situation, so let us suppose that the only thing
which matters for our business is the overall profit. Hence, we assume that there
is a single dollar number associated with each possible outcome and we do not
need to allow for any of the less quantifiable aspects of a decision. Sometimes,
even if there are other factors to consider, we can price these to give a final
result expressed in dollars. For example, if we are considering moving a call
center operation overseas then the lower standard of spoken English could lead
to our customers being less satisfied and this needs to be taken account of in our
decision process. We need to ask ourselves what is the real cost arising from this
lower level of service – perhaps we should think about how much we would need
to spend on improvements on other parts of our operations in order to make our
customers as happy overall with our service under the new arrangements with
an overseas call center as they are now. In any event, if we can convert the
service issues into a dollar number then we will have a better basis for making
this decision.

The first proposal we might make, and perhaps the simplest choice for a
manager, is to maximize expected profit. This is entirely reasonable. Given a
number of possible courses of action, a manager calculates the expected profit
for each and then chooses the action with the highest expected profit value. The
decision tree framework gives a convenient way of representing the problem and
also of calculating and comparing the expected profit from different actions.

Example 5.1 Investment in tunneling machine

Consider Matchstock Enterprises, which is considering investing in a new tun-
neling machine at a cost of $520 000. This is required for a specific job that
Matchstock has taken on and the machine will be sold in two years’ time for
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$450 000. A similar second-hand machine is available right now at $450 000, and
will be able to do the job satisfactorily. After two years this (now four-year-old)
machine could be sold for $400 000. The main difference is in reliability and
what happens if there is a breakdown. With a new machine parts will be covered
throughout the first two years, leaving only the labor costs and the cost of lost
working time. Matchstock has taken expert advice and believes that with a new
machine there will be a 0.25 chance of a single breakdown and a 0.05 chance
of two breakdowns during the two-year project (with a probability of 0.7 of no
breakdowns) and each breakdown will cost $45 000 in total. With a second-hand
machine, the company believes that there will be a 0.3 probability of a single
breakdown and a 0.1 probability of two breakdowns (with 0.6 probability of no
breakdowns). In this case each breakdown is estimated to cost $55 000.

Figure 5.3 shows how this is represented as a decision tree. In comparison
with Figure 5.2 we have shrunk the nodes and put information (including prob-
abilities) on the arrows. In this case we can calculate the total costs related to
the tunneling machine for each of the possible outcomes, and this is shown in
the right-hand column of the figure. For example, buying a new machine and
getting two breakdowns leads to a cost of $70 000 from the loss in value of the
machine over two years plus a cost of $45 000 incurred twice, giving $160 000
in total. These total costs are taken off the profit to give a final profit, and so
maximizing expected profit is equivalent to minimizing expected cost. We have

Buy new
machine

No breakdowns

Buy
second-hand
machine

One breakdown

Two breakdowns

(0.7)

(0.25)

(0.05)

No breakdowns

One breakdown

Two breakdowns

(0.6)

(0.3)

(0.1)

$70,000

$115,000

$160,000

$50,000

$105,000

$160,000

Figure 5.3 The possible outcomes and their probabilities for Matchstock Enter-
prises.
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taken no account in this of the ‘time value of money’, so there is no discounting
of costs.

What should Matchstock do to maximize its expected profit? Buying a new
tunneling machine incurs expected costs of 0.7 × 70 + 0.25 × 115 + 0.05 × 160
(in $1000s), which works out to $85 750. Buying a second-hand machine gives
expected costs of 0.6 × 50 + 0.3 × 105 + 0.1 × 160 = 77.5, i.e. $77 500. So,
choosing the second-hand tunneling machine has lower costs and will maximize
the expected profit. �

This methodology could also be applied to the decision facing Suvi Marshall
in the tomato-purchasing scenario we gave at the beginning of the chapter. The
uncertainty relates to the weather and hence the conditions of shortage or sur-
plus. Looking at the problem in this way will encourage Suvi to make a more
detailed investigation of likely waste figures alongside sales estimates for differ-
ent scenarios. Where there is lack of information, that too can be included as
uncertainty in the analysis. In this case it seems unlikely that the decision tree
analysis will produce an unequivocal recommendation to go with the fixed-price
scheme or not, but it will certainly help in establishing the critical parameters
for this decision.

5.2.2 Expected utility

Rather than dealing directly with money, or profit made, it is useful to intro-
duce the idea of a utility derived from the profit made. To see why we might
want to do this, we will show that most people, especially when dealing with
personal decisions rather than decisions they take as a manager, will not just max-
imize expected profit. For example, suppose that you wish to choose between
the following two options:

Choice A: With probability 0.5 gain $1000; and with probability
0.5 lose $800,

Choice B: With certainty gain $99.

In this case choice A has an expected profit of 0.5(1000) + 0.5(−800) = $100
and this is greater than the profit from choice B (a certain profit of $99). So, a
decision maker maximizing expected profit will definitely choose A in preference
to B.

However, facing exactly this choice in practice, most people would have no
hesitation in choosing B. This is not a misunderstanding of the choices available,
or a failure to do the simple arithmetic. Instead it represents a reaction to the
unpleasantness of having to hand over $800 if a coin toss goes the wrong way.
Given that there is only a $1 difference in the expectations, the great majority
of people will opt for the certainty of a $99 payoff. If we reflect on what is
happening here then we can see that our choice depends partly on our current
financial circumstances and partly on our taste for gambling.



MAKING DECISIONS UNDER UNCERTAINTY 133

One approach to this question is to define an individual utility function that
determines how valuable (or how costly) it would be for us to gain (or lose)
different amounts of money. In some form this idea can be traced back to the
cousins Nicolas and Daniel Bernoulli who considered how players should behave
in games of chance. The Swiss mathematician called Gabriel Cramer, in writing
to Nicolas Bernoulli in 1728, talked of a utility function in the following way:

‘The mathematicians estimate money in proportion to its quantity, and
men of good sense in proportion to the usage that they may make of
it.’

The idea here is that we may value $2000 as being worth to us less than
twice as much as $1000 – it all depends on how we are likely to use the money.

One of the problems or paradoxes that had exercised the Bernoulli cousins
is a game in which we are offered a prize that depends on tossing coins. If the
first toss comes up heads then we win a dollar and the game finishes. If the first
toss is a tail and the next toss is a head then we win two dollars and the game
finishes. But if the first two tosses are tails and the next is heads then we win $4
and the game finishes. More generally, if we have n tails tossed and the n + 1th
toss is a head, we will win $2n. If this is the arrangement, how much would we
be prepared to pay to enter this game? Most people might pay $5 or maybe $10,
but no more.

If we use an expected profit calculation then we should be happy to pay any
amount less than the expected prize value in the game, so we need to calculate this
expectation. Suppose that we play just three rounds. It is easy to see that we have
a 1/2 probability of getting $1; a 1/4 probability of getting $2 and a 1/8 probability
of getting $4. Our expected winnings are (1/2) + (1/4) × 2 + (1/8) × 4 = 3/2.
But if we play on for more tosses we can see that each extra toss adds a term
like (1/2) × (1/2n) × 2n = 1/2. After 50 tosses our expected winnings would
be $25. As we keep playing the sums of money become exponentially large, but
the probabilities of winning these amounts become tiny. Overall it is clear that
the expected value is infinite. (If we were using the terminology of Chapter 4 we
would say that this is a very heavy-tailed distribution so that expectations don’t
exist.)

We might well object that the amounts of money here are crazy – after 30
throws without a head we are set to receive $230 which is more than a billion
dollars. But the resolution that Daniel Bernoulli gave to this paradox (usually
called the Petersburg paradox) rests on the idea of utility. For each extra toss, the
amount won doubles but the probability of winning this amount halves. From an
expected profit viewpoint the contribution of each term is the same (and equal to
0.5 in the way we have done this calculation above). But Bernoulli argued that
even if having $2 was twice as valuable as $1, receiving a prize of $200 million
dollars was not twice as valuable as receiving a prize of $100 million. For most
people, $100 million is such a large amount (enough to live in luxury without
having to work) that it would be foolish to think that the additional benefit they
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receive from the extra $100 million is of the same value as the first $100 million.
But this is the implication of a pure expected profit calculation; we should be
indifferent between receiving $100 million for sure and tossing a coin and getting
$200 million only if we win.

So these arguments lead us to a theory of decisions based on utilities. Instead
of expected profit we need to look at expected utility, and the theory is called
Expected Utility Theory (EUT). In EUT, in order to compare the two choices
A and B introduced above, we need to know the utility function that we have
for different possible wealth values. Figure 5.4 shows a possible utility function.
We have made this zero at our current wealth, so that the horizontal axis simply
gives the profit (or loss) from the choice made. On the positive side, the utility
function curves downwards, so that gaining $1000 is less than twice as good
as gaining $500. On the negative side, it also curves downwards, so that losing
$1000 is more than twice as bad as losing $500.

Looking at Figure 5.4 it is easy to see that, in this case, the negative utility
at −$800 is bigger than the positive utility at $1000. Since choice A gives equal
chance to these two possibilities, the expected utility for A will be negative. Using
EUT with this utility function we would not choose A even if the alternative was
to receive nothing. Thus, we certainly prefer choice B with a guaranteed gain.

Notice that adding a constant to all the outcomes amounts to looking at the
utility function at a different point on the curve and, because utility functions are
nonlinear, this might lead to a different choice being made in a decision problem.
For that reason we should think of the utility as a function of the total wealth for
an individual, rather than being associated with just the changes from the current
wealth. However, we can always add or subtract a constant from all the utility
values without changing the preferences between different options. This means
that we can scale things to make the utility of our current wealth zero: effectively

–800

100099

Utility

Dollars received

Choice A

Choice B

Figure 5.4 Comparing choices A and B using a utility function.
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we can work with utilities for changes in wealth provided that we keep in mind
that everything is ultimately tied back to a utility for overall wealth.

Worked Example 5.2 Deciding between two funds

Suppose that an investor is deciding between two investment funds: a growth
fund and a stable fund. In the past three years there has been one bad year in
which the stable fund lost 5% and the growth fund lost 25%; one good year in
which the stable fund gained 15% and the growth fund gained 30%; and one
medium year in which the stable fund gained 5% and the growth fund gained
10%. The investor has no way of knowing what will happen next year, but by
looking at the relative probabilities of different outcomes she estimates that bad
years occur three years in ten, good years occur three years in ten, and medium
years occur four years in ten. Assume that the investor’s utility for x thousand
dollars is given by log(x). Given she has $100 000 to invest, which option has
the highest expected utility?

Solution

Table 5.1 shows, for each fund option, the outcomes, the utilities (calculated as log
to base e) and the expected values. For example, the expected utility for the growth
fund is calculated from 0.3 × 4.317 + 0.4 × 4.701 + 0.3 × 4.867 = 4.636.

We can see that, even though the growth fund has a higher expected value
than the stable fund, the expected utility is a little lower than for the stable fund.
So we can conclude that, with this utility function, the investor should choose
the stable fund. �

5.2.3 No alternative to Expected Utility Theory

Expected Utility Theory is a powerful way to think about making decisions in
a risky environment: and it represents a rational approach when maximizing
expected profits is inappropriate. But it is interesting to ask whether there are
other formulations we might use. For example, we might consider some way in
which we take account directly of the variance of the dollar outcomes rather than
doing this indirectly through the shape of the utility function. Is our risk-taking

Table 5.1 Different outcomes for the investment choice of Example 5.1.

Bad
year

Medium
year

Good
year

Expected
value

Probability 0.3 0.4 0.3
Value 95 105 115 105
Utility log(95) = 4.554 log(105) = 4.654 log(115) = 4.745 4.651
Value 75 110 130 105.5
Utility log(75) = 4.317 log(110) = 4.700 log(130) = 4.867 4.636
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propensity something that should be considered over and above the utility func-
tion? It is a remarkable fact that Expected Utility Theory can be derived from
three (very reasonable) axioms for choices: ordering, continuity and indepen-
dence. The consequence is that, if we accept the axioms, then we do not need to
consider any more complex decision algorithm.

Before embarking on a description of the axioms, we need to introduce some
notation and terminology. We will use the term prospect to describe a choice
with a whole set of possible outcomes, each with a probability (like the choices
A and B in the previous example). Each prospect is a single (circle) node in the
decision tree, representing a single choice for the decision maker.

More formally, we assume that a prospect has a finite set of outcomes.
A prospect q involves an outcome x1 with probability p1, an outcome x2 with
probability p2, . . . and an outcome xn with probability pn. It is helpful short-
hand to write a prospect as (x1, p1; x2, p2; . . . ; xn, pn) so that each outcome
is followed by its probability. Often we will leave out a zero outcome, so that
the prospect ($100, 0.3; −$200, 0.2) is taken as meaning a 0.3 probability of
receiving $100; a 0.2 probability of losing $200; and a 0.5 probability of getting
nothing.

If the set of consequences simply contains dollar amounts, then a prospect is
just a discrete random variable with a probability distribution on dollar outcomes.
There are other terms that are used instead of ‘prospect’, (for example, some
authors use the terminology of lotteries). For most of this chapter we will be
discussing distributions that are discrete; we will not need to deal with any kind
of continuous prospect.

We use the symbol � to indicate preference between two prospects. Thus,
we say q � r when we mean that q is preferred to r . The way this is written (�
rather than �) indicates that it should be taken as a weak inequality. What this
means is that q might be chosen if both options are available; it does not mean
that q is always chosen when both options are available. Thus, it incorporates
the possibility that the decision maker is indifferent between the two prospects.
In fact, if we are indifferent between q and r then both q � r and r � q.

Now we introduce the three axioms. In each case we might want to consider
how reasonable they are – if we accept all of them, then it turns out that we have
to accept Expected Utility Theory as giving a complete description of the way
that a rational decision maker should behave.

Axiom 1: Ordering

The ordering axiom really has two parts: completeness and transitivity. Com-
pleteness entails that for all choices q, r: either q � r or r � q or both. This just
means that the decision maker has a consistent way of making decisions between
prospects.

Transitivity requires that for all prospects q, r , and s: if q � r and r � s, then
q � s. This again seems entirely obvious. If a decision maker prefers q to r , but
finds r preferable to s, then it is hard to see how it could be wrong to choose q

in preference to s.
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Axiom 2: Continuity
Continuity requires that for all prospects q, r , and s where q � r and r � s:
we can find a probability p such that we are indifferent between r and the
(compound) prospect which has q with probability p, and s with probability
1 − p. That is, we have r � (q, p; s, 1 − p) and (q, p; s, 1 − p) � r .

Axiom 3: Independence
Independence requires that for all prospects q, r , and s: if q � r then (q, p; s,

1 − p) � (r, p; s, 1 − p), for all p. In other words, knowing that we prefer q

to r , we should still prefer an option with q rather than r even if there is some
fixed chance of a different prospect, s, occurring.

If all three of the axioms hold, then it can be proved that preferences can
be obtained from expected utilities for some function u(·) defined on the set of
outcomes. This function u can then be taken as representing the utility of the
decision maker. This is a famous and important theorem proved by von Neumann
and Morgenstern. Essentially what the theorem shows is that it doesn’t matter
how a decision maker decides between prospects: if all decisions are consistent
in the way implied by the three axioms, then there must be some utility function,
u0(x), for which all the decisions made will exactly match those that would have
occurred if the decision maker had been maximizing expected utility (using u0 to
calculate these expectations). This will be true even if the decision maker never
consciously formulates the utility function u0.

We will give a more formal statement of the result, as well as an idea of how
it is proved, in the subsection below. But now we want to think about why we
would expect the axioms to hold. The ordering axiom is fairly straightforward,
but we look at the other two in more detail.

5.2.3.1 Continuity

The continuity axiom supposes that there are three options. First there is a very
attractive option q: this could be a prize of a 100-day round the world cruise.
Then there is a less attractive option s: we can think of no holiday prize at all.
Finally there is an intermediate option r: this might be a prize of a 14-day cruise
around the Mediterranean. We don’t have to worry about the fact that some
people who hate spending time at sea might find the 100-day option q worse
than the 14-day option r . In this thought experiment we are dealing with an
individual who definitely has q � r and r � s. Continuity, as its name suggests,
is really all about watching what happens to the preferences when the chance of
the better outcome is slowly increased.

We suppose that there is a lottery in which there is a probability p of winning
the prize of a 100-day round the world cruise, but if we don’t win that prize we
get nothing. This is the prospect (q, p; s, 1 − p). If p starts at zero then we
cannot win the prize in the lottery and we would therefore prefer to have the
result r than a ticket in the lottery. On the other hand, by the time p reaches 1,
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the lottery is no longer a lottery; it always produces the prize. So, with p = 1
a lottery ticket will be preferred to having the result r . The axiom simply states
that there must be an intermediate value of p at which the decision maker is
indifferent between having a ticket for the lottery and taking the prize of r , a
14-day cruise. This is just the value of p at which we swap from preferring the
outcome r to preferring the lottery ticket.

This axiom could perhaps fail if there was an infinitely bad outcome, so,
however small the probability of it occurring, the prospect automatically becomes
very bad. Of course, death is the ultimate bad outcome here, and it is sometimes
argued that this would make the continuity axiom break down. If q is getting
a single dollar; r is getting nothing, but s is dying, then obviously q � r and
r � s. But does it therefore follow that there will be some probability p very
close to 1 where we are indifferent between (A) getting nothing and (B) getting
a dollar with probability p but losing our life otherwise?

Against this objection we may observe that we often, in practice, operate in
exactly this way. A coffee costs $4 on this side of the street, but just as good
a coffee costs only $3 on the other side of the street. However, if we cross the
street for the cheaper coffee aren’t we running some tiny risk of being killed by
a reckless driver? Gilboa observes that whether or not we cross the street may
depend on how the decision is put to us:

‘. . . If you stop me and say “What are you doing? Are you nuts to
risk your life this way? Think of what could happen! Think of your
family!” I will cave in and give up [the dollar saving].’

This demonstrates the importance of the way that a choice is framed and we
will discuss this a little further in the next chapter: it would be foolish to assume
that a real decision maker always makes the same decision when faced with the
same two options.

5.2.3.2 Independence

One way to think of the axiom of independence is to see it as related to decisions
made ahead of time. If we prefer q to r , the 100-day cruise to the 14-day option,
then this should still be true even if a third option may end up occurring. In this
example, if s is the option of no prize at all, the axiom states that if given a
straight choice between prizes q and r we prefer q, then given two lotteries, each
with, say, one in a 1000 chance of winning, we would prefer to be holding a ticket
for the lottery with q as the prize than holding a ticket for the lottery with r as the
prize; and this remains true no matter what the probability of winning, provided
it is the same for the two lotteries. If we play the lottery and lose then there is no
decision to be made. If we play the lottery and win and are then offered a choice
between the prizes q and r , we have already said that we would choose q. There
would thus be something odd about choosing the r lottery, if the q lottery were
available. It would amount to a kind of dynamic inconsistency where we make
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a different decision ahead of time to the decision we make when it comes to the
final choice. Of course, this sort of inconsistency does sometimes occur in our
choices, but we might prefer to be more consistent and the independence axiom
is simply a method to enforce that. In the next chapter we will explore in much
more detail the way that the axiom of independence may fail for real decision
makers facing real choices.

5.2.4 *A sketch proof of the theorem

The von Neumann–Morgenstern theorem can be stated as follows:

Theorem 5.1 Suppose that a preference relation � on the set of all prospects
satisfies the axioms of ordering, continuity and independence. Then there is a
utility function, u, defined on all the possible outcomes, such that the utility
function U on prospects, derived from u by the formula

U(x1, p1; x2, p2; . . . ; xn, pn) =
n∑

i=1

piu(xi),

has the property that for any prospects q and r, U(q) ≥ U(r) if and only if q � r .
Moreover, any other utility function v on outcomes which has this property must
be a positive linear transformation of u (i.e. v(x) = a + bu(x) for some a and b

with b > 0).

We will not give a complete proof of Theorem 5.1, but (if you have the
mathematical interest) it is worthwhile looking at the most important steps in
such a proof. To do this we need to manipulate prospects and the first thing to
note is that when prospects occur inside other prospects, we can expand them in
order to get to a single list of outcomes and their probabilities. For example, if
q1 is the prospect which has $100 with probability 0.5 and $50 with probability
0.5 and q2 = ($100, 0.5; q1, 0.5) then we can expand the prospect q1 to get

q2 = ($100, 0.5; 0.5($100, 0.5; $50, 0.5)) = ($100, 0.75; $50, 0.25).

We suppose that we have a finite set of prospects, which implies that there
is a finite set of outcomes amongst which different prospects distribute their
probabilities. We will work in stages.

Step 1 The ordering axiom can be used to establish a best and a worst outcome
amongst the set of outcomes. We do this by taking the outcomes one at
a time and comparing them with the best from amongst the outcomes
already considered. The overall best must have been compared directly
with every outcome which came after it in the order and, by transitiv-
ity, will also be better than everything that came before (we will not
try to give any details). Here we are dealing with outcomes rather than
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prospects, but an outcome is essentially the same as the prospect that
assigns a probability 1 to that outcome. The same procedure works to
find the worst outcome as well. We call the best outcome x∗ and the
worst outcome x∗.

Step 2 Now we assign the utility value of 0 to x∗ and a utility value of 1 to
x∗. For any other outcome x in the list we assign a utility u(x) equal to
the probability p such that we are indifferent between the prospect (x, 1)

and the prospect (x∗, p; x∗, 1 − p) (using the continuity axiom).

Step 3 Next we will use the independence axiom, which allows a free choice
of the probability p and the exact alternative chosen, s. Suppose that we
are given numbers α and β with 1 > α ≥ β ≥ 0. We choose p = α − β

and s = (x∗, β/(1 − p); x∗, (1 − β/(1 − p))) and substitute these values
into the independence axiom Thus, since x∗ � x∗ we get

(x∗, α − β; x∗, β; x∗, 1 − α) � (x∗, α − β; x∗, β; x∗, 1 − α),

which simplifies to

(x∗, α; x∗, 1 − α) � (x∗, β; x∗, 1 − β). (5.1)

This is a useful intermediate result which will apply even when x∗ and
x∗ are not the best and worst outcomes. Essentially we have shown that
if we form a prospect from two outcomes, then increasing the probability
of the better of the two makes the prospect more attractive.

Step 4 Now we show that the utility of the outcomes matches the preference
ordering between them. Suppose that u(x) ≥ u(y), then from Formula
(5.1)

(x∗, u(x); x∗, 1 − u(x)) � (x∗, u(y); x∗, 1 − u(y)).

But if we look back at how u(x) and u(y) are defined, we see that this
is equivalent to

(x, 1) � (y, 1).

Step 5 Now suppose that we have a prospect (x, α; y, 1 − α): we want to
show that this has utility αu(x) + (1 − α)u(y); in other words, we want
to show indifference between (x, α; y, 1 − α) and (x∗, αu(x) + (1 −
α)u(y); x∗, 1 − αu(x) − (1 − α)u(y)). We do this by observing that

(x, 1) � (x∗, u(x); x∗, 1 − u(x)),

and hence

(x, α; y, (1 − α)) � (x∗, αu(x); x∗, α − αu(x); y, (1 − α)). (5.2)
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But because we also have

(y, 1) � (x∗, u(y); x∗, 1 − u(y)),

we can take the prospect on the left-hand side and obtain the following
from the independence axiom

(y, (1 − a); x∗, au(x); x∗, a − au(x))

� (x∗, (1 − a)u(y); x∗, (1 − a)(1 − u(y)); x∗, au(x);
x∗, a − au(x)).

The prospect on the right-hand side can be simplified to

(x∗, αu(x) + (1 − α)u(y); x∗, 1 − αu(x) − (1 − α)u(y)).

Thus, we can combine Formulae (5.2) and (5.1) by transitivity to obtain
the relationship:

(x, α; y, 1 − α)

� (x∗, αu(x) + (1 − α)u(y); x∗, 1 − αu(x) − (1 − α)u(y)).

We can repeat all of this with the preference orders reversed to show

(x∗, αu(x) + (1 − α)u(y); x∗, 1 − αu(x) − (1 − α)u(y))

� (x, α; y, 1 − α),

which finally establishes the indifference we require.

There are a number of things we need to do in order to fill in the gaps
here. First the result holds without any restriction on there being just a finite
set of possible outcomes or prospects. This requires us to start with a finite set
of prospects and then to add another set which lies outside this range (say they
are all worse than the worst outcome in the first set) and stitch together the two
utility functions we generate.

Second we have not fully included all the components of the argument we
need in step 4, which shows that an inequality in utilities for outcomes translates
into a preference order. We need to show that the same thing is true for prospects
and we also need an ‘if and only if’ argument.

Also in step 5 we have demonstrated what we want for a prospect with
just two alternatives – we need to extend this to prospects with any number of
alternatives.

Finally we have not dealt with the uniqueness of the utility function (up to
positive linear transformations) – the theorem will not allow us to, for example,
square all the utility values. This would leave the ordering of individual outcomes
unchanged, but we would lose the ability to get the utility of a prospect as the
probability-weighted combination of the individual outcome utilities.
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5.2.5 What shape is the utility function?

Where outcomes are monetary, then the utility function is simply a real-valued
function defined on the real line. It is helpful to use the terminology of convex
and concave functions. A convex utility function has the property that its slope
is increasing (or, to put it another way, it has a second derivative which is non-
negative). Another way to characterize a convex function is to say that a straight
line joining two points on the graph of the function curve can never go below
the function. This can be put into mathematical form by saying that a function
u(·) is convex if, for any p between 0 and 1,

pu(x1) + (1 − p)u(x2) ≥ u(px1 + (1 − p)x2).

The left-hand side is the height of a point a proportion 1 − p along the straight
line between points (x1, u(x1)) and (x2, u(x2)) and the right-hand side is the
point on the curve itself at this x value. This is illustrated in Figure 5.5. This
property of convex functions can be generalized to any number of points. So, a
convex function u has the property that

n∑
j=1

pju(xj ) ≥ u

⎛
⎝ n∑

j=1

pjxj

⎞
⎠ , (5.3)

if the pj are nonnegative and
∑n

j=1 pj = 1.
The connection with expected utility is that a convex utility function implies

risk-seeking behavior. If there is a prospect having a probability p1 of achiev-
ing x1 and a probability (1 − p1) of achieving x2, then the expected utility is
p1u(x1) + (1 − p1)u(x2), which we prefer to (its value is greater than) the utility
u(p1x1 + (1 − p1)x2) that we obtain from the expected result.

More generally, we can say that when the utility function is convex it
will always be preferable to choose a prospect involving uncertainty, say

x1 x2

pu(x1) + (1 − p)u(x2)

u(x)

px1 + (1 − p)x2

u(px1 + (1 − p)x2)

Figure 5.5 If u(x) is convex then a straight line joining two points on the graph
of u lies above the u function.
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(x1, p1; x2, p2; . . . ; xn, pn) rather than having the expected outcome,
∑

pjxj

with certainty. We can see this from Inequality (5.3), where the expected utility
of the prospect, on the left-hand side, is greater than the utility of the expected
outcome, on the right-hand side.

The reverse is true for a concave utility function. A concave function is one
where a straight line joining two points on the graph of the function curve can
never go above the function, and this is equivalent to the function having a
decreasing slope. In this case, having the expected outcome

∑
pjxj with cer-

tainty is always preferable to facing the gamble involved in the uncertain prospect.
In other words, a concave utility function like the one shown in Figure 5.4 implies
risk-averse behavior and this is the usual pattern for utility functions.

Of course, we can also have utility functions which are convex in some areas
and concave in others. For example, suppose that the utility for a wealth of x

measured in $100 000 units is

uA(x) = √
x − 0.9 log(x + 1).

Though it is not obvious, this utility function turns out to be positive for positive
wealth: we draw it in Figure 5.6 for x in the range 0 to 3. We can see that
the curve is concave for x below about 1. In fact, though hard to see from the
graph, it becomes convex for values above 1. This particular utility function has
a derivative

u′
A(x) = (1/2)x−0.5 − 0.9/(x + 1)
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Figure 5.6 A curve showing utilities for different wealth values, using the for-
mula u(x) = √

x − 0.9 ln(1 + x).
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which approaches zero as x gets large. If we plot the utility function for much
larger values of x, we can see that it is actually concave (the second derivative
becomes negative for x ≥ 8.163). Hence, the function moves from concave to
convex and back to concave.

With this kind of utility function we can expect mildly risk-seeking behavior
for wealth positions between $100 000 and $8163 000 and risk-averse behavior
when wealth levels are below $100 000. Worked Example 5.3 demonstrates that
this will indeed occur through showing that, with this utility function, the same
individual could be prepared both to take out insurance (which is risk-averse
behavior) and also engage in a lottery for a big prize (which is risk-seeking
behavior).

Worked Example 5.3 Insurance and lotteries can coexist

Suppose that an individual with the utility function uA(x) currently has wealth
$100 000 (corresponding to x = 1). There is a small risk of a fire destroying
$75 000 worth of property. This happens next year with probability 1/1000 and
the insurance company charges $100 to fully insure against this loss. There is also
an opportunity to enter a lottery where a single ticket costs $500 but there is a one
in a thousand chance of winning a prize worth $500 500 (i.e. we get $500 000 and
also the price of our ticket back). Show that the individual will take out insurance
and also enter the lottery, though neither choice will increase expected wealth.

Solution

First consider the insurance option. The expected loss is only $50 000 ×
(1/1000) = $75, so, with a premium of $100, the insurance company is making
quite a lot of money and from an expected wealth perspective, the individual
should not take out insurance. Now consider the calculation of expected utility.
The current utility is

uA(1) =
√

1 − 0.9 log(2) = 0.37617.

The expected utility if we take out the insurance can be calculated as the utility
we have after paying the insurance premium:

uA(1 − 0.001) = √
1 − 0.001 − 0.9 log(2 − 0.001) = 0.37612.

The expected utility if we do not take out insurance is

0.001uA(0.25) + 0.999u(1) = 0.001 × 0.299171 + 0.999 × 0.37617 = 0.37609.

This is less than the expected utility if we do insure, and so insurance makes
sense.

Now we look at the lottery choice. Not buying the lottery ticket leaves us at
the current utility of 0.37617; if we do buy the ticket we have a 0.001 probability
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of winning $500 000 and a 0.999 chance of losing $500. This gives a final
expected utility of

0.001u(6) + 0.999u(0.99500)

= 0.001 × (
√

6 − 0.9 log(7)) + 0.999 × (
√

0.995 − 0.9 log(1.995))

= 0.37624.

So, entering the lottery gives a slightly higher expected utility. The same individ-
ual is risk averse on losses (enough to buy a rather expensive insurance product),
but risk-seeking enough on gains to enter a lottery. �

If the utility function is linear (giving a straight line graph) then there is
neither risk aversion nor risk seeking and we say that the decision maker is risk
neutral. It is not hard to see that maximizing the expectation of a function of the
form u(x) = a + bx has the same solution as maximizing the expectation of x

(provided b > 0), so a risk neutral decision maker will just maximize expected
profit.

When there is risk aversion, the degree to which the decision maker is risk
averse depends on the curvature of the utility function; if the utility function is
almost linear, the amount of risk aversion will be minimal. To capture the degree
of risk aversion we need to look at u′′(x), which is the second derivative of u(x),
i.e. the rate at which the slope of u changes. With risk aversion, the slope of the
utility function is decreasing and therefore the second derivative is negative. It
is common to quantify risk aversion using the Arrow–Pratt measure of absolute
risk aversion, given by

A(x) = −u′′(x)

u′(x)
.

We write u′(x) for the derivative of u and dividing by this is a way of normalizing
A(x). With this normalization, scaling u by a constant will not affect the absolute
risk aversion.

As an example, consider the logarithmic utility function defined by
u(x) = log(x). Then u′(x) = 1/x and u′′(x) = −1/x2. Thus, the Arrow–Pratt
risk-aversion measure is

A(x) = (1/x2)

(1/x)
= 1

x
.

This decreases towards zero as x gets large. The idea that individuals are less risk
averse as their overall level of wealth gets larger is captured by this logarithmic
utility function.

5.2.6 *Expected utility when probabilities are subjective

The development of von Neumann–Morgenstern style Expected Utility Theory is
fundamental to our understanding of decision making under uncertainty, but it is,
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in a way, a lopsided development. The assumption is that utilities are unknown
(they are deduced from the choices made between prospects) but that probabilities
are known precisely.

As we pointed out earlier, decisions often involve choices that are impacted
by events that we can have no control over and where even the idea of a proba-
bility needs to be treated carefully. It is interesting to ask how a decision maker
might behave if she was not prepared to specify fixed probabilities for different
events. After all, in everyday life we routinely make decisions without stopping
to ask about probabilities. So, if a manager makes a decision without consciously
thinking about probabilities, but at the same time is entirely rational and thought-
ful about those decisions, can we deduce that there is some consistent decision
framework that doesn’t use probabilities?

The answer to this question is a qualified ‘No’ In an important piece of work
by Leonard ‘Jimmie’ Savage published in 1954, it is shown that if choices satisfy
some reasonable-seeming axioms then the decision maker must act as though he
or she were assigning a subjective probability to each of the possible outcomes
that can arise from a choice of action, as well as a utility function on those
outcomes, and then decide between choices on the basis of maximizing expected
utility as determined by the subjective probabilities.

Putting all this into a solid theory requires a great deal of care. In Savage’s
model a decision maker has a choice between different actions and these actions
will determine the outcomes that go along with the states. Formally, we list all
possible states as a set S and an action is treated as a function taking states
to outcomes, where X is the set of outcomes. The set of states has to resolve
all uncertainty, so that the action simply specifies what outcome occurs in each
of the possible states. This way of thinking does not fit well with a decision
tree framework, where we imagine taking the decision first followed by the
uncertainty being resolved to lead to a particular outcome. In some ways it is
like reversing this process: we think of the uncertainty being resolved to a single
state and then the decisions map each state to an outcome. The two ways of
thinking are not really so different; in each approach a decision and a state of
nature together produce an outcome. The reason for proceeding with the more
complex idea of actions as maps from states to outcomes is that we will need
to make comparisons between all possible actions. That is, we need to be able
to imagine an action that specifies particular outcomes for each possible state
of nature, without restricting in any way which outcomes go with which states.
Having once imagined such an action, we then need to be able to compare
it with any other imagined action and answer the question: Which would be
preferable?

To get a flavor of the axioms, we will describe three of them (there are seven
in total).

Axiom P1
This states that there is a weak order on the actions. So, for actions f : S → X

and g : S → X, either f � g or g � f or both, and this relationship is transitive.
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Axiom P2
This axiom shows that in comparing actions we only care about the states where
the two actions produce a different result. So, if f � g and there is a set A ⊂ S

with f (s) = g(s) for all states s in A, then the preference between f and g is
determined by what is happening for s /∈ A. More precisely, we can say that if
f ′(s) = f (s) for s /∈ A and g′(s) = g(s) for s /∈ A and f (s) = g(s) = h(s) for
s ∈ A, then f ′ � g′.

Before giving the third axiom we need two preliminaries. First we need to be
able to make a comparison between outcomes rather than actions. This is simple
enough, we say that for outcomes x, y ∈ X, x � y if the action that takes every
state to x is preferred to the action that takes every state to y. If we know we
are going to end up with x under some action f and we know we are going to
end up with y under the action g, then it no longer matters what is happening
with the states.

Second we need to define a property of a set of states (i.e. an event) A ⊂ S

which amounts to saying there is a non-negligible possibility that one of the states
in A occurs. The most natural way to describe this is to say that the probability of
A is greater than zero, but with the Savage theory we do not have probabilities to
work with. Instead we say that the event A is null if, for any f and g that differ
only on A, these two actions are equivalent (both f � g and g � f ). In other
words, what happens for null events makes no difference to our preferences.

Axiom P3
This states that if outcome x is preferred to outcome y, and two actions f and
g differ only on a set of states A which is not null, and, moreover, on A, f

produces x and g produces y, then f must be preferable to g. Actually, the
axiom says more than this, since it also says that the reverse implication is true
(equivalently we require that if x is strictly preferred to y then f is strictly
preferred to g). Formally, we can write this as follows. For an event A that is
not null, if f (s) = x for s ∈ A, g(s) = y for s ∈ A, and f (s) = g(s) = h(s) for
s /∈ A, then

x � y if and only if f � g

At this point you may well feel that we have stretched our minds enough
without the need to go into further details. The remaining four axioms are a mixed
bunch. Axiom P4 relates to a situation where outcome x is strictly preferred to
y, and outcome z is strictly preferred to w. The axiom states that if the action
which delivers x on A and y otherwise is preferred to the action which delivers
x on B and y otherwise, then the action which delivers z on A and w otherwise
is preferred to the action which delivers z on B and w otherwise. This is more
or less the same as saying that A happens more often than B, but of course
we cannot use this language since we do not have a notion of probability yet
defined. Axiom P5 simply states that there must be two actions which are not
equivalent to each other. Axiom P6 is related to continuity and implies that we
can always partition the set of states S sufficiently finely that a change on just
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one component of the partition leaves a strict preference unchanged. This is quite
a strong assumption and it can only work if there is an infinite state space S, and
each individual state s in S is null. Often this is not true for problems of interest,
but we can make it true by expanding our state space to consider some infinite
set of (irrelevant) other events occurring in parallel with our original states. The
final axiom P7 is only needed when the outcome set X is infinite, and we will
not give a description of it.

To state Savage’s theorem we have to understand what might be meant by
an assignment of probabilities to all the states in S. This requires a measure μ

which assigns a probability to every event A ⊂ S. The measure has to be finitely
additive (so μ(A ∪ B) = μ(A) + μ(B) if A and B are disjoint), and it also has
to be non-atomic in the sense that if there is an event A with μ(A) > 0 and
we choose any r , a number between 0 and μ(A), then we can find a subset
B ⊂ A with μ(B) = r . Once we have a measure μ on the states S and a scalar
function defined on the states, we can evaluate the expectation of that function
by writing its integral with respect to μ. Thus, finally we are ready to state the
theorem.

Theorem 5.2 (Savage) When X is finite, the relationship � satisfies axioms P1
to P6 if and only if there exists a non-atomic finitely additive probability measure
μ on S and a non-constant function u(x), for x ∈ X such that, for any actions
f and g

f � g if and only if
∫

S

u(f (s))dμ(s) ≥
∫

S

u(g(s))dμ(s).

Furthermore, in this case μ is unique and u is unique up to a positive linear
transformation.

5.3 Stochastic dominance and risk profiles

Suppose that a prospect has n possible outcomes and we put these in order from
the worst x1 to the best xn. We can do this even if the outcomes do not have
monetary values. We can then draw a risk profile and use this to compare two
different prospects. For example, suppose that a short-term contract employee
Raj currently has a contract position for six months. If Raj does nothing, he
believes that there is a 10% chance of his job not being renewed at the end of
the contract period, a 35% chance of the job being renewed for another three
months, a 35% chance of the job being renewed for another six months and a
20% chance of the job being made permanent. What happens will depend both
on Raj’s performance and the trading performance of the company. Raj still has
two months of his existing contract to run, but believes he has some skills that
will help in getting a permanent position and that might be overlooked in the
normal process. So he is considering going to his boss and making the case for
a permanent appointment straight away. He believes that this will increase the
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Figure 5.7 Risk profiles for the two options for Raj.

chance of his being made permanent to 25%, and in this case the probabilities of
the other outcomes are 10% job not renewed; 25% job renewed for three months;
40% job renewed for six months. What should Raj do? The risk profiles for these
two choices are shown in Figure 5.7.

It is not obvious how to make a comparison between the actions A = ‘do
nothing’ and B = ‘ask for permanent position’ from these risk profiles alone.
The complication here is that we have not specified how much more valuable a
permanent appointment is than a six-month one. And we also have to consider
the relationship of a six-month to a three-month appointment; all that we know is
that there is a preference order: permanent is best, then six months is better than
three months and losing the job is worst. The best approach here is to draw a
cumulative risk profile, as shown in Figure 5.8. Here it becomes clear that action
A has a cumulative risk (of a worse outcome) that is always higher or equal to
the cumulative risk for action B; there is a kind of dominance between the two.
Later we will show that this implies that it is better for Raj to choose option B
and make the case for a permanent appointment, no matter what the exact utility
values he places on the different outcomes. But first we need to more carefully
define what is meant by stochastic dominance.

Given two prospects q and r we can take the combined set of all possible
outcomes and put them in order of increasing value or utility. Notice that there
is no loss of generality in comparing two prospects in assuming they have the
same set of possible outcomes, and if one of the prospects does not include one
of the outcomes, we simply assign zero probability to that outcome.

We say that q stochastically dominates r if, when we take the combined set
of outcomes with probabilities qi for q and ri for r (and where qi and ri relate
to the same outcome xi), the following inequalities all hold

n∑
j=m

qj ≥
n∑

j=m

rj for m = 2, 3, . . . , n (5.4)
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Figure 5.8 Cumulative risk profile for the two options for Raj.

with at least one of these inequalities being strict. Each of these sums goes from
an outcome m through all the better outcomes up to the best. Thus, prospect q

gives higher probabilities to the higher xj which are preferable.
There is an alternative definition which uses the fact that the sum of all the

qj values is 1 (since they are probabilities). Using this, we see that Inequality
(5.4) can be rewritten

1 −
m−1∑
j=1

qj ≥ 1 −
m−1∑
j=1

rj for m = 2, 3, . . . , n.

This can be rearranged (by swapping the sums to the other side of the inequality
and setting l = m − 1) to become

l∑
j=1

rj ≥
l∑

j=1

qj for l = 1, 2, . . . , n − 1. (5.5)

Thus, we have converted an expression involving probabilities of doing ‘bet-
ter than something’ into one involving doing ‘worse than something’, and this
has meant a change in the sign of the inequality. This alternative definition of
stochastic dominance is now in terms of the cumulative risk profile. We can see
from Figure 5.8 that in the case of Raj’s choice between actions A and B, the
cumulative probabilities for A are larger than those for B, and this implies that
B stochastically dominates A.

This method works when there are no monetary values associated with out-
comes, but of course we can also apply the same logic when there are dollar
values. When the outcomes are values, we can think of a prospect q as equiv-
alent to a discrete random variable, X say, taking values x1, x2, . . . , xn. If we
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take the prospect r as equivalent to a random variable Y , then Inequality (5.5)
can be written as

Pr(Y ≤ xl) ≥ Pr(X ≤ xl), for l = 1, 2, . . . , n − 1,

which converts stochastic dominance into a statement about the CDFs of the two
random variables. More generally, we say, for two random variables X and Y :

X stochastically dominates Y if the cumulative distribution functions
FX and FY , for X and Y , satisfy FX(x) ≤ FY (x) for every x, and
this inequality is strict for at least one x.

Note that sometimes people forget which way round the inequality goes here:
it is the random variable (or prospect) with the lower cumulative distribution that
stochastically dominates the other. This definition of stochastic dominance does
not need the random variables to be defined over just a finite set of outcomes, and
we can apply it equally well when X and Y are continuous rather than discrete
random variables.

Another point to note is that if X = Y + k for some constant k > 0 then

FX(x) = Pr(Y + k ≤ x) = FY (x − k) ≤ FY (x),

since the CDF is an increasing function. So, as we would expect, if X is obtained
from Y by adding a positive constant, then X stochastically dominates Y .

Worked Example 5.4 Checking stochastic dominance

Check whether or not there is stochastic dominance between the prospects A and
B defined as follows:

A = ($100, 0.2; $160, 0.2, $200, 0.6),

B = ($100, 0.3; $120, 0.1; $180, 0.1; $200, 0.5).

Solution

We start by forming the complete set of payment amounts that occur in either
of the two prospects: {$100, $120, $160, $180, $200}. These form the rows in a
table giving, for each prospect, the probability of receiving that amount or less.
This is shown in Table 5.2 which gives, for each prospect, the sums of the form
in Inequality (5.5). Each element in the column that shows the sum for A is less
than or equal to the corresponding element in the sum for B, and so prospect
A stochastically dominates prospect B. (Note that an alternative approach is to
look at the sums of probabilities of receiving more than a certain amount and
use Inequalities (5.4)). �

A key result is that, under Expected Utility Theory, if the prospect q stochasti-
cally dominates the prospect r , then q will be preferred to r no matter what utility
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Table 5.2 Comparison of prospects A and B.

Dollar amount A probabilities Sum for A B probabilities Sum for B

$100 0.2 0.2 0.3 0.3
$120 0 0.2 0.1 0.4
$160 0.2 0.4 0 0.4
$180 0 0.4 0.1 0.5
$200 0.6 1.0 0.5 1.0

is given to the individual outcomes. The only requirement is that the utilities are
strictly increasing, so u(x1) < u(x2) < · · · < u(xn). In fact, this implication also
works in the other direction. If the expected utility for a prospect q is greater
than the expected utility for a prospect r for every possible choice of increas-
ing utility function (that has u(x1) < u(x2) < · · · < u(xn)) then q stochastically
dominates r . We will show how to prove this result in the next subsection. Some-
times this property (of dominance for any increasing utility function) is used as
a definition of stochastic dominance.

Besides proving these results, the next section also introduces a second type
of stochastic dominance – called second order stochastic dominance. This can be
defined by saying that a random variable X second order stochastically dominates
Y if E(u(X)) ≥ E(u(y)) for every increasing concave utility function u (i.e.
whenever the decision maker is risk averse). As we will show later, the condition
to achieve second order stochastic dominance is weaker than that to achieve
(‘first-order’) stochastic dominance. Rather than requiring FX(x) ≤ FY (x) for
every x, we need ∫ x

a

FX(z)dz ≤
∫ x

a

FY (z)dz , for everyx,

where a is the lower limit for the distribution. So we compare the integrals of
the CDFs rather than the CDFs themselves.

5.3.1 *More details on stochastic dominance

We will work with random variables rather than prospects; then we can state the
result as follows.

Theorem 5.3 For random variables X and Y, both taking values in the finite
range [a, b], the stochastic dominance condition:

FX(x) ≤ FY (x) for all x ∈ [a, b],

holds if and only if
E(u(X)) ≥ E(u(Y ))

for all increasing functions u.



MAKING DECISIONS UNDER UNCERTAINTY 153

Sketch Proof
We will switch to continuous random variables, where the quickest way to prove
this result is to use integration by parts, i.e. we use the fact that

∫ b

a

g(x)h′(x)dx = [g(x)h(x)]ba −
∫ b

a

g′(x)h(x)dx .

Thus, we will assume that the derivative of u exists and there are well-defined
densities fX and fY . The result holds more generally and the sketch proof we
give can be extended to these other cases (e.g. when X and Y are discrete).

Using integration by parts we have

E(u(X)) − E(u(Y )) =
∫ b

a

u(x)fX(x)dx −
∫ b

a

u(x)fY (x)dx

=
∫ b

a

u(x)(fX(x) − fY (x))dx

= [u(x)(FX(x) − FY (x))]ba −
∫ b

a

u′(x)(FX(x) − FY (x))dx

= −
∫ b

a

u′(x)(FX(x) − FY (x))dx . (5.6)

Here we have used the fact that FX(b) = FY (b) = 1 and FX(a) = FY (a) = 0.
Now suppose that FX(x) ≤ FY (x) throughout the range [a, b] and u′(x) ≥ 0.

Then the integral in Equation (5.6) is non-negative and so E(u(X)) ≥ E(u(Y )).

To show what we want in the other direction, we suppose that FX(c) >

FY (c). Continuing with our assumption that densities exist, the CDF functions
are continuous, so there will be a small range c − δ to c + δ on which FX is
greater than FY , specifically suppose that FX − FY > ε > 0 on this range. Now
consider a utility function defined so that u′(x) = ε/(b − a) except in the range
c − δ to c + δ, where u′(x) = 1/δ. In other words, the utility function is almost
flat except in the interval where FX is greater than FY , where the utility function
jumps up sharply. Then

E(u(X)) − E(u(Y )) =
∫ b

a

u′(x)(FY (x) − FX(x))dx

≤
∫ c−δ

a

u′(x)dx +
∫ c+δ

c−δ

u′(x)(−ε)dx +
∫ b

c+δ

u′(x)dx

≤ ε − (2δ)
ε

δ
< 0.

Thus, we have shown that whenever there is a point where FX is greater than
FY , we can find a utility function that makes Y preferable to X. �
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Now we turn to the second order stochastic dominance result that parallels
Theorem 5.3 but applies to concave utility functions. Just as for Theorem 5.3,
we will give a continuous version of this, but the result is true also for a discrete
random variable.

Theorem 5.4 For random variables X and Y , both taking values in the finite
range [a, b], the second order stochastic dominance condition:∫ x

a

FX(z)dz ≤
∫ x

a

FY (z)dz for all x ∈ [a, b], (5.7)

holds if and only if
E(u(X)) ≥ E(u(Y ))

for all increasing concave functions u.

Sketch Proof
Again we will use integration by parts to prove this result. We write F̃ (x) for
the integral of F . Thus

F̃X(x) =
∫ x

a

FX(z)dz , andF̃Y (x) =
∫ x

a

FY (z)dz .

Then, integration by parts of Equation (5.6) gives:

E(u(X)) − E(u(Y )) =
∫ b

a

u′(x)(FY (x) − FX(x))dx

= [
u′(x)(F̃Y (x) − F̃X(x))

]b
a

−
∫ b

a

u
′′
(x)(F̃Y (x) − F̃X(x))dx .

Now note that F̃X(a) = F̃Y (a) = 0, so

E(u(X)) − E(u(Y )) = u′(b)(F̃Y (b) − F̃X(b)) −
∫ b

a

u
′′
(x)(F̃Y (x) − F̃X(x))dx .

(5.8)
Hence, if F̃Y (x) ≥ F̃X(x) and u

′′
(x) < 0 for all x ∈ [a, b] then, since u′(b) ≥ 0,

we have E(u(X)) ≥ E(u(Y )).
To prove the result in the other direction, we suppose that F̃X(c) > F̃Y (c)

at some point c. Then we can find an ε, δ > 0 with F̃X(x) − F̃Y (x) > ε for
x ∈ (c − δ, c + δ). Now construct a utility function u with

u(x) = x, for a ≤ x < c − δ,

u(x) = x − (x − c + δ)2/(4δ), for c − δ ≤ x < c + δ,

u(x) = c, for c + δ ≤ x ≤ b.



MAKING DECISIONS UNDER UNCERTAINTY 155

With this choice of u the derivative is continuous, having u′(x) = 1 for x ≤
c − δ, u′(x) = 0 for x ≥ c + δ and u′ linear decreasing from 1 to 0 in the range
(c − δ, c + δ). Thus, u′′ is negative on (c − δ, c + δ) and zero outside this range.

Hence, since u′(b) = 0, we have, from Equation (5.8)

E(u(X)) − E(u(Y )) =
∫ c+δ

c−δ

(−u′′(x))(F̃Y (x) − F̃X(x))dx

≤
∫ c+δ

c−δ

(−u′′(x))(−ε)dx

= ε(u′(c + δ) − u′(c − δ))

= −ε

and the random variable Y has a higher expected utility than X. �

If X second order stochastically dominates Y , then the condition (5.7) implies
that FX starts by being lower than FY . For ordinary stochastic dominance (some-
times called first order stochastic dominance), FX remains lower than FY . But
with second order stochastic dominance, FX can become larger than FY provided
its integral stays below the integral of FY . In other words, the area under the
graph of FX up to a point x is less than the area under the graph of FY up
to the same point x. This can be seen as a statement about what happens to
the area of the region between the two graphs of FX and FY . The situation is
illustrated in Figure 5.9. In this diagram, the area marked A is larger than the
area marked B. It is not hard to see that F̃Y (x) − F̃X(x) is equal to A − B when
x = x0 (the second crossing point) and greater than this for x on either side of
x0. Thus, with the CDFs shown in the diagram, the random variable X second
order stochastically dominates Y .

Finally we will show that for a distribution that is symmetric about its mean
(like the normal distribution), the process of shrinking the distribution closer
to the mean will produce a new random variable that second order stochasti-
cally dominates the first one. To do this we make use of the diagram shown in
Figure 5.10. In this figure, the CDF FX is for a random variable X with normal

1

0

A

B

x0

FY

FX

Figure 5.9 The CDF for X second order stochastically dominates the CDF for Y .
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Figure 5.10 The normal distribution with smaller variance is second order
stochastically dominant.

distribution (mean 0 and standard deviation 2), while FY is for a random variable
Y having normal distribution with larger standard deviation (3, in this case), but
the same argument holds no matter what symmetric distribution is used. It is
clear from symmetry that the light-shaded region to the right of the axis has a
smaller area than the dark-shaded region to the left of the axis. Moreover, this
remains true no matter where the vertical dashed line is drawn (far enough to
the right and the two areas become the same). This is enough to show, using the
approach of Figure 5.9, that X second order dominates Y .

The process of shrinking towards the mean will produce, in the limit, a single
point mass at the mean, and we already know that this will be preferred to the
original distribution by a risk-averse decision maker (i.e. the certainty of getting
the mean result is a prospect which second order stochastically dominates the
original prospect).

5.4 Risk decisions for managers

Many of the examples we have given in this chapter have focused on an individual
making a choice with implications for themselves alone. Now we want to turn to
decisions taken by companies and specifically the managers or boards of those
companies. Our starting point is to ask what the utility function will look like for
business decisions rather than personal ones. The von Neumann–Morgenstern
result suggests that there should be an underlying utility function, but what is it?
There are a number of issues to consider.

5.4.1 Managers and shareholders

We need to begin by thinking about who makes decisions and what they may be
aiming to achieve. It is usual to think about management as acting in the best
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interest of shareholders, who are the owners of the company, but in reality we
have complex systems of corporate governance with a board of directors given
the responsibility of hiring and monitoring top management in order to safeguard
the interests of the shareholders.

Most shareholders have the opportunity to diversify their holdings across
multiple firms. There are exceptions to this when shareholders wish to maintain
control or influence by holding a significant fraction of the shares, for example
in companies controlled by family interests. Usually, however, the majority of
shares are owned by institutions or individual investors who are well diversified
and consequently are likely to see only small proportional changes in their overall
wealth from changes in the value of a single firm. From this we can deduce that
shareholders will be risk neutral in their view of the actions of an individual firm.

To see why this is so, consider a firm that can pay $k million to take a risky
action that delivers either nothing or $1 million, each with probability 0.5. If a
shareholder with a proportion δ of the firm’s equity was to make the decision on
what is a fair value of k, then the shareholder with current wealth W and utility
function u should compare u(W) (manager does nothing) with 0.5u(W − δk) +
0.5u(W + δ(1 − k)) (manager takes risky action). The shareholder operating on
an expected utility basis would want the manager to take the risk provided that

0.5u(W − δk) + 0.5u(W + δ(1 − k)) > u(W).

But for small δ we can approximate the left-hand side of this expression using
the derivative of u at W (which we write as u′(W)) to get

0.5u(W) − 0.5δku′(W) + 0.5u(W) + 0.5δ(1 − k)u′(W)

= u(W) + 0.5δ(1 − 2k)u′(W).

Hence, for any k less than 0.5 this is a worthwhile investment from the share-
holder perspective, but it is not worthwhile if k is greater than 0.5. We end up
with the risk-neutral value put on the investment.

As an aside, we need to observe that this argument should not be seen as
suggesting that investors are completely indifferent to risk. The capital asset
pricing model (CAPM) explores how the component of an asset’s variance that
cannot be diversified away (its β value or systematic risk) is reflected in the
price of the asset. But the type of management decision we are considering here,
which is idiosyncratic to this particular firm, would not appear in β.

But if diversification makes shareholders risk neutral, the same cannot be said
for the managers. A manager is committed to the firm in a way that the investor
is not, and the success of a manager’s career is tied to the performance of the
company. Moreover, a senior manager may well hold stock options which also
give her a direct interest in the company share price. This can be expected to
lead to risk-averse behavior by a manager and this differs from the risk-neutral
behavior that would be preferred by investors. So there is a potential agency
problem where managers who, in theory, act as agents of the owners, are, in
fact, subject to different incentives.
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5.4.2 A single company-wide view of risk

In many cases it is convenient to view a company as a single entity; perhaps
this is connected to the legal fiction of a company as an individual. But in
practice it is clear that there will be differences between the type of actions and
choices made by one manager compared to another within the same company.
This corresponds to the different personalities involved: one manager may be
particularly risk averse by nature, whereas her colleague at the next desk is a
natural gambler. When this happens there is a danger of inefficiency, since one
manager might pay a risk premium to achieve some measure of certainty, only
for this to be negated at the firm level by the relatively risky behavior of a
second manager. The Dennis Weatherstone approach at J.P. Morgan (discussed
at the start of Chapter 3) certainly attempts to bring the entire company under
a single risk umbrella. The same motivation also lies behind the idea that firms
need to determine an appropriate risk appetite for the firm as a whole (one of the
tenets of Enterprise Risk Management), which implies that a common approach
to risk can be discussed and agreed within the top management team. In practice,
however, it is not so easy to obtain a uniform approach to risk across the whole
of a company.

One problem with the attempt to have a single level of risk appetite for the
firm as a whole is that if levels of risk appetite are related to the shape of the
utility function, then they may depend on factors like the size of the ‘bet’ and the
current company cash reserves. This explains why it is so hard to give a simple
definition of risk appetite: it cannot just be seen as a point on a scale moving
from risk averse through to risk seeking.

In Chapter 1 we commented on the way that those involved in trading oper-
ations often take a different view of risk than the back office, and it is common
to have different levels of risk preference at different levels in a hierarchy, or in
different departments. At some level this can be traced back not only to different
individual risk preferences (as we see in the caricature of a trader as being a
fast-living young man burning out on the adrenaline rush of millions of dollars
riding on instant decisions) but also to differences in reward structures, either
explicitly through bonuses or implicitly through what is valued within the culture
of a work group.

All of this will make us wary of assigning a single level of risk appetite to a
company as a whole. It is rarely as simple as that. The complications that arise
when dealing with this issue make the ‘quick and dirty’ approach of measuring
value at risk and using this on a company-wide basis seem more attractive.

5.4.3 Risk of insolvency

Whether or not managers are risk averse for most of the time, they certainly
become so if there is a threat of insolvency. This would suggest that there is
a concave utility function dropping sharply as the solvency of the company
becomes an issue. In fact, once a company enters what is called the zone of
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insolvency (i.e. when insolvency is a real possibility), then the board will (or
should) change the way that it behaves and the decision processes that are used.
Company law may involve individuals on the board becoming personally respon-
sible if the business fails, so it is not surprising that if insolvency is a possibility,
the board will act promptly. One aspect of this is that if a company is insolvent,
then the creditors have a higher claim on the company assets than the sharehold-
ers, and so, for a company that is in the zone of insolvency, the directors should
not act in a way that would prejudice the interests of the creditors over against
the equity holders if insolvency occurs.

What will the utility look like as a function of total net assets (assets minus
liabilities) for a company that faces the possibility of insolvency? The discussion
here suggests that the utility function might look something like the curve shown
in Figure 5.11. Once the firm goes out of business then the degree of insolvency
(the extent of the company debts) will determine how much the creditors receive.
Managers will have some interest in seeing creditors given a reasonable deal, but
the slope of the utility function in this region will be relatively flat. At first sight,
a utility function as shown in the figure suggests the possibility of risk-seeking
behavior. To take a simplified example, suppose that a company with current net
assets of just $100 000 if allowed to continue trading produces a 10% chance
of net assets moving to −$0.5 million, a 70% chance of net assets remaining at
$100 000 and a 20% chance of net assets increasing to $0.4 million. Thus, the
expected value of the net assets stays at $100 000, since

0.1(−0.5) + 0.7(0.1) + 0.2(0.4) = 0.1.

From an expected utility viewpoint, this trading outcome is positive (given the
utility behavior shown in Figure 5.11). Since u(0.1) = 0, the expected utility is

0.1u(−0.5) + 0.2u(0.4),

which, from the figure, is easily seen to be positive. So the company has an
incentive to continue to trade even though this involves the risk of insolvency. In
fact, if a more aggressive trading strategy could increase the size of both the gains
and the losses while leaving the expected value unchanged, then this would be
preferred. Specifically, suppose that an aggressive strategy gives a 10% chance
of net assets moving to −$1.1 million, a 70% chance of net assets remaining at
$100 000 and a 20% chance of net assets increasing to $0.7 million. Given the
shape of the utility function shown in Figure 5.11, the aggressive trading strategy
is easily seen to have an even higher expected utility, since the gain in utility
in moving from $0.4 to $0.7 million exceeds the loss in utility in moving from
−$0.5 to −$1.1 million and occurs with greater probability. Overall, we can see
that the corner in the utility function produces a region of convexity and hence
risk-seeking behavior.

In practice, however, the scenario sketched above is unlikely to happen, since
it supposes that the aggressive strategy can allow a much higher net deficit to
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Figure 5.11 The utility function for a company facing insolvency.

be created, whereas the company should cease trading as soon as the net assets
become zero. Moreover, the directors would carry significant personal risk that
the aggressive trading strategy would be found to be improper, whereupon they
would individually carry some liability for the debts.

Notes

The book by Peter Bernstein gives more information about the development of
the idea of utility by Daniel Bernoulli and others. The decision tree ideas that we
present are quite standard and can be found in any textbook on Decision Theory.

An excellent book which goes quite deeply into the different frameworks that
underlie the use of Expected Utility Theory is Theory of Decision under Uncer-
tainty by Itzhak Gilboa. This is a book which gives an accessible introduction
to some of the important philosophical and conceptual underpinnings of decision
theory. Note, though, that Gilboa gives a slightly different form of the continuity
axiom in describing the von Neumann–Morgenstern theory. This is arguably a
weaker assumption, but slightly increases the complexity of understanding what
is going on.

The discussion of utility functions like that shown in Figure 5.6 as an explana-
tion of the coexistence of both gambling on lotteries and insurance (as discussed
in Worked Example 5.3) goes back to a paper by Friedman and Savage in 1948.
However, a different and more convincing explanation can be found in the ideas
of Prospect Theory that we present in the next chapter.

The discussion of Savage’s theorem is drawn from Gilboa’s book. This
theory is designed around a situation with a rich state space (infinite with
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every individual element null). There are alternative approaches that need a
rich outcome space, but a simpler state space, and Wakker (2010) gives such a
development.

We have given short proofs of the stochastic dominance results based on
an assumption of continuous random variables defined over a finite range, and
differentiable utility functions (see the paper by Hadar and Russell, 1971 for a
similar approach). It requires a bit more work to prove these results in more
generality. Sheldon Ross (2011) covers some of this material in his book on
introductory mathematical finance.

Our discussion of risk decisions and utility at the firm level is a simplified
view of a complex topic. For example, we have taken no account of corporate
taxes (that will often have the effect of making after-tax income a concave func-
tion of pre-tax income), nor do we consider the transaction costs of bankruptcy.
Smith and Stulz (1985) give a more detailed discussion of these issues.
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Exercises

5.1 Making the right bid

Xsteel is bidding to supply corrugated steel sheet for a major construction
project. It knows that Yco is likely to be the only other serious bidder.
There is a single price variable and the lower price bidder will win, and if
both prices are the same then other factors will determine the winning bid,
with Xsteel and Yco equally likely to win. Xsteel believes that Yco will
make an offer of $800 or $810 or $820 or $830 per ton, with each of these
possibilities equally likely. Xsteel has a production cost of $790 per ton,
and only bids at multiples of $10 per ton are possible. What price bid will
maximize Xsteel’s expected profit?

5.2 EUT and a business venture

James has $1000 which he wants to invest for a year. He can put the
money into a savings account, which pays an interest rate of 4%. His
friend Kate asks him to invest the money in a business venture for
which she needs exactly $1000. However, Kate’s business will fail with
probability 0.3 and if this happens James will get nothing. On the other
hand, if the business succeeds it will make $2000 and this money can be
used to repay the loan to James. The time taken to repay the money if the
venture succeeds will be one year.

(a) Using EUT and assuming that James is risk neutral, how much would
Kate have to repay James in order to convince James to lend her the
money?

(b) Assume James is risk averse with concave utility function u(x) = √
x.

How much would Kate have to repay James if the business venture
succeeds in order to convince James to lend her the money?

5.3 Calculating utilities from choices

A researcher is trying to understand the utility function of an entrepreneur
with a company worth $1 million. He does this by describing various poten-
tial ventures and asking the manager whether she would take on this venture
under the terms described. By changing the probabilities assigned to suc-
cess and failure, he finds three ventures where the manager is indifferent
between taking them or not. The probabilities on different outcomes are
given in Table 5.3.

Use this information to estimate the utilities on the different firm values:
$1.5 million, $2 million and $2.5 million, assuming that the utility for firm
value $0.5 million is 1 and the utility for firm value $1 million is 2. (These
two values can be set arbitrarily because utilities are only defined from
choices up to a positive linear transformation: see Theorem 5.1). Sketch a
possible utility function for the entrepreneur.
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Table 5.3 Outcomes for different ventures in Exercise 5.3.

Outcome: Lose
$0.5 million

Gain
$0.5 million

Gain
$1 million

Gain
$1.5 million

Probabilities:

Venture A 0.4 0.6 0 0
Venture B 0.6 0 0.4 0
Venture C 0.7 0 0 0.3

5.4 Stochastic dominance and negative prospects

Show that if a prospect A = (x1, p1; x2, p2; . . . ; xn, pn) stochastically
dominates the prospect B = (y1, q1; y2, q2; . . . ; yn, qn), then the prospect
−B = (−y1, q1; −y2, q2; . . . ;−yn, qn) stochastically dominates the
prospect −A = (−x1, p1; −x2, p2; . . . ; −xn, pn).

5.5 Stochastic dominance and normal distributions

The profits from sales of a product depend on demand, which follows a
normal distribution. The demand in week 1 has a distribution with mean
1000 and standard deviation 100. The demand in week 2 has mean 1010.

(a) Suppose that the standard deviation of demand in week 2 is 100. Explain
why the profit in week 2 stochastically dominates the profit in week 1,
and this result does not depend on the exact relationship between profit
and sales.

(b) Show that if demand in week 2 has standard deviation of 105, then the
profit in week 2 will not stochastically dominate the profit in week 1.

(c) Show that if demand in week 2 has standard deviation of 95, then the
profit in week 2 will not stochastically dominate the profit in week 1.

5.6 Failure of stochastic dominance

Consider the following two prospects: q = ($100, 0.1; $300, 0.2; $400, 0.2;
$700, 0.3; $900, 0.2) and r = ($300, 0.3; $500, 0.3; $700, 0.2; $900, 0.1;
$1000, 0.1). Show that neither stochastically dominates the other and
find a set of utility assignments where q is preferred and a set of utility
assignments where r is preferred. Your utility values should satisfy the
requirement that having more money gives strictly higher utility.

5.7 Second order stochastic dominance

Given the two prospects defined in Exercise 5.6, show that r second order
stochastically dominates q.
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Understanding risk behavior

The economics of extended warranties
A consumer who buys either an electronic item (like a TV or laptop) or a white
goods item (like a washing machine) will inevitably be offered an extended
warranty. The technical term for this is an ‘Extended Service Contract’ or ESC.
This will take the manufacturer’s warranty of perhaps one year and extend it to,
say, three years from the date of purchase. The consumer pays some additional
amount for the peace of mind of knowing that they will not have to face an
expensive repair. The sums of money are not small; for example, an ESC on a
laptop costing $600 could cost $100. This is an enormous business worth billions
of dollars a year and it can be very profitable for retailers who charge a generous
margin on top of the cost that they pay to the warranty provider. There are reports
that margins can be 50% or more, and that electronics retailers can earn half of
their total profits from extended warranty sales.

The consumer is facing a decision where it is hard to estimate the probabilities
involved and also hard to estimate the costs that may be incurred. There is some
chance of a problem that can be fixed quite cheaply, but it is also possible that
the item will fail completely. But, if there is so much money being made by
the suppliers of the warranty, then it suggests that the ESC is a bad idea on an
expected cost basis. Nevertheless, Expected Utility Theory could explain this as
a transaction involving a risk-averse consumer paying for the insurance provided
by a more risk-neutral service provider.

Many of the experts, and every advice column, say that buying an ESC is
a bad choice on the part of the consumer. In 2006 there was a full-page advert
placed in many newspapers by Consumer Reports, a respected publication, saying
simply, ‘Dear shopper, Despite what the salesperson says, you don’t need an
extended warranty. Yours truly, Consumer Reports’. The argument is made that,
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even assuming a relatively high level of risk aversion on the part of the consumer,
it is still hard to justify the high cost of the ESC for many products.

On this basis one might expect that customers who had purchased extended
warranties would be unhappy, but not a bit of it. A survey reported in Warranty
Week (an online newsletter for people working in this area) in March 2012 asked
those who had bought extended warranties in the past whether they would do so
again: 49% said ‘Yes’, 48% said ‘Perhaps, depending on product and pricing’
and only 3% said ‘No’. Consumers continue to purchase extended warranties and
seem happy to do so.

6.1 Why decision theory fails

In the previous chapter we discussed Expected Utility Theory and how it can
be used to make decisions in a risky or uncertain environment. We showed how
working with utilities on outcomes and simply making choices that maximize
the expected utility value is a strong normative decision theory. It describes the
way that individuals should make decisions. In fact, the case for EUT seems
unassailable. It can be derived from axioms which seem entirely reasonable. It
has all the right properties – such as always preferring a choice that stochastically
dominates another. It also enables an elegant understanding of risk-averse or risk-
seeking behavior depending on the concavity or convexity of the utility function.
However, there is now a great body of evidence to show that EUT does not do
well in predicting the actual choices that people make. In fact, as we will show,
individuals deviate from EUT in consistent ways.

In understanding what might be wrong with Expected Utility Theory as a
predictor of individual choice, we need to question the individual components of
the theory.

6.1.1 The meaning of utility

Perhaps the most fundamental idea in the decision theory we have presented is
that utility is defined simply by the outcomes for an individual. This allows us to
say that A is preferred to B, and imply by this that A is always preferred to B. One
problem here is that I may make one choice today and another tomorrow, so that
there is inconsistency in an individual’s choices. This might simply be because
I am more or less indifferent between the choices available. Which cereal do I
choose for breakfast? Where in the train do I choose to sit? A lack of consistency
here is no real problem for the theory; but what if I am not indifferent between
two choices, and have a clear preference for one over the other? Does it therefore
follow that I will make the same choice on another occasion? Perhaps not, because
every decision is made in a particular context. For example, a choice to buy a
product or not will depend on the way that the product is described (psychologists
talk of this as framing) and this can make a difference –perhaps the product has a
particularly persuasive salesman. Moreover, the decision I make on this occasion
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cannot be divorced from the other things that are going on in my life: a fright
that I receive while driving my car today will make me more inclined to purchase
life insurance tomorrow than I was yesterday.

A separate problem that we should address is the connection between the
utility of an outcome and the satisfaction that I achieve from it. In crude terms,
I can be expected to choose the action that will bring me the greatest enjoyment,
but we have only to make this statement to recognize that it is a dramatic over-
simplification.

• I may be altruistic and choose an action that benefits a friend, family
member or society at large. So, at the least, we can say that satisfaction or
contentment is complex and does not just involve our own pleasures.

• I may postpone doing something that I know I will enjoy. From the point
of view of the decision I face right now, the cup of coffee will be well
worth its price, but I know that I can enjoy the cup of coffee later in the
morning and so decide to wait. Or perhaps I am saving for my retirement
and I decide not to purchase the expensive holiday that I want because it
will eat into those savings. Part of what is going on in these examples is
that there is enjoyment to be had simply in the anticipation of pleasure.

• The action I choose may be determined by who I perceive myself to be,
and how I wish to be seen by others. For example, I want to be seen as
responsible and restrained and so, tempting though it may be, I do not buy
the convertible sports car that I would really enjoy.

These observations all demonstrate that we cannot simply define utility on
the basis of immediate personal enjoyment.

In addition to these complexities, we can also observe that the utility of an
outcome is often determined in part by a comparison with other outcomes. There
are three important aspects to this.

• When assessing an outcome, we often compare it with the outcomes achieved
by others. For example, an employee will judge her salary not only by its
size but also by how it compares with her colleagues and peers. If others do
better than me then I will feel worse. As Gore Vidal strikingly put it, ‘It is not
enough to succeed. Others must fail.’ This idea is important when we think
about the concept of a Pareto improving outcome, in which all parties do at
least as well as they did before, and some people do strictly better. It may
seem as though that must be a good thing, but life is more complicated. A boss
who arbitrarily gave a bonus of $500 to half of his employees and nothing
to the others may produce a Pareto improving outcome for the workforce,
but there will certainly be some unhappy people (and imagine what would
happen if male employees got the bonus and the women did not!).

• When assessing an outcome, we often compare it with how things were
before. This means that the utility of an outcome can depend on the route
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by which it arrived. Two people go into a casino and spend the night
gambling: one begins by losing some money and then, over the course
of the evening, wins it back to emerge $500 ahead, while the other has
some early successes and at one point has made a profit of $5000 before
continuing to gamble less successfully, losing 90% of his winnings to finish
with a profit of $500. Then, of the two, the person who has slipped from
a potential profit of $5000 to a profit of $500 is likely to feel much less
happy about the outcome.

• When assessing an outcome, we often compare it with our expectations. In
a similar way to that in which people compare their current state with their
previous state, the expectations of outcomes also play a role. An employee
who last year had a bonus of $5000 and expects a similar bonus this year,
will feel much less positive on receiving this bonus than an employee who
expects a bonus of $2000 and instead receives $5000.

Our discussion so far has demonstrated that utility cannot be understood
without taking account of many different factors: our happiness depends both on
context and comparison, and the choices we make are not just about our own
immediate pleasure. But we can still rescue the idea of a definite utility for
each possible outcome, we just need to understand this utility more broadly. For
example, we can say that we receive utility from seeing friends do well; from
believing that we are thought well of by others; from thinking that we have done
better than others; from experiencing an improvement in our circumstances; and
from the pleasure of a surprise in relation to our expectations.

The von Neumann–Morgenstern Theorem deduces utility from decisions, not
the other way around. And so nothing about the difficulties of constructing utili-
ties from looking at the properties of outcomes necessarily undercuts this theory.

6.1.2 Bounded rationality

If Expected Utility Theory holds, then it suggests that good decision makers
(who make consistent and thoughtful choices) should be investing in estimating
both the utilities of different outcomes and the probabilities that they may occur.
When this has been done, a rational individual will carry out a computation of the
expected value of different choices in order to decide between them. Though we
can construct artificial examples in which these calculations are relatively easy to
carry out, to do this in practice is far more difficult. In most cases there are enough
potential outcomes that even listing them would be a challenge, let alone evaluat-
ing utilities for them all. And what methods can be used to estimate probabilities
for these outcomes? Finally, there is a non-trivial computation of expectations
to be carried out. This also does not chime well with what we know in practice,
since we make most decisions without recourse to a spreadsheet or calculator.

Herbert Simon called into question whether we can expect so much from
decision makers and called this bounded rationality. There is not only the question
of computational capability, but also whether the time and expense involved is
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likely to be compensated for by a better final decision. But what is the alternative
for making decisions? If a full-scale computation of expected utilities does not
take place, then we need to investigate the mental processes that occur instead.

There has been a large amount of academic research into the processes that
people use to make decisions. There are a variety of different heuristics and biases
that come into play, for the most part subconsciously. Daniel Kahneman describes
two systems of decision making or cognition, which we will call reasoning
and intuition. Reasoning is carried out deliberately and requires effort, whereas
intuition takes place spontaneously and requires no effort. Most of the time we
operate intuitively, with our reasoning capacity acting as a monitor or restraint on
our intuitive actions and choices. The reasoning component in decisions requires
effort, of which there is only a limited overall capacity, and for that reason it
can be interrupted if another reasoning task arises. Kahneman points out that
this is what happens when a driver halts a conversation in order to carry out a
difficult manoeuvre: the driving decisions temporarily move from being intuitive
to requiring reasoning.

But even when decision making is done within a reasoning mode, simplifying
heuristics and biases will come into play. For example:

• When faced with a complex choice involving many alternatives, deci-
sion makers tend to eliminate some choices quickly using relatively small
amounts of information, and only when the choice set is reduced to a small
size (maybe two only) does the decision maker attempt to compare on the
basis of all available information.

• Decision options or outcomes that have greater saliency or greater acces-
sibility will be given greater weight. Accessibility here refers to the ease
with which something can be brought to mind and may be determined by
recent experience or the description of the outcome or option. Saliency
refers to the extent that an item is distinctive or prominent. These heuris-
tics imply that the framing of a decision will have a significant effect on
the choice made.

• Decision makers will usually accept the formulation that is given relatively
passively, and are unlikely to construct their own framework of evaluation
for different options. In particular, whatever choice is presented as the
default option has a greater likelihood of being selected.

6.1.3 Inconsistent choices under uncertainty

In our discussion so far we have reduced the range of circumstances in which
we can expect that Expected Utility Theory will apply. We need to assume that
outcomes are simple so that utilities can be evaluated easily. We need to ensure
that the decision is taken through reasoning (and applying mental effort) rather
than being carried out in an intuitive fashion. Finally, we must have a simple
arrangement with well-defined probabilities in order to avoid the constraints of
bounded rationality.
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It is remarkable that, even working within these limitations, we can find
examples where decision makers make choices that are not consistent with any
choice of utility function, and hence demonstrate a deviation from Expected Utility
Theory. The first such observation was made by Maurice Allais in a 1953 article
in Econometrica (‘The behavior of rational man in risky situations – A critique
of the axioms and postulates of the American School’). Allais demonstrates that
the axiom of independence may not hold in practice. Or, to put it another way,
the axiom may not hold in a descriptive rather than normative theory of decision
making.

Next we give three examples from amongst many that could be given. In
each case people are asked in an experiment to make a choice between two
options (or, to be more precise, to say which of two options they would prefer
if it was offered). This is Decision 1. Then the same individuals are asked to
make a choice between a different pair of options (Decision 2). The choices are
constructed in such a way that certain pairs of decisions are inconsistent with
any set of utility values. The experiments are repeated with many individuals to
demonstrate a consistent pattern in the way that people make decisions. Taken
together these examples provide a very convincing case that an alternative to
Expected Utility Theory is needed if we want to do a good job of explaining
how individuals actually make choices when faced with uncertainty.

Example 6.1 Preference for sure gain: version 1

We give a version of the Allais paradox. Consider the following two experiments.
In Decision 1 participants are asked to choose between the two prospects A1 and
B1 described as follows:

A1: gain $2500 with probability 0.33; gain $2400 with probability 0.66;
0 with probability 0.01.

B1: gain $2400 with certainty.

The experiment shows that more than 80% of people choose B1. Under the
assumptions of EUT we can convert this into a statement about the utilities of
the various sums of money involved. We deduce that, for most people,

u(2400) > 0.33u(2500) + 0.66u(2400)

since we can assume u(0) = 0. This can be simplified to

0.34u(2400) > 0.33u(2500).

In Decision 2 participants are asked to choose between the two prospects C1
and D1 described as follows

C1: gain $2500 with probability 0.33; 0 with probability 0.67,

D1: gain $2400 with probability 0.34; 0 with probability 0.66,
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and in this case more than 80% of people choose C1. But, again using u(0) = 0,
this implies that

0.33u(2500) > 0.34u(2400)

i.e. the exact reverse inequality to that we just derived.
Try checking what your own choices would be in these two different deci-

sions. For most people, having the inconsistency pointed out to them does not
alter the choices they would make. In the Allais paradox, prospects C1 and D1
are obtained from prospects A1 and B1 simply by eliminating a 0.66 chance of
winning $2400 from both prospects. This change produces a greater reduction in
desirability when it turns a sure gain to a probable one, rather than when both
the original and the reduced prospects are uncertain. There is something about
the sure gain of prospect B1 that makes it particularly attractive, and this leads
to a violation of the independence axiom. �

Example 6.2 Preference for sure gain: version 2

The same type of phenomenon appears in the following two experiments. In
Decision 1 participants are asked to choose between the two prospects A2 and
B2 described as follows

A2: gain of $4000 with probability 0.8; 0 with probability 0.2,

B2: gain of $3000 with certainty.

The majority of people (80%) choose B2. For these people we can deduce that
u(3000) > 0.8u(4000). In Decision 2 the two prospects are

C2: gain of $4000 with probability 0.2; 0 with probability 0.8,

D2: gain of $3000 with probability 0.25; 0 with probability 0.75.

Then the majority of people (65%) choose C2. We can deduce that for these
people 0.25u(3000) < 0.2u(4000), which is the reverse of the inequality derived
from the first experiment. This is another example of people preferring certainty.

In this example, the choice of B2 in preference to A2 is an example of
risk aversion. If individuals were risk neutral, then A2 with a higher expected
value (of $3200) would be preferred. The preference for certainty here reflects a
concave utility function. The problem for EUT is that the two different decisions
imply different amounts of concavity (a greater degree of concavity for Decision
1 than for Decision 2). �

Example 6.3 Dislike of sure loss

The exact opposite of these results is found when losses are involved rather than
gains. In this case, in Decision 1 participants are asked to choose between the
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two prospects A3 and B3 described as follows

A3: loss of $4000 with probability 0.8; 0 with probability 0.2,

B3: loss of $3000 with certainty.

The great majority of people (90%) choose A3. For these people we can deduce
that u(−3000) < 0.8u(4000). In Decision 2 the two prospects are

C3: loss of $4000 with probability 0.2; 0 with probability 0.8,

D3: loss of $3000 with probability 0.25; 0 with probability 0.75.

Then, the majority of people (58%) choose D3, leading to the inequality:
0.25u(−3000) < 0.2u(4000), which amounts to the exact opposite of the
deduction from Decision 1.

Since the great majority of people choose A3 in preference to B3, even though
the expected loss under A3 is greater (at $3200), we can deduce that people are
risk seeking over negative gains (i.e. losses), where they will gamble to give
themselves a chance of avoiding a loss. This implies a utility function that is
convex in this area. The difficulty in this example is that there is a greater degree
of convexity in Decision 1 than in Decision 2. �

6.1.4 Problems from scaling utility functions

Our final example of the way that Expected Utility Theory can fail is taken from
Rabin and Thaler (2001). It demonstrates that problems arise unless we deal with
changes in wealth rather than absolute values. Suppose that you are offered a
choice to gamble with a 50% chance of winning $100 and a 50% chance of
losing $90. Most people would reject this bet independently of the size of their
bank balance. Following Expected Utility Theory, if W is their current wealth
then this implies that they prefer W to equal chances of being at (W − 90) or
(W + 100). With a utility function u this gives

u(W) > 0.5u(W − 90) + 0.5u(W + 100).

Hence (multiplying through by 2 and rearranging)

u(W) − u(W − 90) > u(W + 100) − u(W). (6.1)

This shows that u is concave over the interval, but we can be more specific.
Looking carefully at Figure 6.1 shows that the derivative of u at W + 100 is
less than the slope of the straight line joining the points on the curve at W and
W + 100, i.e.

u′(W + 100) < (u(W + 100) − u(W))/100.

In the same way, the derivative of u at W − 90 is more than the slope of the
straight line joining the points on the curve at W − 90 and W , i.e.

u′(W − 90) > (u(W) − u(W − 90))/90.
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WW − 90 W +100

Figure 6.1 Comparing straight line segments to the utility function.

Putting these observations together with Inequality (6.1) shows that

u′(W − 90) > (10/9)u′(W + 100).

Now, since the W in this inequality is arbitrary, we can deduce that

u′(W) > (10/9)u′(W + 190)

> (10/9)2u′(W + 380)

> (10/9)nu′(W + 190n).

What has happened here is that, in effect, we have applied the inequality
arising from not gambling at different points along the curve and then stitched
the inequalities together to say something about the way that the slope decreases
over a much longer interval. When n = 50 this gives

u′(W) > 194u′(W + 9500).

The slope of the utility function simply tells us what an extra dollar would be
worth to us, and so this inequality says that the value of an extra dollar is almost
200 times less if you are $9500 dollars wealthier. This does not seem believable:
it is quite reasonable to suppose that increasing wealth makes someone value
additional wealth less, but this cannot happen to the extent that this calculation
predicts. From this we can see that uniformly applying the consequences of
rejecting a small gamble gives results that seem wrong when scaled up.

6.2 Prospect Theory

Many researchers have worked on different ways of explaining deviations from
Expected Utility Theory. In this chapter we will describe just one of these theo-
ries, called Prospect Theory, developed by Daniel Kahneman and Amos Tversky.
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This theory is built on many of the ideas that preceded it and even if some would
argue for a different approach, the main ingredients of these theories are similar.
So, we will not lose much by concentrating on a version of Prospect Theory.
Moreover, Kahneman and Tversky’s work (summarized in their papers of 1979
and 1992) is the single most important contribution in this area and they were
awarded the Nobel prize for their work in 2002.

6.2.1 Foundations for behavioral decision theory

Prospect Theory is an example of behavioral decision theory. This is a ‘theory’ in
the sense of having predictive power; it can tell us how people are likely to behave
facing different choices involving uncertainty. In developing this theory we will
start with three fundamental observations about the way people make decisions.

6.2.1.1 Using a reference point

One weakness in Expected Utility Theory is that, for consistency, it must apply to
the total wealth of an individual. And yet there seems little evidence that people
take much account of their bank balance or housing equity when considering small-
scale financial decisions. Obviously this principle will depend to some extent on
individual circumstances: when facing bankruptcy, then indeed the absolute wealth
may be the focus of attention. But in the normal course of events (say in deciding
whether or not to take up an extended warranty offer that involves paying out money
now for additional security in the future), our total wealth is not a big factor.

Instead of thinking about the total value of all their assets and using that in a
calculation of utilities, people tend to compare possible outcomes against some
benchmark in their mind. We have already said that our feeling about outcomes
may depend on how well we do in comparison with others around us, or in
comparison with an expectation we have formed. But when decisions are made
that may involve gains or losses, then the current position becomes the normal
starting point. Decision makers focus on changes rather than on absolute values.

The way in which a reference point is constructed will depend on the exact
circumstances of the decision. There is an opportunity for framing to lead a
decision maker towards a particular reference point. We will concentrate on
simple prospects without looking at any of the contextual factors that can come
into play in practice. In these cases the current position will be the reference
point, unless we are considering a prospect in which every outcome involves a
gain; then it seems that the prospect is evaluated by taking the lowest gain as
certain and using this lowest gain as a reference point. In much the same way,
in evaluating a prospect where every outcome produces a loss, most people take
the smallest loss as certain and evaluate the resulting prospect from that point.

6.2.1.2 Avoiding losses if possible

The existence of a reference point opens up the possibility of different behavior
on one side of the reference point than the other, and this is exactly what we find.
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People dislike losses in an absolute way rather than in a way that corresponds
to simply looking at a reduction in utility as wealth decreases. For example, we
can look at gambles in which there are equal chances of losing X or gaining Y .
For this to be attractive, most people want Y to be about twice as big as X.
Thinking in utility terms would suggest that as X and Y get smaller, decision
makers should be more inclined to accept the gamble provided that Y (the gain)
is larger than X (the loss). In practice, however, this doesn’t seem to happen
until X and Y are made so small as to be immaterial.

A good way to describe this is to say that individuals have a value function
that is kinked around the reference point, as is indicated in Figure 6.2. We
use the term ‘value function’ here to describe something like a utility function
but calculated with respect to a reference point (we will make this more precise
later). This makes sense of a lot of observations that we can make about people’s
behavior. For example, it has often been observed that decision makers seem to
prefer the status quo. One explanation is that in considering an alternative to the
status quo there is usually a possibility of a loss of wealth when compared with
the current situation, as well as some probability that there is a gain in wealth.
Then the loss aversion effect means that gains, or the probability of gains, need
to be disproportionately high in order to make a change worthwhile.

6.2.1.3 Giving too much weight to small probabilities

Most people are not good at understanding intuitively the properties of very
small probabilities. For example, we are likely to have a good idea of what
it means to leave home late and risk missing the train. We can readily make
decisions like whether or not to go back and pick up a forgotten umbrella, given
the chance that this will make us miss the train. In essence, this is a choice

GainsLosses

Value

Figure 6.2 The shape of the value function in Prospect Theory.
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with different uncertainties (the chance of rain; the chance of missing the train)
and different possible outcomes (getting wet; being late), but the probabilities
involved are not too tiny (say, greater than 5%). But when we deal with much
smaller probabilities, we are less likely to make effective intuitive judgments.
For example, if we suddenly recall that there is a back window unlocked, do we
then go back and lock it at the risk of missing the train? Here the potential loss
if the house is burgled is much greater than just getting wet, but the probability
is very small (burglary is attempted; the burglar finds the unlocked window; and
the burglar would have gone away if all the windows were secure). Of course,
we will make a decision quickly (since there is that train to catch) but the quality
of this decision may not be as good.

Experiments show that a small probability of a large gain is given a higher
value than we might expect. Suppose that we compare two lotteries: A has one
chance in 100 000 of delivering a large prize, and B has one chance in 10 000
of delivering the same large prize. It is easy to see that a ticket for A is worth
only one tenth as much as a ticket for B. But since people have a hard time
conceptualizing what a chance of one in 100 000 really means, the tickets for A
will actually be valued at much more than that.

The same thing happens in reverse with probabilities that are nearly 1, so that
the event is nearly certain. Then the chance of the event not happening seems
to be inflated in people’s minds. The result is that a near certainty of a large
gain seems less attractive than we might expect. For example, suppose that I am
offered a prize of $6000 unless a 6 is thrown twice running with a fair dice (i.e. the
$6000 prize is received with a probability 35/36 and nothing is received with a
probability 1/36). But there is an alternative, which is to take a prize of $5000 for
sure. Most people opt for the certainty of the $5000 prize. This is because we tend
to over-weight the small probability of ending with nothing and feeling foolish,
and this is the same sort of behavior that is described in Example 6.1 above.

6.2.2 Decision weights and subjective values

Kahneman and Tversky set out their first version of Prospect Theory in 1979
and then updated it later. We will start by discussing ‘Version 1’ of Prospect
Theory before going on to the full-blown cumulative version in the next section.
Essentially, Prospect Theory is constructed out of the three observations above.

Since people seem consistently to over-weight small probabilities, it makes
sense to define a function π which converts probabilities into decision weights.
Thus, π(p) is defined for 0 ≤ p ≤ 1 and we will assume that π(0) = 0 and
π(1) = 1. The idea here is that rather than forming an expected value (or utility)
based on the probabilities, we will instead use the decision weights given by the
π function.

We also need to define a subjective value v(x) for each change in outcome
(gain or loss). Here we are using the current wealth as a reference point and
we have v(0) = 0. The subjective value is a little like a utility function, but it
applies to changes in wealth, rather than to absolute values of wealth.
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Then, in the simplest case, consider a prospect where a gain of x occurs
with probability p and a loss of −y occurs with probability q. Here there is no
change with probability 1 − p − q. We form a value function for the prospect
(in comparison with the reference point of no change) by replacing probability
with weights according to the decision weight function π and using the values
of individual gains and losses in the same way that utilities of outcomes are used
in EUT. So we get the prospect value as

V (x, p; y, q) = π(p)v(x) + π(q)v(y). (6.2)

Note that since v(0) = 0, this does not appear in the expression for V .
However, we also need to capture the observation that if all outcomes are

gains, then the lowest gain is treated as certain (and similarly for all losses).
Hence, if x > y > 0 and p + q = 1 then this is perceived as being equivalent to a
certain gain y with subjective value v(y) together with a probability p (with deci-
sion weight π(p)) that the gain of y will be replaced by a gain of x. This gives

V (x, p; y, q) = v(y) + π(p)[v(x) − v(y)]. (6.3)

This differs from Equation (6.2) unless π(1 − p) = 1 − π(p), in which case
the two expressions are the same.

The situation for losses is similar. When x < y < 0,

V (x, p; y, q) = v(y) + π(p)[v(x) − v(y)].

If the decision weights were equal to probabilities, so that π(p) = p, and the
value function was a utility, then these expressions would just revert to ordinary
Expected Utility Theory.

Prospect Theory implies that decisions will generally break the rules for a
rational decision maker (with inconsistencies of some sort). Sometimes if a deci-
sion maker has these anomalies pointed out, then he will adjust his preferences
to avoid being inconsistent. But if the decision maker does not discover that
his preferences violate appropriate decision rules, then the anomalies implied by
Prospect Theory will occur. Indeed, when there is just one decision to be made
(rather than a whole series) and the results are personal to the decision maker,
with real gains and losses involved, then a decision maker is unlikely to be con-
cerned about breaking (say) the independence axiom of EUT. In this case, people
are likely to follow the predictions of Prospect Theory even when they take time
to consider their decisions carefully.

To understand the implications of this theory in more detail, we need to look
at the functions v and π . We have already seen in Figure 6.2 roughly how the
subjective value function v behaves for many people. One of the observations
that emerges from experiments is that, to a first approximation, a prospect that
is preferred to another is still preferred if all the amounts of money involved are
multiplied by a constant. This is a property that occurs when the subjective value
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function follows a ‘power law,’ i.e. we have

v(x) = γ xα

for some γ and α. Since we expect the value function to be concave, we need
α < 1. This formula works for positive x but cannot be applied to a negative
x (e.g. we cannot take the square root of a negative number.) So, when x is
negative we need to rearrange this to get

v(x) = −γ (−x)α.

We can also ask how the π function behaves. Again this will depend on the
individual, but the general shape is shown in Figure 6.3. Many experiments have
been carried out to understand what this function looks like, and they suggest a
lot of uncertainty or variation in π at both 0 and 1 (even possible discontinuities).
People are simply not very good at evaluating probabilities near zero; either they
get ignored, or they are given too much weight, and individuals are inconsistent
from one decision to the next.

The shape of the function reflects the characteristics that we discussed above.
First, relatively small probabilities are over-weighted. If we know that something
happens 10% of the time, we behave much as we ‘should’ behave under a utility
model if this event was much more likely (say 15% or 20%). Secondly, very high
probabilities are under-weighted (which ties in with the preference for certainty
that we have already observed). We treat an event which occurs 99% of the time,
and so is nearly certain to occur, almost as if it happens only 95% of the time.

We can make some deductions from the shape of the functions involved.
Notice that both the value function and the decision weight function go through
zero and are concave in the region to the right of zero. The decision weight
function, π(p), is concave in a region approximately from 0 to 0.3, and the

Decision
weight 

π(p)

Stated probability p
0

1

10

Figure 6.3 A typical decision weight function.
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value function v(x) is concave for all x > 0. Thus, for 0 < p < q < 0.3 we
know that a straight line joining the origin with the point (q, π(q)) lies below
the π curve and, in particular, below the point (p, π(p)). Hence

π(p) >
p

q
π(q)

In the same way, if 0 < x < y, then v(x) > (x/y)v(y). These relationships can
be useful in verifying inequalities that imply particular choices will be made
under Prospect Theory, as the next example shows.

Worked Example 6.4 Deriving the inequalities for choices made

Suppose that the value function for positive x is given by v(x) = x0.8. Show that
the choices made by most people in the decisions described in Example 6.2 are
consistent with the shape of the decision weight function.

Solution

As the majority of people chose $3000 with certainty over the option of $4000
with probability 0.8, we deduce that ($3000, 1.0) � ($4000, 0.8). This is equiv-
alent under Prospect Theory to the inequality

v(3000) > π(0.8)v(4000).

Now
v(3000)

v(4000)
=

(
3000

4000

)0.8

= 0.794

so this inequality can be rewritten

π(0.8) < 0.794.

But looking at Figure 6.3 we can see that, for this decision weight function, π(p)

is below the diagonal at p = 0.8 and so this inequality seems likely to be true.
The example also has ($4000, 0.2) � ($3000, 0.25), from which we deduce

that
π(0.2)v(4000) > π(0.25)v(3000).

Substituting for v(3000)/v(4000) we obtain the inequality:

0.794 <
π(0.2)

π(0.25)
. (6.4)

But, using our previous observation on π being concave in the region 0 to 0.25,
we know that

π(0.2) >
0.2

0.25
π(0.25),
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and thus

0.8 <
π(0.2)

π(0.25)

which makes Inequality (6.4) certain to hold. So, with this value function the
choices made in this example are just what we would expect under Prospect
Theory. �

6.2.2.1 Lotteries and insurance

It is instructive to look at the sales of lottery tickets from the perspective of
Prospect Theory. Many people are prepared to buy tickets in a fair lottery. A lot-
tery gives a small chance of a large prize. For the lottery to make money for the
person running it, the expected value of the winnings needs to be less than the
cost of the ticket. But let us consider a lottery where there is no money being
made by the organizer. Then, buying a ticket for, say, $5 and getting a one in a
thousand chance of winning $5000 is equivalent to preferring the lottery prospect
of ($5000, 0.001) to the price of the ticket, which is the prospect ($5, 1). This
implies that π(0.001)v(5000) > v(5). But if the value function is concave for
gains, which is what we would expect, then v(5) > 0.001v(5000). Combining
these two inequalities we get π(0.001) > 0.001. More generally, a willingness
to engage in lotteries supports the idea that π(p) > p for small p.

Notice that with Expected Utility Theory, the explanation of an individual
taking up a lottery has to do with the shape of the utility function (an area
where there is risk-seeking behavior). By moving to Prospect Theory we can see
that an alternative and more satisfactory explanation has nothing to do with the
shape of the value function, and instead is all about over-weighting of very small
probabilities.

A full explanation of why individuals are often prepared to gamble in lotteries
involves a second important factor, and that is the pleasure in anticipating the
possibility of a win even when this does not, in the end, materialize. The lottery
ticket is as much about purchasing a daydream as it is about purchasing a small
probability of the big prize.

The same underlying idea occurs with insurance. A homeowner insuring
his property is essentially preferring the prospect of a certain small cost to a
much larger cost which occurs with a small probability. So we can see this as
exemplified by saying that the prospect (−$5, 1) is preferred to (−$5000, 0.001).
Since we expect the subjective value function to be convex for losses, then we
can use the same idea as in our discussion of lottery tickets to show that this
also implies π(p) > p for small p.

Again there is a second effect that relates to the way that an individual feels
over the lifetime of an insurance policy. This can be regarded as ‘peace of mind’:
the knowledge that when an insurance policy is in place we don’t need to worry
about the possibility of a calamity.
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6.3 Cumulative Prospect Theory

The Prospect Theory that we have developed works well when prospects have
just two outcomes, but we can get into difficulties if there are more than two
outcomes. It turns out that with ‘Version 1’ of Prospect Theory it is possible
for very similar prospects to end up with very different values. For example,
compare the prospects:

AA : ($100, 0.05; $101, 0.05; $102, 0.05; $103, 0.05)

BB : ($103, 0.2).

We expect BB to be preferred since it stochastically dominates AA. Whatever
we say about risk aversion or over-weighting of small probabilities, it is hard
to imagine a decision maker selecting AA in preference to BB . Now if we just
weight values with decision weights, we get

V (AA) = π(0.05)(v(100) + v(101) + v(102) + v(103))


 4π(0.05)v(103).

Notice that there is a 0.8 probability of getting nothing and so we are not in the
position of a sure gain to apply Equation (6.3).

However, because of the properties of concave functions, we know that
π(0.05) > 0.25π(0.2). Thus, V (AA) > v(103), and using Prospect Theory Ver-
sion 1 will imply that the prospect AA has a substantially larger value than BB .

To fix this problem we need to introduce Cumulative Prospect Theory.
A glance at the next couple of pages indicates that this will make the expressions
much more cumbersome to write down, but in essence this ‘Version 2’ of
Prospect Theory is only slightly more complicated than ‘Version 1’.

We start by defining two different decision weight functions; one will apply
to positive outcomes and one to negative. We call these decision weight functions
w+(p) and w−(p) and they are defined on probabilities p. These weight functions
are similar to π . They will have the same general shape as π and we will assume
that w+(0) = w−(0) = 0 and w+(1) = w−(1) = 1.

We will deal with positive outcomes first. The approach is to order the poten-
tial outcomes and apply to each a weight given by the increment in the w+
function, if 0 < y < x then

V (x, p; y, q) = [w+(p + q) − w+(p)]v(y) + w+(p)v(x).

Notice that with just two outcomes (i.e. no option of zero change) this reverts to
the previous version. Thus, if 0 < x1 < x2 and p1 + p2 = 1, then

V = v(x1)[w
+(p1 + p2) − w+(p2)] + v(x2)w

+(p2)

= v(x1) + w+(p2)[v(x2) − v(x1)],

using the fact that w+(p1 + p2) = w+(1) = 1.
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More generally, for prospects where outcomes are 0 or xi with 0 < x1 <

. . . < xn and there is probability pi of outcome xi , then

V =
∑

π+
i v(xi),

with
π+

i = w+(pi + · · · + pn) − w+(pi+1 + · · · + pn)

and
π+

n = w+(pn).

Figure 6.4 illustrates the way that this incremental calculation is carried out
for a prospect in which there is a 40% chance of a gain of nothing, a 30% chance
of a gain of $100, a 20% chance of a gain of $200 and a 10% chance of a gain of
$300. Thus, the prospect is ($100, 0.3; $200, 0.2; $300, 0.1). In order to calculate
probability weights for each of the outcomes, we divide the probability axis into
regions of the appropriate length, starting with the highest gain of $300. Then
the π+ values are read off from the increments in the w+ function values.

Notice that the weight assigned to the first outcome of $300 is proportion-
ally higher in relation to the probabilities than the weight allocated to a middle
outcome of $100 (remember that the worst outcome is $0). In fact, the worst
outcome, especially if it has low probability, is also given a higher weighting.
These facts follow from the higher slope of the decision weight curve at the two
ends of the interval. A key characteristic of Prospect Theory is that it gives higher
weights to relatively unlikely extreme outcomes (either large gains or near-zero
gains) and this is also true for losses.

The definitions for negative outcomes are similar. Suppose a prospect has out-
comes of 0 or xi with 0 > x1 > · · · > xn and there is probability pi of outcome xi .

Decision
weight

1

10%
$300

20%
$200

30%
$100

π+
$100

π+
$200

π+
$300

Probability

Figure 6.4 Calculating decision weights using the incremental method of Cumu-
lative Prospect Theory.
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Then
V =

∑
π−

i v(xi),

with π−
i = w−(pi + · · · + pn) − w−(pi+1 + · · · + pn) and π−

n = w−(pn).

If f is a prospect with both positive and negative outcomes, then we let f +
be f with all negative elements set to zero, and we let f − be f with all positive
elements set to zero. Then

V (f ) = V (f +) + V (f −)

(remember that v(0) = 0 so the extra zero value outcomes in f + and f − do not
change the value of V ).

This is most easily understood by looking at an example: If the outcomes of
a prospect are −$5, −$3, −$1, $2, $4, $6, each with probability 1/6, then

f + = ($0, 1/2; $2, 1/6; $4, 1/6; $6, 1/6),

f − = (−$5, 1/6; −$3, 1/6; −$1, 1/6; $0, 1/2).

So

V (f ) = v(2)[w+(1/2) − w+(1/3)] + v(4)[w+(1/3) − w+(1/6)] + v(6)w+(1/6)

+ v(−1)[w−(1/2) − w−(1/3)] + v(−3)[w−(1/3) − w−(1/6)]

+ v(−5)w−(1/6).

Now we return to the example we discussed above. Prospect AA will have
value

V (AA) = v(100)(w+(0.2) − w+(0.15)) + v(101)(w+(0.15) − w+(0.1))

+ v(102)(w+(0.1) − w+(0.05)) + v(103)w+(0.05)).

Thus, if the values v(100), v(101), v(102) and v(103) are all close to each other,
then

V (AA) 
 v(100)(w+(0.2) − w+(0.15) + w+(0.15) − w+(0.1)

+ w+(0.1) − w+(0.05) + w+(0.05))

= v(100)w+(0.2) = V (BB).

So the values of these two prospects are close to each other, as we would expect.
In fact, we can show that, under this version of Prospect Theory, V (BB) >

V (AA). This is an example of more general result that if one prospect stochas-
tically dominates another then it has a higher value under Cumulative Prospect
Theory. We will establish this in the next section.
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6.3.1 *More details on Prospect Theory

In this section we will derive two results related to Prospect Theory. First we
want to show that a power law for the subjective value function is the only
way to achieve a set of preferences that is unaffected by a change in units of
money. Secondly, we will show that Cumulative Prospect Theory guarantees that
a prospect stochastically dominating another will be preferred.

Suppose that the subjective value function follows a ‘power law’ where,
for x ≥ 1, v(x) = γ xα for some γ and 0 < α < 1 (we need this condition to
make the value function concave). In this case, if we are indifferent between the
prospect (x, p) and the prospect (y, q), then π(p)v(x) = π(q)v(y) and hence

π(p)γ xα = π(q)γ yα.

Thus we have

π(p)v(kx) = π(p)γ kαxα = π(q)γ kαyα = π(q)v(ky),

showing that we are still indifferent between these prospects when we have
multiplied both the outcomes by a factor of k.

Moreover, we can show that it is only a power law function that has this
property. Suppose that multiplying values by k makes no difference to two
prospects that are equivalent. Hence, π(p)v(x) = π(q)v(y) implies π(p)v(kx) =
π(q)v(ky). Thus

v(kx)/v(x) = v(ky)/v(y). (6.5)

The value y here is arbitrary: for different values of y we simply choose different
values of q so that we remain indifferent between (y, q) and (x, p). So we can
write hk for the value of the ratio in Equation (6.5) and v(x) satisfies an equation
of the form

v(kx) = hkv(x) for all x > 0.

Now we define a function g by

g(w) = log(v(ew))

(This is a bit like plotting v on log-log graph paper). Notice that, for any k

g(w + log k) = log(v(ewk)) = log(hkv(ew)) = log(hk) + g(w),

so the function g must have what we can call a ‘constant increase’ property: in
other words, g(x + A) − g(x) depends only on A (and not on x). This implies
that g is linear, since if g does not have a constant slope then we can find a
point x and distance δ where g(x) − g(x − δ) �= g(x + δ) − g(x) (we just take
x somewhere with non-zero second derivative and choose δ small enough). But
this contradicts the constant increase property of g. So g must be linear, and we
can write it as g(w) = a + bw for some choice of a and b.
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Hence, log(v(ew)) = a + bw and so

v(ew) = ea(ew)b,

which is the form
v(z) = γ zα,

with γ = ea and α = b. Thus, we have established that only power law functions
can be used as value functions if we want to preserve ordering of prospects when
values are multiplied by a constant.

Now we turn to the question of stochastic dominance. We will just con-
sider prospects with all positive values. 0 < x1 < · · · < xn and assume that, for
prospect P , there is probability pi of outcome xi , and for prospect Q there is
probability qi of outcome xi . Suppose that P stochastically dominates Q, then

n∑
i=m

pi ≥
n∑

i=m

qi , for m = 2, 3, . . . , n (6.6)

and there is strict inequality for at least one m. We will calculate the π+
i values

for P and the corresponding values for Q, that we will write as ρ+
i . Thus

π+
i = w+(pi + · · · + pn) − w+(pi+1 + · · · + pn), π

+
n = w+(pn),

ρ+
i = w+(qi + · · · + qn) − w+(qi+1 + · · · + qn), ρ

+
n = w+(qn).

We want to show that V (P ) > V (Q). Now

V (P ) =
∑

π+
i v(xi)

=
n−1∑
i=1

(
w+(pi + · · · + pn) − w+(pi+1 + · · · + pn)

)
v(xi) + w+(pn)v(xn)

= v(x1) +
n∑

i=2

w+(pi + · · · + pn)(v(xi) − v(xi−1))

where we have used the fact that w+(p1 + · · · + pn) = w+(1) = 1 and gathered
together the terms with the same w+ value. In the same way

V (Q) = v(x1) +
n∑

i=2

w+(qi + · · · + qn)(v(xi) − v(xi−1)).

Because of our ordering for the xi , we know that v(xi) − v(xi−1) > 0, for
i = 2, . . . , n. Thus, we can deduce from Inequality (6.6) that each term in this
expansion for V (P ) is greater than the corresponding term in V (Q) with strict
inequality for at least one term. And hence V (P ) > V (Q) as we wanted.
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6.3.2 Applying Prospect Theory

Tversky and Kahneman (1992) suggest some functional forms for the functions v,
w+ and w− and estimate the parameters for these functions for a group of
experimental subjects (students). They propose that the value functions for both
gains and losses follow a power law and hence

v(x) = xα if x ≥ 0

= −λ(−x)β if x < 0.

Note that we can normalize so there is no need of a constant multiplier for the
value function for positive x. Moreover, the properties of the power law mean
that we don’t need to specify the units of money involved here.

The functional forms that Tversky and Kahneman propose for the decision
weight functions are:

w+(p) = pγ

(pγ + (1 − p)γ )1/γ
,

w−(p) = pδ

(pδ + (1 − p)δ)1/δ
.

Tversky and Kahneman also give estimates for the various parameters:

α = β = 0.88;
λ = 2.25;
γ = 0.61; δ = 0.69.

We will call these the TK parameter values. They are median values obtained
when estimates are made separately for each individual experimental subject.

Figure 6.5 shows the behavior of the value function v with the TK parameters.
We can see the way that there is a kink at zero, and also that with an exponent
relatively near 1, the value function is pretty much a straight line away from
the origin. Surprisingly, the derivative of this curve at zero is infinite, since, for
positive z, we have

v′(z) = αzα−1 = 0.88z−0.12

and as z → 0 the value of z−0.12 goes to infinity. However, we need to take such
tiny values of z to get large values of the slope that this behavior never shows
up on this kind of graph (e.g. we have v′(0.001) = 0.88(0.001)−0.12 = 2.02 and
v′(0.00001) = 3.50.)

The values implied for w+ and w− are given in Table 6.1 and plotted in
Figure 6.6. Notice that even though this table gives three decimal places, the
numbers arise from parameter choices estimated on the basis of a limited set of
decisions made in a laboratory setting and should be taken as only a rough guide
to the behavior of any given individual.
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Figure 6.5 Graph of the subjective value function v.

Table 6.1 Median decision weight values found by Tversky and Kahneman.

p w+(p) w−(p) p w+(p) w−(p)

0.05 0.132 0.111 0.55 0.447 0.486
0.10 0.186 0.170 0.60 0.474 0.518
0.15 0.227 0.217 0.65 0.503 0.552
0.20 0.261 0.257 0.70 0.534 0.588
0.25 0.291 0.294 0.75 0.568 0.626
0.30 0.318 0.328 0.80 0.607 0.669
0.35 0.345 0.360 0.85 0.654 0.717
0.40 0.370 0.392 0.90 0.712 0.775
0.45 0.395 0.423 0.95 0.793 0.850
0.50 0.421 0.454 1 1 1

0.0

0.5

1.0

0 0.5 1p

w−(p)

w +(p)

Figure 6.6 Comparison of w+ and w− using TK parameters.
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Worked Example 6.5 Choosing between three prospects

Use Cumulative Prospect Theory with the TK parameter values to determine
which of the following three prospects is preferable:

A : ($100, 0.5; $200, 0.4; $300, 0.1),

B : (−$100, 0.1; $300, 0.5; $800, 0.1),

C : ($150, 1).

Solution

Prospect A has all gains and we get

V (A) = (w+(1) − w+(0.5))v(100) + (w+(0.5) − w+(0.1))v(200)

+ w+(0.1)v(300)

= (1 − 0.421) × 1000.88 + (0.421 − 0.186) × 2000.88 + 0.186 × 3000.88

= 86.35.

For prospect B we have one loss and two gains and we get

V (B) = w−(0.1)v(−100) + (w+(0.6) − w+(0.1))v(300) + w+(0.1)v(800)

= 0.170 × (−2.25) × 1000.88 + (0.474 − 0.186) × 3000.88

+ 0.186 × 8000.88

= 88.28.

For prospect C there is no uncertainty and we simply have

V (C) = v(150) = 1500.88 = 82.22.

Overall, we see that the highest value is achieved by prospect B, and using these
parameters would lead to B being chosen. �

6.3.3 Why Prospect Theory does not always predict well

Earlier we mentioned the fact that there are many competing theories in this area.
And though the general predictions made by Cumulative Prospect Theory are
correct, some aspects of the theory are the subject of considerable debate. The
primary problem with Prospect Theory as a description of the way that decisions
are taken, is that it can be quite hard to calculate the value of a prospect, and
it seems hard to imagine that this is a good match with the way that individuals
actually make decisions (even in cases where decisions are thought about care-
fully, with the decision maker operating within a ‘reasoning’ rather than intuitive
framework). An example is the observation we made earlier that in a choice
between prospects, outcomes with higher saliency will usually be given greater
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weight. To some extent this is reflected within Prospect Theory by the use of
current wealth as a reference point – extreme changes will be more salient. But
it is likely that other aspects of the choice will also have an impact on saliency.

In ‘Version 1’ of Prospect Theory, as propounded in Kahneman and Tversky’s
1979 paper, there was a greater role for heuristics applied by the decision maker
in order to simplify the decision to be made (for example, eliminating dominated
choices). In moving to Version 2, these preliminary ‘editing’ steps were dropped;
in essence, they were made unnecessary by the use of a rank-based cumulative
weighting function. This has the great advantage of making the predicted choice
quite definite (once the parameters have been selected) whereas any theory
that puts more emphasis on the processes used by a decision maker is likely
to lead to cases where the prediction is less clear cut (for example, depending
on the order in which some initial editing processes are carried out). However,
the price to be paid is that there are many situations in which the neatness of
Cumulative Prospect Theory does not seem to capture the whole picture.

There are a number of other reasons why we should be cautious in using
Prospect Theory to predict individual behavior:

• Different individuals will have different patterns of behavior, involving
different degrees of loss aversion, different degrees of risk aversion, etc.
In other words, even accepting the core assumptions of Prospect Theory
still leaves the question of what the parameters should be for an individual.
Moreover, we should not assume that an individual always operates with a
particular decision approach – perhaps our experiences over the past few
hours will have an impact on the amount of risk we choose.

• There will be a random element in the way that choices are made, espe-
cially when they are perceived as being quite similar in overall value. We
recognize this in our own choices sometimes: ‘It’s six of one and half a
dozen of the other’. In an experimental setting it is quite common for the
same individual to make different choices between exactly the same pair
of prospects when these are presented at different times.

• The decision weight functions w do not appear to work well with proba-
bility values that are near zero or near 1. Individuals are particularly poor
at making choices when faced with probabilities that are of the order of
0.01 or smaller (or 0.99 or greater). This is where inconsistencies are most
likely to arise.

• The particular functional forms chosen for w and v are, to some extent,
arbitrary. Different functional forms have been suggested and may result
in different predictions.

• Individuals may change their preferences between options over time as a
result of repeated exposure to the same choices, or even discussion with
colleagues. This issue is complex though, since, if at the outset, a decision
maker knows that she will be faced with a whole sequence of similar
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choices or gambles that are perceived as being grouped together, then her
response is likely to be different to the choice made when she is faced with
a single gamble.

• Individuals may make different decisions depending on how the choice
situation is framed. Since people typically look at changes in wealth with
respect to a reference point, framing may occur through the suggestion of
a reference point that is different to zero. For example, a choice may be
presented as follows: ‘Would you rather have $30 for sure or be given a
50% chance of winning $80?’ Exactly the same decision problem can be
framed by telling someone they have won $30 and then asking ‘Do you
want to enter a competition where there is a 50% chance of losing $30
and a 50% chance of winning $50?’ In this second framing of the choice,
the reference point has become +$30. Loss aversion will ensure that fewer
people will accept the gamble when they have the $30 as the reference
point than in the first framing.

6.4 Decisions with ambiguity

In this section we will discuss the way that individuals take decisions when
there is ambiguity in relation to the probabilities involved. The theory of Savage,
discussed in Chapter 5, implies that, in many cases, consistent decision makers
will be working as though there were a subjective probability associated with
any particular event. But at this point we are more interested in describing the
way that decisions are made in practice.

The examples we have dealt with so far have all ducked the question of where
the probabilities come from. We have assumed that some oracle (the psycholo-
gist conducting the experiments) announces for us the probabilities of particular
events, allowing us to write a prospect as a string of values and probabilities. Or
perhaps the probabilities are generated by throwing dice or tossing coins. This
is what Nassim Taleb calls the ‘ludic fallacy’ – the belief that real decisions are
well-represented by the decisions faced when playing simple games of chance.
But, as we have pointed out in earlier chapters, actual decisions usually involve
probabilities that we can guess at, but not know for sure. This happens when the
probability arises because of our uncertainty about the way that the world will
change in the future.

For example, suppose we ask ‘What is the probability that the price of oil
will be above $150 a barrel a year from now?’ A business decision may well
depend on the likelihood that we assign to this event, so we may be forced to
give an answer, either explicitly or implicitly, by the decision that we make.

The prediction of the price of oil is amenable to all sorts of economic analysis,
so a decision maker will have some knowledge of this probability, but many
business decisions need to be made with very little knowledge of the probabilities
involved. For example, we might be interested in the probability that a competing
company decides to pull out of a particular marketplace, or the chance that a new
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pharmaceutical compound under development will prove both safe and effective
as a treatment for Alzheimer’s disease. In these types of decisions, the extent of
our ignorance is greater and we are likely to be forced into looking at statistics
for similar cases in the past (if we can find them).

A good example of the way that a lack of knowledge about exact probabilities
has an impact on our decisions is provided by the Ellsberg paradox. Suppose that
you have two urns each containing 100 balls. In the first urn, there are exactly
50 black balls and 50 white balls, but you have no knowledge of the number of
balls of different colors in the second urn. Now you are offered a prize of $100
if you draw out a white ball from one of the two urns, but you only get one
attempt and so you need to choose which urn. What would you do? It turns out
that a large proportion of people will choose the first urn. In a sense there is less
uncertainty associated with the first urn, where we know that there will be a 50%
chance of winning; if we choose the second urn then we have no knowledge at
all about the probability of winning, which might even be zero if every ball in
the second urn is black.

The preference for the first urn remains true for a different problem in which
the prize of $100 is given if you can correctly predict the color of the first ball
drawn. In this formulation, first the decision maker selects a color and then she
chooses one of the two urns, and hence there is no possibility of the composition
of the second urn being somehow made unfavorable.

In order to explain the theoretical problem that this creates more clearly,
suppose that you are the decision maker presented with two urns and you are
offered a prize of $100 if you draw out a white ball from one of the two urns.
You are likely to choose the first urn; perhaps you win and perhaps you do not.
Then you put the ball back into the urn and shake it up to remix all the balls.
Next you are offered a second chance to win a prize of $100, but this time you
get the prize if you draw out a black ball. What would you choose? Most people
still have a clear preference for the first urn, with the known composition of 50
balls of each color. After all, at this point the second urn is untouched, so it is
hard to see why a change of color would change the preference decision.

The first decision is between a prospect ($100, 0.5) and a prospect ($100, pW)

where pW is the (subjective) probability of a draw of a white ball from the
second urn. The preference for the first urn implies that pW < 0.5. This is obvi-
ous and is also implied by the prospect valuation, which has π(0.5)v($100) >

π(pW)v($100). But if pW is less than 0.5 then pB, the subjective probability of
a black ball being drawn from the second urn, must be greater than 0.5. Hence,
when we reach the second choice it is rational to prefer the second urn. This
is the crux of the paradox, which can only be resolved if decision makers were
indifferent between the two urns.

This is an example of a situation in which uncertainty about the probabili-
ties in the second urn makes us reluctant to choose it. Sometimes this type of
uncertainty is called ambiguity, and the effect we see in the Ellsberg paradox is
called ambiguity aversion. This is an extreme example of a kind of second order
uncertainty when the probability is itself a random variable. We will return to
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thinking about these types of problems in our discussion of robust optimization
in Chapter 8.

Much more rarely it is possible to observe an ambiguity preference rather
than ambiguity aversion. Ellsberg has suggested an example in which there are
two urns: the first has 1000 balls numbered 1 to 1000 and the second has 1000
balls each with a number between 1 and 1000, but numbers may occur more
than once and we have no information on which numbers have been used. So,
for example, we might have 500 balls marked 17 and the other 500 balls marked
with randomly selected numbers between 200 and 800. Now we are asked to
write down a number between 1 and 1000 and then draw out a ball from one
of the two urns. If the number on the ball matches the number we have written,
we win a prize. In this decision scenario people are quite likely to choose the
second (ambiguous) urn. The basic structure here is the same as for the Ellsberg
paradox but we are dealing with probabilities of 1 in 1000 rather than 1 in 2.

6.5 How managers treat risk

In this final section we will look at the impact of the psychology of risk on
management decisions. One of the key observations of Prospect Theory is that
individuals make judgments based on a change in their wealth, rather than looking
at utilities associated with different values of their total wealth after the decision
and its consequences. From a manager’s perspective, this is not what shareholders
would like; a more rational decision would see maximizing total profit as the real
aim, independently of the route taken in getting there.

This is related to what happens when we have multiple opportunities to gam-
ble. For example, the gamble involving gaining $100 or losing $90 might not
seem attractive, but if we knew it was offered many times over, then its attrac-
tiveness would change. For example, with four repetitions, there is a 1/16 chance
of losing $360, a 1/4 chance of losing $170, a 3/8 chance of gaining $20, a 1/4
chance of gaining $210 and a 1/16 chance of gaining $400. This still might not
be enough to encourage everyone to accept the package of gambles, but it is
certainly closer to being attractive than a gamble played just once.

Or we might take another example for which many people are more or less
indifferent to accepting the gamble, which is when the loss is roughly twice as
large as the gain; say we have a half chance of losing $100 and a half chance of
gaining $200. But with two repetitions of this gamble we end with a 1/4 chance
of gaining $400, a 1/2 chance of gaining $100 and a 1/4 chance of losing
$200. Faced with this prospect, most people give it a positive value. Multiple
opportunities to gamble with a positive expected outcome lead to a greater and
greater chance of a good outcome.

It seems, however, that as decision makers we are hard-wired to look just
at the immediate outcome of the choice facing us, rather than seeing this as
one element in a sequence of choices. As a result, we pay attention just to the
change arising from the current decision, more or less independent of the results
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of previous decisions. We can say that decision makers are myopic (a technical
term for being ‘short-sighted’ in a decision-making sense).

This leads to relatively high risk aversion for small gambles as well as for
large gambles. This is not rational because small gambles are likely to recur.
They may not recur in exactly the same form, but over a period of time there
are almost certain to be risky opportunities available to a decision maker, which
correspond to small gambles. A decision maker who consistently takes these
small gambles where they have a definite positive expected value will end up
ahead over time.

Much of our discussion so far has been framed around individual decisions on
prospects–we might suppose (or hope) that managers’ decisions are in some way
‘better’. Managers make decisions in contexts that often involve a whole team
of people and that are subject to significant scrutiny. However, there seems little
evidence that managers do better in making corporate decisions than individuals
do in making personal decisions.

The first observation to make is that a manager’s decisions are taken within
a personal context. A manager’s actions are not simply about achieving the best
result for the company. In addition, a manager will be asking herself, ‘What will
this do for my career?’or ‘Will this be good for my stock options?’

A second observation is that managers’ own ideas about their roles have an
impact on their behavior. We may see managers as dealing with uncontrollable
risks in a way that accepts these (negative) possible outcomes because they are
compensated by significant chances of gain. But this is not the way that managers
themselves view their roles (March and Shapira, 1987). Instead, managers are likely
to view risk as a challenge to be overcome by the exercise of skill and choice. They
may accept the possibility of failure in the abstract, but tend to see themselves not
as gamblers, but as careful and determined agents, exercising a good measure of
control both over people and events. The net result is that managers are often
much more risk averse than we would expect. Consciously or not, many managers
believe that risks should be hedged or avoided if they are doing their jobs well.

What is the remedy for this narrow framing that looks only at a single decision
and ends up being unnecessarily risk averse? Kahneman and Lovallo (1993)
suggest that this bias can be helped by doing more to encourage managers to
see individual decisions as one of a sequence (perhaps by doing evaluations less
frequently) and also by encouraging an attitude that ‘you win a few and you
lose a few’, because it suggests that the outcomes of a set of separable decisions
should be aggregated before evaluation.

Even if an observer may see managers as taking significant risks, managers
themselves perceive those risks as small – the difference is explained by the way
that managers habitually underestimate the degree of uncertainty that they face.
Kahneman and Lovallo (1993) describe this in terms of bold forecasts. Why do
managers so frequently take an optimistic view and underestimate the potential
for negative outcomes?

This is an example of a more general phenomenon which is the near universal
tendency to be more confident in our estimates than we should be. Even when
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we are sophisticated enough to understand that any estimate or forecast is really
about a distribution rather than a single number, we still tend towards giving too
much weight to our best guess, or, to put it another way, we use distributions
that do not have sufficient probability in the tails.

There may be many factors at work, but one important aspect of this bias
relates to what Kahneman and Lovallo (1993) describe as the inside view (which,
to some extent, mirrors the narrow framing bias we mentioned above). When
faced with an uncertain future and the need to forecast, our natural instinct is
to consider very carefully all the specifics of the situation, bring to bear our
understanding of the potential causal chains and then determine what seems the
most likely outcome. The problem with this approach is that there are often simply
too many possible ways in which events may unfold for us to comprehend them
all. It may well be that the chain of events that leads to a project completion on
time is the most likely amongst all possibilities, but if there are many thousands
of possible reasons for delay, each happening with a small probability, then it
may well be the case that significant project delay becomes a near certainty.

The remedy for this situation is to step back from considering the specifics
of what may happen in detail, but instead to understand the situation in a more
statistical sense. In contrast to an inside view, we could describe this as an outside
view. Is there a set of roughly equivalent circumstances from which a manager
can learn more of the likely range of outcomes? Sometimes this is reasonably
straightforward – for example, in predicting the box office takings for a four-
person comedy drama playing a short season in New York, it is natural to look
to information about similar shows in the past. Often, however, it requires care
to find the right group of comparator situations. There is a lot of evidence that
adopting an outside view is more likely to lead to good predictions, but it is
surprisingly rare in practice. As Kahneman and Lovallo (1993) explain:

‘The natural way to think about a problem is to bring to bear all
one knows about it, with special attention to its unique features. The
intellectual detour into the statistics of related cases is seldom chosen
spontaneously. Indeed, the relevance of the outside view is some-
times explicitly denied: physicians and lawyers often argue against
the application of statistical reasoning to particular cases. In these
instances, the preference for the inside view almost bears a moral
character. The inside view is valued as a serious attempt to come to
grips with the complexities of the unique case at hand, and the out-
side view is rejected for relying on crude analogy from superficially
similar instances.’

The specific issue here is related to well-understood characteristics of opti-
mism. In general, people are optimistic when it comes to evaluating their own
abilities (so, for example, a large majority of people regard themselves as above-
average drivers); they are optimistic about future events and plans; and finally
they are optimistic about their ability to control what happens. In general, this
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is a positive characteristic, and optimism in this form is associated with mental
health (Taylor and Brown, 1988). This does not mean, however, that it is a ben-
eficial characteristic when practiced by managers facing important decisions on
the future of their organizations.

Notes

There is an enormous amount that has been written on behavioral decision theory
and behavioral economics. The book by Wilkinson (2008) gives an accessible
introduction to this field, and the paper by Starmer (2000) gives a more detailed
discussion of much of the literature in this area. Peter Wakker’s book gives a very
thorough and technical treatment of all aspects of Prospect Theory, but this is a
difficult read for the non-expert. The material presented in this chapter has drawn
heavily on the papers by Kahneman and Tversky (1979), Tversky and Kahneman
(1993), and Kahneman and Lovallo (1993). Kahneman’s book, ‘Thinking, fast
and slow’ is also an easy introduction to this area (see Kahneman, 2003).

For the discussion of ambiguity in decision making I have drawn on the paper
by Einhorn and Hogarth (1986).
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Exercises

6.1 Explanation of Example 6.1

Worked Example 6.4 shows how the behavior shown in Example 6.2 is
exactly what one would expect from Prospect Theory if the value function
for positive x is given by v(x) = x0.8. Use the same kind of analysis to
explain the behavior of Example 6.1.

6.2 Prospect Theory when gains turn to losses

Suppose that w+(p) = w−(p) and the value function has the property that

v(−x) = −λv(x) for x > 0.

Show that if a prospect A = (x1, p1; x2, p2; . . . ; xn, pn) is preferred to
prospect B = (y1, q1; y2, q2; . . . ; yn, qn), and all the xi and yi are positive,
then prospect −B = (−y1, q1; −y2, q2; . . . ; −yn, qn) is preferred to −A =
(−x1, p1; −x2, p2; . . . ; −xn, pn).

6.3 Probabilistic insurance

Kahneman and Tversky carried out an experiment with 95 Stanford students
in which the students were presented with the following problem:

‘Suppose you consider the possibility of insuring some prop-
erty against damage (e.g. fire or theft). After examining the
risks and the premium, you find that you have no clear prefer-
ence between the options of purchasing insurance or leaving the
property uninsured. It is then called to your attention that the
insurance company offers a new program called probabilistic
insurance. In this program you pay half of the regular premium.
In the case of damage, there is a 50 per cent chance that you
pay the other half of the premium and the insurance company
covers all losses; and there is a 50 per cent chance that you
get your insurance premium back and suffer all the losses. For
example, if the accident falls on an odd day of the month, you
pay the other half of the premium and the insurance company
covers all losses; but if the accident occurs on an even day of
the month, you get your insurance premium back and suffer all
the losses.

Remember that the premium is such that you find this insurance
is barely worth its cost. Under these circumstances, would you
purchase probabilistic insurance?’

In this experiment, 80% of the students answered ‘No’. Show that this
is inconsistent with Expected Utility Theory with a concave utility function
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because probabilistic insurance gives a strictly higher utility than standard
insurance. You can do this by writing the result of probabilistic insurance
in the form

(1 − p)u(W − (z/2)) + (p/2)u(W − z) + (p/2)u(W − K),

and then use the fact that, for a concave function u, we have

u

(
W − 1

2
z

)
≥ 1

2
u(W) + 1

2
u(W − z).

6.4 Exponent in power law

Students are asked to decide between two choices, Option A and Option B.

Option A: Get $1 with probability 95% and get $381 with probabil-
ity 5%
Option B: Get $20 for sure.

Most students prefer option B. Next, the students are presented with the
same two choices, but with $300 added to all the outcomes, i.e.

Option C: Get $301 with probability 95% and get $681 with prob-
ability 5%
Option D: Get $320 for sure.

Many students then switch and decide that they prefer the risky option.
Show that, with the standard TK parameters, Prospect Theory will not
predict this switch, but that for individuals where the power law expo-
nent α is reduced to 0.6, we will see a switch under Prospect Theory.
(This experiment is reported in Bordalo, P., Gennaioli, N. and Shleifer,
A., 2011. Salience Theory of Choice Under Risk, NBER Working Paper
#16387, which provides an alternative explanation for these observations.)

6.5 Laptop warranties

A company selling laptops offers an extended warranty on its products. For
one laptop model costing $900 the standard warranty is for one year and
the extended warranty covers a further two years at a cost of $75.

(a) Suppose that the probability of a breakdown in the extended warranty
period is 0.1 and that a customer who does not take the warranty faces
a cost of $500 if this happens. Suppose that a customer’s choices can
be described using Prospect Theory with the TK parameters. Determine
whether the customer is likely to take up the extended warranty.
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(b) Now suppose that if a breakdown occurs and the warranty has not been
taken up, then the laptop is equally likely to require replacement at a
cost of $900 or a simple repair at a cost of $100 (so the expected cost
is $500). Calculate the value of the relevant prospect in this case and
hence whether the customer will take up the warranty.

6.6 Splitting prospects can change choices

.(a) Use Prospect Theory with α = β = 0.9; λ = 2 and the standard deci-
sion weight functions given in Table 6.1 to calculate the values given to
the following four prospects in order to predict which will be chosen.

A : (−$100, 0.5; $1000, 0.5)

B : ($1000, 0.4)

C : ($200, 0.3; $300, 0.3; $550, 0.4)

D : ($340 with certainty).

(b) Now suppose that prospects A, B and C are constructed in two stages,
with $340 received first and then gambles presented (so A is replaced
with D followed by (−$440, 0.5; $660, 0.5) and similarly for B and C).
Show that none of the second stage gambles will be chosen.

6.7 Risk seeking when value function is concave for losses

For some individuals the general pattern is reversed and instead of the value
function v being convex for losses, it is either straight or mildly concave.
Nevertheless, the behavior of the decision weight function may still lead to
risk-seeking behavior (where a risky option with the same expected value
is preferred to a certain outcome). Find an example where this occurs and
a certain loss of $100 is less attractive than a gamble having the same
expected value. You should use the decision weights w− given in Table 6.1
and take

v(x) = x0.9 for x > 0

v(x) = −2(−x)1.1 for x < 0.
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Stochastic optimization

Maximizing profit from pumped storage
A pumped storage facility operates by pumping water up to a high reservoir
when power is cheap and then letting that water flow out of the reservoir through
hydroelectric generators in order to generate power when it is expensive. There
are inefficiencies, so the water, once pumped up hill, can never deliver as much
energy from letting it flow through the turbines as was needed to pump it in the
first place. Nevertheless, the overall exercise is worthwhile because the actual
cost of electricity at night is so much lower than it is during the day. So, cheap
electricity can be used to fill the high reservoir during the night and then that
power, can be released during the day when prices are high. With increasing
amounts of wind power which often delivers energy peaks at a time when demand
is not high, the opportunities and need for pumped storage are greater than ever.

The Raccoon Mountain pumped storage plant is a good example of this sort of
operation. It was built in the 1970s and is owned and operated by the Tennessee
Valley Authority. The reservoir on Raccoon Mountain is more than 500 acres in
size (200 hectares). When water is being pumped up to this reservoir, it can be
filled in 28 hours. When electricity demand is high, water is released and can
generate up to 1600 MW per hour. If the reservoir is full, it would take 22 hours
for it to empty if it was run continuously.

To determine the operation policy for the pumped storage plant, each day is
divided into different periods: peak is for seven hours, shoulder for eight hours
and off peak for nine hours. Typically, the reservoir is pumped in the off-peak
hours during the night and is full at the end of that time, then the reservoir is run
down during the seven hours of peak demand (nine hours of pumping will give a
volume of water sufficient for seven hours of generation). But when demand and
prices are high, the reservoir can be used for a longer time to include some of
the shoulder period, so that the water level at the end of the day is significantly
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lower and cannot be completely replenished during the night; this leads to a slow
drop in the reservoir level over successive days. Eventually, the reservoir reaches
a stage where it completely empties during the day, and in the morning the only
water available is that which was pumped up overnight. This sets the constraint
on the amount of power available on any day (independently of how high the
electricity price might be).

The problem facing the plant operator is whether to take advantage of high
prices today by running the generators for longer. And if the price is high enough
to make it worthwhile to generate power during the shoulder period, how much
power should be generated? The longer the generator is run, the lower the result-
ing water level will be, and the less opportunity there will be to benefit if high
prices occur again tomorrow.

7.1 Introduction to stochastic optimization

In this chapter we will use the methods of optimization to determine how to make
good decisions in a stochastic environment. Whereas in the previous chapter
we primarily looked at decisions made with a clear-cut set of options, each of
which contains a small number of possibilities with associated probabilities and
consequences, in this chapter we will consider more complex problems. There
will be a need to set up a model of what is happening (containing stochastic
elements) and then to analyze this model. Because of this additional complexity,
our focus will switch back to the normative, rather than the descriptive, so we
will ask what managers should do, rather than what they will do. For most of the
models that we deal with in this chapter it is necessary to carry out an analysis
using some computational tool like a spreadsheet.

An important difference exists between stochastic optimization problems
where we get just one opportunity to make a decision and problems where we
have an opportunity to make decisions at different points in time. For example,
if we are selling fashion clothing items and the demand is uncertain, then we
will need to decide at the start of the season how much of a particular fashion
item to make. However, we may also have an opportunity to make more halfway
through the season when we have some information on how sales are going:
this will then be a second decision point.

Before going on with our discussion of stochastic optimization we need to
review some fundamental ideas about optimization problems.

7.1.1 A review of optimization

An optimization problem is one in which we need to choose some decision
variables in order to maximize (or minimize) an objective function subject to
some constraints on the variables specifying which values are possible. These
are the three critical components: variables, objective and constraints. If the
variables are n real numbers that need to be chosen, then we can think of the
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Figure 7.1 A diagram of a maximization problem.

problem in the way that is shown in Figure 7.1. The decision variables here are
x and y, the set X is the set of feasible points defined by the constraints of the
problem, and the objective function is shown by its contour lines. The optimal
point (which we also call the optimal solution) is on the boundary of the set X

and maximizes the objective function (optimization problems may involve either
minimizing or maximizing the objective function).

A first categorization of optimization problems distinguishes between prob-
lems in which there is only one local optimum and problems for which there are
many possible local optima, and we need to compare them to find the best. From
the point of view of Figure 7.1, the good property of having only one possible
maximum arises from the nature of the objective function and the feasible set.
The feasible set is convex (which means that the straight line between two points
in X can never go outside of X) and the objective function is concave (i.e. it
has the shape of a hill: a straight line between any two points on the surface
defined by the objective function lies below the surface rather than above it).
The definition of a concave function can be extended to any number of points,
and formally we say that f (x, y) defined on the (x, y) plane is concave if, for
any set of n points (x1, y1), (x2, y2), . . ., (xn, yn), and any set of weights wj that
are non-negative and with

∑n
j=1 wj = 1, then

n∑
j=1

wjf (xj , yj ) ≤ f

⎛
⎝ n∑

j=1

wjxj ,

n∑
j=1

wjyj

⎞
⎠ .

A similar definition for a concave function works when the function is defined
on three or more variables. Also, convex functions have the same definition but
with the inequality reversed. With these properties there will just be one local
maximum (which is also a global maximum). On the other hand, if we have
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Figure 7.2 This example has a single maximum but more than one local minimum.

a minimization problem rather than a maximization problem, then we want the
objective function to be convex, instead of concave.

A convex maximization problem (with a concave objective function and a
convex feasible set) may have its optimal solution on the boundary or in the
interior of X. Figure 7.2 shows a maximization problem of this sort with an
interior maximum.

This maximization problem (P 1) can be formulated as

P 1 : maximize 4 − (x − 1)2 − (y − 1)2,

subject to the constraints:

2y − (x − 1)2 ≥ 1,

3y + 2(2x − 3)2 ≤ 6.

The first constraint defines the lower boundary of the feasible region, and the
second defines the upper boundary. The shaded region shows the feasible points.
The point which maximizes the objective is x = 1, y = 1 and this is inside the
feasible region X.

But now consider changing the problem so that instead of maximizing the
objective function we want to minimize it. The contours of the objective function
are shown with dashed lines. From this we can see that there are two local minima
on the right of the figure (and one more on the left). A local minimum is a point
that is lower than any feasible points close to it. Small changes in the decision
variables may lead to an infeasible point if one of the constraints is broken,
but at a local minimum small changes that retain feasibility can only make the
objective function larger. To find the global minimum we need to compare the
objective function values at different local minima. In this example, the higher
point on the smooth part of the boundary is the global minimum, as we can see
from the contour lines.
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If a problem has a single local optimum (and hence this is also a global opti-
mum), then it is much easier to find this numerically. We can start with an initial
feasible point (some set of decision variables that satisfies all the constraints) and
then consider changes that improve the objective function without breaking any
of the constraints. This gives a new and improved feasible point, and we repeat
the procedure of searching for a change that improves the objective. Eventually,
we reach a local optimum when no further change is possible.

When there are multiple local optima, the problem becomes much harder. We
can find a single local optimum using the approach of repeated improvements,
but when we have discovered this we will not know how many other local optima
there are. One idea is to use the repeated improvement approach again, but to
begin at a different starting point: this could either lead us to the same local
optima, or a different one. But for a complex problem we might try hundreds
of different starting points, and still not be absolutely sure that we have found
every local optimum.

To learn about optimization, it is important to try out the ideas in practice.
There are a great many pieces of software available that are suited for different
types of optimization problem. As a tool for solving simple optimization problems,
the Solver add-in for Excel is quite satisfactory. It is a good exercise to solve the
problem of minimizing the objective function for P 1 using Solver. This has been
done in the spreadsheet BRMch7-P1.xlsx. Try starting the optimization process at
different points: these need not be feasible points, Solver will start by finding a
feasible solution before improving it. You will find that the three different local
minima can all be obtained depending on what initial values Solver is given.

An important special class of optimization problem, called a linear program,
occurs when the constraints and the objective function are all linear. This will
produce a well-behaved problem, since the set of feasible points is convex and the
objective is both convex and concave. At first sight, one might think that solving
this sort of problem would be trivial, but in practice when linear programs have
a large number of variables and a large number of constraints, finding an optimal
solution requires a computer. An example of a linear program is given as problem
P 2 below.

P 2 : maximize 6x + 7y + 2,

subject to the constraints:

2x + 3y ≤ 8,

4x − y ≤ 6,

4y − 5x ≤ 1,

x ≥ 0,

y ≥ 0.
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Figure 7.3 The feasible set and the optimal solution for the problem P 2.

Figure 7.3 shows the feasible points for P 2. The dashed lines are contours of
the objective function and the maximum occurs at the point shown (x = 1.857
and y = 1.429).

Linear programs can be solved for very large scale problems using special
purpose software. Excel Solver has a setting under options for ‘Assume Linear
Model’ and another setting for ‘Assume Non-Negative’ and these can be used
for small problems like P 2. The file BRMch7-P2.xlsx gives a spreadsheet for
this example.

7.1.2 Two-stage recourse problems

Our starting point in thinking about stochastic optimization is to consider a two-
stage problem. In the first stage a decision is made not knowing what will happen
in the future, but knowing the probability of different events. After the first stage
decision, the random event occurs and uncertainty is resolved. Then, in the second
stage, further decisions are made that can depend on what has happened. This is
often called a two-stage stochastic problem with recourse. The word ‘recourse’
here refers to what needs to be done at the second stage as a result of the random
event. The framework here is very similar to the decision tree analysis we gave
in Chapter 5. The main difference is that we will think about decisions where
we will choose the value of a continuous decision variable, rather than choosing
between discrete options.

In order to illustrate some important ideas and show how we need to take
care with our formulation of these problems, we begin by analyzing a simple
example.
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Example 7.1 Parthenon Oil Company

The Parthenon Oil Company (POC) sells fuel oil for home heating and uses a
planning horizon related to the winter selling season. Most demand takes place
in the months of October to March. POC has storage tanks for fuel oil and buys
it from oil companies that sell at a market price, which fluctuates month by
month. In any month, POC can supply customer orders either from its storage
or by buying on the market. Customer contracts stipulate that POC will respond
quickly to customer demand. To make things simple, we consider the problem
facing POC in February, near the end of its season. Suppose we start February
with no oil in storage. In February POC buys oil from the market, delivers some
to its customers right away and puts the rest in storage for the following month.
Then, in March, the company can supply from storage or buy from the market.

We need to decide how much oil to purchase in February (x1) and how
much to purchase in March (x2). The right decision depends on the price of
oil in February and March, the storage cost, and the demand in each period.
Suppose that it costs $5 to store a barrel of oil for a month. With this information,
the problem can be modeled as a simple linear optimization problem with the
objective to minimize overall cost. In practice, the price and demand in March
will be uncertain. Suppose that demand in February is 1000 barrels and the price
is $160. Moreover, we think that March can have one of three equally likely
weather scenarios: normal, cold, or very cold. Cold weather means more demand
for oil, but at the same time the price that Parthenon pays for the oil will increase.
The demand and price data for the three scenarios are given in Table 7.1.

We write d for the demand in March and c for the cost in March. These are
the things that are unknown at the point when Parthenon Oil makes a decision on
x1, the amount of oil bought in February. Since demand in February is 1000, the
amount in storage at the end of February will be x1 − 1000, for which Parthenon
pays $5 per unit. Thus, we want to minimize total costs:

minimize 160x1 + 5(x1 − 1000) + cx2,

subject to the constraints:

x1 ≥ 1000 (there is enough for February demand),
x1 − 1000 + x2 ≥ d (there is enough for March demand),
x2 ≥ 0 (we cannot sell back to the market if we have

too much).

Table 7.1 Data for three possible March scenarios for Parthenon Oil.

Scenario Probability Oil cost ($) Demand (units)

Normal 1/3 160 1000
Cold 1/3 164 1200
Very cold 1/3 174 1400



STOCHASTIC OPTIMIZATION 205

In this problem we will find out what d and c are before we need to determine
x2, but we need to choose x1 before we know d and c.

If we know in advance which of the three scenarios will occur, then we
can solve a linear program to find the optimal solution (this is shown in the
spreadsheet BRMch7-Parthenon1.xlsx). We can calculate that if March is normal,
we should take x1 = 1000, x2 = 1000; if March is cold, we should take x1 =
1000, x2 = 1200; finally, if March is very cold, then it is worthwhile to buy all
the oil we need in February, and x1 = 2400, x2 = 0. But the problem we face
involves making a choice of x1 right now. Since there is a two thirds chance of
normal or cold weather, and under both these scenarios a purchase quantity of
1000 is optimal, perhaps that is the best choice of x1, and we can determine x2
after we find out the demand in March.

However, a different approach can produce a different answer. One idea is to
look at the average behavior, rather than looking at individual scenarios. Often
this is coupled with a sensitivity analysis, in which we consider how sensitive the
optimal decision is to changes in the parameters. If we find that it is sensitive,
then we may consider a range of possible solutions corresponding to the range
of values that we expect, but if we find that it is relatively insensitive, then we
may simply stick with the ‘average’ behavior. For the POC problem, each of the
three scenarios is equally likely. The average values are c = 166 and d = 1200.
With these values we can solve the linear program and discover that the optimal
solution is x1 = 2200 and x2 = 0. So, if we use average figures we should buy
ahead in February, leaving 1200 in storage at the end of the month.

Both these approaches are flawed and the proper way to approach this deci-
sion is to set up an optimization problem and embed within this problem the
correct structure for the decisions we will take. Here we must allow the choice
of different values for x2 depending on the scenario. We call these x2A, x2B, and
x2C . Similarly, we use the notation that the scenario demands and costs are given
by dA, dB, and dC ; cA, cB, and cC . Then we can formulate the problem as

minimize 160x1 + 5(x1 − 1000) + (1/3)(cAx2A + cBx2B + cCx2C) (7.1)

subject to the constraints:

x1 ≥ 1000 (there is enough for February demand)
x1 − 1000 + x2A ≥ dA (there is enough for March demand for

each scenario)
x1 − 1000 + x2B ≥ dB

x1 − 1000 + x2C ≥ dC

x2A ≥ 0, x2B ≥ 0, x2C ≥ 0 (purchases are all non-negative)

This is a linear program and we find an optimal solution using Solver in a spread-
sheet. The problem has been set up in the spreadsheet BRMch7-Parthenon2.xlsx,
and using Solver we find that the optimal solution has x1 = 2000. This means that
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there are 1000 in store at the start of March; no more are purchased under sce-
nario A, 200 more are purchased under scenario B and 400 more are purchased
under scenario C.

The Parthenon Oil Company example should serve as a warning against the
two most common approaches adopted by planners faced with uncertainty. One
option starts by computing an optimal solution for each scenario separately, then
compares these solutions and chooses the decision that is best for as many of
these scenarios as possible. The candidate solutions for the POC problem are
then to store either 0 or 1400 units of fuel for the next stage. The real optimal
policy (as delivered by the stochastic program) is to store 1000 units and this
does not correspond to the optimal solution in any of the scenarios. A second
common approach is to take the average value as the prediction and solve the
problem without a stochastic component, but for the Parthenon Oil Company
problem this gives the wrong choice of x1 and too much oil stored. �

The Parthenon Oil Company example has the standard structure of a recourse
problem. A first stage decision needs to be made, then, as time goes by, the
uncertainty in the problem is resolved (for Parthenon the weather in March
becomes known) and finally a second decision is made, which will depend on
the first decision and the outcome of the uncertain event. There is a kind of
nested structure to this problem.

We will show how to put this sort of problem into a general framework. We
start with the second stage, where we need to choose a decision variable y (if
there is more than one variable involved then y will be a vector). The variable
y will be chosen to minimize costs, knowing both the first stage decision, x

say, and the outcome of the random event. We will write ξ for the stochastic
component in the problem, thus ξ is a random variable whose value is unknown
in advance. In the Parthenon example, y is x2, the amount ordered in March, and
ξ is the weather in March that can take just three different values.

We will consider a problem in which the decision maker is risk neutral and
aims to maximize expected profit, or (equivalently) minimize expected cost. In
general, we can say that costs occur at both the first and second stage. In the first
stage they depend only on the first stage decision, so we can write this as C1(x),
but at the second stage costs depend both on first and second stage decisions
and also on the random outcome ξ . Thus, we write the second stage costs as a
function C2(x, y, ξ).

The full formal description of the problem will include not only the cost
functions C1 and C2 but also the feasible set X for the first stage decision x

and also the feasible set Y for the second stage decision y. In general, Y might
depend on the values of x and ξ , though we don’t show this in the notation.

We write Q(x, ξ) for the lowest cost at the second stage, given x and ξ .
Thus

Q(x, ξ) = min
y∈Y

{C2(x, y, ξ)}.
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The first stage decision is to choose a value of x that minimizes the expected
overall costs assuming that the second stage decision is taken optimally. For a
particular realization of the random variable ξ , the total cost for a choice x is
C1(x) + Q(x, ξ). Thus, the stochastic problem we wish to solve is

min
x∈X

{C1(x) + Eξ [Q(x, ξ)]}, (7.2)

where we write Eξ [·] for the expectation with respect to the random variable ξ .

Example 7.1 (continued) Parthenon Oil Company

We return to the Parthenon Oil Company example in order to put it into this frame-
work. We have a choice as to whether to include the cost of storing oil in the first
stage or in the second stage. Suppose that we take it as a first stage cost, then

C1(x1) = 160x1 + 5(x1 − 1000),

C2(x1, x2, ξ) = cξx2,

where ξ takes the values A, B, or C. Thus

Q(x1, ξ) = min
x2

{cξx2 : x2 ≥ dξ + x1 − 1000, x2 ≥ 0}.

Since cξ (cA, cB or cC) is positive, the minimum in Q occurs at the lowest
possible value of x2. This is obvious; each x2 value should be made as small
as possible. It will be set so as to just meet the demand in March (allowing for
stored oil), or it will be zero if the stored oil is sufficient on its own to meet
demand. So

x2A = max(0, dA − x1 + 1000),

x2B = max(0, dB − x1 + 1000),

x2C = max(0, dC − x1 + 1000).

This means that we have

Q(x1, ξ) = cξ max(0, dξ − x1 + 1000).

The expectation involves averaging Q(x1, ξ) over the three values of ξ , and so
the expression we need to minimize (over x1) is

160x1 + 5(x1 − 1000) + (1/3)cA max(0, dA − x1 + 1000)

+ (1/3)cB max(0, dB − x1 + 1000) + (1/3)cC max(0, dC − x1 + 1000).

Thus we have transformed the problem into one where there is a single
decision variable x1 and a more complex objective function. This can be solved
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Figure 7.4 Parthenon Oil Company costs as function of x1.

by evaluating the objective function for different values of the decision variable
x1 and there is no need to solve a linear programming problem. Figure 7.4 shows
the way that this function behaves (with d and c values inserted from Table 7.1);
each of the max(0, ·) terms corresponds to one of the corners in the function.
The initial section slopes slightly down and we can see that we reach the same
solution as before, with the minimum achieved at x1 = 2000. �

We have seen two different ways to solve this problem. In the first approach
we use a linear program to do the optimization of both the first and second stage
minimizations in one go. In the second approach we figure out what the second
stage optimal choices are in order to substitute for second stage costs. Often the
first approach, of gathering everything together into a single optimization prob-
lem, leads to an easier formulation, and this is the method I would recommend
when there are just linear functions involved and the uncertainty relates to only
a small set of scenarios.

7.1.3 Ordering with stochastic demand

Now we want to consider a case which involves a continuous form of randomness,
as well as continuous decision variables. So, rather than have a finite set of
scenarios that may occur, there is instead some continuous random variable and
costs will depend on its outcome. One of the most common ways in which we
see this happening is when costs depend on the demand for some product that a
firm sells, and the demand is a random variable.

Consider a firm that needs to determine a purchase quantity to meet demand,
without knowing exactly what the demand will turn out to be. For example, a
retailer selling fashion garments may need to order these well in advance of
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the selling season. If demand is more than the amount ordered then the retailer
sells out of that item, but if demand is less than the amount ordered then there
is left-over stock at the end of the season. Usually this left-over stock will be
marked down to sell, sometimes to below cost price. The right amount to order
depends on the distribution of demand and the difference between the amount
of money made when selling at full price and the amount of money lost when
selling in the end-of-season sale. This is a well-known problem in Operations
Management and is usually called the newsvendor problem.

We formulate this as a stochastic optimization model. A decision is made by
the retailer on how many items of a particular product to buy at a price of $c

each. Each item is sold at a price $p during the selling season, and any left over
at the end of the season are marked down to a price of $s in order to be sold in
an end-of-season sale.

Suppose that x items are purchased by the retailer, then first stage costs are
cx . The second stage profits depend both on x and on the stochastic demand D.
The retailer will make a profit of px if x is less than D, so that all the products
are sold, and a profit of pD + s(x − D) if x > D, so that some x − D items are
marked down at the end of the selling season.

In this problem there is only a single decision to make. Previously we looked
at costs and used a function Q(x, ξ) for the lowest cost at the second stage, given
the first stage decision x and a particular value of the random variable ξ . Now
we will look at profits and write Q(x, D) for the retailer profit, given an order
quantity x (the first stage decision) and a particular value of the random demand
D, and we change from minimizing costs to maximizing profits. Then we have:

Q(x, D) = px − (p − s) max(x − D, 0).

(You can check that this expression is right for the two cases that x is either less
than or more than D). The maximum expected overall profit is given by

max
x

{−cx + ED[Q(x, D)]},

which is the equivalent of the formulation (7.2), but with profits instead of costs.
Suppose that the demand D can take values between 0 and M and has a

density function f . We will let �(x) be the expected profit if an amount x is
ordered: this is what we will maximize with respect to x. Then, after substituting
for Q, we have

�(x) = −cx +
∫ M

0
[px − (p − s) max(x − z, 0)]f (z)dz

= (p − c)x −
∫ M

0
(p − s) max(x − z, 0)f (z)dz

= (p − c)x − (p − s)

∫ x

0
(x − z)f (z)dz . (7.3)



210 BUSINESS RISK MANAGEMENT

Here we have used the fact that
∫ M

0 f (z)dz = 1, and the final step comes from
seeing that the integrand is zero for z > x.

To find the best choice of x we want to take the derivative of �(x). Here we
need a result about how to take a derivative of an integral when both the limits
and the integrand depend on the variable of interest. This is called the Leibniz
rule and it says that

d

dx

∫ f (x)

0
g(x, z)dz =

∫ f (x)

0

∂

∂x
g(x, z)dz + f ′(x)g(x, f (x)).

In other words, we can take the derivative inside the integral provided we add a
term to correctly allow for the end point that is moving. This extra term needs
to take account both of the speed with which the end point f (x) changes and
also of the value of the integrand at this end point.

From all this we can deduce that the best choice of x is obtained when the
following expression is zero:

d

dx
�(x) = d

dx

{
(p − c)x − (p − s)

∫ x

0
(x − z)f (z)dz

}

= p − c − (p − s)

∫ x

0
f (z)dz .

The extra (Leibniz) term is zero because the integrand, (x − z)f (z), takes the
value zero when z = x.

Now we let F(x) be the cumulative distribution function for the demand
distribution. Then the condition for a maximum can be written

p − c − (p − s)F (x) = 0.

Thus, x should be chosen so that

F(x) = p − c

p − s
. (7.4)

Even if you find this sleight of hand with calculus a bit mystifying, we can
see what happens quite clearly with an example.

Worked Example 7.2 Troy Fashions

Troy Fashions Ltd. (TFL) sells a type of winter coat for $200 and works with a
clothing manufacturer who can supply at $100 per item. Winter coats that are not
sold at the end of the season will be marked down to $75. Thus, c = $100, p =
$200, and s = $75. Suppose that Troy Fashions is risk neutral and simply wishes
to maximize the expected profit. If demand is uniformly distributed between 0
and 200, what is the best choice of order quantity x∗ and what is the expected
profit if x∗ is used?
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Solution

Since demand is uniform on [0, 200] we have F(x) = x/200 for 0 ≤ x ≤ 200.
Hence, substituting into Equation (7.4), the optimal choice of order quantity, say
x∗, is given by

x∗

200
= p − c

p − s
= 100

125
= 0.8.

Hence, x∗ = 200 × 0.8 = 160, and TFL should order 160 of this coat at the
beginning of the season.

To check this result and find the optimal expected profit, we consider what
happens to the expected profit as a function of x. Using Equation (7.3) we have

�(x) = (p − c)x − (p − s)

∫ x

0
(x − z)f (z)dz

= (200 − 100)x − (200 − 75)

∫ x

0
(x − z)

1

200
dz

= 100x − 125

200

[(
xz − z2

2

)]x

0

= 100x − 125

200

x2

2
.

This function is plotted in Figure 7.5 and we can see how 160 is indeed the point
at which the maximum occurs. The expected profit when x = 160 is given by

100 × 160 − 125

200

(160)2

2
= 8000.

�
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Figure 7.5 The expected profit as a function of x.
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7.2 Choosing scenarios

In the two types of stochastic optimization we have looked at so far, we have
two different types of uncertainty being played out. For the Parthenon Oil Com-
pany example, there is just a small set of possible scenarios, whereas for the
newsvendor problem of Troy Fashions the unknown demand is a continuous ran-
dom variable. The newsvendor problem is unusual in allowing an exact solution
to be calculated. For more complex problems, with uncertainty represented by
one or more continuous random variables, exact solutions are often not possible.
For these problems we need to do something different, and the best approach is
to approximate the continuous random variables by generating a set of different
scenarios in order to make estimates of expected profit with different decisions.
In this section we will introduce Monte Carlo simulation as a way of generating
scenarios, and in the next section we will show how these ideas can be applied
to complex multistage problems.

To illustrate the idea, we return to the newsvendor problem and see what
happens if, instead of there being a distribution of demand given over a range,
we suppose that there is a fixed number of different demand scenarios, each with
its own probability of occurring. Then the expectation of second stage profits
Q(x, D) turns into an average over the different possible scenarios. If there are
N demand possibilities D1, D2, . . . ,DN , each equally likely, then the expected
profit can be written as:

�(x) = −cx + ED[Q(x, D)]

= −cx +
N∑

i=1

(1/N)Q(x, Di).

Example 7.2 (continued) Troy Fashions

Going back to the Troy Fashions example, instead of carrying out a complete
optimization, we look instead for an optimal solution when each of four demand
scenarios is equally likely: demand is 30, 80, 120, or 170. The problem becomes

max
x

−100x + (1/4)Q(x, 30) + (1/4)Q(x, 80) + (1/4)Q(x, 120)

+ (1/4)Q(x, 170)

with
Q(x, D) = 200x − 125 max(x − D, 0).

So the problem can be written

max
x

[
100x − 125

4
(max(x − 30, 0) + max(x − 80, 0) + max(x − 120, 0)

+ max(x − 170, 0))

]
.
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Figure 7.6 Using scenarios to approximate the expected value of profit.

Figure 7.6 shows the exact objective and this approximate objective (the thinner
line with five segments).

By adding more scenarios and giving them equal weights we will end up with
better and better approximations. One way to generate scenarios is to choose them
randomly. (The idea of generating scenarios randomly is called Monte Carlo sam-
pling and we will have more to say about this in the next section.) Here any value
of demand between 0 and 200 is supposed to be equally likely. So we choose 15
random numbers between 0 and 200 (rounded to two decimal places): 110.59,
57.42, 168.24, 17.57, 98.77, 190.82, 130.29, 42.81, 188.80, 35.12, 158.13, 24.18,
72.81, 128.20, 62.61. Then we construct the appropriate objective function:

100x − 125

15
(max(x − 110.59, 0) + max(x − 57.42, 0) + . . .

+ max(x − 62.61, 0)).

This is the dashed line in Figure 7.6. Clearly as we use more and more scenarios
we get closer to the exact objective function. �

7.2.1 How to carry out Monte Carlo simulation

The idea of a Monte Carlo simulation is an important one in modeling risk.
Even if we cannot write down explicit expressions to evaluate the expected
performance of a decision, we can almost always make an estimate using a
simulation. It is worth thinking carefully about the way that a Monte Carlo
simulation is carried out.

Each scenario chooses values for the random variables in a way that matches
the actual stochastic process through which they will be determined. Then,
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an average over a large number of scenarios, each drawn with the appropri-
ate probability distribution, will tend to the true expected value. This is Monte
Carlo sampling. For many stochastic optimization problems there is a multistage
structure involving a stochastic evolution over time, with the random variables
occurring at one stage feeding into what happens at the next stage, and there will
also be decision variables that need to be chosen at each stage. We will discuss
this in the next section, but for the moment we want to focus on using Monte
Carlo simulation when there is just one stage at which randomness occurs.

There are many excellent spreadsheet-based programs that allow Monte Carlo
sampling to be carried out very simply and automatically. Rather than base this
chapter on one of these programs, we will instead use the simplest possible
approach using the functions available within Excel itself. This makes things
more cumbersome with larger spreadsheets (as we shall see) but has the advantage
of being very straightforward and transparent.

In order to create random scenarios from within a spreadsheet we will use
the RAND function. This function is written RAND() (and takes no arguments). It
returns a uniformly distributed random number between 0 and 1. A new random
number is returned every time the worksheet is calculated or F9 pressed. So, to
get a demand with a uniform distribution between 0 and 100, we can put the
formula =RAND()*100 in a cell.

In practice, it is rare that we want to generate scenarios using a uniform
distribution, so what we need is a way of getting from a uniform distribution to
some other distribution. This is achieved using the inverse transform method, as
illustrated in Figure 7.7.

Suppose that we want to draw a sample for a random variable with density
function f , and with an associated CDF of F . We start by generating a random
number z that is uniform between 0 and 1 and then transform the number z (as
shown in the figure) to the point y where F(y) = z. If the density f is positive

f (x) 

F (x)

0

1

z

Random variable z
uniform on [0,1]

F −1(z)

Figure 7.7 A uniform random variable z is transformed into a given distribution
through F−1(z).
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in its range, then F will be strictly increasing and there will be a single point
y defined by this procedure. We can say that y is given by the inverse of the
function F applied to the number z and write this as y = F−1(z). (Note that this
inverse function is not related to 1/F (z) !)

Figure 7.7 suggests that this process will be more likely to produce a number
where the function F has a large slope, i.e. where the density function has a
high value. This is exactly what we want. Now we establish more formally
that the inverse transform method will produce a random variable with the right
distribution function.

Suppose that X has a uniform distribution on the interval (0,1) and the random
variable Y is given by F−1(X). Thus, we get a sample from Y by taking a sample
x from the distribution X and then choosing a value y so that F(y) = x. To find
the distribution of y notice that

Pr(y ≤ a) = Pr(F (y) ≤ F(a))

= Pr(x ≤ F(a))

= F(a).

The first equality is because F is an increasing function; the rest follows from the
way that y is chosen and the fact that x is a sample from a uniform distribution.
Thus, for any value a, the probability that y is less than a matches what it would
be if y had the distribution F . Hence, we have shown that y has the distribution
we want.

Worked Example 7.3

We want to generate a scenario in which the demand has a distribution with
density f (x) = 2 − x on the range 0.5 ≤ x ≤ 1.5. What formula should be put
in the spreadsheet cell to produce a sample from this distribution?

Solution

We need to start by finding the CDF for this density function. The function F is
zero below 0.5, F is 1 above 1.5 and between these values we have

F(x) =
∫ x

0.5
f (z)dz

=
∫ x

0.5
(2 − z)dz =

[
2x − x2

2

]x

0.5

= 2x − x2

2
−

(
1 − 1

8

)
.

We can check that this takes the value 1 when x = 1.5. We have 2 × (3/2) −
(9/8) − (7/8) = 1 as required.
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Given a value z that is uniformly distributed on [0,1] we generate a new
value from the inverse of this function. Hence, we need to find the value of x

which solves

2x − x2

2
− 7

8
= z.

Thus
x2 − 4x + 7

4
+ 2z = 0

and

x = 2 ± 1

2

√
9 − 8z.

Now we need to decide whether the higher or lower root is correct; should we
take the plus or minus in this expression? We need values of x between 0.5
and 1.5, so we need the minus sign (i.e. the lower root). Hence, we reach the
following expression for the spreadsheet cell:

=2-0.5*SQRT(9-8*RAND()) �

Example 7.4 Troy Fashions with normal demand

We return to the example of Troy Fashions, but now we will suppose that
the distribution of demand is normal with a mean of μ = 100 and a standard
deviation of σ = 20. We can use Equation (7.4) to determine the optimal order
quantity which satisfies

F(x) = p − c

p − s
= 0.8.

The function F here is the cumulative normal distribution, often written 	. To
solve this equation for x we can use tables of a normal distribution but it is simpler
to use the spreadsheet function NORMINV, which is designed to find the x value
that gives a certain probability of a normal distribution being below it – exactly
the problem we need to solve here. The function NORMINV(y, μ, σ ) finds the
x value for which a normal distribution with specified mean μ and standard
deviation σ achieves the probability y of being less than x. Typing the formula
=NORMINV(0.8,100,20) into a spreadsheet gives the value 116.832, which we
round up to give x = 117. This is the optimal choice of x for this problem.

We will illustrate the Monte Carlo simulation approach by using this method
to estimate the expected profit when x = 117. The idea is to average over different
scenarios for the demand, with the scenarios drawn from the desired population.
The spreadsheet BRMch7-TroyFashions.xlsx carries out 1000 random draws from
a normal distribution for demand in order to estimate the average profit. Each
row in the spreadsheet represents a different randomly drawn demand scenario.
Have a look at the cell B4 which generates one of the random demands: the cell
formula is =NORMINV(RAND(),100,20). As we have already said, the function
NORMINV(y, μ, σ ) is the inverse of the CDF for a normal distribution and so is
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the function we need for the inverse transform method to generate demands with
a normal distribution.

The average profit is around $9300. Even taking the average over 1000 rep-
etitions, which might be expected to be close to the real expected value, there
is still a lot of variation (try pressing F9 repeatedly, which recalculates all the
random numbers, and you should see that the average profit jumps around a lot,
going from less than $9200 to more than $9400). �

7.2.2 Alternatives to Monte Carlo

In the Troy Fashions example it is surprising how variable the estimation of
expected profit is, even with 1000 scenarios analyzed. The reason for this is
related to the randomness of the sample. Essentially, chance will often produce
a clustering of the sample in demand regions where there are either higher than
average or lower than average profits. There is an alternative approach, which is
to spread out the sample points in a regular way. This has been done on the right-
hand side of the spreadsheet BRMch7-TroyFashions.xlsx. Instead of making an
estimate of the mean by taking 1000 random numbers between 0 and 1 and using
an inverse transform of these to generate 1000 demand values, this calculation
takes just 98 values 0.01, 0.02, 0.03, . . . , 0.98, 0.99 and these values are then
used, instead of random numbers, to generate a set of demand values and the
expected profit is estimated by averaging these.

By using the inverse transform method in this approach, we generate a set
of demand values that is not uniformly distributed; instead the points become
closer together at values of the demand with a high likelihood of occurring (i.e.
a high density). This gives a far more reliable estimate than a pure Monte Carlo
approach, and this approach should always be used when there are just one or
two random variables involved in the simulation.

However, the Monte Carlo method really comes into its own when there
are many different random variables each with a distribution (or with a joint
distribution on them all). Suppose that there are three independent random
variables involved in the calculation. The approach of taking evenly spread
random numbers now requires 1000 repetitions to get 10 different values for
each of the three variables. In essence, we are evaluating the expected profit
by averaging the results that occur in a three-dimensional grid, with the spacing
of the grid being determined by the density functions for the individual random
variables. As the number of variables increases, it gets harder and harder to
make a grid-based approach work. For example, if there are 15 different random
variables, each of which is uniformly distributed on (0,1), then we might sample
these by letting each random variable take three values: say 0.25, 0.5 and 0.75.
But with 15 variables there are 315 = 14 348 907 scenarios and this is far too
many to allow an exact solution.

Thus, with a high-dimensional problem, we are forced into using a Monte
Carlo method, which may be about the only practical way to proceed. In fact,
Monte Carlo works reasonably well in most cases, with the accuracy of the
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solution determined by the number of scenarios independently of the number of
random variables.

7.3 Multistage stochastic optimization

Now we turn to the solution of stochastic optimization problems where the deci-
sion maker has to make a string of successive decisions with more information
becoming available as time goes on. Our aim is to use the Monte Carlo simulation
approach in this multistage environment. To give a description of the problem
within a general framework can be confusing, so we will make use of a simple
example to illustrate our discussion.

Example 7.5 Alexander Patio Supplies

The management team at Alexander Patio Supplies (APS) uses a planning horizon
of T = 3 months. At the beginning of each month, APS places an order for garden
chairs from its supplier and this is delivered at the beginning of the next month.
Demand occurs during the month, and if this demand is more than the available
inventory then customers will go elsewhere (so that the excess demand is lost).
The time line is shown in Figure 7.8.

APS is concerned with the ordering policy for a particular type of garden
chair. Demand in each month has a normal distribution with mean 50 and standard
deviation 10, and demand in successive months is independent. The chairs are
bought at $100 each and sold at $140. To hold a chair over from one month to
the next is expensive – it costs $10. Suppose we have in inventory an amount
y1 = 50 at the beginning of the first period. The first decision is to choose x1, the
number of chairs ordered in the first month. If demand in the first month is D1
then we sell min(y1, D1) and hold over an amount max(y1 − D1, 0). We begin
the second period with an amount y2 = max(y1 − D1, 0) + x1 and the whole
process repeats. We allow for the cost of holding over inventory at the end of
the three months but otherwise do not consider any further costs.

Decision
made on first

order

First
month’s
demand
occurs

First order
arrives

Decision
made on
second
order

Second
month’s
demand
occurs

Second order
arrives

Third
month’s
demand
occurs

Figure 7.8 Timeline for Alexander Patio Supplies.
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A spreadsheet Monte Carlo simulation has been set up in BRMch7-
Alexander.xlsx, with each row of the spreadsheet representing a different
scenario and each scenario involving three different stochastic demands. There
are 1000 different scenarios and the spreadsheet has been set up with an initial
inventory of 50 and an order of 55 at the start of week 1 and an order of 40 at
the start of week 2.

The contents of cell B6 are =ROUND(NORMINV(RAND(),Mu,Sigma),0). The
function NORMINV has the role of converting the uniformly distributed random
number RAND() into a normal distribution with mean from the cell with name Mu

and standard deviation from the cell with name Sigma. The function ROUND(.,0)

rounds this to the nearest integer (customers buy complete chairs not just parts of
them!). The same formula is repeated for the other monthly demand in columns
E and H. The sales in each month (columns C, F and I) are just given by the
minimum of the inventory at the start of the month and the demand. The inventory
at the start of month 2 in cell D6 is =Inv_S+Order1-C6, which is the initial
inventory (from the cell named Inv_S) plus the month 1 order (from the cell
named Order1) minus the month 1 sales from cell C6. Column G contains a
similar formula.

Column J gives the costs consisting of the total cost of the prod-
ucts ordered at $100 per chair and the cost of holding stock over at
$10 × (starting inventory – sales) for each of the three months. Profits are
obtained from three months of $140 × (sales) − total costs.

Notice that the profit figures for different scenarios vary wildly. Even after
taking the average over 1000 repetitions, which might be expected to be close
to the real expected value, there is still a lot of variation (try pressing F9 and
seeing what happens to the average profit.)

Now we ask what are the best values for the month 1 and month 2 orders?
This problem is a little similar to the Parthenon Oil Company example and we
could set it up as a linear program with decision variables x1 and x2 being the
two orders made. The easiest thing to do is to use Solver directly to maximize
the average profit calculation in BRMch7-Alexander.xlsx. But in order to do so
we have to fix the demand values to produce a fixed set of 1000 scenarios against
which we will evaluate changes in the order quantity. Using the ‘paste values’
function, this has been done in the second worksheet in BRMch7-Alexander.xlsx.
Try using Solver to find the best choice of the two orders. It turns out that, with
this set of scenarios, the best choice is to set x1 = 49 and x2 = 36. �

In looking at optimal order sizes for the APS problem we need to use functions
like min (inventory, demand) to calculate the sales. This introduces corners into
the functions (i.e. places where the derivatives jump) and this, in turn, makes it
much harder to solve the optimization problem. This difficulty is hidden within
what happens ‘out of sight’ in Solver.

There are ways to set up the problem that avoid these non-smooth functions.
In general, an optimization problem in which terms like min(x, y) appear, but
that still has a convex feasible set and (if we are maximizing) a concave objective
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function, can always be replaced by a version of the same thing without the non-
smooth functions. We simply replace a constraint of the form A ≤ min(x, y)

with two constraints: A ≤ x and A ≤ y. Note that if we have a constraint like
A ≥ min(x, y) then the feasible region will no longer be convex and we lose the
property of the problem having only one local optimum. If the objective involves
maximizing min(x, y) then we create a new variable v and then we maximize v

subject to the original constraints plus two new constraints: v ≤ x and v ≤ y.
In doing these manipulations, it helps to remember the rules of operating with

min and max (we will need these rules again in Chapter 9 when we discuss real
options).

max(x, y) = − min(−x, −y)

a min(x, y) = min(ax , ay) if a ≥ 0

min(min(x, y), z) = min(x, y, z)

z + min(x, y) = min(z + x, z + y).

7.3.1 Non-anticipatory constraints

In our discussion of multistage stochastic optimization so far we have not properly
considered the information that becomes available over time. In essence, we have
looked at this problem as though we needed to choose all the decision variables
at the beginning. This is obviously wrong. For example, in the APS problem,
it is important to realize that, at the time when the value of x2 is chosen (the
order placed at the start of month 2), the company already has information on
the demand during the first month. If there has been high demand – leading to
zero inventory held over – then it makes sense to order more, but if there has
been low demand and there are relatively high levels of inventory at the start of
month 2, then it will be better to order less.

We need to set up the model of a multistage problem paying careful attention
to the exact information that can be used in any decision. A formulation that
forces us to choose the decision variables at the start gives too little flexibility
but, as we will see, it is easy to make the mistake of a formulation which allows
too much flexibility. The model of the decisions should allow us to respond to
different scenarios, involving different events. However, we can only respond
to what has already happened, and this means including a restriction that stops
us using some kind of metaphorical crystal ball in looking ahead to determine
the best decision. This is called a non-anticipatory constraint. Notice that we
naturally want to use whatever knowledge we have of what might happen in
the future, for example through understanding the distribution of an unknown
random variable. However, what we cannot do is anticipate the exact value that
the random variable will take. To explore this idea more thoroughly, we return
to the APS example.
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Example 7.6 (continued) Alexander Patio Supplies

Consider taking just the first three scenarios that are listed on the second sheet
of workbook BRMch7-Alexander.xlsx. Thus, the demand values for the three
scenarios chosen are given by the following table:

Scenario: A B C
d1 60 41 52
d2 48 58 36
d3 34 66 53

A natural formulation is to choose different values of x2 for different scenarios.
Scenario A with a high value of the first month demand can then have a higher
value of x2 than scenario B, where the first month’s demand is only 41. This
is the setup shown in the third sheet of the work book. Try using Solver to
find the best choice of the four different variables x1 and the values of x2 for
the three different scenarios (x2A, x2B , x2C). You should find that the optimal
values are x1 = 49, x2A = 33, x2B = 66, x2C = 40. This is surprising: instead of
scenario A getting a large order in the second month, it has a small order, with
x2A smaller than x2B and x2C . The reason is that the second month order is really
only required for the third month’s demand. It is the low value of d3 in scenario
A that makes it optimal to order a small amount in the second month.

We can see that by allowing the value of the variable x2 to depend on the
scenario A, B or C then, in effect, we allow x2 to be affected not only by d1,
but also by d2 and d3, which is information not available at the time when the
decision is made. In selecting a particular scenario we are making a selection of
future variables as well. So, implicit within the procedure we have used, we can
say that the decision at the end of month 1 depends on events that have not yet
occurred, and this breaks the non-anticipatory constraint. �

A formulation of a stochastic optimization problem might include a specific
non-anticipatory constraint forcing decisions that are made with the same infor-
mation available to be the same. Thus, if two scenarios both start with demand in
the first period being 60, say, then the constraint would force the order quantity
at the start of the second period to be the same for the two scenarios. However,
as we saw in the APS example with just three scenarios, this still leaves the
possibility of a wrong formulation through the choice of scenarios that implicitly
make information about the future available from an observation of the stochas-
tic demand for the first period. Usually it is safer to build the non-anticipatory
constraint more directly into the structure of the problem.

The best approach is to work with a scenario tree rather than just a set of
scenarios. This allows us to avoid introducing implicit dependence when we don’t
wish to. In a scenario tree, multiple values are possible for a random variable at
stage 2, given what has happened at stage 1, and so on down the tree. When the
events at different stages are independent, we can represent this in the scenario
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Figure 7.9 An example of a scenario tree.

tree by having the same set of stage 2 outcomes independent of the branch that
we are on (i.e. independent of the stage 1 outcome).

We illustrate this in Figure 7.9, for the APS problem. In this figure, the
scenarios are built up of demand realizations and, for each month, three possible
demands are shown. Of course this dramatically over simplifies what is actually
possible, since in each month any demand realization from around 30 to around
70 is quite possible.

The bold arrows in Figure 7.9 show the demand numbers that occur in the
scenarios A, B and C that are now just three out of a possible 27 different
scenarios. Using this set of 27 scenarios we can construct a more appropriate
model in which x2 is set differently at the three initial nodes according to whether
demand has been 60, 41, or 52.

In constructing a scenario tree like this, the more accurately the stochastic
component is represented, the more scenario branches there will be at each stage.
This can lead to enormous trees and hence great computational difficulties in
finding optimal solutions. One option is to reduce the accuracy of the model for
steps further into the future by reducing the number of branches at higher levels
of the tree.

There has also been a great deal of research on how problems of this sort
can effectively be solved numerically. This research is well beyond our scope
in this book, but we can sketch a couple of ideas that are useful. One idea is
to decompose the problem into separate subproblems for each of the first stage
outcomes. These would be the three subtrees in Figure 7.9. If we guess a value
for x1, then it is quite easy to find optimal values for the different values of x2A,
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x2B , x2C . The solution procedure will also usually generate sensitivity information
(especially when the problem is linear), so that for each subtree we can test the
consequence of small changes up or down in x1. This information can be used
to find a change in x1 that produces an overall improvement in expected profit.
In the linear case, this idea can be transformed into a process of generating
additional constraints in the master problem that can be effective numerically.

Another idea that is important from a practical perspective is to use scenario
trees where different scenarios are given different probabilities of occurring rather
than being equally weighted. This idea is related to the way that Monte Carlo
simulations are generated – it is often possible to get better estimates of the
critical quantities by ensuring that the set of samples drawn from the random
distributions has particular properties.

There are two other issues that we should mention in relation to multistage
stochastic optimization. First we note that it is usually just the first stage decision
which is of interest. In practice, we can expect a stochastic optimization problem
to be solved on a rolling basis. For example, in the Alexander Patio Supplies
problem, a solution includes an order size decision in month 1 as well as decisions
made for month 2, conditional on the demand that occurs in month 1. The rolling
implementation of this uses this solution to make the order in month 1, but does
not commit to what will happen in month 2. Then, at the end of the month when
demand for that month is known, the problem can be solved again, but this time
pushing one more month out into the future.

The second point to make is that there is a close relationship between this
type of problem and that which can be solved using dynamic programming. The
dynamic programming approach involves looking more closely at what might
influence the decisions made at any point in time. In this way the decision is
seen as a function of the circumstances at time t . For example, in the APS
example the decision on what to order at the beginning of the second month can
only depend on the amount of inventory carried over from the first month, if we
assume that the demand we observe in each month is independent of the previous
demands. This is because at the time the decision is made we can ignore the costs
and profits already achieved and look at optimizing the remaining profit. This
(optimal) remaining profit can only depend on the state of the system – which
just means the current inventory level. If we can find a way to formulate the
problem so that at each stage decisions are a function of the state at that stage,
then incorporating this into the solution procedure through some type of dynamic
programming recursion will usually be worthwhile.

Now we return to the problem we introduced at the start of the chapter, where
we asked about the best way to operate a pumped storage facility such as that at
Raccoon Mountain. The stochastic element here relates to the uncertain prices,
so a scenario tree corresponds to different price trajectories that can occur over
time. There will be complex correlations within these price series, since prices
depend on demand and demand is critically dependent on temperatures. We want
to empty the reservoir when prices are high and fill it when prices are low, so the
most natural rules involve two price thresholds: a high threshold above which
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we generate power, and a low one that signals we use power to fill the reservoir.
However, we can expect these thresholds to change with the amount of water
(or space) in the reservoir. If the reservoir is nearly empty at the start of the day,
we would need a higher price to make it worthwhile to turn on the generators;
similarly, if, at the end of the day, there is still a lot of water in the reservoir,
then we would wait for a low price that night before starting to pump water.
These ideas may enable us to define some policy parameters that could then be
optimized using a Monte Carlo simulation of electricity prices.

7.4 Value at risk constraints

So far we have assumed that the problem can be posed as minimizing (or maxi-
mizing) the expected value of an objective function. We can use exactly the same
approach to deal with a case where the decision maker is risk averse. In this case,
we simply define a concave utility function for the decision maker and incorpo-
rate the utility function into the objective function. But there are occasions when
a different approach is valuable.

We suppose that the decision maker is concerned with risk and, in particular,
wishes to avoid bad outcomes. If there is a certain level of loss that is unaccept-
able then one option is to maximize expected profit as before but to insist that
any solution chosen avoids the possibility of a loss greater than the chosen value.
So, for example, if we are solving a recourse problem of the following form

min{C1(x) + Eξ [Q(x, ξ)]},
then we could add a constraint

C1(x) + Q(x, ξ) < M for all ξ.

Since this is a minimization problem, it is large values of the costs given by
Q(x, ξ) that are to be avoided. However, in many problems it is not necessary
to avoid the possibility of large costs entirely, but just to ensure that it is very
unlikely that a large cost occurs. Thus, we end up with a constraint of the form

Pr{C1(x) + Q(x, ξ) > M} ≤ α,

which is called a chance constraint.
We will discuss a version of the problem where we maximize the expected

profit Eξ [�(x, ξ)] from a decision x with stochastic behavior described by the
random variable ξ . Then, the equivalent chance constraint can be written

Pr{�(x, ξ) < −M} ≤ α.

Notice that we are still using the same objective function, but just with an added
constraint. So, if α = 0.01 and M = $1 000 000 then we can express the chance
constraint in words by saying that we maximize expected profit subject to the
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condition that the decision x does not give more than a 1% chance of losing a
million or more.

In order to solve this problem effectively we need to have information on the
distribution of the profit �(x, ξ). If we know that the CDF for � is given by
the function Fx(·) which depends on x, then we can rewrite the constraint as

Fx(−M) ≤ α.

This is closely related to the value at risk (VaR) measure we discussed in
Chapter 3. For example, suppose that a company wishes to maximize expected
profit but must operate under risk constraints that impose a limit of $500 000 on
absolute 95% VaR. Then this can be stated as a problem with a chance constraint
that the probability of losses more than $500 000 is less than 5%, i.e.

maximize Eξ [�(x, ξ)]

subject to Pr{�(x, ξ) < −500 000} ≤ 0.05.

Example 7.7 Portfolio optimization with value at risk constraint

We return to the portfolio optimization problem we introduced in Chapter 2. Sup-
pose there are two investments, both having a normal distribution for the profits
after one year. $1000 invested in the first investment returns an expected profit
of $1000 with a standard deviation of $400, while the same amount invested in
the second investment gives an expected profit of $600 with a standard deviation
of $200. A natural stochastic optimization problem with a chance constraint is to
suppose that we have $1000 to invest and wish to maximize our expected return
subject to the condition that the probability of losing money is less than 0.5%,
say. Alternatively, we can express this by saying that the absolute 99.5% value
at risk is less than $0.

Suppose we invest an amount 1000w1 in the first investment and 1000w2 in
the second. If we assume that the performance of the investments are independent,
then the profits earned follow a normal distribution with mean 1000w1 + 600w2,
so the problem can be written

maximize 1000w1 + 600w2

subject to Pr{w1X1 + w2X2 < 0} ≤ 0.005
w1 + w2 = 1,

w1 ≥ 0, w2 ≥ 0.

where X1 and X2 are the random variables giving the individual investment
returns. The variance of the total return is given by

(400w1)
2 + (200w2)

2

and the standard deviation is given by the square root of this.
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The probability of making a loss can be calculated from the z value giving
the number of standard deviations that the mean is above zero. We have

z = 1000w1 + 600w2√
(400w1)

2 + (200w2)
2
.

We can use tables of the normal distribution or the norminv function in a spread-
sheet to show that we need z ≥ 2.5758 in order to ensure that the probability of
a value less than zero is no more than 0.005. Thus, the constraint becomes

1000w1 + 600w2√
(400w1)

2 + (200w2)
2

≤ 2.5758.

We can divide through by 100 and square this inequality to show that the problem
can be written

maximize 1000w1 + 600w2

subject to (10w1 + 6w2)
2 ≥ (2.5758)2(16w2

1 + 4w2
2),

w1 + w2 = 1,

w1 ≥ 0, w2 ≥ 0.

Since the objective is linear, the optimum occurs at a boundary of the feasible
region. This means that the inequality constraint will be binding (i.e. hold with
equality) and, since we can substitute using w2 = 1 − w1, we end up with

a(16w2
1 + 4(1 − w1)

2) − (10w1 + 6(1 − w1))
2 = 0

where a = (2.5758)2 = 6.6349. Multiplying this out we get

(20a − 16)w2
1 − (48 + 8a)w1 + 4a − 36 = 0.

The maximum is achieved at the higher of the two roots of this quadratic
equation. So

w1 = 1

5a − 4
(a + 6 +

√
a(61 − 4a))

= 1

29.1745
(12.6349 +

√
228.6413)

= 0.95137

giving a split of $951 in the first investment with the remaining $49 in the second
investment. In this case, any weighting with less than $951 in the first investment
will achieve a 99.5% VaR of less than zero (i.e. less than 0.5% probability
of a loss).
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Figure 7.10 Optimizing a three-investment portfolio with a value at risk con-
straint.

Exactly the same approach can be used when there are more than two stocks.
Suppose that we have available a third investment with mean profit of $1200 and
standard deviation 600. The problem becomes

maximize 1000w1 + 600w2 + 1200w3,

subject to (10w1 + 6w2 + 12w3)
2 ≥ (2.5758)2

(
16w2

1 + 4w2
2 + 36w2

3

)
,

w1 + w2 + w3 = 1,

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0.

We can substitute for w3 = 1 − w1 − w2 in order to reformulate this as
an optimization problem over a two-dimensional region. This is shown in
Figure 7.10.

The objective function becomes

1000w1 + 600w2 + 1200(1 − w1 − w2) = 1200 − 200w1 − 600w2

and the dashed lines in the figure show contours of this. The feasible region
is shown shaded. The straight line upper boundary arises from the constraint
w3 ≥ 0, which translates to w1 + w2 ≤ 1. The curved lines are given by the
constraint involving value at risk; in fact, they are part of a large ellipse since
this constraint is quadratic in w1, w2. The optimal solution is w1 = 0.2854,
w2 = 0, w3 = 0.7146. �
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Notes

The Parthenon Oil Company example is loosely based on an example that appears
on the wiki pages at the NEOS site (http://wiki.mcs.anl.gov/NEOS/index.php
/Stochastic Programming). The NEOS Server is a project run by the University
of Wisconsin – Madison that allows anyone to submit optimization problems to
state-of-the-art optimization solvers.

There are a number of books that discuss stochastic optimization at various
levels of detail. King and Wallace (2012) gives a straightforward discussion
concentrating on the modeling area. The book by Birge and Louveaux (2011)
gives a more comprehensive treatment looking at the methods that can be used
to solve stochastic optimization problems.

The terminology of the classic newsvendor problem in operations manage-
ment arises from the way it has been formulated in the context of a shop selling
newspapers (the first references are actually to the ‘newsboy’ problem referring
to a street vendor). Newspapers left unsold at the end of the day are returned
to the publisher, and a decision is needed on the number of newspapers to be
ordered by the newsvendor given an uncertain daily demand. The discussion of
this problem is based on the tutorial paper by Shapiro and Philpott (2007).
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Exercises

7.1 Parthenon Oil with risk-averse behavior

Suppose that a utility function u(x) = √
x is used by the management of the

Parthenon Oil Company. Make the appropriate adjustment to the spread-
sheet BRMch7-Parthenon1.xlsx to allow for this utility function. Note

(a) This utility function is defined on the total profit that Parthenon makes
(which needs to be positive for this utility function to make sense) – you
should assume that all oil is sold at a price of $200 per barrel.

(b) You should assume that POC is maximizing expected utility, so you
need to average the utility of the three scenarios. The problem becomes
nonlinear, so you need to select the options in Solver appropriately.

Does the optimal choice of the oil purchase in February (x1) change in any
way? (Since the utility function is undefined when POC makes a loss, you
will need to ensure that the starting point for the optimization has every
scenario profitable.)

7.2 Ajax Lights

Ajax Lights plc sells LED lights and believes that the demand and price are
connected linearly. Previously, the price was $10 per bulb and total sales
were 50 000 per month. There has been a technical advance, making the cost
to produce these bulbs cheaper, at $5 per bulb. There is a three-month time
horizon before the market changes radically with a new supplier entering.
The firm imports and packs the bulbs but these are obtained from a supplier,
who will supply a fixed amount per month with a one-month lead time. Ajax
has 100 000 LED lights in stock, and has already set its price at $8 per bulb
for the next month. The first decision will be the total amount to be ordered
for use during the period of months 2 and 3, which we call Y , and this
decision must be made straight away. After discovering the sales in month 1,
Ajax will then deduce the two parameters of the demand function (intercept
and slope) and set its price for months 2 and 3 so that its entire stock
(purchased amount plus remaining stock) is used up by the end of month 3.

Writing Y for the amount ordered and S for the uncertain demand in
month 1, show that the problem can be formulated as

max
Y

(500 000 + 5Y + ES(Q(Y, S))

where

Q(Y, S) = (100 000 − S + Y )

(
10 − S

5000
+ Y

50 000

)
+ 8S.

Hence show that Ajax should make an order which matches the optimal
policy for the average demand S.
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7.3 Generating random variables

Suppose that demand is stochastic and has a density function as follows:

f (x) = 0 for x ≤ 10

f (x) = (x/2) − 5 for x ∈ (10, 11)

f (x) = 0.5 for x ∈ [11, 12]

f (x) = 6.5 − (x/2) for x ∈ (12, 13)

f (x) = 0 for x ≥ 13.

Use the method discussed in this chapter to generate five random samples
from this distribution using the following random samples from the uniform
distribution on [0,1]: 0.543, 0.860, 0.172, 0.476, 0.789.

7.4 Non-anticipatory constraints in APS example

Consider the problem solved in the third worksheet in BRMch7-Alexander
.xlsx for which x2A = 33, x2B = 66, and x2C = 40. Explain why a non-
anticipatory solution to this problem would have x2A = x2C.

7.5 Solstice Enterprises

Solstice Enterprises specializes in running bars at sporting events. It needs
to make a decision on the size of tent to book and the number of bar staff
to provide for an up-coming under-21 women’s state cricket final. This
is to be played at a venue in Sydney. If the NSW team makes the final,
then the crowd is expected to be larger than if NSW does not make it to
the final, and the total sales will also depend on the weather on the day
(w = wet, d = dry but cool, h = hot). If the NSW team is in the final, the
potential sales in dollars are predicted to follow a normal distribution with
standard deviation = 2000 and mean $8000, $16 000 or $24 000 according
to the weather being w, d or h. If NSW is not in the final, then they will
follow a normal distribution with standard deviation 1000 and mean $4000,
$8000 or $12 000 according to the weather. The total sales will, however,
be limited by the number of people serving, with $5000 per person being
the limit and this, in turn, is limited by the size of the tent. There are four
tent sizes available suitable for 2, 3, 4, or 5 people. The sequence of events
is as follows. First Solstice must decide on a tent size and book this. Then
the semi-finals are played, which determines whether the NSW team is
in the final. The probability of this happening is 50%. Then, Solstice has
to arrange the bar staff for the night, and hence determine the number of
people to employ. Finally, the match is played with demand for drinks a
random variable that depends on the weather. Solstice does not use weather
forecasts in making its decisions. The tent hire cost for a tent to hold x

bar staff is $2500x. Each person on the bar staff is paid $500 for the day’s
work and the average profit per drink sold is $1.50.
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Ten scenarios are generated using a Monte Carlo method and these are
shown in Table 7.2.

Table 7.2 Ten scenarios for Solstice Enterprises.

Scenario NSW in final Weather Demand di

1 Yes w 5214
2 No d 8479
3 No d 8531
4 Yes w 7473
5 Yes h 22 578
6 Yes d 18 192
7 No h 11 456
8 Yes d 16 921
9 No h 11 439
10 No d 8477

The model proposed is as follows. Choose x (the tent size: 2, 3, 4 or 5),
yi , (the number of servers in scenario i: 2, 3, 4 or 5) and si (the sales in
scenario i) to

maximize
1

10

10∑
i=1

(1.5si − 500yi − 2500x)

subject to si ≤ di,

yi ≤ x,

si ≤ 5000yi.

Explain why the model does not satisfy non-anticipatory constraints,
and hence is wrongly formulated. Reformulate the model in a way that
does satisfy non-anticipatory constraints.

7.6 VaR constraints on a portfolio with a bond

An investor has two stocks and a risk-free treasury bond to invest in. Every
$1000 invested in the bond will return exactly $1200 in three years’ time.
The alternatives are stock A, where $1000 will return an average amount
of $1250 after three years with a standard deviation of $100, and stock
B, where $1000 will return an average amount of $1300 with a standard
deviation of $150. The investor wants to find the best portfolio weights
to maximize expected profit subject to the constraint that the 99% VaR is
zero or less (i.e. there is 1% chance or less of losing money). You may
assume that returns are normally distributed over this three-year period and
that returns for A and B are independent. Formulate this as an optimization
problem and solve it.
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Robust optimization

Managing risk by gaming
Roger Riley is the CEO of Safety First Corporation (SFC), and certainly takes
his company’s name to heart. For SFC the key uncertainty relates to demand
for its various safety-related products and the uncertainty about manufacturing
volume that arises because of the stringent checking that takes place across all
product lines. Sometimes they will reject as much as 10% of a week’s production
on quality grounds. Roger has an unusual approach to risk management, working
closely with Wendy Morris as his Chief Risk Officer. A big part of Wendy’s role
is to dream up possible scenarios in terms of demand and manufacturing yield
that will cause difficulties. This is not as easy as it sounds, because manufacturing
decisions can be wrong in both directions: producing too much of a product that
doesn’t sell well will lead to scrap, and making too little of a product that does
sell well will mean rush manufacturing orders using expensive overtime and this
can also lead to the company losing money.

Roger has always had a pessimistic streak and he sees the risk management
process as a game between himself and Wendy. He will come up with a produc-
tion plan, and then Wendy will play a kind of ‘Murphy’s law’ role to generate a
set of demand and yields that is believable, but designed to cause maximum dif-
ficulties with the production plan that Roger has chosen. Then Roger and Wendy
together use a simple planning spreadsheet to figure out how much money SFC
would make (or lose) in this worst case scenario. The next step is for Roger to
adjust the manufacturing quantities to try to improve the overall performance of
SFC, but each new set of manufacturing decisions is Wendy’s cue to redesign
the worst case scenario, to try to ensure that SFC does badly. Often, Roger and
Wendy go through four or five iterations before Roger decides that he doesn’t
need to try any more variations.

Business Risk Management: Models and Analysis, First Edition. Edward J. Anderson.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/business_risk_management

http://www.wiley.com/go/business_risk_management
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Before they set out on this process, Roger and Wendy have jointly to agree
the boundaries within which Wendy can choose the relevant numbers, as well
as agreeing the estimates of the costs involved to feed into the planning spread-
sheet. Now they have this procedure well established and both of them enjoy
the challenge of playing the game. Wendy says that it appeals to some malicious
instinct in her, and Roger is convinced that the production plans he eventually
comes up with are robust: ‘These production plans may seem very conservative,
but I know that after Wendy has attempted to blow them up, then the plans are
not going to be thrown out by an unexpected set of manufacturing and demand
data – and that is worth a lot to me’.

8.1 True uncertainty: Beyond probabilities

It is appropriate to look again at a topic that we have discussed briefly in earlier
chapters. In most of our discussions of risk we have taken for granted a notion
of probability. The risks we take are associated with the losses we may incur and
the probabilities associated with those events. Sometimes we can be confident of
the probabilities involved (‘What is the probability that an Ace is drawn when we
choose at random from a full pack of cards?’). Sometimes the probabilities are
deduced from looking at the frequency with which something has happened in
the past (‘What is the probability that a person selected at random in New York
city is left-handed?’). And sometimes we make a subjective judgment on the
basis of our experience, perhaps putting together what we know from different
spheres (‘What is the probability that the price of gold will climb over the next
two years?’).

One of the great cynics of the twentieth century, Frank Knight, would caution
us against coming up with a specific number when looking at the probability of
a future event. Knight taught in Chicago from 1928 till he died in 1972 at the
age of 87. But the idea that he is most remembered for comes from his PhD
dissertation of 1916. Knight argues for the existence of a kind of uncertainty that
is not amenable to measurement through probabilities:

‘Uncertainty must be taken in a sense radically distinct from the
familiar notion of Risk, from which it has never been properly sep-
arated. . . . The essential fact is that “risk” means in some cases a
quantity susceptible of measurement, while at other times it is some-
thing distinctly not of this character; and there are far-reaching and
crucial differences in the bearings of the phenomena depending on
which of the two is really present and operating.’

Lord Kelvin made a famous remark about the importance of measurement,
claiming that if you cannot measure something then ‘your knowledge is of
a meagre and unsatisfactory kind’; Knight thought that economists and other
social scientists had taken Kelvin’s statement to mean ‘If you cannot measure,



234 BUSINESS RISK MANAGEMENT

measure anyhow.’ He was scathing about those he saw as trying to turn eco-
nomics into a science like Physics, based on the rational behavior of all the
economic actors.

For Knight, the whole of life was full of examples of individuals making
judgments about future events and often the individual could nominate some
degree of confidence in this judgment, and yet to talk of the probability of a
particular judgment being correct is ‘meaningless and fatally misleading’.

Writing in 1937 John Maynard Keynes also stressed the difference between
what can be calculated as a probability and the uncertainty that prevails over
something like the obsolescence of a new invention, ‘About these matters there is
no scientific basis on which to form any calculable probability whatever. We sim-
ply do not know. Nevertheless the necessity for action and for decision compels
us as practical men to do our best to overlook this awkward fact. . . ’

Faced with the necessity of making decisions when there is uncertainty,
there are two broad approaches: The first is to push hard for at least a subjec-
tive assessment of probabilities even under conditions of Knightian uncertainty
where we are naturally uncomfortable to provide these. The idea is that, at
the point where the decision maker decides between different possible choices,
then the decision that is taken will imply some range of values for the miss-
ing probabilities. Logically it seems preferable to have our uncertainty translated
into a subjective probability of some sort so that it can feed into the decision
we need to take, rather than have it emerge as a kind of by-product of the
decision we end up making. Looked at from this angle, the question becomes
one of finding a way to dig down to the underlying and perhaps unconscious
beliefs of an individual regarding the probabilities of different events. There has
been much work done on the best way to elicit the beliefs of decision mak-
ers, both on the values of different outcomes and on the probabilities of those
outcomes.

There is a second approach that seeks to limit the damage from a bad
decision rather than fully optimize some specific objective function; it is this
idea that lies behind robust optimization, which is the topic we will explore in
this chapter. One motivation is that we are always inclined to overestimate our
certainty and a robust optimization approach will avoid this being too painful.
Bernstein quotes G. K. Chesterton as saying that life. . . ‘looks just a little more
mathematical and regular than it is; its exactitude is obvious, but its inexactitude
is hidden; its wildness lies in wait.’ With robust optimization we focus on
dealing with the wildness in life.

8.2 Avoiding disaster when there is uncertainty

A robust decision is one which guarantees that the result achieved will not be
disastrous. Some aspects of the problem setup are uncertain and there is at least
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the possibility of a very bad outcome: the idea is to eliminate or minimize this
possibility. A focus on the bad results makes it important to know the range of
values that some uncertain quantity may take, and these range statements will,
in a sense, replace more precise statements about probabilities.

In many cases we are dealing with multiple uncertain variables. So we need
to decide whether to specify ranges for each variable independently or whether
to look at the combination of values in determining the range.

The first problem we consider is one where a decision maker tries to optimize
some objective subject to a set of constraints, but the coefficients in the constraints
are uncertain. In this case the bad outcome (that we are trying to avoid) is one
of the constraints being violated. The following example illustrates this kind of
problem.

Example 8.1 MRB production plan with uncertainty

Suppose that MRB Ltd is a manufacturing company that needs to meet an order
for 10 000 units of product A and has two factories that it can use, but there
are different costs and efficiencies involved. Factory 1 has higher labor costs of
$30 per hour, while factory 2 has labor costs of $26 per hour. However, the
machinery in factory 1 is more reliable: in an hour 130 units of product A can
be produced in factory 1, but in the same time only 110 units can be produced
in factory 2. We can formulate MRB’s decision as an optimization problem of
minimizing costs subject to meeting the order. If x1 and x2 are the hours used in
factory 1 and factory 2, respectively, then we want to

minimize 30x1 + 26x2

subject to 130x1 + 110x2 ≥ 10 000
x1 ≥ 0, x2 ≥ 0.

But if we have to determine a schedule in advance, then it is critical that we
are able to meet the order, so we may want to be safer. How confident are we
that the production rate will be exactly as we have forecast? Machines can break
down, personnel can change and obviously the numbers 130 and 110 may not
be exactly right. So we would be better to solve a problem where we ask that a
constraint like

(130 − �1)x1 + (110 − �2)x2 ≥ 10 000

is satisfied for some appropriately chosen values of �1 and �2.
We can easily imagine more complicated versions of the same problem. For

example, suppose that MRB also has to meet an order for 5000 of product B
and for this product the production rates in factory 1 and 2 are 90 per hour and
80 per hour respectively. Moreover, there is a constraint on the time available,
with each factory having only 90 hours available prior to the order delivery
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deadline. Then, writing y1 and y2 for the hours used on product B in the two
factories, the overall problem of minimizing costs becomes

minimize 30(x1 + y1) + 26(x2 + y2)

subject to (130 − �1)x1 + (110 − �2)x2 ≥ 10 000
(90 − �3)y1 + (80 − �4)y2 ≥ 5000
x1 + y1 ≤ 90
x2 + y2 ≤ 90
x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0.

Now we have four safety factors �1, �2, �3,�4 to choose. Moreover, what if
there is a connection between the production rates for the two different products
at factory 1? Clearly things can rapidly become complicated and it would be
easy to drown in the detail of this kind of example. �

Rather than going too quickly into the details, we want to take a step back.
Our aim is to optimize an objective subject to meeting a set of constraints for any
actual values of the coefficients that may occur. The set of possible coefficient
values is clearly critical, and for the moment we suppose that we can identify
this set. The form of the general (robust linear programming) problem with just
two variables and two constraints is

RLP : maximize c1x1 + c2x2

subject to a11x1 + a12x2 ≤ b1 for all (a11, a12) in A1
a21x1 + a22x2 ≤ b2 for all (a21, a22) in A2
x1 ≥ 0, x2 ≥ 0,

and this can obviously be extended to any number of variables and constraints.
Notice that the choice to make this a maximization problem with ‘≤’ constraints
is fairly arbitrary – we can always convert a maximization problem to a mini-
mization one by looking at the negative of the objective, and we can change the
inequalities around by multiplying through by −1.

We will call the set of possible values for the coefficients in a constraint
the uncertainty set for that constraint. The first thing to notice is that we can
determine the uncertainty sets separately for each of the different constraints.
There might be some complex interaction between the values of a11 and a12 for
the first constraint and the values of a21 and a22 for the second constraint, leading
to a combined uncertainty set (a11, a12, a21, a22) ∈ A, but since we need to have
both constraints satisfied for every possible set of parameters, these interactions
will not make any difference in the end. The decision variables x1 and x2 must
satisfy the first constraint for any possible values of a11 and a12 that appear as
a pair in A, and must also satisfy the second constraint for any possible values
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of a21 and a22. Hence, we can split the set A into separate components for each
constraint, as has been done in the formulation of RLP .

The nature of the solution to this problem depends on the structure of the
uncertainty sets involved. Consider a single constraint of the form

a1x1 + a2x2 ≤ b for all (a1, a2) ∈ A.

Each element (a1, a2) of the set A produces a different constraint and all of them
must be satisfied by (x1, x2).

The situation is illustrated by Figure 8.1, in which we show the feasible region
for the constraints

(2 + z1)x1 + (3 + z2)x2 ≤ 3, for all (z1, z2) ∈ Z = {z1 ≥ 0, z2 ≥ 0, z1 + z2 ≤ 1}.

The set Z here is the set of deviations possible to the base values a1 = 2 and
a2 = 3 in order to reach the set of allowable coefficients A.

The figure shows that the overall feasible set is obtained from looking at
the constraints generated by the two corner points in Z, i.e. the points where
z1 = 0, z2 = 1 and where z1 = 1, z2 = 0. The third corner point at z1 = z2 = 0
gives the base constraint, which is higher than the others and does not contribute
to defining the feasible region. All the other points in Z generate constraints
which will be satisfied within the feasible (shaded) region. The dashed line is an
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Figure 8.1 The feasible region for the constraint 2x1 + 3x2 ≤ 3 when the coef-
ficients are subject to the perturbations in Z.
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example of a constraint generated by one such point in Z. The fact that this goes
through the point x1 = 0.5, x2 = 0.5 in fact indicates that it comes from a point
somewhere along the top boundary of Z where z1 + z2 = 1.

The corners of the uncertainty set tell us all we need to know, and this
property actually holds more generally. If the uncertainty set A associated with
a particular constraint is a polytope with a set of k corners (technically called
extreme points of A), then we can replace the single constraint with k copies
defined by the corner points of A, and this will be exactly the same as asking
for the constraint to hold at all points in A.

Thus, we can take a general problem like RLP above and simply replace
the first constraint by a set of copies derived from the corner points of A1, and
similarly replace the second constraint by a set of copies derived from the corner
points of A2, and so on. This increases the size of the problem, but it retains the
same structure and, in the case of a linear program, it is still easy to solve.

We have established the principle that linear programs with polyhedral uncer-
tainty sets for the coefficients remain as linear programs. But to make this a more
useful approach in practice it will help to work more directly with the constraints
that define the polyhedral set A rather than with the corners of A. When the
dimension of the set A increases, the number of corner points can get quite large
even for simple constraints.

Thus, we have a second approach to the same underlying problem. Starting
with a constraint that must be satisfied whenever the coefficients lie in a set A

defined by a set of inequalities, we will show how to rewrite the constraint as
a set of new constraints involving some additional variables so that the overall
optimization problem is correctly defined. To describe the method formally we
would need to express everything in terms of matrices, but the process is easily
understood by looking at a simple example, and we will do this for a problem of
the form RLP. Consider the first constraint a11x1 + a12x2 ≤ b1 for all (a11, a12)

in A1 and suppose that the set A1 is defined by saying that the values a11 and
a12 satisfy a set of constraints:

d11a11 + d12a12 ≤ h1
d21a11 + d22a12 ≤ h2
d31a11 + d32a12 ≤ h3
a11 ≥ 0, a12 ≥ 0.

We could expect that the polytope A1 would have five corner points. But rather
than work with these, we will work directly with the coefficients dij appearing
in the constraints defining A1.

We can reformulate the original constraint into three new constraints:

h1y1 + h2y2 + h3y3 ≤ b1, (8.1)

d11y1 + d21y2 + d31y3 ≥ x1, (8.2)

d12y1 + d22y2 + d32y3 ≥ x2. (8.3)
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We have introduced three new variables y1, y2 and y3 (one for each of the
three constraints defining A1) with y1 ≥ 0, y2 ≥ 0, y3 ≥ 0. The original constraint
involving b1 switches from being about the original variables to being about the
new variables. We have added two new constraints in Inequalities (8.2) and (8.3),
one for each of the original variables x1 and x2. All the coefficients dij reappear
in the new constraints, but transposed. A coefficient like d21 that multiplies
a11 in the second constraint defining A1, now becomes the multiplier for the
second new variable in the constraint associated with x1. There is a consistency
in this pattern that you should check you understand so that you can apply it
appropriately.

In general, if the uncertainty set for a constraint is defined by m constraints
on the coefficients and there are n coefficients that are uncertain (going with the
n original variables) then we will need m new variables and n + 1 constraints to
represent the original constraint with its uncertainty set.

This reformulation is based on a linear programming duality result that we
discuss in more detail in the next section. Applying the rules is reasonably
straightforward provided that we begin by putting the problem into a form where
the inequalities go the right way round and the set A has all its variables positive.
We show how this can work out in practice in the example below.

Worked Example 8.2 Protein constraint in cattle feed

In formulating a feed mix for cattle a firm uses three different grains B, C,
and D with different costs. The firm wishes to choose the proportions for these
ingredients wB , wC , and wD , to minimize total cost subject to some constraints
on the nutritional content of the feed mix. There is a requirement on the protein
content in the final mix that can be expressed by saying that

bwB + cwC + dwD ≥ 2.

But the protein content of the individual ingredients varies. All that can be said
for sure is that b, c, and d are all positive and the following constraints are
satisfied:

b + c ≥ 3, c + d ≥ 4, c − (b + d)/2 ≤ 1.

(This complex pattern of interdependence might arise because the different grains
are sourced from the same growers.) How can the protein constraint be reformu-
lated appropriately?

Solution

We begin by reversing the constraint to get the inequality in the standard
direction:

b(−wB) + c(−wC) + d(−wD) ≤ −2.

This way of writing things retains the property that b, c, and d are all
positive. We also formulate the constraints on b, c, d with inequalities in the
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right direction:

−b − c ≤ −3,

−c − d ≤ −4,

−(1/2)b + c − (1/2)d ≤ 1.

Then we have three new variables y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 (one for each of these
constraints). We get a total of four constraints as follows

−3y1 − 4y2 + y3 ≤ −2,

−y1 − (1/2)y3 ≥ −wB,

−y1 − y2 + y3 ≥ −wC,

−y2 − (1/2)y3 ≥ −wD.

Multiplying through each of these constraints by −1 will get rid of many of the
negatives and we end with

3y1 + 4y2 − y3 ≥ 2,

y1 + (1/2)y3 ≤ wB,

y1 + y2 − y3 ≤ wC,

y2 + (1/2)y3 ≤ wD. �

8.2.1 *More details on constraint reformulation

We have introduced two different methods to take account of the uncertainty set
for the coefficients in a constraint. We want to fill in some details for both of
these methods. Suppose that the original constraint is of the form

a1x1 + a2x2 + . . . + amxm ≤ b,

where we know that the vector (a1, a2, . . . , am) is in an uncertainty set A.
We start by looking at how we can reformulate this in terms of the corner

points of A. Suppose that A has k corner points, and let
(
a

(j)

1 , a
(j)

2 , . . . , a
(j)
m

)
be

the j th corner point where j = 1, 2, . . . , k. Then any point (a1, a2, . . . , am) ∈ A

can be obtained from some set of non-negative weights w1, w2, ...,wk with∑k
j=1 wj = 1 applied to the corners, and ai = ∑k

j=1 wja
(j)

i for i = 1, 2, . . . , m.
In other words, the points in A can be obtained as (convex) combinations of the
corner points.

Since a feasible point (x1, x2, . . . , xm) satisfies the constraints for all
(a1, a2,...am) ∈ A, it must do so at the corners of A. Suppose that is all that we
are given, so

a
(j)

1 x1 + a
(j)

2 x2 + . . . + a
(j)
m xm ≤ b for j = 1, 2, . . . , k. (8.4)
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Then consider an arbitrary (a1, a2, . . . , am) picked from somewhere inside A.
Then

a1x1 + a2x2 + . . . + amxm

=
k∑

j=1

wja
(j)

1 x1 +
k∑

j=1

wja
(j)

2 x2 + . . . +
k∑

j=1

wja
(j)
m xm

=
k∑

j=1

wj

(
a

(j)

1 x1 + a
(j)

2 x2 + . . . + a
(j)
m xm

)

≤
k∑

j=1

wjb = b,

and so the point (x1, x2, . . . , xm) also satisfies the constraint generated by
(a1, a2, . . . , am). Thus, we have shown that the constraints (8.4) are exactly
what is required to represent the whole uncertainty set A.

Next we want to consider the alternative approach when the uncertainty
set A is defined by a set of constraints. We have already stated in Inequali-
ties (8.1)–(8.3) how the original constraint can be rewritten to incorporate this
information about A. Now we want to show how the new set of inequalities is
derived. To do this we need to take a short mathematical detour into the duality
theory that is associated with linear programs. The properties of the dual linear
program are both surprising and beautiful, and there is no harm in spending a
little while looking at this area.

The duality result we need is quite general, but to make it easier to read we
will describe the result for a problem with just two variables x1, x2 and three
constraints. The duality theorem for linear programs states that the value of the
(primal) linear program given by

LP : maximize g1x1 + g2x2

subject to d11x1 + d12x2 ≤ h1,

d21x1 + d22x2 ≤ h2,

d31x1 + d32x2 ≤ h3,

x1 ≥ 0, x2 ≥ 0,

is the same as the value of the (dual) linear program

DLP : minimize h1y1 + h2y2 + h3y3

subject to d11y1 + d21y2 + d31y3 ≥ g1
d12y1 + d22y2 + d32y3 ≥ g2
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.
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If you have never seen this before you need to stop and look carefully to
see what has happened in moving from one problem to the other. The dual lin-
ear program has a constraint for each variable in the original LP, and it has a
variable for each constraint in the original problem. Also, the coefficients in
the objective function get translated into the constraint right-hand sides and
vice versa. Not only have the variables and constraints swapped places, but
we have changed a maximization problem with ‘≤’ constraints into a mini-
mization problem with ‘≥’ constraints. In both problems all the variables are
constrained to be positive. In fact, the duality relation still works if a variable
is not constrained to be positive (a ‘free’ variable), in this case the correspond-
ing constraint has to be an equality. Thus, for example, if the original problem
did not have the constraint x2 ≥ 0, then the second constraint in the dual would
become

d12y1 + d22y2 + d32y3 = g2.

Notice what we are saying here: the minimum value of the objective function
in the dual DLP is equal to the maximum value of the objective in the original
LP . It is interesting to try and see why these two problems have the same value.
You can try, for example, putting actual numbers in instead of all the algebra
to check that the result really does hold. But be warned that the reason for the
duality result being true is quite deep (it comes down to a separating hyperplane
argument; in other words, a generalization to multiple dimensions of the fact
that two non-intersecting convex sets in the plane can have a straight line drawn
between them). It is easy enough to show that the minimum in DLP is greater
than the maximum in LP, but to show that these values are the same is quite a
bit harder.

There are other forms of dual that can be written down, but this is the form
that is easiest to remember, and what we have said here will be enough for the
results we want to derive. What is the connection with our robust optimization
problem?

We suppose, as before, that in the problem RLP the uncertainty set A1
associated with the first constraint is a polytope defined through the following
inequalities on the values of a11 and a12:

d11a11 + d12a12 ≤ h1,

d21a11 + d22a12 ≤ h2,

d31a11 + d32a12 ≤ h3,

a11 ≥ 0, a12 ≥ 0.

Then we can rewrite the first constraint of RLP that a11x1 + a12x2 ≤ b1 for
all (a11, a12) in A1 as saying that the maximum value that a11x1 + a12x2 can take
for (a11, a12) ∈ A1 is less than b1. And then this can be expressed by saying that
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the solution of the linear program

maximize a11x1 + a12x2

subject to d11a11 + d12a12 ≤ h1
d21a11 + d22a12 ≤ h2
d31a11 + d32a12 ≤ h3
a11 ≥ 0, a12 ≥ 0

should be less than or equal to b1. This is the point where we use linear pro-
gramming duality. From our duality result this statement is exactly the same as
saying that the solution of the dual linear program

DLP1 : minimize h1y1 + h2y2 + h3y3

subject to d11y1 + d21y2 + d31y3 ≥ x1,

d12y1 + d22y2 + d32y3 ≥ x2,

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0,

should be less than or equal to b1. Think about this statement carefully and you
can see that it amounts to saying that a pair of values x1 and x2 will satisfy the
first constraint of RLP with its uncertainty set A1 if and only if there are some
values y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 which satisfy the inequality

h1y1 + h2y2 + h3y3 ≤ b1,

together with the constraints of DLP1. In other words, we want the inequality
set (8.1)–(8.3) to be satisfied.

8.2.2 Budget of uncertainty

It is frequently possible to give a range of possible values for an uncertain
parameter. So, for a parameter a1 it often happens that we do not know its exact
value but we are confident that it will lie in a certain range. It is convenient to
take the midpoint of the range as a kind of base value a1 and then define δ1
as the distance from a1 to the two bounds. Hence, the uncertainty set for a1 is
given by a1 − δ1 ≤ a1 ≤ a1 + δ1.

When a constraint contains a number of different uncertain parameters
a1, a2, . . . , an, say, then this will determine a combined uncertainty set A by
simply asking for each ai to satisfy a range constraint ai − δi ≤ ai ≤ ai + δi .
With this arrangement the set A becomes an n-dimensional rectangular box
centered on (a1, a2, . . . , an).

In practice, this results in an extremely conservative uncertainty set, since we
allow all the uncertain parameters to take their extreme values at the same time.
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Unless they are highly correlated variables it makes sense to be more conservative
in the choice of the individual interval lengths δi and compensate for this by being
less conservative in the points where a lot of parameters are close to their extreme
values at the same time.

This leads to defining a budget of uncertainty B. If there are 10 variables
and we have a budget of uncertainty of 5, this would mean that the sum of
the ratios

∣∣ai − ai

∣∣ /δi is less than 5. This might be achieved, for example, by
having five variables at ai + δi and the other five at ai , or by having five variables
at a1 + δ1/2 and five variables at a1 − δ1/2. To see what this looks like for a
specific example, Figure 8.2 shows the situation when there are three uncertain
parameters and compares what happens when B = 2.5 and B = 1.5. The solid
shapes are centered on the point given by the vector of base values (a1, a2, a3).

Whenever the uncertainty in different parameters is independent, then the
assumption that we can cut off the corners in this way is pretty safe. In fact, we
will show in the next section that if each of n uncertain parameters is symmetric
and independent, then the probability that the optimal solution to a problem of this
sort turns out to be infeasible is less than 1 − 	

(
B/

√
n
)

for large n. For example,
if n = 36 then the largest possible value of B is 36, but when B is half this size,
so B = 18, then the probability of the optimal solution being infeasible is

1 − 	
(

18/
√

36
)

= 1 − 	 (3) = 0.00135,

i.e. less than 2 chances in 1000.
Next we investigate the nature of the adjusted linear program that we need

to solve when there is an uncertainty set of this form. We start by looking at
a simple case where there is a constraint a1x1 + a2x2 ≤ b for all (a1, a2) ∈ A,
where A is defined as the a1, a2 satisfying

a1 = a1 + z1δ1, a2 = a2 + z2δ2,

with
∣∣z1

∣∣ ≤ 1,
∣∣z2

∣∣ ≤ 1, and
∣∣z1

∣∣ + ∣∣z2

∣∣ ≤ B.

Because of the modulus signs, this amounts to a total of eight constraints
on the values of (a1, a2). If we were to follow our previous discussion, then we

Figure 8.2 There are three variables: the left-hand diagram shows a budget of
uncertainty of 2.5, and the right-hand diagram shows a budget of uncertainty of 1.5.
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would replace the single constraint with three, but the new constraints would
involve eight new variables. There is a way of simplifying this and ending up
with three inequalities and just three new variables, as follows:

a1x1 + a2x2 + w1 + w2 + Bt ≤ b (8.5)

w1 + t ≥ δ1

∣∣x1

∣∣ , (8.6)

w2 + t ≥ δ2

∣∣x2

∣∣ , (8.7)

wi ≥ 0, t ≥ 0.

(We will show in the next section how this particular set of inequalities is
derived.) This gives a clue as to how a general problem with budget of uncertainty
can be formulated. Suppose that there are n decision variables x1, x2,...xn and the
original problem is to maximize c1x1 + . . . + cnxn subject to some constraints,
one of which has the form a1x1 + a2x2 + . . . + anxn ≤ b for all coefficients
(a1, a2,...an) ∈ A where

A = {(a1 + z1δ1, a2 + z2δ2, . . . , an + znδn)}
for

∣∣zi

∣∣ ≤ 1, i = 1, 2, . . . , n and
∣∣z1

∣∣ + ∣∣z2

∣∣ + . . .
∣∣zn

∣∣ ≤ B.

Then, n + 1 new variables t, w1, w2, . . . , wn are added to the problem, each new
variable being constrained to be non-negative and the constraint in question can
be replaced by n + 1 new constraints

a1x1 + a2x2 + . . . + anxn + w1 + w2 + . . . + wn + Bt ≤ b, (8.8)

wi + t ≥ δi

∣∣xi

∣∣ , i = 1, 2, . . . , n. (8.9)

To get back to a linear program we simply replace each of the constraints wi +
t ≥ δi

∣∣xi

∣∣ with two constraints wi + t ≥ δixi and wi + t ≥ −δixi .
It is easy to check that if there are variables xi, wi and t satisfying these

conditions, then the original inequality with b is satisfied for all (a1, a2, . . . an)

∈ A. We choose a point in A with ai = ai + ziδi where
∣∣zi

∣∣ ≤ 1 and
∣∣z1

∣∣ +∣∣z2

∣∣ + . . .
∣∣zn

∣∣ ≤ B. Then

a1x1 + a2x2 + . . . + anxn

= a1x1 + a2x2 + . . . + anxn + z1δ1x1 + . . . + znδnxn

≤ a1x1 + a2x2 + . . . + anxn + ∣∣z1

∣∣ (w1 + t) + . . . + ∣∣zn

∣∣ (wn + t)

≤ a1x1 + a2x2 + . . . + anxn + w1 + . . . + wn + Bt

≤ b.

Here we used inequalities like z1δ1x1 ≤ ∣∣z1

∣∣ δ1

∣∣x1

∣∣ and also made use of the
fact that

∣∣zi

∣∣ ≤ 1 and
∑∣∣zi

∣∣ ≤ B. This is one direction of the duality argument,
but it is much harder to go the other way around and show that the new set of
constraints is no more restrictive than the original set.
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Worked Example 8.3 Avignon Imports

Avignon Imports has to determine the order to place for products A, B and C.
The entire order for the three products will require delivery together and transport
constraints imply that the total weight of the shipment is less than 5000 kg.
Products A, B and C all weigh 5 kg per unit but there is uncertainty about the
way that the products will be packed and hence the weight of packaging that
the suppliers will use. For A and C this is estimated at 0.2 kg per unit, but this
is a guess and it is thought that figures between 0.1 kg and 0.3 kg are possible.
Product B is more complicated and the packaging is estimated at 0.5 kg per
unit, with figures between 0.2 kg and 0.8 kg being possible. All of the items are
supplied at a cost of $100 per unit. After importing them, Avignon Imports will
auction the products. The expected price to be achieved by selling product A is
$200 per unit, with a possible variation up and down of $50. The expected price
for product B is $205, with a possible variation up or down of $60 per item,
and the expected price for product C is $195, with a possible variation of $70.
There is a requirement that the company makes a profit of at least $50 000 from
the transaction. Avignon Imports wishes to maximize its expected profit subject
to the constraints on transport weight and minimum profit achieved. Formulate
this as a robust optimization problem using a budget of uncertainty of B = 2 for
both the constraints and solve the problem in a spreadsheet.

Solution

Let xA, xB , and xC be the amounts ordered for the three products. Write aA, aB ,
and aC for the weight per unit and sA, sB , and sC for the sale price per unit. The
expected profit is $100, $105 and $95 for the three products and so we have a
robust optimization problem of

maximize 100xA + 105xB + 95xC

subject to aAxA + aBxB + aCxC ≤ 5000 for (aA, aB, aC) ∈ A

−sAxA − sBxB − sCxC ≤ −50 000 for (sA, sB, sC) ∈ S

xA ≥ 0, xB ≥ 0, xC ≥ 0,

with uncertainty sets given by:

A = {(aA, aB, aC) : aA = 5.2 + 0.1zA, aB = 5.5 + 0.3zB, aC = 5.2 + 0.1zC

for (zA, zB, zC) ∈ Z},

S = {(sA, sB, sC) : sA = 100 + 50qA, sB = 105 + 60qB, sC = 95 + 70qC

for (qA, qB, qC) ∈ Z},

where

Z = {(zA, zB, zC) :
∣∣zA

∣∣ ≤ 1,
∣∣zB

∣∣ ≤ 1,
∣∣zC

∣∣ ≤ 1,
∣∣zA

∣∣ + ∣∣zB

∣∣ + ∣∣zC

∣∣ ≤ 2}.
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Notice that the S constraint on minimum profit has been multiplied by −1 to
bring it into standard form. The fact that both budgets of uncertainty are the same
means we can use a single set Z for the two different constraints. Now we can
use the rules we developed earlier to add constraints as in Inequalities (8.8) and
(8.9); the resulting formulation has each of the existing constraints replaced by
four new ones (together with four new variables). This gives

maximize 100xA + 105xB + 95xC

subject to 5.2xA + 5.5xB + 5.2xC + wA + wB + wC + 2t1 ≤ 5000
wA + t1 ≥ 0.1xA

wB + t1 ≥ 0.3xB

wC + t1 ≥ 0.1xC

−100xA − 105xB − 95xC + uA + uB + uC + 2t2 ≤ −50 000
uA + t2 ≥ 50xA

uB + t2 ≥ 60xB

uC + t2 ≥ 70xC

and all variables non-negative.

In this formulation we have been able to change
∣∣xA

∣∣, ∣∣xB

∣∣ and
∣∣xC

∣∣ into xA, xB

and xC since these are all positive.
The solution to this problem is given in the spreadsheet BRMch8-

Avignon.xlsx. We obtain

xA = 785.38, xB = 81.65, xC = 69.98,

wA = 54.04, t1 = 24.49, uA = 34 370.14, t2 = 4898.91,

and all other variables are zero. In practice, we would need to round the variables
to whole numbers (or, better, use an optimization procedure that searches amongst
integer solutions). �

8.2.3 *More details on budgets of uncertainty

In this section we want to do two things: first to show how the constraints
(8.5) – (8.7) arise from a duality argument, and second to derive the bound
we gave on the probability that an optimal solution lies outside the budget of
uncertainty (assuming independent symmetric errors).

We begin by considering a constraint a1x1 + a2x2 ≤ b where the values of(
a1, a2

)
have base values (a1, a2) and maximum deviations δ1, δ2, and also satisfy

a budget of uncertainty B. Thus, A is given by

a1 = a1 + z1δ1, a2 = a2 + z2δ2,

with
∣∣z1

∣∣ ≤ 1,
∣∣z2

∣∣ ≤ 1, and
∣∣z1

∣∣ + ∣∣z2

∣∣ ≤ B.

If the original constraint holds for all (a1, a2) ∈ A, then we can reformulate the
constraint by saying that the following linear program with decision variables a1
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and a2 has a value no greater than b:

minimize a1x1 + a2x2

subject to ai − δiui + δivi = ai, i = 1, 2
ui + vi ≤ 1, i = 1, 2
(u1 + v1) + (u2 + v2) ≤ B

u1 ≥ 0, u2 ≥ 0, v1 ≥ 0, v2 ≥ 0.

Here we have written u1 and v1 for the positive and negative parts of z1, i.e.
u1 = max(z1, 0) and v1 = max(−z1, 0). (Similarly, u2 and v2 are the positive and
negative parts of z2). This means that z1 = u1 − v1 and

∣∣z1

∣∣ = u1 + v1. There is
a trick here, since defining the variables in this way means that only one of them
is non-zero, whereas the linear program as formulated could have both u1 > 0
and v1 > 0. However, any solution in which both variables are non-zero can be
replaced by one in which the same quantity is subtracted from both u1 and v1 to
make the smaller of the two equal to zero. The equality constraint will still be
satisfied and the inequality constraints also still work, since u1 + v1 is reduced.

Thus, using the duality theorem for linear programs, the constraints imply
that the following linear program has a value no greater than b:

minimize a1y1 + a2y2 + w1 + w2 + Bt

subject to y1 = x1
y2 = x2
−δ1y1 + w1 + t ≥ 0
−δ2y2 + w2 + t ≥ 0
δ1y1 + w1 + t ≥ 0
δ2y2 + w2 + t ≥ 0
wi ≥ 0, t ≥ 0.

Note that the two equalities yi = xi occur (rather than inequalities) because there
are no constraints that ai ≥ 0. We can use the first two constraints here to substi-
tute x1 and x2 for y1 and y2. We can also combine the two constraints involving
w1: if w1 + t is greater than both δ1x1 and −δ1x1 then we have w1 + t ≥ δ1

∣∣x1

∣∣.
Thus, we reach the following optimization problem, which has a value ≤ b.

minimize a1x1 + a2x2 + w1 + w2 + Bt

subject to w1 + t ≥ δ1

∣∣x1

∣∣
w2 + t ≥ δ2

∣∣x2

∣∣
wi ≥ 0, t ≥ 0.

Hence, we have shown that the original constraint can be written in the form of
the constraints (8.5) – (8.7).

Now we want to investigate how likely we are to exceed the budget of uncer-
tainty when each uncertain parameter is symmetric and independent. Rather than
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simply asking about the probability that the budget of uncertainty is exceeded,
we are interested in the probability that the optimal solution that we reach fails
to satisfy the constraints of the problem. To be more precise, we suppose that
the value of B is used to define an uncertainty set A and then we want to know
what is the probability that the optimal solution using this uncertainty set will
turn out to be infeasible, assuming that the original ranges are accurate. It is
possible that the actual values of the uncertain parameters lie in those parts of
the n-dimensional cube cut off by the budget of uncertainty constraint, and this
is a question about how likely it is that this will lead to infeasibility.

Suppose that x∗ is an optimal solution to the problem with the budget of
uncertainty in place. We know that the solution x∗ satisfies the constraint with
any choice of zi satisfying the budget of uncertainty, and we will make a specific
choice for z.

We do this by first reordering the variables so that the highest values of
δi

∣∣x∗
i

∣∣ come first and then we choose zi = 1 or −1 according to the sign of x∗
i

for the first L = �B� of these variables, and zL+1 = B − L or −B + L for the
next one (again in order to match the sign of x∗

L+1). The remaining zi are all set
to zero. With this choice of zi we will have

∑n
i=1

∣∣zi

∣∣ = B and the coefficients
a1, a2, . . . , an will lie in the defined uncertainty set A. Hence, the constraint will
be satisfied and we can deduce

∑
aix

∗
i +

L∑
i=1

δi

∣∣x∗
i

∣∣ + (B − L)δL+1

∣∣x∗
L+1

∣∣ ≤ b. (8.10)

Now suppose that the constraint does not hold at the optimal solution x∗ for
some set of ai values in the ranges given. Thus, there is a set of zi values for
which ∑

aix
∗
i +

∑
ziδi

∣∣x∗
i

∣∣ > b,

and hence, from Inequality (8.10),

∑
aix

∗
i +

∑
ziδi

∣∣x∗
i

∣∣ >
∑

aix
∗
i +

L∑
i=1

δi

∣∣x∗
i

∣∣ + (B − L)δL+1

∣∣x∗
L+1

∣∣ .
This inequality can be rewritten

n∑
i=L+1

ziδi

∣∣x∗
i

∣∣ >

L∑
i=1

(1 − zi)δi

∣∣x∗
i

∣∣ + (B − L)δL+1

∣∣x∗
L+1

∣∣ .
Because of the ordering of the δi

∣∣x∗
i

∣∣ (and using the fact that 1 − zi ≥ 0) this
implies

n∑
i=L+1

ziδi

∣∣x∗
i

∣∣ ≥ δL+1

∣∣x∗
L+1

∣∣ ( L∑
i=1

(1 − zi) + (B − L)

)
.



250 BUSINESS RISK MANAGEMENT

So
L∑

i=1

zi +
n∑

i=L+1

zi

δi

∣∣x∗
i

∣∣
δL+1

∣∣x∗
L+1

∣∣ > B.

This inequality has the form

n∑
i=1

zihi > B (8.11)

with 0 ≤ hi ≤ 1 for all i.
Now we ask what is the probability that the zi values make the constraint

not satisfied (if each zi is chosen in a way that is independent and symmetric
around 0)? Since Inequality (8.11) is satisfied if the constraint is broken, the
probability of this inequality holding must be greater than the probability that
the constraint is broken.

We can use the central limit theorem to produce a bound on this probability
for large n. The random variable

∑n
i=1 zihi has mean zero (since each zi has

zero mean) and variance V = ∑n
i=1 h2

i Vi where Vi is the variance of the variable
zi . Since zi lies in the range −1 to 1, it cannot have variance larger than 1 and
h2

i is also less than 1. Hence, the variance of V ≤ n. Finally we have

Pr

(
n∑

i=1

zihi > B

)
≈ Pr(N(0,

√
V ) > B) ≤ 1 − 	

(
B√
n

)
.

Thus, we have established that for large n and any symmetric distribution of
coefficient errors around the base levels, provided these errors are independent,
using a budget of uncertainty B in solving the optimization problem will give
a probability of the constraint being broken at the optimal solution of no more
than 1 − 	

(
B/

√
n
)
.

8.3 Robust optimization and the minimax approach

An important type of uncertainty relates to the objective function in the mini-
mization. In this context the classical stochastic optimization would look at the
expected value of the objective under some model describing the probabilities of
different parameters in the objective function. But we are interested in an envi-
ronment in which there is no known distribution for these parameters, at the most
we simply have a range of possible values. The objective function parameters
belong to an uncertainty set A. In this context it is natural to consider a minimax
approach which assumes the worst and makes decisions in order that the worst
will not be too bad.

To apply this approach we will begin by rewriting the problem with an extra
variable representing the objective function. Thus, a standard optimization prob-
lem may be written

maximize f (x) subject to x ∈ X,
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where f is the objective function and X is the feasible set defined by the con-
straints. This standard problem can be rewritten adding an unconstrained (scalar)
variable v as:

maximize v

subject to v ≤ f (x)

x ∈ X.

The advantage of this rearrangement is that an uncertainty in the objective func-
tion is translated into an uncertainty in the constraints, as was dealt with in the
previous section.

Now consider the case that the objective function is linear, so we have f (x) =
c1x1 + c2x2 + . . . . + cnxn and suppose we know that (c1, c2 . . . cn) lies in a given
uncertainty set A. Then the problem becomes

PZ: maximize v

subject to v − c1x1 − c2x2 − . . . − cnxn ≤ 0 for all (c1, c2, . . . , cn) ∈ A

x ∈ X.

This formulation allows all the machinery introduced in the previous section to
be applied. Note that by asking for the constraint to apply for all choices of
coefficient in the set A, we end up with a value v that is equal to the smallest
value of the objective for possible (c1, c2, . . . , cn) ∈ A. Thus, the formulation PZ
is equivalent to

max
x∈X

(
min

(c1,c2,...,cn)∈A

{
c1x1 + c2x2 + . . . + cnxn

})
.

We can see that with this formulation we are maximizing the objective subject
to the most pessimistic assumptions on the values of the uncertain parameters.
We can think of this as a game between us and an opponent, just the sort of
game that we saw Roger Riley playing in the scenario at the start of this chapter.
We choose the values of the decision variables x1, x2, . . . , xn and then the other
player chooses the values of c1, c2, . . . , cn. But our opponent here is simply
malicious: their aim is to give us the worst possible outcome. Sometimes people
talk of playing against nature, though this implies a rather paranoid view of the
world! We will simply regard this problem as one of guaranteeing a reasonable
outcome whatever nature throws at us.

There is a link to the idea of reverse stress testing introduced in Chapter 3.
However, reverse stress testing simply carries out the inner minimization (finding
the worst possible scenario); whereas here we are choosing decision variables as
well. Thus, we are not only finding the worst result possible, but also working
to avoid this being too bad.

More generally, we can think of a profit function � that depends not only
on our actions x but also the values of some uncertain parameters given by the
vector a and the only information we have is that a ∈ A, the ‘uncertainty set’ for
the problem. Then the best we can do in guaranteeing a certain level of profit is
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to maximize the minimum value of the profit for a ∈ A, i.e. we solve

max
x∈X

{
min
a∈A

�(x, a)

}
. (8.12)

An important case of this problem is when the profit function � is a con-
cave function of a for each value of x and A is a polytope with corners
a(1), a(2), . . . , a(k). Each of these corners is itself a vector, so we can write(
a

(j)

1 , a
(j)

2 , . . . , a
(j)
m

)
for the j th corner point of A where j = 1, 2, . . . , k.

In this case the equivalent to the formulation PZ becomes

PZ1: maximize v

subject to v − �(x, a) ≤ 0 for all (a1, a2, . . . , am) ∈ A

x ∈ X.

Using the same approach we used before, the next step is to replace the single
constraint with k copies: one for each of the extreme points of A. We get the
following

PZ2: maximize v

subject to v − �(x, a(1)) ≤ 0
v − �(x, a(2)) ≤ 0
. . .

v − �(x, a(k)) ≤ 0
x ∈ X.

Clearly if v and x are feasible for PZ1 they must satisfy the constraints
for all the corner points of A and hence are feasible for PZ2. We can use our
assumption on the concavity of � to show that if each of the constraints of PZ2
is satisfied, then the constraint of PZ1 will also be satisfied. The argument is the
same as that given earlier in respect to Inequality (8.4) and Exercise 8.5 asks
you to repeat this. So, the end result is that when the profit function is concave
in the uncertain parameter and the uncertainty set is a polytope, we can replace
the problem (8.12) with the optimization problem PZ2.

Worked Example 8.4 Sentinel Enterprises

Sentinel Enterprises sell tablet computers and e-readers. They have a new product
launch of the ‘FlexReader’ for which there has been considerable advertising.
They have advance orders for 5000 FlexReaders. The advance order customers
have been given a secure code which they can use to make an online purchase on
the launch date, which will be two weeks before the FlexReaders are available
at retail stores. FlexReaders come in two screen sizes (large and small) – and,
due to a mistake, the advance order customers were not asked which of these
they wanted. To make matters worse, the manufacturers have been experiencing
problems with meeting the launch date and the result will be an extra cost for
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FlexReaders available for advance purchase. Sentinel will pay $550 for the large-
screen format and $520 for the small-screen format for FlexReaders available in
time for advance purchase, while FlexReaders delivered two weeks later will cost
$70 less. The large FlexReaders sell for $640, the small ones for $590. Customers
who have placed an advance order but cannot get their preferred format are likely
not to purchase at all. FlexReaders that Sentinel gets delivered early and which
are not needed for the advance order customers will simply be sold later. How
many of the two different readers should Sentinel order for the launch date?

Solution

The aim is to use a robust approach to deal with the uncertainty over how many
of the advance order customers will want the large format and how many will
want the small format. This will have the effect of maximizing Sentinal’s profit
assuming the worst case for the split of demands.

We want to determine the order size xL for large FlexReaders and xS for small
FlexReaders to be delivered at launch date. If the total advance orders are split
as dL of large and dS of small, then the advance order sales are zL = min(xL, dL)

and zS = min(xS, dS).
Let wL and wS be the normal sales of the two sizes. The purchase costs for

the large size format are

550xL + 480(wL − xL + zL),

where the second term arises because there are xL − zL left-over FlexReaders
from the advance purchase. Similarly, the purchase costs for the small format
FlexReaders is

520xS + 450(wS − xS + zS).

Thus, the final profit is

� = 640(zL + wL) + 590(zS + wS) − 550xL − 480(wL − xL + zL)

−520xS − 450(wS − xS + zS)

= 160zL + 140zS − 70(xL + xS) + 160wL + 140wL.

To maximize the profit we want to choose xL and xS to

maximize 160 min(xL, dL) + 140 min(xS, dS) − 70(xL + xS),

but nature will choose dL and dS from the uncertainty set

A = {(dL, dS) : dL ≥ 0, dS ≥ 0, dL + dS = 5000}.



254 BUSINESS RISK MANAGEMENT

We can formulate this as the optimization problem of maximizing v, subject to
the constraints

v − 160 min(xL, dL) − 140 min(xS, dS) + 70(xL + xS) ≤ 0 for all (dL, dS) ∈ A,

xL ≥ 0, xS ≥ 0.

Since the minimum operators are concave, this satisfies the conditions we need
to replace the uncertainty set with copies of the constraint at the two extreme
points of A; these are dL = 5000, dS = 0 and dL = 0, dS = 5000.

We can assume that xL ≤ 5000 and xS ≤ 5000, since there can be no reason to
order more than the maximum demand. Then, the constraints at the two extreme
points can be simplified and we obtain

maximize v

subject to v − 160xL + 70(xL + xS) ≤ 0
v − 140xS + 70(xL + xS) ≤ 0
0 ≤ xL ≤ 5000, 0 ≤ xS ≤ 5000.

The spreadsheet BRMch8-Sentinel.xlsx is set up for the solution of this prob-
lem. The solution turns out to be xL = 4375 and xS = 5000, which gives a v value
of $43 750. In other words, with these values of xL and xS a profit of at least $43 750
will be made and this is the best ‘guaranteed’ profit there can be. �

8.3.1 *Distributionally robust optimization

Up to this point we have been considering a situation where the uncertainty
relates to particular numbers within the problem statement. Rather than assume
that we know the distribution of those parameters, we have assumed simply
that we know an uncertainty set to which they belong. There are many cases,
however, in which we know more than the range of values that a parameter may
take but less than its complete distribution. When this happens it makes sense to
use a distributionally robust model in which we specify, not a set of points, but a
set of distributions as the uncertainty set. An example occurs if we are confident
that, for a specific commodity, tomorrow’s price follows a normal distribution
with a mean the same as today’s price, but we are uncertain about the standard
deviation.

In this case we will write the uncertainty set using a script ‘A’ (A) to remind
us that it is a set of distributions. If ξ is the parameter in question and �(x, ξ)

is the profit using decision variables ξ and we know the distribution of ξ , then
(if we are risk neutral) we want to maximize the expectation of �(x, ξ). Since
we will be considering changes of distribution, it is helpful to write this expec-
tation in terms of the distribution. We use the notation EF [�(x, ξ)] to mean the
expectation of �(x, ξ) when ξ has the distribution F .
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We will concentrate on the problem where the uncertainty occurs in the objec-
tive rather than in the constraints. Then the distributionally robust optimization
problem is to find the best expected profit that is guaranteed if we only know
that the distribution of ξ lies in an uncertainty set A. We can write this as

max
x

{
min
F∈A

EF [�(x, ξ)]

}
.

If the uncertainty in the distribution can be represented by a small set of
defined parameters, then this problem can be brought back to a ‘point-based’
robust formulation, by working out the value of the expectation in terms of the
parameter values. In the example about tomorrow’s commodity price, we might
bound the possible standard deviations between σmin and σmax and then A =
{N(0, σ ) : σmin ≤ σ ≤ σmax}. Now suppose that we can calculate the expected
profit achieved for a given value of standard deviation σ , and decision variables x,
say this is �(x, σ ). Then we can rewrite the distributionally robust optimization
problem in the form

max
x

{
min
σ∈A

�(x, σ )

}
,

where A = {σ : σmin ≤ σ ≤ σmax}.
In the distributionally robust optimization problem, if the uncertainty set A

includes distributions that have the extreme behavior of putting all the probability
weight on a single value of ξ , then we can assume that nature will choose one of
these extreme distributions. The reason is simple, the expected value of � under
the distribution F must be greater than the minimum value that it could take; in
other words, if the density of F is f and this is non-zero on the range [a, b],
then

EF [�(x, ξ)] =
∫ b

a

�(x, s)f (s)ds

≥
∫ b

a

(
min

a≤z≤b
�(x, z)

)
f (s)ds = min

a≤z≤b
�(x, z).

We write δz for the distribution that puts all its weight at the single point z

(sometimes this is called a Dirac delta distribution). Also we write R(A) for the
set of all values that may occur under a distribution in A. Then, in the special
case that for every value of z ∈ R(A) then δz is also in A, we can deduce that

max
x

{
min
F∈A

EF [�(x, ξ)]

}
= max

x

{
min

z∈R(A)
�(x, z)

}

so we are back to a pointwise robust optimization problem.
In some contexts it is natural to consider an uncertainty set A consisting of

all distributions which are unimodal – the densities increase to a maximum and
then decrease. For example, when considering the distribution of demand for a
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product that has an uncertain relationship to the weather (at sufficient distance
into the future that weather forecasts are not much use), we may be comfortable
restricting the distribution to a unimodal one – even though almost nothing else
is known.

We will consider an uncertainty set which consists of all distributions with
unimodal density functions defined on a range, but we add the condition that the
mode is known in advance. We can transform the problem so that the mode is
zero. For example, we may judge that the most likely value for the price of oil
in a week’s time is the price today, and we regard this price as stochastic with
a distribution which is unimodal. We can see that the distribution is obtained by
taking a unimodal distribution with mean zero and adding to it today’s oil price.

A key observation is that any unimodal distribution that has support in a
range [−a, b] and mode 0 can be obtained by first choosing a number from a
particular distribution G on [−a, b] and then multiplying by a number drawn
randomly from the interval [0, 1]. We can say that any unimodal distribution
can be obtained as the product of two independent samples, one from G and one
from U(0, 1), the uniform distribution on (0, 1). This result is called Khintchine’s
Theorem. Another way to put this is to say that we can obtain any unimodal
distribution from a mixture between uniform distributions, each of which has a
range either of the form [0, x] or of the form [−x, 0]. Figure 8.3 demonstrates
this by considering a distribution where the density function is an increasing step
function for x < 0 and a decreasing step function for x > 0. We have shown how
the density splits into horizontal rectangles; each represents a separate uniform
distribution between the horizontal endpoints of that block (either a range [−x, 0]
or a range [0, x]). Suppose that we select each rectangle with a probability equal
to its area (these sum to 1 since they equal the integral of the original density
function f ) and then sample from within the given rectangle uniformly within
its horizontal range. It is not hard to see that the probability of ending up at any
point matches that from the original distribution.

0

Figure 8.3 An example of a unimodal distribution as a mixture between uniform
distributions.
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Suppose that we are considering the inner minimization. This is nature’s
problem: given a choice of x made by the decision maker, how should the distri-
bution of ξ be chosen to minimize the expected value of �(x, ξ)? The available
distributions are unimodal (with mode 0). Whatever distribution is chosen, an
alternative to get the same result is to split this into its uniform (horizontal
rectangle) components, as in Figure 8.3, and then choose one of these with the
appropriate probability. Thus, for example, if the distribution F was composed
from three uniform distributions UA, UB and UC with probabilities pA, pB and
pC then

EF [�(x, ξ)] = pAEUA
[�(x, ξ)] + pBEUB

[�(x, ξ)] + pCEUC
[�(x, ξ)].

This is a convex combination of the expectations taken over the three uniform
distributions, and so one of the three must have a value of EF [�(x, ξ)] or lower.
If all three had values greater than EF [�(x, ξ)] then the result of choosing
between them with certain probabilities would also be greater than EF [�(x, ξ)].

This is an example of the kind of argument we have seen already: when
minimizing a linear function over a polytope, we can just consider the extreme
points of the polytope. In the same way, if we are minimizing an expectation
over a set of distributions A, we can just consider the extreme points of the
set A.

In fact, we can make this whole argument in a more abstract and general
way. The set A of unimodal distributions with mode 0 and support in the range
−a to b is itself a convex set, since if we take a convex combination of two such
distributions, the result is still a unimodal distribution with mode 0. Moreover, the
uniform distributions on [0, y] for 0 ≤ y ≤ b, or [−y, 0] for 0 ≤ y ≤ a are the
extreme points of A (since they cannot be obtained through a convex combination
of two other distributions in A). When minimizing a function that is linear on
distributions, we only need to consider the extreme points (i.e. these uniform
distributions).

So, to find a unimodal distribution for ξ (with mode 0) that minimizes
E[�(x, ξ)] we need only consider uniform distributions, either on (−y, 0) or
on (0, y). We can go further in the case that �(x, ξ) is a concave function
of ξ . In this case we can say that the minimum of E[�(x, ξ)] over distributions
F ∈ A = {unimodal distributions with support in a range [−a, b] and mode 0}
is attained either when F is uniform on (−a, 0) or when F is uniform on (0, b).
We will give a sketch proof of this result by showing that one or other of these
two uniform distributions gives a smaller expected value for �(x, ξ) than the
uniform distribution over (0, y) for 0 < y < b. (Exactly the same method can be
used to show that one or other has a smaller expected value than the uniform
distribution over (−y, 0) for 0 < y < a.)

The value of x in �(x, ξ) plays no part in this discussion, so we just write
�(ξ) for �(x, ξ). Note that when ξ has a uniform distribution on (−a, 0) then

E(�(ξ)) = 1

a

∫ 0

−a

�(u)du
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i.e. the average value of � over (−a, 0), and there are similar expressions for
the expectation of � when ξ has a uniform distribution on (0, y) or (0, b). We
choose an arbitrary y with 0 < y < b: our aim is to show that if

1

a

∫ 0

−a

�(u)du >
1

y

∫ y

0
�(u)du,

then
1

y

∫ y

0
�(u)du >

1

b

∫ b

0
�(u)du.

Since � is concave, we can draw the straight line between the points on the
graph of � at 0 and y and the values of � are above this line between 0 and y

and below this line outside this range. This is illustrated in Figure 8.4. Now if
this straight line were horizontal at a height h, we could immediately deduce that
the average value of � on (0, a) would be more than the average on (−a, 0).
Since we assume that the average value of � over (−a, 0) is greater than in the
range (0, y), it is clear that the line must slope downwards. Hence, we can see
that the value of � in the range (y, b) is lower than the values in (0, y). Thus

1

b

∫ b

0
�(u)du = 1

b

∫ y

0
�(u)du + 1

b

∫ b

y

�(u)du

<
1

b

∫ y

0
�(u)du + (b − y)

b
�(y)

<
1

b

∫ y

0
�(u)du + (b − y)

b

1

y

∫ y

0
�(u)du = 1

y

∫ y

0
�(u)du.

This completes what we need to establish: one or other of (1/a)
∫ 0
−a

�(u)du or

(1/b)
∫ b

0 �(u)du must be less than or equal to (1/y)
∫ y

0 �(u)du . And so we have
established that the minimum occurs at one of these values.

0 y b−a

Π (x )

Figure 8.4 Diagram to illustrate the argument about averages of a concave
function �.
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We can replace the mode zero with an arbitrary value w0. So finally we have
established that when we wish to minimize the expected value of a concave
function �(x, ξ) over choices of distribution for ξ which are unimodal, have
support in (wL, wU) and have their mode at w0, then we need only consider two
options: the uniform distribution on (wL, w0) and the uniform distribution on
(w0, wU). We show how to use this result to calculate a robust solution in the
worked example below.

Worked Example 8.5 Toulouse Medical Devices

Toulouse Medical Devices (TMD) needs to order heart monitors to meet an uncer-
tain demand. TMD is uncertain about the distribution of demand but believes that
the distribution is unimodal, with the lowest level of demand being zero and the
highest being 200.The most likely value of demand is 100. Units cost $4000,
and are sold at $10 000. There are costs associated both with having unsold units
and with not being able to meet the demand. TMD estimates that if it orders x

and demand is d, then these ‘mismatch’ costs are 50(x − d)2. Thus, the profit
function (in $1000s) is

�(x, d) = 10 min(x, d) − 4x − 0.05(x − d)2. (8.13)

TMD realizes that in some cases it may make a loss, but wishes to maximize its
expected profit given the worst possible distribution of demand.

Solution

The profit function in Equation (8.13) is a concave function of d once x is fixed,
since the three components are all concave. From the result above, we need only
to evaluate the expected profit for two particular distributions of d: either d is
uniform on (0, 100) or d is uniform on (100, 200).

EU(100,200)[�(x, d)] = 1

100

∫ 200

100
(10 min(x, u) − 4x − 1

20
(x − u)2)du.

Clearly the value of this integral depends on the value of x. If x ≤ 100

EU(100,200)[�(x, d)] = 1

100

∫ 200

100
(6x − 1

20
(x − u)2)du

= 6x + 1

100

[
1

20
(x − u)3/3

]200

100

= 6x + 1

6000
((x − 200)3 − (x − 100)3).
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If x > 100

EU(100,200)[�(x, d)]

= 1

100

∫ x

100
(10u − 4x)du + 1

100

∫ 200

x

6xdu − 1

100

∫ 200

100

1

20
(x − u)2du

= −4x
x − 100

100
+ 1

100

[
5u2]x

100 + 6x
200 − x

100
+ 1

2000

[
(x − u)3/3

]200

x

= x

10
(160 − x) + 1

20
(x2 − 1002) + 1

6000

(
(x − 200)3 − (x − 100)3) .

The other distribution can be evaluated similarly

EU(0,100)[�(x, d)] = 1

100

∫ 100

0
(10 min(x, u) − 4x − 1

20
(x − u)2)du.

If x ≤ 100

EU(0,100)[�(x, d)]

= 1

100

∫ x

0
(10u − 4x)du + 1

100

∫ 100

x

6xdu − 1

2000

∫ 100

0
(x − u)2)du

= −4x
x

100
+ 1

100

[
5u2]x

0 + 6x
100 − x

100
+ 1

2000

[
(x − u)3/3

]100

0

= 1

10
x (60 − x) + x2

20
+ 1

6000

(
(x − 100)3 − x3) ,

and finally if x > 100

EU(0,100)[�(x, d)] = 1

100

∫ 100

0
(10u − 4x)du − 1

100

∫ 100

0

1

20
(x − u)2du

= −4x + 1

100

[
5u2]100

0 + 1

2000

[
(x − u)3/3

]100

0

= −4x + 500 + 1

6000

(
(x − 100)3 − x3) .

The spreadsheet BRMch8-Toulouse.xlsx shows the values of EU(0,100)[�(x, d)]
and EU(100,200)[�(x, d)] as x varies, and these are also shown in Figure 8.5.
The robust optimum value for x is the one that maximizes the minimum profit.
The optimum (integer) order size is x = 73, which guarantees a minimum
expected profit of $99 883. We can see that for many x values a negative
expected profit is possible if nature deals us a bad hand in the choice of demand
distribution. �
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Figure 8.5 The expected profits for TMD as a function of x for the two extreme
uniform distributions of demand.

Notes

The material on Knightian uncertainty is mainly taken from the book by Bern-
stein. The whole area of robust optimization has excited a great deal of interest
in the last few years and there are many papers that deal with different aspects
of robust optimization. The review article by Bertsimas, Brown and Caramanis
(2011) gives a good introduction to the very extensive literature on robust opti-
mization. Our treatment here has been elementary and focused on relatively
small-scale problems with simple uncertainty sets. The discussion in Section 8.2
on budgets of uncertainty arises from work by Dimitris Bertsimas and co authors
(Bertsimas and Sim, 2004). In that section we use duality properties to establish
the exact problem to solve – this approach through duality can be extended to a
whole variety of more complex robust optimization problems.

In the same way, our treatment of distributionally robust optimization can be
extended in many ways. The uncertainty set we have looked at in most detail,
unimodal functions with a known mode, is particularly simple to analyze. Some
related theory in a more general context of multidimensional distributions can be
found in Shapiro (2006).

There has also been a great deal of work that looks at efficient computation
of robust optimal solutions for a variety of problems – for example, problems
with dynamic characteristics matching the discussion of stochastic optimization
that we gave in Chapter 7. For a much more comprehensive discussion of all
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of this material, the reader is recommended to consult the book by Ben-Tal, El
Ghaoui and Nemirovski (2009).
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Exercises

8.1 Rewriting constraints

Consider a problem of choosing a production quantity xi for products
i = 1, 2, 3, 4 where the failure rates are high and uncertain. The time
required to produce one unit of any product is 1 minute. But because of
the failure rates, to produce an amount xi of product i requires a time aixi

minutes, where ai ≥ 1. The production rates ai are uncertain. Suppose that
we are confident that a1 ≤ 1.1, a3 ≤ 1.1. Moreover, the failure rates are
known to be correlated in a complex way. The expert view is that the
following additional constraints can be assumed:

a1 + a2 + a3 + a4 ≤ 4.3,

a1 − a2 + a3 − a4 ≤ 0.1.

Formulate the constraint on the production quantities for the four products
if it is necessary to guarantee that these amounts can be made in less than
40 hours in total (i.e. 2400 minutes).

8.2 Coefficients are unrelated

A robust optimization problem has a constraint

a1x1 + a2x2 + a3x3 ≤ b

which must hold for all (a1, a2, a3) ∈ A where A is the set where ai ∈
(ai − δi, ai + δi). There are no connections between the ai values. Show
that by using absolute values

∣∣x1

∣∣, ∣∣x2

∣∣, ∣∣x3

∣∣ this can be rewritten with a
single constraint.

8.3 Impact of the budget of uncertainty

.(a) Solve the Avignon Imports example with a budget of uncertainty of
B = 1.5 and compare the objective functions with the B = 2 case
to see how much the expected profit is increased by taking the less
conservative approach.

(b) Show that if there is no budget of uncertainty (and each variable can
take any value in its range), which is equivalent to setting B = 3, then
there is no feasible solution.

8.4 Robust optimization for Sentinel

In the Sentinel example, use the spreadsheet to show that if the selling
prices are reduced to $600 and $550 for the large and small formats, then
the robust optimal solution has xL = xS = 0. Explain why this happens.
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8.5 Uncertainty sets with concave functions

Suppose A is a polytope with corners a(1), a(2), . . . , a(k) (each of these is
a vector in Rn). If �(x, a) is a concave function of a for each fixed x

and v ≤ �(x, a(i)) for i = 1, 2, . . . , k (so v is less than �(x, a(i)) at each
corner point), then show that v ≤ �(x, a) for all a ∈ A.

8.6 Provence Rentals

Provence Rentals has a fleet of 100 cars that it rents by the day. It is
considering investing in GPS systems for these cars and will charge a
premium of $4 per day for hire of the GPS systems. Each of the GPS
systems will cost $500 to purchase and also requires the fitting of a secure
holder with a cost of $250 per car. Provence sells its cars after 500 days
and this is also the effective lifetime of the GPS system. So, a car with
a system installed has no extra value after this period in comparison with
a car without the system installed. Once Provence Rentals advertises this
service, it will be expensive in terms of goodwill not to be able to provide
it; Provence Rentals reckons that there is a cost of $10 when a customer
is not able to have the system and requests it.

(a) Set this up as a robust optimization problem with the assumptions:
(A) all cars are rented every day. (B) Provence Rentals has to make
a decision at the start of the 500 days on how many GPS systems
to install and cannot install any more over the course of the 500-
day period. (C) The same proportion of customers requests the GPS
system each day (but Provence Rentals has no way of predicting this
proportion).

(b) Show that if Provence Rentals makes a decision on how many systems
to install and then the value of p, the proportion of customers wanting
a GPS system, is chosen so that Provence Rentals makes least money,
then either p will be chosen at 0 or at 1.

(c) Use the observation in (b) to solve the robust optimization problem.

8.7 Toulouse Medical Devices

In the Toulouse Medical Devices example, suppose that TMD knows that
the demand distribution is unimodal but is not able to say what the value of
the mode is (with other aspects of the problem staying the same). Explain
why the decision reduces to an ordinary (pointwise) robust optimization
problem and calculate the best choice of order x.
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Real options

Commitment anxiety: good or bad?
‘Why be in such a rush?’ is Darae’s comment when she hears what her boss
Kandice is proposing. Kandice is the CEO of Analytics Enterprises, an animation
company working primarily on short advertisements and music videos, and Darae
is the Financial Director. For more than a year they have been looking for an
opportunity to start a new division of their company working in the computer
games area. Now a small company, Eckmet Ltd, specializing in computer games
has approached them seeking an injection of capital. Eckmet’s main asset, apart
from its 10 employees, is the rights to 20% of the sales revenue from a new
computer game that the company has been working on, due to launch in three
months’ time. The first royalty payments made to Eckmet under this contract are
due in six months, but there is great uncertainty as to how successful the game
will be and hence how much will be received in royalties.

Both Kandice and Darae agree that linking up with Eckmet is a good idea.
Kandice is all for buying a controlling interest in Eckmet straight away. But Darae
has been looking at the possibility of buying a smaller stake in the company,
with the intention of taking a larger stake only if the new computer game does
well. Sometimes a new game can take a while to catch on, so Analytics would
want to have an option on further share purchases for at least a two-year period.
Kandice has argued that this is even more expensive – a 20% stake in Eckmet
would cost $2 million (with an option for a further 40% to be purchased at any
time in the next two years at a cost of $4 million), while $4.8 million would give
them a 60% stake right away.

Kandice cannot see the sense in this: why set yourself up to pay a total
of $6 million for something that you can get right away for $4.8 million? But
Darae is concerned about betting such a large sum of money on the success of
one computer game; if that goes badly the investment in Eckmet will not be
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worth much. There must be a benefit in delaying making this commitment, but
is it worth the extra price that they will end up paying?

9.1 Introduction to real options

In most cases increased uncertainty in outcomes is regarded as undesirable. Our
discussion in Chapter 6 of the way that individuals make decisions confirms this
to be the case for individuals when dealing with uncertain gains: we would rather
have $80 000 for sure than an 80% chance of $100 000 and a 20% chance of
nothing. We also met the same idea in Chapter 2 discussing portfolio theory,
where we expect higher returns when the risk (i.e. the variance) is greater.

However, there are circumstances where higher volatility or higher variance
is beneficial. This happens whenever there is an implied option, with the effect
of limiting any downside associated with the variation. This beneficial effect is
not as the result of a particular preference structure used by the decision maker:
it happens when the decision maker is risk neutral.

At first sight it seems odd that an increase in variance might make things
better, and a good way to understand this is through looking at an example.

Example 9.1 Investing in biotech companies

Suppose that you are considering investing in one of two biotechnology com-
panies, both involved in similar research and development work. Company A
typically produces one new design idea every three months and, on average, the
potential profitability of these product ideas, if they were to be put into produc-
tion, has a mean of $30 000 per year with a standard deviation of $20 000 a year.
(There is the possibility of losing money if the less successful product designs
were ever put into production, so these designs are simply shelved). The second
company, Company B, also produces one new design idea every three months,
with mean product profitability of $30 000, but the standard deviation is higher
at $40 000 a year. Which is the better company to invest in?

We naturally wish to minimize risk, and these two companies are the same
except for the variance of the returns on new design ideas. So, at first sight, we might
expect that Company A with smaller variance would provide the better investment.
But actually it is Company B, with the higher variance of returns, that will give a
higher expected return and represents the better investment. Product ideas that lose
money will never be put into production. So the less successful designs have value
zero, rather than a negative value. Hence, there is a gain from the larger positive
variations in profitability that is not offset by the larger negative variations. The idea
is shown by Figure 9.1, in which a distribution of product profitability for the two
companies is given with the assumption that unprofitable products have value zero.
The bar at zero represents the probability of either of the profits taking a value zero.
The mean value for the product profitability in the low variance case is $31 052
and for the high variance (dashed line) is $33 991. The greater the proportion of
the distribution that is cut off, the higher the expected value for profit. And if we
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Figure 9.1 Profit distribution truncated at zero gives different results depending
on the variance.

were to consider an even smaller standard deviation then we would find almost no
probability of a negative profitability – leading to an expected profit equal to the
mean of $30 000, a lower amount even than Company A. �

This example demonstrates how, when the bottom tail is cut off, making
the variance smaller will make the expected profit worse. This is the underlying
phenomenon that we explore in this chapter. It is important for managers to
have a good understanding of why holding an option (in this case the option not
to develop a product) makes increasing variability suddenly valuable. There are
simple tools that will help us with the calculations needed to put a dollar value
on the ‘optionality’ here, and this is what we turn to next.

9.2 Calculating values with real options

Suppose that the outcome of some venture or investment is uncertain but there
is a guarantee that the result will not be lower than a given value a. Perhaps we
have the option of not going ahead with the venture, in which case the outcome
can never be less than zero, or perhaps we can always sell our investment for a
given amount a since we hold a put option for this amount (we will come back
to a fuller discussion of financial options later). In any case, if X is a random
variable giving the profit in the absence of the option, then our expected profit,
with the option to always make an amount a, will be given by

E(max(X, a)) = E(max(X − a, 0)) + a.

This expression is reminiscent of our discussion of the excess distribution
and the mean excess that we met in Chapter 4, and there is indeed a relation
between the two. But the definition of the excess distribution is different because
it is conditional on X > a (for a threshold value a). Moreover, in our discussion
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of the expected excess we were concerned with the loss distribution, whereas
with real options our focus will be on profit. The foundation for the calculations
that we carry out will be the expression E(max(X − a, 0)), which we will refer
to as the expected surplus over a (using a different term, rather than ‘excess’
may help to avoid confusion). We can write the expected surplus over a as

E(max(X − a, 0)) = Pr(X > a)E(X − a | X > a)

and so the expected surplus is simply the mean excess multiplied by the proba-
bility that the threshold is exceeded.

We will give some different expressions for the expected surplus depending on
the distribution of the random variable X. The simplest case is when X is uniform
over a range (b, c) with b < a < c. The situation is illustrated in Figure 9.2.

The probability that X − a is less than zero is the lightly shaded area in
Figure 9.2, which has a probability of (a − b)/(c − b): in the formula max(X −
a, 0) this is the probability mass that is set to zero, indicated by the solid bar at zero.
In the event that X − a is not less than zero, then it is equally likely to take any
value between 0 and c − a. So, in this event the average value is (c − a)/2 (this
is the mean excess over the threshold of a). Thus, the expected surplus over a is

E(max(X − a, 0)) = (a − b)

(c − b)
× 0 +

(
1 − (a − b)

(c − b)

)
× (c − a)

2

= (c − a)2

2(c − b)

We can derive the same expression using integration. We have

E(max(X − a, 0)) =
∫ c

b

max(u − a, 0)
1

c − b
du

= 1

c − b

∫ c

a

(u − a)du

= 1

c − b

(
c2

2
− ca − a2

2
+ a2

)

= (c − a)2

2(c − b)
.

b−a c−a0

Figure 9.2 Diagram to show calculation of expected surplus over a for uniform
distribution on (b, c).
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It is also useful to have a formula for E(max(a − X, 0)). This can be derived in a
similar way:

E(max(a − X, 0)) =
∫ c

b

max(a − u, 0)
1

c − b
du

= 1

c − b

∫ a

b

(a − u)du

= 1

c − b

(
a2 − a2

2
− ba + b2

2

)

= (a − b)2

2(c − b)
.

Worked Example 9.2 Deep water salvage

A salvage company has been asked to consider carrying out a difficult deep water
salvage operation. The salvage value of the boat is $3 million (20% of a $15 million
insured value), and there will be a cost of $300 000 to carry out a preliminary
investigation which will determine the actual cost of the salvage operation. This
cost is estimated to be between $2 million and $4 million and the company regards
any amount between these numbers as equally likely. Obviously if the cost is found
to be too large, the company will not go ahead with the salvage operation, but it
will not recover the $300 000 preliminary cost. What is the expected value of this
project to the salvage company?

Solution

Once the $300 000 has been spent it is a question of whether or not to go ahead
with the salvage, and this will be worthwhile if the cost is no more than $3 million.
Hence, the expected profit in millions is

−0.3 + E(max(3 − X, 0))

where X is uniform on the interval between 2 and 4 (million). Using the formula
above we have a = 3, b = 2, c = 4 and an expected profit of

−0.3 + (3 − 2)2

2(4 − 2)
= −0.05.

Hence, this is a project that is not worth going ahead with. We can get the same result
without using the formula since the numbers are all quite easy. 50% of the time the
costs are more than $3 million and the salvage is not worth doing, giving a loss of
0.3 million. On the other hand, if the salvage is worthwhile (as happens 50% of the
time), then the costs are uniformly distributed on the range 2 million to 3 million,
giving an average cost of the salvage of $2.5 million, meaning a profit of just 0.2
million after paying the upfront costs. With equal chances of a $300 000 loss or a
$200 000 profit, the salvage company should walk away from this deal. �
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Solving problems involving real options almost always requires the same
underlying model for what is going on, so it is worth trying to unpack this in
more detail.

1. Identify what is being valued. The underlying structure of real options
calculations is one of valuation. We want to know how much is this project
or potential investment worth, or equivalently how much is our expected
profit? Knowing the value will tell us the maximum amount we should
pay (and when we should walk away from the project if the net value is
negative). In the salvage example, we want to value the entire project.

2. Identify the decision point and the information that will be used. The under-
lying idea of real options is that we can make a decision at some point in
the future between different choices on the basis of information which will
be available then, but is not available when we make the valuation upfront.
For simplicity, we assume that there are just two choices being considered
(often they are of the ‘go’ or ‘no go’ kind). In the salvage example, the
decision point occurs after we find out the cost of the salvage operation,
and the option is simply to go ahead or not.

3. Calculate the profits for different choices in terms of the information avail-
able. If we write the information on which our decision will be based
as X (which is thought of as a random variable at the outset, when we do
the valuation) then we need to compare the two choices in terms of their
profits, given X. If the choices are A and B we might write �A(X) and
�B(X) for the two profit functions. In the salvage example, X is the cost
of the salvage operation, and letting A be ‘go ahead’ and B be ‘don’t go
ahead’, the profits are (in millions):

�A(X) = 3 − X − 0.3

�B(X) = −0.3.

4. Identify the cutoff point between different choices. The value of X will
determine which option is taken and there will be some cutoff point for
X at which we switch choices. So we make choice A if X < a for some
threshold a, and we make choice B if X > a, and we are indifferent
between the choices when X = a. In the salvage example, choice A (go
ahead) is best if X < 3 and choice B (quit) is best if X > 3.

5. Express the project value in terms of max(a −X, 0). Next we need to find a
way of expressing the overall profit in terms of the max(a − X, 0) formula
(or sometimes it is more convenient to use the max(X − a, 0) form). At
this point we are still working with profit as a function of the ‘information’
variable X. The overall profit is the greater of the two possibilities, so

�(X) = max(�A(X), �B(X))

= �B(X) + max(�A(X) − �B(X), 0). (9.1)
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Usually we can put the second term into the required form (we know
already that X = a is the point where �A(X) − �B(X) = 0). In the
salvage example, Equation (9.1) can be written immediately as:

�(X) = −0.3 + max(3 − X, 0).

6. Use the distribution of X to find the expected final value. The final step
is to evaluate the expected profit using the information available on the
distribution of X and a suitable formula for E(max(a − X, 0)). In the
salvage example, this is the point where we use the formula derived from
the fact that X has a uniform distribution.

Now we want to introduce the formula for the expected surplus with a normal
distribution. We give the derivations in the next section, but at this point we
simply quote the two formulae which are expressed in terms of the density and
CDF of a normal distribution. If X is a normal random variable with mean μ

and standard deviation σ , then

E[max(a − X, 0)] = (a − μ)	μ,σ (a) + σ 2ϕμ,σ (a) (9.2)

and
E[max(X − a, 0)] = (μ − a)(1 − 	μ,σ (a)) + σ 2ϕμ,σ (a), (9.3)

where 	μ,σ (·) is the CDF for X and ϕμ,σ (·) is the density function for X, i.e.

ϕμ,σ (x) = 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)

where we use the notation exp(x) to mean ex .
Now we can return to Example 9.1 and see where the valuation numbers come

from. The expected profit from Company A in $1000s is given by E(max(X, 0))

when X has a N(30, 20) distribution. Setting a = 0 in Equation (9.3) we have

E(max(X, 0)) = 30(1 − 	30,20(0)) + 202ϕ30,20(0)

= 30(1 − 	30,20(0)) + 400
1√

800π
exp

(
−900

800

)
.

The first term can be evaluated from tables of the normal distribution, but it is
simplest just to use a spreadsheet to evaluate the whole formula

= 30*(1-NORMDIST(0,30,20,1)) + 400*NORMDIST(0,30,20,0).

This uses the spreadsheet formula NORMDIST(x, μ, σ , ·) which returns either
the cumulative distribution function 	30,20(x) or the density function ϕ30,20(x)

according to whether the final argument is 1 or 0. Using this formula gives the
value $30 586.14. This can then be repeated with σ = 40 to obtain the profit
figure $35 246.68.
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Another way to think about what is going on in this example is to use the lan-
guage of options. Suppose we are considering the expected benefit from a single
product idea for Company B. We can regard the value of a single product idea
as an option to purchase the resulting product patent, in other words it gives ‘the
right but not the obligation’ (to use the standard phrase) to purchase the product
patent. If, once the idea is fully worked out and becomes an actual product, it
turns out that the product is a loss maker, then we will not choose to exercise our
option: in other words, we will not take the product to market. The key idea here
is that though we pay money up front, there is a point later on when we have
more information, and then we will make a decision whether or not to go ahead.

9.2.1 *Deriving the formula for the surplus with a normal
distribution

Our aim in this section is to derive Equations (9.2) and (9.3). We will do this by
establishing the following two intermediate formulae for integrals involving the
normal density function ϕμ,σ :∫ a

−∞
xϕμ,σ (x)dx = μ	μ,σ (a) − σ 2ϕμ,σ (a), (9.4)

∫ ∞

a

xϕμ,σ (x)dx = μ(1 − 	μ,σ (a)) + σ 2ϕμ,σ (a). (9.5)

As before, we write 	μ,σ for the CDF of a normal random variable with mean
μ and standard deviation σ . Thus, 	μ,σ is the integral of ϕμ,σ and

d	μ,σ (x)/dx = ϕμ,σ (x).

Equation (9.4) can be derived by noting

dϕ(x)/dx =
(

− (x − μ)

σ 2

)
1√

2πσ 2
exp

(
− (x − μ)2

2σ 2

)
= − (x − μ)ϕ(x)

σ 2

and so

ϕ(a) =
∫ a

−∞
[dϕ(x)/dx ]dx =

∫ a

−∞
− (x − μ)ϕ(x)

σ 2
dx

= μ

σ 2
	(a) − 1

σ 2

∫ a

−∞
xϕ(x)dx .

We get Equation (9.4) simply by multiplying through by σ 2 and rearranging this
equation.

Equation (9.5) comes from

μ =
∫ ∞

−∞
xϕ(x)dx =

∫ a

−∞
xϕ(x)dx +

∫ ∞

a

xϕμ,σ (x)dx
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and hence ∫ ∞

a

xϕμ,σ (x)dx = μ −
∫ a

−∞
xϕ(x)dx

and substituting from Equation (9.4) gives the result we are looking for.
Thus, when the random variable X has a N(μ, σ) distribution, we get

E[max(a − X, 0 )] =
∫ a

−∞
(a − x)ϕμ,σ (x)dx

= a

∫ a

−∞
ϕμ,σ (x)dx −

∫ a

−∞
xϕμ,σ (x)dx

= (a − μ)	μ,σ (a) + σ 2ϕμ,σ (a)

as we require.
Similarly, we can derive the other formula:

E[max(X − a, 0 )] =
∫ ∞

a

(x − a)ϕμ,σ (x)dx

=
∫ ∞

a

xϕμ,σ (x)dx − a

∫ ∞

a

ϕμ,σ (x)dx

=
∫ ∞

a

xϕμ,σ (x)dx − a(1 − 	μ,σ (a))

= (μ − a)(1 − 	μ,σ (a)) + σ 2ϕμ,σ (a).

9.3 Combining real options and net present value

Applying a real option approach to an investment decision will usually involve
taking account of a choice that will be made later. Thus, we will have to consider
the money flows over time, and in practice we need to do these calculations using
an appropriate discounting of returns over time. In other words, we need to add
real options into a net present value (NPV) calculation.

We want to compare different choices open to us, and the assumption we
make is that different choices lead to different amounts of money being paid to
us, but that these amounts are paid at different times, so that we are not simply
comparing cash sums but instead are comparing a schedule of cash payments
over time (we can call this a cash flow stream). To make these comparisons we
have to allow for interest rates and doing this leads to the concept of net present
value (often called a discounted cash flow analysis).

The starting point is to split time up into periods: most often these are years,
but we could use months or quarters. We will assume the existence of an interest
rate per period, which we write as r: this is what money would earn if put into
a bank account (or we might use some other risk-free instrument). Putting an
amount x into the bank at the start of a period allows an amount x(1 + r) to be
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withdrawn at the end of the period. This amount becomes x(1 + r)2 after two
periods and so on. To compare two different cash flow streams we can suppose
that cash received is put into the bank and held there until the end of the planning
horizon. The future value of a cash flow stream will be the cash sum that can be
withdrawn at the end of the planning horizon. Whichever cash flow stream has
the highest future value will be preferred.

To apply this method we need to take care to track exactly when the cash
becomes available. For simplicity we will write x0 for the money we are paid at
time 0 (which we can think of as the start of period 1), and x1 for the amount
we receive at the end of period 1 (or the start of period 2) and so on.

Of course, projects don’t just involve receiving money, they also involve
making payments. We can deal with this in the same way provided we have an
ideal bank that does not make money from its depositors and therefore charges
the same interest rate r for loans as it gives for deposits. So, if we borrow an
amount x to make a payment at time 0 we will have to pay back to the bank an
amount x(1 + r) at the end of period 1 and, in general, an amount x(1 + r)k at
the end of period k. Thus, the future value at the end of period n of a cash flow
stream (x0, x1, . . . , xn) is given by

FV = x0(1 + r)n + x1(1 + r)n−1 + · · · + xn−1(1 + r) + xn.

In this expression positive x values correspond to receiving cash and negative
ones correspond to making a payment. This gives us a way to compare two
different cash streams. If two cash flow streams have the same future value, then
we are going to be indifferent between them on this model.

We can also look at a fair value to be put on the cash stream at time 0.
This is the amount of money that we could be paid now which would make us
indifferent between taking the money upfront or receiving the cash flow stream.
In other words, it is the amount paid at time 0 which has the same future value as
the cash flow stream. This is the present value (call it PV ) and on this argument

PV (1 + r)n = x0(1 + r)n + x1(1 + r)n−1 + · · · + xn−1(1 + r) + xn,

which we can rewrite as

PV = x0 + x1

(1 + r)
+ x2

(1 + r)2
+ · · · + xn

(1 + r)n
.

We can see that payments and receipts farther out into the future are discounted
by greater amounts. Money received at time 0 is not discounted at all, money
received at the end of period 1 is discounted by a factor (1 + r), and so on.
Often we call the present value the net present value to emphasize that we are
including both positive and negative cash amounts.

Worked Example 9.3 Two cash flow streams compared

Two investment opportunities are available. Investment A requires $5000 dollars
now and will return $2000 a year for the next three years. Investment B requires
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$6000 to be paid now and will return $1500 at the end of year 1, $2500 at the
end of year 2 and $3200 at the end of year 3. Compare the two NPV amounts
using a discount rate of 5%.

Solution

The cash flow stream for A is, in $1000s, (−5, 2, 2, 2), giving a net present
value of

VA = −5 + 2

1.05
+ 2

(1.05)2
+ 2

(1.05)3
= 0.4465

Doing the same calculation for B gives

VB = −6 + 1.5

1.05
+ 2.5

(1.05)2
+ 3.2

(1.05)3
= 0.4604

So, from this calculation both investments have a positive NPV and investment B

is slightly preferable. �

In evaluating net present values it is often necessary to deal with a situation
in which there is a constant cash flow each period. Of course it is hard to think
of an example where we would truly need to allow for payments being made
forever, but it is, in any case, useful to work out the value of such a cash flow,
which is called a perpetual annuity. The present value of an amount x received
a year from now and with the same amount paid to us each year from then on,
if discounted at rate r , will be the infinite sum

PV =
∞∑

k=1

x

(1 + r)k
= 1

r
x.

Here we have used a standard formula to evaluate the infinite sum. Notice that
this is for payments starting at the end of the first period: if there is a payment
of an amount x made to us at time 0 as well, then the formula becomes

PV = x + x

r
= 1 + r

r
x. (9.6)

Now it is time to make use of these NPV ideas in the context of a real option
involving cash flows over time. We will do this by looking at an example.

Example 9.4 Foxtrot Developments

Foxtrot Developments is considering the purchase of a block of land for develop-
ment. If purchased now (time 0) at the start of year 1, then development approvals
are expected to be completed after two years (end of year 2) and building will
take a full year to complete, so that the property can be let from the beginning
of year 4. Currently the building on the land is let and generates an income of
$50 000 a year. If the building is developed for commercial purposes, Foxtrot
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Table 9.1 Net present value calculation for Foxtrot Developments.

year 0 year 1 year 2 year 3 year 4 terminal value

cash flow 50 50 −2800 200 200 4200
× discount factor 1 1/1.05 1/1.052 1/1.053 1/1.054 1/1.055

= present value 50 47.6 −2539.7 172.8 164.5 3290.8

calculates that it will bring an income of $200 000 a year. However, there is a
question about the building costs in year 3. Building costs typically vary ran-
domly from year to year. Foxtrot estimates that if the building were constructed
now, the costs would be $2 800 000. The question is, how much is the maximum
that Foxtrot should pay for this development assuming a discount rate of 5%?

Suppose first that Foxtrot calculates this number by simply guessing that
building costs stay the same as they are now. Then the income stream it receives
is shown in Table 9.1, where the cash flows in a column ‘year k’ occur at the
end of year k, which is the same as the beginning of year k + 1 (all sums are in
$1000s and we have worked in constant 2010 dollar values – so income streams
are shown as having a constant value even if they could be expected to increase
with inflation).

We have chosen to assume that the lease payments to Foxtrot are paid annually
in advance and the building costs incurred in year 3 have to be paid upfront at
the end of year 2. The terminal value here is the value at the end of year 5 of an
income stream of $200 000. Since the first payment is at the end of year 5, we
can use Equation (9.6) with a discount rate of r = 0.05 to give a present value
at the end of year 5 of (1.05/0.05)x = 21x. Since x = 200 in this case, we get
a terminal value of 4200.

We can add the present values together to get a value for the project of

50 + 47.6 − 2539.7 + 172.8 + 164.5 + 3290.8 = 1186.

This figure needs to be compared with the value if there was no development
of the site. In this case the value would be equivalent to an income stream
of $50 000 a year, which, under these conditions, has an NPV (in $1000s) of
21 × 50 = 1050. The relatively high building costs have canceled out most of
the benefit of the additional rental income.

Now we want to carry out a real options valuation, taking account of the
uncertainty in building costs, together with the option value of the possibility of
not going ahead with the development. We will see that the actual value of the
investment to Foxtrot is higher than the $1186 000 deduced from Table 9.1.

The decision point occurs at the beginning of year 3, when Foxtrot needs
to decide whether or not to build. This decision will be made on the basis of
information on the cost of the building work. Suppose that Foxtrot obtains a bid of
x, then the choice is between continuing with $50 000 a year or paying x this year
and then receiving $200 000 a year. Write A for the choice of building and B for
the choice of not building. The cash flows with A are (50, 50, −x, 200, 200, . . .)
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and the cash flows with B are (50, 50, 50, 50, . . .). We already calculated �B =
1050 and the profit for A can obtained from Table 9.1 with x instead of the cost
2800. We get

�A = 50 + 47.6 − x

1.052
+ 172.8 + 164.5 + 3290.8 = 3725.7 − x

1.052
.

Next we need to work out the breakeven point for x. This is a value of x so
that we are indifferent between the two options – meaning that any higher value
for the building costs would lead to Foxtrot not going ahead. We can do this by
solving

3725.7 − x

1.052
= 1050.

Alternatively, we can look at the position at the beginning of year 3 (valuing
everything at that point). Then the choice is between a present value of 21 × 50 =
1050 and a present value of

−x + 4200/(1.05) = 4000 − x.

These are equal when x = 2950. This tells us how the decision will be made:
Foxtrot will build only if the price is less than $2 950 000.

Now we want to give a single formula for the project value. We have

� = �B + max
(
�A − �B, 0

)
= 1050 + max(2675.7 − x

1.052
, 0)

= 1050 + 1

1.052
max(2950 − x, 0).

It is worth pausing at this point to consider this formula. Once we know
that the breakeven point for going ahead is at x = 2950, then we know that any
higher value of x will just deliver the baseline NPV of 1050. On the other hand,
having a lower value of x is just like getting the baseline NPV of 1050 plus a
payment in year 3 of the saving $2950 − x.

The remaining piece of the jigsaw puzzle is an estimate of the volatility
of building costs. Suppose that Foxtrot believes that building costs are equally
likely to move up or down from the current value of $2.8 million, and the result
is normally distributed with a mean of $2.8 million and a standard deviation of
$200 000. The expected current value of the investment in $1000s is given by

E(�) = 1050 + 1

1.052
E(max(2950 − x, 0)).

Now we can use our earlier formula, Equation (9.2), to show

E(max(2950 − x, 0)) = 150	μ,σ (2950) + 2002ϕμ,σ (2950)

= 176.23.
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So the final valuation is

= 1050 + 1

1.052
176.23 = 1209.827,

or $1 209 827, which is $23 827 more than the previous figure. So, in this
example, recognizing the real option is worth an additional 2% in the value
of the investment. �

9.4 The connection with financial options

In the financial world options come in two varieties: a call option gives the right
(but not the obligation) to purchase an underlying financial instrument at some
point in the future at a given ‘strike’ or ‘exercise’ price. If the date of the exercise
of the option is fixed, it is called a European option; if the option can be exercised
at any point up to the expiry date of the option, it is called an American option.
A put option is similar except that it gives the right (but not the obligation) to
sell the underlying financial instrument at a given price.

For example, on 21 March 2013 Apple stock was trading at $452.73, and an
(American) call option with a strike price of $430 to be exercised by May 17,
2013 was selling for $35.25; a call option at $460 was priced at $18.70; and a put
option at $450 was priced at $22.00. We can review what those numbers mean:
for an outlay of $35.25 an investor gets the chance to buy the stock for $430 on
or before May 17. If the stock’s value on that date is less than $430 the option
is valueless, but if Apple is selling for $430.50 then the option is worth $0.50,
and if the price is higher, the option will be worth even more. A put option is the
reverse: for an outlay of $22 an investor gets the opportunity to sell the stock at
$450. If the stock price is actually above that level on May 17 then the put option
is valueless, but if, for example, the Apple stock price drops to $420 then the put
option will be worth $30.

As well as buying put or call options at a whole lot of different exercise
prices and a number of different expiry dates, there is also the opportunity to sell
these options (sometimes described as ‘writing’ an option). So there are a very
large number of different positions that an investor may take, and investors will
often decide to hold a portfolio of options in a stock in order to tailor the profile
of possible gains or losses that they could experience.

A risk-averse investor may want to purchase a significant shareholding in
Apple shares and, at the same time, buy put options at an exercise price of,
say, $410 to provide a type of insurance against a large drop in the price of the
shares. If the same investor was to sell a call option at a higher exercise price,
say $480, then they would limit their possibility of a large gain, but the money
they receive for the call option could be put towards the cost of buying the put
option. Notice, however, that there is nothing to stop an investor from buying and
selling the options without actually holding any shares. In fact this is the norm.
The option contract may specify physical delivery (of, say, shares in Apple) at



REAL OPTIONS 279

the point of settlement, but often this will not actually take place and instead
the option will be cancelled out by buying a covering position. Some option
contracts (for example, those where the underlying security is an index, like the
Dow Jones) specify cash settlement so that payments are made but no stocks
delivered. Usually it is best, rather than thinking of a call option on Apple shares
in terms of the right to buy Apple stock, to consider the option as a financial
contract involving an agreement for the seller to pay the buyer the difference
between the Apple stock price and the strike price if this is in the right direction.

Figure 9.3 shows how the value of a put or call option depends on the
underlying share price at the time of exercise and the exercise price.

Now we return to the example of the previous section. If we think of building
costs as like a stock price, then a low value is good for Foxtrot – the lower the
building cost, the more valuable the investment will be, but once the building cost
goes above 2.95 million, then it no longer matters what the price is, since the
building will not be worthwhile. So the investment has the characteristics of a put
option with an exercise price of 2.95 million. Suppose we take as a baseline case
the project when the building cost is 2.95 million, which makes Foxtrot indifferent
between going ahead with the building or not. Then any lower cost is equivalent
to Foxtrot receiving the difference in year 3, but any higher cost leaves things as
they are. So this matches the put option where we have the right to sell at the
exercise price, so that when the price falls below the exercise price we can buy at
one price and sell at a higher price, making a profit of the difference.

In the Foxtrot example, we can see the purchase as having two parts: first
we buy the property in its undeveloped state with a certain value and in addition
we buy a put option on the building price index. This is a European option to be
exercised at the beginning of year 3 with an exercise price of 2.95 million for
the building. Obviously if the building price index were on a square meter basis
then the exercise price would be divided by the size of the building.
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Figure 9.3 The payments for put and call options as a function of the share
price.
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A final question relates to the size of the option to be purchased. Here we
need to look at the slope of the put option line in Figure 9.3 and compare it with
the amount of increased profit if the price drops below 2.95 million. In regards to
the additional value of the option at the time of its exercise, every dollar less is a
dollar more earned for Foxtrot. Thus, the equivalence is with a put option for the
full value of the building cost. Notice that in these calculations the complexities
associated with taking a one-year gap in earnings and then replacing an annual
sum of $50 000 with an annual sum of $200 000 are all dealt with within the
single number of 2.95 million, which is the exercise price of the option.

We have given a direct approach to valuing an option when the uncertainty
can be represented as a normal distribution with a known mean and variance at
the date of exercise of the option. However, the most famous approach to valuing
options is the Black–Scholes formula. This gives the price of a European option
in terms of five quantities:

a. the underlying stock price now, S0,

b. the volatility in the stock price, σ,

c. the time till the exercise of the option, T ,

d. the exercise price, K,

e. the discount rate to be applied (risk-free rate of return) r .

When there is no dividend yield, the Black–Scholes formula gives the price
of a European call option (the right to buy the stock at price K at time T ) as

S0	0,1(d+) − e−r T K	0,1(d−)

where

d+ = 1

σ
√

T

[
log

(
S0

K

)
+

(
r + σ 2

2

)
T

]
,

d− = 1

σ
√

T

[
log

(
S0

K

)
+

(
r − σ 2

2

)
T

]
.

The first three variables (S0, σ and T ) will determine the distribution of stock
prices at the exercise date.

One big difference between the Black–Scholes approach and the examples we
have given for real options is that the financial markets have stock prices moving
in a multiplicative way – so, rather than a $100 share price being equally likely
to move to $110 or $90 (say), a movement up by a factor 1.1 would imply
an equally likely movement down by 1/1.1, so that an increase from $100 to
$110 and a decrease from $100 to $90.91 are equally likely. This multiplicative
behavior means that it is the log of the share price that is likely to exhibit a
normal distribution rather than the share price itself.
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However, the Black–Scholes formula is not derived by just looking at an
expected value at the exercise time. Instead, the approach is more sophisticated
and involves constructing a synthetic risk-free instrument that must then match
the risk-free rate of return by a ‘no arbitrage’ argument. This allows the cal-
culation to take place without consideration of a drift over time: the volatility
alone is enough to work things out. The idea is that if the option relates to an
asset that is traded, then the price for the asset now is not independent of the
expected future behavior of the asset price: if the price now gets out of line with
what will happen in the future, then someone will seize the opportunity to buy
or sell and make money from the trade. In other words, we cannot separate out
the drift in asset value and the risk-free rate of return and have these two things
independently chosen.

In more complex situations there is a range of different possible approaches to
valuing a real option: we can use the Black–Scholes formula; we can solve a set
of stochastic differential equations with appropriate boundary conditions; we can
carry out an evaluation using a type of binomial (or trinomial) lattice; or we can
use a Monte Carlo simulation approach. The different possibilities are illustrated
in Figure 9.4. A stochastic differential equations approach arises from assuming
some form of Brownian motion or related stochastic process for the uncertain
prices (or returns). The Black–Scholes formula is a special case available for
traded assets under certain assumptions. But in any case the stochastic differential
equations can be regarded as the limit of a discrete time stochastic process as the
time increments get smaller and smaller. Lattice calculations work directly with
these discrete time stochastic processes and allow extra flexibility in the modeling
by using a discrete state as well. The idea is to calculate the probabilities of
being at different states arranged on a two-dimensional lattice with time on one
dimension and price on the other. Finally, the Monte Carlo approach replaces a
calculation of probabilities in the lattice approach by a simulation. The Monte
Carlo approach is the simplest and may be the most useful for valuing real options
in practice: we will discuss this method in more detail in the next section.
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equation
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Black–Scholes

equation

Discrete time
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process and
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Time steps go
to zero
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Figure 9.4 Different approaches to valuing real options.
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Finally, it is worth commenting on some of the advantages in making a
connection between real options and financial options:

• The business world now contains many people with a familiarity with
options: there is no difficulty in understanding an option approach and it can
be helpful in appreciating the financial structure of a potential investment
(as well as explaining why a greater variation can lead to a more profitable
outcome).

• With a map from the investment into a set of options it becomes possible to
use well-established techniques and software for valuing options. We have
already mentioned the Black–Scholes formula that applies for European
options when the price movements can be modeled as a multiplicative Brow-
nian. But there are other techniques in common use by those who need to
value different types of options. American options are usually valued using
some sort of simulation process. In this example, the option was European
but different types of real options scenarios can give rise to either European or
American options. We will show how the Monte Carlo simulation technique
can be used in a real options framework in the next section.

• If the underlying uncertainty relates to a traded instrument (like a com-
modity price), then the option value may not be something which relies
on calculation – perhaps it can be found simply by looking at the prices
in the marketplace.

• In the event that there is a market for options that are closely related to the
options occurring in the investment, there is also the possibility of buying or
selling options to entirely cancel the uncertainty in relation to the exercise
of the implicit option (thus giving an exact hedge). There are a number
of building price indices available in different parts of the world. To the
best of my knowledge there are no traded options in any of these indices.
However, for the sake of an illustration suppose there were. Then Foxtrot
would have the option of selling a put option of the appropriate quantity,
exercise price and maturity at the same time as buying the property. Doing
this carefully could end up with approximately the same net present value
independently of whether or not the re-building goes ahead. Variations in
net present value would only occur if the building quotes that are obtained
are at very different values than would be expected based on movements
in the building price index.

9.5 Using Monte Carlo simulation to value
real options

Real options are all about taking advantage of the opportunity to delay a decision
until more information is available, and often the decision is based on something
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that varies in a stochastic way. It is natural to use a Monte Carlo approach in
this context and this will give us the flexibility to represent different aspects of
what is going on. An advantage of using this method is that we can easily see
the distribution of possible outcomes, so that we can obtain risk measures like
value at risk from the same calculations. To illustrate this we will work through
a simple example.

Example 9.5 Quickstep Oil

Quickstep Oil is considering the development of a shale oil project with high
costs, where the decision whether or not to go ahead is related to the price of
oil in the future. The first decision is whether Quickstep should buy rights to the
resource. Quickstep will then need to build some substantial additional processing
capacity and infrastructure, but this could be delayed until prices are higher than
their current value. It will take a year to build the plant (with build costs spread
over this period). Once in operation there is a large (fixed) cost per year of oper-
ation together with substantial costs that depend on the volume of oil produced.

We suppose that the price of crude oil is modeled as a stochastic process
involving an underlying price which follows a geometric Brownian motion with
drift upwards, but that in addition, this is subject to fluctuations due to short-
term global supply and demand changes that we model through a mean reverting
process. Writing wt for the log of the oil price, then wt = yt + θt where yt

represents the underlying level and θt is the short-term mean reverting component
(θt has mean zero). We can define the two components through recursions:

yt = yt−1 + α + εt ,

θt = βθt−1 + δt ,

with constants α (giving the drift) and β < 1 (determining how quickly θt is
pulled back to zero). In these equations, εt and δt are random noise.

Whether or not this is a good model for oil prices, it does illustrate the way
that the Monte Carlo methodology is not restricted in the type of price processes
that can be considered. In fact, it is not easy to decide on the right model for
oil prices over a long horizon: prices seemed to be very stable prior to the early
2000s, then they began to steadily climb over the period since around 2002,
reaching more than $130 a barrel in the middle of 2008, before dropping to
below $50 at the end of that year, since when they have steadily climbed again.

We assume that the current oil price is $100 per barrel. We will work with a
six-month time unit. We have set α = 0.04, β = 0.75 and εt is normal with mean
zero and standard deviation 0.07, and δt is normal with mean zero and standard
deviation 0.09. Figure 9.5 shows a sample of 10 price realizations over a 20-year
period given these parameters.

The cost of securing the site properly and decommissioning some existing
plant (works that need to be carried out immediately on purchase) is $25 million.
The cost of building the plant (which will take a year) is $400 million. Once in
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Figure 9.5 A sample of 10 price series for the Quickstep example.

operation the plant can produce 2 million barrels per year. The fixed operating
cost per year is $80 million and the (variable) production costs are $70 per barrel.
Quickstep uses a discount rate for capital projects of 7% (when dollar amounts
are all converted to constant 2013 dollar values). The reserves are sufficient for
the plant to run for 20 years and we will ignore what happens at the end of this
period (so we do not allow for the residual value of production equipment, nor
for the cost of cleaning up the site).

Given this arrangement, the spreadsheet BRMch9-Quickstep.xlsx gives the
Monte Carlo simulation. This is a very unwieldy spreadsheet since it includes
1000 simulations, each one over a period of 40 years. Each simulation involves
four rows: the two time series yt and θt used to generate the prices, the prices
themselves and the cash flow line which involves some messy formulae that have
the effect of ensuring that the production plant starts to be built when the price
reaches some specified price threshold and then switches off 20 years later.

Because of the delay in building the plant, the earliest that the plant can begin
operation is 18 months after purchase. The average price at that point will be
above the figure of $110 per barrel that makes the whole thing economic (during
18 months the log price will increase by 3a = 0.12, implying an increase in the
oil price by a factor of exp(0.12) = 1.1275). A starting point is to use the Monte
Carlo simulation to calculate the expected net present value of the project given
that there is no delay in building the plant – this can be achieved by setting the
price threshold to something lower than 100. The result will depend on the specific
random numbers that happen to come up in the simulation, and even with 1000
scenarios there is quite a bit of variation (which we can see by pressing ‘F9’ to
get another ‘draw’ of the random numbers). The overall average net present value
is about $3190 million, but a set of 1000 individual scenarios can have an average
value anywhere in a range from around $3110 million to around $3250 million.

The next step is to try to take account of the flexibility that is available
to Quickstep: if the price of oil happens to drop at the start, then it makes
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Figure 9.6 Improved NPV risk profile for Quickstep given option to delay.

sense to wait before committing to spend $400 million on building the plant.
A conservative approach would be to wait till the price gets above the breakeven
level of $110 before starting. This will not be a guarantee against a later price
drop, but because there is usually an upward drift in the price process, the chance
of losing money is certainly reduced. When using this approach, the Monte Carlo
simulation gives an overall average net present value of about $3550 million, but
a set of 1000 individual scenarios can have an average value ranging from around
$3430 million to $3620 million. The average improvement in NPV arising from
the flexibility to delay starting construction is about $365 million in this example.
Figure 9.6 shows a comparison between the cumulative distribution of net present
value, obtained from two sets of simulations – one with no delay and one with
a price threshold of 110. Because these are based on data from multiple runs of
the simulation, the CDFs are not smooth.

The threshold of $110 dollars is a little arbitrary here and one could carry
out simulations with different thresholds to see what works best. Notice that, in
any case, we are not going to be able to calculate the kind of clear-cut breakeven
point which we have seen in the other examples of this chapter. Also, notice
that this example differs from previous ones because the exercise of the option
(to start) can be made at different time points, depending on when the price gets
above the threshold value. �

9.6 Some potential problems with the use
of real options

When real options were first discussed there was considerable excitement about
their application as a strategic tool in evaluating investments and other manage-
ment decisions. It would be fair to say that the use of real options theory to
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produce ‘hard numbers’ for valuations, or investment decisions, has been less
common than many were predicting.

Bowman and Moskowitz (2001) discuss some of the reasons for the limited
use of real options theory by managers. The most straightforward way to use real
options is simply to make use of an option valuation tool like the Black–Scholes
formula. However, this involves many assumptions, for example that the under-
lying stock price follows a lognormal distribution. This is often inappropriate for
a strategic option. Broadly speaking, when the uncertainty relates to prices and
dollar values then movements up or down tend to be multiplicative, leading to
lognormal distributions in the limit (through an application of the central limit
theorem), but when uncertainty relates to something else (for example, sales of
a new short-lifecycle product) then this is unlikely to be well modeled using a
lognormal distribution.

A second problem with the use of an off-the-shelf option valuation tool is that
there is an assumption of tradeable assets where the possibility of arbitrage has
a big effect on how prices behave. Thus, for example, with an exchange-traded
option, stock prices are easily observable and an option holder can readily buy
or sell shares at this price to realize the profit from (or to cut the loss on) an
option position. In contrast, for real options, the analogous stock price is often
very hard to ascertain and it may also be hard to trade at the price implied.

There are also problems with the time to expiration. For strategic real options,
there is often no set time to expiration. For example, a research project could
be extended for a longer period of time, and an investment in a new product
distribution system indefinitely retains the option to add additional products.

So there are a number of problems with applying a methodology lifted straight
from financial option analysis, and it may be better to think of building a more
advanced and customized option valuation model. But this brings with it some
dangers. Creating such a model is a technical challenge that will take it out of
the hands of the managers who will rely on its results. Moreover, the complexity
of the options approach can also make it difficult to find errors in the analysis,
or to spot overly ambitious assumptions used by optimistic project champions.

This list of difficulties explains why we have given quite a lot of attention to
relatively unsophisticated approaches like Monte Carlo simulation. It is important
also to recognize that much of the value of an options analysis will be at the
stage of project design. By bearing in mind the timing of decisions, particularly
those of an options nature (e.g. the decision to go ahead with, or to defer some
expenditure) we may well be able to create additional value. In understanding
these situations, a very accurate numerical model may not be necessary, since
a small model inaccuracy in these situations is unlikely to change the decision
we take. As Bowman and Moskowitz (2001) point out: ‘Whereas small devia-
tions are worth fortunes in financial markets, they are fairly inconsequential in
product markets.’
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Notes

Our approach to real options has focused on the fundamentals of how to use
flexibility and the calculations that are needed in specific examples to evaluate
projects where there is flexibility. Because we think there are problems with its
application in a real options environment, we have given rather little attention
to the Black–Scholes equation, which has sometimes formed the basis for these
valuations (see, for example, Luehrman, 1998). The approach we take is broadly
in line with the recommendations in Copeland and Tufano (2004) and also with
the approach proposed in the book on flexibility in design by de Neufville and
Scholtes (2011).

We have only given a very brief introduction to this area and there is much
more to be said. The paper by Smith and McCardle (1999) gives a careful and
helpful treatment of some of the issues that need to be dealt with in practice. There
are many books dealing with real options, ranging from the original discussion
of Dixit and Pindyck (1994) to more recent books by Mun (2005) and Guthrie
(2009).
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Exercises
9.1 Toothpaste dispenser

A company is launching a new type of toothpaste dispenser in the UK. It
will test market the product with only local advertising in South Wales,
where it has test marketed other products before. The dispenser sells for a
wholesale price of £2.50 and initially the cost of manufacturing is £2.40,
giving a profit per unit of 10 pence for the manufacturer. On average,
the sales in the UK turn out to be 100 times as large as the sales in the
test market. Because it is an unusual product, sales are difficult to predict.
Test market sales are expected to be between 500 and 2500 per month,
and are thought to be equally likely to take any value in this range. Local
advertising costs for the month will be £2000. After one month a decision
will be taken as to whether to ramp up to full-scale production, or whether
to drop the product. To ramp up production will involve expenditure of
£20 000 in installing a new production line, but this will bring the per unit
production costs down to £1.50, giving a margin of £1. National advertising
costs will be, on average, £5000 a month. The company has already spent
£20 000 on bringing the product to a point where it can be launched. Use a
real options analysis to calculate the expected profit from this product over
a two-year period (ignoring any discounting of future profits).

9.2 Pop concerts

Two investments are available in pop concerts. One of them involves pay-
ing an upfront sum of $10 000 and then receiving 10% of the net ticket
sales, which are uncertain but are expected to be $120 000 with a standard
deviation of $20 000. The other venture is more speculative and will fund
a series of three shows. The expected ticket sales are $230 000 with a stan-
dard deviation of $80 000. The fixed cost to put on the shows is $190 000.
19 investors have all been asked to put in $10 000 to cover these fixed costs.
There is a chance that the shows make less than $171 000, in which case
it has been agreed that each investor will receive back $9000 and any final
shortfall will be met by the producers of the show. If the shows achieve
net ticket sales of more than $171 000, then each of the 19 investors will
receive $9000 dollars back plus one twentieth of the profit over and above
$171 000 (so at the point where the ticket sales are $191 000, the investors
will receive all of their $10 000 stake back). The remaining one twentieth
share will be paid to the producers. Calculate the expected value of both
investments. Which investment is preferred?

9.3 Gold extraction

Charleston Mining Company is considering buying a licence allowing the
extraction of gold from mine tailings for a period of three years. Extrac-
tion is an expensive process and only worthwhile if the gold price is
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high enough. The operation costs an average of $1000 to extract 1 oz of
gold. It is expected that the operation will produce a total of 500 oz per
month. The price of gold is volatile and is currently $1200 per oz. If the
price drops below $1000 per oz the operation will simply be stopped until
the price rises above that threshold.

(a) If the price of gold in January next year is estimated to have a normal
distribution with mean $1200 and standard deviation $200, what is the
expected revenue from the operation for January?

(b) What options purchase would match the cash flows for the operation in
January next year? (If this was repeated for each month of the licence
it would give a route to valuing the licence without needing to estimate
volatility in gold prices.)

9.4 SambaPharm

A company has the option to buy a small firm called SambaPharm whose
main asset is a patent on a pharmaceutical product currently undergoing
clinical testing. Testing will take a further three years at a cost of $60 000
a year. The long-term profitability of the drug will depend on the results of
these clinical trials. The best existing treatments are effective for 40% of
patients. The final sales of the product are related to the number of patients
for whom it is effective. It will just break even if it is equally as effective
as the best current drug. But for every additional 10% of patients for which
it is effective, the net annual income (after production costs) will increase
by $50 000. The best guess is that the effectiveness is equally likely to
be at any value between 0 and 80%. Hence, with a probability of 0.5 the
drug will be found to be less effective than the best existing treatment and
will not be put into production. Once in production the drug will have
an estimated five-year life before the next variety of this pharmaceutical
family appears and profits are reduced to zero (or close to zero). But for
a period of five years, starting in year 4 immediately after clinical testing,
the profitability of the drug is expected to be stable. Taking account of the
implied real option, what is the value of the company holding this patent
if future profits are discounted at a rate of 8% per year?

9.5 Trade shows

To develop a new product, Tango Electronics must spend $12 million in
2014 and $15 million in 2015. If the firm is the first on the market with this
product it will earn $60 million in 2016. If the firm is not first in the market
it will do no more than cover its costs. The firm believes it has a 50% chance
of being first on the market. From 2017 onwards there will be a number of
other firms that enter this market and though Tango may well continue with
production, it expects to do no more than cover its costs. The firm’s cost of
capital is 12% and you should use this figure to discount future earnings.
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(a) Should the firm begin developing the product?

(b) Now suppose that there will be a trade show on 1 January 2015, when
all the potential market entrants will show their products. After the
trade show Tango will make a new estimate of its probability of being
first on the market. Assume that at this point it can correctly state
its probability of being first in the market, and further assume that this
probability estimate is equally likely to take any value between 0 and 1.
Should the firm begin developing the product?

9.6 Option prices imply distribution parameters

Suppose that a European call option on Apple stock with a strike price
of $430 sells for $35.25; and a call option with a strike price of $460
sells for $18.70. Assume that at the exercise date the price of Apple stock
is a random variable with a normal distribution (rather than a lognormal
distribution). Use a spreadsheet and the formula for E(max(X − a, 0)) to
estimate the mean and standard deviation of the normal distribution. Use
this normal distribution to find the price of a put option with a strike price
of $450.
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Credit risk

Credit ratings track a firm in hard times
Liz Claiborne was an American fashion designer who was born in Brussels in
1929. In 1976 she was one of the cofounders of Liz Claiborne Inc., which made it
into the Fortune 500 in 1986. She was the first woman to be the CEO of a Fortune
500 company, and had a big influence on the way that fashion is sold, insisting
that the clothes in her collection be grouped together in the store, rather than Liz
Claiborne skirts being put together with other skirts and in a separate place to
shirts. Claiborne retired from active management in 1989 and died in 2007.

Liz Claiborne Inc. was generating 2 billion dollars in annual sales in the
early 1990s and expanded through acquisitions through the 1990s and early
2000s, buying Lucky Brand Jeans, Mexx and Juicy Couture. But then they hit
problems. Perhaps there were too many acquisitions, but there were also diffi-
culties managing relationships with the big retailers Macey’s and J. C. Penney.
William McComb took over as CEO in 2006, and in early 2007 the stock price
peaked at $46.64, but there were clear problems to deal with: an ageing set of
customers and a headline brand that was in decline. Things then got much worse,
with losses starting in the last quarter of 2007 and continuing right through to
2012. The stock price dropped dramatically, going lower than $2 in 2009 at a
point when the company was laying off workers and closing distribution centers.
In 2011 the company made a substantial loss (of $172 million) but the share
price continued its slow recovery and in 2013 (as this is being written) the share
price is around $19.

Meanwhile the company has, for a long time, had a credit rating from
Standard & Poor’s. Looking at the history since 2000 we can see that Liz
Claiborne Inc. was rated at investment grade (BBB in S&P terminology) until
3 June 2008, when it was cut to BB, which is below investment level (com-
monly called junk). At the time, S&P cited significantly higher debt levels and
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a challenging retail environment for this regrading. Then, on 17 August 2009
Liz Claiborne’s rating was cut again to B, and in March 2010 it was cut to CC.
This rating means that S&P regards the company as ‘highly vulnerable’ and is
an enormous red flag. The final indignity occurred on 11 April 2011 when the
company was judged to have made a selective default. In some senses when the
S&P team chose to regard a particular tender offer refinancing as ‘distressed’
and equivalent to a selective default, this was a technical decision, and a long
way from a standard default on debt. In fact, the very next day the company
was re-rated back to a B. Since then the company (which has now rebranded as
Fifth & Pacific Companies) is in much better shape though challenges remain;
some brands have been sold to pay back debt and the company has concentrated
on its three main brands of Kate Spade, Juicy Couture and Lucky Brand.

For a company like Liz Claiborne that needs to borrow money, credit ratings
are essential. The aim of the credit rating agencies is to give an indication of the
chances that the company will be unable to meet repayments that are due. But
to what extent does a credit rating give information that is different to the stock
market valuation? And how reliable are the ratings?

10.1 Introduction to credit risk

In this chapter we will give an introduction to credit risk, including a discussion
of consumer credit (a topic likely to be relevant to managers working outside
the financial sector). Of course we may well have an interest in credit risk as
it affects us as individuals, since our own circumstances and credit history will
influence our ability to obtain credit and the interest rates that we pay.

As we discussed in Chapter 1, credit risk refers to the possibility that a legally
enforceable contract may become worthless (or at least substantially reduced in
value) because the counterparty defaults and goes out of business. In the case
of an individual, an outstanding debt may be uncollectable even without the
individual concerned becoming bankrupt, and this too would be classified as
credit risk.

Two aspects of credit risk will drive our discussion in this chapter. First, credit
risk has a yes–no characteristic, with either a default or not. Detailed analysis
of the tails of distributions and a range of possible outcomes is no longer very
relevant. Second, credit risk is about what happens to another party and so we
have less information than for our own businesses. We need to work harder to get
the maximum value out of whatever information is available to us. We will want
to look at what happens over time (is a company moving to a less stable situation?)
and we will want to make use of any indirect pointers that are available (is the fact
that this individual has taken out four new credit cards over the last six months a
bad sign?).

The Basel II framework is designed for banks. In this context, credit risk will
relate to a large number of different kinds of loans – both loans to businesses and
loans to individuals. A large component of the lending to individuals is through
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mortgages. In this case the value of the property itself provides some security
for the bank, but there can still be a significant credit risk if property prices fall
sufficiently far that the outstanding debt becomes larger than the house value (as
happened in the US with sub-prime mortgages).

From a corporate perspective, credit risk is related to credit ratings that are
given by one of three major credit rating agencies: Standard & Poor’s, Moody’s,
and Fitch. When entering into a contract with, and especially when lending money
to, a firm that has a lower rating and hence a higher risk of default, it will be
appropriate to pause and think carefully. At the very least it will be wise to ask
for a higher rate of interest on loans to firms where there is a higher perceived
risk. By limiting the contractual arrangements with firms that have low ratings,
managers can limit the credit risk they take on.

Each credit rating agency has its own terminology and codes, but the codes
for Standard & Poor’s are as follows:

Investment grade

AAA: The best quality borrowers, reliable and stable (many of them
governments).

AA: Very strong capacity to meet financial commitments, a slightly higher
risk than AAA.

A: Strong capacity to meet financial commitments, but could be suscep-
tible to bad economic conditions.

BBB: Medium-class borrowers, with an adequate capacity to meet com-
mitments. Satisfactory at the moment.

Non-Investment grade

BB: Not vulnerable in the near term but facing major ongoing
uncertainties.

B: Currently has the capacity to meet commitments, but vulnerable to
adverse conditions.

CCC: Currently vulnerable and dependent on favorable business and eco-
nomic conditions.

CC: Currently highly vulnerable, very speculative bonds.
C: Virtually bankrupt, but payments of financial commitments are

continued.

Moody’s system includes codes Aaa, Aa, A, Baa etc., but is broadly similar.
The credit ratings agencies failed spectacularly at the start of the global financial
crisis, where they continued to rate certain CDOs (collateralized debt obligations)
at the highest level shortly before they were announced to be ‘toxic’. However,
given that none of the agencies did conspicuously better than the others, and
given the important role that the agencies play in the financial system, they have
continued much as before.
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10.2 Using credit scores for credit risk

Credit scores are drawn up with the express intention of giving guidance on the
risk of a company defaulting on debt. The precise methodology that is used will
vary: when assessing the risk associated with government bonds the agency will
take a different approach than when making a corporate rating. For corporate
risk the process is roughly as follows. A company that wishes to borrow money
by issuing bonds will ask one of the ratings agencies to give a rating, and it will
pay for this service. In fact, the two largest agencies, Standard & Poor’s and
Moody’s will rate all large corporate bonds issued in the U.S., whether asked
to or not. The issuer may, in any case, wish to pay the fee and embark on a
more serious engagement with the rating agency to avoid a situation where the
rating takes place without complete knowledge of the facts. In fact, institutional
investors will prefer to have the bond issue rated by more than one agency.

The rating agency will consider two things: business risk and financial risk.
Assessing business risk involves considering trading conditions, the outlook for
the industry and the quality of the management team. Financial risk is assessed
in a more quantitative way using accounting data looking at profitability, debt
levels, and the financial strength and flexibility of the firm. Following a visit to
the company by the analysts involved, a committee will meet to consider the
analysts’ recommendations and vote on the final grade assigned. The company is
informed of the recommendation and the commentary on it that will be published
and then given a final chance to provide additional information (or to ask for
company confidential information to be removed from the commentary) before
the rating is confirmed and published. If a company is issuing bonds with different
characteristics then these are rated with reference to the overall company rating;
though senior debt, with priority rights for payment, is likely to be given a notch
higher rating than subsidiary debt. In the case of highly structured products like
CDOs, where debt from various sources has been combined and sliced up, then
the process is more complex, since the overall level of risk involves looking at the
constituent parts of the structured product.

Once a rating has been given, the process moves to a surveillance mode where
a separate team within the ratings agency is tasked with keeping an eye on the
developments within the company in order that there can be a timely change in
the rating (either up or down) if circumstances warrant it. The actual ratings are
issued with plus or minus signs attached for all the grades between AA and CCC.
Moreover, Standard & Poor’s give what they describe as an outlook statement
indicating the direction of change if they anticipate a change as likely in the
next one to two years (with a status of ‘developing’ if a change is likely but it
could be in either direction). If the company enters a phase where the agency
believes there is a significant chance of change in a shorter time frame of three
months or so, then the company is placed on ‘credit watch’. We can see how this
played out in the Liz Claiborne example in the timeline shown in Figure 10.1.
Notice that there were announcements in May 2007, September 2007 and May
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2007 2008 2009 2010 2011

BBB

BBB−

BB+

BB

BB−

B+

B

B−

CCC

CC

C

SD

2 May 2007
BBB/Watch

Negative

10 September 2007
BBB/Negative

14 May 2008
BBB/Watch
Negative

3 June 2008
BB+/Stable

27 October 2008
BB+/Watch Negative

23 December 2008
BB−/Negative

17 August 2009
B/Negative

23 March 2010
B−/Developing

11 March 2011
CC/Watch Negative

11 April 2011
SD rating

12 April 2011
B−/Negative

2006

Figure 10.1 Timeline of announcements by Standard & Poor’s of credit ratings
for Liz Claiborne Inc.

2008 that reflected the possibility of a drop in rating as problems piled up for
the company, but the first downgrade did not occur till June 2008.

Credit rating agencies perform a vital task in the market for capital. They
have expertise in the task of evaluating risk and are independent of individual
companies. The additional information that they provide to investors and market
participants will ultimately mean that companies can raise money at lower costs,
since the ratings provide an efficient way for investors to reduce their uncertainty.
At the same time, ratings agencies have an important function for regulators who
want to limit the risk that financial companies can take and can use ratings within
the rules they set up.

The probability of a default obviously varies with overall macro-economic
factors: the global credit crunch of 2008–2009 led to many more defaults occur-
ring. The ratings agencies do not set out to give ratings aligned with particular
probabilities of default, since this would require wholesale re-ratings as the eco-
nomic climate changes from year to year. Instead, ratings agencies are concerned
with relative probabilities: an investment grade company is less likely to default
than one with a grade of BB, which in turn is less likely to default than a
company with grade B and so on. Figure 10.2 shows how the percentage of
defaults per year varies over time for the three non-investment grades given by
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Figure 10.2 The percentage of companies defaulting during the year for three
different (non-investment) grades.

Standard & Poor’s. As we would expect, the default rates from C grades are
higher than from B grades, which in turn are higher than from BB grades. But
it is also interesting to see how much variation there is. In years like 2005 and
1996, even a C grade bond had less than a 10% chance of default, but in 2001
and 2009, entering the year with a C grade would mean more than a 45% chance
of default before the end of the year.

10.2.1 A Markov chain analysis of defaults

In order to understand the risks associated with a particular grade we must specify
the time horizon involved. There is very little chance that an AA-rated company
will default this year, but in five years’ time that same company may have slipped
to a BB rating and with that the chance of default will have increased substan-
tially. Standard & Poor’s publish a report that includes the probabilities of making
the various transitions that are possible. Table 10.1 shows the average transition

Table 10.1 Global corporate average transition rates for the period
1981–2011 (%).

AAA AA A BBB BB B CCC/C D NR

AAA 87.2 8.7 0.5 0.1 0.1 0 0.1 0 3.4
AA 0.6 86.3 8.3 0.5 0.1 0.1 0 0 4.1
A 0 1.9 87.3 5.4 0.4 0.2 0 0.1 4.7
BBB 0 0 3.6 84.9 3.9 0.6 0.2 0.2 6.4
BB 0 0 0.2 5.2 75.9 7.2 0.8 0.9 9.8
B 0 0 0.1 0.2 5.6 73.4 4.4 4.5 11.7
CCC/C 0 0 0.2 0.3 0.8 13.7 43.9 26.8 14.4
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Figure 10.3 Annual probabilities of transitions between non-investment grades.
Transitions with probability less than 0.01 are not shown, and transitions with
probability less than 0.02 are shown dashed.

rates over a 30-year period. Thus, for example, on average 8.7% of firms rated
AAA drop to AA during the course of a year. The table includes a column NR for
not rated. Sometimes a firm will drop out of the ratings shortly before defaulting,
but equally it may simply be a decision by the company that a rating is no longer
necessary. The rating agency will track companies that drop out mid year and
then default during that year, so that the figures on annual defaults are correct.

It is confusing to draw a diagram showing all the transitions that are
possible – in Figure 10.3 we have shown just the annual transitions between the
‘non-investment’ grades. We have converted percentages to probabilities and
the transitions with a probability of less than 0.01 have been omitted and those
with a probability of less than 0.02 are shown dashed.

Given information on the chances of having a default or making a transition in
one year, what does this imply about the chance of default over a three- or five-year
time horizon? One simple way to approach this problem is to analyze a Markov
chain model of the process. The Markov assumption is that changes in rating only
depend on the current score. A company that has been AA for 15 years is no more
or less likely to move to A than a company that only achieved AA status last year.
And a company that, in successive years, has dropped from A to BBB to BB is no
more or less likely to move down again to B than a company that has moved in the
opposite direction, having been rated B last year but just moved up to BB.

One of the basic facts of a Markov chain is that the nth power of the transition
matrix gives the probability of making a transition in n steps. To show why this
happens we will analyze the probability that a company starting at state B will
have a default over a two-year period using the information in Figure 10.3.
(To simplify the calculations we use these approximate figures rather than the
more accurate numbers given in Table 10.1). We will write p(X, Y ) for the
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transition probability from some state X to a state Y . Then we can look at all the
possible two-step paths from B to D. We can move there in one year; or we can
stay at B in the first year and move to D in the second year; or we can move to C
in the first year and move from C to D in the following year, and so on. We get

Pr(B to D in 2 years)

= p(B,D) + p(B,B)p(B,D) + p(B,C)p(C,D)

+p(B,BB)p(BB,D) (10.1)

= 0.04 + 0.73 × 0.04 + 0.04 × 0.27 + 0.06 × 0.01 = 0.08.

Since we are interested in the probability of a default at some time in the next
two years, once we reach D the calculations can finish. This makes it sensible to
define p(D,D) = 1 and then we can see that the formula has the form

Pr(x to y in 2 steps) =
∑

i

p(x, i)p(i, y), (10.2)

where we sum over i being any of the states we can get to from x. In Equation
(10.1) we have left out the terms like p(B, NR) where the probability on the
second step is zero. Suppose we take P to be the matrix shown in Table 10.1
augmented by two rows for D and NR, where in each case the probability of
staying at the same state is 100%. Thus, P is a square matrix and it will be
convenient to divide each element by 100 to express the transition probabilities
directly rather than as percentages. Then we can write the element in the ith row
and j th column as pij : it is the probability of making a jump from state i to
state j . The rules of matrix multiplication tell us that the element in the ith row
and j th column of P × P = P 2 is given by

∑
kpikpkj which exactly matches

Equation (10.2). Hence, P 2 simply gives all the two-step transition probabilities,
and P 3 gives the three-step transition probabilities and so on.

Since Standard & Poor’s also report on the three-year transitions, we can
compare our default rate predictions using the Markov chain model with actual
behavior. The full Markov chain comparisons are given in the spreadsheet
BRMch10-Markov.xlsx with the array function MMULT used to carry out
the matrix product. Figure 10.4 compares the actual and predicted three- and
five-year default rates. We can see from this that the Markov model does not
do a great job of predicting these rates. For example, starting at a BB grade,
the Markov assumption predicts three- and five-year rates of 3.5% and 4.9%
respectively, while the actual figures reported by Standard & Poor’s are much
higher, at 5.0% and 9.2% respectively.

The Markov chain model is a good way to think about credit rating movements,
but is a big simplification of the real behavior. We can identify a number of possible
reasons for the poor three- and five-year predictions from the Markov model.

1. Grouping together of states. Actual ratings are given with plus and minus
signs, giving more states in total. When a Markov chain has states grouped
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Figure 10.4 Actual (solid line) and predicted (dashed line) default rates from
different starting grades over three and five years.

together, it no longer behaves as a Markov chain. For example, if companies
typically move slowly through ratings from, say, BB+ to BB to BB− then
knowing that the company has been in the grouping BB for some time may
increase the chance of it being at the lower level BB−, thus increasing the
chance of a jump to level B and breaking the Markov assumption.

2. Different types of companies behave differently. Suppose that different types
of companies exist and they follow different Markov chains. This doesn’t
necessarily mean that one type of company is more risky than another (at the
same rating); perhaps it is characteristic of companies in the financial sector
to have a higher risk of immediate default and that is balanced by companies
in the non-financial sector having a higher risk of moving to the next notch
down. In any case, the existence of different types of company can mess up
the Markov assumption. Exercise 10.2 gives an example of this.

3. Bad years cluster together. We have already observed that default rates (and
more generally downgrades) vary substantially from year to year. This means
that a more appropriate model might be one in which the probability of any
transition depends on the year in question. We should then replace equations
like Equation (10.2) with

Pr(x at time n to y at time n + 2) =
∑

i

pn(x, i)pn+1(i, y)

where the subscript represents the time period. If the overall probability of
a downgrade in one year is positively correlated with the probability of a
downgrade in the next, then this can increase the overall probability of two
successive downgrades when compared with the case when probabilities in
one year are independent of those in the next year.
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4. Subjective decisions by the ratings agency. There has been much discussion
of the extent to which subjective factors may play a role in credit ratings.
Clearly the agencies themselves claim that their ratings are objective, but
questions have often been raised as to whether initial ratings may be too
generous, since there is an unconscious desire by the agency to win the
business of new debt issuers. Also there may be a reluctance to issue a
downgrade too quickly, with the agency waiting until it is certain that it is
justified. This might be particularly the case when the issuer’s debt conditions
are tied to the grading; then a downgrade from BBB to BB could trigger a
requirement for faster debt repayment, and this, in turn, could cause the
company to get into further difficulties. In the other direction, agencies may
be deliberately conservative in their ratings, holding back on an upgrade that
would be appropriate. This type of behavior by the agencies could explain a
misleading forecast from the Markov assumption.

We can at least partially address the first two issues by using Standard &
Poor’s data broken down into more exact ratings and distinguishing between
non-financial, insurance and financial companies. The second spreadsheet in the
workbook BRMch10-Markov.xlsx compares the results for three-year default
rates arising from a Markov model restricted to non-financial firms and the actu-
ally observed rates. The results are shown in Figure 10.5 and it seems that
the Markov predictions are a little more accurate, but still involve substantial
errors; for example, the Markov model predicts a three-year default rate start-
ing at BB as 2.8% whereas the actual observed figure is 4.7%. Notice that we
have not included in this analysis any recognition of the outlook statement that
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accompanies a rating. One explanation of the relatively higher rates of default
occurring (than are predicted by a Markov chain analysis) is that companies
where ratings have just been cut are more likely to be given a negative outlook
(in other words, they have a greater risk of default than other companies at the
same rating grade).

10.3 Consumer credit

In the remainder of this chapter we will focus on consumer credit. Here the rating
is made for an individual rather than a company. The first large-scale applications
of automated ways of assessing credit were driven by the credit card explosion
that happened in the 1960s and 70s. This led to lenders looking at credit histories
and credit bureaus were set up with the aim of pooling data from different lenders
so that a consumer who failed to pay off a store card, for example, would find that
information was made available to other potential lenders (perhaps a car finance
company).

Different credit bureaus (sometimes called credit reference agencies) operate
in different countries. Credit bureaus collect together credit information from
various sources and can provide a credit report on an individual when requested.
Around the world, millions of these are issued every day (in the US alone more
than two million a day) and the process is simply an automated interrogation of
a database. The data held by credit bureaus vary from country to country and
are affected by data protection laws. In the US, a huge amount of information is
kept, while in some European countries it is limited to mainly publicly available
information (for example, court records of bankruptcy). Usually a debt remains
on the record only until it is repaid, or until a specified time limit has passed
(perhaps 10 years). In many countries, consumers have the right to receive a free
copy of their own credit record.

One widely used technique is to look at applicants for loans and try to judge
on the basis of their characteristics how likely they are to default. The measure
of default that is traditionally used is the likelihood that an applicant will go
90 days overdue on their payments within the next 12 months. However, it does
not matter so much what this measure is: in the end a ranking of individuals
occurs and the least attractive (that is, the most likely to default) are refused
credit or funneled into a different type of credit arrangement.

The credit scoring method is straightforward. A lender is interested in whether
or not to extend credit to an individual and in order to make this decision a number
of variables are checked (such as the number of credit cards held, and whether the
individual rents or owns their home). These variables are used to produce a ‘score’
and this is used to predict the likelihood that the individual defaults on the loan.
Scoring occurs through a scorecard which simply adds together score components
for various attributes that the individual possesses. For example, the fact that the
credit applicant has lived at the same address for more than five years might be worth
15 points. The development of this scorecard is based on the credit histories of many
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thousands of other people. If you are interested in how your own score might come
out, you can look at the website: www.myfico.com/ficocreditscoreestimator. The
US credit score is commonly called a FICO score. In the UK, an equivalent website
to let you estimate a credit score is www.checkmyfile.com (and the equivalent in
Australia is checkmyfile.com.au). The exact scoring methods are not revealed, but
some information is available (for example, 35% of the FICO score is related to
payment history).

The objective of the lender is simply to make this decision as accurately as
possible. Any information which can legally be used and which has a bearing on
the creditworthiness of an individual will come into play. What is illegal? It is
not permitted to discriminate on the basis of race, gender, sexuality or religion,
so these questions cannot be asked. However, it is fine to consider an individual’s
postcode when carrying out the check. The rules on age and marital status are
more complex and vary in different countries. In the US, card issuers cannot
deny credit or offer less favorable terms on the basis of marital status.

10.3.1 Probability, odds and log odds

For a particular type of individual we can use previous data to predict the prob-
ability that they are good, i.e. that they will repay the loan. Write pi for this
probability for an individual of type i. An alternative is to look at the odds of
being good as opposed to bad. This might be familiar from a betting context: if
we say that the odds of a horse winning are 2 to 1, then we mean that the horse
is twice as likely to win as not. The odds oi are simply the probability of being
good divided by the probability of being bad, i.e.

oi = pi

1 − pi

.

The probability of being good varies between 0 and 1. But the odds of being
good can vary from 0 to any positive value. It can also be useful to look at the
log odds, defined as

log(oi) = log

(
pi

1 − pi

)
.

These are natural logs taken to base e. Log odds can take any value, both positive
and negative. Notice that both odds and log odds are increasing functions of the
probability.

Suppose that we are considering extending credit to an individual. By doing
this we will make a profit, perhaps from the interest that we charge or perhaps
because we make a profit on a product that will not be sold unless we offer credit.
There is, however, the possibility of a loss, usually much larger than the profit,
that will occur if the individual does not repay the debt. Suppose we write L for
the loss and R for the profit. Then the expected value to us of the loan is

piR − (1 − pi)L.

http://www.myfico.com/ficocreditscoreestimator
http://www.checkmyfile.com
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This is positive (meaning we should go ahead with the loan) if

pi >
L

L + R
,

or equivalently if oi > (L/R), a condition that can also be written in terms of
the log odds:

log(oi) > log

(
L

R

)
.

Based on all the data that we have, we can estimate the odds for an arbitrarily
chosen individual. We define the population odds as

oPop = Pr(G)

Pr(B)
.

These are the odds of an individual being good if they are chosen at random from
the whole population. We estimate the probabilities Pr(G) and Pr(B) simply by
looking at the proportions of good and bad in the entire population for which we
have data.

We now begin the discussion of an example that we will continue to use in
illustrating our discussion through the rest of this chapter.

Example 10.1 Bank of Sydney

Suppose that the Bank of Sydney has 1200 customers who have been loaned
money on a short-term basis. Most have kept up with loan repayments: these
are called good or G. Some have not kept up repayments, and anyone who falls
a total of more than 90 days behind in repayments is classified as bad or B.
Besides data on age at time of loan agreement, classified as under 30, 30–39,
40–49 and over 50, Bank of Sydney keeps data on whether the individuals are
owners, renters or some other classification in respect to their home and also
whether they have a credit card or not. The data for this example are all given
in the spreadsheet BRMch10-BankofSydney.xlsx.

The Bank of Sydney data can be presented in various ways. Table 10.2 shows
the number of good and bad individuals in each of the 24 different sub-categories
obtained from ‘credit card status (2)’×‘housing status (3)’×‘age bracket (4)’. In
these data there are a total of 1070 goods and 130 bads. Thus, for the Bank of
Sydney the population odds are oPop = 1070/130 = 8.23.

If we look at a single category of individual we find that the odds vary from
this. For example, given that the individual is aged under 30, the first column in
the Bank of Sydney data shows that the odds are

59 + 47 + 63 + 19 + 18 + 12

5 + 10 + 6 + 2 + 9 + 2
= 218

34
= 6.412.

So, borrowers in this category are much more likely to be bad than the population
as a whole. We can also carry out calculations of the odds for each of the sub-
categories in Table 10.2. This gives the numbers shown in Table 10.3. �
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Table 10.2 Bank of Sydney data: number of good and bad individuals.

Under 30 30–39 40–49 Over 50

Owner with credit card G = 59 G = 111 G = 118 G = 232
B = 5 B = 9 B = 5 B = 11

Renter with credit card G = 47 G = 16 G = 22 G = 64
B = 10 B = 5 B = 4 B = 18

Other with credit card G = 63 G = 21 G = 16 G = 91
B = 6 B = 2 B = 3 B = 5

Owner without credit card G = 19 G = 13 G = 44 G = 31
B = 2 B = 3 B = 4 B = 2

Renter without credit card G = 18 G = 14 G = 5 G = 10
B = 9 B = 10 B = 1 B = 3

Other without credit card G = 12 G = 26 G = 6 G = 12
B = 2 B = 8 B = 2 B = 1

Table 10.3 Bank of Sydney data: odds.

Under 30 30–39 40–49 Over 50

Owner with credit card 11.80 12.33 23.60 21.09
Renter with credit card 4.70 3.20 5.50 3.56
Other with credit card 10.50 10.50 5.33 18.20
Owner without credit card 9.50 4.33 11.00 15.50
Renter without credit card 2.00 1.40 5.00 3.33
Other without credit card 6.00 3.25 3.00 12.00

Now we want to focus in on a particular type of individual, say an individual
of category A. The odds for category A are given by

oA = Pr(G | A)

Pr(B | A)
.

These odds can be estimated by looking at the data, but now considering only
the category A individuals: we simply look at the proportions of good and bad
for this subset of the entire population.

The odds for a category A are linked to the odds for the population as a whole
through something called the information odds, IA, for a category A, which are
defined as

IA = Pr(A | G)

Pr(A | B)
.

Because of Bayes’ rule: Pr(G | A) = Pr(A | G) Pr(G)/ Pr(A) and similarly for
Pr(B | A). Then we can rewrite the odds for category A as

oA = Pr(G | A)

Pr(B | A)
= Pr(A | G)

Pr(A | B)
× Pr(G)

Pr(B)
= IA × oPop.
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Here we have canceled the two terms Pr(A) to get the formula. So, we have
shown that multiplying the information odds for a category by the population
odds gives the odds for the category. The information odds provide a kind of
modifier for the population odds to get to the odds in a particular category.

The Weight of Evidence (WoE) for a category is just the natural logarithm of
the information odds for that category:

wA = log(IA) = log

(
Pr(A | G)

Pr(A | B)

)
,

It is natural to make this definition because it enables us to find the log odds
for a category simply by adding the weight of evidence and the log odds for the
population:

log(oA) = log(IA × oPop) = log(IA) + log(oPop)

= wA + log(oPop).

Example 10.1 (continued) Bank of Sydney

We will continue to look at the individuals who are under 30, corresponding to
the first column in Table 10.2. As we have already seen, the odds for this category
are 218/34 = 6.412. We can also calculate the information odds for this category.
Note that out of 1070 good individuals, 218 are in this age bracket, and out of 130
bad individuals, 34 are in this age bracket. In other words

Pr(age < 30 | G) = 218/1070,

Pr(age < 30 | B) = 34/130.

Hence, the information odds for ‘age under 30’ are

Iage<30 = 218/1070

34/130
= 218

34
× 130

1070
= 0.779.

We can calculate the weight of evidence for ‘age under 30’ as

wage<30 = log

(
218

34
× 130

1070

)
= log(0.779) = −0.2497.

The rules for logs imply that the log odds for this category are

log

(
218

34

)
= log

(
218

34
× 130

1070

)
+ log

(
1070

130

)
= wage<30 + log(oPop)

= −0.2497 + 2.1079 = 1.8582. �

Now suppose we are interested in the odds for an individual in a small category
formed by the intersection of two or more other categories. Rather than just looking
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at the previous experience we have had with exactly matching individuals, it makes
sense to try to make deductions from what we have observed in the larger categories
that this person belongs to. It turns out that if the behavior under different attributes
is independent, then the weights of evidence can be added together to find the log
odds for an individual with a number of different attributes.

To see why this is true, consider an individual with two attributes A1 and A2.
We wish to calculate the odds that this individual is good, i.e. we want to find
Pr(G | A1, A2)/ Pr(B | A1, A2). We know from Bayes’ rule that,

Pr(G | A1, A2) = Pr(A1, A2 | G)
Pr(G)

Pr(A1, A2)
.

If A1 and A2 are independent (so that information about one attribute does not
tell us anything about the other) then we have Pr(A1, A2 | B) = Pr(A1 | B) ×
Pr(A2 | B) and Pr(A1, A2 | G) = Pr(A1 | G) × Pr(A2 | G). If this holds then the
odds for an individual in the category of A1 and A2 are

Pr(G | A1, A2)

Pr(B | A1, A2)
= Pr(A1, A2 | G)

Pr(A1, A2 | B)

Pr(G)

Pr(B)

= Pr(A1 | G)

Pr(A1 | B)
× Pr(A2 | G)

Pr(A2 | B)
× Pr(G)

Pr(B)
.

The same expression can be extended to any number of terms. So the log odds
given A1, A2, . . . , An are

log

(
Pr(G | A1, A2, . . . , An)

Pr(B | A1, A2, . . . , An)

)
= w1 + w2 + . . . + wn + log(oPop)

where oPop represents the population odds and wi is the weight of evidence for
the characteristic Ai .

This brings us to the idea of a scorecard. If we know the weights of evidence
for each major category then, for an individual who sits in the intersection of
a number of different categories, we can just add up the relevant wj numbers,
together with a constant term given by the log of population odds, to get a pre-
diction for the log odds. This is called a naive Bayes’ scorecard. More generally,
a scorecard has a very simple structure: it associates every category with a score
and then adds the scores for an individual together to get a final score. Now we
return to our Bank of Sydney example.

Example 10.1 (continued) Bank of Sydney

We take the weights of evidence for the Bank of Sydney data. We have already
seen that wage<30 = −0.2497. We can calculate the other weights of evidence in
the same way. For example, there are 196 goods amongst the renters, and 60
bads, so

wrenter = log

(
196

60
× 130

1070

)
= log(0.3969) = −0.9241.
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Table 10.4 Scorecard derived from
weight of evidence.

Attribute Score

Age <30 −25
Age 30–39 −42
Age 40–49 30
Age ≥50 29
Owns home 62
Rents home −92
Other 3
Has credit card 23
No credit card −61
Constant 211

We also have a constant term given by log(oPop) = 2.1079. These w values give
us a scorecard, but it is convenient to first multiply all the numbers by 100 and
round to the nearest integer. This gives the scorecard of Table 10.4. Using this
we see that, for example, the score for an individual who is a homeowner, with
a credit card and is age 42 is 30 + 62 + 23 + 211 = 326, whereas a 28-year-old
who lives at home and has no credit card has a score −25 + 3 − 61 + 211 = 128.

We can check how effective this is by using the scorecard to predict the odds
for various categories of individual. The actual log odds for the data are given
in Table 10.5.

In the example of the 42-year-old homeowner with a credit card, the scorecard
gives 326, so the predicted log odds are 3.26. Hence, the odds of this individual
being good are predicted to be

e3.26 = 26.05.

In this category there are 118 good individuals and 5 bad, so the actual odds are
23.6 to 1 (with corresponding log odds of 3.16). In the same way, we can look
at the odds of a 28-year-old who lives at home and has no credit card being a
‘good’. The score is 128, corresponding to log odds of 1.28, which means that
the odds are predicted to be

e1.28 = 3.60.

Table 10.5 Bank of Sydney data: log odds.

Under 30 30–39 40–49 Over 50

Owner with credit card 2.47 2.51 3.16 3.05
Renter with credit card 1.55 1.16 1.70 1.27
Other with credit card 2.35 2.35 1.67 2.90
Owner without credit card 2.25 1.47 2.40 2.74
Renter without credit card 0.69 0.34 1.61 1.20
Other without credit card 1.79 1.18 1.10 2.48
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The actual results in this category are 12 good individuals and 2 bad individuals,
giving odds of 6 to 1. Thus, the prediction in the first case is reasonable, but in
the second case the prediction is less satisfactory. However, even in the second
case things are not so bad, since if just one of the existing individuals was to be
recategorized as bad, then this would turn the odds to 4 to 1, which is close to
the estimation of 3.60. �

10.4 Logistic regression

A better way to predict probabilities for individuals is to use logistic regression,
which is the subject of this section. This is the most common way to construct a
scorecard. But we start with the fundamental question of how we should predict
probabilities. Ordinary regression predicts a dependent variable y on the basis of
the observation of a set of explanatory variables xj , j = 1, 2, . . . , m. The linear
form of this prediction can be written

y = β0 +
∑

βixi

= β · x

where we use a boldface letter to indicate a vector: x = (x0, x1, . . . , xm), β =
(β0, β1, . . . , βm) and we set x0 = 1. We then estimate the βs by looking at
previous data to find a good fit. We cannot use the same approach when dealing
with probabilities, since we want to ensure that the predictions y are all between
0 and 1.

The logistic approach is to use a nonlinear transformation to get from xi

values to a probability prediction p. We set

p = eβ·x

1 + eβ·x . (10.3)

If β · x gets very large, then p approaches 1, if β · x = 0 then p = 1/2; and if
β · x is a large negative number, then p approaches 0. Figure 10.6 shows what
this function looks like (and there are other functions we might choose which
would produce similar results).

One advantage of the logistic function is that it fits beautifully with our
previous definition of log odds. We have:

1 − p = 1 − eβ·x

1 + eβ·x = 1

1 + eβ·x .

So

odds = p

1 − p
= eβ·x

1 + eβ·x
1 + eβ·x

1
= eβ·x,

and thus

loge

(
p

1 − p

)
= loge(odds) = loge(e

β·x) = β · x. (10.4)
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Figure 10.6 A graph of the logistic function y = ex/(1 + ex).

Thus, if the actual probabilities of good or bad are given by a logistic model
derived from an underlying linear function β · x, then the log odds will be a
linear function of the observations xi .

How can we estimate the values β0, β1, . . . , βm? In an ordinary regression
we try to minimize the error term looking at the prediction against what actually
happened. But for our logistic model, the prediction is a probability and what
actually happened is either a good result or a bad result (which we can think of
as either a 1 or a 0). There are two options: a simple approach using ordinary
least squares regression or a more sophisticated logistic regression method. We
deal with the simpler approach first.

The least squares regression works directly with Equation (10.4). Since the
log odds are a linear combination of the explanatory variables, we can estimate
the coefficients directly using an ordinary least squares regression based on the
log odds for each category. In practice, this method works pretty well and has
the advantage that it can be used without access to a data analysis tool that
includes a logistic regression component (for example, we can use this ordinary
least squares regression approach by applying the ‘Data Analysis’ add-in that
comes with Excel).

We need to say more about the form of the explanatory variables x. In prac-
tice, the most important case is when the explanatory variables are categorical.
Sometimes this follows from the nature of the data (for example, does an individ-
ual rent their home or not?). But even when this is not true, most credit scoring
creates categorical data by assigning individuals to categories. The most obvious
example is a variable like age: this is most naturally treated as a continuous
variable, but credit scoring would normally determine certain age brackets and
assign individuals to just one of these. The same holds true for income levels.

In this situation we use dummy variables for each category. So, for example,
if we are using age brackets: (A) less than 30, (B) 30 to 39, (C) 40 to 49, (D)



310 BUSINESS RISK MANAGEMENT

50 or more, then an individual of age 33 has xageA = 0, xageB = 1, xageC = 0,
xageD = 0. Since xageA = 1 − xageB − xageC − xageD, these categorical variables
automatically give rise to a problem of collinearity in the regression; in other
words, there is no extra information in the last category. The best approach here
is simply to carry out the regression without one of the categories appearing.
So, if we leave out xageA in this scheme, then an individual of age 25 is simply
recorded as having xageB = xageC = xageD = 0. This is, of course, the natural
thing to do when a variable has just two options: e.g. for the variable ‘in full-
time education or not’ we have a single dummy variable for full-time education,
rather than having two – one for full-time education and one for not being in
full-time education.

With such a categorization of the explanatory variables it is normal to have
a number of individuals in each of the possible cells, i.e. for each possible
combination of categories. The set of individuals in a particular cell, some good,
some bad, enables us to calculate the log odds value for the combination of
dummy variables corresponding to that cell. These log odds values then become
the dependent variable in our regression analysis.

There are two points to be borne in mind, however, in using this approach:

• The method gives equal weight to all categories no matter how many indi-
viduals are involved. In fact, we should be much more worried by errors
in the log odds predictions when there are a large number of individuals in
the category than when there are only a handful. (The more complex logis-
tic regression automatically correctly weights the evidence from categories
containing different numbers of individuals.)

• The least squares regression approach will fail if the log odds cannot
be defined for a category because there are no ‘bad’ individuals in that
category. In this case the log odds become infinite. The recommended pro-
cedure is to add 0.5 to both good and bad numbers to get an adjusted log
odds value. So, for example, if a certain combination has only 10 indi-
viduals, all of them ‘good’, we might replace an infinite log odds value
with log(10.5/0.5) = 3.0445 (Note that this is still substantially higher
than the log odds value if 9 out of 10 individuals were ‘good’, which is
log(9/1) = 2.1972).

Now we turn to the more sophisticated (and recommended) approach of logis-
tic regression. The idea here is to use a maximum likelihood estimator for the
coefficients β. In other words, we look at the data on individual good or bad
results and assume that the probability of getting a good is given by Equation
(10.3). Then we want to choose the values of β which maximize the probability
of our set of observations (which are all 0 or 1).

To see how to work this out, suppose that there are two individuals who we
think of as providing two observations, y1 and y2. Suppose that for a particular
set of β values we calculate the probability that y1 = 1 (good) and find it to
be p1. In the same way, we calculate the probability that y2 = 1 and find this to
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be p2. Then we can calculate from this the probability of observing the particular
y1 and y2 values we have observed. This is called a likelihood associated with
the β values. For example, the likelihood of observing y1 = 1 and y2 = 0 is
given by p1(1 − p2). If the x values associated with the first observation are the
vector x(1) and for the second observation the vector x(2) we have

p1(1 − p2) = eβ·x(1)

1 + eβ·x(1)

(
1 − eβ·x(2)

1 + eβ·x(2)

)
. (10.5)

The next stage is to make a maximum likelihood estimate of the vector β

by choosing the value which maximizes this expression. The idea is that the
observations we have made make some values of β unlikely. For example, if
a particular β value led to p1 near zero and p2 near 1, then the observations
y1 = 1 and y2 = 0 would have a very low chance of occurring (reflected in the
low value of p1(1 − p2)) and this is evidence against this choice of β. Maximum
likelihood turns this logic around and searches for the β values which give the
highest likelihood for the observations made.

In general we will have n observations not just two, but the principle is the
same: there will be a long product expression involving a single value of β

and different values of the category variables x. A logistic regression involves
maximizing this expression over all possible choices of β. We will give more
details about this in the next section. But in any case a logistic regression requires
the use of special purpose software. The logistic regression carried out for the
Bank of Sydney example below has been obtained using the free software Gretl.

The beauty of logistic regression is that it works well when there are many
more types of characteristic than the three in the Bank of Sydney example (credit
card, housing type, age bracket). If we measure individuals through their answers
to, say, 10 different questions, then even if each question is a simple yes/no we
will still end up with more than 1000 cells. This means that there will be many
cells with no individual and many more cells where there are no ‘bad’ individuals.
But we still need a way to evaluate the credit risk from a new customer who
may belong to one of the cells where we don’t have many previous customers
to compare to.

Example 10.1 (continued) Bank of Sydney

For the Bank of Sydney example, a logistic regression considers the 1200 indi-
vidual observations and estimates the β values associated with the six variables
xown =‘owner’, xrent =‘renter’, xcc =‘credit card holder’, xageB =‘age 30–39’,
xageC =‘age 40–49’ and xageD = ‘age over 50’. The three other variables ‘other’,
‘no credit card’ and ‘age under 30’ are linear combinations of other explanatory
variables and do not add anything to the regression, so they are left out.

Thus, for example, the individuals in the top left-hand cell of Table 10.2
have xown = 1, xrent = 0, xcc = 1, xageB = 0, xageC = 0 and xageD = 0. Thus, for
each of these individuals the scalar product β · x = βown + βcc which are also
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Table 10.6 Output from logistic regression.

Coefficient Std. error

const 1.72256 0.287793
credit card 0.628808 0.211980
owner 0.493278 0.261849
renter −0.983520 0.249570
age 30 to 39 −0.369558 0.271993
age 40 to 49 0.134251 0.319367
age 50 or more 0.204348 0.259001

the log odds. The predicted probability of being good for these 64 individuals is

p = eβown+βcc

1 + eβown+βcc
.

This is the value that we try to match with the actual values through the right
choice of the β values.

The data given in the spreadsheet BRMch10-BankofSydney.xlsx (sheet 2)
have been used to run a logistic regression (using the free software Gretl) and
part of the output is shown in Table 10.6.

Thus, we have the values of the β variables as follows:

βcc = 0.629
βown = 0.493
βrent = −0.984

βageB = −0.370
βageC = 0.134
βageD = 0.204

β0 = 1.723

where β0 is the constant term. Hence, we obtain the following maximum likeli-
hood estimator:

loge

(
p

1 − p

)
= 1.723 + 0.629xcc + 0.493xown − 0.984xrent

−0.370xageB + 0.134xageC + 0.204xageD. (10.6)

We can use these values to produce a log odds table for each of the 24 categories.
This is shown in Table 10.7, and can be compared with the data given in Table 10.5.

We can also compare these results with what happens if we run an ordinary
least squares regression (the ‘quick and dirty’ approach). If this is done with the
Bank of Sydney data, we get

loge

(
p

1 − p

)
= 1.650 + 0.575xcc + 0.527xown

−0.788xrent − 0.349xageB + 0.090xageC + 0.424xageD.
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Table 10.7 Bank of Sydney data: predicted log odds from logistic regression.

Under 30 30–39 40–49 Over 50

Owner with credit card 2.84 2.48 2.98 3.05
Renter with credit card 1.37 1.00 1.50 1.57
Other with credit card 2.35 1.98 2.49 2.56
Owner without credit card 2.22 1.85 2.35 2.42
Renter without credit card 0.74 0.37 0.87 0.94
Other without credit card 1.72 1.35 1.86 1.93

For sub-categories in which there are a large number of individuals, we expect
to see that the log odds predictions from a logistic regression are better than from
an ordinary least squares approach. This is true for the Bank of Sydney data, where
the log odds prediction from the logistic regression gives 3.05 for the most common
type of customer (over 50, home owner with a credit card), and this is exactly right.
The alternative least squares regression gives a log odds prediction of

1.650 + 0.575 + 0.527 + 0.424 = 3.18

which is a little high. �

10.4.1 *More details on logistic regression

We have seen how with two observations y1 and y2, and with a probability that
yi = 1 given by pi , the probability that y1 = 1 and y2 = 0 is p1(1 − p2). We can
generalize this expression to any combination of values for y1 and y2 by noting
that the probability is given by

(p1)
y1(1 − p1)

(1−y1)(p2)
y2(1 − p2)

(1−y2).

More generally, we can take n observations, yi , i = 1, 2, . . . , n (with all yi taking
the value 1 or 0) and build up a big product having 2n terms:

n∏
i=1

(pi)
yi (1 − pi)

(1−yi ). (10.7)

This is the probability of observing y1, y2, . . . yn if the probabilities are really
p1, p2, . . . pn. If the pi come from a logistic model then

pi = eβ·x(i)

1 + eβ·x(i)
, (10.8)

where we have written x(i) = (xi
0, x

i
1, . . . , xi

m) for the independent variables asso-
ciated with the ith observation. So the problem of finding a maximum likelihood
estimator from a given set of data (y1, y2, . . . yn) is equivalent to finding a set
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of β values that maximizes the product expression (10.7) where the pi are given
by Equation (10.8).

But if we want to maximize an expression, we can also maximize the log of that
expression. So, rather than maximize the likelihood, we maximize the log likelihood

L = log

(
n∏

i=1

(pi)
yi (1 − pi)

(1−yi )

)

=
n∑

i=1

yi log(pi) +
n∑

i=1

(1 − yi) log(1 − pi).

Since the pi values are given by logistic functions, this can be simplified
considerably:

L =
n∑

i=1

yi log

(
eβ·xi

1 + eβ·xi

)
+

n∑
i=1

(1 − yi) log

(
1

1 + eβ·xi

)

=
n∑

i=1

yi(log(eβ·xi

) − log(1 + eβ·xi

)) −
n∑

i=1

(1 − yi) log(1 + eβ·xi

)

=
n∑

i=1

yi log(eβ·xi

) −
n∑

i=1

log(1 + eβ·xi

)

=
n∑

i=1

yi(β · xi ) −
n∑

i=1

log(1 + eβ·xi

).

To maximize L we take derivatives with respect to βj . Now, since

d

dz
log(f (z)) = f ′(z)

f (z)
and

d

dz
eza+b = aeza+b,

we get

∂L

∂βj

=
n∑

i=1

yix
i
j −

n∑
i=1

xi
j e

β·xi

1 + eβ·xi
, j = 1, 2, . . . , m,

∂L

∂β0
=

n∑
i=1

yi −
n∑

i=1

eβ·xi

1 + eβ·xi
.

To find the maximum, we set all these derivatives to zero and solve the simultaneous
equations

n∑
i=1

xi
j

(
yi − eβ·xi

1 + eβ·xi

)
= 0, j = 1, 2, . . . , m,

n∑
i=1

(
yi − eβ·xi

1 + eβ·xi

)
= 0.
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These are m + 1 nonlinear equations to be solved for the m + 1 values
β0, β1, . . . , βm. It is not difficult to solve the equations using some iterative method
(like Newton–Raphson). It is this solution that is provided by software carrying
out logistic regression: the estimate of the β values is the one that maximizes the
chance of observing the pattern of 1s and 0s that are observed.

10.4.2 Building a scorecard

A scorecard gives a way of calculating a score for an individual, but the scores
themselves are not so critical, provided we can translate back from them to a
probability of default. We have already met a scorecard that translates directly
into (log odds)×100 in Table 10.4. For logistic regression we have

log(odds) = β · x = β0 + β1x1 + . . . + βnxn.

Since the xi values are either 0 or 1, the β values are exactly what we require
for a scorecard. So we simply take the regression estimates β, multiply by 100
and round to get the scorecard.

Notice that a scorecard will include each category even if the logistic regres-
sion produces estimates only for variables not implied by other variables. Thus,
for example, in the naive Bayes’ scorecard of Table 10.4 there is a score of 23
for ‘has credit card’ and −61 for ‘no credit card’. The logistic regression would
produce a score for just one of these variables and the other would be zero.

It is clear that adding the same number to each of a mutually exclusive and
exhaustive set of variables is the same as adding a number to the constant term;
each individual, no matter how they are classified, gets the same additional score.
This means that we can carry out manipulations that will leave all the scores the
same if we take off the same amount from the constant term as we add to each
of a set of exclusive variables. Usually this is done in order to avoid any negative
numbers in the scorecard.

Notice that for the standard (log odds)×100 scorecard, an increment of 100 in
the score means an increment of 1 in the log odds and this corresponds to multiplying
the odds by the fixed amount e = 2.7183. We can look at this another way and
say that multiplying the odds by 2 will increase the score by 100 log(2) = 69.
Sometimes we want to construct a scorecard with the property that a particular
base score corresponds to given odds and each doubling of the odds corresponds
to an increment in the score by a particular amount. To do this we need to define
the score as a linear transformation of the log odds. If the score for a category i is
given by

si = a + b log(oi)

for constants a and b, then b can be determined by the fact that doubling the odds
corresponds to increasing the score by b log 2 and a can be determined from the
required base score. We see how this works out in the Bank of Sydney example
below.
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Example 10.1 (continued) Bank of Sydney

Use the logistic regression results to construct a scorecard for the Bank of Sydney
data where all the numbers are positive and a score of 200 corresponds to odds
of 10 to 1 and each increment of 50 in the score corresponds to multiplying the
odds by a factor of 2.

Solution

We begin with the logistic regression results of Equation (10.6). The β values
can be multiplied by 100 and rounded to give the basic (log odds)×100 scorecard
labeled as Scorecard 1 in Table 10.8. Next we make adjustments to Scorecard 1 in
order to obtain all positive numbers. We take a fixed amount off the constant term
and add it to each category in a mutually exclusive and exhaustive set. We have
made the minimum change to achieve this: we take 135 away from the constant
term and add 98 to each of owner, renter and other, and in addition we add 37
to each age category. This gives Scorecard 2. Notice that any individual will get
precisely the same score from Scorecard 2 as was obtained from Scorecard 1.

The final step is to use a linear transformation in order to achieve a score of
200 for odds of 10 to 1, and an increment of 50 when the odds are doubled. The
new scorecard will have s = a + b log(odds) instead of s = 100 log(odds). The
requirement is that

a + b log(10) = 200

b log(2) = 50.

Thus b = 50/0.693 = 72.135. And hence

a = 200 − 72.135 log(10) = 33.903.

To translate the (log odds)×100 scorecard, we need to first multiply all the
terms (including the constant) by 72.135/100 and then add 33.9 to the constant

Table 10.8 Adjusting a scorecard to have desirable characteristics.

Attribute Scorecard 1 Scorecard 2 Scorecard 3

Age <30 0 37 87
Age 30–39 −37 0 61
Age 40–49 13 50 97
Age ≥50 20 57 102
Owns home 49 147 106
Rents home −98 0 0
Other 0 98 71
Has credit card 63 63 45
No credit card 0 0 0
Constant 172 37 0



CREDIT RISK 317

term and round. But to make the scorecard easier to apply, we take the additional
step of adding the constant term, which is now 37 × 0.721 + 33.9 = 60.59, to
each of the age categories so that we can drop the constant term. After rounding,
this gives Scorecard 3 as shown in Table 10.8. �

10.4.3 Other scoring applications

Having done all this work to determine credit scoring procedures, it is worth
pointing out that exactly the same techniques can be used in another common
management problem, which is the targeting of promotions. This is a kind of
reverse to the credit scoring problem. We no longer want to identify the people
who are likely to be bad in order to avoid giving them credit. Instead, we want
to pick out the people who are more likely to respond positively to a promotion
in order to justify the costs of a mailout targeted to them.

The idea of modeling the behavior in terms of a scorecard built up from differ-
ent categories is still valuable. Both the credit scoring problem and the promotion
targeting problem share the characteristic that quite a small proportion of the sam-
ple are in the category of responding (or in the category of a bad debt). From an
estimation point of view, the consequence is that a small (absolute) number of
individuals in any particular combination of categories will end up responding.
This is the reason for using an indirect logistic regression procedure rather than
simply taking the odds we observe in a single cell in the table and using this
to predict the log odds for this cell. Because of the small numbers of respond-
ing individuals in some cells, just treating each cell on its own is a poor way to
proceed. We are likely to get a better result by using the logistic regression model.

In order to avoid a negative log odds score, we need to deal with odds that
are greater than 1. So, in this promotion targeting problem, we define the odds as:

probability of not responding

probability of responding
.

With this change, everything goes through as before, except that in applying
the scorecard we select individuals to mail with low values of the score
corresponding to a relatively high probability of responding. Exercise 10.5 is an
example of this kind of problem.

Notes

In the discussion of credit ratings agencies I have made extensive use of the
information provided by Standard & Poor’s. Table 10.1 is taken from Table 21
in Standard & Poor’s 2011 Annual Global Corporate Default Study And Rating
Transitions (publication date: 21 March 2012). Figure 10.2 graphs the changes
over time shown in Table 3 of that report. Moreover, the spreadsheet BRMch10-
Markov.xlsx contains material taken from Tables 21, 59, 61, 62 and 64 of the
S&P 2011 Annual Global Corporate Default Study. This information is used to
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compare the predictions from a Markov assumption and the actual behavior seen,
which forms the basis for Figures 10.4 and 10.5. The timeline for Liz Claiborne
given in Figure 10.1 is taken from information given in Table 8 in the Standard
& Poor’s 2011 Default Synopses (publication date: 21 March 2012).

There is much to be said about the way that accounting data can be used
to infer credit risk. This work goes back to a well-known model proposed by
Altman in 1968 and a review of this literature is given by Altman and Saunders
(1998). The use of techniques like logistic regression in this context provides
a link between the corporate and consumer level credit risk. Another strand in
the assessment of corporate risk relies on seeing the value of the firm evolv-
ing according to a stochastic process. Then, information on the volatility of the
process and the upward drift in value can be translated into a statement about
probability of default in a period of T years. This approach was originally pro-
posed by Merton (1974) and since then has been adapted by KMV Corporation,
acquired by Moody’s in 2002. For more on this approach, see Chapter 16 in
Culp (2001) or the paper by Bharath and Shumway (2008).

The data provided for the Bank of Sydney example are based, in part, on a
similar set of simplified hypothetical data given by Thomas (2009) (he calls it
Bank of Southampton data). The book by Thomas gives a much more detailed
treatment of the way that consumer credit models operate and is a good place to
start if you want to go deeper into this material. In the discussion we mention
the problems of carrying out an ordinary least squares regression on log odds
if categories have zero bad individuals. It may be overly optimistic to say that
logistic regression avoids this problem. There is quite a literature on the way that
the logistic regression maximum likelihood estimates are biased for small samples
(see, for example, Firth, 1993 and the references there). One simple approach to
reducing this bias is to add 0.5 to both the ‘good’ and ‘bad’ cells. The software Gretl
that we have used for logistic regression is available at http://gretl.sourceforge.net.

References

Altman, E. and Saunders, A. (1998) Credit risk measurement: developments over the last
20 years. Journal of Banking and Finance, 21, 1721–1742.

Bharath, S. and Shumway, T. (2008) Forecasting default with the Merton distance to
default model. Review of Financial Studies , 21, 1339–1369.

Culp, C. (2001) The Risk Management Process: Business strategy and tactics . John Wiley
& Sons.

Firth, D. (1993) Bias reduction of maximum likelihood estimates. Biometrika , 80, 27–38.

Merton, R. (1974) On the pricing of corporate debt: The risk structure of interest rates.
Journal of Finance, 29, 449–470.

Thomas, L. (2009) Consumer Credit Models . Oxford University Press, Oxford.

http://gretl.sourceforge.net


CREDIT RISK 319

Exercises

10.1 Two-year default or NR probability

Using the information in Figure 10.3 (rather than the detailed figures in
Table 10.1), calculate the probability that a company rated as CCC/C will
have either ceased to be rated or defaulted within a two-year period.

10.2 Markov groupings

Verify the claim that grouping states together can destroy the Markov
assumption. Suppose that there are four states A, B, C, D. Once either
A or D is reached, there is no change possible. From B there is a 10%
chance of moving to A and a 20% chance of moving to C, and otherwise
there is no change. Similarly, from C there is a 10% chance of moving to
B and a 20% chance of moving to D, and otherwise there is no change.
New companies arrive at B in such a way that we expect the same number
of companies in B as there are companies in C. Calculate the three-year
probability of reaching D knowing that we are equally likely to start in
either B or C, and compare this with the estimate made if we group
together the states B and C.

10.3 Markov types

Verify the claim that different types of firms, each following a Markov
chain, can produce non-Markov behavior in aggregate. Suppose that there
are four states A, B, C, D. Once either A or D is reached, there is no
change possible. Type X firms behave as in Exercise 10.2, i.e. starting
from B, after one year there is a 10% chance of moving to A and a 20%
chance of moving to C. Similarly, from C there is a 10% chance of moving
to B and a 20% chance of moving to D. Type Y companies are the same
except that they change state twice as often, i.e. from B there is a 20%
chance of moving to A and a 40% chance of moving to C. Similarly, from
C there is a 20% chance of moving to B and a 40% chance of moving
to D. New companies arrive at B in such a way that we expect to have N

companies of type X in B, N companies of type Y in B, N companies of
type X in C, and N companies of type Y in C. Calculate the probability
of moving to D in two steps from B for a Markov chain which matches
the observed annual transitions and compare this with the true probability.

10.4 Octophone

Octophone is a mobile phone company that keeps data on its customers
and rates them according to whether they fail to make scheduled contract
payments or not in the first year of the contract term. The data available on
application are age bracket, whether they have a credit card and whether
they have had a mobile phone contract before (either with Octophone or
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another company). The results from 2000 of last year’s applicants living
in a single city are given in Table 10.9. In this table there are 1850 goods
and 150 bads. Calculate the weights of evidence for the different attributes
involved and use these to construct a (naive Bayes’) scorecard.

Table 10.9 Octophone data: Goods and bad.

age 18–21 age 22–29 age 30–45 46 and over

Previous phone, credit card G = 150 G = 256 G = 312 G = 250
B = 6 B = 8 B = 9 B = 7

Previous phone, no credit
card

G = 114 G = 123 G = 92 G = 91
B = 10 B = 13 B = 9 B = 12

No previous phone, credit
card

G = 99 G = 182 G = 59 G = 45
B = 12 B = 6 B = 11 B = 8

No previous phone, no
credit card

G = 22 G = 26 G = 13 G = 16
B = 9 B = 14 B = 7 B = 9

10.5 Octophone with contract costs

Octophone sells a variety of contracts but they can be classified on a
dollars per month basis into three categories: low cost – less than $30;
medium cost – between $30 and $40; and high cost – more than $40.

(a) Of the 2000 in the sample of Exercise 10.4 there are a total of 800 low-
cost contracts, 600 medium-cost contracts and 600 high-cost contracts.
The 150 bads are distributed with 40 on low-cost contracts, 40 on
medium-cost contracts and 70 on high-cost contracts. Calculate the
new weights of evidence including this additional information.

(b) A logistic regression is carried out on these data and produces the
coefficients shown in Table 10.10. Here, the attributes age 45+; no
credit card; no previous phone; and high-cost contract have all been
omitted because of collinearity. Calculate a scorecard using these data.

Table 10.10 Logistic regression for Octophone.

Coefficient

const 0.194171
age18_21 0.135372
age22_29 0.401779
age30_45 0.00415712
credit_card 1.38715
prev_phone 1.45171
low_cost 0.913791
med_cost 0.427606



CREDIT RISK 321

(c) Use scaling to adjust the scorecard from (b) so that it has the following
properties: (a) there is no constant term; (b) a score of 500 represents
odds of 100 to 1; and (c) an increase in the scaled score of 100
points represents the odds being multiplied by 10. (So a score of 600
represents odds of 1000 to 1.)

(d) It is calculated that a mobile phone contract achieves an average profit
of $15 per year, while every customer who fails to make scheduled
payments will, on average, cost $100 (including cost of follow up, the
average uncollected debt, and the replacement value of those hand-
sets that are not recovered, after allowing for the average payments
already made). For the scorecard in (c), what is the cutoff score where
Octophone would not go ahead with the contract?

(e) Suppose that further breakdown of the figures suggests that the profits
and losses are both dependent on the size of the contract as follows:

Low cost Medium cost High cost
Profit per year $10 $15 $20
Average cost if bad $80 $100 $160

What would you recommend to Octophone?

10.6 Cosal Skincare

Cosal Skincare sells beauty products over the internet. Every six months
Cosal runs a campaign to advertise one of its new products and to try to
increase its customer base. This involves sending a free sample through
the mail to potential customers drawn from a mailing list. The mailing
list, which Cosal purchases, includes certain attributes of the recipients.
For example, Cosal could pick out just females below the age of 30 who
have a driving licence and live alone. Cosal uses the data from the last
promotion to guide it as to the kind of potential customers to include in the
mail out. As is common with this sort of exercise, only a small proportion
of the recipients of a free sample will go on to make an online purchase.
However, Cosal has found that a single online purchase is usually followed
by others. It estimates that the profits earned from a single new online
customer are approximately $150 on average. The free sample costs a
total of $2.50 per recipient including mailing costs.

Table 10.11 gives the results from the last mail out to 10 000 potential
customers. From this, 310 new online customers were achieved, which
was regarded as a good result by Cosal. In this table, the P results are
those who purchased online, the N results are those who did not make an
online purchase.

(a) Use these data (also available on the Excel spreadsheet BRMch10-
CosalSkincare.xls) to work out the log odds for each category and
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Table 10.11 Results from Cosal Skincare mail out.

under 30 30–39 40–49 over 50

Household of 1, full-time work N = 456 N = 412 N = 386 N = 386
P = 34 P = 16 P = 8 P = 15

Household of 1, not full-time work N = 453 N = 389 N = 375 N = 395
P = 24 P = 12 P = 6 P = 12

Household of 2, full-time work N = 463 N = 409 N = 387 N = 363
P = 24 P = 15 P = 10 P = 15

Household of 2, not full-time work N = 460 N = 401 N = 373 N = 371
P = 18 P = 13 P = 5 P = 18

Household of > 3, full-time work N = 448 N = 407 N = 405 N = 375
P = 12 P = 6 P = 6 P = 9

Household of >3, not full-time work N = 412 N = 404 N = 377 N = 383
P = 12 P = 8 P = 4 P = 8

then run an ordinary least squares regression to determine a set of β

values to use.

(b) Develop a scoring rule to enable Cosal Skincare to decide who to
include in its mail out.

10.7 Consistent with log odds

Suppose that Figure 10.7 is produced by a website offering a free credit
score evaluation. Are the numbers shown consistent with a log odds scor-
ing scheme?

up to 450

450 to 640

640 to 720

720 to 830

830 to 900

900 to 1000

38%

24%

15%

8%

4%

2%

Prediction of the chance of getting into arrears on a credit agreement

Your score was 840 and there is a 4% chance that an individual with this
score will be more than 3 months late with payments on a credit agreement

Figure 10.7 Graphic from website giving free credit scores.
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Tutorial on probability theory

A.1 Random events

Probability theory is fundamental to much of our discussion in this book. It is
a topic that can be covered at many different levels. I have written this brief
tutorial with the specific aim of introducing the reader to the concepts that are
needed in the rest of the book. It may be useful as a single point to turn to for an
explanation of some probability concepts, or as a reminder of this material for
the reader who has been taught probability theory in the past, but has forgotten
the details.

Probability is the study of uncertain events; these are things that cannot be
precisely predicted in advance. For example, we might consider the event that
there is an earthquake in the San Francisco region next year of magnitude 7 or
above. This event either will or will not happen, but we cannot tell in advance. Or
we might consider tossing a coin and being interested in the event that it turns out
to be ‘heads’. Again we cannot tell in advance what the result will be, but we can
talk about the probability of the event occurring. There are layers of philosophical
complications here about what exactly we mean by a probability, but it is not the
role of this tutorial to explore this area. We will assume that we are discussing
an event whose occurrence is determined by a ‘random experiment’, the outcome
of which we cannot predict: for example, this might be tossing a coin.

We might argue that even the tossing of a coin is not truly random in reality;
if we knew the exact degree of force with which the spin was applied and we had
a sufficiently powerful computer, we could predict everything about the toss of
the coin; including which way up it would land. The same thing is true in theory
about the earthquake in California. At the moment this may be something that
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is impossible to predict, but with advances in geological science we may hope
to know in advance when such events will occur, given enough data on what is
happening in the rocks underground.

Since we want to develop the fundamental theory, we will sidestep these
complications and assume that we do indeed have a random experiment and
events that may occur but that cannot be predicted. If the events depend on
specific circumstances, such as the force applied to flick a coin, then we will
assume that we have no information about these factors. The random experiment
may be an idealized concept, but it will be enough for us to develop the theory
we want.

It is sometimes helpful to think of the random experiment producing one
of a potentially large set of possible outcomes. We call the set of all possible
outcomes the sample space (which is usually written �). With this definition we
say that an event is a subset of � corresponding to a particular set of possible
outcomes. So, for example, if we toss a coin 10 times we could define the event
that exactly five heads occur.

Implicit within the terminology of a random experiment is the idea that it
could (at least conceptually) be repeated. This is easy enough to see in relation
to the tossing of coins, but we will extend the idea even to cases where there
is no such possibility in reality. When we talk of the probability that the US
economy is in recession during 2025, we know that this will or will not be the
case, but we can carry out a thought experiment in which we imagine all sorts
of different histories playing out between now and then, in some of which a
recession occurs during that year and in others of which it does not.

One advantage of basing our discussion on a random experiment that can be
repeated is that it allows us to use a frequentist definition of probability. Tossing
a coin many times over should produce roughly equal numbers of heads and tails.
So, the statement ‘the probability of a head is equal to 0.5’ can be interpreted as
saying that with N tosses, the number of heads divided by N will approach 0.5
as N gets very large. More generally, we can consider for some event A (where
A is a subset of the sample space �) the proportion of times that an outcome in
A occurs out of N trials of the random experiment; then the probability of A is
the limit of this proportion as N goes to infinity. We will not pursue this idea
in detail or worry too much about why such limits will necessarily exist. Rather,
we want to concentrate on the properties that probabilities must possess.

There are just three things that characterize probabilities: probabilities are
non-negative; the probability of � is 1; and the probability of a union of disjoint
events is the sum of the individual event probabilities. When there are only a
finite number of outcomes possible in �, for example if the random experiment
is the throwing of a dice, then everything is quite straightforward: we simply
assign a probability to each possible outcome by making this the proportion of
times we expect this outcome to occur, and then we define the probability of an
event A as the sum of the probabilities of the outcomes within A.
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Thus, if � = {x1, x2, . . . , xn} we let pi be the probability that xi occurs, and
the probability of an event A ⊂ � is given by

Pr(A) =
∑
i∈J

pi where J = {i : xi ∈ A}.

We need to have pi ≥ 0, i = 1, 2, . . . , n and
∑n

i=1 pi = 1. The third property of
probabilities (relating to the union of disjoint events) is automatic in this case.

The extra property of being able to add up the probabilities of disjoint events
is important when we have an infinite number of possible outcomes in the sample
space �. We would like to be able to describe probabilities associated with an
infinite number of events. For example, consider a gambler who starts with a
single dollar and repeatedly places one dollar bets on red at the roulette wheel,
stopping when he has won $20 or when he loses the $1 he started with. His first
bet is a dollar and he might lose straight away. If he doesn’t, he will win an
additional dollar. If his next two bets both lose, he will lose everything. More
generally, we can see that the amount of money he has goes up or down by one
dollar on each bet. We want to know the probability that he reaches zero before
he reaches $20. But this game can go on as long as we like, and the probability
can be broken down into the probability of getting to zero (before $20) after one
step, three steps, five steps, etc. There are an infinite number of terms but they
get smaller and smaller.

We need to get used to the terminology of sets in relation to events. The
event that both A and B happen, when each of A and B is a subset of the sample
space, is simply the intersection of the sets A and B. Similarly, the event that one
or other of A and B happens is the union of the subsets A and B. This enables us
to look at the probability of the union of A and B as the sum of the probability
of three (disjoint) events: ‘A without B’, which we write as A\B and is the set of
outcomes in A that are not in B; ‘A intersection B’, A ∩ B; and ‘B without A’,
B\A.

Now, since A\B and A ∩ B are disjoint sets whose union is A we have, from
our assumption on probabilities, that

Pr(A) = Pr(A\B) + Pr(A ∩ B).

Similarly

Pr(B) = Pr(B\A) + Pr(A ∩ B).

Thus

Pr(A ∪ B) = Pr(A\B) + Pr(A ∩ B) + Pr(B\A)

= Pr(A) + Pr(B) − Pr(A ∩ B).
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A.2 Bayes’ rule and independence

We say that two events are independent if one of them occurring makes no
difference to the likelihood of the other occurring. This means that the proba-
bility of both A and B occurring is given by the product of the two individual
probabilities, or in symbols

Pr(A ∩ B) = Pr(A) × Pr(B).

To understand why this is true we need to go back to the idea of a conditional
probability, which is a way of talking about the probability of an event given
that we know some other event occurs. For example, if we know that two dice
are thrown and they have different results, what is the probability that the sum
of the two dice is an even number? It is simple enough to see that when two
dice are thrown, the probability that the sum is an even number is exactly a half,
since whatever the first throw, there will be a one half chance that the second
is what is required to make the sum even (an even number if the first throw is
even, odd otherwise). However, we want to find the probability conditional on
the event that the dice show different numbers. One way to calculate this is to
say that there are 36 equally likely outcomes from the throw of the two dice. Six
of these outcomes have the two throws the same and the remaining 30 have the
two numbers different. Of these 30, the 12 pairs listed below have a sum that is
an even number.

Dice 1 Dice 2 Dice 1 Dice 2 Dice 1 Dice 2
1 3 3 1 5 1
1 5 3 5 5 3
2 4 4 2 6 2
2 6 4 6 6 4

Now, since all 36 original outcomes are equally likely, we can see that know-
ing the throws are different gives 30 equally likely outcomes of which 12 have
the property we want. Thus, the conditional probability is 12/30 = 0.4.

When dealing with conditional probabilities we use the notation Pr(A|B) to
mean the probability that the event A occurs given that B occurs. Then the
general principle that we have illustrated with the dice example is

Pr(A|B) = Pr(A ∩ B)

Pr(B)
.

In words, we can say that the probability of A occurring given that B occurs is
given by the probability of both A and B occurring divided by the probability
that B occurs. This may be easier to grasp when we multiply through by Pr(B)

to get
Pr(A ∩ B) = Pr(B) × Pr(A|B),
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which simply says that the probability of both A and B occurring together is the
probability of B occurring multiplied by the probability that A occurs given that
B occurs.

In the dice example, we have the probability that the throw is even given that
the numbers are different is equal to the probability that the throw is even and the
numbers are different (which is 12/36 = 1/3) divided by the probability that the
numbers are different (which is 30/36 = 5/6).

The result can also be used to link Pr(A|B) and Pr(B|A). We have

Pr(A|B) = Pr(A ∩ B)

Pr(B)
= Pr(A ∩ B)

Pr(A)
× Pr(A)

Pr(B)
= Pr(B|A) Pr(A)

Pr(B)
.

This is often called Bayes’ Theorem.
Now we are ready to return to the question of independence. To say that the

probability of A occurring is independent of whether or not B occurs is to say
that the probability of A is the same as the probability of A given B. Thus

Pr(A) = Pr(A|B) = Pr(A ∩ B)

Pr(B)
,

and we can rewrite this as

Pr(A ∩ B) = Pr(A) × Pr(B).

A.3 Random variables

Now we switch our focus from random events to uncertain numbers that are
called random variables. Thus, we want to model a numerical value that we
cannot accurately predict in advance. It could be the total rainfall next week, the
price of oil six months from now, or the number we get when we throw a dice.

But even if we cannot predict the exact value in advance, we may be able
to make statements about the likelihood of different values occurring. When we
throw a dice we expect each of the six possible results to be equally likely to
occur; when we need to plan for different amounts of rain we can go back to
look at the records for this time of year to get an idea of the likelihood of a
very large rainstorm; and if we want to predict the price of oil in the future we
can turn to the financial markets to look at the pricing of derivatives and deduce
from these the likelihood that traders in the market have guessed for different
possible price outcomes.

The idea that different values of a random variable have different likelihoods
is captured by assigning probabilities to different values. Here we need to dis-
tinguish between random variables that can take just one of a finite set of values
(like the numbers 1 to 6 that might be thrown for a dice) and random variables
that can take any value in a range (like the rainfall next week). The first type we
call discrete random variables, and the second type are called continuous random
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variables. It is convenient to model these different types of random variable in
different ways, but actually the difference between them is minor. After all, the
price of oil is naturally modeled as a continuous random variable but in reality
is determined only up to a certain accuracy (US cents per barrel). Usually we
can translate fairly easily between continuous and discrete models by just taking
a discrete random variable with a very fine increment in size.

For a discrete random variable we make the occurrence of one of the possible
values an event, and then we see from our previous discussion that the proba-
bilities for each possible outcome are non-negative numbers that add up to 1.
More formally, we can say that when there are n possible values of the random
variable: x1, x2, . . . , xn, then there are n associated probabilities p1, p2, . . . , pn

with pi ≥ 0, i = 1, 2, . . . n and
∑n

i=1 pi = 1.
We can see immediately that a different approach will be required for contin-

uous random variables. When dealing with a random variable that is continuous,
for example the length of time that a call center agent requires to deal with
a customer enquiry, the probability of any specific value occurring becomes
infinitesimal. There is literally a zero probability of a call requiring exactly three
minutes to deal with: if times are measured sufficiently accurately, that three-
minute call will turn out to have been something like a 3.0001765 minute call.

When random variables are continuous it is helpful to look at events like
X ≤ 3 minutes, where X is the random variable that is the length of the call.
For any continuous random variable X, there is an important function giving the
probability that X takes a value less than or equal to t as t varies. This is called
the cumulative distribution function (CDF) for X and is defined as

F(t) = Pr(X ≤ t).

When F is a continuous function then the small increment F(t + δ) − F(t)

approaches zero as δ approaches zero. But

F(t + δ) − F(t) = Pr(X ≤ t + δ) − Pr(X ≤ t) = Pr(t < X ≤ t + δ).

So, a continuous CDF corresponds exactly to the case where the probability that
the random variable X falls into a small interval approaches zero as the length of
the interval approaches zero. We can see this as equivalent to the statement that
there is no single value of X that has a non-zero probability of occurring. Note
that many people reserve the term ‘continuous random variable’ for a random
variable that has a continuous CDF.

On the other hand, we may have a type of continuous random variable where
there are certain values that are associated with a non-zero probability. For
example, we may consider the time between calls received at a call center and
record this as zero if calls are queued for attention. Then we have a continuous
random variable that can only take a positive or zero value, but with a fixed prob-
ability of a zero. This type of behavior is linked to the CDF function F being
discontinuous. Roughly speaking, we can say that a jump in the CDF function
occurs at a value where there is an accumulation of possible outcomes.
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We can formulate statements about the CDF that match the statements about
probabilities. Since probabilities of events are non-negative, we can say that the
CDF is increasing; i.e. F(x) ≥ F(y) when X > Y . Moreover, the probabilities
of different values of X must add up to 1 (which is another way of saying that
Pr(�) = 1). Thus, Pr(−t < X ≤ t) approaches 1 as t approaches infinity. From
this we deduce that

lim
t→∞ F(t) = 1 and lim

t→−∞ F(t) = 0.

When the CDF function is well behaved, we can find its derivative, which
we call the probability density function, f (t). To define this formally we need to
go back to the definition of a derivative: we have

f (t) = lim
δ→0

F(t + δ) − F(t)

δ
= lim

δ→0

1

δ
(Pr(t < X ≤ t + δ)).

Since the density function f is the derivative of the cumulative distribution
function F , we can turn this around and say that the CDF is given by the integral
of the probability density function.

It is a fact that continuous functions are differentiable almost everywhere, and
when we take the integral of any function then its value at isolated points will
not make a difference. Without getting into the fine detail needed for a theoretical
treatment of this, we can say that any random variable with a continuous CDF
will have a density function f with the property

F(t) =
∫ t

−∞
f (x)dx .

There are many standard forms of continuous random variable distributions.
We will introduce the normal distribution later. But other examples are the uni-
form distribution, which has a density function f (x) = 1/(b − a) over an interval
x ∈ [a, b] and is zero outside this range, and the exponential distribution, which
has a density function f (x) = λe−λx for x ≥ 0 and is zero otherwise.

A.4 Means and variances

It is natural to ask about the average value of a random variable. Because the
word average can have slightly different meanings depending on the context,
we will usually use the term mean value, and we will also refer to this as the
expected value. The expected value of a discrete random variable X, which takes
values x1, x2, . . . , xn, and where Pr(X = xi) = pi , i = 1, 2, . . . , n is given by

E(X) =
n∑

i=1

pixi. (A.1)
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Thus, for example, the expected value of a fair dice which takes values from 1 to
6, each with probability 1/6 is given by

1

6
× 1 + 1

6
× 2 + 1

6
× 3 + ... + 1

6
× 6 = 21

6
= 3.5.

The expected value can also be characterized as the average value obtained
over N samples from the distribution. So, if we throw a dice 100 times we would
expect the total value of all the dice throws to be 100 × 3.5 = 350. This follows
from thinking about the number of times that different results are expected to
occur: in 100 throws there should be 100p1 occasions when x1 occurs, 100p2
occasions when x2 occurs, and so on. Thus, the total of 100 draws of the random
variable X will be approximately

∑n
i=1 100pixi = 100E(X).

Equation (A.1) for a discrete random variable has its counterpart for a con-
tinuous random variable X with density function fX. We have

E(X) =
∫ ∞

−∞
xfX(x)dx .

When the values that a random variable may take are restricted to a range
[a, b], then the density function is zero outside this range and we have E(X) =∫ b

a
xfX(x)dx .
Whether or not a random variable is discrete or continuous, if it is unbounded

then it may not have a finite mean. For example, if we take a random variable X

that takes values 2, 4, 8, . . . , 2n, . . . where n = 1, 2, . . . and Pr(X = 2n) = 1/2n

then the mean is not defined. The appropriate sum is

∞∑
i=1

pixi =
∞∑
i=1

1

2i
2i =

∞∑
i=1

1 = ∞.

On the other hand, if we consider the random variable Y that takes values
1, 2, 3, . . . with Pr(Y = n) = 1/2n, then this has a mean given by

E(Y ) =
∞∑
i=1

1

2i
i = 2.

One thing we may want to do with a random variable is to take a function of it
in order to create another random variable. For example, we might model the price
of a particular stock in a year’s time as a random variable X and be concerned to
find the expected value of log(X). Then the log price is another random variable;
price can only be positive but log price can take any value between −∞ and
∞. It is important to realize that we cannot just say E(log(X)) = log(E(X));
this statement is false. Instead, we need to calculate the expectation using the
following formula:

E(g(X)) =
∫ ∞

−∞
g(x)fX(x)dx .
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One thing to watch out for is that we may have a random variable X where
E(X) exists, but there are functions g for which E(g(X)) does not exist. The
only time when things are simple is when g is linear, i.e. g(X) = aX + b. Then

E(aX + b) =
∫ ∞

−∞
axfX(x)dx +

∫ ∞

−∞
bfX(x)dx

= aE (X) + b. (A.2)

Now we consider ways to measure the spread of possible values of a random
variable. One straightforward way to measure this would be to look at the average
of the difference between a value drawn from the random variable and the mean
value of the random variable. Notice that we need to take the absolute value of the
difference here, otherwise positive and negative differences will cancel each other
out. Thus, if we write μ = E(X) then a measure of the spread of values in X would
be E(|X − μ|) (whereas E(X − μ) = E(X) − μ = 0 from Equation (A.2)). Now
even though this ‘expected absolute difference to the mean’ makes a good deal of
sense, the modulus signs make it awkward to work with.

An alternative measure is to consider the square difference between a sample
from X and the mean μ. Hence, we consider the variance of X which is defined
as the expected value of the square of the distance to mean:

var(X) = E((X − μ)2).

Since the variance is the expectation of a random variable (X − μ)2 which is
non-negative, then var(X) ≥ 0. The expression for the variance can be simplified.
As (X − μ)2 = X2 − 2μX + μ2, we can write

var(X) = E(X2) − 2μE(X) + μ2

= E(X2) − μ2. (A.3)

We can also define the standard deviation σ as the square root of the variance, so

σ = (E(X2) − μ2)1/2.

When a random variable is multiplied by a constant k, the standard deviation is
multiplied by k and the variance is multiplied by k2.

As an example, we can consider the random number X given by the number
of heads in three tosses of a coin. We have Pr(X = 0) = 1/8, Pr(X = 1) = 3/8,
Pr(X = 2) = 3/8, Pr(X = 3) = 1/8. The mean value of X is

μ =
(

3

8
× 1

)
+

(
3

8
× 2

)
+

(
1

8
× 3

)
= 3

2
.

The variance of X can be calculated from looking at

E(X2) =
(

3

8
× 1

)
+

(
3

8
× 4

)
+

(
1

8
× 9

)
= 3.
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Thus, from Equation (A.3),

var(X) = E(X2) − μ2 = 3 − 9

4
= 3

4
,

and the standard deviation of X is σ = √
3/4 = 0.866.

A.5 Combinations of random variables

In the same way that we considered combinations of random events – looking,
for example, at unions and intersections – we can also combine random variables.
We need to think about an underlying random experiment that produces values
for two or more different random variables. For example, we might throw a dice
three times and let X be the random variable that is the sum of the first two
throws minus the third and Y be the random variable that is the sum of the last
two throws minus the first throw. This means that knowing information about the
value of one random variable can give us information about the other. Because
the random variables X and Y are defined from the same underlying random
experiment, we can imagine plotting their possible values on the plane with X

values on one axis and Y values on the other. If X and Y are discrete, then we
will end up with points sitting on a grid, but if X and Y are continuous, then
the possible values are spread over a region in the plane. For this example we
have plotted the possible combinations of values for X and Y in Figure A.1. We
can see that if we know that X = −4 then we can deduce that Y = 6. This is
because X = −4 implies that both the first two throws are 1 and the third throw
is 6.

The distribution of values for two (or more) random variables is called the
joint distribution. Instead of a cumulative distribution function for one variable,

Y

X

Figure A.1 Combinations of values for the random variables X and Y .
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we now have a cumulative distribution function for the joint distribution. This is
defined as

FX,Y (x, y) = Pr(X ≤ x and Y ≤ y).

Whereas the simple CDF gives the probability that a random variable is less than
a certain value, the joint CDF tells us the probability that the combined (X, Y )

pair lies in a region (having a lower left-hand quadrant shape). If the underlying
random experiment produces values for two continuous random variables, X and
Y , then the properties of the joint distribution (giving the way that the combined
values are spread out over the (X, Y ) plane) are best described through the joint
CDF. In many cases there is a joint probability density function that represents
the distribution of joint values: in this case, the CDF FX,Y (x, y) is simply the
integral of the density function fX,Y over the appropriate region. Thus

FX,Y (x, y) =
∫ x

−∞

(∫ y

−∞
fX,Y (u, v)dv

)
du,

and

Pr(a ≤ X ≤ b and c ≤ Y ≤ d) =
∫ b

a

(∫ d

c

fX,Y (x, y)dy

)
dx .

If we are given the joint distribution then it will imply the behaviors for the
individual random variables. Since

Pr(X ≤ x) = Pr(X ≤ x and Y ≤ ∞),

we can say that
FX(x) = lim

y→∞ FX,Y (x, y).

The distributions of X and Y derived from a joint distribution of (X, Y ) are
called the marginal distributions.

We say that two random variables are independent if the value of one of them
gives no information about the value of the other. This can be converted into a
statement about events: X and Y are independent random variables if for all sets
A and B in R

Pr(X ∈ A and Y ∈ B) = Pr(X ∈ A) × Pr(Y ∈ B).

This is very close to the definition we used earlier for random events: we have
just replaced the event A (a subset of all possible outcomes �) by the event that
the random variable X is in A (a subset of the real numbers R). So we could say
that random variables X and Y are independent if every possible event defined
by X alone is independent of every possible event defined by Y alone.

The next step is to think about the properties of the sum of two random
variables; this is the simplest way to combine them. The formula for the mean of
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the sum of two or more random variables is easy, we simply add the individual
means:

E(X + Y ) = E(X) + E(Y ).

This is always true – it doesn’t require any properties like independence of the
variables. One way to see this is by thinking of the average of N draws of the
combination X + Y . The total is just the same as from N draws of X followed
by N draws of Y .

If we are interested in other properties of the sum of random variables, like
the variance or the standard deviation, then things are more complicated. If high
values of one variable occur when there are low values of the other variable, then
they will tend to cancel out in the sum. The end result is that the standard devia-
tion of the sum of two random variables may be less than the standard deviation
of either of them taken alone (and equally it might be more than this value).

However, when two random variables are independent then the expected
value of their product is the product of their expected values and (derived from
this) the variance of their sum is the sum of their variances. Algebraically we
can write

E(XY ) = E(X) × E(Y ), (A.4)

var(X + Y ) = var(X) + var(Y ). (A.5)

To see why the first equation is true, we can consider X and Y as discrete ran-
dom variables. In particular, we suppose that X takes values x1, x2, . . . , xn with
probabilities p1, p2, . . . , pn and Y takes values y1, y2, . . . , ym with probabilities
q1, q2, . . . , qm. Then

E(XY ) =
n∑

i=1

m∑
j=1

Pr(X = xi and Y = yj )xiyj

=
n∑

i=1

m∑
j=1

piqjxiyj =
n∑

i=1

⎛
⎝pixi

⎛
⎝ m∑

j=1

qjyj

⎞
⎠
⎞
⎠

= E(X)E(Y ).

The result about variances follows from the following argument:

var(X + Y ) = E[(X + Y )2] − [E(X + Y )]2

= E(X2) + 2E(XY ) + E(Y 2) − [E(X) + E(Y )]2

= E(X2) − (E(X))2 + E(Y 2) − (E(Y ))2 + 2E(XY ) − 2E(X)E(Y )

= var(X) + var(Y ).
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The standard deviation of a random variable X, which we write as σX, is just
the square root of the variance, var(X), so when X and Y are independent,

σX+Y =
√

var(X) + var(Y ) =
√

σ 2
X + σ 2

Y .

We can extend this formula to any number of random variables. The simplest
case of all is where we have a set of random variables X1, X2, . . . , XN which are
all independent and also all have the same standard deviation, so we can write

σX = σX1
= σX2

= ... = σXN
.

Then

σX1+X2+...+XN
=

√
σ 2

X1
+ σ 2

X2
+ ... + σ 2

XN
=

√
Nσ 2

X =
√

NσX.

We define the covariance of X and Y as

cov(X, Y ) = E(XY ) − E(X)E(Y ).

Thus
var(X + Y ) = var(X) + var(Y ) + 2cov(X, Y ).

Now from Equation (A.5) we see that cov(X, Y ) = 0 when X and Y are inde-
pendent (though the implication doesn’t go the other way around). Also

cov(X, X) = var(X).

If we multiply the random variable X by a constant, then the covariance between
X and Y is also multiplied by the same constant, and similarly for the random
variable Y . Thus, for any two constants wX and wY we have

cov(wXX, wY Y ) = wXwY cov(X, Y ).

From this we can deduce

var(wXX + wY Y ) = w2
Xvar(X) + w2

Y var(Y ) + 2wXwY cov(X, Y ).

If the covariance is positive then high values of X are associated with high
values of Y . On the other hand, if the covariance is negative then high values of
one variable are associated with low values of the other. The relationship shown
in Figure A.1 above has a negative covariance between X and Y .

We can also normalize the size of the covariance by the standard deviation
of the variables to produce the correlation coefficient

ρ(X, Y ) = cov(X, Y )

σXσY

,
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where σX is the standard deviation for X and σY is the standard deviation for Y .
The effect of this scaling is to guarantee that the correlation lies between −1 (per-
fect negative correlation) and +1 (perfect positive correlation). The correlation
is also independent of the scaling of the variables, so

ρ(wXX, wY Y ) = ρ(X, Y ).

A.6 The normal distribution and the Central Limit
Theorem

The most important continuous probability distribution is the normal distribution.
The standard normal distribution can take values over the whole real line and
has a density function

f (x) = 1√
2π

e−x2/2.

It turns out that the integral
∫ ∞
−∞ e−x2/2dx has the value

√
2π , so the constant

term 1/
√

2π is inserted to ensure that the integral of the density function is 1.
This random variable is symmetric around x = 0 so it has a zero mean. Moreover,
the variance is also 1. To prove this we need to integrate by parts. Since xe−x2/2

is the derivative of e−x2/2 we have:

E(X2) = 1√
2π

∫ ∞

−∞
x
(
xe−x2/2

)
dx

= 1√
2π

∫ ∞

−∞
e−x2/2dx −

[
xe−x2/2

]∞
−∞

= 1.

We can use a simple transformation, scaling x and shifting it, to produce a
normal distribution with any desired mean and standard deviation. To get a mean
of μ and standard deviation of σ we use the density function

fμ,σ (x) = 1

σ
√

2π
e− 1

2 (
x−μ

σ )2
.

The cumulative distribution function for the normal distribution function is
written

	μ,σ (x) =
∫ x

−∞
fμ,σ (y)dy .

This is a useful function but does not have a closed-form formula. For many
years people would look up values for 	 in tables. Nowadays it is better to use
the inbuilt NORMDIST function in a spreadsheet.

The importance of the normal distribution arises from the way that it approx-
imates the result of adding together a number of different independent random
variables whatever their original distributions: this is the Central Limit Theorem.
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There are a few different versions of this theorem and we will describe a ver-
sion due to Lindeberg and Lévy. We suppose that we have a set of N random
variables X1, X2, . . . , XN , with each Xi independent of all the others and each
having the same distribution with mean μ and variance σ 2 (which is less than
infinity). Then we know that

E

(
N∑

i=1

Xi

)
= Nμ and var

(
N∑

i=1

Xi

)
= Nσ 2.

Thus, if we consider the random variable

YN =
√

N

(
1

N

(
N∑

i=1

Xi

)
− μ

)

then

E(YN) =
√

N

(
1

N
(Nμ) − μ

)
= 0.

Also, using the fact that var(aX + b) = a2var(X),

var(YN) = var

(
1√
N

(
N∑

i=1

Xi

))

= 1

N
var

(
N∑

i=1

Xi

)
= σ 2.

Thus, the variable YN has mean 0 and variance σ 2. The Central Limit
Theorem concerns the limit as we let the number of random variables being
summed go to infinity. So, we suppose that there is an infinite set of independent
identically distributed random variables, and we consider the random variable
YN which involves the average of the first N of the random variables. Then, as
N increases, the distribution of YN gets closer and closer to a normal distribution
with mean 0 and variance σ 2. In particular, the Central Limit Theorem states:

lim
N→∞

Pr(YN ≤ α) = 	0,σ (α).

Notice that a more natural way to express the Central Limit Theorem is to say
that the distribution of a sum

∑N
i=1 Xi gets closer and closer to a normal distri-

bution with mean Nμ and variance Nσ 2. But this formulation, though capturing
what happens, is unsatisfactory because the limiting distribution is expressed in
terms of N and this is a number that goes to infinity. Hence, we have to rescale
the sum

∑N
i=1 Xi , essentially to remove the dependence on N . This is what

happens when we define the new random variable YN .
To illustrate the Central Limit Theorem, we show in Figure A.2 what happens

when we consider a random variable that is obtained from the sum of nine
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individual random variables, each of which is uniformly distributed between 0
and 1. We have

Y9 =
√

9

(
1

9

(
9∑

i=1

Xi

)
− 1

2

)

= 1

3

(
9∑

i=1

Xi

)
− 3

2

where each Xi has a uniform distribution on [0,1]. Thus, the density for Xi is
simply f (x) = 1 for 0 ≤ x ≤ 1. Each individual Xi has a mean of 0.5 but we
also want to find the variance. This is given by

var(Xi) = E(X2
i ) −

(
1

2

)2

=
∫ 1

0
x2dx − 1

4

=
[
x3

3

]1

0
− 1

4
= 1

12
.

Thus, the Central Limit Theorem tells us that the variable YN is approximated by
a normal distribution with mean 0 and variance 1/12 (i.e. the standard deviation
is

√
1/12). Since

9∑
i=1

Xi = 3Y9 + 9

2
,

this is equivalent to saying that the sum
∑9

i=1 Xi approximates to a normal
distribution with mean 9/2 and standard deviation 3

√
1/12 = 0.86603.

It is not possible to give any kind of formula for the distribution of
∑

Xi ,
but we can generate random samples from its distribution and this has been done
in Figure A.2. The circles are generated from a sample to find, for example, the
probability that

∑
Xi takes a value between 4.25 and 4.5 – it is 0.1125. The

solid line shows the corresponding normal distribution, which gives a predicted
probability of 0.11358 for this number. The difference between the two shows
up as the circle being just below the solid line at this value (the highest points
in the diagram). Clearly the normal distribution provides an extremely good
approximation for the sum of nine uniform distributions.

Besides arising naturally from the Central Limit Theorem, a normal distri-
bution is also easy to work with because the sum of two or more independent
random variables each with a normal distribution also has a normal distribution.
Thus, if X has a normal distribution with mean μ1 and variance σ 2

1 and Y has a
normal distribution with mean μ2 and variance σ 2

2 , and X and Y are independent,
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0 2 8 104 6

Figure A.2 Illustration of the Central Limit Theorem: sum of nine uniform
distributions.

then X + Y has a normal distribution with mean μ1 + μ2 and variance σ 2
1 + σ 2

2 .
Notice that this property does not hold for any other distribution: the sum of two
uniform distributions is not a uniform distribution; the sum of two exponential
distributions is not an exponential, etc.
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Answers to even-numbered
exercises

1.2 Connaught

(a) The executive accused of insider trading is rather a different problem
than the underlying difficulties causing a 60% drop in market capital-
ization. The profit warning is related to business risk – a drying up
of orders. But it also contains an element of operational risk arising
from poor accounting systems (see part (b)).

(b) The unusual thing in this case is how quickly and dramatically the
shares fell. This was because the firm had given no warning of such
a sharp turnaround and had been claiming that the fundamentals were
in good shape. The problem here is that the accounts have reflected
a very optimistic view about what will happen. It is no surprise that
the group’s accounting practices have been under scrutiny. This is
particularly a problem since the earnings that now look suspect were
responsible for large bonus payments to executives. An appropriate
risk management strategy would involve the company’s accountants
taking a more conservative view of future earnings.

1.4 Product form for heat map

It turns out to be surprisingly difficult to choose the numbers to make
things work out, but here is one arrangement that works: Insignificant =
$10 000; Minor = $20 000; Moderate = $42 000; Major = $120 000;

Business Risk Management: Models and Analysis, First Edition. Edward J. Anderson.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/business_risk_management

http://www.wiley.com/go/business_risk_management
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Catastrophic = $300 000. Notice that we must have the $ cost for moderate
risk being greater than $40 000 to avoid a ‘medium’ square switching to
‘low’ and less than $45 000 to avoid a square that should be ‘medium’
switching to ‘high’.

2.2 Changing a daily failure rate into a yearly one

(a) Let Xi be a random variable associated with day i that is 1 if there
is a failure and 0 if there is not. The expected value of Xi = 0.001 ×
1 + 0.999 × 0 = 0.001. Clearly the number of failures in 365 days is
N = ∑365

i=1 Xi . Then

E(N) =
365∑
i=1

E(Xi) =
365∑
i=1

0.001 = 0.365.

(b) The probability that there is no failure on any of the 365 days is
the probability that each Xi is 0, i = 1, 2, . . . , 365. If the Xi are
independent, this probability is given by 0.999365 = 0.6941. Thus, the
probability that there is at least one failure over this period is 1 −
0.6941 = 0.3059. (This is significantly smaller than the figure of 0.365
that might be our first guess of the probability.)

2.4 Combining union and intersection risk

(a) In the Venn diagram of Figure B.1 we have set A = poor weather,
B = late delivery, and C = archaeological find. The shaded area in
the diagram is the event of a greater than four-week delay.

A

B

C

Figure B.1 Venn diagram for Exercise 2.4.

(b) This has probability (assuming independence) of

Pr(C) + Pr(A ∩ B) − Pr(A ∩ B ∩ C)

= 0.05 + 0.2 × 0.1 − 0.2 × 0.1 × 0.05 = 0.069.
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2.6 Portfolios with large numbers and different variances

We have σi ≤ σmax, for each i, where σmax is the largest standard deviation.
Let wi = K/σi where we take

K = W(
1
σ1

+ 1
σ2

+ . . . + 1
σN

)
in order that w1 + w2 + . . . wN = W . Now each 1/σi is at least as big as
1/σmax. Thus

K ≤ W

N(1/σmax)
= Wσmax

N
,

and the overall standard deviation is

σZ =
√

w2
1σ

2
1 + w2

2σ
2
2 + . . . + w2

Nσ 2
N

=
√

K2 + K2 + . . . K2 ≤ Wσmax

N

√
N = Wσmax√

N
.

2.8 Optimal portfolio with a risk-free asset

The optimal portfolios have standard deviations of 0.95, 0.47 and 0.16.
Figure B.2 shows how these are arranged in a straight line.
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Figure B.2 Return is a linear function of standard deviation.

The portfolios are as follows:

Return Weight on A Weight on B Weight on C Weight on D
10 0.2236 0.4099 0.1491 0.2174
7 0.1118 0.2050 0.0745 0.6087
5 0.0373 0.0683 0.0248 0.8696
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The underlying portfolio for A, B and C has weights 0.2857, 0.5238 and
0.1905 and these ratios remain the same throughout, but with a varying
proportion on D.

2.10 Copula properties

We have the following values for C(a, b) depending on the region:

= (2/3)ab when a ≤ 3/4, b ≤ 3/4 (region A)

= (1/2)a + 2a(b − (3/4)) when a ≤ 3/4, b > 3/4 (region B)

= (1/2)b + 2b(a − (3/4)) when a > 3/4, b ≤ 3/4 (regionC)

= (3/8) + 2(3/4)(a − 3/4) + 2(3/4)(b − 3/4) − 2(a − 3/4)(b − 3/4)

otherwise (region D).

With these definitions we have

C(a, 1) = (1/2)a + 2a(1/4) = a when a ≤ 3/4

C(1, b) = (1/2)b + 2b(1/4) = b when b ≤ 3/4

C(a, 1) = (3/8) + (3/2)(a − 3/4) + (3/2)(1/4) − (a − 3/4)(1/2)

= a when a > 3/4

C(1, b) = (3/8) + (3/2)(1/4) + (3/2)(b − 3/4) − (1/2)(b − 3/4)

= b when b > 3/4.

Thus, C has uniform marginal distributions as required. We check the
derivatives with respect to a (the b derivatives are similar).

∂C/∂a = (2/3)b > 0 in A

= (1/2) + 2(b − (3/4)) > 0 in B

= 2b > 0 in C

= 2(3/4) − 2(b − 3/4) = 3 − 2b > 0 in D.

Moreover, C is constructed to be continuous on the boundaries. So C is
increasing in both arguments. However, the rectangle inequality does not
hold since

C(3/4, 3/4) + C(1, 1) − C(3/4, 1) − C(1, 3/4)

= (3/8) + 1 − (3/4) − (3/4) = −1/8.
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2.12 Upper tail dependence

Note

Pr(X > F−1
X (α), Y > F−1

Y (α)) = 1 − Pr(X ≤ F−1
X (α) or Y ≤ F−1

Y (α))

= 1 − Pr(X ≤ F−1
X (α)) − Pr(Y ≤ F−1

Y (α))

+ Pr(X ≤ F−1
X (α) and Y ≤ F−1

Y (α))

= 1 − 2α + C(α, α).

So, setting δ = 1 − α the formula for λu becomes

λu = lim
δ→0

1 − 2(1 − δ) + C(1 − δ, 1 − δ)

δ

= 2 + lim
δ→0

C(1 − δ, 1 − δ) − 1

δ
.

Substituting for the Clayton copula we get

λu = 2 + lim
δ→0

(
2

(1−δ)2 − 1
)− 1

2 − 1

δ
.

Now the limit here is equal to the negative of the derivative of g(x) =
(2x−2 − 1)−

1
2 − 1 evaluated at x = 1 (note g(1) = 1.) But

dg

dx
= (1/2)(2x−2 − 1)−

3
2 (4x−3).

Since this takes the value 2 at x = 1 we obtain the result we want, that
λu = 0.

3.2 VaR for a triangle distribution

We could calculate the CDF, but an alternative is to work directly with the
area under a triangle. We will work in 1000s. We want to find the a such
that

∫ 100
a

f (x)dx = 0.01. Thus (using the half base times vertical height
rule for the area of a triangle) we need

(1/2)(100 − a)f (a) = (1/2)(100 − a)2/1002 = 0.01.

Thus
(100 − a)2 = 200

and a = 100 − √
200 = 85.858, giving a 99% VaR of $85 858. Similarly,

the 95% VaR is obtained from (100 − a)2 = 1000, giving a = 100 −√
1000 = 68.377 and a 95% VaR of $68 377.
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3.4 Diversification reduces VaR

The 98% absolute VaR from investing in both A and B is $6000 – this
follows from the table of possible results and their probabilities. There is
a greater than 2% chance that one or other of the firms fails, but a less
than 2% chance that they both fail. On the other hand, making a $20 000
investment in two bonds from A gives a 4% chance of collecting only
30% of the face value – and so the 98% absolute VaR is $14 000.

3.6 VaR estimates are a process

(a) Two totally different systems may have the same number of VaR
breaches but those breaches occur at very different times. To achieve
a process with the right number of breaches we could simply set up a
VaR procedure which on 1 day out of 100 predicts a very large profit
(so large that there is almost bound to be a breach) and on the other
99 days predicts a very large loss, large enough that the loss does not
occur. This is a poor procedure because it tells us nothing about the
real risks; which shows that we cannot judge the process just by the
number of breaches.

(b) The answer is that they do not need to be equally good (see the
discussion above). A good procedure is one that is informative, and
this means that each number produced is the right number in the sense
of predicting the right risk level for the day in question (rather than
too high on some days and too low on others).

3.8 Expected shortfall is subadditive

(a) The expected shortfall is a risk measure that scales and shifts appro-
priately, so that we can say that the expected shortfall for a normal
distribution with mean −5000 and standard deviation 3000 is

−5000 + 2.667 × 3000 = 3001.

(b) The expected shortfall for the second project can be calculated in the
same way. It is given by

−3000 + 2.667 × 1500 = 1000.5.

The sum of the two projects has a normal distribution with mean −8000
and a variance that is given by the sum of the two variances. Hence, the
standard deviation is given by√

30002 + 15002 = 3354.

This means that the expected shortfall is

−8000 + 2.667 × 3354 = 945.1
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which is (much) less than the sum of the expected shortfalls from the
individual projects, which is 3001 + 1000.5 = 4001.5.

4.2 Fréchet distribution

With a tail index of 5 we know that the distribution of the maximum will
approach a CDF of Fmax(aNx) = exp(−x−5). Assume that the number
of times on any given day is consistent enough to allow them all to be
modeled by the same distribution. We use the information on the mean of
this distribution to estimate the scaling parameter aN . The mean value of
the Fréchet with parameter α = 5 is given by �(1 − (1/5)) = 1.1642.

We have Fmax(x) 
 exp −(x/aN)−5) which will have a mean of
1.1642aN . (This needs careful thought – we might first think that the
mean is 1.1642/aN .) Thus, aN = 12/1.1642 = 10.3. Hence, we can
estimate the distribution as

Fmax(x) = exp

(
−
( x

10.3

)−5
)

.

So the probability that x is less than 20 isFmax(20) = exp(−(20/10.3)−5) =
0.964. We have about a 3.6% chance of the guarantee being broken on
any given day, and hence an expected value of 100/3.6 = 28 days before
this happens.

4.4 Calculating the mean of the GPD

The density function for the GPD is (1/β)(1 + ξx/β)−1/ξ−1. Hence, the
mean of this distribution is given by the limit for large R of

∫ R

0
(x/β)(1 + ξx/β)−(1/ξ)−1dx = 1

ξ − 1

[
x + β

(1 + ξx/β)1/ξ

]R

0

= 1

ξ − 1

(
R + β

(1 + ξR/β)1/ξ
− β

)

= β

1 − ξ

(
1 − 1 + R/β

(1 + ξR/β)1/ξ

)
.

If ξ < 1 then there is some δ > 0 with ξ = 1/(1 + δ). Then

1 + R/β

(1 + ξR/β)1/ξ
< (1 + ξR/β)1−1/ξ = (1 + ξR/β)−δ.

But as R goes to infinity, (1 + ξR/β)−δ goes to zero. Hence, the integral
takes the value β/(1 − ξ) in the limit of large R.
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4.6 Estimating parameters from mean excess figures

Write β10 for the β value for the Gξ,β distribution describing the excess
over $10 million, β20 for the equivalent for $20 million, etc. Then the
formula β/(1 − ξ) for the mean excess shows that

β10/(1 − ξ) = 9,

β20/(1 − ξ) = 12.

We also know that β20 = β10 + 10ξ . So, 10ξ/(1 − ξ) = 3 and hence
13ξ = 3 and

ξ = 3/13 = 0.23

while
β20 = 12(1 − 0.23) = 9.24.

Finally we deduce that

β25 = β20 + 5ξ = 9.24 + 5 × 0.23 = 10.39.

5.2 EUT and a business venture

(a) With a linear utility function, maximizing expected utility is the same
as maximizing expected profit. Option A (invest) gives return of $40
with certainty. If Kate pays back an amount x then the expected value
of the investment from Option B (loan to Kate) is 0.7x (with proba-
bility 0.3 James ends with nothing). To make this attractive it has to
at least match the certain profit, i.e.

x = 1040/0.7 = $1485.71.

(b) The underlying equation for this problem is

u(1040) = 0.7u(x).

When u(x) = √
x we can rewrite this as

√
x =

√
1040

0.7
= 46.07.

So
x = 46.072 = $2122.45

(which is an amount greater than Kate can repay.)

5.4 Stochastic dominance and negative prospects

We assume that x1 < x2 < . . . < xn and everything is in dollar values. We
may assume without loss of generality that the same outcomes appear in
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both A and B (by setting probabilities to zero if necessary). Notice that
the worst outcomes in −A and −B are −xn and −yn. The condition we
need to show in order to establish that −B stochastically dominates −A

involves sums for probabilities for outcome i and all better outcomes:

qi + qi−1 + . . . + q1 ≥ pi + pi−1 + . . . + p1

for all i with at least one of these inequalities being strict. However, this
condition is exactly the one given as an alternative to the first definition
of stochastic dominance for A over B in Inequality (5.5).

5.6 Failure of stochastic dominance

We can sum over outcomes $700 or better to find that q has the higher
probability. But summing over outcomes $1000 or better shows that r has
the higher probability. Thus, neither stochastically dominates the other.

This also gives a clue as to how to arrange the utilities for the result
we want. To get q preferred we can take utilities shown as Utility A in
Table B.1 and to get r preferred take utilities shown as Utility B. The
other columns sum up components to get an expected utility value (there
are many different ways to achieve the same result).

Table B.1 Two sets of utility assignments for Exercise 5.6.

Utility A q r Utility B q r

$100 1 0.1 0 1 0.1 0
$300 2 0.4 0.6 2 0.4 0.6
$400 3 0.6 0 3 0.6 0
$500 4 0 1.2 4 0 1.2
$700 20 6.0 4.0 5 1.5 1.0
$900 21 4.2 2.1 6 1.2 0.6
$1000 22 0 2.2 20 0 2.0

totals 11.3 10.1 3.8 5.4

6.2 Prospect Theory when gains turn to losses

Since all the x and y are positive and prospect A is preferred to B, we
have

n∑
i=1

[w+(pi + . . . + pn) − w+(pi+1 + . . . + pn)]v(xi)

>

n∑
i=1

[w+(qi + . . . + qn) − w+(qi+1 + . . . + qn)]v(yi).
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Substituting for v(xi) and v(yi) using v(−xi) = −λv(xi) and v(−yi) =
−λv(yi) shows that

−(1/λ)

n∑
i=1

[w+(pi + . . . + pn) − w+(pi+1 + . . . + pn)]v(−xi)

> −(1/λ)

n∑
i=1

[w+(qi + . . . + qn) − w+(qi+1 + . . . + qn)]v(−yi).

Multiplying through by −λ changes the direction of the inequality, hence
we have

n∑
i=1

[w−(pi + . . . + pn) − w−(pi+1 + . . . + pn)]v(−xi)

<

n∑
i=1

[w−(qi + . . . + qn) − w−(qi+1 + . . . + qn)]v(−yi).

This is exactly the inequality we need to show that prospect −B = (−y1, q1;
−y2, q2; . . . ;−yn, qn) is preferred to −A = (−x1, p1;−x2, p2; . . . ;
−xn, pn).

6.4 Exponent in power law

The standard TK parameters have

v(x) = x0.88 and w+(p) = 0.132.

This means that values for the prospects are as follows

V (A) = v(1)(1 − w+(0.05)) + v(381)w+(0.05) = 25.52.

V (B) = v(20) = 13.96.

V (C) = v(301)(1 − w+(0.05)) + v(681)w+(0.05) = 172.81.

V (D) = v(320) = 160.15.

Prospect Theory predicts that both A and C are preferred.

Changing the exponent to 0.6 gives values

V (A) = 5.54, V (B) = 6.03, V (C) = 33.26, V (D) = 31.85,

which gives an accurate prediction of the experiment.
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6.6 Splitting prospects can change choices

(a) For the four prospects the values are

V (A) = w−(0.5)v(−100) + w+(0.5)v(1000)

= 0.454 × (−126.2) + 0.421 × (501.2) = 153.71.

V (B) = w+(0.4)v(1000) = 0.370 × (501.2) = 185.44.

V (C) = (w+(1) − w+(0.7))v(200) + (w+(0.7) − w+(0.4))v(300)

+ (w+(0.4))v(550)

= (1 − 0.534) × 117.74 + (0.534 − 0.370) × 169.59

+ 0.370 × 292.64

= 190.96.

V (D) = v(340) = 189.82.

Hence C has the highest value and is preferred.

(b) The second stage gambles are A′ = (−$440, 0.5; $660, 0.5), B ′ =
(−340, 0.6; $660, 0.4), C ′ = (−140, 0.3;−40, 0.3; 210, 0.4).

V (A′) = w−(0.5)v(−440) + w+(0.5)v(660)

= 0.454 × (−478.8) + 0.421 × (344.8) = −72.21.

V (B ′) = w−(0.6)v(−340) + w+(0.4)v(660)

= 0.518 × (−379.6) + 0.370 × (344.8) = −69.06.

V (C ′) = (w−(0.6) − w−(0.3))v(−40) + w−(0.3)v(−140)

+ w+(0.4))v(210)

= (0.474 − 0.328) × (−55.3) + 0.328 × (−170.8)

+ 0.370 × 123.03

= −18.57.

All the values are negative, so none of these gambles would be accepted.

7.2 Ajax Lights

The firm believes that the monthly demand is K − αp where p is the price
per bulb. So K − 10α = 50 000. And if S are sold next month at $8 then
this will demonstrate that K − 8α = S. Solving these two equations gives
α = (S/2) − 25 000 and K = 5S − 200 000.

Given Y and sales of S then the amount left to sell after one month
is 100 000 − S + Y . The sales per month need to be half this and must
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match the demand per month. Thus (using the formulae for K and α that
we have derived)

50 000 − (S/2) + (Y/2) = (5S − 200 000) − ((S/2) − 25 000)p.

Solving for p gives

p = 10 − S

5000
+ Y

50 000
.

The stage 1 costs of the order (allowing for the previous cost of the existing
stock assumed at $5 per bulb) are

C1(Y ) = 500 000 + 5Y.

Then write Q(Y, S) for the total revenue arising from all sales (price times
volume), so

Q(Y, S) = (100 000 − S + Y )(10 − S

5000
+ Y

50 000
) + 8S.

Now suppose that S = Si with probability pi (where
∑N

i=1 pi = 1) then

�(Y) = −C1(Y ) +
N∑

i=1

piQ(Y, Si).

Taking derivatives, the optimal Y is given by

5 +
N∑

i=1

pi

(100 000 − Si + Y )

50 000
+

N∑
i=1

pi(10 − Si

5000
+ Y

50 000
) = 0

17 +
N∑

i=1

pi

−11S

50 000
+ Y

25 000
= 0.

Hence

Y = 11S

2
− 17 × 25 000

where S = ∑N
i=1 piSi is the average value of S.

7.4 Non-anticipatory constraints in APS example

The demand in month 1 for scenario A and scenario C is different, and
so normally this would allow different choices to be made for x2 under
these different scenarios. However, in this problem there is no correlation
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between demands in different periods. Moreover, the situation at the end
of month 1 is the same for both scenarios – once demand is more than 50
there can be no extra sales. In both scenario A and scenario C, month 2
starts with just what was ordered at the start of month 1 (i.e. x1), so a non-
anticipatory solution (which cannot take account of demand information
from the future) will order the same amount for these two scenarios.

7.6 VaR constraints on a portfolio with a bond

Suppose that the portfolio weights are wA, wB and wC , where wC is the
proportion in the treasury bond. Then the expected profit after three years
is proportional to 250wA + 300wB + 200wC . The distribution of profit is
normal with this mean, and standard deviation

√
wA1002 + wB1502 = 10

√
100wA + 225wB.

To achieve a probability of less than 0.01 of having a negative profit
implies a z value of 2.3263 or more. Thus the constraint is that

250wA + 300wB + 200wC

10
√

100wA + 225wB

≥ 2.3263.

Squaring this constraint we get an optimization problem

maximize 250wA + 300wB + 200wC

subject to (25wA + 30wB + 20wC)2 ≥ 5.4119(100wA + 225wB)

wA + wB + wC = 1
wA ≥ 0, wB ≥ 0, wC ≥ 0.

This can be solved using a spreadsheet and Solver, or more directly. We
can substitute for wC = 1 − wA − wB to get

maximize 50wA + 100wB + 200

subject to (5wA + 10wB + 20)2 ≥ 5.4119(100wA + 225wB)

wA ≥ 0, wB ≥ 0, wA + wB ≤ 1.

Figure B.3 (where dashed lines are contours of the objective) shows that
a solution occurs where the line wA + wB = 1 intersects the constraint
(5wA + 10wB + 20)2 = 5.4119(100wA + 225wB), and this occurs when
wA = 0.8012 and wB = 0.1988. Here, wC = 0 and we do not invest in
the bond in this case.
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Figure B.3 Feasible region shaded for portfolio optimization.

8.2 Coefficients are unrelated

The formulation of this problem is similar to the budget of uncertainty
arrangement, but with B = 3 so it does not provide an additional con-
straint. Thus, the constraint can be rewritten as

a1x1 + a2x2 + a3x3 + w1 + w2 + w3 + 3t ≤ b,

w1 + t ≥ δ1|x1|
w2 + t ≥ δ2|x2|
w3 + t ≥ δ3|x3|
wi ≥ 0, t ≥ 0.

The question is: how can this be rewritten as a single constraint?

Observe that any solution (w1, w2, w3, t) can be replaced with a new
solution with the existing t added to each wi and then the new t set to zero,
i.e. we use the new solution (w′

1, w
′
2, w

′
3, t

′) = (w1 + t, w2 + t, w3 + t, 0).
This means that we can assume t = 0 without loss of generality to get
constraints

a1x1 + a2x2 + a3x3 + w1 + w2 + w3 ≤ b

w1 ≥ δ1|x1|
w2 ≥ δ2|x2|
w3 ≥ δ3|x3|

wi ≥ 0.



354 APPENDIX B

But now notice that any solution implies a solution exists with wi = δi |xi |.
If there is strict inequality for a wi we can reduce it and the first constraint
will still hold. Thus, finally we can write the constraint as

a1x1 + δ1|x1| + a2x2 + δ2|x2| + a3x3 + δ3|x3| ≤ b.

This result can also be derived quite simply by observing that we can
replace ai with ai + δi whenever xi ≥ 0 and with ai − δi whenever xi < 0
and this will produce the tightest constraints existing within the uncertainty
set A.

8.4 Robust optimization for Sentinel

With the change in selling price there is $40 less profit from each sale, so
the objective function becomes

120zL + 100zS − 70(xL + xS)

with the same constraints as before. The new final problem is

maximize G

subject to G ≤ 120xL − 70(xL + xS)

G ≤ 120 × 5000 − 70(xL + xS)

G ≤ 100xS − 70(xL + xS)

xL ≥ 0, xS ≥ 0.

The solution to this problem is just as claimed – everything zero. The
implication is that with these data it is impossible to guarantee a profit,
however xL and xS are chosen. The reason is that the loss from having
too much ($70) is more than the profits from sales $50 and $30 for the
two sizes. So, if nature moves demand away from whichever is the larger
order, the losses on that larger order are greater than the profits on the
smaller order and Sentinel ends up making a loss.

8.6 Provence Rentals

(a) Let x be the number of GPS systems installed and p be the proportion
of customers wanting a GPS system. Then Provence Rentals makes $4
for each of min(x, 100p) cars and loses $10 for each of max(100p −
x, 0) = 100p − min(x, 100p) cars. Thus, the profit made by Provence
Rentals is

2000 min(x, 100p) − 5000 max(100p − x, 0) − 750x

= 7000 min(x, 100p) − 500 000p − 750x.
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The robust optimization problem is

max
x

[
min

p∈[0,1]
(7000 min(x, 100p) − 500 000p − 750x)

]
.

(b) The objective function in the inner minimization is concave in p, in
fact the p dependence is given by

7000 min(x, 100p) − 500 000p.

Thus, it is minimized at an end point of the interval [0, 1].
(c) If p = 0 then the profit is −750x and if p = 1 the profit is 7000x −

500 000 − 750x. So the problem becomes

max
x

[min(−750x, 6250x − 500 000)].

The maximization can never produce a guaranteed profit, but we do
not want the loss to be too great. When taken as a function of x, the
function min(−750x, 6250x − 500 000) is maximized where the two
lines cross, i.e. at

−750x = 6250x − 500 000

x = 500 000/7000 = 71.4.

Provence Rentals should fit 71 of its cars with GPS systems.

9.2 Pop concerts

(a) The expected value for the first investment is simple: $12 000 in
expected ticket sales means that the expected profit is $12 000 −
$10 000 = $2000.

(b) We work in units of $1000. Since investors are guaranteed to receive
9 back from their initial investment of 10, the net position is −1.
On top of this, investors receive 5% of profit over 171. Write X for
the expected ticket sales. X is a normal random variable with mean
μ = 230 and standard deviation 80. Then the expected profit is

E(�) = −1 + (1/2)E[max(X − 171, 0)]

= −1 + (1/20)[(230 − 171)(1 − 	μ,σ (171)) + 802ϕμ,σ (171)]

= −1 + (1/20)59(1 − 0.2304) + (1/20)802 × 0.003799

= 2.486.

So the expected profit is $2486, which is higher than (a) and so this
is the preferred investment.
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9.4 SambaPharm

A decision will be made on the basis of information on the effectiveness,
which we measure as a fraction p. The cutoff value for p is given as p =
0.4. The profit for years 4 to 8 is given as $50 k for each 0.1 increase in p

above 0.4. Working in $1000s this can be written as 500 max(0, p − 0.4).
Hence, we have a net present value that is given by

NPV = −60 − 60

1.08
− 60

1.082
+ 500 max(0, p − 0.4)

×
(

1

1.083
+ 1

1.084
+ 1

1.085
+ 1

1.086
+ 1

1.087

)
.

We need to take the expectation of this for p uniformly distributed on
[0, 0.8]. Using the formula we have

E[max(0, p − 0.4)] = (0.8 − 0.4)2

2(0.8 − 0)
= 0.1.

So the expected NPV is

E(NPV ) = −60 − 60

1.08
− 60

1.082

+ 50

(
1

1.083
+ 1

1.084
+ 1

1.085
+ 1

1.086
+ 1

1.087

)
= 4.16.

9.6 Option prices imply distribution

A call option becomes more valuable as the price of the stock goes up.
Assuming a normal distribution, a fair price for a call option with a strike
price of a is

E(max(X − a, 0)) = (μ − a)(1 − 	μ,σ (a)) + σ 2ϕμ,σ (a).

We can set up a spreadsheet to search for the values of μ and σ that give
the right values when plugged into this formula. We find

μ = 452.35,

σ = 55.94.

A put option is more valuable as the stock price goes down; assuming a
normal distribution its fair price is given by

E[max(a − X, 0)] = (a − μ)	μ,σ (a) + σ 2ϕμ,σ (a).
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Substituting a = 450 gives

E[max(a − X, 0)] = (−2.35)	μ,σ (450) + (55.94)2ϕμ,σ (450)

= 21.16.

It is interesting that, as mentioned in Section 9.4, the numbers here match
the actual prices of American call options on Apple (for the dates men-
tioned) and the actual price for this put option is $22.00 – a figure not
dissimilar to the result of this calculation.

10.2 Markov groupings

The transition matrix is

P =

⎡
⎢⎢⎣

1 0 0 0
0.1 0.7 0.2 0
0 0.1 0.7 0.2
0 0 0 1

⎤
⎥⎥⎦ .

We can take powers of this matrix to find the probabilities over three years
(this can be done in Excel using the MMULT function, but you need to
be familiar with array functions). We have

P 3 =

⎡
⎢⎢⎣

1 0 0 0
0.221 0.385 0.298 0.096
0.024 0.149 0.385 0.442

0 0 0 1

⎤
⎥⎥⎦ .

If we are equally likely to be in B or C, then the probability of getting to
D after three steps is 0.5(0.096 + 0.442) = 0.269.

Now we consider grouping together the states B and C. Always assuming
that we are equally likely to be in B or C, this gives a three-state chain
with transition probabilities

P̃ =
⎡
⎣ 1 0 0

0.05 0.85 0.1
0 0 1

⎤
⎦ .

The three-step transition probabilities are given by

P̃ 3 =
⎡
⎣ 1 0 0

0.129 0.614 0.257
0 0 1

⎤
⎦ .

This gives a probability of getting to D after three steps of 0.257 (slightly
smaller than without grouping).
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10.4 Octophone

We can calculate the weights of evidence as follows:

Good Bad Odds WoE

18–21 385 37 10.41 −0.17
21–29 587 41 14.32 0.15
30–45 476 36 13.22 0.07
46+ 402 36 11.17 −0.10
credit card 1353 67 20.19 0.49
no credit card 497 83 5.99 −0.72
previous phone 1388 74 18.76 0.42
no previous phone 462 76 6.08 −0.71

In the population there are 1850 goods and 150 bads. So log(oPop) =
log(1850/150) = 2.512. The scorecard can be obtained simply by multi-
plying the weights of evidence by 100 to give:

Scorecard
age 18–21 −17
age 21–29 15
age 30–45 7
age 46+ −10
credit card 49
no credit card −72
previous phone 42
no previous phone −71
constant 251

10.6 Cosal Skincare

(a) We get the following β values

β0 = 3.89
βh1 = −0.58
βh2 = −0.57
βh3 = 0
βfull–time = −0.17
βnot–ft = 0
β<30 = −0.28
β30−39 = 0.17
β40−49 = 0.70
β>50 = 0
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(b) To make it worthwhile we need the N/P odds to be less than
$150/$2.50 = 60 so we require log odds less than log(60) = 4.094 3.
Using the normal procedure of multiplying by 100 and redistributing
the constant term (189 to household attributes, 100 to work, and 100
to age) we get a scorecard as follows

Attribute Score

Household of 1 131
Household of 2 132
Household of 3 or more 189
Full time work 83
Not full time work 100
Age under 30 72
Age 30 to 39 117
Age 40 to 49 170
Age over 50 100

It is only worthwhile sending the promotion to individuals with scores
less than 409.
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